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Abstract

In this paper, I study how Generative AI (GenAI) reshapes effort allocation and
firm value by influencing the costs and signaling value of AI-assisted tasks. Using
developer-level data from open-source projects linked to U.S. public firms and the
launch of GitHub Copilot as a shock, I find that GenAI increases productivity
in coding tasks but reduces the signaling value of such work for less-established
developers. While senior developers benefit from increased efficiency in coding
tasks, junior developers, whose contributions are less visible in an AI-assisted
environment, create more-valuable projects as a more effective signal of ability.
These changes in signaling incentives are reflected in selection of projects and
languages, job mobility, promotion rates, and firm-level outcomes. Firms with
more junior innovators exposed to AI see greater value creation from new projects,
while non-innovative firms with senior teams capture efficiency gains. The findings
shed new lights on the dual role of GenAI as both a productivity tool and a force
reshaping labor market signaling.
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1 Introduction

The public release of ChatGPT has led to a burst of discussion and debate over the

potential implications of generative artificial intelligence (GenAI) on labor and business.

Previous research has shown that labor-augmenting technologies, such as GenAI, provide

greater benefits to less-experienced workers and help reduce inequality (Brynjolfsson, Li

and Raymond, 2023; Kogan, Papanikolaou, Schmidt and Seegmiller, 2023; Cui, Demirer,

Jaffe, Musolff, Peng and Salz, 2024; Hoffmann, Boysel, Nagle, Peng and Xu, 2024b).

However, little is known about how GenAI might distort the signaling value of AI-assisted

tasks, particularly for less-established employees, or how it could influence workers’

incentives to engage in such tasks. For instance, Amazon recently banned AI usage

in interviews, citing concerns that it prevents the company from accurately assessing

candidates’ skills and experience.1 HackerRank’s 2025 Developer Skills Report attributes

hirers’ uncertainty about coding ability without AI assistance to the recent decline in

early-career developer hiring.2

In this paper, I fill this gap by investigating how different employees using GenAI

contribute to firm value by allocating effort between AI-assisted tasks and creative ac-

tivities. I use open-source software (OSS) projects made available by U.S. public firms

on GitHub, the most popular open-source platform, as my empirical laboratory. This

empirical setting is relevant because GenAI pronouncedly affects software development.3

Furthermore, OSS represents an economically important context for studying value cre-

ation. As software made publicly available with no or little cost, OSS generates economic

1See https://www.businessinsider.com/amazon-stop-people-using-ai-cheat-job-interviews-2025-2.
2See https://www.hackerrank.com/reports/developer-skills-report-2025.
3For example, the Census Bureau conducted surveys showing that the share of firms adopting

AI is highest in the information industry (See https://www.economist.com/business/2024/02/29/how-
businesses-are-actually-using-generative-ai). A report published by the Burning Glass Institute and
SHRM (https://shrm-res.cloudinary.com/image/upload/v1706729099/AI/CPR-230956 Research Gen-
AI-Workplace FINAL 1.pdf) suggests Generative AI’s biggest impact will be in banking and tech.
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value for both releasing firms and the broader society through private value creation

(Emery, Lim and Ye, 2024) and substantial externalities (Hoffmann, Nagle and Zhou,

2024a).4

I use a generalized difference-in-differences (DID) approach to study the causal effects

of GenAI on coding efficiency and innovation outcomes of developers working for firms.

I exploit the official launch of GitHub Copilot, a coding tool powered by OpenAI’s large

language models (LLMs) and widely adopted since then, on June 21st, 2022.5 I construct

a novel developer-level measure of GenAI exposure based on the programming languages

developers use in their ex ante codebase portfolio. Because there is more training data in

certain languages available for LLMs, some languages (such as Python) benefit more from

Generative AI than others and therefore have higher GenAI exposure.6 I then calculate

AI exposure scores for each developer by taking the weighted average of their language-

level AI exposure scores, and compare the top quartile of developers (treatment group)

with the bottom three quartiles (control group) before and after GenAI’s introduction.

I find that GenAI improves productivity in AI-assisted tasks for senior developers.

Developers with high AI exposure are 1.16 percentage points more likely to contribute

code to firm-owned projects each month, an effect concentrated on senior developers.

These productivity gains cannot be purely explained by more working hours or lower

quality of outputs. Dynamic effects observed from event-study analysis show that firms’

developers immediately react to the introduction of GenAI, that the effects persist over

4In practice, firms increasingly choose to make their innovation open source. As of 2022, 90% of
Fortune 100 companies use GitHub. See https://octoverse.github.com/2022/.

5The tool is integrated seamlessly into development environments and assists developers by suggest-
ing code snippets in real time as they type code or natural language instructions. Since its introduction,
developers have quickly adopted the tool, with over one million paid subscribers in 2023 and one third
Fortune 500 adopters as of December 2022. See https://github.com/features/copilot (September 2024).

6For example, A GitHub post during the technical preview of GitHub Copilot says that “GitHub
Copilot works with a broad set of frameworks and languages, but this technical preview works espe-
cially well for Python, JavaScript, TypeScript, Ruby and Go.” See https://github.blog/2021-06-29-
introducing-github-copilot-ai-pair-programmer/.
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time, with no evidence of pre-treatment trend differences.

I further study how GenAI affects innovation outcomes. While GenAI does not affect

the probability of innovation on average, it increases community interest in new projects,

as measured by GitHub stars (a bookmarking system that serves as a widely-used proxy

for popularity and quality) received by projects as of February 2024. I also find a positive

stock market reaction to projects released by teams with high AI exposure. Exploiting

variation in team seniority, I show that these effects are stronger for projects led by

teams with more junior innovators.

Unlike many studies,7 my findings suggest that less experienced developers do not

engage more in AI-assisted tasks, even though they stand to benefit the most from

GenAI. Instead, they generate higher-value innovation. One possible explanation is

that AI-generated code reduces the signaling value of coding activities, especially for

developers with shorter tenure. From my earlier example where Amazon banned the

use of AI in interviews, they cite inability to accurately assess candidates’ skills and

experience. However, the signaling effect is less observable in lab settings, within internal

firm activities, or among top-ranked open-source developers who typically have short

tenure,8 as studied in previous research.

I show that the signaling channel drives developer behavior after GenAI introduction

in my sample. Senior developers target popular team projects for visibility benefits, while

junior developers seek peer monitoring over popularity by avoiding solo work amid AI-

introduced noise. Moreover, while senior developers increase activities for both new and

7Studies at the individual level consistently find that junior workers benefit more from generative
AI than senior workers. They include, but are not limited to, Brynjolfsson et al. (2023); Dell’Acqua,
McFowland, Mollick, Lifshitz-Assaf, Kellogg, Rajendran, Krayer, Candelon and Lakhani (2023); Noy
and Zhang (2023), and Hoffmann et al. (2024b).

8For example, Hoffmann et al. (2024b) focus on developers contributing to the most popular public
repositories for identification purposes. Tenure in their study has a sample mean of 706 days and a
maximum of 1,420 days. In comparison, the sample used in this paper has a mean tenure of 2,690 days
and a maximum of 5,274 days.
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familiar languages, junior developers increase coding activities only for new languages,

where signaling value is equal across seniority levels as neither group has established

track records.

Signaling incentives further manifest in labor market outcomes. Junior innovators

are more likely to exit the sample, move to other firms, and get promoted, suggesting

that junior workers shift toward value-creating activities whose signaling value is less

affected by GenAI. This effect extends to firms, where the incentive alignment between

firms and their workforce composition plays a crucial role. For example, non-innovative

firms, whose business is more exposed to GenAI, with a higher proportion of senior

developers, who rely less on signaling through alternative tasks, are more likely to benefit

from adopting GenAI tools to increase efficiency in AI-assisted tasks. Consistent with

this prediction, I find that these firms experience higher cumulative abnormal returns

following the introduction of GitHub Copilot.

Literature. This study makes several contributions to the literature. First, this

paper speaks to the literature on the role of AI in firm value and growth. Several

studies have examined how AI may affect firm value through labor productivity (Eisfeldt,

Schubert and Zhang, 2023; Kogan et al., 2023), labor composition (Babina, Fedyk, He

and Hodson, 2023; Berger, Cai, Qiu and Shen, 2024), product innovation (Babina, Fedyk,

He and Hodson, 2024), and entrepreneur decision making (Otis, Clarke, Delecourt, Holtz

and Koning, 2024). To my knowledge, this paper is among the first to directly show

that GenAI can enable firms’ innovators to create more novel products with higher value.

More importantly, it suggests that employer-employee alignment in incentives for effort

allocation between AI-assisted and less-affected tasks is important for value creation.

Secondly, I add to the growing body of research on the impact of Generative AI on

labor outcomes. Previous research has studied the short-term impact of Generative AI
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on individual-level productivity and creativity across different types of discrete tasks,

usually in experimental or single-firm settings (Brynjolfsson et al., 2023; Dell’Acqua et

al., 2023; Noy and Zhang, 2023; Cui et al., 2024; Doshi and Hauser, 2024; Zheng, Wong,

Zhou and Koh, 2024). Only a few studies have used large observational data, which

allows researchers to examine longer-term impact at a larger scale, complementing ex-

perimental studies (Song, Agarwal and Wen, 2023; Zhou and Lee, 2023; Hoffmann et al.,

2024b; Yeverechyahu, Mayya and Oestreicher-Singer, 2024). While my empirical setting

is closely related to Song et al. (2023), Hoffmann et al. (2024b), and Yeverechyahu et al.

(2024), who study the effects of GitHub Copilot on GitHub activities, their identification

strategies restricted their sample to top maintainers or specific programming languages.

Instead, the novel AI exposure score implemented at the developer level in this paper

expands the sample to include general developers. More importantly, my paper focuses

more on firms rather than on pure productivity outcomes. By using high-frequency,

long-term observational data linked to firms, I am able to study detailed individual be-

havior in a collaborative work environment across all U.S. public firms that engage in

open-source software development. The increased visibility allows me to provide more

concrete evidence on the impact of GenAI on labor effort allocation, signaling incentives,

career outcomes, and the interaction between labor and firm performance.

Methodologically, this study also contributes to the literature that uses Generative

AI to generate new data and construct measurements to overcome various data challenges

in academic research. For example, researchers have leveraged large language models

(LLMs) to summarize or classify unstructured data (Cheng, Lee and Tambe, 2022; Beck-

mann, Beckmeyer, Filippou, Menze and Zhou, 2024; Chen and Wang, 2024; Kim, Muhn

and Nikolaev, 2024) and generate synthetic data for variables that require less subjec-

tive evaluation, such as occupational AI exposure scores (Eisfeldt et al., 2023; Eloundou,

Manning, Mishkin and Rock, 2023; Kogan et al., 2023). This paper uses novel LLM-
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based AI exposure scores for programming languages and applies LLM-inferred gender

and task classification to overcome data challenges and improve research efficiency.

2 Institutional Background

2.1 Open Source Software and Commercial Engagement

Systems granting excludability, such as patents, have been seen to be important to in-

centivize innovation (Arrow, 1962; Crouzet, Eberly, Eisfeldt and Papanikolaou, 2022).

Yet, there has been an increasing trend in open-source innovations, particularly in the

software industry. Based on the definition of the Open Source Initiative, “open source”

means not only access to the source code but also allowing free redistribution and mod-

ification under terms defined by open-source licenses. Therefore, when an innovation is

“open-sourced,” it is made publicly available to all parties at little or no cost. Because

of potential knowledge spillovers and the reduction of replacement costs for open-source

software (OSS) adopters, OSS can generate large externalities and facilitate innovation

in society as a whole (Fershtman and Gandal, 2011; Nagle, 2019; Hoffmann et al., 2024a;

Chen, Shi and Srinivasan, 2024). The recent debates over open-source large language

models further show the increasing importance and impact of open-source innovation.

While open-source innovations contribute to social welfare, they can also gener-

ate private value for firms.9 Indeed, many firms choose to make their innovation open

source. A recent survey finds that 90% of Fortune 100 companies use GitHub, the largest

platform for developing open-source innovation.10 Emery et al. (2024) document an in-

9There is a broad literature studying the incentives for commercial firms to reveal their innovations
in an open-source way, see Allen (1983), Lerner and Tirole (2002), Harhoff, Henkel and von Hippel
(2003), Dahlander and Gann (2010), Henkel, Schöberl and Alexy (2014), Parker, Van Alstyne and Jiang
(2017), Alexy, West, Klapper and Reitzig (2018), Nagle (2018), Teece (2018) and Lin and Maruping
(2022). For reviews of the open-source literature, see von Hippel and von Krogh (2003), Goldfarb and
Tucker (2019), and Dahlander, Gann and Wallin (2021).

