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1 Introduction

The regulatory framework governing financial activities generally relies on rules enforced by an

authoritative body upon providers and users of services. That framework has been challenged by

developments in the digital domain. In it, payments generate data with unspecified ownership

that can substitute collateral in lending decisions, financial assets can be traded by autonomous

protocols at a high frequency across international borders, while contracts and markets can be

maintained by an open pool of pseudonymous agents rather than a unique, identifiable legal en-

tity. This FinTech ecosystem is complex. It consists of the simultaneous integration of forces that

rarely emerge together: (1) breakthrough technologies, (2) new assets, markets, and services, and

(3) new ways of designing financial infrastructure and executing contracts.

There is demand to rethink the regulatory architecture of financial services in light of Fin-

Tech. To date, relatively few— sometimes conflicting — directions have been offered. Regulatory

actions have generally taken the form of crude interventions, rather than fine-tuned measures.

Critically, they have left open for speculation what makes certain FinTech activities acceptable

in the eye of regulators.1 In other heavily regulated industries, such as pharmaceuticals, applica-

ble criteria to be met are well defined and compliance is verifiable. In banking, the industry has

been directly involved in setting regulatory standards. In those industries, regulatory stringency

— rather than uncertainty — is the most prominent concern. Uncertainty about the regulatory

perimeter and enforcement allows for the implementation of only a limited subset of new technolo-

gies at the frontier in FinTech. It has been argued that innovation has been stifled as a result.2

This paper presents a framework to study the impact of regulatory uncertainty on FinTech

innovation stemming from regulators’ ability and resources. Under a new US administration, the

Department of Government Efficiency (DOGE), has been aggressively downsizing federal agen-

cies, arguing that cutting regulatory oversight fosters economic growth (Reuters, 2025). However,

our analysis shows that increasing regulatory capacity — by improving expertise and resources

— may ultimately facilitate innovation, as seen in initiatives like the UK’s Regulatory Innova-

tion Office, which accelerates the approval of new technologies. Our framework is malleable and

has a number of features that speak to this emerging industry. In it, FinTech firms and regula-

1For example, some crypto tokens have been classified as securities, while others as either commodities or deriva-
tives. Of the former, a subset has been banned by the SEC on grounds of not complying with existing regulations.

2Similarly, although the stringent FDA approval process was implemented to ensure drug safety, it is widely
perceived to have slowed pharmaceutical innovation by imposing high compliance costs and lengthy approval times.
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tors strategically respond to opportunities to innovate. In the regulation–innovation game that

ensues, FinTechs do not know how regulators will respond to the emergence of a new technol-

ogy. This uncertainty arises because not every profitable application of a new digital technology

is known at the time of its development. Ex post, some of the applications turn out to be socially

less valuable than others, even hazardous. Take distributed ledgers, in particular blockchains, as

an example. It has been the technological core of cryptocurrencies such as Bitcoin. They are a

central feature of the crypto hype that unfolded over the last few years but has led to crashes

(e.g., trading platforms such as FTX and stablecoin Terra) and even facilitated a short-lived

banking crisis (Signature Bank and Silvergate Capital). On the flip side, blockchain is also the

key technology behind smart contracts, which have the potential to improve economic relations

(e.g., financial inclusion, trade, and credit) in countries with less developed institutions.

For regulators, information acquisition about the potential social value of new technologies

is costly and imperfect. Depending on their structure, their ability to learn, and even their bud-

gets, regulators may ban new technologies with some probability even if they are valuable —both

privately and socially—or let new technologies play out even if they are socially costly. Notably,

unlike in banking, the potential market failures that may arise from FinTech innovation have not

yet been identified nor are they well understood. In addition, other concerns enter the regulators’

valuation of innovation in the FinTech domain: it may make it harder for regulators to ensure fi-

nancial stability, market integrity, and consumer protection; as well as prevent tax evasion, fraud,

discrimination, and funding of illicit activities. As we demonstrate, in a world with potentially sig-

nificant social costs associated with FinTech innovation, regulatory laissez-faire is not an equilib-

rium as a positive or a normative conclusion.3 In turn, we show that the very existence of a regu-

latory framework and regulatory body shapes FinTech innovation. Moreover, their ability to reg-

ulate is key: that ability will depend on the budget given to the regulatory authority and its skills.

It is important that we define regulatory uncertainty in the context of our model. In it, the regu-

lated cannot be certain about future limits on their business activities arising from a regulatory au-

thority that faces a number of challenges: (1) it has an imperfect understanding of the activities of

the regulated, (2) the instruments at its disposal are crude and its budget limited, and (3) it cannot

commit to a certain course of action. A regulatory body imposes limits on the activities of the regu-

lated in a less than perfectly predictable manner, and this lack of predictability does not just result

3The case for laissez-faire often builds on the argument that regulation is expensive and can be futile. Worse,
it may lend legitimacy to an industry that may not deserve public support.
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from randomness in the state of the world, but from a lack of experience, resources, skills, and tech-

nology of the regulator in assessing the societal value of innovation. Important aspects of regulatory

uncertainty include the lack of clarity about the specific market failure that regulators want to mit-

igate; the effects of regulatory instruments on social welfare; why regulators seem unable to commit

to guidelines; why seemingly identical assets, markets, or market participants are made subject to

different rules; and why thresholds that trigger regulatory intervention seem arbitrary. As our the-

ory shows, regulatory uncertainty and observed FinTech innovation are intrinsically endogenous.

Our model considers a class of games with three groups of players. One group comprises inno-

vative FinTech firms that have an idea of how to develop and adapt a new technology, thereby po-

tentially creating new markets. Firms without such an idea form a second group of players which

we call incumbents. Firms in both groups can operate in an established ecosystem where they

compete in a well-organized, oligopolistic-type market (e.g., the market for stablecoins). The third

player is a regulator who has a limited budget that can be spent on learning about the societal ef-

fects of new technologies developed by FinTechs. At the time when FinTechs make their decision

about developing a new technology, no one knows the potential societal value of FinTech innova-

tion. At that time, regulators’ instruments are “crude” as they can only either ban or approve a

technology. They may later reassess what to do after spending resources learning about the new

technology, but their knowledge remains imperfect and depends on their skills and resources.4

The rate of innovation is a key equilibrium outcome of our model. It arises from a number of

forces that are endogenously at play: (1) the number of FinTech firms that choose to innovate, (2)

their success probability, as determined by the effort and resources they spend on the innovation,

and (3) the probability that they reap the benefits of their innovation, as modulated by the regu-

lator’s market interventions. This outcome depends on the rents that potential innovators can re-

alize elsewhere, as well as on the limitations of the regulator, both in terms of its budget and skills.

Our analysis yields three novel insights, each carrying policy implications. First, multiple equi-

libria can exist. Specifically, while equilibria where the regulator always bans FinTech innovation

regardless of the observed signal exist, there are also equilibria where the regulator will stop Fin-

Tech innovation only if signals are sufficiently poor. This multiplicity of equilibria, while arising

from regulatory uncertainty, adds extrinsic risks as an additional layer of uncertainty to the Fin-

Tech regulation–innovation game. In practical terms, it matters that policymakers not only un-

4The crudeness of regulatory instruments currently used is showcased in the Financial Times article "Investors
at risk in absence of adequate US crypto regulatory regime."
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derstand how a lack of regulatory preparedness stifles socially valuable FinTech innovation, but

are also aware of additional, endogenous uncertainty created by such unpreparedness.5

The second insight concerns the importance of regulator’s skills and budget. If the regula-

tor’s skills in generating informative signals are poor, outright bans of new technologies are the

only equilibrium outcome. If skills are sufficiently high, the equilibrium outcome depends also on

the regulator’s budget. If the budget is too low, there will be again only outright bans. With a

sufficiently larger budget, the FinTech’s chosen probability of success and the regulator’s chosen

signal precision are strategic complements. Accordingly, both efforts reinforce each other, po-

tentially increasing the number of equilibria. Critically, our theory shows that ample regulatory

budgets prompt FinTechs to innovate more provided the regulator’s skills in generating informa-

tive signals are neither too poor nor too good. In practical terms, it matters that policymakers

provide regulators with adequate budgets and secure the hiring of skilled personnel.

Third, we compare cases with a single and with multiple innovative FinTechs. Chief among

the insights from this comparison is that the latter is not a simple extension of the former since

innovative FinTechs may compete for the attention of an under-resourced regulator. As a re-

sult, regulatory uncertainty manifests itself along another dimension of multiplicity of equilibria

as there can be also extrinsic risk with respect to the identity of the FinTech firm that innovates

and develops its idea into a new technology. In practical terms, it matters how wide the domain

(or mandate) of a regulatory body is defined.

A number of countries have experimented with the idea of using regulatory sandboxes. These

comprise legally delimited spaces where FinTechs are allowed to test the waters of their innovation

in an environment without immediate regulatory interference. Under this arrangement, regulators

closely watch market activities and outcomes. In the language of our model, sandboxes translate

into a way for regulators to learn about new technologies first and to decide later on whether to

let FinTechs continue with new their activities. Without sandboxes, learning about new technolo-

gies is costlier and associated with greater risk. Accordingly, regulatory dismissal rates are higher,

compounded by a lower effort by FinTechs, leading to lower innovation success probability.

The literature on the impact of regulatory uncertainty on FinTech innovation is rather limited.

Grennan (2022) recounts the history of regulating FinTech in the US. Ran et al. (2023) report a

positive impact of regulatory clarity on debt crowdfunding. Empirical findings in Cornelli et al.

5Lack of regulatory preparedness can be manifested in giving guidance that introduces legal risks. See, e.g., the
Financial Times article "HSBC and Standard Chartered pressed by Hong Kong regulator to take on crypto clients."
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(2023) indicate that overall risk of FinTechs operating in sandboxes is lower, thereby improving

their access to capital, survival rates, and innovation activity. Auer and Claessens (2018) show how

valuations and transaction volumes of cryptocurrencies respond to various news about regulatory

actions. In related work, Charoenwong et al. (2024) look at investments in RegTech — compliance-

driven investments in IT — by established financial firms and show how regulation can affect not

only technology adoption but also market structure, an implication we theoretically characterize.6

On the theoretical front, Biais et al. (2023) argue that equilibrium BitCoin prices are prone

to reflect sunspots, implying multiple equilibria and extrinsic volatility that can be detrimental

for society. Gehrig and Ritzberger (2022) present a model where FinTech investments in ultra-

fast trading technologies can lead to appropriation of market power, excess price volatility, and

equilibrium multiplicity in markets with intermediated trading. Chiu et al. (2022) argue that

problems with decentralized finance can be alleviated by building an infrastructure supported by

a third party. More broadly, studies such as Boot and Thakor (1993) and Morrison and White

(2013) examine the regulator’s reputation and its interaction with regulatory transparency (Chen

et al., 2024) or information structure (Goldstein and Huang, 2016; Cong et al., 2020). None of

these papers study the effect of regulatory uncertainty on FinTech innovation.7

Our paper also contributes to a larger branch in the literature that studies general underin-

vestment problems associated with R&D investments (Besanko et al., 2018). Along these lines,

Gehrig and Stenbacka (2023) study how the ability of firms and policymakers to assess the viabil-

ity of projects affects investment and optimal subsidy rates. In their analysis, R&D investments

always carry positive externalities and policymakers’ ability to assess projects is exogenous. This

literature shares with our model that key decisions are based on the imperfect assessments of

projects and that threshold decision rules are optimal. With our focus on FinTech innovation

adoption, however, we introduce regulatory uncertainty — ex ante uncertainty about whether

projects impose positive or negative externalities on society — and let the regulator’s precision

of knowledge about projects be endogenous.

Regulatory uncertainty of the type considered here is a recent phenomenon and theoretical in-

quiries into its nature and effects on FinTech innovation adoption are still scarce. Academic inter-

est in regulatory uncertainty has, however, some history in the context of pharmaceuticals (e. g.,
6Not specific to FinTech, an emerging empirical literature has documented how policy uncertainty affects firm

innovation (see, e.g., Cong and Howell, 2021; Campello et al., 2022).
7Easley and O’Hara (2009) show that regulation of unlikely events can moderate the effects of ambiguity,

thereby increasing participation and generating welfare gains.
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Carpenter and Ting, 2007) and medical technology (e. g., Stern, 2017). There, it is the innovator

who provides verifiable but costly information (e. g., by providing results of experiments or exper-

imental test runs) to the regulator, upon which the latter decides whether or not to approve an

application. As we argue, however, such costly signaling game does not capture the reality of Fin-

Tech. In turn, we present a framework in which it is the regulator who generates costly information

about the potential societal effects of innovation. The regulator’s budget is limited, and potential

innovators compete among themselves, either for market shares within the boundaries of a given

technology or for the regulator’s limited resources when they aim to expand the current frontier.

Finally, concerning regulation and competition, Callander and Li (2024) build a cheap talk

model, and focus on how competition created by the innovation impacts regulatory decision mak-

ing. Our study differs by endogenizing innovation and focusing on risks under symmetric learning

rather than informational asymmetry and lobbying; in particular, we do not need to assume firms

know their innovations’ social value better than the regulators. We highlight a novel firm com-

petition through the regulatory budget channel, where monopolies enjoying the entire regulatory

attention innovate more — contrary to the Arrow Replacement Effect in Callander and Li (2024).

We note that the model we propose applies to innovation in the FinTech industry today, as

opposed to innovation in general. First, the ultimate effects of FinTech innovation are virtually

impossible to gauge and they carry potentially large negative economic and societal effects. For

comparison, an unregulated pharmaceutical drug generally only affects those individuals who un-

dergo the drug treatment. FinTech innovation, instead, can affect all economic agents by facilitat-

ing discrimination, tax evasion, and even terrorism. Second, note that innovation in pharmaceu-

ticals is typically introduced by existing leading firms (e. g., Bayer and Pfizer). Likewise, in the

tech industry, leading companies either develop innovation themselves or acquire innovative firms

they see as competitors (e. g., Meta and Google). In other words, other sectors preemptively in-

novate in-house or acquire disruptive innovations in the market. The end-result is the creation of

entrenched incumbents “protected” by regulation (via licenses and patents). This is different from

what happens in FinTech, where leading innovators are generally born out of new start-ups and

remain independent. Their closer competitors in the financial industry — banks — have only re-

luctantly adopted innovation in FinTech be it for fear of regulation or inability to understand and

integrate innovation into their business models. Finally, our model is timely to FinTech in partic-

ular as most countries are actively debating over different regulatory frameworks for the industry.
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The remainder of our paper is organized as follows. Section 2 presents the setup of the game.

Section 3 studies the equilibrium outcomes with a single innovative FinTech. Section 4 extends

the analysis to the case with multiple FinTechs. Section 5 introduces a disruptor FinTech who

has a first-mover advantage over other players. Section 6 is a brief discussion of further model

extensions and their policy implications. Section 7 concludes.

2 Setup

We first present a general overview of the model, before delving into the details of our setting.

We use FinTech innovations as concrete examples of disruptive innovation, though the framework

applies more generally to other technological innovations such as nuclear power and generative AI.

2.1 Overview

There are N ∈ Z≥2 risk-neutral firms potentially providing financial products and services in a

four-period economy. Of those, m ∈ {1, . . . , N} firms are hit with an “idea” (innovation) lead-

ing to a new, applicable financial technology.8 They are thus called FinTechs and form a set

M:={1, . . . ,m}. The N − m non-FinTechs compete in a well-established conventional market,

each to realize a safe profit there. A FinTech can enter the conventional market or try to create a

differentiated market with the innovative technology.9 We allow the possibility that one FinTech

is the lead disruptor/innovator who has a first-mover advantage over all other players.

Given its untested nature, a new technology is risky as it leads to the creation of a new market

only with some probability. A FinTech influences this probability by exerting a costly effort in

stage t = 1. A perfect and publicly observable signal (“market price”) on whether the FinTech’s

technology can successfully mature is then generated in stage t = 2. If the technology matures, the

FinTech becomes the monopolist for that new market and can generate positive private returns.

Consistent with the notion that innovative efforts take time to pay off, these returns are only

realized in the realization stage t = 3.

