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Abstract

This paper examines the causal effect of venture capital (VC) on scientists’ selec-
tion into entrepreneurship, using the 1979 clarification of the prudent-man rule
under the Employee Retirement Income Security Act (ERISA) as a natural exper-
iment. By relaxing pension fund allocation restrictions, the reform substantially
expanded the pool of capital available to VC firms. I construct a novel historical
dataset of US scientists in the 1960s, and track their business formation activities.
I exploit the exogenous cross-sectional variation in how scientists’ work specialties
rely on tangible versus intangible assets. I show that the business formation rate
of scientists doubled post ERISA, and the effects are stronger for those with in-
tangible specialties, as they lacked bank funding due to insufficient collateral but
are more attractive to VC. These scientists were not marginal entrants but produc-
tive inventors filing patents. I identify three potential mechanisms: (i) alleviating
financial constraints, (ii) improving appropriability, and (iii) fostering localized
entrepreneurial communities.
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1 Introduction

Venture capital (VC) has long been recognized as a driver of innovation and busi-
ness formation (Nanda and Rhodes-Kropf, 2017; Howell, 2017). Macro-level evidence
suggests that regions receiving greater VC inflows exhibit stronger economic growth
(Samila and Sorenson, 2011). Highly skilled individuals forming technology entrepreneur-
ship is especially important (Akcigit and Kerr, 2018; Christensen, 2011). Despite this
recognized importance, identifying the causal impact of VC on the entrepreneurial de-
cisions of these individuals remains a challenge.

The 1979 revision of the prudent-man standard under the Employee Retirement In-
come Security Act (ERISA) offers a setting to tackle this challenge. This ERISA reform
by the Department of Labor relaxed pension fund allocation restrictions and substan-
tially increased the pool of capital available to VC firms (Kortum and Lerner, 2000;
Gompers, 1994). Prior to this reform, VC firms had difficulty raising funds because the
“prudent-man rule,” as one of the fiduciary rules of ERISA, restricted pension fund in-
vestments in higher-risk assets such as small firm equity. Existing research leveraging
this policy change has yet to provide identification of VC’s causal effects.

Another challenge is how to examine the selection into entrepreneurship decisions
at the individual level. Usually, only those who start a business are observed. More-
over, because of the importance of technology entrepreneurship, we especially care
about the behavior of high-skilled individuals, i.e., scientists. However, the decisions
of scientists at the individual level are largely unexamined due to the lack of system-
atic data. Constructing a comprehensive dataset on these potential entrepreneurs is
empirically demanding.

This paper addresses these gaps by causally estimating the impact of VC on scien-
tists’ selection into entrepreneurship, My empirical designs include two parts. First,
I construct a novel panel of US scientists active in the 1960s by compiling a snapshot
of their education backgrounds and work experiences, which I then link to business
registration data to observe subsequent selection into entrepreneurship. Second, I ex-
ploit exogenous cross-sectional variation in scientists’ work specialties by classifying

1



the specialties according to reliance on tangible assets. VC seeks scalability and out-
sized returns, usually more common in less capital-intensive businesses. Therefore,
scientists with intangible work specialties are more likely to be affected by the expan-
sion of VC. More importantly, these individuals did not select their specialties in an-
ticipation of future VC inflows, as the US VC market was negligible in the 1960s, and
bank financing was generally more accessible for scientists with tangible specialties.

The main finding is that, following the ERISA reform, scientists becamemore likely
to start businesses. Business formation by scientists more than doubled after the re-
form. Scientists with intangible specialties are 0.05% more responsive to the ERISA
shock than those with tangible specialties. The effects are primarily driven by scien-
tists working in the private sector and those who have filed a patent, with the effect size
increasing to 1.17%. Given that the total business formation rate for all scientists is only
3.15%, the effect is non-negligible. I show that the main finding of a significant impact
of VC on scientists’ selection into entrepreneurship remains robust even when I (i) ex-
clude computer science–related scientists, as they are strongly associated with Silicon
Valley phenomenon, (ii) employ alternative tangibility-measure cutoff thresholds, or
(iii) use continuous tangibility measures.

I further analyze three potentialmechanisms behind themain effect. The firstmech-
anism centers on financial constraints. Using intrastate branching deregulation as a
negative credit shock to young firms (Chava, Oettl, Subramanian, and Subramanian,
2013; Hombert and Matray, 2017), I show that scientists engaged in tangible fields are
more sensitive to disruptions in bank lending. However, those specializing in intangi-
ble areas typically do not rely on bank financing, so they are not affected by the dereg-
ulation. Instead, an expansion in VC availability alleviates the financial constraints of
the scientists with intangible specialties that might otherwise not start a business. This
suggests that VC serves as an important complement to conventional bank financing,
which tends to favor more tangible and collateralizable projects.

The second mechanism involves appropriability. I show that scientists who have
filed at least one patent and who are working in the private sectors are more respon-

2



sive to the ERISA shock, i.e., spin out to commercialize their own research. This is
because scientists working within private sectors may not fully capture the returns to
their innovations, particularly when patents are assigned to the employer (Babina and
Howell, 2024). VC, structured as an equity investor, does not encumber scientists’ in-
tellectual property.

The third mechanism is around entrepreneurial community building. VC tends
to flow into regions with a history of government investment, creating localized en-
trepreneurial ecosystems. The results indicate that scientists residing in these counties
are especially responsive to an influx of VC capital, as prior public funding has laid the
groundwork for knowledge spillovers and network connections conducive to business
formation (Nanda and Sørensen, 2010).

Overall, these findings show that VC significantly enhances the rate of business for-
mation among scientists, particularly those with intangible working specialties. Far
from being marginal entrants, these scientists often hold patents and are seen as pro-
ductive inventors.

This paper contributes to three streams of literature. First, my results provide in-
sight for the literature on financial intermediation and small business financing. Al-
though prior research shows that small andmedium-sized enterprises (SMEs) primar-
ily rely on debt (Robb and Robinson, 2014) and home equity (Corradin and Popov,
2015; Kerr, Kerr, and Nanda, 2022), it also demonstrates that bank credit availability
significantly influences the innovation activities of young firms (Chava et al., 2013;
Hombert and Matray, 2017). Nevertheless, the evidence presented here indicates that
banks fail to serve technology startups relying on intangible assets, leaving a funding
gap that VC can bridge.

Second, this paper speaks to the venture capital and technology entrepreneurship
literature, which highlights the role of VC-backed firms in driving IPOs (Lerner and
Nanda, 2020) and underscores the importance of monitoring, staged financing, and
value-added services (Bernstein, Giroud, and Townsend, 2016; Gompers, 1995). How-
ever, the mechanisms through which VC incentivizes high-skilled individuals to start
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a business are not yet fully understood. The paper shows three mechanisms: finan-
cial constraints, appropriability, and entrepreneurial community. Moreover, I show
that once VC supply expands, the individuals that select into entrepreneurship are not
marginal entrants but are productive inventors.

Finally, the findings link literature between financial intermediation and govern-
ment expenditure, traditionally centered on bank lending and fiscal multipliers (Gold-
man, Iyer, and Nanda, 2022). While earlier studies emphasize public R&D crowds
in private investments in the mid-term (Antolin-Diaz and Surico, 2022) and gener-
ates spillovers to large-firm R&D (Azoulay, Graff Zivin, Li, and Sampat, 2019; Moretti,
Steinwender, andVanReenen, 2023), recent research suggests that government-funded
R&Dcan catalyze private capital investment byde-risking nascent technologies (Rezaei
and Yao, 2024). This paper offers new evidence on how financial intermediaries com-
plement public R&D by supporting scientists’ business formation. Specifically, VC in-
vestment selectively targets government-invested industries and locations. Public R&D
expenditures both mitigate technological risks and promote human capital formation
through on-the-job training, thereby attracting VC participation. In turn, this VC in-
flow releases the entrepreneurial potential accumulated under government-funded re-
search.

The rest of this paper is organized as follows. Section 2 provides an overview of
the historical context of financial intermediaries for small business financing. Section 3
describes the data sources and presents descriptive statistics on the scientists included
in the analysis. Section 4 examines the reduced-form relationship between VC sup-
ply and business formation, distinguishing by the tangibility of scientists’ specialties.
Section 5 explores three mechanisms. Finally, Section 6 concludes.
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2 Historical Context

2.1 Emergence of Risk Capital Intermediation

The financing landscape for technology entrepreneurship remained largely informal
until the advent of venture capital in 1959, marked by the establishment of Draper,
Gaither &Anderson (DGA), the first Silicon Valley venture capital firm structured as a
limited partnership. DGA’s investment strategy laid the groundwork for private capital
investment, emphasizing four key criteria: "(1) companies offering unique products
or services, (2) substantially developed offerings with predictable commercialization
timelines and costs, (3) a clearly identifiablemarket, and (4) the presence of or access to
qualifiedmanagement." Similarly, Greylock’s 1965 offeringmemorandumunderscored
a preference for speculative startups characterized by innovative products, processes,
or technologies (Nicholas, 2019).

However, raising capital for new ventures posed significant challenges because of
the limited investment avenues available for entrepreneurs. Traditional sources of fund-
ing, such as SBICs, were off-limits to those unwilling to accept government loans, which
many perceived as restrictive to growth-oriented firms. Additionally, institutional in-
vestors, such as pension funds, were constrained by regulatory frameworks like the
"prudent-man rule," which prohibited investments in higher-risk assets, including ven-
ture capital. This left individual investors as a potential source of funding; however,
this route presented its own challenges. The volatility of personal wealth, stemming
from events such as divorce or death, created issues regarding the valuation of invested
capital and could result in protracted disputes over the worth of early-stage ventures.
Consequently, the difficulty of securing funding in this era was compounded by a com-
plex interplay of regulatory constraints and the inherent risks of dealing with individ-
ual investors. By the mid-1970s, there were no more than about 30 fairly substantial
venture capital firms nationwide. Even themore establishedVCs, such asGreylock and
Venrock, managed relatively small investment pools by modern standards (Nicholas,
2019).
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The absence of institutional investors and regulatory constraints on pension fund
investments further restricted the growth of the venture capital industry, leaving early-
stage startups with limited funding opportunities. Before the ERISA reform in 1979,
the "prudent man" rule made many pension managers not dare to put money into VC
funds, as investing in small business securities can be seen as imprudent. The ERISA
uniformed the fiduciary requirement of private pension funds. A fiduciary must dis-
charge its duty "with the care, skill, prudence, and diligence under the circumstances
then prevailing that a prudent man acting in alike capacity and familiar with suchmat-
ters would use in the conduct of an enterprise of a like character and with like aims."
A fiduciary must protect investors by continually monitoring. The fiduciary require-
ments, especially the "prudent man" rule, make many pension managers not dare to
put money into VC funds, as investing in small business securities can be of high risk.
Moreover, ERISA was overseen by both the Treasury and the Department of Labor at
that time, which imposed unnecessarily complex administrative requirements.

In August 1978, President Jimmy Carter proposed to the Congress, which was ap-
proved in October, on the reorganization plan.1 The Treasury will have statutory au-
thority for minimum standards, while the Department of Labor (DOL)will have statu-
tory authority for fiduciary obligations.

In June 1979, the DOL explicitly clarified the fiduciary requirement in a federal reg-
ister (details in Figure A1), allowing fund managers to invest their capital in venture
funds. This reform significantly increases the supply of capital to VC funds, as shown
in Figure A2. The fundraising patterns are mirrored in the investments by venture
capitalists into small firms (Kortum and Lerner, 2000).