10See https://octoverse.github.com/2022/.
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creasing trend of open-source activity by U.S. public firms, with these firms representing

68% of the stock market by market capitalization by the end of 2023. They show open-

source innovation can generate private value for firms, and this value is a predictor of

future sales growth, profitability, employment growth, and patent innovation.

2.2 Software Development Activities on GitHub

GitHub operates on the Git system, which supports a distributed and collaborative

framework for software development. Although not all open-source projects are devel-

oped on GitHub, it remains the largest platform for such efforts and is closely associated

with the concept of open-source software. This section will outline key terms and activ-

ities related to software development on GitHub.

To share their innovations on GitHub, firms begin by setting up organization ac-

counts. Within these accounts, they can establish repositories (projects), with admin-

istrators determining whether these will be publicly accessible or restricted to selected

organization or project members with appropriate permissions. The creation and main-

tenance of public repositories incur minimal costs, whereas managing private repositories

may require GitHub Team or GitHub Enterprise subscriptions for additional support and

features. Importantly, despite previous charges for private repositories before GitHub’s

2015 shift from a repository-based to a user-based pricing model, public repository host-

ing has been free since GitHub’s launch.

The development process starts with developers making modifications to the code-

base, committing these changes locally with concise descriptions. These “commits” are

then “pushed” to remote branches, making the updates accessible to other contributors

and users.
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Users who want to follow a repository’s progress can “star” a repository, essentially

bookmarking it for future reference. Those who have questions or suggestions can also

“open issues,” which are addressed by the development team and the broader community.

Additionally, users can contribute by “forking” the repository, creating a personal

copy to work on independently. If the changes made in the fork are considered beneficial

to the original project, users can submit “pull requests.” These pull requests are formal

proposals to merge their changes back into the original repository. These pull requests

are reviewed, and if accepted, the modifications are integrated into the main codebase,

further advancing the open-source project.

2.3 GitHub Copilot

GitHub Copilot is a cloud-based AI-powered code completion tool developed by GitHub

in collaboration with OpenAI. Specifically, it is built on OpenAI’s Codex model, a large

language model trained on vast datasets of public code repositories. The tool integrates

seamlessly into popular Integrated Development Environments (IDEs), and is designed

to assist developers by suggesting code snippets and entire functions in real-time as they

write code. Initially, it was launched in June 2021 in preview, available with a limited

number of spots. It has later become generally available to all developers since June

21st, 2022. While GitHub Copilot is freely available for verified students and maintainers

of popular open-source projects, for most individual developers it is priced at $10 per

month. There is also an Enterprise option for business. The tool is widely adopted since

then. There are over one million paid subscribers in 2023, and one third of Fortune 500

companies use GitHub Copilot as of December 2022.11

Developers use GitHub Copilot by installing it as an extension in supported IDEs.

11See https://github.com/features/copilot (September 2024).
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As they type, Copilot analyzes the code context and offers autocomplete suggestions. It

can also generate code based on natural language descriptions, allowing users to input

comments describing desired functions or algorithms, and Copilot will output the corre-

sponding code. Therefore, it significantly enhances developer productivity by reducing

the time spent on routine coding tasks, lowering the cognitive load, and minimizing

common errors. In addition, by offering creative coding solutions and suggesting best

practices, it enables developers to learn new coding techniques and languages. In March

2023, GitHub Copilot further offers GPT-4-powered chat feature, which allows develop-

ers to engage in a dialogue with the AI assistant to get feedback and suggestions.

3 Data and Methodology

3.1 Data

3.1.1 GitHub Activity of U.S. Public Firms’ Developers

To construct the dataset on GitHub activity of developers working for U.S. public firms,

I begin by linking GitHub organization accounts with firms. Following the methodology

of Conti, Peukert and Roche (2021), I first collect websites of organization accounts

via the GHTorrent project and the GitHub API. I then match these domains with the

web URLs of U.S. public firms and their subsidiaries from Compustat or Orbis.12 I then

manually search for firms’ open-source organization accounts to complement the domain-

based matching.13 Following this, I compile a comprehensive list of public repositories

owned by the identified organization accounts through the GHArchive database, which

12Domains that are indicative of hosting or social media services, such as “github.com” and “face-
book.com.”, are excluded.

13Specifically, I query the firm names together with the term “open source” via Google to locate
official web pages that list their open source projects, and search the firm names on GitHub to identify
associated organization accounts.
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records and archives timestamped public activity of GitHub repositories. In total, I

match 1,281 firms with 3,314 organization accounts and 168,085 public repositories up

to the year 2023.

Upon establishing a link between U.S. public firms and their respective GitHub

organization accounts and public repositories, I use the GHArchive database to gather

additional information on the public footprints of these repositories. Most importantly,

I identify individuals who are internal contributors (i.e., those who push commits to

firm-owned repositories) as firms’ developers. Overall, my sample spans from January

1st, 2021 to December 31st, 2023, 18 months before and after the introduction of GitHub

Copilot.

3.1.2 Developer and Repository Characteristics

I use the GitHub API to collect static characteristics of developers as of March 2024.

In particular, I obtain the account create date and self-reported names. I use the user

account create date to calculate tenure and proxy for seniority. Figure 2 illustrates

the distribution of account create month in my data. For self-reported names, I use

OpenAI’s API to interact with the GPT-3.5 turbo model to exclude users with account

name containing “bot” or with “bot” account type identified to ensure bot accounts will

not contaminate my sample. This results in 26,026 GitHub individual accounts during

the sample period. I then match GitHub developers in my sample to their LinkedIn

profile from Revelio Labs using their names and employers. In total, 12,858 developers

are matched.

Similarly, I collect static characteristics of repositories extant as of February 2024

via GitHub API. This includes an array of attributes from descriptive repository meta-

data, such as programming languages and their corresponding byte sizes, to quantitative
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measures of community engagement, including the number of stars, watchers, and forks.

3.1.3 Repository Value and Firm Characteristics

I estimate the forward-looking value of repositories using a stock market-based approach.

Specifically, the value is calculated based on the stock market reaction within three

days after a project is made public. Our other paper (Emery et al., 2024) provides

methodology details and validation of the value measure. Stock return data comes from

CRSP and other firm financial characteristics are obtained from Compustat.

3.2 Generative AI Exposure Measure

To compare users with relatively higher ex ante exposure to Generative AI with users

with lower exposure, I leverage the programming languages used by a user from June

2019 to June 2021, which ends right before the Copilot preview and one year before the

introduction of GitHub Copilot to ensure that the AI exposure score does not reflect

selection effects. The idea is that some languages (such as Python) benefit more from

Generative AI than others (such as Stata) because there are more training data in certain

languages available for LLMs. For each language, I assign an exposure score (0-1) to

Generative AI coding tools based on ChatGPT’s suggestions. Section Internet Appendix

A.3 provides prompt details. While this paper is among the first to use ChatGPT to

assign AI exposure score to programming languages, LLM-based AI exposure score has

been largely implemented for occupations (Eisfeldt et al., 2023; Eloundou et al., 2023;

Kogan et al., 2023). Table 1 lists selected languages and their AI exposure scores, with

Python ranked first with a score of 1 and Stata and TeX ranked among the lowest with

a score of 0.5. Other languages irrelevant for coding, such as CSV, do not have an AI

exposure score.
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Because there is no directly available information on language usage over time at

user-level, I take two steps to approximately measure user-level AI exposure. First,

I calculate the total language byte size for each user (bli) based on user activities in

firm-owned repositories and the byte size of languages in each repository (blr) between

June 2019 and June 2021. For each repository, I calculate user’s fraction of contribution

of each language in terms of the user’s share of “PushEvent” and then sum it up to

user-language level. Specifically, I calculate:

bli =
󰁛

r

ai,r󰁓
j aj,r

blr,

where bli is the byte size of language l contributed by user i, ai,r is the total number

of PushEvent activity of user i in repository r, and blr is byte size of language l used in

repository r.

Then for each user, I calculate the weighted AI exposure score, where the weight is

the byte size of a given language to the byte size of all code contribution by user i among

the two-year period one year prior to the introduction of GitHub Copilot. Specifically,

I construct the user-level AI exposure score as follows:

si =
󰁛

l

bli󰁓
l b

l
i

sl,

where si is the weighted AI exposure score of user i, bli is the byte size of language l

contributed by user i, and sl is AI exposure score of language l provided by ChatGPT.

Lastly, I define users with si in the 4th quartile as having high exposure to Generative

AI.
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One could argue that a higher usage share of AI-exposed language does not nec-

essarily indicate greater AI exposure at the individual level, as developers with less

experience in an AI-assisted language may benefit more. However, as Acemoglu (2024)

points out, code autocompletion tools like GitHub Copilot perform subtasks, but the

overall task requires completion of both AI and human subtasks. This subtask comple-

mentarity suggests that a developer who frequently uses an AI-assisted language is more

likely to experience increased activity, particularly in languages where human coding

costs are relatively high. See Internet Appendix B for the details of the economic model.

Consistent with the model’s prediction, Table IA4 shows that a higher usage share of

AI-exposed language predicts greater coding activity, especially in languages other than

a developer’s primary language. Additionally, the main results remain consistent at the

individual-language level.

3.3 Identification Strategy

I use a generalized difference-in-differences (DID) approach to study the reactions of

labor productivity and innovation outcomes of firms’ developers to the introduction

of GitHub Copilot, a code autocompletion and chat tool powered by OpenAI’s GPT

models. Using the shock of GitHub Copilot’s public release has several advantages.

First, GitHub Copilot is designed for coding tasks and is seamlessly integrated with

major IDEs (integrated development environments), making it particularly relevant and

easy to use for software developers. Second, the tool was officially launched for individual

developers on June 21st, 2022,14 five months before the release of ChatGPT on November

30th, 2022. Therefore, any initial reaction observed is likely to be driven by Generative

AI powering job-specific coding tasks of developers rather than changes in activities of

14For official announcement, see https://github.blog/news-insights/product-news/github-copilot-is-
generally-available-to-all-developers/
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other tasks unobservable in the software development context. Third, while there was a

period of technical preview since June 29th, 202115, the preview was strictly limited to

a number of spots with relatively poor performance. The general availability of the tool

can therefore serve as an ideal shock for the main purpose of this paper.

For baseline regressions, I use the following specification:

Yi,t = β1Postt × AI Exposurei + µi + θt + 󰂃i,t, (1)

where Postt indicates periods after the introduction of GitHub Copilot. Specifically,

it equals one since July 2022 for monthly analysis or the third quarter of 2022 for quar-

terly analysis. AI Exposurei equals one for the group with relatively high Generative

AI exposure, i.e., the user’s ex ante AI exposure score is in the fourth quartile. In ad-

dition, I include individual (µi) and time (θt) fixed effects to control for time-invariant

individual characteristics and common time trends. The outcomes of interest Yi,t, are

individual-level outcomes, such as engagement in AI-assisted coding tasks or creativity

tasks and job changes.

I further explore the heterogenous effects of Generative AI on employees along the

gender and seniority dimensions. To do this, I conduct a triple difference-in-differences

(DDD) analysis using the following specification:

Yi,t =β1Postt × AI Exposurei + β2Postt × Chari

+ β3Postt × AI Exposurei × Chari + µi + θt + 󰂃i,t,

(2)

15See https://github.blog/news-insights/product-news/introducing-github-copilot-ai-pair-
programmer/.
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where Chari is a dummy indicating the the characteristics of developer i. For ex-

ample, the dummy for seniority equals one if the tenure of the developer on the GitHub

platform, approximated based on the account’s create date, is above median. The coef-

ficient of interest is therefore β3.

Additionally, I conduct an event-study analysis for individual-level reactions to the

introduction of the Generative AI. While the generalized DID approach gives an estimate

of the average impact over the time horizon after the AI shock, the event-study approach

allows for examining dynamic effects and checking whether the parallel trend assumption

is violated or not. The event-study specification is as follows:

Yi,t =
l−1󰁛

l=l+1

γlD
l
i,t + γlD

l
i,t + γlD

l
i,t + µi + θt + 󰂃i,t, (3)

where Dl are leads and lags of treatment for short-run effects, and Dl (Dl) accounts

for periods before l (after l) periods relative to treatment for all longer-run effects. D−1

is omitted for normalization, that is, one month or one quarter before the introduction

of GitHub Copilot based on the panel frequency. For monthly analysis, I set l = −7 and

l = 13, and for quarterly analysis, I set l = −6 and l = 5.

