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1 Introduction

Investor disagreement (i.e., divergence of opinions) is a pervasive element in financial mar-

kets that, intuitively, is essential for trade. However, its impact on asset prices is less

obvious. A large literature starting with Diether et al. (2002) proxies for disagreement us-

ing analyst forecast dispersion and finds it is negatively related to expected stock returns.

These papers typically cite as explanation the argument of Miller (1977) that disagreement

leads to inflated asset prices since short-sales frictions hinder the expression of pessimists’

beliefs. Yet, in the agency mortgage-backed security (MBS) market, which is argued to be

free of "significant short-sale constraints, illiquidity, or other frictions," Carlin et al. (2014)

find that analyst forecast dispersion is positively related to expected MBS returns. Güntay

and Hackbarth (2010) obtain similar findings in the corporate bonds. Consistent with this

evidence in fixed income markets, Abel (1989) shows that disagreement lowers prices (and

increases expected returns) due to reduced risk-sharing even without trading frictions.

In this paper, we develop a simple theory that rationalizes all of the above empirical

findings: belief heterogeneity affects equilibrium price via demand curvature, which can

arise frictionlessly when payoffs are skewed. Moreover, our theory is a bridge between

these papers and the seemingly unrelated finding that skewness negatively predicts stock

returns (Boyer et al., 2010, among others). Finally, the theory generates novel predictions

about the interaction of disagreement and skewness, for which we provide robust empirical

support.

We analyze the asset pricing implications of disagreement in a parsimonious neoclassi-

cal framework with essentially no parametric assumptions on utility or payoff distributions.

Our model considers a two-period financial market with trading in a risk-free asset and a

single risky asset, which pays an uncertain liquidating dividend. The risky asset is in zero

net supply with its equilibrium price determined by standard market clearing.1 There is

1In Section 3.4, we show our results are robust to non-zero supply. The risk-free asset has infinitely elastic
supply with price and payoff normalized to unity.
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a continuum of investors who are price takers, maximize expected utility, and have a com-

mon utility function with the following standard properties: investors strictly prefer more

to less, are strictly risk averse, and have non-increasing absolute risk aversion (NARA).2

NARA ensures that a risky asset with a positive expected return is not an inferior good;

i.e., wealthier investors allocate weakly more money to the risky asset. Arrow (1971) argues

these are properties of any reasonable utility function. We make no parametric assump-

tions on utility, but note that the NARA class nests both the constant absolute relative risk

aversion (CARA) and constant relative risk aversion (CRRA) preference classes. Though

seemingly obvious and innocuous, NARA is in fact quite powerful. Just as risk-aversion

implies a distaste for variance, NARA implies a preference for positive skewness (Arditti,

1967).

Our main theoretical result is that an asset’s skewness interacts with disagreement

to determine equilibrium price through its impact on the curvature of investors’ demand

schedules. Via Taylor polynomials of investor demands and the market-clearing price, we

obtain the following pricing equations:

expected excess return∝−volatility∗skewness∗Var(beliefs), (1)

Sharpe ratio∝−skewness∗Var(beliefs). (2)

Equation (1) predicts an interaction effect: skewness controls the sign and magnitude of

the impact of disagreement on asset prices. Because empirically most stocks have positively

skewed returns (Boyer et al., 2010) and MBS payoffs are decidedly negatively skewed, this

interaction implies a negative relationship between disagreement and expected returns in

equities (the “disagreement effect,” as found by Diether et al., 2002) but a positive relation-

ship in MBS (as found by Carlin et al., 2014). Because variance is non-negative, equation

(1) also predicts that expected returns are decreasing in skewness (the “skewness effect,” as

2In Section 3.2, we show our results are robust to investors having heterogeneous utility functions satisfying
these properties.
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found by Boyer et al., 2010). Finally, we obtain a “null” result: when skewness is approxi-

mately zero, the effect of disagreement on expected returns should be negligible. Likewise,

when disagreement is approximately zero, the effect of skewness on returns should be neg-

ligible. Moreover, equation (2) predicts that the relationship between skewness, disagree-

ment, and Sharpe ratios should be invariant to the level of volatility. This result supports

the conclusion in Diether et al. (2002) that forecast dispersion does not proxy for risk and

further shows how the disagreement effect in stocks can be separated from the idiosyncratic

volatility puzzle (Falkenstein, 1994).

In Section 4, we provide economically and statistically significant empirical support for

the interaction effect predicted by equation (1) and the invariance prediction of equation

(2) within the universe of U.S. equities. We first use an independent double sort to con-

struct a portfolio which is both skew- and disagreement-neutral but exploits the interaction

effect. It has an economically significant annualized CAPM alpha of 7.3% with a statisti-

cally significant t-statistic greater than 3. Fama and French (2015) and Daniel et al. (2020)

alphas exhibit comparable metrics. We next use a semi-parametric Fama-Macbeth regres-

sion to show that, indeed, the disagreement effect disappears when skewness is near zero

and, similarly, the skewness effect disappears when disagreement is negligible. Finally, we

repeat the exercise on scaled returns (realized returns divided by ex-ante option implied

volatility) and confirm the invariance prediction of equation (2).

To understand the mechanism in our model that generates these effects, first note that

NARA utility implies that an investor’s demand schedule is convex in a neighborhood around

the investor’s subjective expected payoff, p ≈ µi, if and only if the payoff skewness is pos-

itive. Further, convexity is locally proportional to skewness. These results obtain from a

second-order approximation of an investor’s demand schedule at the candidate price p =µi.

Figure 1 provides a graphical intuition for the relationship between skewness and demand

convexity. Start with the demand function for an asset with arbitrary payoff distribution,
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given by the thinner curve.3 Now consider an otherwise identical asset with higher skew-

ness, whose demand is given by the thicker curve.4 Since a NARA investor has a preference

for skewness, demand for this new asset must be weakly higher at any price. Because of

risk aversion, however, when price, p, equals the subjective expected payoff, µi, demand for

any asset is zero.5 As a result, the thicker curve is more “curved” than the thinner curve.

Accordingly, increasing skewness locally increases the demand function’s convexity.

p = µi

Price

Demand x(p)

Higher skewness

Lower skewness

0

Figure 1: Higher Skewness Leads to a More Convex Demand Curve

Note: This figure illustrates that ceteris paribus, higher skewness leads to a more convex demand
curve. The thicker curve represents the demand associated with a higher skewness, while the thin-
ner curve represents the demand associated with a lower skewness. Since a NARA investor has a
preference for skewness, the thicker curve is weakly above the thinner curve for any price. Further-
more, when price equals the subjective expected payoff (µi), demand is precisely zero, regardless of
skewness. Put differently, both curves must cross the price axis at the same point, where they are
tangent. As a result, the thicker curve is more “curved” than the thinner curve in the neighborhood
around the expected payoff.

3As drawn, its second derivative is positive, but the argument works for any value.
4We cautiously note that it is generally impossible to change skewness without affecting other moments

unless the distribution is unbounded. However, as we show in the proof of Lemma 1, the graphical illustration
is correct in a neighborhood around the subjective expected payoff, as the curvature of the demand function
locally does not depend on moments higher than the third.

5This is because a risk-averse agent rejects any mean-zero lotteries.
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We model differences of opinion in our baseline setup by separating investors into two

types: “optimists” (positive type, denoted as +) and “pessemists” (negative type, denoted as

−). 6 Investors disagree about the mean of the dividend distribution but agree about its

shape, and, hence, agree about volatility and all higher-order central moments.7 Letting µ

and σ be the objective mean and volatilty of the payoff, respectively, the beliefs of the two

types are µ+ = µ+σδ and µ− = µ−σδ so the average belief is correct and δ parameterizes

the level of disagreement (per unit of volatility). Note that this structure of beliefs implies

that investors disagree about the asset’s Sharpe ratio by ±δ. Figure 2 plots their demand

schedules for a positively skewed asset. Due to agreement on higher moments, the curves

are locally parallel.

With this backdrop, consider a candidate equilibrium price equal to the average belief:

p =µ. At this price, the positive-type investor perceives the asset as under-priced and would

go long while the negative-type investor perceives it as over-priced and would go short. Can

the market clear? The answer is no, because at this price there would be excess demand be-

cause buying a positively skewed asset entails more desirable upside risk whereas shorting

the asset involves more downside risk. Convexity implies the positive type would want to

buy more shares of the asset than those shorted by the negative type. To clear the market,

the equilibrium price must be higher than µ. In summary, the equilibrium price will be

higher than the expected payoff for a positively skewed asset. Similarly, the equilibrium

price will be lower than the expected payoff for a negatively-skewed asset since negative

skew implies concave demand schedules. When the payoff distribution is symmetric, de-

mand is linear and price equals the average belief.

We note that our proposed theory is complementary (rather than contradictory) to ex-

isting explanations of the relationship between disagreement and expected returns. In a

simple setting with frictionless trading, zero net supply, and linear demand curves (as in

6In Section 3.1, we show our results are robust to an arbitrary number of investor types.
7In Section 3.3, we show our results are robust to alternative structures of disagreement such as differences

of opinion about variance and skewness.
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the case of a CARA-normal environment or approximate mean-variance preferences), dis-

agreement has no pricing implications: price equals the average belief. Short-sale frictions

can be viewed as another source of demand convexity. When short-sale costs are propor-

tional to quantity shorted, demand is kinked at p = µi, with a flatter slope in the short-

selling region. The demand schedule is piecewise linear, but convex.8 Overall, our graphical

intuition highlights the importance of nonlinear demand curves and extends applicability

beyond traditional frameworks with short-selling constraints.

p = µ+

Price

Demand x(p)

x+(p)

0
p = µ−

x−(p)

p = µ

Figure 2: Disagreement Lowers Returns for a Positively Skewed Asset

Note: This figure illustrates the intuition that disagreement lowers returns for a positively skewed
asset. Because of positive skewness, an investor’s demand is convex in the neighborhood of the as-
set’s expected payoff under the investor’s belief. The two curves represents the demand schedules
of a positive-type investor and a negative-type investor, respectively. For example, the demand of a
positive-type investor crosses zero at price µ+σδ, which is the risky asset’s expected payoff under
a positive type’s belief. Now suppose the price is equal to µ. The blue (upper) dotted line segment
represents the shares that a positive-type investor would buy, while the red (lower) dashed line seg-
ment represents the shares that a negative-type investor would sell. Because of demand convexity,
the length of the dotted-blue line is greater than that of the dashed-red line. In other words, at price
µ, there is excess demand. To clear the market, the equilibrium price must be greater than µ.

8When short sales are not allowed, demand is zero for p ≥ µi. Demand is still convex. In fact, demand
convexity obtains if short-sale cost is weakly convex in quantity shorted.
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Related Literature

Disagreement is an important basis for trade in financial markets and the subject of a large

theoretical literature motivating empirical exploration.9 Several studies since Diether et al.

(2002) have proposed various explanations for the “disagreement effect” in equities, the

negative relationship between analyst forecast dispersion and expected returns.10 Unique

to the literature is (Johnson, 2004), which puts forth a fully rational explanation that fur-

ther predicts a relationship between dispersion and firm leverage. Avramov et al. (2009),

however, contend such a relationship is not supported in the data. Our theory offers a sim-

ple frictionless explanation for the dispersion effect via the interaction of disagreement and

skewness. Further, our model is consistent with the findings in Carlin et al. (2014) and

Güntay and Hackbarth (2010) that forecast dispersion is positively related to expected bond

returns.

Several recent empirical studies have documented the skewness effect, a negative rela-

tionship between ex-ante (idiosyncratic) skewness and expected returns (Boyer et al., 2010;

Conrad et al., 2013; Amaya et al., 2015; Boyer and Vorkink, 2014). Existing theoretical ex-

planations include optimistic beliefs (Brunnermeier and Parker, 2005; Brunnermeier et al.,

2007), cumulative prospect theory preferences (Barberis and Huang, 2008), or heteroge-

neous preferences and underdiversification (Mitton and Vorkink, 2007).11 Goulding et al.

