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Abstract

The U.S. stock market’s return during the first month of a quarter positively predicts

the second month’s return, which then negatively predicts the first month’s return of

the next quarter. The pattern arises from a model in which investors do not fully rec-

ognize that earnings announced in the second month of a quarter are inherently similar

to those announced in the first month, thereby overreacting to such predictably repet-

itive earnings. The same pattern exists in the cross-section and time series of industry

returns. Evidence from survey data lends support to the mechanism of correlation

neglect.
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1 Introduction

Predicting stock market returns based on past returns is challenging. Research by Kendall

and Hill (1953) and Fama (1965) from decades ago revealed that there is minimal serial

correlation in stock returns. Fama (1970) introduced the concept of the weak form of the

efficient market hypothesis, postulating that prices already incorporate all available informa-

tion from past prices. This hypothesis appears particularly applicable to the U.S. aggregate

market, as demonstrated by Poterba and Summers (1988), who found that monthly market

returns in the U.S. exhibit a small, statistically insignificant positive autocorrelation over a

12-month period.1 The lack of correlation between past and future market returns in the

U.S. is not only a well-recognized statistical phenomenon, but also an emblem of market

efficiency.

We document that the U.S. market return during the first month of a quarter positively

predicts the second month’s return, which then negatively predicts the first month’s return

of the next quarter. These first months of a quarter are special and important to investors

because they contain fresh earnings news about the aggregate economy. This is owing to the

nature of the earnings cycle in the United States. Take January as an example. At the end

of the December, firms close their books for Q4, and they announce Q4 earnings in January,

February, and March. January therefore contains the early earnings announcements and is

the first time that investors learn about the economy’s performance in Q4. The first months

of the quarters are famously known as the “earnings seasons” among practitioners and receive

heightened attention. Throughout this paper, we refer to them as “newsy” earnings months,

as they produce fresh news about aggregate earnings.

The second month of each quarter contains about equally many earnings announcements

as does a newsy month. The aggregate earnings announced in the second month are, how-

ever, predictably repetitive of those announced in the preceding newsy month because the

1Furthermore, Poterba and Summers (1988) noted a negative autocorrelation in the U.S. market over
longer time horizons, while Lo and MacKinlay (1988) identified a positive autocorrelation in weekly returns
for small U.S. stocks. Despite these variations, the consistently low month-to-month autocorrelation in U.S.
market returns remains a crucial piece of evidence supporting the concept of market efficiency.
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announced earnings are of the same fiscal quarter (Q4 in our example above). We call these

second months “repetitive” earnings months, as they contain earnings announcements that

produce repetitive aggregate earnings “news.” Such repetition is not verbatim—in fact, dif-

ferent firms announce in the first and the second month of a quarter—but rather subtle: the

earnings announced in the second month broadly resemble those in the first month, owing

to their common aggregate component. The third month of a quarter contains substantially

fewer earnings announcements and produce muted earnings news. The terminology allows us

to compactly describe our return pattern in one sentence: a newsy month’s return positively

predicts the next repetitive month’s return, which then negatively predicts the next newsy

month’s return.

One way to test our mechanism is to examine earnings expectations themselves. Specif-

ically, our hypothesis states that imperfectly rational investors use announced earnings to

forecast future earnings, but fail to fully account for the repetitive nature of the earnings in

the second month of a quarter. This act of correlation neglect leads to overreaction in the

repetitive months that are predictably in the same direction as the news in the preceding

newsy month, giving rise to the newsy-to-repetitive return continuation. As the next newsy

month comes, these overreactions are correctly, leading to the repetitive-to-newsy return

reversal. If this is accurate, we would see it not only in the return data, but also in the

expectations data.

We evaluate this prediction using survey data from IBES. We first show that sell-side

analysts indeed exhibit correlation neglect, leading to different types of predictability in

earnings growth revisions in the newsy and repetitive months. This evidence is uniquely

useful because survey data are direct measures of market expectations, albeit imperfect.