Lastly, I conduct DID analysis in repeated cross-sections for project-level innovation

outcomes in terms of community interest and value. Specifically, I estimate the following:

Yr,f,t =β1Innovator AI Exposurer + β2Postt × Innovator AI Exposurer

+ β3Repo AI Exposurer + β2Postt ×Repo AI Exposurer

+ Controlsr,f,t−1 + αf + θt + 󰂃r,f,t,

(4)
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where Yr,f,t is the dependent variable for community interest (number of stars re-

ceived) and repository value estimated based on stock market reaction. I include both

repository-level AI exposure (Repo AI Exposurer) based on the repository language

compositionand team-level AI exposure (Innovator AI Exposurer) if one of the initia-

tors is with high AI exposure. I include lagged firm-year level controls, including the

natural logarithms of one plus cumulative number of firm-owned repository, market cap-

italization, volatility, number of employees, and one plus value of patent portfolio. I also

control for return on assets, R&D expenditure as a share of assets, whether R&D ex-

penditure is missing, and innovator team size, and include firm and time fixed effects.16

Similar to developer-level analysis described above, I further exploit the heterogeneity

of team composition in terms of seniority.

4 Empirical Results

4.1 Summary Statistics

I provide an overview of monthly open-source activities of firm’s developers before the

introduction of GitHub Copilot in Table 2. First, Panel (a) shows that the average AI ex-

posure score in my sample is around 0.81, with little difference between junior and senior

developers. Coding activities account for the majority of activity records.17 Specifically,

69% developer-month has code contribution, and an average developer contributes code

around 33 times per month, showing that these developers are active contributors. De-

velopers on average contribute code to 2.9 projects per month, although they show active

public footprint in 4.2 projects. Firms’ developers work mostly for firm-owned projects

(1.8 projects per month), but they are also active for individual projects (1.5 projects

16These controls have been shown to be significant determinants of repository value as documented
in Emery et al. (2024).

17See Section Internet Appendix A.1 for activity classification.
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per month) and projects owned by non-firm organizations (0.8 projects per month). Ex-

ploiting heterogeneity in developer’s characteristics, I show that before the introduction

of the GenAI coding tool, junior developers contribute less in terms of intensity and

frequency than senior developers across all types of activities, and they work on less

number of projects concurrently.

Panel (b) of Table 2 compares activities and characteristics between developers with

high and low exposure to GenAI. High-exposure developers contribute less code and

participate in fewer projects, yet they do not differ in gender or seniority. Given that

these developers are more likely to work for larger firms (see below) but display otherwise

similar individual attributes, the observed differences in GitHub activity likely reflect

variation in firm-level engagement on the platform rather than fundamental differences

across developers.18

Table IA2 compares characteristics between firms with high and low exposure to

GenAI, based on the average AI exposure scores of their developers active on GitHub

prior to GitHub Copilot’s launch. These firms show similarity across many financial

dimensions, including revenue growth, profitability, foreign revenue share, leverage, in-

terest expense to total assets ratio, and R&D expenditure as a share of total assets.

High-exposure firms, however, have smaller market capitalization (significant at 10%

level). Despite having fewer active developers on GitHub, high-exposure firms maintain

nearly identical ratios of activities associated with senior developers (63% versus 61%).

Thus, the two groups appear broadly comparable in fundamentals.

Before moving to empirical analysis, the raw changes of outcomes might already

tell the impact of the GenAI shock. Figure 3 plots firm-related coding activities over

time between developers with high and low exposure to GenAI. Similar to what has

18Emery et al. (2024) show that large firms represent 89% of repositories in their sample.
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been shown in the summary statistics above, developers with lower AI exposure are

more active in general. Both groups see declining trends of activity in the pre-treatment

period, and the trends are generally parallel. This might be because developers in my

sample code less as they become more senior over time, or it can be because teams

grow larger over time that there is less work for a single developer. However, after the

introduction of GenAI, the slope of the decrease becomes more flat for developers with

low AI exposure, and developers with high exposure become increasingly more active.

This shows that while the productivity of all developers are positively affected by GenAI,

the effect is much stronger for developers with high AI exposure.

4.2 AI-Assisted Tasks

In this section, I examine the impact of GenAI on the productivity of AI-assisted tasks,

specifically coding, and explore how the effects vary among developers with different

tenure lengths. I start by investigating the extensive margin, i.e., whether develop-

ers have any open-source coding activity related to firm-owned projects within a given

month. Columns (1) and (2) of Table 3 presents results estimated from equations 1

and 2. The findings indicate that the GenAI-powered coding tool significantly increases

the likelihood of coding-related events. Developers with high AI exposure are 1.16 per-

centage points (more likely to contribute code to firm-owned projects.19 Moreover, this

effect is predominantly driven by senior developers with longer tenure on GitHub, for

whom the total effect is 1.67 percentage points.

Next, I compare the quantity of coding activity between developers with high and

low AI exposure before and after the introduction of Generative AI. For this analysis, I

aggregate activities by quarter due to the frequent occurrence of zero values in monthly

19These results also hold at the individual-language level, as reported in Table IA5.
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data. Columns (3) and (4) of Table 3 report the results, confirming that GenAI similarly

boosts coding activity within firm-owned projects, with the effect again stronger among

senior developers.

Figure 4 plots the event study results for coding activity engagement related to

firm-owned projects, with coefficients estimated using equation 3. The pre-launch coef-

ficients confirm that the parallel trend assumption is not violated. Moreover, following

GenAI’s introduction, an immediate increase in coding activity occurs. Specifically, in

the short-term, developers with high exposure become 2-4 percentage points more likely

to contribute code to firm-owned projects immediately after the launch, and this elevated

activity persists for up to nine months (three quarters).

The increase in AI-assisted activities may not indicate higher task productivity as

a decrease in quality could accompany the increase in quantity. To investigate this, I

begin by examining two proxies for quality: the number of stars and the number of

issues opened attributed to each developer. ”Starring” indicates direct community in-

terest, whereas users open issues to report bugs or provide suggestions. Since developers

naturally accumulate more stars with increased contributions, I also compute the cu-

mulative ratio of stars per code push. Additionally, I calculate the cumulative ratio of

issues opened per star, considering that popular projects typically foster more active

discussions.

Table 4 reports the regression results, while Figure IA1 visualizes the event study

estimates. The findings indicate that GenAI usage increases both the number of stars

and issues attributable to developers, and similarly, these effects are more pronounced

for senior developers. However, the stars-per-push ratio remains largely unchanged.

By contrast, the ratio of issues opened per star actually decreases. This suggests that

GenAI-driven productivity enhancements primarily target maintenance (reducing bugs)
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rather than increasing product popularity.

Alternatively, the increase in coding activity among GenAI-exposed developers may

be explained by longer working hours. Since only the timestamp of event completion is

available, I examine three specific outcomes to assess changes in input and the output-

to-input ratio: work completed outside common hours, work completed on weekends,

and work completed per hour, where work is defined as coding activity associated with

firm-owned projects.20 Common hours are determined as hours during which a developer

completes events that constitute more than 5% of all events on a given weekday, based

on activity records from 2020 of developers with at least 100 coding events.21 Table

5 presents the results. It appears that GenAI does not affect input, as measured by

overtime work (Columns (1)-(4)). Consistent with increased output and unchanged

input, developers complete more events per hour, as shown in Columns (5)-(6). Similar

to the output results above, the effects are stronger for senior developers. The findings

show that GenAI leads to efficiency gains by enabling developers to complete more work

within standard working hours without increasing overtime or weekend work.

Overall, I find that after the introduction of GitHub Copilot, a coding tool powered

by GenAI models, developers with high AI exposure show higher productivity, an effect

not explained by more working hours or lower quality of outputs. This productivity

gain is in line with the idea that GeneAI tools like GitHub Copilot reduce the cost of

subtasks that complement those performed by humans (Acemoglu, 2024).

20Specifically, I look at the cumulative ratio of coding events occurring outside common hours

(
cumulative number of coding events outside common hoursi,t

cumulative total number of coding eventsi,t
), the cumulative ratio of coding events occurring

on weekends (
cumulative number of coding events on weekendsi,t

cumulative total number of coding eventsi,t
), and the cumulative number of coding events

per hour (
cumulative total number of coding eventsi,t

cumulative total number of hoursi,t
).

21For example, if a developer completes 100 coding events on Mondays throughout 2020, with only 2
at 8 pm and 5 at 2 pm, then 2 pm on Monday qualifies as a common hour, whereas 8 pm on Monday
is considered outside common hours. Additionally, any hour on weekends is deemed outside common
hours.
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Yet, unlike many prior studies, where junior workers are more likely to adopt and

benefit more from using GitHub Copilot or other Generative AI tools (Brynjolfsson et

al., 2023; Dell’Acqua et al., 2023; Kogan et al., 2023; Cui et al., 2024; Gambacorta,

Qiu, Shan and Rees, 2024; Hoffmann et al., 2024b), this paper finds stronger effects on

AI-assisted tasks among senior developers. This counterintuitive result may reflect the

declining signaling value of coding for junior workers, a key reason why they contribute

to open-source projects on GitHub. If so, they may shift to other signals less influenced

by GenAI, such as activities related to creativity and leadership. In the next section, I

examine whether GenAI exposure leads to more product innovation, particularly among

junior developers.

4.3 Product Innovation

In addition to improving labor productivity, GenAI may contribute to firm value and

growth by stimulating new ideas and products (Babina et al., 2024). As noted above,

junior workers with less established records may be more motivated to produce sig-

nals through tasks less affected by AI. This shift is feasible, as AI-augmented humans,

freed from routine work, can redirect their time and cognitive capacity toward creative

activities.

I study the impact of GenAI on firms’ open-source innovation, focusing on the like-

lihood of developers becoming innovators, the community’s interest in the innovation,

and the value of the innovation. I define innovators as those who initiate new projects

owned by the firm. Specifically, I identify innovators who publicly contribute code to

newly created projects within two weeks of their creation dates.22

22This definition is conservative as some projects are made public several months after creation, and,
as a result, no innovators are identified for these projects.
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My analysis starts with the likelihood of producing innovation and the number of new

projects initiated each quarter. Table 6 reports the results. Overall, the introduction

of GenAI does not affect either the probability of innovation or the number of new

projects. If anything, junior developers at firms with high AI exposure appear to be

0.6 percentage points less likely to create firm-owned new projects post-treatment. One

potential explanation is that junior innovators, who produce more meaningful signals

in the post-GenAI era, are more likely to leave public firms, resulting in their exclusion

from the sample after the introduction of GenAI. Indeed, as shown in Table IA3, while

developers with high AI exposure are 1.67 percentage points more likely to exit following

the Copilot launch, there is no significant difference in exit probability between senior

and junior developers. However, innovators with high AI exposure show a higher exit

rate (2.63 percentage points) than general developers, with junior innovators twice as

likely to exit as senior innovators.

Next, I turn to project-level outcomes, focusing on community interest, proxied

by the number of stars received as of February 2024, and repository value (in 2023

dollars), estimated based on the stock market reaction to the project’s public release. In

addition to the innovation team’s AI exposure, I include a project-level AI exposure score

derived from the project’s language profile. This accounts for potential shifts in project

composition following the AI breakthrough in this repeated cross-sectional analysis. For

instance, there may be an increase in AI-related, Python-based projects that naturally

are contributed by Python developers.23

Panel (a) of Table 7 reports the results. I show that GenAI does not necessarily help

projects with higher AI exposure attract more community interest. However, projects

initiated by innovators with high AI exposure receive significantly more stars, suggesting

23In unreported analysis, I use alternative project-level AI exposure measure by using LLMs to infer
whether the project’s self-reported topics and description are related to core AI and machine learning
algorithms or AI applications. The results remain consistent.
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greater recognition. Exploiting team-level seniority, I find that the positive effects are

primarily driven by projects led by teams with a higher ratio of junior members, though

the difference is not statistically significant.

If GenAI has the potential to increase revenue by driving higher product innovation

and demand, one would expect GenAI-exposed projects to create more firm value. I esti-

mate the value of the new innovation based on the methodology documented in Emery et

al. (2024), a stock-market based approach, and investigate the impact of Generative AI

on the private value of open-source innovation for firms.24 I control for innovator team

size and firm-year characteristics that have been shown to be determinants of repository

value, along with firm and time fixed effects.

The results are shown in Panel (b) of Table 7. As with community interest, projects

more exposed to GenAI do not generate significantly higher value. However, those

contributed by innovators with high AI exposure are valued 8% higher. The effect is

again stronger for projects led by teams of junior developers. In an AI-exposed team

of five senior innovators, replacing one senior with a junior increases the effect by 8.5

percentage points, ceteris paribus.