The composition of limited partners in VC funds changed significantly due to the
ERISA reform. Pre-ERISA reform, the limited partners of VC funds were evenly dis-
tributed among industrial corporations, insurance companies, foundations, and indi-
viduals. But by 1984, pension funds had become the single most important source of
VC funds (Florida and Kenney, 1988). It is important to note that ERISA regulations

1According to message to the Congress Transmitting Reorganization Plan No. 4 of 1978.
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do not apply to state pension funds, as these funds are governed by state laws rather
than federal regulations. State pension funds typically adhere to more conservative
investment strategies, prioritizing fixed income and public equities.2 While ERISA ex-
clusively affects private pension funds, these funds generally exhibit greater allocations
to VC compared to state pension funds.

2.2 Bank Intermediation in Financing SMEs

During the 1970s, commercial banks in the USwere the primary source of financing for
SMEs. Their dominance largely stemmed from the Glass-Steagall Act, which confined
banks to traditional commercial banking activities and prevented them from engaging
in securities trading or insurance. This legal environment, coupled with restrictions on
interstate banking and branching, left most banks focused on local economies through
deposits, loans, and savings accounts. In turn, the highly fragmented banking sector,
composed of numerous small and regional banks, limited competition and risk diver-
sification. Furthermore, high interest rates made it more challenging for startups to
secure bank loans. During the 1980s, when US interest rates peaked at 21.5% as the
Federal Reserve attempted to curb inflation, debt financing became particularly costly.

Although certain regulatory adjustments began taking shape around 1980, they did
not align with the ERISA reforms. For instance, the Depository Institutions Deregula-
tion andMonetaryControlAct of 1980 eased restrictions ondeposit interest rates, while
the Garn–St. Germain Depository Institutions Act of 1982 granted savings institutions
the ability to engage in riskier lending activities.

The banking sector underwent two major deregulatory shifts after the 1970s: inter-
state and intrastate deregulation. The existing literature on interstate banking dereg-
ulation suggests that it allowed banks to achieve greater geographic diversification,
thereby expanding credit supply to innovative firms (Cornaggia,Mao, Tian, andWolfe,
2015). However, states did not begin relaxing restrictions on interstate banking until
the 1980s, which falls outside my sample period.

2The largest state pension funds (e.g., CalPERS, CalSTRS, NYSCRF, Texas TRS) have some VC expo-
sure but allocate a relatively small proportion of their total assets to VC compared to private pensions.
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In contrast, intrastate deregulation represents a negative credit shock to SMEs. Be-
fore 1970, most states either prohibited or strictly curtailed branching. Starting in 1970,
the remaining states gradually lifted these barriers through a three-stage process. First,
they allowedmultibankholding companies to form; next, they enabled branching through
mergers and acquisitions (M&A) only; and ultimately, they sanctioned unrestricted
(de novo) branching. This evolution facilitated broader geographic expansion and en-
couraged greater competition (Jayaratne and Strahan, 1996; Black and Strahan, 2002).
Empirical studies document a decline in innovation following intrastate deregulation,
attributing this effect to two potential mechanisms: (1) increasedmarket concentration
reduces credit availability for SMEs (Chava et al., 2013), or (2) heightened banking
competition that weakens relationship lending (Hombert and Matray, 2017).

3 Historical Data

3.1 Scientists and Engineers

This paper investigates the supply of VC and scientists’ selection into entrepreneur-
ship. The ERISA reform happened in 1979, so I collected a list of scientists active in the
1960s and tracked their business formation activities from 1970 onward. To compre-
hensively understand the US technical personnel in 1960s, I collected individual-level
data from two sources: theNational Register of Scientific and Technical Personnel from
the National Archives and the American Men of Science.

3.1.1 National Register of Scientific and Technical Personnel

I retrieved the National Register of Scientific and Technical Personnel (NRSTP) dataset
from the National Archives Access to Archival Databases. The NRSTP was initially
created by theNational Science Foundation (NSF) to identify specialized professionals
for national emergencies but evolved into a key source of statistical information on
scientific and engineering personnel.3 It provides critical data for developing national

3https://aad.archives.gov/aad/series-description.jsp?s=3550
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science policy and supplies information to Congress and government agencies.
NRSTP records professionals in various scientific and technical fields, including bi-

ology, chemistry, economics, geology, mathematics, psychology, meteorology, physics,
anthropology, political science, and sociology. The registerwas created in collaboration
with several professional organizations, including the American Institute of Biological
Sciences, the American Chemical Society, the American Mathematical Society, and the
American Psychological Association.

This dataset contains surveys distributed in 8 years.4 The register was originally
established to identify specialized personnel during national emergencies. However,
their utility for statistical analysis was soon recognized, leading to a shift in their pri-
mary function towards providing statistical information for scientific and engineering
personnel. The content of each record varies slightly year by year, but typical entries in-
clude details such as name, institution, sex, age, educational background, employment
specialty, job function, income, language ability, citizenship, and memberships in pro-
fessional organizations. Additional information, such as place of birth (after 1966),
and government sponsorship (after 1962), is included in later years. This paper uses
the 1962–1968 NRSTP data because these four waves include the scientists’ residence
city information.

The serieswas disseminated throughvarious academic societies. Respondentswere
predominantly academic and research professionals. While the content varies annu-
ally, each record typically contains information on the individual’s name, demograph-
ical information, educational background, employment specialty, and self-reported in-
come. This dataset serves as a comprehensive source for understanding the workforce
during these periods. The response rate is approximately 60% but varies across aca-
demic societies. For instance, in 1968, the response rate among biologists was 54%5,
while around 70% of eligible individuals were included in the Register of the American

41954, 1958, 1960, 1962, 1964, 1966, 1968, and 1970. The Survey of Doctorate Recipients continues
the NRSTP survey after 1970. However, it uses anonymized census data, making it impossible to link
scientists to business registration records.

5American Institute of Biological Sciences Annual Report 1969
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Meteorological Society 6. Additionally, the NSF reported that over 90% of US science
doctorates were captured in the 1964 wave of the survey.

Thedatawas processed by extracting information from thedigitized codes, as shown
in Figure 1. Subsequently, the codes for each variable were matched with their mean-
ing, which was documented in the photocopies of codebook films. The raw digitized
format consists of thousands of entries, with each line representing an individual record.
The values in different positions in the line correspond to different variables (i.e., sur-
vey questions). To analyze the data, I first separate these values into their respective
variables. Subsequently, I matched numbers with their descriptions based on code-
books. The codebooks were scanned documents without optical character recognition
(OCR). So, I manually cleaned the codebooks to ensure accuratemapping between nu-
merical values and descriptions. When the original scan is faint, certain words are best
guesses based on common nomenclature by ChatGPT-4o. ChatGPT excels at this task,
as transformer models are trained to reconstruct incomplete sentences and words.

3.1.2 American Men of Science

I digitized the Eleventh Edition of American Men of Science (AMS) that was collected
from 1960 to 1965. AMS is a comprehensive directory of scientists across the United
States and Canada. First published in 1906 by James McKeen Cattell, the AMS is an
exceptionally comprehensive source of biographical information for male and female
scientists. Cattell collected these data originally for his own research on the psychol-
ogy of intelligence. Born into a wealthy Pennsylvania family, Cattell earned his PhD in
Leipzig, Germany, and became the first American to publish a dissertation in psychol-
ogy (Airoldi and Moser, 2024).

The inclusion criteria are based on scientific achievement, research quality, and re-
sponsibility in science-based positions. This edition was compiled at Arizona State
University and follows a pattern similar to the Tenth Edition, with efforts to keep bio-
graphical information up to date through questionnaires. The project has a long his-

6Bulletin of the American Meteorological Society Vol. 47, No. 8, August 1966
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tory, originating in 1906 and growing into a major reference resource for American
science.

AMS was created with the assistance of various scientific societies, universities, re-
search labs, and an Advisory Committee appointed by the National Academy of Sci-
ences, the National Research Council, and the American Association for the Advance-
ment of Science. The criteria for inclusion in AMS are, as per the Preface to this edition

1. Achievement, through experience and training, of stature in scientificwork equiv-
alent to that associated with a doctoral degree, coupled with continued activity
in such work.

2. Research activity of high quality in science, evidenced by publication in reputable
scientific journals, or, for those whose work cannot be published due to govern-
mental, commercial, or industrial security, by the judgment of peers among im-
mediate co-workers.

3. Attainment of a position of substantial responsibility requiring scientific training
and experience equivalent to that described in (1) and (2).

The directory is split into two sections: Physical and Biological Sciences and Social
and Behavioral Sciences. Only the first section was digitized as the primary focus of
this research is on the scientific and technical personnel. It contains around 21,000
biographies per volume, with a total of over 150,000 entries.

Each entry in the American Men of Science directory provides detailed biograph-
ical information about individual scientists, including their education, career history,
and areas of research (example in Figure 1). This allows for a comprehensive view of
their scientific contributions and professional backgrounds. The records also contain
socioeconomic information, which comprises personal data such as the individual’s
date of birth, marriage year, number of children, and contact address.

59% of addresses in the AMS dataset include zip code information, while many ad-
dresses only have street names and city or state names. I utilized cloud-based services
to enhance the dataset. Specifically, I employed the OpenStreetMap API, which allows
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for the retrieval of zip code data based on the provided addresses. The API helped to
increase the overall coverage of the zip codes from 59% to 64%. This approach not only
improves the geographic analysis of scientists, but is also critical for linking individuals
across databases (e.g., based on names and zip codes).

3.1.3 Concatenating the Two Data Sources

I first dropped all the scientists whose county location information was missing be-
cause the later matching process relied on both name and location. The NRSTP dataset
has 10% of county FIPS missing, while AMS has 45% missing7.

After the data processing, myNRSTP sample records include 447,317 scientists who
responded to the survey between 1962 and 1968. The AMS includes 59,877 scientists
who appeared in the 1965 edition. 31,468 scientists appear in both datasets based on
name and county location information. For the overlapping entries, I retained the
records in the NRSTP because the variables recorded in NRSTP are more comprehen-
sive than those in AMS. 56% of the AMS scientists appear in the NRSTP records, in-
dicating that NRSTP has a good record of senior scientists. Thus, AMS serves as a
complementary dataset to the NRSTP records on the senior scientists. I dropped 392
scientists whose work specialties are not correctly recorded. The final dataset contains
information on 475,334 scientists.

3.2 Business Registration

Business registration in the US is stored separately by each state’s Secretary of State.
OpenCorporates gathers the data and distributes it as a one-off download package.8

This study used data from all jurisdictions (i.e., states) within the US. It is worth point-
ing out that bankruptcy or any other type of litigation against the company is not in
the records of the Secretary of State. Instead, this type of information would have to be

7Zip codes are mapped to counties because people are likely to move or start businesses within a
county but not necessarily within the same zip code. The mapping of zip codes to county FIPS codes
comes from the US Department of Housing and Urban Development’s USPS ZIP Code Crosswalk Files.

8I obtained the data under the reference OCESD-14963, data version as of January 2025.

12



discovered through a litigation search.9

The business registry data fromOpenCorporates covers 76million businesses across
all US states. The data includes incorporation dates and dissolution dates. The data
indicate the state and registration address for the business. Most businesses are regis-
tered in the same state listed as their address, but businesses can also be registered in
more than one state. For example, a Texas business that also does business in Florida
may be registered as a domestic company in Texas and as a foreign company in Florida
(Griffin, Kruger, and Mahajan, 2023). Also, many firms are registered in the state they
operate in andDelaware. OpenCorporates covers both and often connects the twowith
the branch and foreign company variables. The vast majority of businesses formed by
the scientists in my sample are domestic firms only.