(2023) show that NARA utility and the presence of noise traders generate the skewness ef-

fect. In contrast, our theory not only generates the skewness effect under the mild assump-

9Miller (1977), Jarrow (1980), Diamond and Verrecchia (1987), and Chen et al. (2002) explore static models
while Harrison and Kreps (1978), Scheinkman and Xiong (2003), Hong et al. (2006), and Martin and Papadim-
itriou (2022) study the dynamics of speculative bubbles. On issues related to trading volumes, price volatility,
prices co-movement, and informed trading, see Harris and Raviv (1993), Kandel and Pearson (1995), Cao and
Ou-Yang (2008), Dumas et al. (2009), Banerjee and Kremer (2010), Ottaviani and Sørensen (2015), Atmaz and
Basak (2018), Banerjee et al. (2018), and Chabakauri and Han (2020), among others. See Bielecki et al. (2004),
Hong and Stein (2007), Curcuru et al. (2010), and Xiong (2013) for surveys of this large literature.

10See Sadka and Scherbina (2007), Yu (2011), Ali et al. (2019); Barinov (2013); Hong and Sraer (2016);
Daniel et al. (2023), among others, for studies that use this measure. See Chang et al. (2022) for an overview
of this literature.

11Mitton and Vorkink (2007) show that if some investors have mean-variance preferences and others
have mean-variance-skew preferences (as in Kraus and Litzenberger, 1976), the idiosyncratic skewness phe-
nomenon obtains even without trading frictions or disagreement.
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tion of NARA utility and without appealing to noise traders, but also generates distinct

predictions for which we provide robust empirical support.

Our paper is in the same spirit of Yan (2010), who points out that individual biases may

not necessarily cancel out when demand is nonlinear. However, that paper takes demand

non-linearity as an assumption. Our paper provides a microfoundation for non-linear de-

mand, relying on only the mild NARA utility assumption. Moreover, our theory leads to

joint pricing implications of disagreement and skewness, which are absent from Yan (2010).

Finally, our paper is related to the literature that explores the pricing impacts of skew-

ness with differences of opinion (driven by different priors or information differences). First,

on different priors, Martin and Papadimitriou (2022) use a binomial tree setting with log-

utility investors and no trading frictions to show that heterogeneous priors can drive sen-

timent that leads to an inflated price bubble for a skewed asset. Banerjee et al. (2022) and

Banerjee et al. (2022) among others demonstrate that skewness can affect expected returns

for CARA investors who agree to disagree with each others. Second, several papers have

explored asymmetric payoffs and belief dispersion in a noisy rational expectations setting.

Goulding (2015) generates an interactive pricing effect of payoff skewness and investor be-

lief dispersion driven by private signals and public information in analyst forecasts and

price in a framework with binary payoffs and CARA preferences. Applying various para-

metric payoff assumptions, Breon-Drish (2015), Chabakauri et al. (2022), and Cianciaruso

et al. (2023) demonstrate pricing effects of payoff asymmetry and belief dispersion driven by

private signals and price under CARA preferences. Albagli et al. (2024) derive an interac-

tion effect of skewness and belief dispersion driven by private signals and price that applies

to a larger collection of payoff distributions and investor preferences without parametric

assumptions.

Our approach differs from these studies in its use of dogmatic beliefs, its transparency

regarding exogenous primitives, its flexibility for analyzing pricing effects, and its distinct

quantitative predictions. Albagli et al. (2024) rely on restrictions on the endogenous dis-

8



tribution of a sufficient statistic, which cannot be translated into conditions on exogenous

primitives. In contrast, we work within a dogmatic beliefs framework, which allows us to

derive asset pricing predictions entirely from exogenous primitives. Moreover, by directly

characterizing how skewness drives nonlinear demand schedules without parametric as-

sumptions on payoffs or preferences, we provide simple yet general graphical explanations

for the intuition behind the equilibrium pricing mechanism as well as flexibly accommodate

features that directly influence demand schedules, such as short-sales frictions. Further-

more, our paper generates quantitative pricing predictions for skewness and disagreement,

as outlined in equations (1) and (2), including the distinct quantitative prediction that the

interaction between skewness and disagreement has an “invariant” relationship with the

Sharpe ratio, for which we provide consistent empirical evidence.

Road Map

The paper is organized as follows. In Section 2, we present a simple baseline model to derive

the main results. In Section 3, we show our main results hold in several extensions of the

baseline model, including disagreement with arbitrary types (Sec 3.1), heterogeneous pref-

erences (Sec 3.2), disagreement on higher-order moments (Sec 3.3), and non-zero aggregate

supply (Sec 3.4). In Section 4, we present the empirical method, data sample, and empirical

analyses. We conclude the main text in Section 5. Proofs and various robustness tests are

in the Appendix.

2 Model

In this section, we present and analyze a model of investor disagreement in a financial

market for a risky asset that can have a skewed payoff distribution. In Section 3, we discuss

a variety of model extensions to demonstrate how the insights presented here generalize.

All proofs are in Appendix A.
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2.1 Financial Market

We study a two-period financial market, with dates t ∈ {0,1}, and a continuum of investors,

indexed by i ∈ [−1,1]. Each investor has common utility function u(w) and initial wealth

w0.12 The function u(·) is thrice continuously differentiable and exhibits the following

properties of any reasonable specification of preferences (Arrow, 1971): investors strictly

prefer more to less, which implies u′(w) > 0; investors are strictly risk averse, which im-

plies u′′(w) < 0; and an investor’s absolute risk aversion does not increase in wealth—non-

increasing absolute risk aversion, or NARA utility—which implies u′′′(w) > 0. NARA en-

sures that a risky asset with a positive expected return is not an inferior good; i.e., wealth-

ier investors allocate weakly more money to the risky asset. Note that the NARA utility

class nests widely-used parametric utility functions such as constant absolute risk aversion

(CARA) utility and constant relative risk aversion (CRRA) utility classes.

Investors trade in two assets: a risk-free asset, with both its price and payoff normalized

to one, and a single risky asset, with date-0 price p and date-1 payoff θ̃. Let F(θ)=Pr[θ̃ ≤ θ]

denote the cumulative distribution function (CDF) of the payoff θ̃ and µ=E[θ̃], σ2 =Var[θ̃],

and s = E[(θ̃ −µ)3]/σ3 denote its mean, variance, and skewness, respectively. Similarly,

investor i’s beliefs are given by µi, σ2
i , and si. Let E i[·] denote her subjective expectation

operator. For now, we leave investor beliefs unspecified. Let r̃ = (θ̃− p)/p denote the net

return, σ2
r = Var[r̃] denote the return variance, and Sharpe[r̃] = E[r̃]/σr denote the Sharpe

ratio.13 Note that θ̃ is denominated in units of currency, r̃ is unitless, and σ=σr p.

12In Section 3.2, we study heterogeneous utility functions as well as heterogeneous initial wealth.
13We assume µ is finite and σr > 0 to avoid a trivial solution. Note that net return is well defined if the

equilibrium price is positive, which holds, for example, for stocks whose payoffs cannot be negative because of
limited liability. Note also that excess return and return are equal because the risk-free asset is normalized to
have zero return.

10



2.2 Investor Demand

Investor i submits a demand schedule xi(p), which specifies how many shares of the risky

asset she would buy or sell at price p. We further assume that the supply of the risky asset is

zero, so the market’s clearing condition is
∫ 1
−1 xi(p)di = 0, which determines the equilibrium

price p.14 An equilibrium consists of ({xi(·) : i ∈ [−1,1]}, p) such that the demand schedule

xi(p) solves investor i’s expected utility maximization problem and the price p clears the

market.

We start with an investor’s problem. Formally, the demand schedule xi(p) solves the

following program:

xi(p)= argmax
x

E i[u(w0 + xi(θ̃− p))], (3)

where the expectation is taken under investor i’s beliefs. Since u is strictly concave and

thrice continuously differentiable, the necessary and sufficient condition which determines

xi(p) is given by the first-order condition (FOC):

E i[u′(w0 + xi(p)(θ̃− p))(θ̃− p)]= 0. (4)

Note that when the price equals the expected payoff under investor i’s belief, p = E i[θ̃], zero

demand (xi = 0) solves the FOC. It follows that xi(µi)= 0, given that the strict concavity of u

guarantees a unique solution of the FOC. We now analyze the properties of optimal demand

when p is close to µi via a Taylor expansion of xi(p) at the point p =µi. Doing so, we obtain

the following lemma:

Lemma 1. Investor i’s demand schedule is given by

xi(p)= u′(w0)
u′′(w0)

1
σ2

i
(p−µi)− 1

2
u′′′(w0)
u′′(w0)

(
u′(w0)
u′′(w0)

)2 si

σ3
i
(p−µi)2 + o(1)(p−µi)2, (5)

where the little-o notation o(1) is an unknown function that converges to 0 as p →µi.
14In Section 3.4, we discuss the case of non-zero aggregate supply, from which we reach similar conclusions.
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The slope of the demand function at p =µi is given by x′i(µi)= u′(w0)
u′′(w0)

1
σ2

i
, which is negative

because u′′ < 0. Consider a special case when the utility function is given by a CARA utility

function and the payoff of the underlying risky asset θ̃ is normally distributed. In this

case, skewness is zero, and the quadratic term in equation (5) is zero, consistent with the

well-known result that the demand function is linear under CARA and normality.

The quadratic term in equation (5) captures the curvature of the demand function at

p = µi. It is clear that the sign of x′′i (µi) solely depends on si, since the utility function

has a negative second derivative and a positive third derivative. Specifically, if si > 0, then

x′′i (µi) > 0; if si < 0, then x′′i (µi) < 0. Lemma 1 states that a NARA investor’s demand of a

positively (negatively) skewed risky asset is strictly convex (concave) at p = µi. Figure 3

offers a graphical intuition for the result. Recall that a NARA investor has a preference for

positive skewness. This fact implies that when we increase the skewness of the underlying

asset, holding everything else equal, the investor would demand weakly more shares of the

risky asset, i.e., the demand function is weakly higher, consistent with the observation that

the solid curve is above the dashed line in Figure 3.15 Furthermore, demand has to be zero

when p =µi because of risk aversion. As a result, the “curvature” of the demand function of

a positively skewed asset at p = µi has to be greater than the “curvature” of a straight line.

Since the curvature of a straight line is 0, the curvature of the solid curve at p = µi has to

be positive.

2.3 Investor Beliefs

We allow investors to disagree about the date-1 payoff of the risky asset. Each investor’s

belief corresponds to a horizontal shift of the payoff CDF, F(·), which implies that investors

disagree about the mean (and also the Sharpe ratio) but agree about higher central moments

15We cautiously note that it is generally impossible to increase skewness without affecting other moments.
However, as we show in the proof of Lemma 1, the graphical illustration is correct in the neighborhood of
p =µi, as the curvature of the demand function at p =µi does not depend on moments higher than the third.
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p = µi

Price

Demand x(p)

xi(p)

0

Figure 3: The Demand Schedule of a Positively Skewed Asset

Note: This figure illustrates the shape of the demand schedule. The dashed line is linear demand,
which obtains under CARA and normality. The solid curve is the demand schedule when the under-
lying risky asset is positively skewed. The solid curve and the dashed line are tangent at the point
(p, x) = (µi,0). Since the solid curve has to be weakly higher than the dashed line, the curvature of
the solid curve at p = µi has to be positive, consistent with Lemma 1 that the demand function of a
positively skewed asset is convex at p =µi.

such as variance, skewness, etc., because the shape of the distribution is common.16 We use

the notation Fz to reflect a horizontal shift of z units; i.e., Fz(θ) = F(θ−σz),∀θ. Note that z

is unitless.