In summary, I find no evidence that GenAI encourages developers to become inno-

vators. However, projects led by teams with high AI exposure gain more community

recognition and are valued more highly by the stock market. These effects are stronger

for teams with more junior innovators. This contrasts with earlier findings on labor pro-

ductivity, which show that GenAI benefits senior developers more. In the next section,

I examine one channel that may reconcile these results: the generation of productivity

24For firms, open-source innovation has been shown to generate private value, and this value is a
predictor of future sales growth, profitability, employment growth, and patent innovation (Emery et
al., 2024). From a social welfare perspective, open-source innovation also largely benefits society by
reducing replacement costs (Hoffmann et al., 2024a) and increasing overall patent values (Chen et al.,
2024).
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information.

4.4 The Effects of Generative AI on Signaling

The desire for peer recognition and career advancement often motivates developers to

contribute to open-source projects (Lerner and Tirole, 2005). As the largest platform for

hosting open-source projects, GitHub is widely recognized by developers and employers

as a source of productivity signals, particularly from firm-owned projects.25 For example,

Gupta, Nishesh and Simintzi (2024) show that high-skill developers from small firms who

reveal their coding activities are more likely to be hired by large firms and promoted to

senior roles.

GenAI coding tools can have two opposing effects on productivity signal genera-

tion. On one hand, GenAI reduces the cost of AI-assisted tasks, particularly for less-

experienced developers (Cui et al., 2024; Hoffmann et al., 2024b). On the other hand,

because AI-generated code is harder to distinguish from human-written code, GenAI

may introduce noise into the signal, especially for developers with limited track records.

If this second effect dominates, developers with shorter tenure might choose to spend the

time saved on AI-assisted tasks on areas less influenced by GenAI, such as creativity-

focused work. This could explain why, despite GenAI tools proving more beneficial for

low-skilled workers in lab experiments, the same effect is not observed in my setting,

where signaling is a major incentive in participation.

Signaling incentives predict that developers exposed to GenAI will increase contri-

butions to more popular projects because the visibility and reputational payoff from

working on well-known repositories is greater. However, junior developers facing higher

25According to GitHub, most first-time internal and external contributors to open source projects on
GitHub chose bigger, company-run repositories. See https://octoverse.github.com/2022/state-of-open-
source.
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AI-introduced noise may prioritize working with larger teams where peer monitoring

moderates the distortion, making project popularity secondary. Table IA6 confirms

these predictions. All developers increase work on team projects after GenAI introduc-

tion, but the underlying mechanisms differ by seniority. Senior developers drive this

increase partly through preference for more popular projects (Columns (4) and (8)),

which also tend to be managed by larger teams. In contrast, junior developers show no

responsiveness to popularity and actually decrease contributions to solo projects, where

peer monitoring is absent.26

Developer-language level analysis provides complementary evidence for this signaling

mechanism. Table IA5 shows that senior developers increase coding activities for both

familiar and new languages with high AI exposure after GenAI introduction. Junior

developers, however, only increase coding activities for new languages with high AI

exposure. This can be explained by the equal signaling value that new languages offer

across seniority levels, as neither group has established track records. Overall, these

divergent responses across project types and programming languages provide strong

evidence that signaling motives drive developer behavior in my sample.

If signaling drives these patterns, it should be reflected in corresponding changes in

job market success. I compare developers’ job mobility and promotions before and after

the official launch of GitHub Copilot. Empirically, I match GitHub developers to their

LinkedIn profiles from Revelio Labs using their names and employers. In total, 12,858

developers are matched. Table IA7 presents summary statistics on job changes among

firm developers with matched GitHub profiles at the developer-year-quarter level from

26One might wonder why, for junior developers with high AI exposure, contributions to solo projects
decrease and contributions to team projects remain unchanged, yet total contributions across all projects
are also unchanged (Table 3). This occurs because the sample includes only projects that existed before
GenAI introduction, since team size classifications require pre-treatment activity data. Contributions
to newly created projects are therefore excluded from these measures. This pattern further implies that
junior developers reallocate effort toward new projects launched after GenAI’s introduction, consistent
with their increased investment in innovative activities.
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January 2021 to December 2023.

As shown in Panel (a), the average probability of a job move is 7% per quarter, with

3% happening within the same firm. The probability of an across-firm promotion is only

1%, partly because job transitions with missing seniority or compensation data before or

after the transition are excluded. Developers with longer GitHub tenure make up 65%

of the sample, indicating they are more likely to create LinkedIn accounts early. The

average job seniority is 3.12 on a 1-7 scale, and the total yearly compensation averages

approximately $183,410.

Panel (b) compares developers based on their tenure and whether they are classified

as innovators (i.e., those who initiated at least one GitHub project owned by their

employers before the introduction of generative AI tools). On average, junior developers

are 2 percentage points more likely to change job positions and 1 percentage point more

likely to move to other firms. They also hold less senior positions with lower total

compensation. The differences in job mobility between innovators and non-innovators

are less pronounced, though innovators tend to hold more senior positions and receive

higher total compensation.

I first present evidence on the impact of GenAI on employee mobility, controlling

for previous job’s characteristics, individual fixed effects, and firm-time fixed effects. As

shown by Baird, Mar, Xu and Xu (2024), adopting GenAI tools like GitHub Copilot in-

creases firms’ labor demand for software engineers, particularly at the entry level. Panel

(a) of Table 8 provides the estimates. Consistent with their findings, I find that develop-

ers with greater AI exposure are 0.64 percentage point more likely to change employers

per quarter, with the effect mainly driven by junior developers (1.22 percentage points).

This suggests that AI-exposed junior developers have stronger incentives to signal their

abilities through GitHub activities before switching jobs, as potential employers may
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have limited information about their skills.

I now compare promotion probabilities across firms between senior and junior de-

velopers, as well as between innovators and non-innovators. The results are presented

in Panel (b) of Table 8. Columns (1)-(2) show that among senior developers, GenAI

does not affect the likelihood of demotion. However, senior innovators are less likely to

be promoted when switching firms. This aligns with previous findings, where senior de-

velopers focus more on coding activities, and their new projects are perceived as having

lower value by the stock market. In contrast, junior innovators with greater AI exposure

are 1.27 percentage points more likely to be promoted across firms than junior devel-

opers. As shown in Columns (5)-(6), although the effect lacks statistical significance

due to a smaller sample size, it is primarily driven by junior innovators working for less

innovative firms, whose businesses are more affected by GenAI-powered coding tools.

Overall, the results suggest that firms value creativity-related signals from AI-affected

developers, particularly those with less established records.

If the signaling channel is important, the impact of GenAI on firm value will depend

on employer-employee alignment around signaling incentives. Senior developers readily

exploit GenAI’s efficiency gains. Instead, junior developers need to establish credibil-

ity in their career profiles and might prioritize tasks where human contributions stand

out. As a result, a firm focusing on AI-assisted coding benefit more if its workforce is

primarily composed of senior developers than a junior-heavy firm. In contrast, innova-

tive firms with more junior developers benefit from the aligned incentives, since junior

developers can pursue innovation tasks that match both their signaling needs and the

firm’s objectives. However, this alignment matters less overall because innovative firms’

core business models are less affected by GenAI.

To test this hypothesis, I use an event study approach, examining cumulative ab-

27



normal returns following the official launch of GitHub Copilot. To ensure a relevant and

meaningful sample, I include only firms in the information technology industry (SIC

code 737) and those with more than 100 code push events up to the event date. I cal-

culate a firm’s AI exposure score based on the language composition of its repositories

and classify a firm as AI-exposed if its score falls in the fourth quartile. I assess firm-

developer compatibility by considering a firm’s innovativeness and workforce tenure.

Specifically, incentives are aligned if an innovative firm (with R&D expenditure as a

share of assets above the median) has an average developer tenure in the first quartile

or if a non-innovative firm has an average tenure in the fourth quartile. Thus, if the hy-

pothesis holds, incentive-aligned firms should experience higher abnormal returns after

the introduction of the GenAI coding tool.

Table 9 report the event study results. Panel (a) examines all active GitHub firms

in the information technology industry. On the day of Copilot’s launch, there is little

market reaction, suggesting that the market took time to process information about

disruptive technologies like GenAI. In the event windows from 10 days to 30 days, con-

sistent with the hypothesis, AI-affected firms with aligned incentives experience higher

cumulative abnormal returns. Panel (b) further divides the sample into innovative and

non-innovative firms. The positive effect of incentive alignment is concentrated in non-

innovative firms. Consistent with previous prediction, these results suggest that investors

perceive firms compatible with employees’ signaling incentives benefit more from GenAI

tools, particularly those whose businesses are more exposed to GenAI.

To summarize, the findings suggest that the signaling channel may help explain the

surprisingly small change in coding activity among junior developers, who are supposed

to benefit more from GenAI tools. At the firm level, GenAI’s impact on firm value is

not driven solely by technological advancement but also by how well a firm aligns with
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signaling incentives of its employees.

5 Conclusion

In this paper, I explore GenAI’s impact on how employees reallocate effort between AI-

assisted tasks and creative work in the context of open-source softwares released by U.S.

public firms. Using a new developer-level measure of AI exposure and exploiting the

official launch of GitHub Copilot, I show that Generative AI affects labor productivity

in AI-assisted tasks and innovation differently depending on employee tenure. I also

investigate the role of signaling in explaining these results and in shaping firm value.

For labor productivity in AI-assisted coding tasks, I find that GenAI generally boosts

output. Developers at firms with high AI exposure are 1.16 percentage points more likely

to contribute code to firm-owned projects each month. Event-study analysis shows that

these productivity gains persist over time, with no evidence of violated parallel trends.

I then turn to creative activities, using project initiation as a measure of innovation.

While GenAI does not significantly influence the likelihood of innovation at the developer

level, it does increase community interest in new projects. In addition, the private value

created for firms, measured by stock market reactions within three days of a repository’s

release, is 8% higher on average. This rise in interest and value is driven more by

innovators’ exposure to AI than by the projects’ own AI exposure. In contrast to coding

activities, AI’s impact on the value of innovation is greater for teams with more junior

developers. Specifically, replacing one senior with a junior in an AI-exposed team of five

senior innovators further raises the project’s value to the firm by 8.5 percentage points.

Unlike many studies in the literature, these findings indicate that less experienced

developers in this sample do not engage more in AI-assisted tasks, despite potentially

benefiting more from GenAI. One possible explanation is that AI-generated code weakens
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the signaling value of coding activities, particularly for developers with shorter tenure.

Thus, junior developers who rely on open-source projects to demonstrate their ability

may shift to other signals less influenced by GenAI, such as innovation.

The signaling channel drives developer behavior after GenAI introduction: senior

developers increase contributions to popular team projects for visibility benefits, while

junior developers prioritize peer monitoring over popularity, avoiding solo work due to

AI-introduced noise. Meanwhile, the differences in coding activities between junior and

senior developers disappear for new languages, for which neither group has established

track records. These behavioral changes translate into job market outcomes, as junior

innovators with high AI exposure are more likely to exit firms than either senior inno-

vators with high exposure or junior innovators with low exposure. By linking GitHub

developers to their LinkedIn profiles, I also find that junior developers more exposed to

GenAI are more likely to change jobs and get promoted when moving between firms.

Most importantly, these effects are driven primarily by junior innovators rather than

pure developers, suggesting that creative tasks have become a stronger signal for junior

workers following the introduction of GenAI.

This dynamic also affects firms differently, depending on the alignment between

firm incentives and workforce composition. For example, non-innovative firms with more

senior developers, who have already established their credibility, are less concerned about

information asymmetry and therefore increase firms’ output with the help of GenAI.

Consistent with this, I show that these firms experience higher cumulative abnormal

returns following the introduction of GitHub Copilot.

The study could have implications for both firms and policymakers. For firms, the

findings highlight the importance of understanding how AI tools interact with employee

experience and task type. Firms employing junior workers may need to reconsider how
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performance is evaluated and signaled, particularly as AI reduces the visibility of indi-

vidual contributions to AI-assisted tasks. Encouraging innovation and providing alter-

native pathways for skill signaling could help retain and develop junior talent in the age

of GenAI.