8We use “technology” here to refer generically to the emergence of a new product, service, or market. Our
model applies to disruptive innovations beyond FinTech too.

9Examples of FinTechs developing new technologies and tapping into new markets include banks leaving branch
competition to enter digital payment and credit (Jiang et al., 2024) as well as firms migrating from centralized
exchanges (CEX) into the decentralized space (DEX) such as Binance, AppoloX, and ShapeShift.
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A regulator typically does not know the new technology or fully understands right away the

idea behind it.10 The regulator pursues the interests of its stakeholders instead of the private

returns of such technology. Such stakeholders may be consumers, special interest groups, or society

as a whole. The key is that the regulator’s and the FinTech’s interests are not fully aligned, and

that the regulator has only imperfect knowledge about how the new technology will affect its

stakeholders at the time of policy making.

In what follows, the regulator is interested in the new technology’s societal consequences, which

include consumer welfare and other potential externalities. Positive externalities arise if the new

technology can later be adapted in ways that are beneficial to society; examples include easing

access to credit, democratization of banking services, and fraud prevention. Negative externalities

arise if, for example, the new technology can be later abused for illegal activities such as money

laundering and tax evasion, or turns out to have adverse implications for consumer protection or

financial stability.

While a priori uncertain about its actual societal effects, the regulator can work on improving

its understanding of a new technology. Specifically, in addition to the public perfect signal on

the future private success of a new technology there is also a public imperfect signal about its

future societal value, and the regulator can improve the precision of the latter signal by spending

resources on its information content in t = 1, either right after the lead disruptor has made its

effort choice or jointly with the other innovating FinTechs. The signal is publicly observed in

stage t = 2. For example, a regulator (such as the SEC) can task a working group of experts with

identifying the legal status of a newly developed token as a financial asset. The regulator can also

elicit from stress-testing traditional banks the likely extent to which the new financial product or

service may disrupt the stability of the financial system. Similarly, a regulator (such as the BIS)

may hire Ph.D. graduates from data science to study the implications of generative AI on the

financial industry. Spending resources on signal precision may also include finding an appropriate

regulatory framework.11

After observing the signals, the regulator may decide to ban the financial product or service

associated with the new technology in stage t = 2, leaving the FinTech without long-term pri-

10Here lies the challenge of regulating disruptive innovations: Designing and implementing policies in the face
of such uncertainty is particularly relevant in an age when the technical mastery of new technologies is beyond the
policymakers’ skills in general.

11Note that reducing regulatory uncertainty does not mean advocating for any particular innovation. See, e.g.,
the Financial Times article "SEC approves first spot bitcoin ETFs in boost to crypto advocates".
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1 2 3
Implementation Intervention Realization

Firms:

• Innovative firms decide
whether to become
FinTechs through
developing new technology
and exert costly effort to
improve success probability

while

• Non-FinTechs as
incumbents in established
market offer conventional
products & services

Private returns realized

Signals:

• Perfect signal on future
private returns (if
technology implemented
and effort exerted)

and

• Imperfect signal on future
social value (if returns
positive)

Regulator:

Spend resources to improve
precision of future signals
about technology’s social
value

Observe signals, then

• Ban technology

or

• Let FinTech proceed

Social value realized

Figure 1: Model Overview.

vate returns. Alternatively, the regulator may decide to leave the FinTech unregulated and let it

reap its long-term profits. Immediately following disruptive innovations, regulators are often con-

fined to such crude, binary interventions as fine-tuned instruments require regulatory bodies to

gain further experience with how the new technology unfolds, where its weaknesses lie, and how

to correct them.12 In a way, our framework is best suited for studying regulatory preparedness,

competence, and immediate regulatory reactions to innovation.

12Research by Ran et al. (2023) on the regulation of crowdfunding platforms shows that dozens of countries
around the world choose to either completely ban on leave the activity unregulated.
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We detail the various stages of the regulation–innovation game in Figure 1. In our baseline

case, we do not consider any first-moving, lead disruptor. We note that our key insights that (i)

regulatory capacity matters for innovation, (ii) innovators compete for regulatory capacity, and

(iii) regulator’s budget constraint becomes binding endogenously depending on innovators’ effort

are not crucially dependent whether the innovators move before the regulators.

2.2 The Established Market

In the conventional market with homogenous service quality, each of the N firms can supply

the service at a constant marginal cost, which we normalize to zero. Demand in this market is

deterministic and linear; i. e., p = η− q, with p as price, q as quantity demanded, and η as the size

of the market (the quantity bought and sold if the market were fully competitive). The regulator’s

rules (if there are any) are pre-determined, their impact is deterministic and normalized to zero.

The potential social value of this market is known and equals the maximum consumer rent η2/2.

2.3 New FinTech Markets

Each new technology developed from the innovative idea (if pursued by a FinTech) has three

stages: an implementation stage t = 1 (for the case with a lead disruptor this happens at the

beginning of stage t = 1 before everyone else makes a choice), an intervention stage t = 2, and a

realization stage t = 3 (cf. Figure 1).

Private returns and private cost. Each new technology’s private returns are risky as of t = 1,

known in t = 2, and realized in t = 3.13 The stochastic private return R̃i of FinTech i ∈ M follows

R̃i =

 R with probability αi

0 with probability 1− αi

(1)

where R ∈ R++. The success probability αi is set by the respective FinTech i. Control of the

success probability comes at a private cost c(αi) to this FinTech, with c′(αi) > 0 and c′′(αi) > 0

for all αi ∈ (0, 1), as well as c(0) = 0, c′(0) = 0, and lim
αi→1

c′(αi) = ∞.14 Some insights are eas-

13That private returns accrue only at t = 3 is made solely for the sake of clarity. There are no qualitative
changes if there were some private returns already at t = 2. The key is that there are private returns that can only
be realized after the regulator has had a chance to intervene.

14Throughout the paper, for functions whose values grow without bound we allow for limits with infinite values.
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ier to interpret on the basis of closed-form solutions by focusing on marginal costs given by

c′(αi) = αi/(1 − αi), which are zero for αi = 0 and grow with no bounds when αi converges to

unity.15 If more than one innovative FinTech exists (m > 1), their cost functions c are identical

and their private returns Ri are i. i. d. random variables.

Social value. Innovating firms have limited liabilities and are in general not aligned with

their social value. Let the new technology’s gross value to society be a measurable, real-valued,

stochastic variable Ṽi. It is known only at the realization stage t = 3 and conditional on the re-

alized private return. If R̃i = 0, the gross social value can take any value; as the FinTech stops

operation of the new technology anyway, it does not matter for the FinTech’s or the regulator’s

decision problem what the social value precisely is, and without loss of generality let it be Ṽi = 0.

If R̃i = R, the gross social value follows a standard normal distribution with mean µV = 0 and

standard deviation σV = 1. If more than one innovative FinTech exists (m > 1), their technolo-

gies’ gross values to society Ṽi are i. i. d. random variables and are additive.

Signals and the regulator’s cost of their precision. The social value of the technology

is unknown prior to t = 3. However, there is a publicly observable signal S̃i about this value at

t = 2, provided the innovation has become privately successful; i. e., R̃i = R. Such signal is a

measurable, real-valued, stochastic variable with mean µS = 0 and standard deviation σS = 1.

To make the regulatory task practically relevant, we allow it to be correlated with the gross so-

cial value Ṽi. In technical terms, signal and gross social value follow a bivariate standard normal

distribution with correlation ρi ≥ 0.16

The regulator exerts some control over the information content of signals. Specifically, spend-

ing resources at t = 1 improves the precision of signals at t = 2. Such signal precision with re-

gards to FinTech i is measured by the correlation ρi. If the signal is uncorrelated with the social

value, the signal is most imprecise and thus not informative at all. If the signal is perfectly cor-

related with the social value, the signal precision is perfect and the signal thus fully informative.

In between, the larger the correlation ρi between signal and social value, the better is the signal

15Together with c(0) = 0, this gives us c(αi) = −
(
αi + ln(1− αi)

)
as the specific functional form.

16Limiting attention to ρi ≥ 0 is without loss of generality. If ρi < 0, the information content of some signal Si

when ρi ≥ 0 would be the same as the information content of some signal −Si when ρi < 0.
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precision.17 The signal precision with regards to some FinTech i has no bearing for the informa-

tion content of signals about any other FinTech j ̸= i for all i, j ∈ M.

Let G ∈ R++ denote the total (social value of the) resources available to the regulator, and f :

[0, 1] → R+ the function mapping the correlation of signals with the (gross) social value onto the

costs of a regulator. Function f is the same for all innovative FinTechs. It satisfies f ′(ρi), f
′′(ρi) >

0 for all ρi ∈ (0, 1), f(0) = f ′(0) = 0, and lim
ρi→1

f ′(ρi) = ∞. These properties reflect that generating

non-informative signals does not cost anything, that informative signals are costly, that costs are

increasingly higher the better is the precision of signals, and that perfect signals are prohibitively

costly. We also let the costs depend on the regulator’s skills and capability to improve the precision

of signals. As with the FinTech’s cost function c, the interpretation of results simplifies by focusing

on marginal costs given by f ′(ρi) = θρi/(1− ρi) with θ ∈ R++ reflecting the regulator’s skills; i. e.,

the regulator can utilize a given increase of the budget for a high θ not as effective as for a low θ.18

Required minimum social value. As in Callander and Li (2024), we assume that regulators

require a minimum social value. This could be a safety margin; i. e., an imposed second layer of

insurance of society against harm from any new, untested technology. Regulators may also re-

quire the social value to cover the cost to design and enforce a regulatory framework that will

deter a FinTech from taking socially costly actions (e.g., those harming national security) after

approval of its technology. Moreover, it could be very costly for the regulator privately when wel-

fare is below the threshold due to career concerns, political promotion, etc. Accordingly, a nec-

essary condition for any new technology to be acceptable to the regulator is that its expected

social value is larger than some minimum level v > 0, bearing two immediate implications. First,

if the regulator does not spend any resources on the precision of signals, the conditional expected

social value E(Ṽi|Si) always falls short of the required threshold regardless which signal Si is ob-

served. Second, by spending resources on the information content of signals, the conditional mean

E(Ṽi|Si) exceeds the required threshold for at least some signals Si.19

Regulatory instruments. Even though the regulator can increase its preparedness, the im-

mediate regulatory toolbox is limited due to the innovative nature of FinTech. The regulator can

17Spending resources on signal precision may also include identifying a regulatory framework that prevents
socially costly outcomes for a specific FinTech innovation.

18Together with f(0) = 0, this gives us f(ρ) = −θ
(
ρ+ ln(1− ρ)

)
.

19Our results hold equivalently if Ṽi ∼ N(−v, 1) and regulators approve technologies provided E(Ṽi|Si) > 0.
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either ban a technology right away or leave its application unregulated. In principle, the regu-

lator can apply these instruments with or without regard for the signal S̃i. If the regulator ap-

plies them conditional on its signal, it is said to pursue a policy of informed intervention. If the

regulator bans the technology without regard for the signal, it is said to impose an outright ban.

Leaving the new technology unregulated regardless of the signal (laissez-faire) is not an option;

given the information available, it would mean condoning the technology despite an insufficient

expected social value.20

Lead innovator. Oftentimes a lead innovator or disruptor would explore a technology before

other innovators or regulators have put in the effort or resources to innovate or prepare for regu-

lation. We model in Section 5 the possibility of an FinTech implementing a disruptive innovation

at the very beginning of stage t = 1 before anyone else makes any decision. In the baseline, we

leave out this possibility.

3 Baseline Game Between a Disruptive Innovator and the

Regulator

In the baseline analysis, we shut down lead innovator and study the innovation game when m = 1.

Without loss of generality, let this firm be FinTech 1, and for the sake of saving on notational

clutter, we drop subscript i when referring to the only innovative FinTech in this section. We de-

rive the best response functions for the regulator and for all firms, with a focus on the innovative

FinTech, and properties of equilibria. Where appropriate, numerical examples further illustrate

key insights and findings.

3.1 The Regulator’s Decision Problem

The following preliminary considerations are helpful to understand the regulator’s problem. If

FinTech 1 decides in stage t = 1 to not develop its idea into a new technology, and instead to op-

erate in the established market, the regulator will not want to waste resources on signals about

the technology associated with FinTech 1’s idea. If, however, FinTech 1 decides to develop its

idea into a new technology, the regulator’s problem becomes subtle. The regulator would let the

20In Section 6 we discuss laissez-faire as a viable policy option when v < 0.
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FinTech proceed in stage t = 2 if and only if the new technology’s conditional expected social

value E(Ṽ |S) is larger than the required minimum social value v > 0. This is the case if and only

if the technology is deemed to be privately successful and, additionally, the regulator has spent

resources to improve the precision of signals (ρ > 0), with the observed signal being deemed suf-

ficiently good. The latter holds provided S > s where s is implicitly defined by E(Ṽ |S = s) = v.

Given the distributions of Ṽ and S̃ (bivariate standard normal), the expected social value condi-

tional on s is E(Ṽ |S = s) = ρs, implying that the critical signal value is s = v/ρ. Accordingly, if

S > v/ρ, the signal is sufficiently good as it indicates that the technology is, on expectation, so-

cially beneficial, and the regulator leaves the FinTech unregulated. By contrast, if S ≤ v/ρ, the

signal is not sufficiently good as it indicates that the technology is socially costly, and the regu-

lator stops the FinTech by banning its technology.

Let φ be the probability density of the standard normal distribution and Φ the associated

cumulative distribution function. Also, define the expected net social value of the new technology

as of stage t = 1 as the expected social value in excess of the required minimum social value. As the

properties of the bivariate standard normal distribution include E(Ṽ |S > s) = ρφ(s)
/(

1− Φ(s)
)
,

this expected net social value is:

α
(
1− Φ(s)

)(
E(Ṽ |S > s)− v

)
= α

(
ρφ(s)−

(
1− Φ(s)

)
v
)
. (2)

The regulator’s objective is to maximize expected welfare subject to its budget constraint, taking

as given the probability of success α (set by FinTech 1). The budget constraint requires that

expenditures on improving the signal precision f(ρ) shall not exceed the regulator’s budget G.

The regulator can also spend part of its budget G on other socially valuable activities whose value

to society equals the resources the regulator directs to them. Expected welfare thus comprises

the new technology’s expected net social value, the resources G available to the regulator net of

what has been spent to improve the precision of signals, f(ρ), and the welfare loss associated with
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imperfect competition in the established market.21 Accordingly, the regulator’s problem reads:

max
ρ∈[0,1[

α
(
ρφ(s)−

(
1− Φ(s)

)
v
)
+G− f(ρ)− η2

2
(
N + I{0}(α)

)2 (3)

s.t. G ≥ f(ρ),

with 10 : [0, 1] 7→ {0, 1} as an indicator function defined by:

10(α):=

 1 if α = 0,

0 otherwise.

We make the following assumption for tractability.

Assumption 1 (Stationary points) For any α > 0, the expected welfare is a function of signal

precision ρ that has at most three stationary points.

The regulator’s problem (3) has the following solution.

Lemma 1 (Regulator’s best response to a single innovative FinTech) Let r : R++ ×

[0, 1] 7→ [0, 1] be the correspondence:

r(θ, α) =
{
ρ ∈]0, 1[

∣∣∣αφ(vρ)− f ′(ρ) = 0 and αφ(v
ρ
)v

2

ρ3
− f ′′(ρ) < 0

}
. (4)

There are unique (H, θ̄, G) ∈ R3
++ and G ≥ G such that the solution ρ∗ to the regulator’s prob-

lem (3) satisfies ρ∗ = P(α, θ,G) where P : [0, 1]× R2
++ 7→ [0, 1] is a function defined by

P(α, θ,G) =


r(θ, α) if (α, θ,G) ∈ ]0, 1]× ]0, θ̄]× [G,∞[,

f−1(G) if (α, θ,G) ∈ ]0, 1]× ]0, θ̄]× [G,G],

0 otherwise,

(5)

with θ̄ = Hα; G = G if θ = Hα; ∂G/∂α < 0 and ∂G/∂α > 0 if θ < Hα; rθ(θ, α) < 0 and

rα(θ, α) > 0 if (θ,G) ∈ ]0, Hα]× [G,∞[.