For simplicity of presentation we consider two types of investors, but we show in Sec-

tion 3.1 that our results generalize to arbitrary number of types. Each investor can be

either a positive “optimist” type or a negative “pessimist” type: investors from (0,1] are of

positive type, and investors from [−1,0] are of negative type. We assume a positive-type

investor believes that the date-1 payoff is drawn from CDF Fδ, while a negative-type in-

vestor believes the payoff is drawn from CDF F−δ, such that a higher level of the horizontal

shift parameter δ≥ 0 corresponds to a wider dispersion of beliefs between the two investor

16In Section 3.3, we discuss disagreement about other moments of the distribution.
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types.17

Let E+[·] and E−[·] denote the expectation operator under positive and negative type

beliefs, respectively. From the horizontal shift assumption, we obtain immediately µ+ =
E+[θ̃]=µ+σδ and, likewise, µ− =µ−σδ. Accordingly, the two types of investors have mean

payoff beliefs corresponding to µ±σδ, where (+) is for the positive type of investors and (−)

is for the negative type. Since a horizontal shift in the CDF doesn’t affect centered moments,

we also have σ+ = σ− = σ and s+ = s− = s; investors agree on the variance and skewness of

the payoff distribution.

Using the identity σ = σr p, subtracting p, dividing the result by p, and noting that

E[r̃] = µ−p
p , we can recast investor disagreement as disagreement about expected returns

E[r̃]±σrδ. Further dividing through by return volatility, our model of investor disagreement

simplifies to disagreement about the asset’s Sharpe ratio: Sharpe[r̃]±δ.

Using Lemma 1 combined with agreement about centered moments, the demand sched-

ules of positive and negative-type investors are given by

x+(p)= u′(w0)
u′′(w0)

1
σ2 (p−µ+)− 1

2
u′′′(w0)
u′′(w0)

(
u′(w0)
u′′(w0)

)2 s
σ3 (p−µ+)2 + o(1)(p−µ+)2, (6)

x−(p)= u′(w0)
u′′(w0)

1
σ2 (p−µ−)− 1

2
u′′′(w0)
u′′(w0)

(
u′(w0)
u′′(w0)

)2 s
σ3 (p−µ−)2 + o(1)(p−µ−)2, (7)

respectively, where the little-o notation o(1) is an unknown function that converges to 0 as

p →µi.

17We remark that this structure of disagreement may not be realistic if the dividend distribution is bounded
and investors can write side contracts. This is because the upper bound of a positive type’s perceived distri-
bution is outside the support of the perceived distribution from a negative type. If side contracts are allowed,
investors would bet an infinite amount for a contract that only pays outside the support of their respective
perceived distribution. In our baseline model, one way to justify our assumption is that side contracts are not
allowed or sufficiently costly to write, which is to say that the market is incomplete. We can also justify our
assumption by assuming the support of the dividend distribution is the entire real line in which case the above
concern is absent. Overall, we choose the simple structure in our baseline model to highlight the mechanism
through which disagreement affects asset prices. As we show in Sections 3.1 and 3.3, our results are robust to
general structures of disagreement.
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2.4 Equilibrium Price and Expected Return

We use the market-clearing condition to solve for the equilibrium price. Setting the aggre-

gate demand to be zero, price solves the following equation.

x+(p)+ x−(p)= 0. (8)

Proposition 1. There exists a δ> 0 such that if δ< δ, then the equilibrium price is given by

the following equation:

p =µ+usσδ2 + o(1)δ2, (9)

where

u = u′′′(w0)u′(w0)
2(u′′(w0))2 (10)

is a positive constant and where the little-o notation o(1) is an unknown function that con-

verges to 0 as δ→ 0.

Bounded disagreement ensures that demand convexity does not change signs between

µ− and µ+. From zero net supply, the equilibrium price must lie in this interval. The quan-

tity u is always positive because the NARA assumption implies u′′′ > 0. Suppose the risky

asset payoff is positively skewed. Proposition 1 states that the equilibrium price will be

higher than µ, which is the price when there is no disagreement, i.e., δ = 0, or when the

marginal investor has the average belief. Proposition 1 implies that a higher level of dis-

agreement biases the equilibrium price upward. Moreover, Proposition 1 provides a func-

tional form for the deviation of the equilibrium price from µ.

Figure 2 provides the intuition. Suppose the underlying risky asset is positively skewed

so that an investor’s demand is convex in the neighborhood of the asset’s expected payoff

(Lemma 1). The two curves represent the demand schedules of a positive-type investor and

a negative-type investor, respectively. For example, the demand of a positive-type investor

crosses zero at price µ+σδ, which is the risky asset’s expected payoff under a positive type’s
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belief. Now suppose the price is equal to µ. The dotted blue line represents the shares that

a positive-type investor would buy, while the dashed red line represents the shares that a

negative-type investor would sell. Because of convexity, the length of the blue line is greater

than that of the red line. Put differently, since buying a positively skewed asset entails more

desirable upside risk whereas shorting the asset involves more downside risk, the positive

type would buy more shares of the asset than those shorted by the negative type. So, at a

candidate equilibrium price µ, we have excess demand for the asset. To clear the market,

the equilibrium price must be higher than µ.

From Proposition 1 and the identity σ=σr p, we obtain the following expressions for the

dominant terms of the equilibrium expected return and Sharpe ratio.

Corollary 2. Using the second-order Taylor polynomial for equilibrium price in (9), the

corresponding expected return and Sharpe ratio can be expressed as follows:

E[r̃]≈−usσrδ
2, (11)

Sharpe[r̃]≈−usδ2. (12)

Because u > 0, for ex-ante positively skewed assets, Corollary 2 indicates that the ex-

pected return and Sharpe ratio decrease in the level of disagreement δ. This negative pre-

dictive relationship between disagreement and expected returns of individual stocks is con-

sistent with Diether et al. (2002) and a large literature in empirical asset pricing. We arrive

at our prediction, however, in a novel way. Rather than appealing to short-sales frictions—

the leading explanation for the disagreement effect—our model is frictionless and appeals

instead to the implications of asset skewness for demand convexity, which governs the re-

lationship between investor disagreement and expected returns. Moreover, for negatively

skewed assets such as MBS, Corollary 2 predicts a positive relationship between disagree-

ment and expected returns, consistent with Carlin et al. (2014).

Note that because of the simplifying standard assumption of zero supply, expected re-
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turns (11) are zero when there is no skewness. More generally, if net supply were positive,

then a positive risk premium would be part of the expected return to induce offsetting in-

vestor demand in equilibrium. Therefore, we can interpret our results as the isolated effect

of disagreement on expected returns net of the risk premium.18

2.5 Comparative Statics

Corollary 2 allows us to further analyze how various parameters affect the expected return

and Sharpe ratio predictions.

Proposition 3. The expected return and Sharpe ratio expressions of Corollary 2 satisfy the

following properties.

1. (The skewness effect): Holding disagreement fixed, expected return and Sharpe ratio

are decreasing in skewness. When disagreement is zero, the skewness effect should be

negligible.

2. (The disagreement effect): Holding skewness fixed, expected return and Sharpe ratio

are decreasing in disagreement if and only if skewness is positive. If skewness is zero,

the disagreement effect is negligible.

3. (The interaction effect): Higher skewness amplifies the disagreement effect on expected

return and Sharpe ratio and higher disagreement amplifies the skewness effect on ex-

pected return and Sharpe ratio.

Proposition 3 offers empirical predictions that we test in Section 4. The proposition

offers predictions on two well-known anomalies: (1) the negative relationship between ex-

ante return skewness and expected equity returns and (2) the negative relationship between

disagreement and expected equity returns. Moreover, to the best of our knowledge, the

interaction effect from our theory is novel to the theoretical asset pricing literature.
18In Section 3.4, we show the interactive effect of skewness and disagreement still obtains in the case of

non-zero aggregate supply.
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Furthermore, our model predicts that the analogous three effects also hold for the Sharpe

ratio and, therefore, the effects are invariant to the level of ex-ante return volatility. These

Sharpe ratio results affirm and expand on the argument in the literature that disagreement

is distinct from risk (Diether et al., 2002).

3 Discussion

Section 2 presents a simple two-type disagreement model of frictionless trading to highlight

how skewness mediates the impact of disagreement on expected returns. In this section, we

relax the simplifying assumptions of Section 2 and show that our main results are robust to

several extensions.

3.1 Disagreement with Arbitrary Types

The restriction in Section 2 to two types of investors is not an essential assumption. In this

subsection, we extend our results to an arbitrary number of types.19 We assume investor

i believes that the date-1 payoff is drawn from CDF Fδi . The unitless bias parameter δi is

drawn from a bounded mean-zero random variable δ̃, whose variance is denoted as Var(δ̃).20

In particular, δ̃ does not have to be symmetric. In this extended setup, Var(δ̃) captures

relative disagreement across investors. Note that the model of Section 2 is a special case in

which the random variable δ̃ is binary, i.e., only takes two possible values (±δ), and relative

disagreement reduces to Var(δ̃)= δ. Proposition 4 summarizes the result.

Proposition 4. There exists a δ> 0 such that if V ar(δ̃) is bounded by δ, then the equilibrium

price is given by the following equation.

p =µ+usσV ar(δ̃)+ o(1)V ar(δ̃), (13)

19For technical convenience, we restrict attention to a finite number of types. It is straightforward to extend
to countable or even uncountable types at the cost of cumbersome notation.

20Because of the boundedness assumption, the variance is finite.
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where u is a positive constant defined in (10) and the little-o notation o(1) is an unknown

function that converges to 0 as V ar(δ̃)→ 0.

From Proposition 4 and the identity σ=σr p, we obtain the following expressions for the

dominant terms of the equilibrium expected return and Sharpe ratio, consistent with the

implications of the main model.

Corollary 5. Using the second-order Taylor polynomial for equilibrium price in (9), the

corresponding expected return and Sharpe ratio can be expressed as follows:

E[r̃]≈−usσrV ar(δ̃), (14)

Sharpe[r̃]≈−usV ar(δ̃). (15)

3.2 Heterogeneous Utility Functions

So far, our analysis assumes homogeneous utility functions. In this subsection, we show

that this assumption does not drive our results. To simplify the analysis, we assume each

investor has one of the two utility functions: u1(·) and u2(·), both in the NARA class. We re-

turn to our baseline model and assume that each investor can be either a positive “optimist”

type or a negative “pessimist” type.

First, we consider the case that each investor can be one of the following four types with

equal probability: u1 and optimist; u2 and optimist; u1 and pessimist; u2 and pessimist.

Put differently, utility function being u1 or u2 and belief being positive or negative are

independent. In this case, it is clear that the equilibrium price is higher than the expected

payoff under the average belief, µ. This is because at the price µ, there is excess demand

among the two belief types with the same utility function: uk and pessimist, and uk and

optimist, for k = 1,2. Summing over k still gives excess aggregate demand. In all, the

equilibrium price has to be higher than µ to clear the market.

Second, we consider the case in which each investor can be one of the following two types
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with equal probability: u1 and optimist; u2 and pessimist. In other words, investors with

positive belief necessarily have the utility function u1, while investors with negative belief

necessarily have u2. We define the benchmark price as the price that obtains when investors

have mean-variance preferences, in which case demand schedules are linear. We denote the

benchmark price as p0, which is given by the following equation

p0 =
u′

1(w0)
−u′′

1(w0)µ++ u′
2(w0)

−u′′
2(w0)µ−

u′
1(w0)

−u′′
1(w0) +

u′
2(w0)

−u′′
2(w0)

. (16)

That is, the benchmark price is the weighted average of the expected payoff under each

type’s belief, where the weight is given by the reciprocal of each type’s absolute risk aversion.