Although census data, such as the Longitudinal Business Database (LBD), contains
business registration information, it only begins in 1976, which is too short a period
before the ERISA reform in 1979 to conduct a parallel trend test. OpenCorporates pro-
vides business registry data dating back to the 1940s or earlier, depending on the state’s
records. It includes officers’ names linked to companies, which is essential formatching
with the scientists’ data. Therefore, OpenCorporates provides the a consistent publicly
available dataset on US business registrations.

Business addresses in OpenCorporates are cleaned by using regularization to ex-
tract the zip codes and then match them to the corresponding county. During the pe-
riod which I used to match with scientists (1945-1990), 57% of the 14,495,168 firms
in the dataset possess complete registered address data. Among these firms, 84% in-
clude zip code information. Utilizing the OpenStreetMap API, I enhanced the cover-
age of zip code information to 93% by extracting zip codes from the remaining 16% of
non-standard addresses. This process adds zip code information for 155,820 addresses
through the API.

9https://www.jonesday.com/en/insights/2012/10/public-disclosure-requirements-for-private-
companies-us-vs-europe
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3.3 Matching Data

3.3.1 Matching Scientists and Engineers with Business Registration

I used the spaCy library (en_core_web_lg) to classify whether an officer’s name in
the OpenCorporates was likely a human name or a company name. Specifically, the
function checked whether the input text included any entities labeled as "PERSON" by
the NLP model. This analysis revealed that 88.08% of the officer names were classified
as human names rather than company names, providing insight into the composition
of entities recorded in the dataset.

Then I map the OpenCorporates data with the AMS and NRSTP data by name and
county FIPS code. I only matched scientists to businesses formed between 1945 and
1990 because the scientists in my data sample were born in the 1920s and 1930s. After
1990, they would likely be too old to start a business, and the risk of mistakenly match-
ing individuals with the same name but different identities becomes more significant.
My final data consists of 28,075 firmsmatched to 14,967 scientists with at least one firm
recorded. 3.15% of the scientists are found to be associated with at least one business.

3.3.2 Matching Scientists and Engineers with Patent Data

Patent data is from the PatentCity dataset (Bergeaud and Verluise, 2024), which pro-
vides information on the zip code and inventor names ofUS patents back to 1836. Com-
pared to the USPTO dataset, which began recording inventor names only in 1976, the
PatentCity dataset provides better coverage of historical patent data. It includes records
of the “first publication of granted patents,” meaning that only the patent applications
corresponding to granted patents are included in the dataset.

Then I map the Patent data with the AMS and NRSTP data by name and county
fips code. Again, I only matched scientists to businesses filed between 1900 and 2000
to reduce the risk ofmistakenlymatching individuals with the same name but different
identities. My final data consists of 184,362 patents matched to 42,990 scientists with
at least one patent recorded. 9.04% of the scientists are found to be associated with at
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least one patent.

3.3.3 Matching Scientists and Engineers with Publication Data

To measure scientific productivity, I match scientists with their publications and ci-
tations from SciSciNet (Lin, Yin, Liu, and Wang, 2023), based on the full data from
Microsoft Academic Graph (MAG, now OpenAlex). MAG was updated weekly until
December 2021. SciSciNet covers over 134 million scientific publications and millions
of external linkages to funding and public uses.

I restrict the data to authors with at least one English-language journal publication
between 1900 and 2000. I match scientists and engineers with author_ids in the MAG,
using first and last names, as well as county fips of the affiliation of the paper author.
Based on the birth year information of the scientists and engineers data, I further re-
stricted matched publications to those who no longer published anything after 2005.
My final data consists of 1,010,217 publications matched to 45,019 scientists with at
least one publication recorded. 9.47% of the scientists are found to be associated with
at least one paper publication.

3.4 Descriptive Statistics

My final sample consists of 475,334 scientists with recorded county FIPS codes and
work specialties. This section documents the characteristics of the scientists inmy sam-
ple.

Gender The AMS dataset lacks gender information, so I supplemented it with the
gender guesser library. The gender guesser tool utilizes a dataset of approximately
40,000 first names and their associated genders, covering most first names in European
countries. For each scientist, I first checked the NRSTP for gender information and
used it if available. If not, I applied the gender guesser to predict the gender based on
the scientist’s first name. The scientists and engineers sample is dominated by males,
with 433,451 male scientists and 39,903 female scientists. This is consistent with the
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literature.

Cohort The NRSTP dataset does not have Date of Birth information as the AMS, so
I developed a method to predict the year of birth of scientists based on the Year of
Highest Degree and the Level of Highest Degree recorded in the NRSTP. I assumed
that individuals typically obtain their PhD (or higher, such as MD) around the age of
30, a Master’s degree around the age of 25, and a Bachelor’s degree around the age of
22. Using these assumptions, I estimated the year of birth by subtracting the predicted
age at the time of obtaining the highest degree from the Year of the Highest Degree,
improving the overall coverage of missing birth year information. The overall sample
is dominated by the Silent Generation (i.e., born between 1928 and 1945). They grew
up during the Great Depression and World War II, shaping a more risk-averse and
pragmatic outlook (Figure A3).

Education The complete data sample comprises 454,383 scientists, including 167,700
PhD holders and 10,973 MD holders. The average year in which scientists obtained
their highest degree is 1954. University names are standardized by mapping them to
the Integrated Postsecondary Education Data System using both the institution’s name
and city location. The top three alma maters among scientists are the University of
Michigan-Ann Arbor, Columbia University, and the University of California-Berkeley.
Additionally, elite institutions such as Harvard University andMIT are also among the
most common alma maters (Table A2).

Geographical Location The majority of scientists are concentrated around San Fran-
cisco, Los Angeles, and counties in New England (Figure 2). However, it is worth not-
ing that there are also concentrations of scientists in the central US.10 This shows that
the core technical personnel in the US are significantly more centralized. This concen-
tration suggests that the critical expertise and resources were likely pooled in specific

10For example, during the Cold War, Natrona County (FIPS 56025), Wyoming, was involved in ura-
nium mining, which was crucial for nuclear weapons development. El Paso County (FIPS 08041), Col-
orado, is home to the North American Aerospace Defense Command. Additionally, Pima County (FIPS
04019) in Arizona housed a Titan II missile complex, which was operational from 1963 to 1987.
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regions, possibly due to the specialized infrastructure or proximity to major research
institutions and contractors for government programs (such as the defense program
and space program).

Income Scientists earned more than the general population at the lower and middle
quantiles (Table A3). The inequality within the scientific community is less than the
overall US population. These reflect the specialized skills, advanced education, and
relatively standardized wage structures within scientific professions.

Employment Most scientists are employed in private industry or business, while a
significant number also work in colleges and universities (Table A4). The propor-
tion of scientists and engineers in private industry is comparable to that in academia.
Within the private sector, the top employers are typically from chemical manufactur-
ing, petroleum-related industries, electrical and electronics sectors, and large aerospace
and defense contractors A5).

WorkSpecialty Amajor challengewas to compilework specialties into an individual-
year panel. The NRSTP generated a sequence of identifiers for each specialty in each
wave of the survey. However, these identifiers varied across waves, and the classifi-
cation of specialties changed year by year. For instance, Probability and Statistics was
later divided into two separate specialties: Probability and Statistics. To link special-
ties across years, I standardized names and manually merged or split the specialties
as needed. The data sample reveals a strong educational background concentration
in Chemistry, Biology, and Geology (Table A6). This aligns with the fact that the top
private employers of scientists are primarily companies in the chemical manufactur-
ing and petroleum and coal products manufacturing industries (Table A5). Table A7
further illustrates top specialties that are funded by the government defense or space
programs.
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Patent andPublication The average publication rate among scientists is slightly higher
than the patent rate, which in turn exceeds the business formation rate (Table 1). Most
businesses founded by scientists do not have a granted patent. On average, each sci-
entist publishes two papers in their lifetime, with a median citation count of 11 and a
typical coauthor count of one to two. Whilemost publications are not linked to patents,
some highly influential papers have been cited by approximately 30,000 patents. There
is a weak correlation between business formation activity and both patenting and pub-
lication activity, indicating a limited association between these factors (Table A8). This
suggests that scientific output and intellectual property generation do not strongly pre-
dict entrepreneurial activity among scientists.

4 Main Results

I use the 1979 ERISA reformas an exogenous shock that led to the large-scale emergence
of VCs as a financial intermediary. First, this reform is unique in its significant impact
on VC fundraising, as one of the few regulatory changes to do so. While the capital
gains tax cut in the 1980s could also influence VC investments, most VC investors post-
1980 were tax-exempt institutions, such as pension funds, endowments, and trusts, so
the supply effect of this tax cut was small (Gompers, 1994; Gompers, Lerner, Blair, and
Hellmann, 1998). Second, the early-stage equity investment landscape of the 1980s did
not have a standardized approach yet. Equity investment in small businesses was pri-
marily provided by individuals, with little involvement from financial intermediaries.
Moreover, angel investment was not popularized until the 1990s. The ERISA reform
played an important role in establishing VC as a key financial intermediary in equity
investment. Post ERISA reform, both the number of deals and the total investment
amount surged, as illustrated in Figure A2.

I first show that in my data sample, business formation steadily increases over the
sample period, with no abrupt change around the 1979 ERISA reform (Figure 4). Be-
tween 1970 and 1978, 4,149 scientists started a business, but this number surged to 7,936
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during 1979–1986. Business formation by scientists more than doubled following the
ERISA reform, indicating its unique impact on scientists. Notably, the total business
formation rate for scientists, based on business registrations from 1945 to 1990, is 3.15%.

4.1 Measure of the tangibility of specialties

The 1979 ERISA reform is a one-off exogenous shock. I leverage the scientists’ work
specialties to create cross-sectional variation for a difference in differences design. Sci-
entists working in fields more reliant on intangible assets likely face greater exposure
to the ERISA shock, given private capital’s tendency to invest in less capital-intensive
industries. As shown in Figure A5, the investment theme of the venture capital indus-
try has transformed from computer hardware and electronics to less capital-intensive
but high-growth-potential industries such as business services.

I define tangible specialty as those associated with physical products or processes
(e.g., a machine or manufacturing method), whereas intangible specialty is related
to non-physical outputs, such as software and algorithms. If a scientist appears in
multiple waves of the NRSTP survey, I retain the most recent first work specialty as
their specialty. I also show that scientists typically do not change the tangibility of
their specialty (Table A10).

To distinguish between tangible and intangible work specialties, I utilize a large
language model with the dictionary method (Ash and Hansen, 2023). I first used
ChatGPT-4o to create two dictionaries: one for tangible specialties and one for intangi-
ble specialties. The contents of these dictionaries are listed in Table A9. I then embed
both dictionaries, along with the work specialties, using SciBERT. Word embedding
provides a more robust approach than the bag-of-words method for measuring the
similarity between a dictionary and a word by capturing semantic relationships in a
continuous vector space. Unlike bag-of-words, which relies on word frequency and ig-
nores context, embeddings account for meaning andword associations, enabling more
accurate comparisons (Li, Mai, Shen, and Yan, 2021). This is particularly valuable in
my context, as it allows for handling synonyms of scientific disciplines more effec-
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tively. SciBERT is a transformer-based languagemodel specifically trained for scientific
text. Developed by Beltagy, Lo, and Cohan (2019), it is based on BERT but pre-trained
on a large corpus of scientific literature, including papers from Semantic Scholar. Its
domain-specific training allows it to better understand technical terminology and con-
textual nuances in scientific texts compared to general-purpose language models.