Proof. See Appendix A.

21Adding the FinTech’s effort to the expected net social value is without consequence as long as the regulator
considers this effort as given.
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Lemma1 specifies the conditions under which the regulator opts for informed interventions

rather than for imposing an outright ban on the new financial technology. Recall, an outright ban

means that the regulator does not generate any information on FinTech 1’s idea (i. e., ρ∗=0), and

denies the FinTech the approval of its new technology regardless of which signal S of its social value

is observed. A policy of informed interventions means that the regulator invests in the signal’s

precision at stage t = 1 and leaves the FinTech unregulated in stage t = 2 provided the observed

signal S is higher than s= v/ρ∗. If the observed signal S is not higher than s= v/ρ∗, the technol-

ogy is banned at stage = 2. A informed intervention policy is unconstrained if the regulator’s bud-

get constraint is not binding at ρ∗, and constrained otherwise. In either case, if banned then Fin-

Tech 1 will have spent in vain its efforts at stage t = 1 to make the technology a private success.

An outright ban is in the regulator’s best interest if any of the following holds true: the

regulator has only a rather small budget (i. e., G is smaller than some G); the regulator’s skills

and capability to improve the precision of signals are rather poor (i. e., θ is larger than some θ̄);

and, trivially, the FinTech has not developed its idea into a new technology (α = 0). By contrast,

it is in the best interest of the regulator to pursue a policy of informed interventions (i. e., ρ∗> 0),

provided neither of those conditions holds (i.e., G>G, θ < θ̄, and α > 0).

Provided it opts for informed interventions, the regulator can set its most desired signal preci-

sion ρ∗= r(θ, α) (for which the respective first-order and second-order conditions for a local max-

imum are satisfied) only if its budget constraint is not binding; i. e., the budget G is not smaller

than some critical value, G. Should the regulator not have sufficient resources to improve the sig-

nal’s precision as much as it would like, it can still be enough to make such constrained informed

interventions a better way forward than an outright ban. In that case, the regulator uses its entire

budget on the signal’s precision; i. e., ρ∗= f−1(G)). A binding budget constraint for the regula-

tor has important repercussions for FinTech 1. Since Φ
(
v
/
f−1(G)

)
> Φ

(
v
/
r(θ, α)

)
for f−1(G) <

r(θ, α), the probability of rejecting FinTech 1’s new technology at stage t = 2 is larger when the

budget constraint is binding than if the budget constraint is not binding.

The thresholds θ̄, G, and G have some important properties. Those are driven by the fact that

the regulator’s objective function may, in general, be not concave in ρ everywhere.22 There can

thus be multiple local maxima. One local maximum always exists at ρ=0, since ρ=0 satisfies

22If it were concave everywhere, there could ever be only outright bans.
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Figure 2: Signal precision and expected social surplus (for v = 0.1 and α = 0.8).

the associated first-order and second-order conditions:

αφ(v
ρ
)− f ′(ρ) = 0,

∂
∂ρ

(
αφ(v

ρ
)− f ′(ρ)

)
< 0.

(6)

If the objective function has at most three stationary points, however, there is at most one other

local maximum and, provided it exists, is given by r(θ, α). Figure 2 illustrates for two specifications

the expected social surplus, defined as the difference between expected net social value and the

cost of signal precision, for which the objective function has at most two local maxima. For θ=0.8,

there are two local maxima and the global maximum is at ρ≈ 0.27; for θ=1.8, the global maximum

is at ρ=0. With θ = 1.8, the regulator is thus so unskilled and incapable that spending resources

on signal precision will cost always more than can be gained from more informative signals.

Threshold capability θ̄. This threshold is defined as the θ such that the expected net social

value is strictly positive for some ρ> 0 provided θ < θ̄, and negative for every ρ> 0 provided θ≥ θ̄.

Threshold θ̄ is directly proportional to the success probability α; i. e., there is a real number

H ∈ R++ such that θ̄=Hα. If the success probability α increases, it becomes more likely that the

social value of the new technology will be different from zero and thus less likely that the regulator

will spend its resources in vain. Accordingly, improving the signal’s precision is still profitable,

even if their (marginal) costs would be somewhat larger.
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Budget thresholds G and G. As f−1 is the inverse of the regulator’s cost function, f−1(G)

is the maximum correlation between signal and social value affordable with a budget G.23 Given

the properties of the cost function f , its inverse f−1 is a monotone, increasing, and concave func-

tion of the regulator’s budget G with lim
G→0

f−1(G)= 0 and lim
G→∞

f−1(G)= 1. Therefore, provided

the regulator’s skills and capability are such that θ < θ̄, there is a threshold G> 0 implicitly de-

fined by f−1(G)−r(θ, α)= 0 such that:

f−1(G)− r(θ, α) ∈

 R++ if G > G,

R− if G < G.
(7)

Accordingly, only if the regulator’s budget is larger than threshold G, the regulator has the re-

sources to fund its most desired signal precision r(θ, α); otherwise it’s budget constraint is binding.

By the implicit function theorem, ∂G/∂α> 0. Intuitively, a higher effort by FinTech 1 increases

the success probability α, which in turn makes it more profitable for the regulator to improve the

signal precision. As such, the regulator is induced to spend more resources on identifying the value

of the new technology to society. However, for a given budget G, it also becomes more likely that

this budget falls short of what the regulator needs to generate the desired signal precision r(θ, α).

Provided the regulator’s skills are such that θ < θ̄, there is another budget threshold G > 0

implicitly defined by α
(
f−1(G)φ

(
v

f−1(G)

)
−
(
1−Φ

(
v

f−1(G)

))
v
)
−G=0 such that

α

(
f−1(G)φ

(
v

f−1(G)

)
−
(
1− Φ

(
v

f−1(G)

))
v

)
−G ∈

 R++ if G > G,

R− if G < G.
(8)

Only if the regulator’s budget exceeds this threshold G, spending it on signal precision is better

than imposing an outright ban (spending only parts of budget G is not an option as the budget

constraint is binding). By the implicit function theorem, ∂G/∂α< 0. Accordingly, the higher the

effort α by FinTech 1, the less likely it is that the regulator’s budget G falls short of what is re-

quired to generate any signal precision that generates a positive net social value. Since G = G for

θ = θ̄ and ∂G/∂α< 0 and ∂G/∂α> 0, one obtains G < G for all α > θ/H. The following exam-

ple, along with the accompanying Figure 3, illustrates the policy regimes as implied by Lemma 1.

Example: Let v = 0.1 and α = 0.8 such that θ̄ ≈ 1.449.
23More specifically, f−1(G)= 1+W

(
−e−1−G

θ

)
where W is the product log (or Lambert) function.
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Figure 3: Regulator’s characteristics and policy regimes (for v = 0.1 and α = 0.8).

1. Suppose the regulator’s skills and capability are poor such that θ > θ̄ (i. e., right

of the vertical red line in Figure 3). The regulator’s best response to α = 0.8 is

to place an outright ban. Regardless of how large the budget is, generating any

informative signal is simply too costly.

2. Suppose the regulator’s skills and capability are sufficiently good such that θ ≤ θ̄.

For combinations of θ and G for which

(a) G < G (i. e., below the red line in Figure 3), the regulator’s best response to

α = 0.8 is to place an outright ban. The budget is too small to allow for any

feasible signal precision to be effective enough.

(b) G ≤ G < G (i. e., between the red and the blue lines in Figure 3), the reg-

ulator’s best response to α = 0.8 is to pursue a policy of informed interven-

tions. The regulator’s budget constraint is binding, though. Hence, the reg-

ulator sets ρ∗ = f−1(G).

(c) G ≥ G (i. e., above the blue line in Figure 3), the regulator’s best response to

α = 0.8 is to pursue a policy of informed interventions. Since the regulator’s

budget constraint is not binding, the regulator sets ρ∗ = r(θ, 0.8).

19



Note, the blue line (G) is non-monotone in θ. If the regulator is highly skilled and

capable (θ close to zero), only few resources are required to fund even a very high

signal precision. If the regulator’s skills and capability are rather poor (θ close to θ̄),

the regulator does not find it optimal to generate a high precision of signals, such that

only relatively few resources will be spent on it. End of example

The role of success probability α. The strategic interaction among players is of particular

interest to us. According to Lemma 1, FinTech 1’s (perceived or actual) choice of its own proba-

bility of success α affects the regulator’s choice of signal precision ρ. First, regardless its budget

G, the regulator sets ρ = 0, and hence places an outright ban on the new technology, if α < θ/H.

This is because improving the precision of signals would be rather costly and at the same time

quite likely in vain. Second, provided α ≥ θ/H, the regulator would ideally want a precision of

signals given by a correlation of ρ = r(θ, α). This correlation is increasing in the success proba-

bility α. It simply becomes more profitable to spend resources on signal precision when it is less

likely that those expenses will be made in vain (i. e., that the FinTech cannot turn its idea into a

successful new technology and regulatory intervention becomes thus pointless). This also implies

that an increasing probability of success α makes it more likely that the regulator possesses too

few resources to generate the desired correlation r(θ, α), in which case signal precision is restricted

to what the regulator can just afford (i. e., ∂G/∂α > 0). Finally, the regulator may have too low

a budget to ever have sufficient resources for a correlation r(θ, α), regardless of α. Nevertheless,

for sufficiently high success probability α it can still be profitable to spend even such low a budget

on signal precision if the probability of spending it in vain becomes very small (i. e., ∂G/∂α < 0).

The following example, along with Figure 4, illustrates the role of α on the regulator’s choice ρ∗.

Example: Let v=0.1 and θ=0.8 such that H ≈ 1.811. A necessary condition for the

regulator to not place an outright ban is that the FinTech 1’s success probability is

at least α= θ/H ≈ 0.442, for only then θ≤ θ̄ obtains. The ex ante-probability of the

innovation’s gross social value falling short of v = 0.1 is Φ(v) ≈ 0.540.

1. Suppose the regulator’s budget is G=0.025 (see Figure 4a). Outright bans are

the regulator’s best response for small success probabilities, α ⪅ 0.442. Uncon-

strained informed interventions with ρ∗ = r(θ, α) ≥ r(θ, θ/H) ≈ 0.150 are the
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Figure 4: Regulator’s best responses to FinTech’s choice of success probability (for v = 0.1,
θ = 0.8).

best response if α ⪆ 0.442 and f
(
r(θ, α)

)
≤ G = 0.025; the latter holds provided

α ⪅ 0.657. Constrained informed interventions are optimal for even larger α, in

which case ρ∗ = f−1(G) ≈ 0.223. Accordingly, with informed interventions, the

probability that the regulator will stop the FinTech after observing the signal is

at least Φ
(
v
/
f−1(G)

)
≈ 0.668 and at most Φ

(
v
/
r(θ, θ/H)

)
≈ 0.748.

2. Suppose the regulator’s budget is G=0.005 (Figure 4b). Such budget renders

a correlation of r(θ, θ/H) infeasible as G < G at α = θ/H. Hence, even if α is

above θ/H ≈ 0.442, the regulator may still place an outright ban on the technol-

ogy. Only if α is as large as α ≈ 0.487, the regulator pursues a policy of con-

strained informed interventions because only then spending its small budget is

worthwhile (probability of spending it in vain is only then sufficiently small).

The regulator’s tight budget only allows for a correlation of ρ = f−1(G) ≈ 0.108,

though. A lower correlation is not efficient, a higher correlation is not feasible.

The probability that the regulator will stop the FinTech after observing the sig-

nal is Φ
(
v
/
f−1(G)

)
≈ 0.823.

End of example
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3.2 Equilibria

We consider a simultaneous game in which all firms and the regulator make their own decisions

by taking as given the others’ decisions. Here, we focus on Nash equilibria in pure strategies.

The firms’ decision problems. The number n of firms operating in the established ecosystem

is either N (if FinTech 1 does not develop a new technology) or N−1 (otherwise). This oligopolis-

tic market is characterized by a Cournot-Nash equilibrium with either n = N or n = N − 1 op-

erating firms, respectively. In such equilibrium, each firm l ∈ {1, . . . , n}, which operates in the

established market, produces ql = η/(n + 1) and makes a profit of πl = η2/(n + 1)2. The total

quantity sold is q = ηn/(n + 1) such that the welfare loss due to imperfect competition in that

market amounts to 0.5η2/(n+ 1)2.

The conventional, established market serves one purpose here: to define the outside option

for the innovator. If the innovator remains in that market, what it gets depends on how many

others compete there. If the innovator leaves the market, then it does not care what the others

(not innovating incumbents) get. Accordingly, FinTech 1 chooses between operating in the estab-

lished market and developing its idea into the new technology. In the former case, it generates

π1 = η2/(N +1)2 in profits. In the latter, it generates α
(
1−Φ(v/ρ)

)
R− c(α) in expected profits,

which depends on the chosen probability of success α and the signal precision ρ set by the regula-

tor. FinTech 1 takes as given the regulator’s choice of the signal precision, ρ. Hence the probabil-

ity Φ(v/ρ) that the regulator will dismiss the technology after observing the signal at the interven-

tion stage t = 2 is also given to FinTech 1. This probability is one if and only if the regulator sets

ρ = 0. It is strictly decreasing in ρ and always positive. Therefore, FinTech 1 solves at stage t = 1:

max
α∈[0,1]

α
(
1− Φ

(
v
ρ

))
R− c(α) + 10(α)

η2

(N + 1)2
. (9)

Lemma 2 (Innovative FinTech’s best response to regulator) Let a : R++ × [0, 1] 7→ [0, 1]

be a function defined by

a(R, ρ) =

(
1− Φ(v/ρ)

)
R(

1− Φ(v/ρ)
)
R + 1

, (10)

and let N : R++ × ]0, 1[ 7→ Z≥2 be a function defined by

N (R, ρ) = min
{
N ∈ Z≥2

∣∣∣ (1− Φ(v/ρ)
)
R− ln

((
1− Φ(v/ρ)

)
R + 1

)
≥ η2

/
(N + 1)2

}
. (11)
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The solution α∗ to FinTech 1’s problem (9) satisfies α∗ = A(ρ,N,R) where A : [0, 1] × Z≥2 ×

R++ 7→ [0, 1] is a function defined by

A(ρ,N,R) =

 a(R, ρ) if N ≥ N (R, ρ),

0 otherwise,
(12)

with the following properties:

1. aR(R, ρ) > 0, a(0, ρ) = 0, and lim
R→∞

a(R, ρ) = 1;

2. aρ(R, ρ) > 0, a(R, 0) = 0, and a(R, 1) < 1;

3. N (R, ρ) ≤ N (R, ρ′) for 1 ≥ ρ′ > ρ > 0 and N (R, ρ) ≤ N (R′, ρ) for R′ > R > 0.

Proof. See Appendix B

The Lemma states that FinTech 1’s optimal effort, and hence its optimal success probability α∗,

responds to the signal precision ρ set by the regulator. Provided α∗> 0, the first-order condition

to FinTech 1’s problem (9), which after rearranging terms yields Eq. (10), defines α∗ as an implicit

function of the signal precision ρ.

If signals are left perfectly uninformative by the regulator (ρ = 0), and the probability of being

dismissed thus equals one (i. e., Φ(v/ρ) = 1), FinTech 1’s expected profit from developing its idea

is zero at best. It is thus best for FinTech 1 not to waste any effort on developing its idea into a

new technology, regardless how much profits it can make in the established ecosystem.

If, however, the regulator pursues a policy of informed interventions (ρ > 0), FinTech 1’s ex-

pected profit from developing its idea is strictly positive. Yet, FinTech 1 will embark on develop-

ing its idea into a new technology only if the profits it can make in the established market are suf-

ficiently low. The latter is true if that market is rather competitive; i. e., the number N of firms

that can service this market is larger than some threshold N (R, ρ). For lower potential private

returns R, and worse signal precision ρ, expected profits associated with the new technology are

smaller. FinTech 1 will thus opt for the established market even if that market is more competi-

tive; i. e., the threshold N (R, ρ) is larger, such that the number N of firms can be even larger and

FinTech 1 will yet opt for the established market.