For policymakers, the results suggest that AI adoption may not uniformly benefit

all workers and could exacerbate existing disparities tied to experience and role. Policies

aimed at workforce development should account for these differences, supporting early-

career workers in building distinctive skills that remain valuable in an AI-augmented

environment. Additionally, as innovation becomes a key signal of ability, ensuring broad

access to training and platforms that enable creative contributions will be essential for

equitable participation in the digital economy.
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A Appendix

Figure 1. Monthly Aggregated Github Activities Over Time

This figure plots the monthly open-source activities within public firm-owned repositories on the
GitHub platform from 2018 to 2023. Activities are grouped based on their related skill requirements.
See Section Internet Appendix A.1 for classification details.
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Figure 2. Density of Account Created Month

This figure plots the density of account create months of firms’s developers, which is obtained via
GitHub API.
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Figure 3. Raw Changes in Coding Productivity of Developers

This figure plots the raw mean of firms’ developers coding related events in firm-owned repositories.
Specifically, the graph shows the natural logarithms of activity counts per quarter of developers with
high (treated) and low (control) AI exposure before and after the introduction of GitHub Copilot.
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Figure 4. Firm-Related Github Coding Activity After Copilot Launch

This figure plots coefficients of the event study specification described in equation 3 with 95%
confidence intervals. The outcome variables are a dummy variable that equals one if a developer has
any public activity in firm-owned repositories in a given month (left) and the log(1 + x)
transformation of the number of coding activities in firm-owned repositories in a given quarter (right).
Standard errors are clustered at developer level.
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Table 1. GPT Generated AI Exposure Score of Selected Languages

This table lists the LLM-based Generative AI exposure scores of selected languages, which is later
used to calculate developer-level exposure to Generative AI. The score ranges from 0 to 1. See Section
Internet Appendix A.3 for the prompt used to obtain AI exposure scores for programming languages.

High AI Exposure Languages Low AI Exposure Languages Random without AI Exposure
language score language score language

Python 1.0 BASIC 0.4 BrighterScript
C# 0.9 LiveScript 0.4 CSV
Java 0.9 Visual Basic 6.0 0.4 Cadence
JavaScript 0.9 ASP 0.5 DTrace
Jupyter Notebook 0.9 Cython 0.5 Futhark
TypeScript 0.9 Markdown 0.5 Inno Setup
CSS 0.8 SAS 0.5 Lex
Go 0.8 Stata 0.5 Oxygene
HTML 0.8 TeX 0.5 Self
PHP 0.8 VBA 0.5 TOML
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Table 2. User-Month Github Activity Summary Statistics (Jan2021-Jun2022)

This table presents summary statistics of user-month GitHub activity before the official launch of
GitHub Copilot, i.e., from January 2021 to June 2022. Panel (a) summarizes main outcome variables
used in the regression analysis by seniority. Panel (b) summarizes main outcome variables and
developer characteristics by AI-exposure level. A developer is considered as senior if the tenure of the
developer on the GitHub platform, approximated based on the account’s create date, is above median.
High AI Exposure is a dummy that equals one if the developer’s AI exposure score is in the fourth
quartile. Gender is inferred based on developer name and LLM-based gender likelihood score. A
developer is considered to be male/female when the likelihood score is above 0.5. See Internet
Appendix A.2 for the methodology. Activities are grouped based on their related skill requirements.
See Section Internet Appendix A.1 for classification details. Repository ownership can be firm or
non-firm. The latter includes repositories owned by organization accounts (org) or individuals (ind).
Count variables are winsorized at 95% level.

(a) By Seniority

All Senior Junior

Mean Median SD Mean Median SD Mean Median SD

Coding events 32.93 5.00 82.88 36.30 6.00 86.35 27.51 4.00 76.66
General skill events 10.82 1.00 35.29 13.07 1.00 38.74 7.19 0.00 28.48
Mixed events 6.54 0.00 19.52 7.25 0.00 20.80 5.42 0.00 17.20
Has coding 0.69 1.00 0.46 0.71 1.00 0.45 0.66 1.00 0.47
Has general 0.50 1.00 0.50 0.55 1.00 0.50 0.43 0.00 0.50
Has mixed 0.35 0.00 0.48 0.38 0.00 0.48 0.31 0.00 0.46
AI exposure from push events 0.81 0.84 0.13 0.82 0.84 0.13 0.81 0.84 0.14
Active repositories (total) 4.20 2.00 7.95 4.92 2.00 8.89 3.03 1.00 5.96
Active repositories (coding events) 2.88 1.00 5.67 3.27 2.00 6.20 2.25 1.00 4.64
Active repositories (general events) 1.36 1.00 2.67 1.64 1.00 3.07 0.90 0.00 1.78
Active repositories (mixed events) 0.64 0.00 1.26 0.73 0.00 1.38 0.51 0.00 1.02
Active repositories (total) (firm) 1.76 1.00 3.23 1.87 1.00 3.39 1.59 1.00 2.95
Active repositories (total) (org) 0.84 0.00 2.85 1.11 0.00 3.33 0.42 0.00 1.76
Active repositories (total) (ind) 1.52 0.00 3.36 1.86 1.00 3.79 0.96 0.00 2.39

(b) By Generative AI Exposure

High AI Exposure Low AI Exposure

Mean Median SD Mean Median SD

Female (inferred) 0.13 0.00 0.34 0.13 0.00 0.34
Senior developers (GHAPI) 0.60 1.00 0.49 0.62 1.00 0.48
Coding events 24.81 3.00 72.47 35.37 6.00 85.61
General skill events 7.17 0.00 28.04 11.91 1.00 37.12
Mixed events 4.85 0.00 16.54 7.05 0.00 20.30
Has coding 0.64 1.00 0.48 0.71 1.00 0.45
Has general 0.44 0.00 0.50 0.52 1.00 0.50
Has mixed 0.28 0.00 0.45 0.37 0.00 0.48
Active repositories (total) (firm) 1.39 1.00 2.76 1.87 1.00 3.35
Active repositories (total) (org) 0.67 0.00 2.48 0.90 0.00 2.96
Active repositories (total) (ind) 1.29 0.00 3.11 1.59 0.00 3.42
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Table 3. Firm-Related Github Coding Activities After Copilot Launch

This table reports regression results of equation 1 and equation 2. In Columns (1)-(2), the outcome
variables are dummy variables that equal one if a developer has any public coding activity in
firm-owned repositories in a given month. In Columns (3)-(4), the outcome variables are logarithm
transformations of one plus the number of coding activities in firm-owned repositories in a given
quarter. Post is a dummy that equals one if the time period is after July 2022 (or the third quarter of
2022). AI Exposure or AI are dummy variables that equal one if the developer’s AI exposure score is
in the fourth quartile. Senior is a dummy that equals one if the developer’s tenure is above median.
Standard errors are clustered at developer level. Significance: *, p < 0.1; **, p < 0.05; ***, p < 0.01.

Has Coding Events Ln(1+Coding Events)

(1) (2) (3) (4)

Post×AI Exposure 0.0116∗∗ 0.0028 0.0574∗∗∗ -0.0018
(2.39) (0.35) (2.63) (-0.05)

Post×Senior -0.0157∗∗∗ -0.0713∗∗∗

(-3.37) (-3.31)

Post×AI×Senior 0.0139 0.0942∗∗

(1.39) (2.09)

Total Effect (Senior) 0.0167∗∗∗ 0.0924∗∗∗

(2.71) (3.35)

N 563,656 563,582 194,973 194,948
Adj. R2 0.4040 0.4040 0.6868 0.6868
Individual FE Y Y Y Y
Time FE Y Y Y Y
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Table 4. Quality Change After Copilot Launch

This table reports regression results of equation 1 and equation 2. In Panel (a), the outcome variables
are the ln(1 + x) transformations of the number of stars and issues opened that are associated with
developers’ work each month. In Panel (b), the outcome variables are the cumulative number of stars,
scaled by the number of pushes, and the cumulative number of issues opened, scaled by the number of
stars. Post is a dummy that equals one if the time period is after July 2022. AI Exposure or AI are
dummy variables that equal one if the developer’s AI exposure score is in the fourth quartile. Senior
is a dummy that equals one if the developer’s tenure is above median. The total effects for senior
developers (sum of the coeffcients of the post treatment indicator and the interaction term) are
reported underneath. Standard errors are clustered at developer level. Significance: *, p < 0.1; **, p
< 0.05; ***, p < 0.01.

(a) Log Number of Stars and Issues Opened

Ln(1+Stars) Ln(1+Issues Opened)

(1) (2) (3) (4)

Post×AI Exposure 0.0473∗∗∗ 0.0164 0.0211∗∗∗ -0.0080
(4.91) (1.14) (2.89) (-0.70)

Post×Senior -0.0477∗∗∗ -0.0351∗∗∗

(-5.24) (-4.59)

Post×AI×Senior 0.0488∗∗ 0.0461∗∗∗

(2.54) (3.11)

Total Effect (Senior) 0.0652∗∗∗ 0.0381∗∗∗

(5.08) (4.02)

N 563,877 563,803 563,877 563,803
Adj. R2 0.5883 0.5885 0.6215 0.6216
Individual FE Y Y Y Y
Year-Month FE Y Y Y Y

(b) Scaled Number of Stars and Issues Opened

Stars Per Push Issues Opened Per Star

(1) (2) (3) (4)

Post×AI Exposure 0.0141 0.0001 -0.0287∗∗∗ -0.0112
(1.46) (0.00) (-2.81) (-0.65)

Post×Senior -0.0167∗ 0.0244∗∗

(-1.74) (2.43)

Post×AI×Senior 0.0222 -0.0268
(1.07) (-1.26)

Total Effect (Senior) 0.0222∗ -0.0381∗∗∗

(1.92) (-2.98)

N 452,142 452,075 404,663 404,630
Adj. R2 0.9736 0.9736 0.9599 0.9599
Individual FE Y Y Y Y
Year-Month FE Y Y Y Y
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Table 5. Hours Spent on Core Activity of Firm-Owned Projects After Copilot Launch

This table reports regression results of equation 1 and equation 2. The outcome variables include the
cumulative ratio of core events occurring outside common hours, the cumulative ratio of core events
occurring on weekends, and the cumulative number of core events per hour. Core events are defined in
Section Internet Appendix A.1. Common hours are defined as hours during which a developer
completes events that constitute more than 5% of all events on a given weekday, based on 2020
activity records (with at least 100 events). Only activities related to firm-owned repositories are
considered. Post is a dummy that equals one if the time period is after July 2022. AI Exposure or
AI are dummy variables that equal one if the developer’s AI exposure score is in the fourth quartile.
Senior is a dummy that equals one if the developer’s tenure is above median. The total effects for
senior developers (sum of the coeffcients of the post treatment indicator and the interaction term) are
reported underneath. Standard errors are clustered at developer level. Significance: *, p < 0.1; **, p
< 0.05; ***, p < 0.01.

Outside Common Hours Weekends Events Per Hour

(1) (2) (3) (4) (5) (6)

Post×AI Exposure 0.0041 0.0003 0.0012 -0.0006 0.0109∗∗ -0.0015
(1.58) (0.08) (1.06) (-0.36) (2.02) (-0.17)

Post×Senior 0.0002 0.0001 -0.0307∗∗∗

(0.11) (0.07) (-5.54)

Post×AI×Senior 0.0059 0.0031 0.0190∗

(1.12) (1.30) (1.70)

Total Effect (Senior) 0.0062∗ 0.0024 0.0176∗∗

(1.91) (1.57) (2.55)

N 165,364 165,344 509,468 509,401 509,468 509,401
Adj. R2 0.8946 0.8946 0.8067 0.8067 0.9101 0.9101
Individual FE Y Y Y Y Y Y
Year-Month FE Y Y Y Y Y Y
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Table 6. Firm-Owned Open-Source Innovation Activity After Copilot Launch

This table reports regression results of equation 1 and equation 2. In Columns (1)-(2), the outcome
variables are a dummy that equals one if a developer initiated at least one new firm-owned repository
(project) in a given quarter. In Column (3)-(4), the outcome variables are number of newly initiated
projects of a developer in a given quarter. Post is a dummy that equals one if the time period is after
the third quarter of 2022. AI Exposure or AI are dummy variables that equal one if the developer’s
AI exposure score is in the fourth quartile. Senior is a dummy that equals one if the developer’s
tenure is above median. The total effects for senior developers (sum of the coeffcients of the post
treatment indicator and the interaction term) are reported underneath. Standard errors are clustered
at developer level. Significance: *, p < 0.1; **, p < 0.05; ***, p < 0.01.