After calculating the similarity scores, I compute the absolute difference between
the scores for intangible and tangible categories. The distribution of score differences
between tangible and intangible similarity is presented in Figure A6. Some specialties
exhibit similarity to both the tangible and intangible dictionaries, either closely or dis-
tantly. For instance, exfoliative cytopathology11 has both low tangible and intangible
similarity scores, with minimal difference between them. This suggests that textual
similarity alone does not clearly categorize this specialty as either tangible or intangi-
ble. A specialty is classified as tangible or intangible if the absolute difference in scores
exceeds 0.04, with classification determined by the higher score. If the absolute differ-
ence is 0.04 or less, no classification is assigned.

Table A11 compares scientists based on their tangible and intangible specialties.
The data reveal that female scientists are more likely to possess intangible specialties.
Scientists with tangible specialties are more frequently associated with government
programs in agriculture, atomic energy, and natural resources. In contrast, government
programs related to defense, education, and space aremore closely linked to intangible
specialties.

Table A12 lists the companies with the highest proportion of employees with tangi-
ble and intangible specialties. The results indicate that companies operating in comput-
ing, data analytics, and systems development exhibit a higher concentration of employ-
ees with intangible specialties. Conversely, companies engaged in materials manufac-
turing and automotive parts employ a greater share of workers specializing in tangible
assets.

11A branch of cytopathology that involves the study of cells shed or scraped from epithelial surfaces
or body fluids to diagnose diseases, including infections, inflammatory conditions, and cancers.
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4.2 Identification

Below is the linear probability model with a Difference-in-Differences (DiD) estimator.

Yit = βIntangiblei ∗ Post1979t + Xct + ηi + ηt + ϵit (1)

Yit represents the outcome variables, including business formation and patenting
activities. Intangiblei is a binary variable that equals one if the scientist’s work specialty
is classified as intangible. Post1979t is an indicator variable for the post-ERISA reform
period. Xct are county-year level control variables.

The ideal experiment would randomly assign scientists with varying exposure to
VC availability. I use the tangibility of scientists’ work specialties in the 1960s as a
cross-sectional variation in their exposure to VC. The key assumption is that VC in-
vestors are more inclined to finance intangible businesses due to their scalability and
high return potential, whereas banks primarily fund tangible businesses backed by col-
lateral. The work specialties of scientists in the 1960s can be considered exogenous, as
VC was almost nonexistent at the time, and scientists did not select their fields based
on the potential to launch intangible businesses. In fact, scientists specializing in tangi-
ble fields had an advantage in starting businesses, as they could secure bank financing
using collateral such as machinery. To identify the effect of VC supply, I exploit ERISA
as an exogenous shock and compare business formation rates between scientists with
tangible and intangible specialties, where the latter group is more affected by changes
in VC availability.

The results in Table 3 show that following the 1979 ERISA deregulation, scientists
with more intangible work specialties are significantly more likely to establish new
ventures. The results are robust by adding controls in column (1), year fixed effects
in column (2), and also scientist individual fixed effects in column (4). The dynamic
specification in Figure 4 shows that the parallel trends assumption is satisfied, indi-
cating that, in the absence of treatment, the treatment and control groups would have
followed similar trends over time.
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The results in Table 4 also show that following the 1979 ERISA reform, scientists
with more intangible work specialties are significantly more likely to file patents. In
contrast, their likelihood of publishing academic papers declined. This pattern is con-
sistent with the notion that publishing is less aligned with the commercialization of
technology compared to patenting. The results are robust by adding controls, year
fixed effects inColumns (1) and (3), and also scientist individual fixed effects inColumns
(2) and (4).

I also conduct robustness checks usingdifferent definitions and subsamples, demon-
strating that the effect remains robust. Table A13 and Table A14 show that when I
replace the binary definition of Intangible with a continuous variable as the cross-
sectional variable for the second difference, the results remain consistent with the bi-
nary regression. Scientists with a specialty that has a higher intangibility score are
more likely to start a business after the ERISA shock, whereas those with a higher tan-
gibility score are not affected by the shock. Table A15 further confirms that using a
threshold of 0—without imposing a 0.04 difference between the tangibility and intan-
gibility scores to classify Intangible—yields consistent results.

Overall, the results indicate that intangible scientists are 0.05%more likely to start a
business than tangible scientists. Given the overall business formation rate of scientists
at 0.8% before the ERISA shock, this corresponds to a relative effect of approximately
6%. Moreover, the patenting results show that intangible scientists are 0.16% more
likely to start a business than tangible scientists. Given the overall business formation
rate of scientists at 9%, this translates to a relative effect of approximately 1.8%. This
evidence suggests that the influx of private capital effectively alleviates financial con-
straints faced by scientists, thereby fostering innovation and entrepreneurial activity.
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5 Mechanisms

5.1 Financial Constraints

According to the literature, one hypothesis is that banks may also finance intangible
assets as young firms rely on external debt (Robb and Robinson, 2014). If this holds,
then simply improving access to banking credit could also stimulate business formation
among scientists. In a perfect capital market, firms are indifferent between financing
through debt or equity.

To test this counterargument, I should examine whether the banking sector in-
creases (or decreases) its financing of intangible assets in response to changes in credit
supply. Intrabank deregulation occurred during the sample period, which decreased
the banking credit availability to small firms. During the 1970s and 1980s, the banking
industry underwent consolidation. Beginning in the early 1970s, 35 states implemented
deregulation measures that relaxed restrictions on intrastate branching, allowing bank
holding companies to consolidate subsidiaries into branches and permitting statewide
de novo branching (Jayaratne and Strahan, 1996). Black and Strahan (2002) finds that
the rate of new business incorporations increased following these deregulation efforts,
as banks appeared to lend more effectively. However, Chava et al. (2013) find that al-
though intrastate deregulation created more efficient banks, it also increased banks’
bargaining power over small firms. Compared to small banks, large banks lend dis-
proportionately less to small firms.

Following the line of intrabank deregulation research, I employed an event study
design to examine whether the deregulation of intrastate branching restrictions led
to increased business formation in states that adopted these policies. The lifting of
branching restrictions in the US banking sector occurred through two key channels:
M&A and de novo branching. Before deregulation, strict interstate banking laws pre-
vented banks from expanding across state lines. Deregulation allowed banks to expand
via M&A, enabling larger institutions to acquire existing banks in other states and im-
mediately integrate their branch networks. Alternatively, de novo branching allowed
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banks to open new branches from scratch in previously restricted areas.

BusinessFormationist = βDeregulationst + ηi + ηt + ϵist (2)

Deregulationst is a dummy variable that equals one in the year following the imple-
mentation of intrastate banking deregulation in a given state. Since intrastate banking
deregulation included bothM&A and de novo deregulation, I follow the previous liter-
ature (Chava et al., 2013; Jayaratne and Strahan, 1996) in classifying a state as “intrastate
deregulated” in the year after either M&A or de novo deregulation occurred.

I used the Callaway and Sant’Anna DiD estimator to estimate the dynamic treat-
ment effect, which accounts for treatment heterogeneity by comparing treated units to
never-treated units (Callaway and Sant’Anna, 2021). Figure 5 shows that lifting M&A
restrictions in scientists’ states negatively affects business formation. There is no evi-
dence of differential pre-trends, suggesting that the parallel trends assumption holds.
The two subfigures show that, post-deregulation, scientists with tangible specialties
are more affected by the shock, whereas scientists with intangible specialties are not
significantly impacted.

The event study on intrastate banking deregulation shows that, although lending
efficiency increases post-deregulation, credit to small firms declines, leading to lower
business formation among scientists, especially thosewhose specialty is more tangible.
This is consistent with the literature, which finds that young firms file fewer patents
after interstate deregulation (Chava et al., 2013; Hombert andMatray, 2017). Note that
the development of high-yield bonds, pioneered by Michael Milken, allowed smaller
or riskier firms to access the bond market, yet these instruments primarily targeted
businesses with tangible assets that could serve as collateral.12 In contrast, VC not only
provides capital but also offers startups critical managerial expertise, strategic guid-
ance, and valuable industry connections, further distinguishing it from conventional
financing sources.

12Notably, one-fifth of the bonds issued between 1978 and 1983 had defaulted by 1988 (Greenspan
and Wooldridge, 2018).
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Through the event study using intrastate deregulation as a negative bank credit
availability shock, I demonstrate that VC represents a distinct form of capital that com-
plements rather than substitutes for traditional banking institutions by financing the
intangible scientists. VC exhibits a unique risk appetite and investment preference,
with a strong emphasis on intangible, innovation-driven businesses that are tradition-
ally underserved by the banking sector.

5.2 Entrepreneurial Spawning

Scientists employed in the private sector and those in academia may differ endoge-
nously in their career incentives and human capital accumulation. Industry scientists
gain practical experience through real-world applications, which enhances their en-
trepreneurial capabilities and increases the likelihood of business formation. Would-
be entrepreneurs anticipating financing needs are more likely to start firms when the
supply of capital expands (Samila and Sorenson, 2011). In contrast, university scien-
tists tend to focus on fundamental research and scientific advancements, making them
less inclined to pursue commercialization or respond to an increase in VC supply. In-
deed, Figure 6 shows that university scientists are not responsive to the increase of VC
supply, whereas the effect is significant to scientists employed in the private sector.

Table 5 indicates that the business formation effect is primarily driven by private
sectors, instead of thosewho areworking in the university, federal governments, or self-
employed. This indicates a spinout effect. Entrepreneurial spawning happenswhen in-
dividuals become entrepreneurs because the large bureaucratic companies for which
they work are reluctant to fund their entrepreneurial ideas (Gompers, Lerner, and
Scharfstein, 2005). Employees of large firms thus create spin-out businesses by lever-
aging their experience and expertise. A widely used example is Xerox’s Palo Alto Re-
search Center (PARC), which developed groundbreaking technologies like laser print-
ing. Despite its innovations, PARC struggled to gain support for commercialization.
The executives resisted moving the company beyond its copier business. Most of the
value from Xerox’s inventions was captured by employees who left to start companies
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like Adobe and 3Com.
Engineers employed in large firmsmay bemotivated to transfer technology through

business formation, appropriating their expertise.13 Yet, the lack of financing for the
transition across the valley of deathmakes potential startups fail to get started.14 More-
over, though possessing technical knowledge, engineers may lack the business acumen
and network connection essential for entrepreneurship.15

I examine what kind of scientists are spinning out from the private sector. Does VC
encourage high-quality startups, or does it primarily facilitate spinouts from low se-
niority and less productive scientists who cannot earn sufficiently high wages, so they
decide to spin out? First, I also cross-validate the scientists’ salary in my data with
the National Aeronautics and Space Administration (NASA) historical salary scheme
based on the self-reported salary in the survey. Figure A7 illustrates the density distri-
bution of self-reported base salary. Most of the scientists and engineers are receiving
salaries comparable to the 11- out of 18-grade salary rates at NASA. Note that grade 18
is the highest rate of salary, 11-grade is likely associated with a middle management
level. This means that scientists in my sample are usually not in the top management
team.

Furthermore, I examine the productivity of the scientists and their business forma-
tion decisions. In Table 6 Panel A, Columns (1) and (2), show that scientists who have
filed at least one patent and are employed in the private sector are significantly more
likely to spin out. The effect is approximately 1%, indicating a 30% increase in the like-
lihood of starting a business with a baseline rate of 3.15%. This substantial effect aligns
with the argument that inventors seek to appropriate value from their inventions, but
large firms often capture most of the benefits, creating an incentive for them to spin
out. Columns (3) and (4) show that scientists who have published a critical journal

13Scientists and engineerswhomademajor discoveries to their employersmay get only token rewards.
An ironic example is the $2 compensation from Raytheon to Percy Spencer for his invention of the mi-
crowave oven in 1945.

14For instance, the companies in the Central Florida Research Park (CFRP) in Orlando have struggled
to grow their size and customer base. As a result, the success of the CFRP is still overly tied to the
military budget.