Intuitively, a less risk-averse investor, trading more aggressively, gets a larger weight in

determining the benchmark price.

We are now ready to present the result.

Proposition 6. There exists a δ> 0 such that if δ≤ δ, then the equilibrium price is greater

than the benchmark price p0 if and only if s > 0.

We make a final remark. Section 2 assumes that all investors have the same initial

wealth w0. If investors have different initial wealth, effectively, investors have different

risk aversion and prudence. As we can see from the analysis in this subsection, Proposition

6 still holds. Hence, the same initial wealth assumption is not crucial.21

3.3 Disagreement On Other Moments

Thus far, we have assumed that investors disagree about the mean payoff but agree on the

variance and skewness. In this subsection, we discuss the possibility of disagreement on

other moments. For the ease of exposition, we assume there are two types of investors,

type A and type B. The probability of each type is one-half. The two types of investors

21Our benchmark price p0 is consistent with Yan (2010).
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can disagree about the distribution of the time-1 payoff, but have common utility function

u(w). We assume that a type j investor believes that the expected payoff is µ j, the standard

deviation is σ j, and the skewness is s j, for j = A,B.

First, we note that if µA =µB =µ, then the equilibrium price is also p =µ. This is because

each type investor demands zero shares of the asset so the market is cleared at p =µ, given

our zero aggregate supply assumption. Therefore we assume µA ̸= µB so that disagreement

“matters.”

Now, we can write each type of investors’ demand schedule in a neighborhood around µ j

as the following.

xA(p)= u′(w0)
u′′(w0)

1
σ2

A

(p−µA)− 1
2

u′′′(w0)
u′′(w0)

(
u′(w0)
u′′(w0)

)2 sA

σ3
A

(p−µA)2 + o(1)(p−µA)2, (17)

xB(p)= u′(w0)
u′′(w0)

1
σ2

B
(p−µB)− 1

2
u′′′(w0)
u′′(w0)

(
u′(w0)
u′′(w0)

)2 sB

σ3
B

(p−µB)2 + o(1)(p−µB)2, (18)

where x j(p) denotes type j’s demand, for j = A,B.

We define the benchmark price as the price that obtains when investors have mean-

variance preferences, in which case the demand schedules are linear. Given zero net supply,

the benchmark price is given by the following expression

p0 =
µA
σ2

A
+ µB

σ2
B

1
σ2

A
+ 1

σ2
B

. (19)

Intuitively, the benchmark price is the weighted average of the expected payoff under each

type’s belief, where the weight is given by the reciprocal of each type of investor’s belief

about the variance of the payoff. This intuition holds because an investor who believes the

variance is smaller would trade more aggressively, implying a higher weight in determining

the benchmark price. We are now ready to present the result.

Proposition 7. There exists a ϵ > 0 such that if |µA −µB| ≤ ϵ, then the equilibrium price is

greater than the benchmark price p0 if (σAsA +σBsB)/(σA +σB) > 0; the equilibrium price is
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lower than the benchmark price p0 if (σAsA +σBsB)/(σA +σB)< 0.

When σAsA +σBsB = 0, it is ambiguous whether the equilibrium price is higher or lower

than the benchmark price. Proposition 7 shows that the volatility-weighted average sub-

jective skewness, (σAsA +σBsB)/(σA +σB), is a “sufficient statistic" that plays the role of

objective skewness in Proposition 1.

3.4 Non-Zero Aggregate Supply

So far our analysis assumes zero aggregate supply. In this subsection, we discuss the case

when aggregate supply is not zero. Denote the aggregate supply as χ. To be clear, we return

to the baseline model in Section 2 and only change the aggregate supply from zero to χ. In

particular, we still assume investors have the same utility function and there are positive-

type and negative-type investors.

It is important to discuss what the benchmark price would be in this case. Ideally, the

benchmark price should approach the non-disagreement price as the level of disagreement

approaches zero. Define x0(p) as the demand schedule for an investor with objective beliefs,

given by F(·). As a result, both x+(·) and x−(·) approach to x0(·) as δ→ 0. We define the

benchmark price as the price that obtains when δ = 0. That is, the benchmark price p0

solves the following equation.22

2x0(p0)= χ. (20)

Proposition 8. Suppose the risky asset’s payoff, θ̃, is bounded under both types of investor

beliefs, and there is non-zero aggregate supply χ. Let p0 denote the benchmark price as

defined in (20). Then, there exists thresholds δ > 0, s > s, such that the following properties

22We remark that the benchmark price defined here is consistent with the one defined in the previous sub-
sections where we used the mean-variance preference. Specifically, mean-variance preference implies a linear
demand function that passes through the point defined in (20). Despite disagreement on the first moment,
the aggregate demand function is still a straight line that passes through the point defined in (20). So the
equilibrium price associated with mean-variance preferences is given by p0.
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hold.

• If s > s and δ< δ, the equilibrium price is greater than p0.

• If s < s and δ< δ, the equilibrium price is smaller than p0.

4 Empirical Tests

In this section, we test the prediction that skewness and disagreement have an interactive

pricing effect, summarized in Section 2.5, on a sample of U.S. stocks.

4.1 Data

Our sample is formed as the intersection of the Center for Research in Security Prices

(CRSP) and Institutional Brokers Estimate System (IBES) universes. From CRSP we ob-

tain monthly stock returns for U.S. firms (adjusted for delisting bias23), prices, volume, and

shares outstanding. We drop firm-month observations with missing prior-month market

capitalization (price×shares outstanding) or where the closing price one week ago is less

than $5/share.

Analysts’ forecasts data are taken from the Unadjusted U.S. Statistics Summary History

dataset of IBES. Our primary proxy for forecast dispersion, DISP, is essentially the same as

that used by Diether et al. (2002) and many others: the month-end standard deviation of

current-fiscal-year earnings per share (EPS) estimates scaled by the absolute value of the

mean forecast across analysts tracked by IBES, from December 1983 to December 2023:

DISP := stdFt

|meanFt|
, (21)

where stdFt is the month-end standard deviation of next-fiscal-year earnings estimates

across analysts tracked by IBES, and meanFt is the average of those forecasts. We define

23This adjustment is suggested by Shumway (1997). Our results are not sensitive to this adjustment.
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the next fiscal year as the closest upcoming within 170 to 550 days of the IBES statisti-

cal period (date of aggregation). We exclude firm-months where meanFt < 0.01, which is

a small number of instances. We also exclude firm-months where the price/earnings ratio,

Pt/meanFt < 1. This exclusion affects a small number of instances and likely data errors.

In order to compute stdFt, there must be at least two analyst forecasts. Firms with only

one forecast are typically micro-caps. Note that DISP is a unitless measure of disagreement

that corresponds to our modeled unitless relative disagreement δ in Section 2.

Our primary proxy for skewness, SKEW, is the monthly expected idiosyncratic skewness

measure for each stock as in Boyer et al. (2010), provided by the authors from July 1969

to December 2023. Using total skewness gives essentially identical results. Expected (or

ex-ante) skewness is difficult to measure. As opposed to means, variances and covariances,

skewness is not stable over time. Moreover, lagged skewness alone does not adequately

forecast skewness (Harvey and Siddique, 1999; Boyer et al., 2010). Instead, Boyer et al.

(2010) (hereafter BMV) use firm-level variables to predict skewness (following the approach

of Chen et al., 2001). Specifically, BMV develop measures of skewness each month that pre-

dict skewness of the return distribution over the next 60 months, based on firm characteris-

tics in the prior 60 months, including lagged skewness, idiosyncratic volatility, momentum,

turnover, size, exchange, and industry. BMV point out that although other variables, such

as accounting variables, could be useful in predicting skewness, limiting variables to this

collection allows the measure to be computed for every stock in CRSP with available his-

tory. As a result, using BMV’s proxies for skewness maintains a large sample. Moreover,

BMV demonstrate that their measures of skewness exhibit a negative cross-sectional rela-

tionship with expected returns—the skewness effect. This measure of skewness implicitly

requires at least 250 days of daily returns in the prior 60-month period. In our sample, the

5th and 95th percentiles of expected idiosyncratic skewness are 0.03 and 1.67, respectively;

it is typically positive. Note that SKEW is a measure of return skewness that corresponds

to our modeled return skewness s in Section 2.
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After merging and applying filters, our sample consists of 922,989 firm-months. There

are 10,637 unique firms, for an average of 1,712 firms per month. Our data sample is

comparable to those used in prior studies of the forecast dispersion effect, with the main

innovation being the inclusion of a measure of skewness.

Finally, we obtain monthly “factor” returns for the Fama and French (2015) (FF5) model

from WRDS (Wharton Research Data Service) and for the Daniel et al. (2020) (DMRS) model

from Kent Daniel’s website.24 The DMRS data ends in March 2023. Therefore, our sample

covers all months in the period from December 1983 through March 2023.

4.2 Double Sort

Our primary test of the model implications is via an independent double-sort. To eliminate

the effects of firm size (and other characteristics correlated with size), we first sort obser-

vations each month into five quintiles based on prior month market capitalization. Within

each quintile, we then perform an independent two-way sort on SKEW and DISP. Finally,

we collapse the size dimension, yielding 25 portfolios.

Table 1: Average SKEW by Portfolio

LowSkew 2 3 4 HighSkew

LowDisp 0.38 0.61 0.74 0.92 1.19
2 0.38 0.60 0.75 0.92 1.18
3 0.37 0.60 0.75 0.93 1.20
4 0.37 0.60 0.77 0.93 1.21
HighDisp 0.35 0.60 0.77 0.95 1.26

Note: This table presents the average idiosyncratic skewness deviation by portfolio. For
each stock, each month, we obtain the predicted skewness of the Fama-French three-factor
residuals from Boyer et al. (2010). Each month, we compute the median across all stocks in a
portfolio. Finally, this monthly portfolio value is averaged over the entire sample.

First, we show that our independent double-sort conforms to desirable properties. Each

month, we compute the median of SKEW and DISP across stocks in each portfolio. We then

24http://www.kentdaniel.net/data.php
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Table 2: Average DISP by Portfolio

LowSkew 2 3 4 HighSkew

LowDisp 0.02 0.02 0.02 0.02 0.02
2 0.04 0.04 0.03 0.04 0.04
3 0.06 0.06 0.06 0.06 0.06
4 0.09 0.09 0.10 0.10 0.10
HighDisp 0.23 0.24 0.25 0.25 0.26

Note: This table presents the average forecast dispersion by portfolio. For each stock, each
month, we obtain the analyst forecast dispersion as described in Section 4.1. Each month, we
compute the median across all stocks in a portfolio. Finally, this monthly portfolio value is
averaged over the entire sample.

average these values across months. We report the resulting values for SKEW and DISP

in Table 1 and Table 2, respectively. A “test” of a good independent sort is cross-sectional

variation in each characteristic that is approximately orthogonal with the other: for a given

quintile of SKEW, SKEW itself should be approximately constant across quintiles of DISP,

which obtains in Table 1; and, similarly, for a given quintile of DISP, DISP itself should

be approximately constant across quintiles of SKEW, which obtains in Table 2. Moreover,

sorting produces large spreads in SKEW and DISP, which are approximately orthogonal to

firm size. Furthermore, Table 1 indicates that the average level of SKEW is positive in all 25

portfolios, which supports our focus in Section 2 on results pertaining to the case of positive

skewness, s > 0. Also, Table 2 indicates that the average level of DISP in the highest DISP

quintile is well below one.

Next, we adapt predictions from Corollary 2 (and the more general analogous predictions

from Corollary 5) to form the following hypotheses:

H1: When DISP≈0, the effect of SKEW on expected returns should be negligible.

H2: The effect of SKEW on expected returns should be increasing (in magnitude) in DISP.