Moreover, we show that the predictable reversals in market returns do not occur until the

earnings seasons begin. This alignment in timing suggests that it is indeed the earnings

seasons that drive the return predictability, as opposed to other quarterly fluctuations un-

related to earnings announcements. As a further robustness chec, we find a similar result

in the cross-section: Industry returns in excess of the market predict returns in repetitive
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months with a positive sign and in the next newsy month with a negative sign and in the

first month of the following quarter with a positive sign.

We formalize the correlation neglect mechanism with a model in which there is variability

in the second month regarding whether the information from the first is brought to investors’

attention or not. A fully rational investor would not react to this “news,” understanding that

the new information was correlated with the old. An investor who believes he or she is seeing

a genuinely new observation reacts; this reaction is predictable because the information is

in fact the same as in the first quarter, and it also causes stock prices to rise or fall by more

than is warranted.

These findings have broader implications. First, we provide evidence of return predictabil-

ity that is robust, and economically and statistically significant, with monthly out-of-sample

R2 statistics of 4% , thus contributing to the debate on whether return predictability actually

exists (Goyal and Welch 2008, Campbell and Thompson 2008,Goyal et al. 2024).2 Second,

we show that three important and commonly made assumptions about stock market returns

are not innocuous: i) the expected stock market return is persistent, ii) the expected stock

market return almost always exceeds the risk-free rate, and iii) the stock market return is

covariance-stationary. Finally, we provide asset pricing and survey evidence for correlation

neglect: investors seem to treat repeated information as new independent observations, even

if they have substantial incentive to do otherwise.

Besides the very substantial literature on continuation and reversal, several recent papers

make points that are related to ours. First, the “tug-of-war” pattern between continuation

and reversal we document for monthly stock market returns is mirrored in intraday market

returns: Lou et al. (2024) show that open-to-close stock market returns positively predict fu-

ture close-to-open stock market returns, which then negatively predict future open-to-close

returns.3 The authors attribute their findings to clientele effects: the overreaction arises

from news being repeatedly consumed by a second clientele (households). In our paper, the

2In contrast, Goyal et al. (2024) find out-of-sample R2 statistics, should they be positive, tend to be in
the tens of basis points, a finding that we replicate using our methodology.

3Relatedly, Lou et al. (2019) find that close-to-open (open-to-close) stock returns positively predict future
close-to-open (open-to-close) returns, and negatively predict future open-to-close (close-to-open) returns.
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overreaction aries from news itself being repeated in the second month of a quarter. Second,

Fedyk and Hodson (2023) document that repetitive “news” on Bloomberg terminals gener-

ates overreactions in returns of related stocks, and that such overreaction is stronger when

the repetition is more subtle, a result that, like ours, suggests correlation neglect. Finally,

Enke and Zimmermann (2019) find that human subjects do not fully discount correlated

news in experiments even when they are given a simple setup and clear instructions. We

contribute to this literature by showing that the correlation neglect mechanism further exists

in aggregate stock market returns and the cross section of industry returns.

2 Predicting aggregate stock market returns

We first characterize the U.S. earnings cycle, which originates from i) aligned fiscal quarters

and ii) heterogeneous announcement lags. Panel A of Table 1 shows that the vast majority

of the US firms close their books for a given fiscal quarter on the last day of a calendar

quarter. Therefore, the fiscal quarters over which the earnings are recorded are effectively

the calendar quarters. While the fiscal quarters are aligned, firms do not announce their

quarterly earnings together. Almost all firms announce within the three months after the

fiscal quarter end date, but there is much variation in their announcement lags. Panel B

shows that among the on-cycle announcements, about 45% occur in the first month of a

quarter, about 48% in the second month, and about 8% in the last month.