Finally, provided FinTech 1 goes ahead with the new technology and hence α∗ > 0, a higher

private return, R, and a better signal precision, ρ, increase FinTech 1’s expected marginal benefits
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Figure 5: FinTech’s best response to regulator’s choice of signal precision (for v = 0.1, R = 5,
η = 10).

from developing the new technology. This induces FinTech 1 to put in more effort; i. e., the chosen

success probability α∗ increases.

The following example illustrates the role of ρ for FinTech 1’s choice of α∗ (see Figure 5).

Example: Let v=0.1, R = 5, and η=10.

1. Suppose the number of firms is N = 14 (see Figure 5a). Provided ρ is such that

14 ≥ N (R, ρ) (i. e., if ρ ⪆ 0.15), FinTech 1 will go ahead with the development

of the new technology with a success probability of at least α∗ ≈ 0.558; this

probability is increasing in ρ and reaches its maximum for ρ = 1 at α∗ ≈ 0.697.

2. Suppose the number of firms is N = 9 (Figure 5b). Provided ρ is such that 9 ≥

N (R, ρ) (i. e., if ρ ⪆ 0.562), FinTech 1 will go ahead with the development of the

new technology with a success probability of at least α∗ ≈ 0.682; this probability

is increasing in ρ and reaches its maximum for ρ = 1 at α∗ ≈ 0.697.

End of example

Nash equilibria in pure strategies. We focus on equilibria that entail the least possible un-

certainty about equilibrium strategies, and hence minimizes in a way the scope for regulatory un-
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certainty.24 Let αe and ρe denote equilibrium choices by FinTech 1 and the regulator, respectively,

thus satisfying:
αe = A(ρe, N,R),

ρe = P(αe, θ, G),

(13)

and let ne:=N−1+10(α
e) denote the equilibrium number of firms operating in the established

market.

Proposition 1 (Equilibrium for single, non-disruptor FinTech)

1. Outright ban: For all (θ,G,N)∈R2
++×Z≥2, a Nash equilibrium in pure strategies with

(αe, ρe, ne)= (0, 0, N) always exists.

2. Informed interventions: For every G∈R++ there is θ̂∈ ]0, a(R, 1)H[ with ∂θ̂/∂G≥ 0, such

that a Nash equilibrium in pure strategies with αeρe > 0, and ne = N − 1 exists provided

θ∈ ]0, θ̂] and N ≥N (R, ρe). There can be multiple such Nash equilibria in pure strategies,

which may not be Pareto-ranked.

3. Properties: Let αe
max and ρemax be defined by

αe
max:=max

{
α∈ [0, 1]

∣∣∣α = A(ρ,N,R) and ρ = P(α, θ,G)
}

ρemax:=max
{
ρ∈ [0, 1]

∣∣∣α=A(ρ,N,R) and ρ=P(α, θ,G)
}

Provided αe
max > 0 and ρemax > 0, such equilibrium has the following properties

• ∂αe
max/∂θ < 0 and ∂ρemax/∂θ < 0;

• ∂αe
max/∂G ≥ 0 and ∂ρemax/∂G ≥ 0;

• ∂αe
max/∂R > 0 and ∂ρemax/∂R ≥ 0;

• N (R, ρemax) is (weakly) smaller for smaller θ and larger G.

Proof. See Appendix C

Proposition 1 states that an outright ban always constitutes a Nash equilibrium. However,

Nash equilibria with informed interventions co-exist provided the regulator’s skills and capability

are sufficiently good and the established market is sufficiently competitive.
24With mixed strategies, players randomize their equilibrium actions, creating more strategic uncertainty.
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The proposition bears clear implications for regulation. The threshold value θ̂ for the regula-

tor’s skills and capability, below which equilibria with informed interventions can exist, is indepen-

dent from the degree of competition in the established market, but may depend on the budget of the

regulator: If the budget constraint is binding in equilibrium, the regulator has to be rather skilled

and capable in generating informative signals about the new technology. Otherwise, the feasible

signal precision either implies that the probability of regulatory approval is so small that it is bet-

ter for the FinTech 1 to operate in the established market, or that the regulator is better off by not

spending any resources at all and placing an outright ban instead. Note that a tighter budget per-

mits equilibria with informed interventions only if the regulator’s skills and capability are better.

The threshold N (R, ρe) for the competition in the established market depends, in principle, on

the regulator’s skills and capability to generate informative signals and on its budget. Specifically,

the threshold is (weakly) larger for a less skilled and capable regulator or a regulator with only

a modest budget. The reason is that FinTech 1 will in either case expect lower profits from

developing its idea into a new technology because the probability that the regulator will stop

FinTech 1 after observing the signal is rather high. For FinTech 1 to develop the idea despite lower

expected profits, the competition in the established market needs to be stronger (hence the profits

FinTech 1 can make there be lower).

With a better skilled and capable regulator, FinTech 1 also has better incentives to care about

the success of the new technology (as the regulator will seek to generate more informative signals),

thereby increasing expected private returns on the new technology. In the same vein, giving

the regulator a larger budget not only permits equilibria with informed interventions when they

were infeasible for lower budgets. If the budget constraint is binding, a larger budget may also

facilitate an equilibrium in which the regulator sets a better signal precision and thus FinTech 1

a higher success probability, thereby making both, FinTech 1 and the regulator, better off. To be

clear, the regulator’s skills and budget matter for different reasons. Only its skills determine the

regulator’s first-order (marginal) condition, whereas skills and budget together determine whether

a regulator’s resource constraint is binding. Hence, if the regulator’s budget constraint is binding

in equilibrium, better skills can fully make up for a lower budget (and vice versa). If the constraint

is not binding, however, a lower budget does not matter but better skills still do.

An example illustrates the possibility of multiple equilibria with informed interventions.
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Example: Let R = 0.0198, v = 0.01, θ = 0.106, G = 0.1, η = 0.1, and N = 30. Then,

three equilibria exist

1. ρ∗ = 0 and α∗ = 0

2. ρ∗ ≈ 0.0163 and α∗ ≈ 0.0053

3. ρ∗ ≈ 0.0185 and α∗ ≈ 0.0058

With this specification, comparing the values for the respective objective functions,

the regulator strictly prefers the third equilibrium over the first equilibrium, and the

first equilibrium over the second equilibrium. In contrast, FinTech 1 strictly prefers the

third equilibrium over the second, and the second equilibrium over the first equilibrium.

Therefore, equilibria cannot be Pareto-ranked here. End of example

We conclude by highlighting that regulatory uncertainty not only comes in the form of the risk

that a privately successful FinTech may have to close operations after making their investment

and before their full returns are realized. Regulatory uncertainty also manifests itself in form of

multiple equilibria. Multiplicity of equilibria arises as FinTech 1’s effort (which determines the

success probability α) and the regulator’s effort (which determines signal precision ρ) are strategic

complements, provided the regulator’s skills and capability to generate informative signals are

sufficiently good and its budget sufficiently large.

4 Multiple Innovative FinTechs

In this section, we let multiple FinTechs have an idea to develop a new technology. To highlight

key additional effects that come into play only with multiple innovative FinTechs, we can focus

on the case with two innovative FinTechs; i. e. M = {1, 2}. We do this for traceability since we

can show that the additional implications we obtain from this case extend to the more general

case where more than two FinTechs are capable to innovate. The key difference to the single Fin-

Tech case refers to the regulator’s best response, which is what our focus will be on. Note, when

referring to a specific innovative FinTech, we reintroduce subscripts in the remainder of this sec-

tion. Accordingly, α1 and α2 are the success probabilities set by FinTech 1 and FinTech 2, respec-

tively, and ρ1 and ρ2 the associated signal precision chosen by the regulator.
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4.1 The Regulator’s Decision Problem

For each of the innovative FinTechs, the regulator has to decide how precise a signal it wants to

generate about their respective social value. Given the innovative FinTechs’ choices of success

probabilities {αi}i∈{1,2}, the regulator aims to maximize expected welfare subject to its budget

constraint. The latter requires that the total expenses on signal precision across all innovative

FinTechs do not exceed the budget G. The regulator’s problem is thus to find the pair (ρ1, ρ2) of

correlation coefficients solving

max
(ρ1,ρ2)∈ [0,1]2

2∑
i=1

[
αi

(
ρiφ
(

v
ρi

)
−
(
1− Φ

(
v
ρi

))
v
)
− f(ρi)

]
+G− η2

2
(
N−1+

∑2
i=1 10(αi)

)2 (3’)

s.t.

G ≥
2∑

i=1

f(ρi).

As regards its solution (ρ∗1, ρ
∗
2), the following insights are particularly interesting.

Lemma 3 (Regulator’s best response to multiple innovative FinTechs)

Let α∈ ]0, 1[ and θ∈R++ be such that α>θ/H, and let Γ : [0, 1]2 7→ R+ be a function defined by

Γ(ρ1, ρ2) = f(ρ1) + f(ρ2). Then, Γ(ρ1, ρ2) = G defines ρ2 as implicit function γ : [0, 1] × R+ 7→

[0, 1] of ρ1 and G, i. e. ρ2 = γ(ρ1, G), with fixed point ρ̄ = γ(ρ̄, G).

Assume that for ρ2= γ(ρ1, G), the expected net social value
∑2

i=1

[
αi

(
ρiφ
(
v/ρi

)
−
(
1−Φ

(
v/ρi

))
v
)]

has at most three stationary points on the closed interval ρ1 ∈ [0, ρ̄].

The solution (ρ∗1, ρ
∗
2) to the regulator’s problem (3’) satisfies ρ∗i = P(αi, αj, θ, G) for i, j ∈ M with

i ̸= j where P : [0, 1]2 × R2
++ 7→ [0, 1] is a function with the following select key properties:

1. If α1 = α2 = α > 0, there are Gcrit,1 ∈]2G, 2G[ and Gcrit,2 ∈]2G,Gcrit,1] such that

• P(αi, αj, θ, G) = r(θ, α) for i, j ∈ M with i ̸= j provided G ≥ 2G;

• P(αi, αj, θ, G) = f−1(G/2) for i, j ∈ M with i ̸= j provided G ∈ [Gcrit,1, 2G];

• P(αi, αj, θ, G) = min{f−1(G), r(θ, α)} and P(αj, αi, θ, G) = 0 for i, j ∈ M with i ̸= j

provided G ∈ [G,Gcrit,2[;

• P(αi, αj, θ, G) = 0 for i, j ∈ M with i ̸= j provided G < G.

28



2. If α1α2 = 0, Lemma 1 applies accordingly, i. e. P(αi, αj, θ, G) = P(αi, θ, G) for i, j ∈ M

with i ̸= j.

Proof. See Appendix D.

Lemma 3 is about a regulator facing two FinTechs that, provided they both develop their

idea, will do so in the same way with the same success probability α. Additionally, if it was not

for a lack of resources, the regulator is sufficiently skilled and capable to pursue a policy of in-

formed interventions for both FinTechs given their success probability α.

When ρ2 = γ(ρ1, G), the sum
∑2

i=1

[
αi

(
ρiφ(v/ρi) −

(
1 − Φ(v/ρi)

)
v
)]

states the expected net

social value provided the regulator’s budget is fully spent on generating informative signals. This

expected net social value is thus a function of ρ1, for which we assume there are at most three

stationary points on the closed interval [0, ρ̄]. As shown in Appendix D, one stationary point is at

(ρ1, ρ2) = (0, γ(0, G)), which always constitutes a local maximum. A marginal shift of resources

towards signal precision about FinTech 1 does simply not generate sufficiently informative signals

there that would justify spending those resources, whilst signals about FinTech 2 become less in-

formative. Another stationary point is always at (ρ1, ρ2) = (ρ̄, ρ̄), which is either a local minimum

or a local maximum. If by spending identical amounts on both innovative FinTechs, the budget G

allows for signal precisions sufficiently close to the optimal signal precision r(θ, α), doing so con-

stitutes a local maximum. This is because for those high levels of expenses on each FinTech, bal-

ancing marginal costs across FinTechs is more important at the margin than exploiting any scale

economies in generating a higher signal precision for one of them at the expense of the other.

If at most one further, third stationary point exist, it is necessarily a local minimum. This is

because the two other stationary points are at the respective end of the domain for the function

γ.25 As argued above, (ρ1, ρ2) = (0, γ(0, G)) is a local maximum. If (ρ1, ρ2) = (ρ̄, ρ̄) is another

local maximum, it implies that there has to be a third stationary point satisfying ρ1 > 0 and

ρ2 = γ(ρ1, G) < ρ̄ and that this one is a local minimum. If (ρ1, ρ2) = (ρ̄, ρ̄) is a local minimum,

however, there can not exist a third stationary point satisfying ρ > 1 and ρ2 = γ(ρ1, G) < ρ̄ if their

total number is limited to a maximum of three. A range of parametrizations meet the condition

stated in Lemma 3 (see Figure 6).

25By symmetry, swapping labels of FinTechs 1 and 2 obtains the exactly inverse results for ρ1 ∈ [ρ̄, γ(0, G)].

29



0.04 0.08 0.12 0.16 0.20 0.24

0.02

0.04

0.06

0.08

G = 0.05

G = 0.015

ρ̄
∣∣
G=0.015

ρ̄
∣∣
G=0.05

Signal precision ρi

Expected net
social value

(a) α = 0.8, θ = 0.8, and v = 0.1

0.04 0.08 0.12 0.16 0.20 0.24

θ = 0.4

θ = 0.8 ρ̄
∣∣
θ=0.8

ρ̄
∣∣
θ=0.4

Signal precision ρi

(b) α = 0.8, G = 0.025, v = 0.15

Figure 6: Expected net social value with two innovative FinTechs and binding budget constraint.

Against this background, the first part in Lemma 3 states that the regulator’s best response

to FinTechs that are identical from the regulator’s perspective (same fundamentals and same

success probabilities) depends on its budget G. If the budget is large enough to facilitate a

policy of unconstrained informed interventions for both FinTechs, the regulator will pursue such

policy. For a somewhat smaller budget, the regulator will pursue a policy of constrained informed

interventions. The regulator will treat all FinTechs equally provided its budget is not too small

(G ≥ Gcrit,1) as it then facilitates still a good deal of signal precision for each FinTech, even with

an equal split of resources.

If the budget is rather small (G < Gcrit,2), however, the regulator better withdraws all resources

from one FinTech, and imposes an outright ban on this one, while concentrating all resources on

gathering information about the other FinTech. In other words, two fundamentally identical Fin-

Techs get an unequal treatment from the regulator. Moreover, precisely because both FinTechs

are identical, the regulator is indifferent as to which FinTech will be banned and which FinTech

will benefit from informed interventions. A new manifestation of regulatory uncertainty may thus

arise: an unequal treatment of fundamentally identical FinTechs that appears arbitrary. Equally

interestingly, banning one FinTech and gathering information about the other one can be the opti-
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Figure 7: Regulator’s characteristics and policy regimes with two innovative FinTechs (for
v=0.1 and α1=α2=0.8).

mal response even if it implies that the regulator’s budget is then not fully spent on that one Fin-

Tech. It thus looks as if the regulator’s budget constraint is not binding and yet one FinTech faces

an outright ban – even though it cannot be distinguished by any objective measure from its peer.

For the sake of completeness, two more results are stated in Lemma 3. First, if resources do

not even suffice to effectively gather information about only one FinTech, then both FinTechs

will be banned outright. Second, if one FinTech, although having an idea, does not develop this

idea into a new technology (tantamount to setting its success probability to zero), the regulator’s

response simply resembles that of only one innovative FinTech.

Example: Recall the example on page 19, but suppose there are two innovative Fin-

Techs, each with v = 0.1 and α = 0.8 (such that θ̄ ≈ 1.449).

1. Suppose the regulator’s skills and capability are poor such that θ > θ̄ (i. e., right

of the vertical red line in Figure 7). The regulator’s best response to α = 0.8 is to

place an outright ban on both FinTechs. Regardless of how large the budget is,

generating an informative signal for any innovative FinTech is simply not worth it.