H3: When SKEW≈0, the effect of DISP on expected returns should be negligible.

H4: The effect of DISP on expected returns should be increasing (in magnitude) in SKEW.
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Table 3 gives annualized average excess returns by portfolio as well as high–low spreads

(with t-statistics in parentheses computed using the method of Newey and West, 1987).

The top row shows that ignoring DISP, our sample displays the unconditional SKEW effect:

monotonically lower expected returns for higher quintiles of skewness. The first column

likewise shows the unconditional DISP effect: monotonically lower expected returns for

higher DISP quintiles. Turning to the predictions of the model, we first look at DISP spreads

(last row) and obtain the predicted pattern: the DISP spread in returns is substantially

larger for high SKEW assets (H2). Moreover, the spread in average returns is essentially

zero for lowest quintile of SKEW stocks (H1). Looking at SKEW spreads (last column) we

observe a similar pattern: the skewness spread is larger for high dispersion assets (H4).

Moreover, the spread in average returns is essentially zero for the lowest quintile of DISP

stocks (H3). At least optically, the model’s predictions hold in the data.

Table 3: Average Annualized Return by Portfolio

All LowSkew 2 3 4 HighSkew H-L

All - 7.7 7.4 6.8 6.0 4.8 -2.9
(2.65) (2.60) (2.39) (2.11) (1.56) (1.75)

LowDisp 8.2 7.7 9.1 8.2 7.9 8.2 0.5
(3.39) (3.14) (3.62) (3.23) (3.31) (2.96) (0.34)

2 7.0 7.0 7.2 6.6 7.6 6.6 -0.4
(2.70) (2.61) (2.63) (2.41) (2.86) (2.35) (0.25)

3 7.2 8.5 8.2 7.7 6.1 5.5 -3.0
(2.56) (2.83) (2.81) (2.69) (2.14) (1.76) (1.68)

4 6.2 7.5 7.2 6.5 5.7 4.1 -3.4
(2.03) (2.31) (2.29) (2.14) (1.85) (1.28) (1.69)

HighDisp 4.0 7.8 5.6 4.5 3.0 1.1 -6.8
(1.15) (2.09) (1.62) (1.25) (0.84) (0.28) (2.64)

H-L -4.1 0.1 -3.5 -3.7 -4.9 -7.1 -7.3
(2.37) (0.06) (1.82) (1.84) (2.46) (3.47) (3.29)

Note: This table presents the average monthly percent excess returns by portfolio. Returns
are annualized and portfolios are equal-weighted. Heteroskedasticity and autocorrelation
consistent t-statistics are in parentheses.
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Finally, the bottom-right corner is calculated as the return on the long-short portfolio

(S5D5+S1D1-S1D5-S5D1). Essentially, it is the average main-diagonal return minus the

average off-diagonal return. Equivalently, it is the High-Low DISP spread for HighSkew

(-7.1%) minus the High-Low DISP spread for LowSkew (0.1%). Therefore, it tests whether

the dispersion effect depends on skewness. Furthermore, it is the High-Low SKEW spread

for HighDisp (-6.8%) minus the High-Low SKEW spread for LowDisp (0.5%). Therefore, it

tests whether the skewness effect spread depends on dispersion. Hence, it is simultaneously

a test of H2 and H4. As the model predicts, this return is negative, with economically and

statistically significant magnitude.

Our theory is about alphas, not simply excess returns. Patterns of factor loadings could

possibly overturn the conclusions drawn from Table 3. However, this brings up the age-old

“joint-hypothesis problem” of which factors to include? Assuming no arbitrage, there exists

some factor model that “explains” all patterns in expected returns. Besides the CAPM, most

common factor models are loosely (if at all) microfounded. Fama and French (2015) argue

that their five factor model (FF5) is almost tautological given the present value relation and

clean surplus accounting. Still, it is commonly used in current research and does “absorb”

substantial cross-sectional variation in average returns. Additionally, Daniel et al. (2020)

argue that the FF5 model can be improved by their DMRS procedure to “remove unpriced

risk” from characteristic-sorted factors “using covariance information estimated from past

returns.” Their procedure nearly doubles the Sharpe ratio of the resulting mean-variance

efficient combination. Using time-series regressions, we compute alphas relative to these

three factor models: CAPM, FF5, DMRS. These results are presented in Tables 4, 5, and

6, respectively. The results presented above based on excess returns are essentially un-

changed. The monotone patterns and interaction effect all persist with similar economic

and statistical significance.

In our main specification, we do not filter on market capitalization and equal weight
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Table 4: Average Annualized CAPM α by Portfolio

All LowSkew 2 3 4 HighSkew H-L

All - -1.0 -1.7 -2.4 -3.3 -4.5 -3.5
(0.51) (1.07) (1.54) (2.49) (3.24) (2.01)

LowDisp 0.6 0.3 1.3 0.5 0.4 0.5 0.2
(0.42) (0.19) (0.78) (0.31) (0.25) (0.34) (0.13)

2 -1.2 -0.7 -1.3 -1.9 -1.0 -1.6 -0.8
(0.84) (0.38) (0.74) (1.17) (0.79) (0.96) (0.50)

3 -1.8 -0.1 -1.0 -1.5 -3.0 -3.6 -3.4
(1.23) (0.08) (0.59) (0.90) (2.09) (2.19) (1.89)

4 -3.6 -1.9 -2.7 -3.2 -4.0 -5.6 -3.7
(2.64) (0.88) (1.84) (1.95) (2.68) (3.73) (1.67)

HighDisp -6.8 -2.6 -4.9 -6.1 -7.9 -9.7 -7.1
(3.87) (0.95) (2.15) (3.03) (4.15) (5.22) (2.63)

H-L -7.4 -2.9 -6.2 -6.6 -8.3 -10.2 -7.3
(5.27) (1.39) (3.43) (3.72) (4.99) (5.63) (3.17)

Note: This table presents the average monthly percent excess returns by portfolio. Returns
are annualized and portfolios are equal-weighted. Heteroskedasticity and autocorrelation
consistent t-statistics are in parentheses.

the portfolios. There are two potential concerns with this approach. First, the documented

effects may be driven by very small stocks where market frictions like short-selling con-

straints are more likely to matter. Second, “idiosyncratic” skewness is hard to interpret

for mega-cap stocks, especially when adusting returns using a linear factor model. Indeed,

Kraus and Litzenberger (1976) derive an extension of the CAPM incorporating co-skewness.

For these reasons, we now repeat the above exercise but drop the smallest and largest quin-

tiles of stocks each month based on market capitalization. We also value-weight the re-

sulting portfolios. The results are presented in Tables 14, 15, 16, and 17 in Appendix B.

Comparing the interaction effect (bottom-right corner), with equal-weight results, the mag-

nitudes are all slightly larger and t-statistics slightly smaller; the value-weighted estimates

are all statistically significant at conventional levels.
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Table 5: Average Annualized FF5 α by Portfolio

All LowSkew 2 3 4 HighSkew H-L

All - -2.9 -3.8 -4.3 -4.7 -5.4 -2.4
(2.60) (4.13) (4.89) (4.79) (4.34) (1.33)

LowDisp -2.2 -2.4 -1.8 -2.5 -2.2 -1.5 0.9
(2.64) (2.15) (1.61) (2.23) (1.96) (1.18) (0.54)

2 -3.9 -3.3 -4.1 -4.7 -3.2 -4.1 -0.8
(4.51) (2.72) (3.66) (4.03) (2.95) (3.26) (0.48)

3 -4.0 -2.2 -3.4 -3.7 -5.1 -5.8 -3.6
(4.76) (1.67) (3.37) (3.44) (4.00) (4.28) (1.82)

4 -4.4 -3.1 -3.7 -4.4 -4.6 -5.8 -2.7
(5.02) (2.08) (3.43) (3.78) (3.68) (3.85) (1.14)

HighDisp -6.7 -3.4 -5.6 -6.6 -7.9 -8.9 -5.5
(6.28) (1.68) (3.73) (5.00) (6.09) (5.10) (2.05)

H-L -4.5 -1.0 -3.8 -4.1 -5.7 -7.4 -6.4
(3.88) (0.48) (2.21) (2.56) (3.99) (4.72) (2.87)

Note: This table presents the average monthly percent excess returns by portfolio. Returns
are annualized and portfolios are equal-weighted. Heteroskedasticity and autocorrelation
consistent t-statistics are in parentheses.

4.3 Fama-Macbeth Regressions

The above two-way portfolio sorts are essentially a non-parametric regression of returns on

the Cartesian product of SKEW (S) and DISP (D) quintiles, (1 : 5)× (1 : 5). Such a method

is quite flexible in modeling the surface E[r̃] = f (S, D), but this flexibility may come at the

cost of reduced power. We now test the model predictions using a semi-parametric Fama-

Macbeth procedure. The bottom line is, interpretations are unchanged.

Before outlining the method, we first note that average returns for univariate sorts

on SKEW and DISP are approximately linear in quintile number, as shown in Figure 4.

Therefore, we treat quintile numbers as essentially cardinal in what follows, though strictly

speaking they are ordinal. For ease of numerical interpretation, we remap quintile num-

bers (1 : 5) into the unit interval, (0,0.25,0.50,0.75,1). Hence, S = 1 indicates a stock is in

the highest quintile of SKEW that month and similarly D = 1 indicates a stock is in the
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Table 6: Average Annualized DMRS α by Portfolio

All LowSkew 2 3 4 HighSkew H-L

All - 2.0 1.5 0.9 -0.0 -0.9 -3.0
(0.58) (0.49) (0.29) (0.01) (0.30) (1.60)

LowDisp 1.5 0.8 2.4 1.5 1.5 1.9 1.1
(0.60) (0.27) (0.93) (0.62) (0.63) (0.76) (0.65)

2 0.8 0.6 0.9 0.5 1.5 0.7 0.0
(0.31) (0.22) (0.31) (0.20) (0.55) (0.25) (0.03)

3 1.0 3.0 2.1 1.4 -0.6 -0.8 -3.8
(0.33) (0.81) (0.62) (0.46) (0.20) (0.26) (1.78)

4 0.8 2.4 1.8 0.9 0.3 -1.2 -3.7
(0.24) (0.59) (0.51) (0.27) (0.07) (0.38) (1.47)

HighDisp -0.6 3.3 1.2 -0.2 -2.1 -4.2 -7.5
(0.16) (0.71) (0.31) (0.04) (0.50) (1.07) (2.67)

H-L -2.1 2.5 -1.2 -1.7 -3.6 -6.1 -8.6
(1.11) (1.03) (0.58) (0.76) (1.62) (2.70) (3.67)

Note: This table presents the average monthly percent excess returns by portfolio. Returns
are annualized and portfolios are equal-weighted. Heteroskedasticity and autocorrelation
consistent t-statistics are in parentheses.

highest quintile of DISP that month.

In our baseline specification, we estimate a cross-sectional Fama-Macbeth regression

each month of realized excess returns on S, D, and their interaction, S ×D, which we ab-

breviate by SD:

r i,t = γ0,t +γS,tSi,t +γD,tD i,t +γSD,tSD i,t +ϵi,t. (22)

The resulting γ coefficients are realized returns on managed portfolios. Under the null in

which expected returns are decreasing in skewness and dispersion, but there is no interac-

tion effect, we should obtain E
(
γS,t

) < 0, E
(
γD,t

) < 0, and E
(
γSD,t

) = 0. Under our model

alternative, E
(
γS,t

) = 0, E
(
γD,t

) = 0, and E
(
γSD,t

) < 0. Since the estimated γs are portfo-

lio returns, we can also compute αs relative to factor models. This procedure allows us to

“control” for factor exposures without estimating noisy factor loadings for individual stocks.