Initiated Project # of Initiated Project

(1) (2) (3) (4)

Post×AI Exposure -0.0021 -0.0065∗∗∗ -0.0012 0.0002
(-1.42) (-2.66) (-0.39) (0.03)

Post×Senior -0.0010 0.0059
(-0.75) (1.29)

Post×AI×Senior 0.0071∗∗ -0.0021
(2.30) (-0.29)

Total Effect (Senior) 0.0006 -0.0019
(0.32) (-0.61)

N 194,973 194,948 194,973 194,948
Adj. R2 0.0594 0.0594 0.1430 0.1430
Individual FE Y Y Y Y
Year-Quarter FE Y Y Y Y
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Table 7. Value of Firm’s Open-Source Innovation After Copilot Launch

This table reports regression results of equation 4. In Panel (a), the outcome variables are the natural
logarithm of one plus the number of stars received as of February 2024. In Panel (b), the outcome
variables are the natural logarithm of repository value estimated based on stock-market reaction
within three days of the project’s public release. See Emery et al. (2024) for methodology details.
Post is a dummy that equals one if the time period is after July 2022. Innovator AI Expo or AI are
dummy variables that equals one if the AI exposure score of at least one member of the innovator
team is in the fourth quartile. Repo AI Expo is a dummy that equals one of the repository’s AI
exposure score, based on repository’s language composition, is in the fourth quartile. Senior is the
share of developers with tenure above median. Control variables include the natural logarithms of one
plus cumulative number of firm-owned repository, market capitalization, volatility, number of
employees, and one plus value of patent portfolio. I also control for return on assets, R&D
expenditure as a share of assets, whether R&D expenditure is missing, and innovator team size. All
firm-year control variables are one-year lagged and winsorized at 1% and 99% levels. See Table IA1
for variable descriptions and sources. Standard errors are clustered at firm level. Significance: *, p <
0.1; **, p < 0.05; ***, p < 0.01.

(a) Dependent Variable: Ln(1+Stars)

(1) (2) (3) (4)

Innovator AI Expo 0.0636 -0.0942 -0.3471
(0.24) (-0.29) (-0.79)

Post×Innovator AI Expo 0.4382∗∗ 0.5481∗∗ 0.7181
(2.21) (2.18) (1.09)

Repo AI Expo 0.4729 0.4968 0.3606
(1.41) (1.28) (1.12)

Post×Repo AI Expo 0.0357 -0.0028 0.0864
(0.16) (-0.01) (0.36)

Senior 0.4660∗∗

(2.36)
Post×Senior 0.0060

(0.03)
Innovator AI×Senior 0.5964

(1.37)
Post×AI×Senior -0.3603

(-0.39)
N 1,995 1,995 1,995 1,666
Adj. R2 0.2642 0.2767 0.2795 0.2901
Firm FE Y Y Y Y
Year-Month FE Y Y Y Y
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(b) Dependent Variable: Ln(Repo Value)

(1) (2) (3) (4)

Innovator AI Expo 0.0523∗∗ 0.0557 0.0304
(2.06) (1.40) (0.31)

Post×Innovator AI Expo 0.0796∗ 0.0747 0.3012∗∗

(1.68) (1.64) (2.30)
Repo AI Expo 0.0032 -0.0105 -0.0484

(0.06) (-0.17) (-0.94)
Post×Repo AI Expo 0.0251 0.0345 0.0679

(0.40) (0.50) (1.16)
Senior 0.0363

(0.44)
Post×Senior 0.0342

(0.31)
Innovator AI×Senior 0.0715

(0.46)
Post×AI×Senior -0.4256∗∗

(-2.27)
N 1,995 1,995 1,995 1,666
Adj. R2 0.8477 0.8473 0.8476 0.8437
Firm FE Y Y Y Y
Year-Month FE Y Y Y Y
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Table 8. Job Changes of Firm Developers on GitHub After Copilot Launch

This table reports regression results of equation 1 and 2 at the individual-year-quarter level. Panel (a)
examines the impact of generative AI on developers’ job changes. In Columns (1)-(2), the outcome
variable is a binary indicator equal to one if a developer starts a new job in a given quarter. In
Columns (3)-(4), the outcome variable is limited to new job positions outside previous employers.
Panel (b) explores heterogeneous effects on promotion and demotion among innovators (i.e., GitHub
project initiators) and non-innovators based on developer characteristics. In this panel, Columns
(1)-(2) focus on senior developers with above-median tenure on GitHub, while Columns (3)-(6)
present results for junior developers. Further, Columns (5) and (6) divide the junior subsample into
those with non-innovative previous employers (i.e., firms with below-median R&D expenditure as a
share of total assets) and those with innovative employers. The outcome variables are either
Promotion, which equals one if the new job position offers higher total compensation or higher
seniority, or Demotion if the new job position has lower total compensation or a lower seniority rank.
Post is a dummy that equals one if the time period is after 2022Q3. AI Exposure is a dummy
variable that equals one if the language’s AI exposure score is in the fourth quartile. Senior is a
dummy that equals one if the developer’s tenure is above median. Innovator is a dummy that equals
one if the developer has initiated at least one project prior to 2022Q3. Control variables include
seniority and the natural log of total compensation of the developer’s previous position. Standard
errors are clustered at the developer level. Significance: *, p < 0.1; **, p < 0.05; ***, p < 0.01.

(a) Job Change After Copilot Launch

Job Change Across-Firm Job Change

(1) (2) (3) (4)

Post×AI Exposure 0.0025 0.0121∗∗ 0.0064∗∗ 0.0122∗∗∗

(0.74) (2.16) (2.45) (2.79)

Post×Senior 0.0032 0.0055∗∗

(0.89) (2.02)

Post×AI×Senior -0.0153∗∗ -0.0091∗

(-2.24) (-1.72)

N 115,864 115,864 115,864 115,864
Adj. R2 0.1111 0.1112 0.1468 0.1468
Individual FE Y Y Y Y
Firm-Time FE Y Y Y Y
Controls Y Y Y Y

(b) Across-Firm Promotion and Demotion By Developer Characteristics

Senior Developers Junior Developers

From Firms All All Non-Innovative Innovative

Promotion Demotion Promotion Demotion Promotion Promotion

(1) (2) (3) (4) (5) (6)

Post×AI Exposure 0.0012 -0.0001 0.0026 0.0026 0.0027 0.0063
(0.57) (-0.03) (0.86) (1.07) (0.74) (1.31)

Post×Innovator 0.0009 -0.0007 -0.0025 -0.0041∗∗ -0.0039 0.0019
(0.38) (-0.39) (-0.79) (-2.14) (-1.28) (0.39)

Post×AI×Innovator -0.0090∗∗ -0.0001 0.0127∗ 0.0075 0.0132 0.0045
(-2.04) (-0.02) (1.71) (1.25) (1.20) (0.42)

N 73,283 73,283 40,288 40,288 19,778 18,737
Adj. R2 0.1225 0.0955 0.1300 0.1095 0.2520 0.1193
Individual FE Y Y Y Y Y Y
Firm-Time FE Y Y Y Y Y Y
Controls Y Y Y Y Y Y
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Table 9. Cumulative Abnormal Returns After Copilot Launch

This table reports event study results after Copilot launch. Panel (a) uses the sample of firms in the
information technology industry (with 3-digit SIC code as 737) that are active on the GitHub
platform before the event day (with cumulative number of pushes higher than 100). Panel (b) splits
the sample based on firms’ innovativeness. Specifically, firms with R&D expenditure as a share of
total assets higher than the median are classified as innovative firms. AI Exposure is calculated based
on languages used in firm-owned projects. Aligned is a dummy that equals to one if an innovative
firm has an average employees’ tenure in the first quartile or or if a non-innovative firm has an average
employees’ tenure in the fourth quartile. Control variables include the natural logarithms of market
capitalization and cumulative number of pushes, revenue growth, profitability, R&D expenditure as a
share of assets, and whether R&D expenditure is missing. All firm-year control variables are one-year
lagged and winsorized at 1% and 99% levels. See Table IA1 for variable descriptions and sources.
Robust standard errors are used. Significance: *, p < 0.1; **, p < 0.05; ***, p < 0.01.

(a) Information Technology Firms Active on GitHub

Day 0 AR 10-Day CAR 20-Day CAR 30-Day CAR

(1) (2) (3) (4)

AI Exposure 0.0064 -4.9531∗ -8.9922∗∗∗ -8.5442∗

(0.01) (-1.94) (-2.98) (-1.94)

Aligned 1.2194 -7.2286∗∗ -9.0036∗∗ -8.7373∗

(1.38) (-2.53) (-2.28) (-1.82)

AI Exposure×Aligned -2.6533∗ 11.3800∗∗ 16.3546∗∗ 16.2955∗∗

(-1.67) (2.27) (2.50) (1.97)

N 191 191 191 191
Adj. R2 0.0540 0.0646 0.1655 0.1522

(b) Non-Innovative vs. Innovative Tech Firms

Non-Innovative Firms Innovative Firms

10-Day CAR 20-Day CAR 30-Day CAR 10-Day CAR 20-Day CAR 30-Day CAR

(1) (2) (3) (4) (5) (6)

AI Exposure -5.8487 -9.4358∗∗ -8.2365 -4.3185 -8.4402 -8.1433
(-1.58) (-2.62) (-1.24) (-1.10) (-1.64) (-1.30)

Aligned -10.1184∗∗ -13.3066∗∗ -11.4851 -3.5804 -2.5088 -4.5615
(-2.09) (-2.22) (-1.64) (-1.03) (-0.47) (-0.58)

AI Exposure×Aligned 16.6087∗∗ 21.9545∗∗ 19.9154 5.3011 7.8709 9.9377
(2.06) (2.17) (1.58) (0.87) (0.94) (0.80)

N 96 96 96 95 95 95
Adj. R2 0.0869 0.1948 0.1596 0.0288 0.0613 0.0463
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Internet Appendix A

Internet Appendix A.1 Skill-Based GitHub Activity Classification

Internet Appendix A.1.1 Prompt Used With GPT-4 Model in April 2024

Suppose you are a programmer who is active on Github platform. Define what may be

job-specific core skills and what may be transferable general skills.

For the following Github events, classify them into three categories: job-specific core

skills, transferable general skills, mixture of core and general skills, and others. Each

event should be uniquely assigned to only one category that is the most relevant.

List of GitHub events: CommitCommentEvent, CreateEvent, DeleteEvent, ForkEvent,

GollumEvent, IssueCommentEvent, IssuesEvent, MemberEvent, PublicEvent, PullRe-

questEvent, PullRequestReviewEvent, PullRequestReviewCommentEvent, PullRequestRe-

viewThreadEvent, PushEvent, ReleaseEvent, SponsorshipEvent, WatchEvent

Internet Appendix A.1.2 Classification Details

Job-specific core skills

• PushEvent: Relates to pushing code to a repository, a basic GitHub operation.

• PullRequestEvent: Central to managing code contributions and integrations.

• PullRequestReviewEvent: Linked to the code review process within pull requests.

General skills

• IssueCommentEvent: Involves communication and discussion over issues.

• IssuesEvent: Engages problem-solving, managing bug reports, and feature requests

Mixture of core and general skills

• CommitCommentEvent: Tied to code reviews, requiring technical insights as well

as communication skills.
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• PullRequestReviewCommentEvent: Specific to commenting on code reviews in

pull requests, requiring technical understanding and collaborative feedback.

• PullRequestReviewThreadEvent: Involves discussions around specific parts of a

pull request, blending code-specific knowledge with teamwork and communication.

Nonskill related

• ForkEvent: Represents a user’s engagement with and branching off from an existing

repository to potentially contribute or alter separately.

• GollumEvent: Pertains to the management of Wiki pages on a GitHub repository.

• SponsorshipEvent: Linked to the GitHub Sponsors program, reflecting community

support and funding mechanisms.

• WatchEvent: Involves starring a repository, indicating interest or following up-

dates, more about user engagement than a direct skill.

Others

There are other related events I define as core/general in a broader sense. But they

are not used in the analysis.

• Broader core activities

– CreateEvent: Involves creating branches or tags, fundamental to version con-

trol.

– DeleteEvent: Involves deleting branches or tags, another version control as-

pect.

– ReleaseEvent: Pertains to the release of new software versions, important in

software lifecycle management.

• Broader general activities

– PublicEvent: While more of an administrative function, it also involves decision-

making and policy setting regarding project visibility. (Initiate project)
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– MemberEvent: Related to teamwork and the management of repository col-

laborators.

Internet Appendix A.2 Name-Based Gender Inference

Internet Appendix A.2.1 Parameters for GPT Model Interaction via Ope-

nAI’s API

• model: gpt-3.5-turbo

• temperature: 0

• system text: Process a list of names, extracting identifiable components and

infer demographic information. Return the findings in JSON format with fields

for original str, first name, last name, company, type (with an inf type among

“user”, “organization” and “bot”, and score), gender (with an inf gender either

”female” or ”male”, and score), race (with an inf race and score), ethnicity (with

an inf ethnicity and score), and country of origin (with an inf origin and score).