15As venture capital funding was pouring into startups that focused not on rockets but on corporate
computers, Silicon Valley’s engineers were far less dependent on space contracts by 1969 (Miller, 2022).

26



article are also more likely to start a business, though the effect is smaller compared
to patenting. This suggests that publishing scientific articles is less directly related to
commercialization, whereas patenting is more strongly associated with business for-
mation.

Since many scientists work in universities, it is also worth examining whether uni-
versity scientists’ patenting and publishing activity are related to business formation
decisions. University scientists may face higher costs when starting a business due to
regulatory expenses and inherent preferences. In Table 6, Panel B, Columns (5) and
(6) show that university scientists who have filed at least one patent are significantly
more likely to start a business. However, the share of university scientists who file
patents is low. There is no significant effect of business formation among university
scientists who publish journal articles, as shown in Columns (7) and (8). This differs
from the results in Panel A, which indicate that university scientists are less likely to
start a business compared to industry scientists and that publishing papers does not
facilitate business formation. Instead, filing patents appears to be beneficial for starting
a business and may be linked to preferences for business formation.

5.3 Entrepreneurial Community

In the previous sections, I demonstrated that VC incentivizes scientists to start a busi-
ness through alleviating financial constraints and appropriating their own innovation.
However, literature has shown a broader effect by VC as it can spillover through co-
worker network (Nanda and Sørensen, 2010) and local community so generate affre-
gated effects (Samila and Sorenson, 2011). This section explores whether VC incen-
tivizes scientists to start a business by fostering an entrepreneurial community in their
place of residence.

First, VC may flow into regions that already possess ex-ante suitability for business
formation. I hypothesize that areas historically funded by the government, long before
the ERISA shock, may have been particularly attractive to VC investment. These se-
lected regions should be exogenous, as government funding decisions were not made
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to optimize business formation but rather to support strategic national programs.
Second, scientists residing in these regions may subsequently experience a greater

impact from VC investment, as the influx of VC capital fosters the development of an
entrepreneurial community in their local area.

To test this hypothesis, I leverage a significant exogenous shock to R&D investment
in the 20th century: the Space Race between the United States and the Soviet Union. The
Space Race concluded just seven years prior to the ERISA reform, making it a relevant
historical event for analyzing long-term government investment effects. Figure 7 fur-
ther illustrates the potential connection between ERISA and the Space Race, showing
that business formation increased most post-ERISA among scientists who were previ-
ously funded by defense and space programs.

The Space Race led to an R&D windfall beginning in Fiscal Year 1962, marked by a
significant increase in NASA’s budget following deliberations between Congress and
the federal government. As illustrated in Figure A8, NASA received an average of 2.5%
of the federal budget during this period, peaking above 4% in 1964 and 1965. The
Apollo Program alone accounted for nearly $30 billion in expenditures. The effective
conclusion of the Space Race in 1972, with the final Apollo 17 mission, was followed
by a relative decline in NASA’s funding, which has since ranged between 1% and 0.4%
of total federal spending.

The R&D investments made during the 1962–1972 period resulted in significant
human capital accumulation. More importantly, the philosophy of NASA’s contract-
ing leads to human capital accumulation in the private industry. NASA separates the
evaluation and production by delegating the technical direction and monitoring to the
centers.16 NASA itself does not set up production capacity that already exists in the
private sector. As shown in Figure A9, there was a significant expansion in NASA’s
workforce, with the number of civil servants increasing from 10,200 at the beginning of
Kennedy’s presidency to 34,500 by the end of 1965. Additionally, the contractor work-
force associated with NASA experienced even more rapid growth, reaching a total of

16Levine, Arnold S.ManagingNASA in theApollo era. No. 4102. Scientific and Technical Information
Branch, National Aeronautics and Space Administration, 1982.
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376,700 by the end of 1965.

5.3.1 Flow of Venture Capital

The first hypothesis posits that VC flows into regions that received significant govern-
ment investment during the Space Race. However, the geographic distribution of these
investments can be considered exogenous, as the Space Race was driven primarily by
strategic and geopolitical objectives rather than commercial or civilian applications.

I investigated the flow of VC from both geographical location and industry focus.
The geographical location reflects whether private capital flows to where there are
talents, whereas industry focus shows whether the federally funded technologies are
more favorable by private investors. To address the first dimension, I use the industry-
county level space score from Kantor and Whalley (2024) to measure SpaceCountyIn-

dustry. The construction of the space capability measure relies on digitized National
Intelligence Estimates (NIE) on Soviet space technologies from 1947 to 1991. County-
industry pairs are classified based on their pre-Space Race spaceflight technology by
identifying similar technologies in US patents before Sputnik’s launch in 1957. Using
text similarity methods based on term frequency, the approach estimates the techno-
logical proximity between NIE documents and US patents. Aggregating these simi-
larity scores across pre-1958 patents within county-industry cells forms the final space
capability measure.

I conduct a DiD analysis based on the specification below.

Dealsict = β0 + β1SpaceCountyIndustryic ∗ Post1979t + θi + γct + ϵict (3)

Dealsict is the number of VC deals or total amount of VC investment in the certain
county-industry. SpaceCountyIndustryic is exogenous because it simply reflects the
technology and places that are suitable for the space program as defined by the Soviet
Union. Consequently, it does not capture any potential selection bias associated with
NASA’s actual investment decisions.

Results in Table 7 show that following ERISA deregulation, private capital invest-
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ment increasingly flows into county-industries that were more likely to have received
Space Race investments. Columns (1) and (2) report the total log deal size of early-
stage VC investments in a given county-industry, while Columns (3) and (4) present
the number of deals. Columns (1) and (3) include year, industry, and county fixed ef-
fects, whereas Columns (2) and (4) incorporate year and county-year fixed effects. All
interaction terms are statistically significant, suggesting that VC investment is concen-
trated in regions rich in scientific and technical talent. However, it is worth noting that,
in the absence of the Post1979 term, space-related industries and counties received rel-
atively little VC investment. This is likely due to the fact that, prior to ERISA, venture
capital activity was limited, and many technologies developed during the Space Race
were subject to non-disclosure agreements (NDAs) and other confidentiality restric-
tions. These limitations may have hindered the commercialization of such technolo-
gies, thereby reducing investment opportunities for VC.

These results validate the hypothesis that a significant number of VCs invest in
places that were more likely to receive public R&D investments during the Space Race.

5.3.2 Business Formation of Scientists in Space Counties

In this section, I investigate whether scientists living in the space counties exhibit a
higher propensity to start a business because of the entrepreneurial community fos-
tered by the VC. I utilize the SpaceCounty definition from Kantor and Whalley (2024)
and classify scientists residing in countieswith an above-median space score as treated.
These counties were more likely to receive NASA funding, as they had already pro-
duced innovation related to the Space Race before 1958.

Table 8 presents the regression results based on whether scientists reside in Space
Counties and whether they are employed in the private sector. Columns (1) and (3)
show that scientists living in Space Counties are more responsive to the VC shock, sug-
gesting that VC investment in these regions fosters an entrepreneurial community that
attracts scientists to start businesses.

Moreover, the effect on business formation is particularly strong for scientists who
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both reside in Space Counties and work in the private sector, as shown in Column
(2). This finding is consistent with the historical context of the Space Race, during
which NASA opted not to develop in-house production capabilities but instead relied
on outsourcing to industry partners for technology development and manufacturing.
By collaborating with a network of contractors, NASA leveraged external expertise to
achieve its mission objectives. This procurement model benefited industrial firms by
funding facilities, workforce recruitment, and technical training. As a result, scientists
working in the private sector in Space Counties likely accumulated higher levels of hu-
man capital, increasing their propensity to spin out and form new ventures. Figure 8
further illustrates the results presented in Columns (2) and (4), confirming the find-
ings. Notably, there is no evidence of pre-trends, supporting the validity of the parallel
trends assumption.

6 Conclusion

This paper contributes to the growing literature on technology entrepreneurship by
demonstrating that an expanded supply of VC can induce scientists to create busi-
nesses. Exploiting the 1979 ERISA shock as a quasi-exogenous increase in the availabil-
ity of VC, I show that the rate of business formation among scientists doubled, espe-
cially significant among scientistswith intangible specialties. Moreover, these scientists
are not marginal entrants, they are productive inventors who have filed patents.

There are three potential mechanisms behind the main results. First, VC alleviates
financing constraints for scientists whose projects lack collateral and traditional banks
are typically unwilling to invest. In linewith this view, I show that negative credit shock
triggered by intrastate bank deregulation reduces business formation only among sci-
entists with tangible specialties; there is no observable decline among those with in-
tangible specialties. Second, VC encourages scientists in the private sector to spin out
and appropriate their knowledge, particularly those who hold patents. This evidence
underscores the role of equity financing in incentivizing inventors to commercialize
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innovations outside of corporate boundaries. Third, VC firms selectively invest into in-
dustries and locations that have benefited from prior public R&D spending, helping to
cultivate entrepreneurial communities in these regions. This capital inflow unlocks the
entrepreneurial potential accumulated under public R&D investments. This shows the
critical role of VC in translating publicly supported scientific advances into commercial
applications.

This paper offers clear policy implications. In particular, the ongoing debate over
increasing pension fund allocations to VC by the United Kingdom17 resonates with
the evidence presented here. By exploiting the 1979 ERISA reform, which permitted
private pension funds to invest in VC, I show that such policy changes can produce
substantial spillover effects, prompting scientists to establish new ventures and cat-
alyze innovation-led growth. VC plays an important role as a specialized financial
intermediary for incentivizing technology entrepreneurship. Compared to govern-
ment grants (e.g., SBIR/STTR) or credit-based programs (e.g., SBIC), fostering a robust
VC ecosystem can unlock entrepreneurial potential among financially constrained but
high-potential innovators.

Furthermore, the findings imply thatVC selectively invests in regions and industries
that benefited frompublic R&D, thus promoting localized entrepreneurial community.
By aligning public support for basic and applied research with VC-driven commercial-
ization, policymakers can bridge the gap between scientific discoveries and commercial
deployment.

17https://sifted.eu/articles/pension-reforms-uk-investment-news
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Figures

Figure 1: Examples of the Raw Data
((a)) AWS ((b)) NRSTP: Entries

((c)) NRSTP: Work Specialty Codebook ((d)) NRSTP: University Codebook

Notes: (a) shows the example of an AMS entry. Dr. Malcolm J. Abzug (April 13, 1920),
an expert in space and flight mechanics, held prominent roles in aerodynamics, mis-
sile systems, and space research. Educated at MIT (Bachelor), Polytechnic Institute of
Brooklyn (Master), and UCLA (PhD), he contributed significantly to Douglas Aircraft
Co. and US Air Corps. His research focused on flight mechanics, fluid mechanics, and
control systems. (b) shows the raw dataset from the NRSTP. Each line represents an
entry of scientists. The dataset is structured so that different positions within a row
correspond to different variables. Each variable is encoded using specific numerical
or categorical codes, where the position of the code determines which variable it rep-
resents. (c) and (d) display the original codebooks of the NRSTP. These codebooks
serve as reference documents that map each code in the dataset to its corresponding
meaning. When the ORC could not accurately identify certain words, a large language
model was used to fill in missing or incorrectly spelled letters.
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Figure 2: Geographical Distribution of the Scientists and Engineers

Notes: This figure plots the geographical distribution of scientists, using county de-
lineations from the 1990 Census. The historical county FIPS crosswalk follows Eckert
et al. (2020). The scientist counts are weighted to account for differences in population
weights between 1990 and 2010. For visualization purposes, the color scale is capped
at 500. Counties with more than 500 scientists are represented using the same color as
those with exactly 500 scientists.
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Figure 3: Business Formation Trend in the US

Notes: This figure plots the number of businesses incorporated in the US and those
founded by scientists. Data is from OpenCorporates. Business formation counts are
normalized to 1978 (set to 1) for comparison. The total US business formation includes
all newly incorporated businesses, while scientist-founded businesses refer to firms es-
tablished by individuals with a scientific background. The data includes only business
registrations where both the officers’ names and company addresses are available.
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Figure 4: Business Formation Difference between Intangible and Tangible Scientists

Notes: This figure displays the coefficients from the difference-in-differences estimation
from column (4) in the Table 3. The vertical lines represent the 95% confidence inter-
vals for the coefficient estimates.
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Figure 5: Event Study of Intrastate Branching Deregulation on Business Formation

Notes: This figure plots the estimated coefficients from the event study based on Equa-
tion (2), with the sample stratified by scientists’ work specialties. It highlights the het-
erogeneous effects of intrastate bank deregulation on business formation across differ-
ent specialties. The vertical lines denote 95% confidence intervals for the coefficient es-
timates. The results indicate a negative impact of intrastate bank deregulation on busi-
ness formation among scientists with tangible specialties. Specifically, the estimated
average treatment effect (ATT) of scientists with tangible specialty is -0.128, with a
standard error of 0.0166.