2. Suppose the regulator’s skills and capability are good such that θ ≤ θ̄. For com-

binations of θ and G for which
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(a) G ≥ 2G (i. e., above the blue line in Figure 7), the regulator’s budget con-

straint is not binding and its best response to α = 0.8 is to pursue a policy

of informed interventions for both FinTechs; ρ∗1 = ρ∗2 = r(θ, 0.8).

(b) Gcrit ≤ G < 2G (i. e., between the solid black line and the blue line in Fig-

ure 7), the regulator’s budget constraint is binding and its best response to

α = 0.8 is to pursue a policy of informed interventions for both FinTechs

and treat them equally; ρ∗1 = ρ∗2 = f−1(G/2).

(c) G ≤ G < Gcrit (i. e., between the red line and the black line in Figure 7),

the regulator’s budget constraint is binding and its best response to α = 0.8

is to pursue a policy of informed interventions for one FinTech and to im-

pose a ban on the other FinTech; i. e., either
(
ρ∗1, ρ

∗
2

)
=
(
f−1(G), 0

)
or(

ρ∗1, ρ
∗
2

)
=
(
0, f−1(G)

)
.

(d) G < G (i. e., below the red line in Figure 7), the regulator’s budget is too

small to allow for any feasible signal precision to be effective enough, even if

the budget is concentrated on only one innovative FinTech, and its best re-

sponse to α = 0.8 is to place an outright ban on both innovative FinTechs.

Note, in this example the frontier between the symmetric and the asymmetric treat-

ment of FinTechs is clear-cut (i. e. Gcrit,1 = Gcrit,2 = Gcrit). The black line marks this

frontier. As long as θ is sufficiently low and far away from θ̄, the critical budget Gcrit is

below the budget G that is necessary for an unconstrained informed intervention of a

single innovative FinTech. For those parametrizations, Gcrit is linear in θ as the regula-

tor’s choices depend only on the ratio G/θ if the budget constraint is binding. However,

if θ is below but sufficiently close to θ̄, the critical budget Gcrit is above the budget G

that is necessary for an unconstrained informed intervention of a single innovative Fin-

Tech (as Gcrit > 2G and ∂Gcrit/∂θ > 0 whereas limθ→θ̄ G = G and, for large θ, ∂G/∂θ <

0). This means that while one FinTech gets an outright ban, the other FinTech ben-

efits from unconstrained informed interventions. Accordingly, the regulator’s choice is

such that its budget constraint is slack under those circumstances. End of example
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4.2 Equilibria

All firms and the regulator make their decisions simultaneously. The decision problem for Fin-

Tech i ∈ M at stage t = 1 is

max
αi∈[0,1]

αi

(
1− Φ

(
v
ρi

))
R− c(αi) + 10(αi)

η2

(N + 10(αj))2
. (9’)

The solution to problem (9’) defines the best response of FinTech i to the respective other Fin-

Tech’s j choice of αj and to the regulator’s choice of ρi. The former matters to the extent that

10(αj) determines the value to FinTech i of operating in the established market. In accordance

with Lemma 2, FinTech i’s best response is as follows.

Lemma 4 (FinTech i’s best response to regulator and FinTech j) The solution α∗
i to

FinTech i’s problem (9’) satisfies α∗
i = A(αj, ρi, N,R) where A : [0, 1]2 × Z≥2 × R++ 7→ [0, 1] is

now a function defined by

A(αj, ρi, N,R) =

 a(R, ρi) if N ≥ N (R, ρi) +
(
1− 10(αj)

)
,

0 otherwise,
(14)

with functions a and N defined as in Lemma 2.

Proof. Follows the proof of Lemma 2.

Note that functions a and N still have the same properties as already described in Lemma 2.

Let (αe
1, α

e
2, ρ

e
1, ρ

e
2) denote equilibrium outcomes when m = 2, for which we present a select inter-

esting insights.

Proposition 2 (Equilibrium for multiple innovative FinTechs)

1. Symmetric outright ban: For all (θ,G,N)∈R2
++ ×Z≥2, a Nash equilibrium in pure strategies

with (αe
1, α

e
2, ρ

e
1, ρ

e
2) = (0, 0, 0, 0) and thus ne = N always exists.

2. Asymmetric informed intervention: For every G∈R++ there is θ̂∈ ]0, a(R, 1)H[ with

∂θ̂/∂G≥ 0, such that a Nash equilibrium in pure strategies with (αe
i , ρ

e
i )∈ ]0, 1[×]0, 1[,

(αe
j, ρ

e
j)= (0, 0), and ne = N − 1 exists provided θ∈ ]0, θ̂] and N ≥N (R, ρei ).
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3. Symmetric informed intervention: Let Ĝ :=G/2. For every Ĝ∈R++ there is Θ̂∈ ]0, θ̂[ such

that a Nash equilibrium in pure strategies with (αe
i , ρ

e
i )∈ ]0, 1[×]0, 1[, (αe

i , ρ
e
i )=(αe

j, ρ
e
j), and

ne = N − 2 exists provided θ∈ ]0, Θ̂] and N ≥N (R, ρei ) + 1.

Proof. See Appendix E.

The first two parts of the proposition reinforce already established insights from the case with

a single non-disruptor FinTech (Proposition 1). First, there is always an equilibrium without any

FinTech innovation (part 1). Second, an equilibrium with innovations by (at least) one FinTech

exists under the identical conditions as it does exist if there is only a single non-disruptor FinTech.

Combining these two insights, there is also an additional insight that cannot be obtained from

the single non-disruptor FinTech case. To wit, under the conditions stated in part 2, regulatory

uncertainty manifests itself along a second dimension of multiplicity of equilibria. Not only is

there co-existence of equilibria without any FinTech innovation and of equilibria with FinTech

innovation, there is also co-existence of equilibria that differ only with respect to the identity of

the innovative FinTech that actually innovates and develops its idea into a new technology.

The most interesting implications, however, derive from the Proposition’s part 3. According to

this part, a regulator overseeing two FinTechs with a budget twice as large does not just replicates

the insights from the single non-disruptor FinTech case. This is due to two effects. First, by

Lemma4, the regulator’s best response is not always a symmetric treatment of fundamentally

identical FinTechs that also behave identically. Second, the established market has different values

to an innovative FinTech depending on whether or not its peer goes ahead with the development

of their own idea.

Accordingly, if the budget of the regulator is at least twice as large as required to permit an

equilibrium with unconstrained informed interventions in the single non-disruptor FinTech case,

an equilibrium with unconstrained informed interventions exists for m = 2 innovative FinTechs

provided the established market becomes not too profitable to operate in after one of the innovative

FinTechs develops its idea into a new technology.

If the budget is less than twice as large, unconstrained informed interventions with m = 2

innovative FinTechs do not obtain in equilibrium. Provided the budget is not too small, however,

both innovative FinTechs behaving identically and receiving the same attention by the regulator
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can again constitute an equilibrium provided the established market is sufficiently competitive

even with both innovative FinTechs opting against operating there.

If the budget is too small, however, one of the following two things is going to happen. First, the

regulator’s constraint may imply that by splitting its resources equally across innovative FinTechs

leaves them with a too low probability of regulatory approval such that expected profits are

lower than by operating in the established market, even though that market would be sufficiently

competitive if the regulator’s budget and hence its chosen signal precision were larger. In that

case, it is best for one FinTech to not develop their idea but to operate in the established market.

The regulator thus generates signals of higher precision for the remaining, other FinTech, which

accordingly develops its idea with a higher probability of regulatory approval (compared to a

situation in which the regulator would have a somewhat larger budget). Second, the regulator’s

constraint may imply that it is in the best interest of the regulator to focus on one innovative

FinTech (see Lemma 4). Accordingly, in anticipation of such response, one of the m = 2 innovative

FinTechs will not even start developing their idea into a new technology and rather stay in the

established market because making profits there is better than being dismissed by the regulator

with certainty.

5 Lead Innovator with First Mover Advantage

5.1 Without Follower Innovator

If there is only the disruptor, the regulation game is one of a single FinTech, FinTech 1, that

has a first-mover advantage over the regulator. The regulator’s decision problem is again given

by problem (3). Its solution yields the regulator’s response function which FinTech 1 takes into

account when solving its own problem at stage t = 1 given by

max
α∈[0,1]

α
(
1− Φ

(
v
ρ

))
R− c(α) + 10(α)

η2

(N + 1)2
(15)

s. t.

ρ = P(α, θ,G)

Let αd denote the disruptor’s choice of its success probability and ρd = P(αd, θ, G) the so deter-

mined outcome of the regulator’s decision.
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Proposition 3 (Equilibrium for single, disruptor FinTech)

1. Equilibrium choices satisfy αd≥αe
max, and hence ρd≥ ρemax, with strict inequalities if and

only if f−1(G) > ρemax.

2. For every G∈R++ there is θ̌∈ [θ̂, a(R, 1)H[ such that αd> 0, and thus ρd> 0, for all θ∈ ]0, θ̌]

provided N ≥N (R, ρd).

3. Equilibria with informed interventions and equilibria with outright bans do not co-exist.

Proof. See Appendix F

The solution to program (15) is somewhat subtle, and so are the insights stated in Proposi-

tion 3.26 Suppose first that in a game with a single, non-disruptor FinTech, there is an equilibrium

satisfying αe
max > 0 and ρemax > 0 (i. e., informed interventions can occur in equilibrium). The least

the disruptor can do in its game with the regulator is to pick its most preferred equilibrium from

the set of equilibria that would obtain in a game with a single, non-disruptor FinTech, which by

the Envelope theorem is (αe
max, ρ

e
max). If ρemax = f−1(G), then f−1(G) is the highest possible signal

precision not only in those games, but also in a sequential game. Therefore, Pα(α
e
max, θ, G)= 0, and

the best a disruptor can do is to set αd = αe
max. By contrast, if ρemax<f−1(G), then αd>αe

max and

ρd>ρemax. To see how, note that the solution to the FinTech’s problem in a game with a single, non-

disruptor FinTech (as stated in Lemma 2) implies that Pα(α
e
max, θ, G)> 0, i. e. there is capacity for

further improvements in the precision of signals. Note also that, evaluated at ρ∗ = P(αe
max, θ, G),

(
1− Φ

(
v
ρ∗

))
R + αRφ

(
v
ρ∗

)
v

(ρ∗)2
Pα(α

e
max, θ, G)− c′(α) > 0 (16)

for all α ≤ αe
max. Therefore, a disruptor is better off by choosing some αd > αe

max than with

α = αe
max.

Suppose next that in a game with a single, non-disruptor FinTech, there is no equilibrium

satisfying αe
max> 0 and ρemax> 0 (i. e., only outright bans occur in equilibrium). According to

Lemma 2, the regulator would opt for informed interventions (i. e., ρ∗ > 0) provided its skills and

capabilities satisfy θ ≤ H and if, additionally, the success probability α is such that α≥ θ/H as

well as G≥G. Let αcrit := min
{
α∈ ]0, 1[

∣∣α ≥ θ/H and G ≥ G
}

denote the minimum success

26For details refer to Appendix F.
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probability such that both conditions are satisfied for all α∈ [αcrit, 1]. If such αcrit exists and

satisfies

αcrit

(
1− Φ

(
v

min{f−1(G),r(θ,αcrit)}

))
R− c(αcrit) ≥ η2/(N + 1)2, (17)

then a disruptor sets αd=αcrit > 0 rather than opting for the established market, even though

the LHS in Eq. (16) is already negative when evaluated at αcrit. This is more likely the case the

higher the private returns (i. e., R large), the more FinTechs potentially compete in the established

market (i. e., N high), the less poor the regulator’s skills and capability (i. e., θ not too high), or

the less tight its budget (i. e., G not too small). By contrast, if αcrit does not exist, or if it exists

but does not meet condition (17), a disruptor will also opt for the established market.

Proposition 3 has further important implications. First, there is less regulatory uncertainty if

the FinTech is a disruptor. For one, equilibrium probabilities of implementing successfully an idea

into a new technology are (weakly) higher than if all players make their choices at the same time.

This implies that it is more likely that the idea develops into a privately profitable technology and

also less likely that the regulator will dismiss such privately successful technology later. Less reg-

ulatory uncertainty also results because equilibria with outright bans and with informed interven-

tions cannot co-exist; i. e. strategic uncertainty arising from multiplicity of equilibria is resolved.

Another important take-away from Proposition 3 is that for developments of new technologies

to occur at all, the regulator can be less skilled and capable (for a given budget) or have a smaller

budget (for given skills and capability) if the FinTech is a disruptor. Note, however, while the firm

with a new idea is better off in equiliria of sequential games than in equilibria of games without

a disruptor, the regulator may not. It is quite possible that the regulator prefers that all firms

operate in the established market, keeping the welfare loss due to imperfect competition there low

and saving the regulator’s budget for its alternative uses. The regulator refrains from an outright

ban of a technology that is already being developed only because doing so after the disruptor

has already started working on its new technology will not get this FinTech back to service the

established market.27

27Albeit not the topic of this paper, without a proper commitment mechanism in place, any such respective
threat to do so is thus not subgame perfect.
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5.2 With Follower Innovator

Consider next the case where in addition to the lead innovator FinTech 1 (i. e. disruptor), there

is also another innovator. This FinTech 2 decides on its own innovation effort after observing the

disruptor’s own choice of effort but without knowledge of whether the disruptor’s effort will actually

translate into a new technology. Accordingly, FinTech 2 is henceforth called the follower innovator.

The regulator decides on signal precision about disruptor and follower innovator simultaneously,

having observed the former’s effort choice and making conjectures about the latter’s effort choice.

Formally the regulator’s problem is thus again to solve program (3’). By Lemma3, its solution

is ρ∗i = P(αi, αj, θ, G) for i, j ∈ M with i ̸= j. Therefore, P is the regulator’s response functions

which the disruptor takes into account when making its own choice of a success probability α1.

The follower innovator (FinTech 2), having observed the lead innovator’s choice and taking

the regulator’s choice as given, solves again program (9’). By Lemma4, its solution is α∗
2 =

A(α1, ρ2, N,R); cf. Lemma4. Therefore, A is the follower innovator’s response functions the

disruptor takes also into account.

The two response functions P and A may interact. This is because the disruptor’s choice

potentially influences how the regulator splits its scarce budget across the disruptor and the

follower innovator, and thus the regulator’s choice of the precision of signals about the follower

innovator. The latter, in turn, determines the follower innovator’s best effort choice.

Formally, the disruptor FinTech 1 solves

max
α1∈[0,1]

α1

(
1− Φ

(
v
ρ1

))
R− c(α1) + 10(α1)

η2

(N + 10(α2))2
(15’)

s. t.
ρ1

ρ2

α2

 =


P(α1, α2, θ, G)

P(α2, α1, θ, G)

A(α1, ρ2, N,R)

 (RF)

Let αd,e
1 denote the disruptor’s choice of its success probability. Furthermore, let αd,e

2 , ρd,e1 , and

ρd,e2 denote the joint solution to equation (RF) given that α1 = αd,e
1 .

Proposition 4 (Equilibrium for single disruptor and single follower FinTech)

Equilibrium choices never satisfy simultaneously αd,e
2 > 0 and αd,e

1 ≤ αd,e
2 .
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Proof. See Appendix G

The proposition delivers two interesting additional results. First, should the follower FinTech

innovate (αd,e
2 > 0), then only when the disruptor has actually decided to develop its own idea

(αd,e
1 > 0). Accordingly, there is never an equilibrium without a disruptor paving the way for

the innovation process. Second, the disruptor will always grab a larger share of the regulator’s

budget. As shown in Appendix G, if the disruptor and the follower FinTech innovate, then this is

not confined to circumstances in which the regulator’s has plenty of resources so that firms would

not interact through the regulator’s budget. Even with such interaction through the budget, both

firms potentially innovate but the disruptor will put in more effort and gets a larger share in the

regulator’s budget. Even if the regulator’s budget is so tight such that in a simultaneous game

(Proposition 2) there would be only one FinTech actually innovating, a disruptor can strategically

exert effort in order to hoover up so many resources from the regulator to crowd out a potential

follower.