The results are presented in the first three columns of Table 7. The first row displays
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Figure 4: Quintiles vs Average Returns
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Note: This figure displays average returns vs quintile number for univariate sorts based
in on DISP and SKEW in Panels (A) and (B), respectively.

results for average returns, while the remaining rows control for factor exposures using a

time-series regression of estimated γ·,t on the factor returns. The null hypothesis is soundly

rejected. Estimates of E
(
γS,t

)
and E

(
γD,t

)
are economically and statistically non-different

from zero, whereas E
(
γSD,t

)
is significantly negative under all specifications. Interestingly,

the estimated E
(
γSD,t

)
coefficients are quantitatively similar (both in magnitude and statis-

tical significance) to the corresponding bottom-right estimates in Tables 3, 4, 5, and 6. The

last column displays estimates of E
(
γSD,t

)
from the restricted model, r i,t = γ0,t+γSD,tSD i,t.

Estimates are similar to the baseline model, further evidence that SKEW and DISP only

impact returns through their interaction.

One may be concerned that our baseline specification generates a spurious interaction

effect by not allowing for non-linearity in the SKEW and DISP effects. Therefore we also

estimate the expanded model,

r i,t = γ0,t +γS,tSi,t +γD,tD i,t +γS2,tS2
i,t +γD2,tD2

i,t +γSD,tSD i,t +ϵi,t. (23)

The estimates are presented in Table 8. The values for γSD are essentially unchanged

compared to the baseline linear design (see Table 7). The last column gives p-values from a

Wald test of the model-implied hypothesis, γS = γD = γS2 = γD2 = 0. Even accounting for non-
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Table 7: Fama-Macbeth Estimates

[S D S×D] [S×D]

Excess 0.7 0.1 -6.9 -6.2
(0.55) (0.07) (3.23) (3.24)

CAPM 0.5 -2.8 -7.0 -8.8
(0.38) (1.61) (3.14) (4.90)

FF5 0.9 -0.6 -6.1 -5.9
(0.60) (0.36) (2.68) (3.45)

DMRS 1.3 2.8 -8.4 -5.2
(0.86) (1.24) (3.59) (2.68)

Note: This table presents the average monthly percent excess returns by portfolio. Returns
are annualized and regressions are equal-weighted. Heteroskedasticity and autocorrelation
consistent t-statistics are in parentheses.

linearities, there is essentially no evidence for separate SKEW or DISP effects on average

returns after controlling for the interaction. For robustness, we present value-weighted

regressions in Tables 18 and 19 in Appendix B.

Table 8: Fama-Macbeth Estimates

[S D S2 D2 S×D] Wald p

Excess 2.1 3.1 -1.5 -3.0 -6.7 54.5
(0.79) (1.51) (0.64) (1.53) (3.14)

CAPM 0.5 0.5 0.0 -3.4 -6.9 100.0
(0.17) (0.27) (0.02) (1.72) (3.12)

FF5 0.5 0.5 0.5 -1.0 -6.4 100.0
(0.16) (0.22) (0.18) (0.50) (2.80)

DMRS 2.0 4.3 -0.7 -1.7 -8.2 100.0
(0.63) (1.90) (0.28) (0.79) (3.54)

Note: This table presents the average monthly percent excess returns by portfolio. Returns
are annualized and regressions are equal-weighted. Heteroskedasticity and autocorrelation
consistent t-statistics are in parentheses.
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4.4 Volatility

Thus far in our empirical analyses, we have ignored return volatility (σr), essentially treat-

ing it as cross-sectionally independent of SKEW and DISP. However, volatility varies with

DISP. As a simple measure of volatility, we use the at-the-money 91-day implied volatility

from the Options Metrics implied volatility files. This, of course, restricts our sample to

stocks with traded options and pushes up the start date of the sample to 1996. As shown

in Table 9, volatility is increasing in DISP. Indeed, high DISP stocks have 30-40% higher

implied volatility compared to low DISP stocks. Note that volatility exhibits little to no

correlation with SKEW in our sample.

Table 9: Average Implied Volatility by Portfolio

LowSkew 2 3 4 HighSkew

LowDisp 10.0 10.1 10.0 10.1 10.4
2 10.4 10.5 10.7 10.8 11.2
3 11.1 11.3 11.5 11.6 12.1
4 12.0 12.0 12.4 12.5 13.2
HighDisp 13.4 13.3 13.8 14.2 15.1

Note: This table presents the average option implied volatility by portfolio. Each month,
we compute the mean across all stocks in a portfolio. Finally, this monthly portfolio value is
averaged over the entire sample.

Recall that our model gives an explicit function for the impact of cross-sectional varia-

tion in skewness and disagreement on Sharpe ratios (expected returns scaled by volatility),

Sharpe[r̃]=−usδ2, in terms of u, a positive constant reflecting the shape of the utility func-

tion; s, the ex ante skewness corresponding to our empirical proxy SKEW; and δ, a unitless

measure of relative disagreement corresponding to our empirical proxy DISP—see equation

(12). Therefore, we should not expect variation in Sharpe ratios with respect to SKEW and

DISP to materially differ for stocks with low volatility versus stocks with high volatility. We

now take this prediction seriously.

Before turning our attention to comparisons between low versus high volatility, we re-
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port the cross-sectional evidence for the variation in Sharpe ratios (expected returns scaled

by volatility) across different levels of SKEW and DISP for all stocks. We draw similar con-

clusions as we did with the evidence for expected returns. Table 10 is a repeat of Table 3

except that instead of simple excess returns, we use scaled returns

r̃ i,t =
0.4p
12

r i,t

σi,t
, (24)

where σi,t is the option implied volatility. The 0.4p
12

scaling (0.4 annualized) is arbitrary, but

set near the median implied volatility in the sample. The unconditional DISP and SKEW

effects as well as the interaction effect are present when predicting Sharpe ratios, consistent

with hypotheses H2 and H4. Further, looking at the LowSkew column and LowDisp row,

we find evidence consistent with hypotheses H1 and H3. The DISP effect is essentially zero

for low-SKEW stocks and similarly, the SKEW effect is essentially zero for low-DISP stocks.

Now we turn to our model’s prediction regarding the consistency of the relationship be-

tween Sharpe ratios and SKEW×DISP (the interaction effect) for different levels of volatil-

ity. We sort stocks each month into two groups, LowVol and HighVol. Using the same

breakpoints for DISP and SKEW quintiles, we separately sort each group into 25 portfolios

(as earlier) and test the interaction effect. Tables 11 and 12 give the average implied volatil-

ity by portfolio for these two sorts. First note that, compared to Table 9, the cross-sectional

variation in implied volatility is dramatically reduced. However, Tables 20 and 21 in Ap-

pendix B show that the average DISP by portfolio is essentially unchanged compared to the

full-sample results shown in Table 2. Tables 22 and 23 (also in Appendix B) show the same

holds true for SKEW. Hence, the subsamples of LowVol and HighVol stocks are comparable

in terms of DISP and SKEW, but vary substantially in terms of implied volatility.

To save space, in Table 13 we present the interaction effect for All stocks and separately

for the LowVol and HighVol subsamples. For example, the first entry of -7.7 corresponds to

the interaction effect for all stocks shown in the bottom-right corner of Table 9. As in the
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Table 10: Average Annualized Scaled Return by Portfolio (All)

All LowSkew 2 3 4 HighSkew H-L

All - 11.5 9.9 9.5 7.8 6.6 -4.9
(3.10) (2.66) (2.67) (2.24) (1.77) (2.52)

LowDisp 11.8 11.5 12.1 12.4 11.8 10.3 -1.3
(3.36) (3.06) (3.27) (3.38) (3.52) (2.57) (0.58)

2 9.9 10.2 9.4 10.5 9.6 9.6 -0.6
(2.73) (2.69) (2.40) (2.84) (2.75) (2.53) (0.28)

3 9.5 11.8 9.8 9.1 9.0 7.7 -4.1
(2.62) (3.07) (2.54) (2.48) (2.54) (1.95) (1.76)

4 8.1 11.5 9.2 8.0 6.6 5.8 -5.7
(2.20) (2.92) (2.36) (2.17) (1.72) (1.54) (2.39)

HighDisp 6.4 12.0 7.9 7.6 3.7 3.0 -9.0
(1.75) (3.02) (2.07) (2.02) (0.97) (0.78) (3.28)

H-L -5.4 0.5 -4.2 -4.8 -8.1 -7.3 -7.7
(3.04) (0.19) (1.70) (2.08) (3.76) (3.17) (2.68)

Note: This table presents the average monthly percent excess returns by portfolio. Returns
are annualized and portfolios are equal-weighted. Heteroskedasticity and autocorrelation
consistent t-statistics are in parentheses.

full sample, we also adjust for the CAPM, FF5, and DMRS factor models. The remarkable

takeaway is that for scaled returns (Sharpe ratios), the interaction effect is essentially the

same across subsamples and is further unaffected by controlling for factor exposures.

Table 11: Average Implied Volatility by Portfolio (LowVol)

LowSkew 2 3 4 HighSkew

LowDisp 8.7 8.8 8.7 8.6 8.3
2 8.9 9.1 9.1 9.0 8.8
3 9.1 9.4 9.4 9.3 9.2
4 9.5 9.7 9.8 9.7 9.5
HighDisp 9.8 10.2 10.2 10.2 10.1

Note: This table presents the average option implied volatility by portfolio. Each month,
we compute the mean across all stocks in a portfolio. Finally, this monthly portfolio value is
averaged over the entire sample.
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Table 12: Average Implied Volatility by Portfolio (HighVol)

LowSkew 2 3 4 HighSkew

LowDisp 13.6 13.3 13.3 13.2 13.7
2 13.5 13.3 13.4 13.5 13.7
3 13.7 13.6 13.8 13.8 14.3
4 14.2 14.0 14.3 14.4 15.0
HighDisp 15.1 14.8 15.3 15.8 16.3

Note: This table presents the average option implied volatility by portfolio. Each month,
we compute the mean across all stocks in a portfolio. Finally, this monthly portfolio value is
averaged over the entire sample.

Table 13: Interaction Effect on Scaled Returns

Excess CAPM FF5 DMRS

All -7.7 -7.5 -7.4 -8.1
(-2.68) (-2.49) (-2.47) (-2.74)

LowVol -8.4 -7.1 -8.0 -7.2
(-2.12) (-1.73) (-2.01) (-1.95)

HighVol -7.7 -7.6 -7.0 -7.8
(-2.21) (-2.16) (-1.97) (-2.15)

Note: This table presents the average monthly “interaction effect” for All stocks and sepa-
rately for Low and High implied volatility subsamples. Returns are annualized and portfo-
lios are equal-weighted. Heteroskedasticity and autocorrelation consistent t-statistics are in
parentheses.

5 Conclusion

In this paper, we present a simple frictionless microfoundation for the conflicting empirical

findings of (i) the negative relationship between dispersion in financial analysts’ forecasts

and expected equity returns (Diether et al., 2002), (ii) the positive relationship between

disagreement and mortgage-backed security (MBS) returns Carlin et al. (2014), as well as

(iii) the seemingly unrelated negative relationship between skewness and expected returns

(Boyer et al., 2010). Our model is parsimonious yet flexible, and is amenable to intuitive

graphical interpretations of its mechanisms. We also demonstrate the robustness of our

theory through several extensions.
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Moreover, we demonstrate, both theoretically and empirically, a novel interaction effect

between disagreement and skewness on expected returns. On a sample of U.S. stocks, our

empirical tests reveal that a portfolio which is skew- and disagreement-neutral but exploits

the interaction effect has an economically significant average annualized CAPM alpha of

7.3% with a statistically significant t-statistic greater than 3. Fama and French (2015) and

Daniel et al. (2020) alphas exhibit comparable metrics. The theoretical interaction effect

carries over to Sharpe ratios, with the additional prediction of invariance to the level of

volatility, for which we provide empirical support.
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Appendix for

“Disagreement, Skewness, and Asset Prices”

by Goulding, Santosh, and Zhang

Appendix A Proofs

Proof of Lemma 1. This is Lemma 1 of Goulding et al. (2023) generalized to arbitrary

subjective beliefs. Recall, an investor’s FOC is given by

E[u′(w0 + xi(p)(θ̃− p))(θ̃− p)]= 0. (A1)

Our goal is to derive xi(p) when p is close to µi. By Taylor expansion,

xi(p)= xi(µi)+ x′i(µi)(p−µi)+
x′′i (µi)

2
(p−µi)2 + o((p−µi)2).