Put ’NA’ for string subfields with no findings, and 0 for scores with no findings.

Scores are for the confidence level of the inference and range from 0 to 1 rounded

to two decimals. Score closer to 1 means the inference is certain while score closer

to 0 means the inference is uncertain. The output is with ’results’ as the key.

• user text: [’name1’, ’name2’, ’name3’,...]
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Internet Appendix A.2.2 Example: Name-Based Inference Response

The JSON response example for a person named Bob Chen is:

{
” r e s u l t s ” : [

{
” o r i g i n a l s t r ” : ”Bob Chen” ,

” f i r s t name ” : ”Bob” ,

” last name ” : ”Chen” ,

”company ” : ”NA” ,

” type ” : {
” i n f t y p e ” : ” user ” ,

” s co r e ” : 0 .95

} ,
” gender ” : {

” i n f g end e r ” : ”male ” ,

” s co r e ” : 0 .85

} ,
” race ” : {

” i n f r a c e ” : ”Asian ” ,

” s co r e ” : 0 .80

} ,
” e t hn i c i t y ” : {

” i n f e t h n i c i t y ” : ”NA” ,

” s co r e ” : 0

} ,
” c o un t r y o f o r i g i n ” : {

” i n f o r i g i n ” : ”United Sta t e s ” ,

” s co r e ” : 0 .75

}
}

]

}
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Internet Appendix A.3 Prompt for Language AI Exposure Score With GPT-

4 in April 2024

For the following programming languages, assign a score between 0 and 1 for its expo-

sure to LLMs such as Github Copilot. Exposure is defined as to what extent are the

Generative AI tools helpful for programmers using these languages to complete their

daily tasks. If it is not a programming language, return ’NA’ for the score. Return your

result in JSON format (language:score).

Language list: [’language1’, ’language2’, . . .]
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Figure IA1. Quality Change After Copilot Launch

This figure plots coefficients of the event study specification described in equation 3 with 95%
confidence intervals. The outcome variables are: the ln(1 + x) transformations of the number of stars
and issues opened that are associated with developers’ work each month; the cumulative number of
stars, scaled by the number of pushes, and the cumulative number of issues opened, scaled by the
number of stars. Standard errors are clustered at developer level.
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Table IA1. Variable Definitions

Variable Description Source

10/20/30-day Cu-
mulative Abnormal
Return

Cumulative abnormal return over 10/20/30 days CRSP

AI Exposure Dummy that equals one if the AI exposure score of the
developer (0-1) is in the fourth quartile

GPT-4 and au-
thor’s calculation

AI Exposure Score The AI exposure score of a programming language GPT-4
Abnormal Return The difference between the actual return and the expected

return, as estimated by the Fama-French 3-factor model
using the Nasdaq 100 index for market return

CRSP

Across-Firm Demo-
tion

Dummy that equals one if a developer is demoted, either
by compensation or by seniority, across firms in a given
quarter

Revelio

Across-Firm Job
Change

Dummy that equals one if a developer changes jobs across
firms in a given quarter

Revelio

Across-Firm Pro-
motion

Dummy that equals one if a developer is promoted, either
by compensation or by seniority, across firms in a given
quarter

Revelio

Aligned Dummy that equals to one if an innovative rm has an
average employees’ tenure in the rst quartile or or if a
non-innovative rm has an average employees’ tenure in the
fourth quartile

Compustat

Core Event Number of core-skill related events in a given month/quar-
ter

GHArchive

Cumulative Nrepo Cumulative number of repositories released by a firm prior
to month t

GHArchive

Employees Number of employees in the firm Compustat
Exit Dummy that equals one if a developer becomes inactive in

all firm-owned projects and subsequently exits the sample
GHArchive

Female Dummy that equals one if the developer is inferred as female GitHub API, GPT-
3.5

Firm AI Exposure Dummy that equals one if the AI exposure score of the firm
is in the fourth quartile

GPT-4 and au-
thor’s calculation

General Event Number of general-skill related events in a given mon-
th/quarter

GHArchive

Has Core Event Dummy that equals one if a developer has at least one core-
skill related event in a given month

GHArchive

Has General Event Dummy that equals one if a developer has at least one
general-skill related event in a given month

GHArchive

Has Mixed Event Dummy that equals one if a developer has at least one
mixed-skill related event in a given month

GHArchive

Initiated Project Indicator if a developer is among the innovator team of a
new project in a given quarter

GHArchive

Initiator N Number of developers in the innovator team of a new
project

GHArchive

Innovative Firm Dummy that equals one if the firm’s R&D expenditure as
a share of total assets is higher than the median

Compustat
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Continued

Variable Description Source

Innovator Dummy that equals one if the developer has initiated at
least one project prior to 2022Q3

GHArchive

Innovator AI Expo-
sure

Dummy that equals to one if the AI exposure score of at
least one member of the innovator team is in the fourth
quartile

GPT-4 and au-
thor’s calculation

Issues Opened Number of issues opened that are associated with a devel-
oper’s work in a given month

GHArchive

Issues Opened Per
Star

Cumulative number of issues opened divided by the cumu-
lative number of stars received

GHArchive

Job Change Dummy that equals one if a developer changes jobs in a
given quarter

Revelio

Language Share The share of a given programming language used by a de-
veloper before July 2022

GHArchive,
GitHub API

Main Language The main programming language used by a develope before
July 2022

GHArchive,
GitHub API

Market Capitaliza-
tion

Share price times the number of shares outstanding CRSP

Mixed Event Number of mixed-skill related events in a given mon-
th/quarter

GHArchive

Novelty A LLM-based novelty score of the repository between 0 and
1 inferred from repository information. The score measures
how novel or groundbreaking a repository is compared to
existing solutions, focusing on whether it introduces new
ideas, techniques, or approaches

GPT-4o

Number of Cumula-
tive Pushes

Cumulative number of pushes by a firm before July 2022 GHArchive

Number of Initiated
Projects

Number of projects initiated by a developer in a given quar-
ter

GHArchive

Patent Portfolio
Value

The total estimated economic value of the patents owned
by the firm using stock market returns around the patent
grant date

Kogan et al. (2017)

Post Dummy that equals one if the time period is or after July
2022 or the third quarter of 2022

Profitability Pre-tax income divided by total assets Compustat
R&D Expenditure
as a Share of Assets

R&D expenses divided by lagged total assets Compustat

R&D Missing Dummy that equals one if R&D expense is missing Compustat
Repo AI Exposure Dummy that equals one if the AI exposure score of the

repository (0-1) is in the fourth quartile
GPT-4 and au-
thor’s calculation

Repo Value The estimated private value of the repository in 2023 USD
estimated by using stock market returns around the release
date of the repository

Author’s calcu-
lation based on
Emery et al. (2024)

Repos With Core
Event

Number of repositories with core-skill related events in a
given month

GHArchive

Repos With Gen-
eral Event

Number of repositories with general-skill related events in
a given month

GHArchive

Repos With Mixed
Event

Number of repositories with mixed-skill related events in a
given month

GHArchive
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Continued

Variable Description Source

Return on Assets Net income divided by lagged total assets Compustat
Revenue Growth The growth rate of revenue Compustat
Senior Dummy that equals one if the developer’s tenure is in the

fourth quartile
GitHub API

Seniority Seniority rank of the job position assigned by Revelio (1-7) Revelio
Stars Number of stars received by a repository as of Feburary

2024
GitHub API

Stars Per Push Cumulative number of stars received by a repository di-
vided by the cumulative number of pushes

GHArchive

Total Compensa-
tion

Total yearly compensation in USD of a job position pre-
dicted by Revelio

Revelio

Volatility Standard deviation of daily returns over one month CRSP
Work Completed
During Weekends

Cumulative ratio of core events occurring during weekends

(
cumulative number of core events during weekendsi,t

cumulative total number of core eventsi,t
)

GHArchive

Work Completed
Outside Common
Hours

Cumulative ratio of core events occurring outside common
hours (

cumulative number of core events outside common hoursi,t
cumulative total number of core eventsi,t

)
GHArchive

Work Completed
Per Hour

Cumulative number of core events per hour
(
cumulative total number of core eventsi,t

cumulative total number of hoursi,t
)

GHArchive

Table IA2. Summary Statistics of GitHub Firms by GenAI Exposure (Jan2021-Jun2022)

This table reports summary statistics of GitHub firms’ characteristics before GitHub Copilot’s official
launch, from January 2021 to June 2022. The analysis includes only firms with more than 10
developer-months during this period. High AI Exposure is a dummy variable that equals one if the
average AI exposure score of developers affiliated with a given firm falls in the fourth quartile. A
developer has high AI exposure if their AI exposure score ranks in the fourth quartile among all
developers. Senior developers are individuals whose GitHub platform tenure is above the median. See
Table IA1 for variable descriptions.

High AI Exposure Low AI Exposure

Mean Median SD N Mean Median SD N

Number of developer-months 100.58 36.00 209.96 168 691.60 79.00 3,771.73 504
AI exposure score 0.91 0.90 0.04 168 0.77 0.80 0.09 504
Developer with high AI exposure 0.62 0.66 0.36 168 0.14 0.07 0.18 504
Senior developer 0.63 0.70 0.36 168 0.61 0.65 0.30 504
Market capitalization 24985.43 5137.73 57,771.04 136 61955.95 6559.70 222426.87 393
Percentage revenue growth 19.86 16.86 20.27 137 18.58 17.87 21.05 410
Profitability -2.42 0.91 18.44 144 -2.22 1.17 23.24 434
Foreign revenue share 0.41 0.37 0.32 124 0.45 0.43 0.31 379
Leverage 0.25 0.21 0.21 144 0.26 0.23 0.22 432
Interest expense / total assets 0.01 0.01 0.01 138 0.01 0.01 0.01 419
R&D / total assets 0.06 0.04 0.08 147 0.07 0.06 0.09 442
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Table IA3. Exit Probability After Copilot Launch

This table reports regression results of equation 1 and equation 2. The outcome variable is a dummy
that equals one if a developer becomes inactive in all firm-owned projects and subsequently exits the
sample. Columns (1)-(2) report results for the full sample, while Columns (3)-(4) restrict the sample
to innovators only. Innovators are defined as developers who contribute to firm-owned projects within
two weeks of their creation. Post is a dummy that equals one if the time period is after July 2022.
AI Exposure or AI are dummy variables that equal one if the developer’s AI exposure score is in the
fourth quartile. Senior is a dummy that equals one if the developer’s tenure is above median. The
total effects for senior developers (sum of the coefficients of the post treatment indicator and the
interaction term) are reported underneath. Standard errors are clustered at developer level.
Significance: *, p < 0.1; **, p < 0.05; ***, p < 0.01.

All Innovators

(1) (2) (3) (4)

Post×AI Exposure 0.0167∗∗∗ 0.0124∗∗ 0.0263∗∗∗ 0.0374∗∗∗

(4.60) (2.08) (3.03) (2.61)

Post×Senior -0.0115∗∗∗ -0.0076
(-3.32) (-0.94)

Post×AI×Senior 0.0067 -0.0198
(0.89) (-1.10)

Total Effect (Senior) 0.0191∗∗∗ 0.0176
(4.17) (1.63)

N 194,973 194,948 19,917 19,917
Adj. R2 0.3768 0.3769 0.5399 0.5400
Individual FE Y Y Y Y
Year-Quarter FE Y Y Y Y
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Table IA4. Coding Activity And Pre-Treatment Language Share Exposure

This table reports regression results of equation 2 at the individual-language level. The outcome
variable is the ln(1 + x) transformations of the number of pushes that are associated with developers’
work in a given language each quarter. Columns (1) and (3) represent results for the main language a
developer uses, while columns (2) and (4) include all other languages a developer uses prior to GenAI.
Post is a dummy that equals one if the time period is after July 2022. AI Exposure is a dummy
variable that equals one if the language’s AI exposure score is in the fourth quartile. AI Score is the
raw AI exposure score of a language. Share is the pre-treatment share of a language used within a
developer. Main effects and other cross-interactions are included. Standard errors are clustered at
developer level. Significance: *, p < 0.1; **, p < 0.05; ***, p < 0.01.