6 Discussion

We discuss further implications of our model, signposting potential avenues for future researchers

to follow up.

Required social value. In our model, the unconditional expected social value is zero (µV = 0)

while the required social value v is strictly positive. The latter has a number of alternative, com-

plementary justifications. Chief among them are a safety margin as required by the regulator and

possible cost that the regulator incurs post-approval of a new technology. An immediate impli-

cation hereof is that laissez-faire is not a viable regulatory strategy.

Laissez-faire can form part of a viable regulatory strategy, nonetheless, if v < 0. This is tan-

tamount to an unconditional expected social value that is not only positive but indeed outweighs

any safety margin and future costs to the regulator. For example, without further informative sig-

nals about a new technology, its expected positive externalities exceed any expected negative ex-

ternalities. Then, if no resources are spent on signal precision, the regulator will pursue a laissez-

faire policy of letting the FinTech proceed unchallenged. However, since the expected net social

value (2) is increasing and convex in signal precision ρ, an informed intervention strategy (where

the regulator spends resources on signal precision and decides later on ‘ban’ versus ‘proceed’)
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may yet be the better choice. The reason is that it allows the regulator to reduce the probability

of a false, unjustified approval of the technology which a laissez-faire policy necessarily entails.

Provided the regulator pursues a policy of informed interventions even when v < 0, it leaves

the innovative FinTech at stage t = 1 as much in limbo as it is the case when v > 0. Moreover,

the regulator’s signal precision and the FinTech’s effort choice remain strategical complements,

and the effects of a binding budget constraint for the regulator also remain qualitatively.

Evolution of regulation along innovation cycles. Our analysis speaks to the key general

stages in innovation cycles. Often, at the beginning of those cycles, there is no regulation—

either because regulators do not exist, or are bribed, or do not see any potential for regulation.

Examples here include not just the FinTech revolution considered in the present paper but also

the emergence of the industrial tycoons in the 19th century US. Under those circumstances, an

innovators’ problem is simply to maximize expected private returns, which in our model obtains

if the probability of regulatory dismissal is set to zero. At the following stage, a regulatory back-

lash may occur as a regulator may realize that innovations potentially harm their stakeholders

while it remains too costly to generate sufficiently informative signals about what innovations

will actually bring along. Hence, regulators may ban those innovative efforts outright. However,

over time, the regulator may realize that by improving its technology of assessing innovations, a

more efficient signal generation becomes feasible. The regulatory pendulum swings back and in-

novations take up again. That said, innovators are probably still one step ahead of the regulator,

and the regulatory toolkit is still very coarse. This resembles very much a sequential game set-

ting. Later, the regulator may catch up with innovators and act earlier. Then, our simultaneous

game setting applies, thus leading to (more) strategic uncertainty including multiplicity of equi-

libria, though. Finally, the regulator may learn why and how to regulate. This is a well-studied

stage with problems like regulatory capture and unintended consequences of regulation. Exam-

ples for this last stage range from contemporary banking to pharmaceuticals to car safety and to

environmental protection, to name just a few. Our model speaks particularly to the second, third

and fourth stages, albeit the transition from one stage to another is not modeled.

Budget announcements as part of regulatory strategy. Our analysis has studied a set of

regulatory games where the regulator has a (weak) strategic disadvantage, in that the regulator

has no opportunity to move before any FinTech. This is a natural assumption since it is the
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very nature of (FinTech) innovations that nobody can foresee their consequences for society. Yet,

one could still allow the regulator to have a first mover advantage in the sense that the regulator

can announce before an innovative FinTech makes an effort choice to spend a certain budget on

generating signals about such FinTech. There are two problems. First, any announced choice of

signal precision is not part of a subgame-perfect equilibrium. Second, even if budgets could be

pre-committed, doings so diminishes private incentives to innovate. For the sake of clarity and

simplicity of argument, assume there is one potential disruptor. If the regulator does not commit a

certain budget, the disruptor will set a success probability αd inducing an unconstrained regulator

to set signal precision to ρd. In setting αd, the disruptor takes into account that by its own effort

will determine how beneficial it is for the regulator to spend resources on signal precision. The

higher the effort chosen by the disruptor, the more resources a regulator will use to improve signal

precision about the disruptor. Consider next the case where the regulator pre-commits spending

f(ρd). Then, the disruptor knows that the signal precision will be also ρd but now regardless of

its chosen success probability α. This effect lowers the incentive for the disruptor to exert own

effort and thus the probability of a successful innovation.

Alternative use of regulator’s budget. In the analysis conducted in the present paper, the

regulator’s budget could be spent either on generating informative signals about innovative Fin-

Tech’s and their innovation’s likely effects on society, or on the provision of other public goods or

regulatory frameworks outside the realm of the FinTech industry. An alternative use of the reg-

ulator’s resources could be to subsidize activities in the established markets. For example, in the

sequential game with a single innovative FinTech, we have shown that it may be in the interest of

the regulator to not let the FinTech develop its idea. However, due to its first-mover advantage,

the FinTech still proceeds and develops a new technology in equilibrium. In those circumstances,

it may seem a viable option to make the established market more attractive to the FinTech by

granting a subsidy to those who operate there. Suppose the regulator is bound to a fair and equal

treatment of all firms servicing the established market, such subsidy would have to be given to all

firms, not just the innovative FinTech. Since the established market is of low value to the inno-

vative FinTech especially if there are many firms servicing that market, this implies granting sub-

sidies to a rather large number of firms. For a given budget, only little will thus actually benefit

an individual FinTech. Moreover, if there are many firms potentially operating in the established
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market, the welfare loss associated with imperfect competition there would be limited, too. To sum

up, such alternative use of the regulator’s budget is probably adding only little economic value.

7 Concluding Remarks

We advance a framework studying the effects of regulatory uncertainty on FinTech innovation

and adoption. We do so by proposing a game among FinTech entrants, incumbents, and a regula-

tor. The game has key features that make it particularly suitable for the FinTech ecosystem. As

opposed to other industries, the regulator generates costly information about the potential soci-

etal effects of innovation in FinTech. Moreover, the regulator’s skills to acquire such information

are imperfect and its budget limited. Lastly, innovators compete among themselves, either for

market shares within the boundaries of a given technology frontier or for the regulator’s limited

resources when they aim to expand the current frontier. We focus on equilibria in pure strategies

and show that regulatory uncertainty creates new, endogenous layers of risk — notably extrinsic

risk as there are potentially multiple equilibria.

Our paper highlights the importance of additional research inquiries into FinTech innovation.

For example, it is important for financiers to understand the risk of their borrowers. This is

a general problem, not solely applicable to FinTechs. However, especially in FinTech, overall

business risk is shaped by regulatory uncertainty. While this issue has been understudied in

FinTech, our work incorporates its salient aspects and takes an initial step towards a better

understanding of this source of risk.
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Appendix

A Proof of Lemma 1

The proof is in 8 steps:

Step 1 Preliminaries

(a) the properties of the standard normal distribution include φ′ (S) = −Sφ (S);

(b) the objective function may not always be concave because ∂
∂ρ

(
α
(
ρφ(s)−

(
1−Φ(s)

)
v
))

=

αφ(s) ≥ 0 and ∂2

∂ρ2

(
α
(
ρφ(s)−

(
1− Φ(s)

)
v
))

= αφ(s)s2/ρ ≥ 0;

(c) there is a local maximum at ρ = 0 because f ′(0) = 0 and lim
ρ→0

(
αφ(s)

)
= 0, while

f ′′(0) > 0 and lim
ρ→0

(
αφ(s)s2/ρ

)
= 0.

Step 2 Since lim
ρ→1

∂
∂ρ

(
αφ(v

ρ
) − f ′(ρ)

)
< lim

ρ→0

∂
∂ρ

(
αφ(v

ρ
) − f ′(ρ)

)
= 0, at most three stationary

points implies that there is at most one ρ > 0 at which the objective function in pro-
gram (3) has a (local) maximum. By the implicit function theorem, the ρ associated with
such maximum is a continuous and differentiable function r :R+× [0, 1] 7→ [0, 1] defined by
r(θ, α)=

{
ρ∈ ]0, 1[

∣∣∣αφ(vρ)−f ′(ρ)= 0 and αφ(v
ρ
)v

2

ρ3
−f ′′(ρ)< 0

}
with

rα(θ, α) = −
φ(

v
ρ
)

∂
∂ρ

(
αφ(

v
ρ
)−f ′(ρ)

) > 0

rθ(θ, α) =
ρ

1−ρ
∂
∂ρ

(
αφ(

v
ρ
)−f ′(ρ)

) < 0

since ∂
∂ρ

(
αφ(v

ρ
)−f ′(ρ)

)
< 0 when evaluated at a (local) maximum of the regulator’s objective

function.

Step 3 Since
lim
θ→0

α
(
ρφ
(
v
ρ

)
−
(
1− Φ

(
v
ρ

))
v
)
− f

(
ρ
)

> 0 for any ρ ∈]0, 1[

lim
θ→∞

α
(
ρφ
(
v
ρ

)
−
(
1− Φ

(
v
ρ

))
v
)
− f

(
ρ
)

< 0 for any ρ ∈]0, 1[

α
(
ρφ
(
v
ρ

)
−
(
1− Φ

(
v
ρ

))
v
)
− f

(
ρ
)

= 0 for ρ = 0

and rθ(θ, α) < 0 provided r(θ, α) ̸= ∅, the intermediate value theorem implies that there is
θ̄ > 0 such that

α
(
ρφ
(
v
ρ

)
−
(
1− Φ

(
v
ρ

))
v
)
− f

(
ρ
)

= 0 for ρ = r(θ̄, α)

max
ρ

{
α
(
ρφ
(
v
ρ

)
−
(
1− Φ

(
v
ρ

))
v
)
− f

(
ρ
) ∣∣ ρ ∈ [0, 1]

}
≤ 0 for any θ > θ̄

max
ρ

{
α
(
ρφ
(
v
ρ

)
−
(
1− Φ

(
v
ρ

))
v
)
− f

(
ρ
) ∣∣ ρ ∈ [0, 1]

}
> 0 for any θ < θ̄
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θ̄ is unique because
α
(
ρφ( v/ρ )−

(
1−Φ( v/ρ )

)
v
)
> 0

for all ρ ∈ ]0, 1[, and (by the envelope theorem)

d

dθ

(
α
(
ρφ( v/ρ )−

(
1−Φ( v/ρ )

)
v
)
− f(ρ)

)
< 0

for ρ = r(θ, α), as well as lim
θ→0

f(ρ) = 0 and lim
θ→∞

f(ρ) = ∞, both for any ρ.

Step 4 For every v > 0, there is H ∈ R++ such that θ̄ is implicitly defined by θ̄ =
{
θ
∣∣H = θ/α

}
with ∂H/∂α = 0 and ∂H/∂v < 0. To show this, let

E1 = α
(
ρφ
(
v
ρ

)
−
(
1− Φ

(
v
ρ

))
v
)
− f

(
ρ
)

E2 = αφ(v
ρ
)− f ′(ρ)

Then, E1 = 0 and E2 = 0 for θ̄ and some ρ† > 0. According to the general implicit function
theorem, θ̄ and ρ† > 0 thus satisfy

∂θ̄

∂α
=

∂E1

∂ρ
∂E2

∂α
− ∂E2

∂ρ
∂E1

∂α

∂E1

∂θ
∂E2

∂ρ
− ∂E1

∂ρ
∂E2

∂θ

=
θ̄

α
(18)

∂ρ†

∂α
=

∂E2

∂θ
∂E1

∂α
− ∂E1

∂θ
∂E2

∂α
∂E1

∂θ
∂E2

∂ρ
− ∂E1

∂ρ
∂E2

∂θ

= 0 (19)

∂θ̄

∂v
=

∂E1

∂ρ
∂E2

∂v
− ∂E2

∂ρ
∂E1

∂v

∂E1

∂θ
∂E2

∂ρ
− ∂E1

∂ρ
∂E2

∂θ

= −αθ̄
1− Φ

(
v
ρ†

)
f (ρ†)

(20)

Eq. (18) implies ∂θ̄/∂α = θ̄/α = φ( v
ρ†
)(1 − ρ†)/ρ† for all α ∈]0, 1[, with the last equality

following from the first-order condition (6). Eq. (19) implies dr
(
θ̄, α
)
/dα = 0 for every ρ∗ =

r(θ̄, α) > 0 and θ̄/α = φ( v
ρ†
)(1 − ρ†)/ρ† = H with ∂H/∂α = 0 as ∂(θ̄/α)/∂α = 0. Finally,

Eq. (20) implies ∂H/∂v < 0.

Step 5 Suppose θ > θ̄. By definition of θ̄, α
(
ρφ
(
v
ρ

)
−
(
1− Φ

(
v
ρ

))
v
)
− f

(
ρ
)
< 0 for all ρ > 0. Since

lim
ρ→0

α
(
ρφ
(
v
ρ

)
−
(
1− Φ

(
v
ρ

))
v
)
− f

(
ρ
)
= 0, we obtain ρ∗ = 0.

Step 6 Suppose θ≤ θ̄. Since α
(
ρφ
(
v
ρ

)
−
(
1 − Φ

(
v
ρ

))
v
)
− f

(
ρ
)

> 0 for ρ = r(θ, α), it fol-

lows from ∂f−1(G)/∂G > 0 that there is G > 0 such that α
(
f−1(G)φ

(
v

f−1(G)

)
−(

1−Φ
(

v
f−1(G)

))
v
)
−G=0 and α

(
f−1(G)φ

(
v

f−1(G)

)
−
(
1−Φ

(
v

f−1(G)

))
v
)
−G< 0 for all G < G.

Therefore, ρ∗ = 0 if G < G. By the implicit function theorem, ∂G/∂α =
(
G/α

)/(
1 −
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αφ( v
f−1(G)

)
/
f ′(f−1(G)

))
. As f−1(G) < r(θ, α), we obtain αφ( v

f−1(G)
)
/
f ′(f−1(G)

)
> 1 and

hence ∂G/∂α < 0.

1. Suppose θ < θ̄. Since ∂f−1(G)/∂G > 0 there is G> 0 such that f−1(G)−r(θ, α)= 0 and
ρ∗ = r(θ, α) if and only if G ≥ G. Note ∂G/∂α > 0 as the implicit function theorem yields
∂G/∂α = rα (θ, α) θ

f−1(G)

1−f−1(G)
, with rα(θ, α) evaluated at r(θ, α) = f−1(G).

Step 7 Suppose θ < θ̄ and G ∈ [G,G]. Then α
(
ρφ
(
v
ρ

)
−
(
1− Φ

(
v
ρ

))
v
)
− f

(
ρ
)
> 0 for ρ = f−1(G).

Hence, ρ∗ = f−1(G).

Step 8 Suppose α = θ/H. Then θ = θ̄. Hence, f−1(G) = r
(
θ̄, θ̄/H

)
by definition of G. By definition

of θ̄, α
(
ρφ
(
v
ρ

)
−
(
1 − Φ

(
v
ρ

))
v
)
− G = 0 for ρ = r

(
θ̄, θ̄/H

)
and hence f−1(G) = r

(
θ̄, θ̄/H

)
.

Therefore, G = G if θ = θ̄.

B Proof of Lemma 2

The Lemma follows from the first-order condition to program (9), rearranging terms and applying
the implicit function theorem as well as the laws of limits. The critical value for the number N of
FinTechs is the smallest natural number greater or equal 2 (i. e., N ∈Z≥2), for which a(ρ,R)

(
1−

Φ(v/ρ)
)
R−c

(
a(ρ,R)

)
≥ η2/(N + 1)2 provided ρ> 0. Since c(α) = −(α+ln(1−α)) and α= a(ρ,R)

according to Eq. (10), rearranging terms yields condition (11). By the Envelope theorem, indirect
expected profits a(ρ,R)

(
1−Φ(v/ρ)

)
R− c

(
a(ρ,R)

)
are increasing in ρ and R. Therefore, N (R, ρ)

is (weakly) smaller for larger ρ and larger R.