In the following, we solve all the coefficients, x(µi), x′i(µi), and x′′i (µi) explicitly.

First, from the FOC (A1), xi(µi) = 0 clearly solves the FOC. Together with the fact that

the utility function is concave, which implies the solution to (A1) is unique, we conclude that

xi(µi)= 0.

Second, taking the derivative with respect to p on both sides of (A1) gives the following

equation:

0= E
[
[u′′(w0 + xi(p)(θ̃− p))][x′i(p)(θ̃− p)− xi(p)](θ̃− p)

]
(A2)

−E[u′(w0 + xi(p)(θ̃− p))]. (A3)
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Plugging in p =µi and using the fact that xi(µi)= 0, we derive

x′i(µi)= u′(w0)
u′′(w0)σ2 . (A4)

Third, taking the derivative with respect to p on both sides of (A2) gives to the following

equation:

0=E[u′′′(w0 + xi(p)(θ̃− p))][x′i(p)(θ̃− p)− xi(p)]2(θ̃− p)

+E[u′′(w0 + xi(p)(θ̃− p))][x′′i (p)(θ̃− p)−2x′i(p)](θ̃− p)

−E[u′′(w0 + xi(p)(θ̃− p))][x′i(p)(θ̃− p)− xi(p)]

−E[u′′(w0 + xi(p)(θ̃− p))][x′i(p)(θ̃− p)− xi(p)]. (A5)

Plugging in p =µi, we derive

x′′i (µi)=−u′′′(w0)E(θ̃−µi)3x′i(µi)2

u′′(w0)σ2 =−u′′′(w0)
u′′(w0)

(
u′(w0)
u′′(w0)

)2 s
σ3 , (A6)

where the last equality uses Equation (A4).

So we obtain the Taylor series of x(p) around p =µi:

xi(p)= u′(w0)
u′′(w0)

1
σ2 (p−µi)− 1

2
u′′′(w0)
u′′(w0)

(
u′(w0)
u′′(w0)

)2 s
σ3 (p−µi)2 + o(1)(p−µi)2, (A7)

where the little-o notation o(1) is an unknown function that converges to zero when p →µ.

Proofs of Proposition 1 and Proposition 4. Since Proposition 1 is a special case of

Proposition 4 when the random variable δ̃ is binary, we proceed to prove the more general

case, i.e., Proposition 4.

Since δ̃ is discrete, we write the possible realizations as δi for i = 1, · · · ,n with the proba-

bility of δi being qi. With some abuse of notations, we write xδi (p) as the demand schedule

for the investor with δi. Following the same argument in Lemma 1, we have the Taylor
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expansion for xδi (p) as given by the following equation.

xδi (p)= u′(w0)
u′′(w0)

1
σ2 (p−µδi )−

1
2

u′′′(w0)
u′′(w0)

(
u′(w0)
u′′(w0)

)2 s
σ3 (p−µδi )

2 +ϵδi (p)(p−µδi )
2, (A8)

where ϵδi (p) is a function that converges to 0 as p →µδi .

The market’s clearing condition states that

n∑
i=1

qixδi (p)= 0. (A9)

Substituting xdi (p) from equation (A8), it leads to the following equation.

u′(w0)
u′′(w0)

1
σ2

n∑
i=1

qi(p−µδi )−
1
2

u′′′(w0)
u′′(w0)

(
u′(w0)
u′′(w0)

)2 s
σ3

n∑
i=1

qi(p−µδi )
2

+
n∑

i=1
qiϵδi (p)(p−µδi )

2 = 0. (A10)

Notice that
∑n

i=1 qi(p−µδi ) =
∑n

i=1 qi(p−µ−δiσ) = p−µ, where the last equality uses the

fact that δ̃ is a mean-zero random variable, and
∑n

i=1 qi(p−µδi )
2 = ∑n

i=1 qi(p−µ−δiσ)2 =∑n
i=1 qi[(p−µ)2 −2(p−µ)δiσ+δ2

iσ
2] = (p−µ)2 +V ar(δ̃)σ2. We write v2 := V ar(δ̃). It follows

that (A10) is equivalent to the following equation.

u′(w0)
u′′(w0)

1
σ2 (p−µ)− 1

2
u′′′(w0)
u′′(w0)

(
u′(w0)
u′′(w0)

)2 s
σ3

(
(p−µ)2 +v2σ2)

)+ n∑
i=1

qiϵδi (p)(p−µδi )
2 = 0. (A11)

We vary v to study the behavior of the equilibrium price when v is small. To emphasize that

the price changes when v changes, we write the price as a function of v: p(v). By Taylor

expansion, it follows that p(v)= p(0)+ p′(0)v+ p′′(0)/2v2 + o(1)v2 for small v.

First, p(0)=µ. This can be seen by setting v = 0 in (A11). Second, taking derivative with

respect to v on both sides in (A11) gives to

∂(p−µ)
∂v

= 1
2

u′′′(w0)u′(w0)
(u′′(w0))2

s
σ

[
2(p−µ)

∂(p−µ)
∂v

+2vσ2
]
− ∂E (v)

∂v
, (A12)
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where

E (v)= u′′(w0)σ2

u′(w0)

n∑
i=1

qiϵδi (p)(p−µδi )
2. (A13)

We claim that ∂E (v)
∂v |v=0 = 0. It is sufficient to show that

∂Eδi (v)
∂v |v=0 = 0, where Eδi (v) =

ϵδi (p)(p−µδi )
2. Note that

∂Eδi (v)
∂v = ϵ′

δi
(p)p′(v)(p−µ− vδi)2 + ϵδi (p)2(p−µ− vδi)(p′(v)−δi),

which goes to zero as v → 0.

Evaluating equation (A12) at v = 0 implies that ∂(p−µ)
∂v |v=0 = 0, i.e., p′(0) = 0. Taking

derivative with respect to v on both sides in (A12) gives to

∂2(p−µ)
∂v2 = 1

2
u′′′(w0)u′(w0)

(u′′(w0))2
s
σ

[
2

(
∂(p−µ)
∂v

)2
+2(p−µ)

∂2(p−µ)
∂v2 +2σ2

]
− ∂2E (v)

∂v2 . (A14)

We claim that ∂2E (v)
∂2v |v=0 = 0. It is sufficient to show that

∂2Eδi (v)
∂v2 |v=0 = 0. Note that

∂2Eδi (v)
∂v2 =

ϵ′′
δi

(p)p′(v)2(p−µ−vδi)2+ϵ′
δi

(p)p′′(v)(p−µ−vδi)2+ϵ′
δi

(p)p′(v)2(p−µ−vδi)(p′(v)−δ∗i )+ϵ′
δi

(p)p′(v)2(p−
µ−vδi)(p′(v)−δi)+ϵδi (p)2(p′(v)−δi)(p′(v)−δi)+ϵδi (p)2(p−µ−vδi)p′′(v), which goes to zero

as v → 0 because every single term goes to zero as v → 0. Evaluating (A14) at v = 0 implies

that
∂2(p−µ)
∂v2

∣∣∣
v=0

= u′′′(w0)u′(w0)
(u′′(w0))2 sσ. (A15)

Using Taylor expansion, we have

p−µ= 1
2
∂2(p−µ)
∂v2

∣∣∣
v=0

v2 + o(1)v2 = u′′′(w0)u′(w0)
2(u′′(w0))2 sσV ar(δ̃)+ o(1)V ar(δ̃), (A16)

where the little-o notation o(1) is an unknown function that converges to 0 as v → 0.

Proof of Proposition 3.

It is straightforward to see that ∂E[r̃]
∂s =−uσδ2 < 0, ∂E[r̃]

∂δ
=−2usσδ< 0⇔ s > 0, and ∂2E[r̃]

∂s∂δ =
−2uσδ< 0. The analogous results for the Sharpe ratio hold because the Sharpe ratio is the

expected return divided by a positive constant, σr.

Proof of Proposition 6. Given the two types of investors and Lemma 1, we can write the
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market’s clearing condition as the following equation.

u′
1(w0)

u′′
1(w0)

1
σ2 (p−µ+)− 1

2
u′′′

1 (w0)
u′′

1(w0)

(u′
1(w0)

u′′
1(w0)

)2 s
σ3 (p−µ+)2 + o(1)(p−µ+)2

+ u′
2(w0)

u′′
2(w0)

1
σ2 (p−µ−)− 1

2
u′′′

2 (w0)
u′′

2(w0)

(u′
2(w0)

u′′
2(w0)

)2 s
σ3 (p−µ−)2 + o(1)(p−µ−)2 = 0. (A17)

With loss, we assume s > 0. (When s < 0, all analysis carries over). In order to show that

the equilibrium price is greater than the benchmark price p0, we need to show that at price

p0, there is excess demand. In other words, we need to show that the left-hand-side of the

above market’s clearing condition is strictly positive when p = p0.

Note that because

p0 =
u′

1(w0)
−u′′

1(w0)µ++ u′
2(w0)

−u′′
2(w0)µ−

u′
1(w0)

−u′′
1(w0) +

u′
2(w0)

−u′′
2(w0)

, (A18)

by algebraic manipulation, it is straightforward to see that

u′
1(w0)

u′′
1(w0)

1
σ2 (p0 −µ+)+ u′

2(w0)
u′′

2(w0)
1
σ2 (p0 −µ−)= 0. (A19)

In order to show there is excess demand p0, it is sufficient to show that

−1
2

u′′′
1 (w0)

u′′
1(w0)

(u′
1(w0)

u′′
1(w0)

)2 s
σ3 (p0 −µ+)2 − 1

2
u′′′

2 (w0)
u′′

2(w0)

(u′
2(w0)

u′′
2(w0)

)2 s
σ3 (p0 −µ−)2 > 0. (A20)

Plugging into p0, note that

− 1
2

u′′′
1 (w0)

u′′
1(w0)

(u′
1(w0)

u′′
1(w0)

)2 s
σ3 (p0 −µ+)2 − 1

2
u′′′

2 (w0)
u′′

2(w0)

(u′
2(w0)

u′′
2(w0)

)2 s
σ3 (p0 −µ−)2

= 1
2

(µ+−µ−)2( u′
1(w0)

−u′′
1(w0) +

u′
2(w0)

−u′′
2(w0)

)2

[ u′′′
1 (w0)

−u′′
1(w0)

+ u′′′
2 (w0)

−u′′
2(w0)

](u′
1(w0)

u′′
1(w0)

)2 (u′
2(w0)

u′′
2(w0)

)2 s
σ3 , (A21)

which is positive as long as s > 0. This completes the proof.

Proof of Proposition 7. we can write the market’s clearing condition as the following
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equation.

u′(w0)
u′′(w0)

1
σ2

A

(p−µA)− 1
2

u′′′(w0)
u′′(w0)

(
u′(w0)
u′′(w0)

)2 sA

σ3
A

(p−µA)2 + o(1)(p−µA)2

+ u′(w0)
u′′(w0)

1
σ2

B
(p−µB)− 1

2
u′′′(w0)
u′′(w0)

(
u′(w0)
u′′(w0)

)2 sB

σ3
B

(p−µB)2 + o(1)(p−µB)2 = 0. (A22)

Similar to the proof of Proposition 6, we need to show that there is excess demand at price

p0 if and only if σAsA +σBsB > 0.