41



Figure 6: Business Formation of Other Employer Type

Notes: This figure displays the coefficients from the difference-in-differences estimation
of Columns (1) and (2) in Table 5. It illustrates the heterogeneous treatment effects
based on the type of employer for scientists and engineers. The vertical lines represent
the 95% confidence intervals for the coefficient estimates.
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Figure 7: Business Formation Count by Government Sponsorship Type

Notes: This figure plots the business formation of scientists and engineers during 1970-
1986. The scientists are classified based on their government-sponsored program, as
self-reported in the NRSTP.
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Figure 8: Business Formation Difference between Space and Non-Space Scientists

Notes: This figure displays the coefficients from the difference-in-differences estima-
tion of Columns (2) and (4) in Table 8. It shows that industry scientists living in the
Space Counties are more responsive to the increasing supply of VC. The vertical lines
represent the 95% confidence intervals for the coefficient estimates.
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Tables

Table 1: Summary Statistics on Business Formation, Patenting, and Publication

Statistic Count Min 25% Mean 50% 75% Max Std. Dev.
BizCount 475,334 0.00 0.00 0.0591 0.00 0.00 57.00 0.5517
StartBusiness 475,334 0.00 0.00 0.0315 0.00 0.00 1.00 0.1746
PatCount 475,334 0.00 0.00 0.3879 0.00 0.00 356.00 2.7892
FilePatent 475,334 0.00 0.00 0.0904 0.00 0.00 1.00 0.2868
PublicationCount 475,334 0.00 0.00 2.1253 0.00 0.00 1,273.00 15.1876
PubPaper 475,334 0.00 0.00 0.0947 0.00 0.00 1.00 0.2928
Notes: This table presents the summary statistics of the variables related to the patent-
ing and publication activities of scientists. All variables are at the individual level.
BizCount represents the number of businesses formed by a scientist. StartBusiness
equals one if a scientist has started at least one firm. PatCount is the number of patents
where the scientist is listed as an inventor. FilePatent equals one if a scientist has filed
at least one patent. PublicationCount is the number of journal publications authored
by the scientist. PubPaper equals one if a scientist has published at least one journal
article.

45



Table 2: Top Intangible and Tangible Specialties

Intangible Specialties Tangible Specialties
Information Retrieval Astronautical Engineering
Behavior Textile Engineering
Geography Aeronautical Engineering
Monetary and Fiscal Theory Marine Engineering
Communication Science Chemical Engineering
Operations Research Aerospace Engineering
Ecology Hydraulic and Sanitary Engineering
Taxonomy Petroleum Engineering
Epidemiology Materials Engineering
Information Science Electrochemical Engineering
Communication Ceramic Engineering
Information System Design Civil Engineering
Game Management Mechanical Engineering
Theory and Practice of Computation Civil and Structural Engineering
Operations Analysis Metallurgical Engineering
Evolution Plastics Engineering
Genetics and Animal Behavior Mechanical and Industrial Engineering
Programmed Learning Metallurgy and Materials Engineering
Insect Ecology Material Engineering
Notes: The table reports the top intangible and tangible specialties based on tex-
tual similarity. Astronautical Engineering Engineering has the highest difference
between the tangible and intangible scores, indicating that it is highly tangible. In
contrast, Information Retrieval has the lowest difference between the tangible and
intangible scores, suggesting it is the most intangible specialty.
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Table 3: ERISA and the Business Formation of Scientists

Dependent Variable: StartBusiness
(1) (2) (3) (4)

Constant 0.1018∗∗∗ -0.0404∗∗∗
(0.0033) (0.0051)

Post1979 0.1279∗∗∗ 0.1241∗∗∗
(0.0057) (0.0057)

Intangible 0.0283∗∗∗ -0.0110∗ -0.0109∗
(0.0056) (0.0056) (0.0056)

Post1979 × Intangible 0.0786∗∗∗ 0.0748∗∗∗ 0.0747∗∗∗ 0.0469∗∗∗
(0.0100) (0.0100) (0.0100) (0.0099)

Controls Yes Yes Yes
Year FE Yes Yes
Individual FE Yes
Observations 4,206,548 4,177,470 4,177,470 4,177,470
R2 0.00042 0.00382 0.00388 0.13240
Notes: This table reports the difference-in-differences estimates of the ERISA effect
on business formation by scientists from 1970 to 1986. The dependent variable is a
binary indicator of whether a scientist started a business in a given year. Intangible
is a binary variable indicating whether the scientist’s work specialty is classified as
intangible based on LLM classification. Post equals one for years after 1978. All spec-
ifications include individual fixed effects and year fixed effects. Standard errors are
clustered at the individual level. * p < .10, ** p < .05, *** p < .01.
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Table 4: ERISA and the Innovation Activity of Scientists

Dependent Variable: FilePatent PubPaper
(1) (2) (3) (4)

Intangible -0.3413∗∗∗ -0.0320
(0.0127) (0.0342)

Post1979 × Intangible 0.1616∗∗∗ 0.1585∗∗∗ -0.0514∗∗ -0.0492∗∗
(0.0102) (0.0101) (0.0245) (0.0246)

Controls Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Individual FE Yes Yes
Observations 2,706,894 2,706,894 4,177,470 4,177,470
R2 0.00118 0.39565 0.00100 0.41246
Notes: This table reports the difference-in-differences estimates of the ERISA effect
on patenting and publishing activities by scientists. The estimate for patenting ac-
tivity is from 1976 to 1986. Due to the USPTO’s publication of patent inventor data
beginning in 1976 and inconsistencies in historical inventor data around that year, I ex-
cluded panel data before 1976. The dependent variable FilePatent is a binary indicator
of whether a scientist filed a patent in a given year. The dependent variable PubPaper
is a binary indicator of whether a scientist published a journal article in a given year.
The estimate for publishing activity is from 1970 to 1986. Intangible is a binary vari-
able indicating whether the scientist’s work specialty is classified as intangible based
on LLM classification. Post equals one for years after 1978. All specifications include
individual fixed effects and year fixed effects. Standard errors are clustered at the in-
dividual level. * p < .10, ** p < .05, *** p < .01.
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Table 5: Mechanism Test: Type of Employers

Dependent Variable: StartBusiness
(1) (2) (3) (4)

Private
Industry

College and
University

Federal
Government

Self
Employed

Post1979 × Intangible 0.1564∗∗∗ 0.0075 0.0275 0.0527
(0.0236) (0.0160) (0.0416) (0.0955)

Controls Yes Yes Yes Yes
Individual FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Observations 1,577,200 1,245,118 183,766 78,078
R2 0.13808 0.12890 0.11920 0.11963
Notes: This table reports the difference-in-differences estimates of the ERISA effect on
business formation by scientists from 1970 to 1986. The sample is split based on the
type of employer. The dependent variable is a binary indicator of whether a scientist
started a business in a given year. Intangible is a binary variable indicating whether the
scientist’s work specialty is classified as intangible based on LLM classification. Post
equals one for years after 1978. All specifications include individual fixed effects and
year fixed effects. Standard errors are clustered at the individual level. * p < .10, ** p <
.05, *** p < .01.

49



Table 6: Mechanism Test: Employees Productivity and Spinouts

Dependent Variable: StartBusiness

Panel A: Scientists Working in Private Industry or Sector
(1) (2) (3) (4)

No Patent Have
Patent

No
Publication

Have
Publication

Post1979 × Intangible 0.1293∗∗∗ 1.275∗∗∗ 0.1457∗∗∗ 0.4221∗∗
(0.0229) (0.2240) (0.0236) (0.1954)

Controls Yes Yes Yes Yes
Individual FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Observations 1,254,992 322,208 1,546,915 30,285
R2 0.12663 0.17352 0.13641 0.17090

Panel B: Scientists Working in College or University
(5) (6) (7) (8)

No Patent Have
Patent

No
Publication

Have
Publication

Post1979 × Intangible -0.0084 1.732∗∗∗ -0.0007 0.0446
(0.0153) (0.3954) (0.0170) (0.0441)

Controls Yes Yes Yes Yes
Individual FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Observations 1,217,849 27,269 1,018,650 226,468
R2 0.11938 0.19682 0.12759 0.13274
Notes: This table reports the difference-in-differences estimates of the ERISA effect on
business formation by scientists from 1970 to 1986. The sample is split based on the
type of employer and whether the scientists have filed a patent/published a journal
article before 1979. The dependent variable is a binary indicator of whether a scientist
started a business in a given year. Intangible is a binary variable indicating whether the
scientist’s work specialty is classified as intangible based on LLM classification. Post
equals one for years after 1978. All specifications include individual fixed effects and
year fixed effects. Standard errors are clustered at the individual level. * p < .10, ** p <
.05, *** p < .01.
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Table 7: Mechanism Test: Flow of VC Investment

Dependent Variables Log(DealSize) DealCount
(1) (2) (3) (4)

SpaceCountyIndustry -0.0107∗∗ -0.0053∗∗ -0.0023∗∗ -0.0009∗∗∗
(0.0053) (0.0021) (0.0011) (0.0003)

Post1979 × SpaceCountyIndustry 0.0400∗∗∗ 0.0314∗∗∗ 0.0102∗ 0.0079∗∗∗
(0.0144) (0.0059) (0.0053) (0.0017)

County FE Yes Yes
Year FE Yes Yes
Industry FE Yes Yes Yes Yes
County-Year FE Yes Yes
Observations 302,157 302,157 302,157 302,157
R2 0.08018 0.14392 0.09204 0.15103
Notes: This table reports the difference-in-differences estimates of the ERISA effect
on the venture capital flow. The analysis is restricted to early-stage deals with an in-
vestment stage categorized as Seed, Early Stage, or VC Partnership. The variable for
deal size represents the natural logarithm of the disclosed equity contribution (in
USD). SpaceCountyIndustry is an indicator variable reflecting a county-industry’s
being above median in terms of the similarity between the technologies present in
pre-1958 patents and the National Intelligence Estimates of Soviet Space Capabil-
ities between 1958 and 1992 (the Space Capability Score), as described on Kantor
and Whalley (2024). The results remain consistent whether or not a logarithmic
transformation is applied. Deal count refers to the total number of deals within
each county. Standard errors are clustered by county. * p < .10, ** p < .05, *** p <
.01.
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Table 8: Mechanism Test: Space Counties and Residence Locations