Main Language Other Languages Main Language Other Languages

(1) (2) (3) (4)

Post×AI Exposure 0.0066 0.0136∗∗∗

(0.24) (5.50)

Post×AI Exposure×Share -0.0137 0.0448
(-0.39) (1.20)

Post×AI Score -0.0882 0.0295∗∗∗

(-0.84) (4.60)

Post×AI Score×Share 0.1442 0.3011∗∗

(1.06) (2.33)

N 211,402 1,343,431 211,402 1,343,431
Adj. R2 0.4648 0.4493 0.4648 0.4495
Language FE Y Y Y Y
Individual-Year-Quarter FE N Y N Y
Individual FE Y N Y N
Year-Quarter FE Y N Y N

60



Table IA5. Coding Activity After Copilot Launch at the Individual-Language Level

This table reports regression results of equation 1 and equation 2 at the individual-language level. In
Columns (1)-(4), the outcome variable is a dummy that equals one if a developer contributes code in a
given language in a given quarter. In Columns (5)-(8), the outcome variable is the ln(1 + x)
transformations of the number of coding events that are associated with developers’ work in a given
language each quarter. Columns (3) and (7) restrict the sample to languages a developer worked with
prior to GenAI introduction, while Columns (4) and (8) include only languages new to the developer.
For computational efficiency, the analysis includes only languages with over 10,000 coding events
across the sample period. These 42 languages represent 98.8% of total coding activities. Post is a
dummy that equals one if the time period is after July 2022. AI Score is the raw AI exposure score of
a language. Standard errors are clustered at the developer level. Significance: *, p < 0.1; **, p < 0.05;
***, p < 0.01.

Has Coding Events Ln(1 + Coding Events)

Language Type All All Familiar New All All Familiar New
(1) (2) (3) (4) (5) (6) (7) (8)

Post×AI Score 0.0555∗∗∗ 0.0462∗∗∗ 0.0030 0.0510∗∗∗ 0.0439∗∗∗ 0.0374∗∗∗ -0.0272∗∗ 0.0318∗∗∗

(25.29) (13.52) (0.44) (28.58) (22.15) (11.93) (-2.38) (24.50)

Post×AI×Senior 0.0158∗∗∗ 0.0284∗∗∗ 0.0050∗∗ 0.0113∗∗∗ 0.0233 0.0019
(3.55) (3.19) (2.07) (2.79) (1.64) (1.12)

N 9,745,218 9,731,274 1,560,209 8,154,030 9,745,218 9,731,274 1,560,209 8,154,030
Adj. R2 0.2793 0.2793 0.6303 0.1431 0.1199 0.1199 0.2924 0.0428
Language FE Y Y Y Y Y Y Y Y
Individual-Year-Quarter FE Y Y Y Y Y Y Y Y

61



Table IA6. Coding Activity by Pre-Treatment Project Team Size and Popularity

This table reports regression results of equation equation 2. Outcome variables in Columns (1)-(4) are
monthly indicators for any public coding activity in firm-owned repositories by project type. Columns
(5)-(8) use the log of one plus quarterly coding activities by project type. Team projects have on
average at least two contributors monthly from January 2021 to June 2022; Solo projects average
fewer. High Popularity projects have cumulative stars above the 90th percentile during January 2021
to June 2022. Post is a dummy that equals one if the time period is after July 2022 (or the third
quarter of 2022). AI Exposure or AI are dummy variables that equal one if the developer’s AI
exposure score is in the fourth quartile. Senior is a dummy that equals one if the developer’s tenure is
above median. The total effects for senior developers (sum of the coefficients of the post treatment
indicator and the interaction term) are reported underneath. Standard errors are clustered at
developer level. Significance: *, p < 0.1; **, p < 0.05; ***, p < 0.01.

Has Coding Events Ln(1+Coding Events)

Project Type Team Size Popularity Team Size Popularity

Solo Team Low High Solo Team Low High
(1) (2) (3) (4) (5) (6) (7) (8)

Post×AI Exposure -0.0096 -0.0067 0.0044 -0.0064 -0.0553∗∗ -0.0069 0.0040 -0.0170
(-1.47) (-0.91) (0.57) (-0.91) (-2.33) (-0.21) (0.13) (-0.55)

Post×Senior -0.0167∗∗∗ -0.0138∗∗∗ -0.0081∗ -0.0173∗∗∗ -0.0609∗∗∗ -0.0611∗∗∗ -0.0407∗∗ -0.0696∗∗∗

(-4.20) (-3.15) (-1.73) (-4.10) (-4.22) (-3.00) (-2.17) (-3.63)

Post×AI×Senior 0.0043 0.0157∗ 0.0021 0.0205∗∗ 0.0443 0.0648 0.0364 0.1002∗∗

(0.52) (1.71) (0.21) (2.27) (1.47) (1.57) (0.93) (2.53)

Total Effect (Senior) -0.0053 0.0090 0.0065 0.0141∗∗ -0.0111 0.0578∗∗ 0.0404∗ 0.0833∗∗∗

(-1.04) (1.62) (1.12) (2.50) (-0.60) (2.33) (1.74) (3.37)

N 563,582 563,582 563,582 563,582 194,948 194,948 194,948 194,948
Adj. R2 0.3714 0.6025 0.4454 0.6097 0.5695 0.7865 0.6454 0.7963
Individual FE Y Y Y Y Y Y Y Y
Time FE Y Y Y Y Y Y Y Y
Time Frequency Monthly Monthly Monthly Monthly Quarterly Quarterly Quarterly Quarterly
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Table IA7. Summary Statistics of Job Changes of Firm Developers on GitHub

This table presents summary statistics on employee mobility at the individual-year-quarter level from
January 2021 to December 2023. Panel (a) summarizes job changes and position characteristics of
firms’ developers active on GitHub. Panel (b) compares developers based on whether their tenure is
above or below the median and whether they initiated a GitHub project owned by their employers
before the official launch of GitHub Copilot. Promotion is a binary variable equal to one if the new
job position offers higher compensation or a higher seniority rank.

(a) Full Sample at the Individual-Quarter Level

Mean SD Min P25 Median P75 Max Obs

Job Change 0.07 0.25 0.00 0.00 0.00 0.00 1.00 151,568
Across-Firm Job Change 0.04 0.18 0.00 0.00 0.00 0.00 1.00 151,568
Across-Firm Promotion 0.01 0.09 0.00 0.00 0.00 0.00 1.00 151,568
Senior GitHub Developer 0.65 0.48 0.00 0.00 1.00 1.00 1.00 151,568
GitHub Project Initiator 0.17 0.37 0.00 0.00 0.00 0.00 1.00 151,568
Job Position Seniority 3.12 1.25 1.00 2.00 3.00 4.00 7.00 118,095
Total Compensation USD (000) 183.41 100.42 5.71 110.49 175.24 242.55 1,705.44 118,095

(b) By Developer Characteristics

Senior Developer Project Initiator

Yes No Yes No

Mean SD Mean SD Mean SD Mean SD

Job Change 0.06 0.24 0.08 0.27 0.07 0.25 0.07 0.26
Across-Firm Job Change 0.03 0.18 0.04 0.19 0.03 0.18 0.04 0.18
Across-Firm Promotion 0.01 0.09 0.01 0.10 0.01 0.09 0.01 0.09
Job Position Seniority 3.16 1.26 3.04 1.22 3.30 1.32 3.08 1.23
Total Compensation USD (000) 192.87 103.90 166.71 91.59 191.45 107.90 181.79 98.76
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Internet Appendix B Economic Model on Programming Lan-

guage Skills And Productivity Gain from

AI Exposure

This appendix section provides a simple economic model that explains the intuition behind the relation
between programming language-based AI exposure and productivity gain of programmers.

In the absence of GenAI coding tool, a programmer uses two programming languages l and l2, with
human labor costs ch and c2. Assume the programmer has a Cobb-Douglas utility function and she
faces the following optimization problem:

max
l,l2

u(l, l2) = lρl2
(1−ρ)

s.t. chl + c2l2 ≤ w
(5)

The Marshall demand functions of the programmer before AI introduction are:

l0 =
ρw

ch

l02 =
(1− ρ)w

c2

(6)

The GenAI coding tool only supports language l with a cost of cAI which is assumed to be lower
than human coding (cAI < ch). If the programmer uses the GenAI tool, her utility function becomes:

u(lAI , l, l2) = [(a
1
σ

AI l
σ−1
σ

AI + a
1
σ

h l
σ−1
σ

h )
σ

σ−1 ]ρl1−ρ
2

Where the nested utility function associated with language l is a CES function. Thus, her opti-
mization problem becomes:

max
lAI ,lh,l2

u(lAI , lh, l2) = [(a
1
σ

AI l
σ−1
σ

AI + a
1
σ

h l
σ−1
σ

h )
σ

σ−1 ]ρl1−ρ
2

s.t. lAI + chlh + c2l2 ≤ w

(7)

Without losing generalizability the cost of AI is normalized to 1 (cAI = 1).

Solve the optimization problem and we have:

lAI + chlh = ρw

c2l2 = (1− ρ)w

lAI

lh
=

aAI

ah
cσh
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The Marshall demand functions are then:

l2 =
(1− ρ)w

c2

lAI =
ρw

ah

aAI
c1−σ
h + 1

lh =
ρwc−σ

h

c1−σ
h + aAI

ah

The total observed activities related to language l is:

l = lAI + lh = ρw
󰁨a+ c−σ

h

c1−σ
h + 󰁨a

Where 󰁨a = aAI

ah
.

Next, we compare the activities in language l before and after the introduction of GenAI. The
activity in l2 is unaffected and therefore the change is zero (∆l2 = 0). For language l, the change is
written as:

∆l = lAI + lh − l0 = ρw
󰁨a[cσh − cσ−1

h ]

󰁨acσh + ch

Since we assume ch > cAI = 1, ∆l > 0. However, it is not immediately clear whether such increase
is more for programmers with lower ch or not. To see this, take the partial derivative of ∆l:

∂∆l

∂ch
=

ρw󰁨acσ−1
h

(󰁨acσh + ch)2
[(σ − 1)ch + 󰁨acσ−1

h + 2− σ]

Let f(ch) = (σ−1)ch+󰁨acσ−1
h +2−σ, ch > 1. When σ = 1, f(ch) = 󰁨a+1 > 0. Similarly, f(ch) > 0

when σ > 1. In both cases, ∆l increases as ch increases. Intuitively, when AI coding and human coding
are substitutes, programmers with relatively higher cost in language l (ch) benefit more from GenAI
than programmers with lower cost.

However, when AI coding and human coding are complements (0 < σ < 1), the relationship depends
on the model’s parameters. Because f(1) = 󰁨a+ 1 > 0, f(∞) < 0 and f ′(ch) = (σ − 1)(1 + 󰁨acσ−2

h ) < 0,
there exists a unique root of f(ch) in its domain. Let c∗h denotes the root such that f(c∗h) = 0.

We have,
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󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰀽

∂∆l

∂ch
> 0, ch < c∗h

∂∆l

∂ch
= 0, ch = c∗h

∂∆l

∂ch
< 0, ch > c∗h

That is, when the human coding cost ch is relatively low, programmers with lower ability (higher
ch) benefit more from GenAI tool. However, when the programmer has a relatively high human coding
cost for language l such that ch > c∗h, programmers with lower ability benefit less.

The next question is to decide how the model’s parameters affect c∗h. From the Implicit Function
Theorem,

∂c∗h
∂σ

= −ch + 󰁨aln(ch)cσ−1
h − 1

(σ − 1)(1 + 󰁨acσ−2
h )

> 0

∂c∗h
∂󰁨a = − cσ−1

h

(σ − 1)(1 + 󰁨acσ−2
h )

> 0

Therefore, the higher the complementarity between AI and human coding (smaller σ), and the
lower the weight is assigned to AI coding relative to human coding (smaller 󰁨a), the smaller the c∗h. In
these cases, it’s likely that for most programmers who are unfamiliar with language l (thus with higher
ch) do not benefit as much as those who are skilled at language l before the introduction of GenAI.

The reality seems to be close to the scenario where 0 < σ < 1 and ch > c∗h. Autocompletion tools
like GitHub Copilot are largely complementary. These tools generate codes line by line as programmers
code themselves instead of “Autostart” or generating a whole script from scratch. Moreover, several
large technology firms disclose the share of their AI-generated codes with an average about 25%. Thus,
the weight assigned to AI relative to human coding does not seem to be large either. These indicate that
c∗h could be relatively low. Therefore, under these assumptions, the model predicts that programmers
more skilled in the languages exposed to GenAI, on average, arguably benefit more from GenAI tools
than their peers, and it is particularly true for non-primary languages, where ch is more likely to be
higher than c∗h.
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