Note that when

p0 =
µA
σ2

A
+ µB

σ2
B

1
σ2

A
+ 1

σ2
B

, (A23)

it follows that
u′(w0)
u′′(w0)

1
σ2 (p0 −µA)+ u′(w0)

u′′(w0)
1
σ2 (p0 −µB)= 0, (A24)

and

− 1
2

u′′′(w0)
u′′(w0)

(
u′(w0)
u′′(w0)

)2 sA

σ3
A

(p0 −µA)2 − 1
2

u′′′(w0)
u′′(w0)

(
u′(w0)
u′′(w0)

)2 sB

σ3
B

(p0 −µB)2

= 1
2

u′′′(w0)
−u′′(w0)

(
u′(w0)
u′′(w0)

)2 (µA −µB)2(
1
σ2

A
+ 1

σ2
B

)2
σAsA +σBsB

σ4
Aσ

4
B

(A25)

which is positive if and only if σAsA +σBsB > 0.

Proof of Proposition 8. The proof follows from the proof of Proposition 3 in Goulding et al.

(2023), in which they show that the demand function x(p) is convex for a sufficiently large

skewness. Similar to that proof, the demand function is concave for a sufficiently small

(potentially negative) skewness.

48



Appendix B Supplementary Tables

Table 14: Average Annualized Return by Portfolio

All LowSkew 2 3 4 HighSkew H-L

All - 7.4 7.4 7.1 5.3 4.6 -2.7
(2.58) (2.63) (2.56) (1.93) (1.49) (1.45)

LowDisp 7.3 6.4 8.0 8.1 7.7 6.4 0.0
(3.07) (2.67) (3.03) (3.18) (3.24) (2.15) (0.02)

2 6.2 6.3 7.3 5.2 6.1 5.8 -0.5
(2.45) (2.44) (2.61) (1.94) (2.29) (1.95) (0.26)

3 6.8 8.3 6.4 8.3 5.6 4.8 -3.5
(2.43) (2.69) (2.18) (2.77) (1.97) (1.51) (1.70)

4 6.4 7.6 7.0 8.0 4.7 5.9 -1.6
(2.16) (2.27) (2.33) (2.61) (1.53) (1.80) (0.66)

HighDisp 5.0 9.7 9.1 4.9 2.9 0.7 -9.0
(1.47) (2.43) (2.56) (1.40) (0.81) (0.19) (2.65)

H-L -2.3 3.3 1.1 -3.2 -4.8 -5.7 -9.0
(1.28) (1.19) (0.47) (1.41) (2.28) (2.35) (2.76)

Note: This table presents the average monthly percent excess returns by portfolio. Returns
are annualized and portfolios are value-weighted. Heteroskedasticity and autocorrelation
consistent t-statistics are in parentheses.
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Table 15: Average Annualized CAPM α by Portfolio

All LowSkew 2 3 4 HighSkew H-L

All - -1.2 -1.9 -2.1 -4.0 -4.7 -3.5
(0.63) (1.25) (1.44) (3.14) (3.33) (1.79)

LowDisp -0.3 -0.7 -0.0 0.2 0.1 -1.3 -0.6
(0.20) (0.39) (0.02) (0.14) (0.10) (0.69) (0.33)

2 -2.1 -1.3 -1.3 -3.3 -2.6 -2.6 -1.3
(1.46) (0.72) (0.69) (1.94) (1.86) (1.36) (0.63)

3 -2.3 -0.2 -3.0 -1.1 -3.6 -4.3 -4.0
(1.70) (0.12) (1.91) (0.59) (2.26) (2.38) (1.85)

4 -3.4 -1.8 -2.8 -1.9 -5.0 -3.8 -2.1
(2.51) (0.75) (1.86) (1.13) (3.54) (2.22) (0.79)

HighDisp -5.9 -1.0 -1.6 -5.8 -8.2 -10.1 -9.1
(3.39) (0.32) (0.65) (2.75) (3.92) (5.07) (2.55)

H-L -5.7 -0.4 -1.6 -6.0 -8.3 -8.8 -8.4
(3.76) (0.13) (0.69) (2.79) (4.36) (3.82) (2.44)

Note: This table presents the average monthly percent excess returns by portfolio. Returns
are annualized and portfolios are value-weighted. Heteroskedasticity and autocorrelation
consistent t-statistics are in parentheses.
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Table 16: Average Annualized FF5 α by Portfolio

All LowSkew 2 3 4 HighSkew H-L

All - -2.7 -3.6 -4.1 -5.2 -5.8 -3.1
(2.05) (3.62) (4.68) (4.90) (4.41) (1.51)

LowDisp -2.8 -3.0 -2.7 -2.4 -2.1 -3.4 -0.4
(3.12) (2.11) (2.13) (1.83) (1.65) (1.97) (0.19)

2 -4.6 -3.5 -3.7 -6.5 -4.7 -5.2 -1.6
(5.03) (2.68) (2.58) (4.68) (3.71) (3.29) (0.79)

3 -4.3 -1.7 -4.9 -3.5 -5.6 -6.5 -4.8
(5.25) (1.14) (4.57) (2.77) (3.93) (4.36) (2.30)

4 -4.0 -2.3 -3.7 -3.2 -5.5 -4.3 -2.0
(4.51) (1.18) (3.03) (2.57) (4.23) (2.48) (0.72)

HighDisp -5.6 -1.4 -1.5 -5.8 -7.9 -9.8 -8.3
(4.86) (0.58) (0.72) (3.50) (4.52) (4.50) (2.26)

H-L -2.9 1.5 1.2 -3.4 -5.8 -6.4 -7.9
(2.08) (0.58) (0.48) (1.60) (3.22) (2.88) (2.34)

Note: This table presents the average monthly percent excess returns by portfolio. Returns
are annualized and portfolios are value-weighted. Heteroskedasticity and autocorrelation
consistent t-statistics are in parentheses.
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Table 17: Average Annualized DMRS α by Portfolio

All LowSkew 2 3 4 HighSkew H-L

All - 2.5 1.7 1.3 -0.8 -0.8 -3.3
(0.69) (0.53) (0.42) (0.25) (0.25) (1.55)

LowDisp 1.0 0.1 1.8 1.7 1.6 0.9 0.8
(0.41) (0.05) (0.64) (0.68) (0.66) (0.35) (0.39)

2 0.2 0.9 1.3 -1.4 -0.0 0.0 -0.8
(0.09) (0.31) (0.44) (0.51) (0.01) (0.01) (0.42)

3 0.7 3.5 0.4 1.8 -1.5 -1.2 -4.7
(0.22) (0.93) (0.12) (0.54) (0.49) (0.36) (2.01)

4 1.5 3.3 1.8 2.9 -0.4 0.9 -2.4
(0.43) (0.76) (0.53) (0.80) (0.12) (0.25) (0.83)

HighDisp 0.6 5.6 5.2 0.4 -2.6 -4.2 -9.8
(0.15) (1.06) (1.22) (0.09) (0.63) (1.08) (2.46)

H-L -0.4 5.5 3.4 -1.3 -4.2 -5.1 -10.6
(0.20) (1.65) (1.35) (0.56) (1.78) (1.99) (3.05)

Note: This table presents the average monthly percent excess returns by portfolio. Returns
are annualized and portfolios are value-weighted. Heteroskedasticity and autocorrelation
consistent t-statistics are in parentheses.

52



Table 18: Average Annualized Return (or α) by Portfolio

[S D S×D] [S×D]

Excess 1.1 3.1 -8.6 -5.1
(0.73) (1.33) (3.05) (2.53)

CAPM 0.7 -0.1 -8.4 -7.9
(0.42) (0.05) (2.77) (3.90)

FF5 0.6 2.2 -8.0 -5.7
(0.37) (0.98) (2.43) (2.75)

DMRS 1.4 5.7 -10.4 -4.6
(0.86) (2.07) (3.21) (2.14)

Note: This table presents the average monthly percent excess returns by portfolio. Returns
are annualized and regressions are value-weighted. Heteroskedasticity and autocorrelation
consistent t-statistics are in parentheses.

Table 19: Average Annualized Return (or α) by Portfolio

[S D S2 D2 S×D] Wald p

Excess 3.2 3.9 -1.9 -0.7 -8.9 36.0
(1.00) (1.44) (0.68) (0.30) (3.14)

CAPM 0.8 1.4 0.0 -1.4 -8.8 100.0
(0.25) (0.51) (0.02) (0.59) (2.90)

FF5 0.4 0.7 0.5 1.7 -8.6 100.0
(0.11) (0.26) (0.14) (0.73) (2.67)

DMRS 0.5 4.4 1.0 1.2 -10.6 100.0
(0.13) (1.51) (0.32) (0.46) (3.29)

Note: This table presents the average monthly percent excess returns by portfolio. Returns
are annualized and regressions are value-weighted. Heteroskedasticity and autocorrelation
consistent t-statistics are in parentheses.
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Table 20: Average DISP by Portfolio (LowVol)

LowSkew 2 3 4 HighSkew

LowDisp 0.02 0.02 0.01 0.01 0.01
2 0.03 0.03 0.03 0.03 0.03
3 0.05 0.05 0.05 0.05 0.04
4 0.08 0.08 0.08 0.08 0.08
HighDisp 0.21 0.23 0.23 0.22 0.23

Note: This table presents the average forecast dispersion by portfolio. For each stock, each
month, we obtain the analyst forecast dispersion as described in Section 4.1. Each month, we
compute the median across all stocks in a portfolio. Finally, this monthly portfolio value is
averaged over the entire sample.

Table 21: Average DISP by Portfolio (HighVol)

LowSkew 2 3 4 HighSkew

LowDisp 0.02 0.02 0.02 0.02 0.02
2 0.03 0.03 0.03 0.03 0.03
3 0.05 0.05 0.05 0.05 0.05
4 0.08 0.08 0.08 0.08 0.08
HighDisp 0.21 0.22 0.24 0.25 0.25

Note: This table presents the average forecast dispersion by portfolio. For each stock, each
month, we obtain the analyst forecast dispersion as described in Section 4.1. Each month, we
compute the median across all stocks in a portfolio. Finally, this monthly portfolio value is
averaged over the entire sample.
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Table 22: Average SKEW by Portfolio (LowVol)

LowSkew 2 3 4 HighSkew

LowDisp 0.27 0.48 0.62 0.77 0.98
2 0.27 0.49 0.63 0.77 1.01
3 0.28 0.49 0.65 0.79 1.02
4 0.29 0.53 0.69 0.80 1.05
HighDisp 0.34 0.65 0.76 0.88 1.16

Note: This table presents the average idiosyncratic skewness deviation by portfolio. For
each stock, each month, we obtain the predicted skewness of the Fama-French three-factor
residuals from Boyer et al. (2010). Each month, we compute the median across all stocks in a
portfolio. Finally, this monthly portfolio value is averaged over the entire sample.

Table 23: Average SKEW by Portfolio (HighVol)

LowSkew 2 3 4 HighSkew

LowDisp 0.30 0.50 0.66 0.81 1.08
2 0.28 0.48 0.64 0.80 1.06
3 0.27 0.47 0.64 0.80 1.07
4 0.25 0.47 0.65 0.80 1.09
HighDisp 0.22 0.47 0.66 0.82 1.15

Note: This table presents the average idiosyncratic skewness deviation by portfolio. For
each stock, each month, we obtain the predicted skewness of the Fama-French three-factor
residuals from Boyer et al. (2010). Each month, we compute the median across all stocks in a
portfolio. Finally, this monthly portfolio value is averaged over the entire sample.
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