Dependent Variable: StartBusiness
(1) (2) (3) (4)
Space County Non Space County

Full Sample Private
Industry

Full Sample Private
Industry

Post1979 × Intangible 0.0637∗∗∗ 0.1711∗∗∗ -0.0085 0.0493
(0.0138) (0.0315) (0.0133) (0.0316)

Controls Yes Yes Yes Yes
Individual FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Observations 2,585,601 944,505 1,408,307 587,713
R2 0.14143 0.14864 0.10006 0.10284
Notes: This table reports the difference-in-differences estimates of the ERISA effect on
business formation by scientists from 1970 to 1986. The sample is split based on the
county where the scientists reside and their type of employer. Space County is defined
based on the space score developed by (Kantor and Whalley, 2024), which proxies the
likelihood of the county receiving investment during the Space Race. The dependent
variable is a binary indicator of whether a scientist started a business in a given year.
Intangible is a binary variable indicating whether the scientist’s work specialty is classi-
fied as intangible based on LLM classification. Post equals one for years after 1978. All
specifications include individual fixed effects and year fixed effects. Standard errors
are clustered at the individual level. * p < .10, ** p < .05, *** p < .01
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A Appendix Figures

Figure A1: Original Document of ERISA Reform in 1979

Notes: This graph shows the 29 Code of Federal Regulations Part 2550, 1979. This is
the final regulation on the Rules and Regulations for Fiduciary Responsibility; Investment
of Plan Assets Under the “Prudence" Rule. The amendment was published in the Fed-
eral Register on June 26, 1979. Federal agencies typically begin drafting amendments
well before public discussion. The discussions within the Department of Labor (DOL)
regarding fiduciary investment duties likely started as early as 1978. The DOL would
publish a Notice of Proposed Rulemaking (NPRM) in the Federal Register to inform
the public of the proposed changes and invite comments. This step often occurs 6–18
months before the final rule is published. For the § 2550.404a-1 amendment, theNPRM
likely appeared in the Federal Register in late 1978 or early 1979. Following the NPRM,
there would have been a public comment period (typically 30–90 days) during which
stakeholders could provide feedback. After the comment period, the DOL would re-
view the feedback, potentially revise the proposal, and prepare the final rule for pub-
lication.
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Figure A2: VC Investment and ERISA Reform

Notes: This figure plots the total amount of VC investment and the number of deals
in the US. Note that these values are underestimated due to incomplete data coverage
in the dataset, particularly for the 1980s. Also, many of the deals did not disclose the
deal sizes. Data comes from Venture Economics, a repository of information widely
recognized in the field of economics, particularly focusing on venture capital and pri-
vate equity sectors. The database includes fields such as investors, invested startups,
and fund profiles. This is the only database that covers the VC and PE deals in 1970s,
making it a valuable resource for the analysis in this study. Many foundational papers
in the entrepreneurial finance literature use this database (Kortum and Lerner, 2000;
Ewens et al., 2018).
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Figure A3: Birth Year of the Scientists

Notes: This figure plots the distribution of scientists’ birth years. Birth year is self-
reported in the AMS data. Since this information is not reported in the NRSTP data,
birth year is calculated based on the year of the highest degree and the level of the
highest degree.
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Figure A4: Geographical location of government-funded scientists and engineers
((a)) Agriculture ((b)) Atomic Energy

((c)) Defense ((d)) Education

((e)) Natural Resources ((f)) Space

Notes: The graph presents the geographical distribution of scientists and engineers as
recorded in the 1962, 1964, 1966, and 1968 NRSTP. These surveys from the specified
years include data onwhether a respondent is involved in government-funded projects
in specific areas. The visualization uses color to represent the count of scientists in
each county, with the color intensity indicating the number of scientists present. To
standardize the comparison, the color scale is capped at a maximum count of 100. For
counties where no respondents are located, their boundaries are not outlined, distin-
guishing them from those with recorded scientists and engineers.
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Figure A5: Eary-Stage VC Deals by Industries

Notes: This figure plots the number of VC deals from 1960 to 1990 based on 2-digit SIC
codes. The top five industries by deal count in 1990 are selected. Data comes from
Venture Economics.
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Figure A6: Difference between Tangible and Intangible Scores

Notes: This figure plots the distribution of differences between tangible and intangible
similarity scores for each specialty. The works specialty of scientists in the sample are
more intangible in general. This data is plotted at the specialty level, not the individual
level.
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Figure A7: Basic Salary and NASA General Schedule Grade for Employees

Notes: This graph presents the distribution of scientists’ annual base salaries. It in-
cludes a reference line derived from NASA’s General Schedule Salary Rates in 1968,
drawing from the NASA Historical Data Book. There are a total of 18 grades, with
Grade 18 representing the highest salary rate. According to the Historical Data Book,
GS-14 salaries span from $815,841 to $820,593, GS-13 from $813,507 to $817,557, GS-12
from $811,461 to $814,899, GS-11 from $809,657 to $812,555, andGS-10 from $808,821 to
$811,467. For illustration purposes, salaries above 40,000 are dropped from the graph
but are included in the density analysis.
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Figure A8: NASA Appropriations 1959-1968

Notes: Data are drawn from NASA Historical Data Books page 116. The data for FY
1968 is as of June 30. During its first decade, NASA spent (obligated) just over $32
billion. This sum represented over three percent of the money spent by the federal
government.
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Figure A9: NASA Technical Workforce during the Space Race
((a)) NASA in house and contractors

((b)) NASA in house

Notes: Data are drawn from NASA Historical Data Books. General Scientist and Engi-
neers include professional positions in physical sciences, engineering, and mathemat-
ics that are not specifically associated with aerospace technology. Aerospace Scien-
tific and Engineering professional scientific and engineering positions requiring Aero-
Space Technology (AST) qualifications. This category encompasses professional roles
engaged in aerospace research, development, operations, and related work, includ-
ing the development and operation of specialized facilities and supporting equipment.
Life Science includes professional life science positions that do not require AST quali-
fications. This category includes medical officers and other positions performing pro-
fessional work in psychology, the biological sciences, and professions that support the
science of medicine, such as nursing and medical technology.
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B Appendix Tables

Table A1: Level and Year of Highest Degree by Data Source

Level of Highest Degree Count
Bachelor 146,490
Master 133,482
MD 11,026
PhD 169,262
PhD+ 2,342
Notes: Compared to the AMS, NRSTP offers a broader view of the workforce.
NRSTP covers a wider range of fields and is more oriented toward workforce anal-
ysis, while AMS emphasizes individual recognition and contributions within the
scientific community. The AMS primarily includes renowned scientists, most of
whom are affiliated with universities and hold PhDs. In contrast, the NRSTP en-
compasses a broader group of individuals engaged in R&D activities, many of
whommay not possess advanced degrees. PhD+means that the person has more
than one PhD degree, or has both PhD and MD degrees.
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Table A2: Institution of Highest Degree

University of Highest Degree Count
University of Michigan-Ann Arbor 10,480
Columbia University in the City of New York 10,060
Harvard University 9,728
University of California-Berkeley 8,302
New York University 7,756
Purdue University 7,529
University of Wisconsin 7,499
Ohio State University 7,378
Massachusetts Institute of Technology 7,287
University of Chicago 7,142
Notes: This table reports the institution of highest degree of scientist and engi-
neers. Universities within the University of California system have missing values
because many records only include the UC system but do not specify the specific
campus attended.
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Table A3: Average Pre-Tax Income by Income Quantiles ($ 2018)

Quantile NRSTP PSZ
Bottom 50% 42,061 13,761
Middle 40% 81,616 40,050
Top 10% 124,817 132,719
Top 5% 164,118 193,714
Top 1% 249,437 472,005
Top 0.5% 344,038 687,512
Top 0.001% 520,178 20,274,790

Notes: This table shows the income distribution of the scientist and compare it with the
US general population. The PSZ data is from the 2022 version of TB3 from Distribu-
tional National Accounts by Piketty et al. (2018) https://gabriel-zucman.eu/usdina/
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Table A4: Type of Employer

Employment Sector Count
Private Industry or Business 171,484
College or University 138,280
State, Local, or Other Government (except educational institution) 39,647
Federal Government Civilian Employee 27,968
Other Educational Institution 15,421
Military Service, Active Duty 11,529
Nonprofit Organization 10,913
Self-Employed 9,162
Other 2,167
Notes: This table reports the types of employers for scientists and engineers.
Over the years, the classification of employer types has become increasingly
granular. I manually created a crosswalk file to harmonize these classifications.
In 1970, the category “State, local, or other government (except educational
institution)" includes entities such as the USPHS Commissioned Corps, U.S.
Weather Bureau, State Government, International Agencies, andOther Govern-
ment Agencies. Research centersmanaged by profit organizations are classified
under “Private Industry or Business," while those managed by educational in-
stitutions are classified as “College or University."

65



Table A5: Top Employers of Scientists and Engineers

Firm Name NAICS Industry Name Count
DuPont de Nemours, Inc. Chemical Manufacturing 4,792
International Business Machines Computer and Electronic Product 3,198
Union Carbide Corp Chemical Manufacturing 3,110
General Electric Company Electrical Equipment 2,674
Shell Oil Co. Petroleum and Coal Products 2,228
Dow Chemical Company Chemical Manufacturing 2,011
Monsanto Co Chemical Manufacturing 1,653
Humble Oil & Refining Co Petroleum and Coal Products 1,348
North American Rockwell Aerospace Product and Parts 1,311
Eastman Kodak Co Photographic and Optical Equipment 1,165
Mobil Oil Corp Petroleum and Coal Products 1,130
Lockheed Aerospace Product and Parts 1,095
Texaco Inc Petroleum and Coal Products 1,093
Allied Chemical Corp Chemical Manufacturing 1,089
Esso Chem Co Inc Chemical Manufacturing 1,065
Westinghouse Electric Corp Electrical Equipment and Component 1,035
Phillips Petroleum Co. Petroleum and Coal Products 990
American Cyanamid Co Chemical Manufacturing 976
Bell Telephone Company Telecommunications 971
Boeing Company Aerospace Product and Parts 948
Radio Corporation of America Broadcasting and Communications 928
Gulf Oil Corp Petroleum and Coal Products 857
Chevron Corporation Petroleum and Coal Products 847
Hercules Inc Chemical Manufacturing 840
3M Company Miscellaneous Manufacturing 705
Battelle Memorial Institute Research and Development Services 692
McDonnell Douglas Aircraft Aerospace Product and Parts 688
Standard Oil Co Petroleum and Coal Products 688
Pan American World Airways Air Transportation 673
Sperry Rand Corp Computer and Electronic Product 671

Notes: This table shows the top employers of the scientists and engineers. I standardize
and consolidate information on mergers and acquisitions (M&As) by aligning histor-
ical corporate entities with their post-merger counterparts. Firms that merged before
1972, such as North American Rockwell Corporation (1967) and McDonnell Douglas
Aircraft Corporation (1967), were identified and recorded to maintain historical accu-
racy. Similarly, post-1972 M&As, including Lockheed Martin Corporation (1995) and
Northrop Grumman Corporation (1994), were documented by tracing their predeces-
sor firms.
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Table A6: First Specialty of Work

Specialty Count
Organic Chemistry 47,178
Agricultural and Biological Sciences 36,514
Geology 23,054
Analytical Chemistry 18,728
Physical Chemistry 16,581
Related Chemical Specialties 13,842
Theory and Practice of Computation 13,733
Clinical Psychology 11,740
Biochemistry 11,288
Inorganic Chemistry 8,661
Chemistry 7,751
Probability and Statistics 6,857
Chemical Engineering 6,828
Solid State Physics 6,556
Nuclear Physics 5,350
Forestry 4,862
Optics 4,836
Civil Engineering 4,822
Mathematics of Resource Use 4,801
Electronics 4,580
Notes: This table reports the work specialty of the scientists and engineers. The
data comes from both NRSTP andAMS. The NRSTP part originates from the “Pro-
fessional Characteristics section" of the questionnaire, where respondents were
asked to identify the specialties in which they believe they have demonstrated pro-
fessional competence in research. While the classification of work specialties aligns
with the categorization of academic majors, it provides a more detailed structure,
incorporatingmultiple hierarchical levels of specialties for greater granularity. The
AMS part comes from the list of academic disciplines provided by the AMS.
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Table A7: Government Sponsored Work Specialties