C Proof of Proposition 1

1. Universal existence of an equilibrium with ρe = 0 and αe = 0:

Existence follows directly from Lemmata 1 and 2.

2. Existence of equilibria with ρe > 0 and αe > 0: The proof is in 4 steps

Step 1 Preliminaries

a) Recall: according to Lemma 1, for r(θ, α) ̸= ∅, r is a continuously differentiable function
with

– r(θ1, θ1/H) = r(θ2, θ2/H)=:κ ∈ ]0, 1[ for all (θ1, θ2) ∈ ]0, H]× ]0, H],
– rα(θ, α) > 0 for all α ∈]θ/H, 1[ and θ ∈ ]0, H[,
– r(θ, α) strictly bounded away from unity for all α ∈ ]θ/H, 1] if θ ∈ ]0, H[.

b) Recall: according to Lemma 2, a is a continuously differentiable function with

– aρ(R, ρ) > 0 for all ρ ∈ [0, 1],
– a(R, 0) = 0,
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– a(R, 1) < 1.

c) Define: let a−1 : R+ × [0, 1] 7→ [0, 1] be a function defined by a−1(R,α) = ρ if and only
if α = a(R, ρ).

Step 2 Existence of (α̂, ρ̂) ∈ ]θ/H, a(R, 1)[× ]0, 1[ for which ρ̂ = r(θ, α̂) and α̂ = a(R, ρ̂) pro-
vided θ sufficiently small.

– Suppose θ − ε = 0 with ε > 0 small such that, for a given G > 0, the regulator’s
choice is ρ∗ = r(θ, α) with r(θ, α) close to unity for all α ∈ ]θ/H, 1] except in some
(arbitrarily small) neighborhood of α = θ/H.

– For α = θ/H, we have a−1(R,α) < r(θ, α) because Lemma 1 implies that there is
a constant κ ∈ ]0, 1[ such that r(θ, α) = κ for any θ ∈ ]0, H], and Lemma 2 implies
a−1(R,α) be close to zero.

– For α = a(R, 1), we have a−1(R,α) > r(θ, α) because r(θ, a(R, 1)) < 1 and
a−1(R, a(R, 1)) = 1.

Therefore, by continuity of a and r there is a unique (α̂, ρ̂) ∈ ]θ/H, a(R, 1)[× ]0, 1[ such
that ρ̂ = r(θ, α̂) and α̂ = a(R, ρ̂).

Step 3 Non-existence of any (α̂, ρ̂) ∈ ]θ/H, a(R, 1)[× ]0, 1[ for which ρ̂ = min{f−1(G), r(θ, α̂)}
and α̂ = a(R, ρ̂) provided θ sufficiently large.
For every G > 0, Lemma 1 implies that there is θ̃ ∈ ]0, a(R, 1)H[ (that may depend
on G) such that for θ ≥ θ̃ we get ρ∗ ∈ ]0, 1[ if α ≥ a(R, 1) and ρ∗ = 0 if α <

a(R, 1). Since a−1(R,α) > 0 for all α ≤ a(R, 1), and a(R, ρ) ≤ a(R, 1), no (α̂, ρ̂) ∈
]θ/H, a(R, 1)[× ]0, 1[ exists for which ρ̂ = min{f−1(G), r(θ, α̂)} and α̂ = a(R, ρ̂).

Step 4 Existence of a Nash equilibrium with ρ∗ > 0 and α∗ > 0.
Since some (α̂, ρ̂) ∈ ]θ/H, a(R, 1)[× ]0, 1[ exists for which ρ̂ = min{f−1(G), r(θ, α̂)} and
α̂ = a(R, ρ̂) provided θ sufficiently small, and does not exist provided θ sufficiently
large, continuity implies that there is θ̂ ∈ ]0, θ̃[ such that for all θ ≤ θ̂ some (α̂, ρ̂) ∈
]θ/H, a(R, 1)[× ]0, 1[ exists for which ρ̂ = min{f−1(G), r(θ, α̂)} and α̂ = a(R, ρ̂).

– Then, for every θ ≤ θ̂, there is N̂ ≥ 2 implicitly defined by

N̂ :=min
{
x ∈ Z≥2

∣∣ α̂(1−Φ(v/ρ̂)
)
R− f(α̂) ≥ η2

/
(x+ 1)2

}
.

Therefore, at least one Nash equilibrium exists with ρ∗ > 0 and α∗ > 0 for every
θ ≤ θ̂ provided N ≥ N̂ .

– Threshold θ̂ satisfies ∂θ̂/∂G ≥ 0. To see how, recall that in any equilibrium with in-
formed interventions, the value of regulator’s objective function (see program (3))is

max
ρ∈]0,1[

{
αe
(
ρφ(s)−

(
1− Φ(s)

)
v
)
− f(ρ)

∣∣∣ f(ρ) ≤ G
}
≥ 0 (21)

and the value of FinTech 1’s objective function (see program (9)) is

max
α∈[0,1]

{
α
(
1− Φ

(
v
ρe

))
R− c(α)

}
≥ η2

(N + 1)2
. (22)
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For θ → θ̂, at least one of the two conditions (21) and (22) holds with equality.
(a) Suppose in such equilibrium the budget constraint is binding; i. e., ρe = f−1(G).

Then, for any dG > 0 there is dθ > 0 such that ∂f−1(G)
∂G

dG + ∂f−1(G)
∂θ

dθ = 0.
Therefore, dρe = 0 for those combined changes in G and θ, as long as dαe = 0,
which would also leave condition (21) unchanged. In turn, as long as dρe =

0, we also have dαe = 0 since the same α maximizes FinTech 1’s objective
function and condition (22) remains unchanged. Therefore, an equilibrium still
just exists; i. e., ∂θ̂/∂G > 0.

(b) Suppose in such equilibrium the budget constraint is not binding; i. e., ρe =

r(θ̂, α). Then, some dG > 0 implies dρe = 0 as long as dαe = 0, which would
also leave the value of the regulator’s objective function unchanged. In turn, as
long as dρe = 0, we also have dαe = 0 since the same αe maximizes FinTech 1’s
objective function and thus condition (11) remains unchanged. Therefore, an
equilibrium still just exists; i. e., ∂θ̂/∂G = 0.

– Existence of multiple equilibria with ρ∗ > 0 and α∗ > 0 is proven by means of
an example in the main text. Since no equilibrium exists for θ > θ̂, and if an
equilibrium exist for θ → 0 it is unique, multiple equilibria can exist only for
intermediate values of θ.

3. To prove the third statement, let E3 and E4 be defined by

E3 := ρ−min{f−1(G), r(θ, α)}

E4 := α− a(R, ρ)
(23)

and let αe
max and ρemax be defined as in Proposition 1, no. 3. Provided αe

max > 0 and ρemax > 0,
such equilibrium satisfies E3 = 0 and E4 = 0 for (α, ρ) = (αe

max, ρ
e
max), and by the implicit

function theorem,
∂ρemax

∂θ
=

∂min{f−1(G),r(θ,αe
max)}

∂θ

1− ∂min{f−1(G),r(θ,αe
max)}

∂α
∂a(R,ρemax)

∂ρ

∂αe
max

∂θ
=

∂a(R,ρemax)
∂ρ

∂min{f−1(G),r(θ,αe
max)}

∂θ

1− ∂min{f−1(G),r(θ,αe
max)}

∂α
∂a(R,ρemax)

∂ρ

∂ρemax

∂G
=

∂min{f−1(G),r(θ,αe
max)}

∂G

1− ∂min{f−1(G),r(θ,αe
max)}

∂α
∂a(R,ρemax)

∂ρ

∂αe
max

∂θ
=

∂a(R,ρemax)
∂ρ

∂min{f−1(G),r(θ,αe
max)}

∂G

1− ∂min{f−1(G),r(θ,αe
max)}

∂α
∂a(R,ρemax)

∂ρ

∂ρemax

∂R
=

∂a(R,ρemax)
∂R

∂min{f−1(G),r(θ,αe
max)}

∂α

1− ∂min{f−1(G),r(θ,αe
max)}

∂α
∂a(R,ρemax)

∂ρ

∂αe
max

∂R
=

∂a(R,ρemax)
∂R

1− ∂min{f−1(G),r(θ,αe
max)}

∂α
∂a(R,ρemax)

∂ρ

(24)
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According to Lemma 1, ∂r(θ, α)/∂θ= rθ(θ, α)< 0, ∂f−1(G)/∂θ < 0, and ∂f−1(G)/∂G> 0.
According to Lemma 2, ∂a(R, ρ)/∂ρ= aρ(R, ρ)> 0 and min{f−1(G), r(θ, αe)}< 1 for all α ∈
[0, 1] and a(R, ρ)< 1 for all ρ ∈ [0, 1]. The latter implies that ∂min{f−1(G), r(θ, αe)}/∂α <

∂a−1(R,αe)/∂α and thus 1 > ∂min{f−1(G),r(θ,αe)}
∂α

∂a(R,ρe)
∂ρ

at an equilibrium (αe
max, ρ

e
max). There-

fore, ∂αe
max/∂θ < 0 and ∂ρemax/∂θ < 0, and ∂αe

max/∂G ≥ 0 and ∂ρemax/∂G ≥ 0.

Finally, by the Envelope theorem, ∂max
(
a(ρe, R)

(
1− Φ(v/ρe)

)
R − c

(
a(ρe, R)

))/
∂ρe > 0,

which together with ∂ρemax/∂G ≥ 0 and ∂ρemax/∂θ < 0 implies that N̂ is (weakly) smaller for
smaller θ and larger G.

D Proof of Lemma 3

We proof the first part of the Lemma in three steps below: first, there is a fixed point ρ̄ as defined
in the Lemma; second, the solution to the regulator’s problem (3’) is either ρ∗i = ρ∗j , or ρ∗i > 0 and
ρ∗j = 0 for i ̸= j; third, there are critical values Gcrit,1 and Gcrit,2 as defined in the Lemma.

The second part of the Lemma follows immediately by Lemma 1.

Step 1

Claim: Γ(ρ1, ρ2) = G defines ρ2 as implicit function γ : [0, 1] × R+ 7→ [0, 1] of ρ1 and G, i. e.
ρ2 = γ(ρ1, G), with fixed point ρ̄ = γ(ρ̄, G).

Proof : By the implicit function theorem,

∂γ(ρ1, G)

∂ρ1
= −f ′(ρ1)

f ′(ρ2)
< 0 (25a)

∂2γ(ρ1, G)

∂ ρ1 2
= −

f ′′(ρ1)
(
f ′(ρ2)

)2
+ f ′′(ρ2)

(
f ′(ρ1)

)2(
f ′(ρ2)

)3 < 0 (25b)

and, since limρ→1 f(ρ) = ∞ and limρ→0 f(ρ) = 0, also γ(0, G) > 0 and γ(ρ,G) = 0 for
some ρ = ρ̂ ∈]0, 1[. Therefore, by Brouwer’s fixed point theorem, there is a (unique)
fixed point ρ̄ = γ(ρ̄, G). For f(ρ) = −θ

(
ρ+ ln(1− ρ)

)
, this fixed point satisfies

ρ̄ = 1 +W
(
−e−1− G

2θ

)
Step 2 The Lagrangian for the regulator’s problem (3’) is

L =
2∑

i=1

[
αi

(
ρiφ
(

v
ρi

)
−
(
1− Φ

(
v
ρi

))
v
)
− f(ρi)

]
+G− η2

2
(
N − 1 +

∑2
i=1 10(αi)

)2 − λ

2∑
i=1

[
f(ρi)−G

] (26)
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with

∂L

∂ρi
= αφ

(
v
ρi

)
− f ′(ρi)− λf ′(ρi) = 0 (27a)

λ

2∑
i=1

[
f(ρi)−G

]
= 0 (27b)

λ ≥ 0 (27c)

and the bordered Hessian determinant

D(ρ1, ρ2) = −
(
f ′(ρ1)

)2(
αφ
(

v
ρ2

)
v 2

ρ2 3 − f ′′(ρ2)− λf ′′(ρ2)
)

−
(
f ′(ρ2)

)2(
αφ
(

v
ρ1

)
v 2

ρ2 3 − f ′′(ρ1)− λf ′′(ρ1)
) (28)

Symmetric solutions The following claims establish that there is always some ρ1 = ρ2 ≥ ρ̄

constituting either a local maximum or a local minimum of the regulator’s objective function.

Claim 2A: Suppose r(θ, α) ≤ G/2, implying ρ̄ ≥ r(θ, α). Then ρ∗1 = ρ∗2 = r(θ, α) is a local (and
global) maximum.

Proof : By Lemma 1.

Suppose r(θ, α) > G/2, implying ρ̄ < r(θ, α). Recall f(ρ) = −θ
(
ρ+ ln(1− ρ)

)
.

Claim 2B: If αφ(v/ρ̄) − f ′(ρ̄) > 0 and αφ(v/ρ̄
)
v 2 / ρ̄3 − f ′′(ρ̄) < 0, then ρ∗1 = ρ∗2 = ρ̄ is a local

maximum.

Proof : Follows because λ > 0 and D(ρ̄, ρ̄) > 0.

Claim 2C: If αφ(v/ρ̄) − f ′(ρ̄) > 0 and αφ(v/ρ̄
)
v 2 / ρ̄3 − f ′′(ρ̄) > 0, then ρ∗1 = ρ∗2 = ρ̄ is a local

maximum if and only if
v <

ρ̄

(1− ρ̄)1/2
, (29)

and it is a local minimum otherwise.

Proof : Note first that λ > 0. Next, Eq. (27a) implies 1+ λ = αφ(v/ρ̄)
/
f ′(ρ̄). Substituted into

Eq. (28), D(ρ̄, ρ̄) > 0 if and only if

αφ
(v
ρ̄

) v 2

ρ̄3
− αφ

(v
ρ̄

)f ′′(ρ̄)

f ′(ρ̄)
< 0

which after rearranging terms and replacing f yields condition (29). If, instead, v >

ρ̄
/
(1− ρ̄)1/2, then ρ∗1 = ρ∗2 = ρ̄ is a local minimum since D(ρ̄, ρ̄) < 0.

Claim 2D: If αφ(v/ρ̄)− f ′(ρ̄) < 0, then ρ∗1 = ρ∗2 = ρ̄ is a local minimum.

Proof : Reducing ρ1 as well as ρ2 is both, feasible and increasing expected social welfare.
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Asymmetric solutions The following claims establish that there is one (ρ1, ρj) with ρi >

ρj ≥ 0 that constitutes a local maximum, and that this requires ρi = min{r(θ, α, f−1(G))}
and ρj = 0.

Claim 2E: There is some ρi > 0 and ρj = 0 for i ̸= j constituting a local maximum.

Proof : Note that that lim
ρ→+0

(
φ(v/ρ2)v

2
/
ρ2

3
)
= 0. Therefore,

(a) λ = 0, ρi = r(θ, α) and ρj = 0 simultaneously satisfy conditions(27a) and (27b) and
D(r(θ, α), 0) > 0 such that ρ∗i = r(θ, α) and ρ∗j = 0 is a local maximum provided
r(θ, α) ≤ G;

(b) λ > 0 and ρi = f−1(G) and ρj = 0 simultaneously satisfy conditions (27a) and
(27b) and D(f−1(G), 0) > 0 such that ρ∗i = f−1(G) and ρ∗j = 0 is a local maximum
provided r(θ, α) > G.

Claim 2F: There is no ρi > ρj > 0 for i ̸= j constituting a local maximum if the expected
net social value

∑2
k=1

[
α
(
ρkφ
(
v/ρk

)
−
(
1−Φ

(
v/ρk

))
v
)]

has one local minimum on the
closed interval ρi ∈ [0, ρ̄] for ρj = γ(ρi, G).

Proof : A necessary condition for ρi > ρj > 0 for i ̸= j is that λ > 0; i. e. the budget constraint
is binding (for otherwise ρ∗i = ρ∗j = r(θ, α), see Claim A). Hence, ρj = γ(ρi, G). For
this to be a local maximum, a necessary condition for ρi > ρj > 0 for i ̸= j is that
they also satisfy Eq. (27a). As shown in Claim 2E, part (b), (ρi, ρj) = (γ(0, G), 0)

already constitutes a local maximum for
∑2

k=1

[
αk

(
ρkφ
(
v/ρk

)
−
(
1−Φ

(
v/ρk

))
v
)]

for
ρj = γ(ρi, G). There are two possible cases to distinguish.