Panel A: Defense Programs

Work Specialty Share of Scientists
Engineering Psychology 0.68
Aeronautical Engineering 0.60
Human Engineering 0.60
Meteorological Instrumentation 0.56
Acoustics 0.55
Network Engineering 0.53
Electricity and Magnetism 0.52
Aeronautical and Astronautical Engineering 0.52
Synoptic Meteorology 0.51
Geodesy 0.51
Panel B: Space Programs

Work Specialty Share of Scientists
Electronics Engineering 0.75
Environmental Engineering 0.71
Solar/Planetary Specialties 0.69
Engineering of General 0.53
Material Engineering 0.52
Aeronautical and Astronautical Engineering 0.51
Aeronautical Engineering 0.51
Energy Conservation Programs 0.51
Engineering Science 0.48
Astronomy 0.43
Notes: This table presents the top scientific specialties associatedwith government-
sponsored programs. The data is sourced from the NRSTP, where scientists self-
report their participation in government funding programs. The reported share
represents the proportion of scientists within each specialty who receive support
from a specific program. Panel A lists the leading specialties within government
defense programs, while Panel B highlights those most associated with govern-
ment space funding.
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Table A8: Correlation Matrix

BizCount FirmPatCount PatCount PaperCount CitationCount TeamSize InstitutionCount PatentCount
BizCount 1.000
FirmPatCount 0.058 1.000
PatCount 0.017 0.002 1.000
PaperCount 0.005 0.003 0.002 1.000
CitationCount 0.007 0.002 0.003 0.035 1.000
TeamSize 0.019 0.006 0.025 0.167 0.062 1.000
InstitutionCount 0.009 0.017 -0.008 0.028 0.028 0.372 1.000
PatentCount -0.004 -0.000 0.034 0.220 0.072 0.071 0.011 1.000
Notes: This table presents the correlation matrix between key variables. All variables are at the individual level. BizCount is the number
of businesses formed by the scientist. FirmPatCount is the number of patents owned by the firm founded by the scientist. PatCount is
the number of patents where the scientist is listed as an inventor. PaperCount is the number of journal publications authored by the
scientist. CitationCount is the average number of citations received by the scientist’s publications. TeamSize is the average number of
researchers per paper. InstitutionCount is the number of institutions listed in the paper. PatentCount is the number of citations received
from patents registered with the USPTO and EPO.
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Table A9: Dictionary of Tangible and Intangible Specialties

Tangible Specialties Intangible Specialties
Materials Science Computer Science
Metallurgy Information Theory
Mechanical Engineering Artificial Intelligence
Chemical Engineering Software Engineering
Physics Cognitive Science
Industrial Chemistry Telecommunications
Polymer Science Cybernetics
Ceramics Engineering Linguistics
Electrical Engineering Economics
Civil Engineering Intellectual Property Law
Geology Information Systems
Mineralogy Operations Research
Mining Engineering Management Science
Petroleum Engineering Psychology
Manufacturing Engineering Knowledge Management
Aeronautical Engineering Human-Computer Interaction
Textile Engineering Sociology
Construction Engineering Educational Technology
Automotive Engineering Decision Theory
Marine Engineering Business Administration
Notes: The table reports the dictionaries created by the GPT-4o. The prompt I used
was "give me 20 scientist specialties that are related to tangible assets in 1970s and
1980s. only give me the words as a python list format, no explanation." The words
are stored in two separate lists, the tangible and intangible dictionaries, respectively.
These lists are embedded into two vectors using SciBERT. The similarity between a
scientist’s work specialty and these vectors is then calculated to determine its clas-
sification.
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Table A10: Specialty Tangibility Status (1962 vs. 1968)

Intangible in 1968
Intangible in 1962 0 1
0 7,709 138
1 1,050 6,034
Notes: This table presents the confusionmatrix comparing thework specialty intangi-
ble classification of the same individuals who appear in both the 1962 NRSTP survey
and the 1968 survey. The values represent the counts of observations transitioning
between categories. Individuals whose work specialty changed from 1 to "not able to
define" were dropped.
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Table A11: Differences between Tangible and Intangible Scientits

Variable Tangible Intangible Diff in Mean t-statistic
Female 0.06 0.15 -0.08 *** -72.76
Year of Highest Degree 1953.50 1955.77 -2.26 *** -57.86
Basic Salary 13,008.04 12,932.29 75.75 *** 3.05
Gross Income 13,249.67 13,656.54 -406.87 *** -13.29
Govt. Agriculture 0.09 0.05 0.04 *** 35.42
Govt. Atomic Energy 0.06 0.04 0.01 *** 11.80
Govt. Defense 0.12 0.19 -0.07 *** -42.09
Govt. Education 0.06 0.16 -0.10 *** -71.43
Govt. Natural Resources 0.05 0.02 0.03 *** 41.50
Govt. Space 0.05 0.08 -0.03 *** -22.24
EmployerFirm 0.54 0.24 0.30 *** 171.27
EmployerGov 0.04 0.06 -0.02 *** -27.48
EmployerMil 0.01 0.02 -0.00 *** -9.05
EmployerUni 0.23 0.46 -0.23 *** -131.66
Notes: The table reports the average differences between scientists with tangi-
ble and intangible specialties. Basic Salary and Gross Income are self-reported
in the NRSTP. Govt. Agriculture indicates sponsorship by government agricul-
ture programs, with similar definitions for Govt. Atomic Energy, Govt. De-
fense, Govt. Education, Govt. Natural Resources, and Govt. Space. Employer-
Firm refers to scientists employed by private industry or business. Employer-
Gov denotes federal government civilian employees. EmployerMil represents
military service personnel, and EmployerUni includes those in active duty at
colleges or universities.
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Table A12: Employers with Top Share of Intangible and Tangible Work
Specialty Employees

Intangible Specialties Tangible Specialties
Rohrer Hibler & Replogle Dexter Corp
Informatics Inc Devoe & Raynolds Co Inc
American Inst for Research Fiberite Corp
Applied Data Research Inc Richardson Co
Wyatt Co Holland Suco Color Co
Morgan Guaranty Trust Co Sheller Mfg Corp
Systems Dev Corp Simoniz Co
Pacific Tech Analysts Inc Crawford & Russell Inc
Philip Hankins & Co Inc Blaw Knox
Computer Control Co Catalytic Construction Co
Computing & Software Inc Ash Stevens Inc
Harcourt Brace & World Inc Jim Walter Research Corp
Scientific Data Systems Sonoco Products Co
System Development Corp Norda Essential Oil & Chemical Co
Computer Usage Co Singmaster & Breyer
Austen Riggs Center Reeves Brothers Inc
Touche Ross Bailey & Smart Arthur G. McKee & Co
Pacific Mutual Life Insurance Co Pratt & Lambert Inc
Menninger Foundation Titanium Pigment Corp
American Inst for Res Debell & Richardson Inc
Notes: The table reports employers with the highest share of scientists
specializing in either tangible or intangible fields. The share is calculated
as the proportion of scientists with a tangible specialty relative to the total
number of scientists. Employers are identified based on the workplace
reported by scientists when completing the NRSTP or AMS survey.
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Table A13: Robustness Check: Continuous Intangibility Scores

Dependent Variable: StartBusiness
(1) (2) (3) (4)

Constant -0.0373 -0.0563
(0.0353) (0.0357)

Post1979 -0.2308∗∗∗ -0.2124∗∗∗
(0.0625) (0.0627)

IntangibleScore 0.1914∗∗∗ 0.0108 0.0110
(0.0449) (0.0453) (0.0453)

Post1979 × IntangibleScore 0.5068∗∗∗ 0.4752∗∗∗ 0.4752∗∗∗ 0.2389∗∗∗
(0.0797) (0.0799) (0.0799) (0.0793)

Controls Yes Yes Yes
Year FE Yes Yes
Individual FE Yes
Observations 8,080,678 8,020,272 8,020,272 8,020,272
R2 0.00039 0.00395 0.00401 0.13468
Notes: This table reports the difference-in-differences estimates of the ERISA effect on
business formation by scientists from 1970 to 1986. The dependent variable is a binary
indicator of whether a scientist started a business in a given year. IntangibleScore is a
continuous variable indicating the cosine similarity between the work specialty of the
scientist and the intangible specialty dictionary based on SciBERT embedding. Post
equals one for years after 1978. All specifications include individual fixed effects and
year fixed effects. Standard errors are clustered at the individual level. * p < .10, ** p <
.05, *** p < .01.
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Table A14: Robustness Check: Continuous Tangibility Scores

Dependent Variable: StartBusiness
(1) (2) (3) (4)

Constant 0.1069∗∗∗ -0.1313∗∗∗
(0.0305) (0.0311)

Post1979 0.0964∗ 0.0979∗
(0.0546) (0.0547)

TangibleScore 0.0087 0.1052∗∗∗ 0.1051∗∗∗
(0.0384) (0.0389) (0.0389)

Post1979 × TangibleScore 0.0918 0.0816 0.0817 0.0073
(0.0690) (0.0692) (0.0692) (0.0690)

Controls Yes Yes Yes
Year FE Yes Yes
Individual FE Yes
Observations 3,247,153 3,224,835 3,224,835 3,224,835
R2 0.00046 0.00379 0.00386 0.13234
Notes: This table reports the difference-in-differences estimates of the ERISA effect on
business formation by scientists from 1970 to 1986. The dependent variable is a bi-
nary indicator of whether a scientist started a business in a given year. TangibleScore
is a continuous variable indicating the cosine similarity between the work specialty of
the scientist and the tangible specialty dictionary based on SciBERT embedding. Post
equals one for years after 1978. All specifications include individual fixed effects and
year fixed effects. Standard errors are clustered at the individual level. * p < .10, ** p <
.05, *** p < .01.
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Table A15: Robustness Check: Intangible Specialty Definition with a Different Cutoff

Dependent Variable: StartBusiness
(1) (2) (3) (4)

Constant 0.1101∗∗∗ -0.0403∗∗∗
(0.0026) (0.0039)

Post1979 0.1615∗∗∗ 0.1552∗∗∗
(0.0047) (0.0046)

Intangible_1 0.0077∗∗ -0.0169∗∗∗ -0.0169∗∗∗
(0.0039) (0.0039) (0.0039)

Post1979 × Intangible_1 0.0160∗∗ 0.0155∗∗ 0.0155∗∗ 0.0126∗
(0.0071) (0.0071) (0.0071) (0.0071)

Controls Yes Yes Yes
Year FE Yes Yes
Individual FE Yes
Observations 8,080,678 8,020,272 8,020,272 8,020,272
R2 0.00037 0.00394 0.00400 0.13468
Notes: This table reports the difference-in-differences estimates of the ERISA effect on
business formation by scientists from 1970 to 1986. The dependent variable is a binary
indicator of whether a scientist started a business in a given year. Intangible_1 is a bi-
nary variable indicating if the intangible score is higher than the tangible score based
on the LLMs measures. Post equals one for years after 1978. All specifications include
individual fixed effects and year fixed effects. Standard errors are clustered at the indi-
vidual level. * p < .10, ** p < .05, *** p < .01.
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