– ρi = ρj = ρ̄ constitutes a local maximum. Then, above assumption of only one
local minimum requires that there are at most two local maxima of the expected
net social value on the interval [γ(ρj, G) , ρ̄] for ρi = γ(ρj, G). Therefore, as there
are already two local maxima, ρi > ρj > 0 for i ̸= j satisfying ρi = γ(ρj, G) and,
at the same time, condition (27a) cannot constitute another local maximum but
necessarily a local minimum.

– ρi = ρj = ρ̄ constitutes a local minimum. Then, above assumption of only one local
minimum requires that the expected net social value in monotonously decreasing
in ρj on the interval ρj ∈ [0 , ρ̄] for ρj = γ(ρi, G). Therefore, there is no ρi > ρj > 0

for i ̸= j satisfying conditions (27a) – (27c).

In sum, the solution to the regulator’s problem (3’) is either ρ∗i = ρ∗j , or ρ∗i > 0 and ρ∗j = 0

for i ̸= j.
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Step 3 For G = 2G, the expected net social value after deducting the cost of generating signals is

2∑
i=1

[
α
(
ρiφ
( v
ρi

)
−
(
1− Φ

( v
ρi

))
v
)
− f(ρi)

]

=


2
[
α
(
r(θ, α)φ

(
v

r(θ,α)

)
−
(
1− Φ

(
v

r(θ,α)

))
v
)
− f

(
r(θ, α)

)]
if ρ∗1 = ρ∗2 = r(θ, α)

α
(
r(θ, α)φ

(
v

r(θ,α)

)
−
(
1− Φ

(
v

r(θ,α)

))
v
)
− f

(
r(θ, α)

)
if ρ∗i = r(θ, α) and ρ∗j = 0

where the first line is the respective value for a symmetric treatment of FinTechs and the
second line the respective value for an asymmetric treatment. Both values are positive, but
the former is twice as large as the latter.

For G = 2G, the expected net social value after deducting the cost of generating signals is

2∑
i=1

[
α
(
ρiφ
( v
ρi

)
−
(
1− Φ

( v
ρi

))
v
)
− f(ρi)

]

=


2
[
α
(
ρ̄φ
(
v
ρ̄

)
−
(
1− Φ

(
v
ρ̄

))
v
)
− f

(
ρ̄
)]

if ρ∗1 = ρ∗2 = ρ̄ = f−1(G/2)

α
(
ρ∗iφ
(

v
ρ∗i

)
−
(
1− Φ

(
v
ρ∗i

))
v
)
− f

(
ρ∗i
)

if ρ∗i = min{r(θ, α), f−1(G)} and ρ∗j = 0

where the value in the first line (symmetric treatment) is zero (by definition of G) and the
value in the second line (asymmetric treatment) is strictly positive (since 2G > G).

Therefore, by the intermediate value theorem, there are Gcrit,1 ∈]2G, 2G[ and Gcrit,2 ∈
]2G,Gcrit,1] as defined in the Lemma.

E Proof of Proposition 2

1. The proofs of the Proposition’s parts 1) and 2) are identical to the proof of their respective
counterparts 1) and 2) in Proposition 1 (see Appendix C).

2. To prove part 3) of the Proposition, recall Proposition 1, part 2), and Lemma 4.

Suppose a regulator overseeing potentially two innovative FinTechs, i. e. m = 2, is given a
budget G that is exactly twice as large as if it were overseeing only one innovative FinTech,
i. e. m = 1. Suppose also θ̂ − θ < ε for some arbitrarily small ε. Then, G/2 is greater but
arbitrarily close to G provided αi = αj = a

(
R, f−1(G/2)

)
.

While ρi = ρj = f−1(G/2) (just about) generates a positive net social value, it does not
maximize welfare because according to Lemma 4, Gcrit >G for every αi =αj =α including
αi =αj = a

(
R, f−1(G/2)

)
. Instead, ρ∗i >f−1(G/2) and ρ∗j =0 if αi =αj = a

(
R, f−1(G/2)

)
.
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Therefore, αi =αj = a
(
R, f−1(G/2)

)
and ρi = ρj = f−1(G/2) does not constitute a Nash equi-

librium under those circumstance.

Accordingly, by the intermediate value theorem, there is Θ < θ̂ such that ρiρj = 0 for all
θ > Θ. Conversely, for every Ĝ∈R++ there is Θ̂∈ ]0,Θ] such that ρei > ρe, αe

i > αe and
ρej = αe

j = 0.

Suppose θ < Θ̂. An additional condition for a symmetric Nash equilibrium with informed
interventions is N ≥ min

{
N ∈ Z≥2

∣∣∣ (1 − Φ(v/ρ)
)
R − ln

((
1 − Φ(v/ρ)

)
R + 1

)
≥ η2

/
N2
}

,
which is equivalent to N ≥ N (R, ρei ) + 1.

F Proof of Proposition 3

Proof.

1. Equilibrium choices satisfy αd≥αe
max, ρd ≥ ρemax, and hence also N (R, ρd)≤N (R, ρemax).

Step 1 Preliminaries

(a) Note that αe
max

(
1−Φ(v/ρemax)

)
R− c

(
αe
max

)
≥ αe

(
1−Φ(v/ρe)

)
R− c

(
αe
)

for all (αe, ρe)

by the Envelope theorem (applied for α∗ = A(ρ,N,R), considering changes in ρ).

(b) If αe
max > 0, there is ᾱ ∈]0, 1[ defined by P(α, θ,G) = 0 for all α < ᾱ and P(α, θ,G) > 0

for all α ≥ ᾱ.

Step 2 Suppose there is only one Nash equilibrium in simultaneous games satisfying αe ≥
ᾱ and ρe > 0 and that (contrary to the claim above) αd < αe

max, implying ρd =

P(αd, θ, G)≤ ρemax = P(αe
max, θ, G). Since P(α, θ,G) > a−1(R,α) for all α < αe

max

satisfying P(α, θ,G) > 0, FinTech 1 can further increase its expected profits by setting
α = a(R, ρd) > αd, contradicting the initial claim that some αd < αe

max was maximizing
expected profits for FinTech 1. Therefore, αd ≥ αe

max. Indeed, the first-order condition
for FinTech 1’s problem (15) evaluated at α = αe

max (and thus ρ∗ = P(αe
max, θ, G))

implies (16). Therefore, αd = αe
max if and only if ∂ρ∗/∂α = 0 (i. e., if ρe = f−1(G)) and

αd > αe
max otherwise; see LHS in

Step 3 Suppose there are two Nash equilibria in simultaneous games satisfying αe > 0 and
ρe > 0. Let

αe
min:=min

{
α∈ ]0, 1]

∣∣∣α = A(ρ,N,R) and ρ = P(α, θ,G)
}

ρemin:=min
{
ρ∈ ]0, 1]

∣∣∣α=A(ρ,N,R) and ρ=P(α, θ,G)
}

By the arguments made in Step 2, a necessary condition for αd < αe
max is that αd < αe

min.
If that were true, it also had to be true that αd > a(R, ρd). However, by construction
of a(R, ρ),

a(R, ρd)
(
1− Φ(v/ρd)

)
R− c

(
a(R, ρd

)
> αd

(
1− Φ(v/ρd)

)
R− c

(
αd
)
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and

αe
min

(
1− Φ(v/ρemin)

)
R− c

(
αe
min

)
> a(R, ρd)

(
1− Φ(v/ρd)

)
R− c

(
a(R, ρd

)
and

αe
max

(
1− Φ(v/ρemax)

)
R− c

(
αe
max

)
> αe

min

(
1− Φ(v/ρemin)

)
R− c

(
αe
min

)
(the last inequality holds by the Envelope theorem). Accordingly, (αe

max, ρ
e
max) ≻

(αd, αd) for FinTech 1. Therefore, the initial claim that αd < αe
min is false.

Step 4 In cases with more than two equilibria in simultaneous games satisfying αe > 0 and
ρe > 0, the arguments put forward in Step 2 and Step 3 apply equivalently (i. e. Step 2
to all odd and Step 3 to even numbered equilibria, accordingly).

Step 5 Finally, suppose that (αe
max, ρ

e
max) = (0, 0). Since both, α and ρ are bounded to the

closed interval [0, 1], it must be true that αd≥αe
max, ρd ≥ ρemax.

All things considered, this proves that equilibrium choices satisfy αd≥αe
max, ρd≥ ρemax, and

hence also N (R, ρd)≤N (R, ρemax).

2. For every G∈R++ there is θ̌∈ [θ̂, a(R, 1)H[ such that αd> 0, ρd> 0, and nd =N−1 for all
θ∈ ]0, θ̌[ and N ≥N (R, ρd).
To prove this, let θ = θ̂.

Step 1 Suppose ρemax = f−1(G) such that
(
αe
max, ρ

e
max

)
=
(
a(R, f−1(G)), f−1(G)

)
according

to Proposition 1. Hence,
(
αd, ρd

)
=
(
a(R, f−1(G)), f−1(G)

)
according to first-order

condition (16). By the properties of f , ∂f−1(G)/∂θ < 0 and, according to Lemma2,
∂a
(
R, f−1(G)

)
/∂θ = aρ

(
R, f−1(G)

)(
∂f−1(G)/∂θ

)
< 0. Accordingly, by definition of θ̂

at least one of the following conditions is violated if θ − θ̂ > 0,

a
(
R, f−1(G)

)(
f−1(G)φ(v/f−1(G))−

(
1− Φ(v/f−1(G))

)
v
)
−G ≥ 0 (30)

or
a
(
R, f−1(G)

)(
1− Φ

(
v

f−1(G)

))
R− c

(
a
(
R, f−1(G)

))
≥ η2

(N + 1)2
(31)

such that an equilibrium with informed interventions does not exist in simultaneous
games.
As regards sequential games, however, note first that (by Lemma 2), ρ∗ > 0 pro-
vided θ ≤ H and if, additionally, α is such that α≥ θ/H and G≥G. Let
αcrit := min

{
α∈ ]0, 1[

∣∣α ≥ θ/H and G ≥ G
}
. If αcrit ̸= ∅ and

αcrit

(
1− Φ

(
v

min{f−1(G),r(θ,αcrit)}

))
R− c(αcrit) ≥ η2/(N + 1)2, (32)

then αd =αcrit > 0 even though αe
max = 0. Therefore, θ̂ ≤ θ̌.
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Step 2 Suppose ρemax < f−1(G). According to part (1b), step 2, of this proof, αd > αe
max and

ρd > ρemax. Accordingly, while

α
(
ρφ(v/ρ)−

(
1− Φ(v/ρ)

)
v
)
− f(ρ) ≥ 0 (33)

or
α
(
1− Φ

(
v
ρ

))
R− c(α) ≥ η2

(N + 1)2
(34)

are binding at θ = θ̂ for (α, ρ) = (αe
max, ρ

e
max), neither condition (33) nor condition (34)

is binding for (α, ρ) = (αd, ρd). Therefore, in simultaneous games, either condition (33)
or condition (34) or both are violated for any θ − θ̂ > 0, such that an equilibrium with
informed interventions does not exist. However, in sequential games, condition (33) as
well as condition (34) remain slack if θ− θ̂ = ε for sufficiently small ε > 0, such that an
equilibrium with informed interventions exists then.

3. Equilibria with informed interventions and equilibria with outright bans do not co-exist.
Provided an equilibrium with αd > 0 (and hence ρd > 0) exist, it satisfies

αd
(
1− Φ

(
v
αd

))
R− c(αd) ≥ η2

(N + 1)2
(35)

Therefore, FinTech 1 is (weakly) better off than with α = 0 (and hence ρ = 0). As FinTechs
move before the regulator, FinTech 1 will opt for αd > 0 and the regulator follows suit by
setting ρd > 0.

G Proof of Proposition 4

Proof. The proof is in two steps

Claim 1 Suppose αd,e
1 > 0 and αd,e

2 > 0 holds in equilibrium. Then, αd,e
1 > αd,e

2 > 0.

To show this suppose that αd,e
2 = αd,e

1 > 0. By Lemma3, ρd,e2 = ρd,e1 > 0.

• If f(ρd,e1 ) + f(ρd,e2 ) < G, then αd,e
2 satisfies the first-order condition(

1− Φ
(

v

ρd,e2

))
R− c′(αd,e

2 ) = 0, (36)

that is, αd,e
2 ≤ αe

max. With regards to αd,e
1 , given the regulator’s budget is supposed

to be slack, Proposition 3 applies accordingly. Hence, inequality (16) holds accordingly
thus contradicting the initial claim αd,e

2 = αd,e
1 > 0.
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• If 2f(ρd,e1 ) = G, then ρd,e1 = ρd,e2 = f−1(G/2) according to Lemma3. Hence, αd,e
2 again

satisfies the first-order condition (36). However, the disruptor’s choice, αd,e
1 , satisfies(

1− Φ
(

v
f−1(G/2)

))
R + α1Rφ

(
v

f−1(G/2)

)
v

(f−1(G/2))2
∂ρ∗1
∂α1

− c′(α1)

>
(
1− Φ

(
v

f−1(G/2)

))
R− c′(α1) = 0

because provided the regulator spends equal amounts on signal precision for each Fin-
Tech, and if FinTech 2 would not respond further to any changes in α1, we obtain
∂ρ∗i /∂αi = −(ρ∗)3

/(
2α(v2− (ρ∗)2

/
(1−ρ∗))

)
> 0.28 This effect will be further amplified

by a lower α2 in response to FinTech 2’s reduced share in the regulator’s budget, thus
further increasing FinTech 1’s share in the budget. Therefore, αd,e

2 = αd,e
1 is not true.

Claim 2 Suppose αd,e
1 αd,e

2 = 0 holds in equilibrium. Then, αd,e
2 = 0.

The proof is by contradiction. Suppose αd,e
2 > 0. Then, αd,e

1 αd,e
2 = 0 requires αd,e

1 = 0. This
implies that (N, θ,G) are such that it is profitable for a single FinTech to leave the established
market and be observed by the regulator. If that is so, however, then αd,e

1 = 0 is not optimal:

• Suppose (N, θ,G) is such that besides symmetric outright bans symmetric informed in-
terventions are possible equilibria in games with multiple innovative FinTechs moving
simultaneously with the regulator (see Proposition 2, No. 3). Then, the least improve-
ment a disruptor can do over not pursuing the innovation is setting α1 = αe

1 and thus
inducing regulator and follower FinTech 2 to set (ρ1, ρ2) = (ρe1, ρ

e
2) and α2 = αe

1.

• Suppose (N, θ,G) is such that besides symmetric outright bans only asymmetric in-
formed interventions are the only possible equilibria in games with multiple innova-
tive FinTechs moving simultaneously with the regulator (see Proposition 2, No. 2 ex-
cept those characterized in No. 3). Then, the least improvement a disruptor can do over
not pursuing the innovation is setting α1 = αe

max > 0 and thus inducing regulator and
follower FinTech 2 to set ρ1 = ρemax, ρ2 = 0 and α2 = 0.

• Suppose (N, θ,G) is such that only symmetric outright bans are equilibria in games with
multiple innovative FinTechs moving simultaneously with the regulator (see Proposi-
tion 2, No. 1) but such that informed interventions are still an equilibrium in games
with a single, disruptor FinTech moving before the regulator (see Proposition 3, No. 2).
Then, the least improvement a disruptor can do over not pursuing the innovation is
setting α1 = αd > 0 and thus inducing regulator and follower FinTech 2 to set ρ1 = ρd,
ρ2 = 0 and α2 = 0.

28This expression is strictly positive as (v2 − (ρ∗)2
/
(1 − ρ∗)) < 0 provided ρ∗i = ρ∗j = f−1(G/2) constitutes a

maximum of the regulator’s objective function, see Proof of Lemma 3.
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