The quarterly cycles of earnings announcements implies that each of the three months in

the quarter has a different status. The first month is the first time that investors learn about

the aggregate economy’s performance in the previous quarter. This economy-level learning

is possible because corporate earnings have a common time component: the aggregate eco-

nomic condition in fiscal quarter 4 (FQ4) of 2023 influences all firms, and consequently, if

early announcers’ FQ4 earnings are good, then FQ4 is more likely than not a good quarter

for everyone. Earnings announced in the first month of a quarter therefore provide new

information about aggregate earnings earned in the previous quarter. We refer to these first
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months of quarters as the newsy earnings months, or newsy months for convenience.

The second months, in contrast, see earnings that are predictably repetitive of those

announced in the first months. This is again owing to the shared aggregate component of

corporate earnings: earnings announced in February, like those announced in January, are

earned in Q4 of the previous year and therefore inherently similar. We refer to the second

months of quarters as the repetitive earnings months, or simply repetitive months. The third

months of quarters also contain announcements of predictably repetitive earnings. However,

as they contain substantially fewer on-cycle earnings announcements, the repetition is muted.

2.1 Baseline return pattern

We demonstrate our baseline predictability pattern in the U.S. stock market returns with

the following monthly time-series regression:

mktt = α + βmktnr(t) + εt. (1)

Here, mktt is the U.S. stock market return in excess of the risk free rate in month t, and

nr(t) is the most recent month before t that is newsy or repetitive. For example, if t is

February, then nr(t) is January, and if t is March or April, nr(t) is February.

Panel A, Column 1 of Table 2 conducts regression 1 on the subsample in which the

dependent variable month t is repetitive. The positive coefficient of 0.279 implies that a

newsy month’s return positively predicts the return in the subsequent repetitive month.

Column 2 is on the subsample in which t is newsy. The negative coefficient of -0.279 shows

that a repetitive month’s return negatively predicts the return in the next newsy month.

These values are economically sizable, as they are bounded by -1 and 1 in stationary time

series.

Column 3 extracts the difference of the coefficients in Column 1 and 2 by conducting the
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following regression on the combined sample in which t is either newsy or repetitive:

mktt = α + β1mktnr(t) + β2mktnr(t) × Int + γInt + εt. (2)

Here, Int is a dummy variable indicating whether month t is newsy. The most important

number in Table 2 is the coefficient on the interaction term, β2. Its value of -0.557 captures

the difference in Columns 1 and 2 and emblematizes the table. Economically, it demon-

strates that monthly autocorrelation of the U.S. stock market returns varies strongly and

predictably. Without the third months of quarters that contain muted earnings news, the

first order autocorrelation of the monthly U.S. stock market returns alternates between

strongly positive (newsy predicting repetitive) and strongly negative (repetitive predicting

newsy). The associated t-statistic of -4.35 implies that the observed relation is unlikely to

arise from pure noise or pure data-mining.4 While this statistic is an useful diagnostic, the

time-series return forecasting literature (e.g., Goyal and Welch (2008)) has critiqued and

moved away from it. We examine more standard performance metrics such as out-of-sample

R2 and trading strategy behaviors in the next subsection.

Panel B, C, and D of Table 2 report results of the same regressions as in Panel A, except

that they are on the first half, second half, and the post-WWII portion of the full sample,

respectively. The pattern operates in each of these episodes and is not the sole result of a

small number of observations, warranting further evaluation of its reliability.

2.2 Further evaluation

We now evaluate the baseline pattern from three additional aspects: i) out-of-sample forecast-

ing performance, ii) trading strategy performance, and iii) and contribution to the existing

literature.

4It further implies that an in-sample, market-neutral trading strategy that bets on both the contin-
uation in Column 1 and the reversal in Column 2 approximately yields an annualized Sharpe ratio of
4.35/

√
98 = 0.44, where the number 98 is the number of years in the sample. This back-of-envelope calcula-

tion approximates the market excess returns with the regression residuals (which works in low-R2 settings)
and is merely a convenient heuristic. We formally construct a trading strategy in the next subsection.
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Forecasting performance Goyal and Welch (2008) made an important critique on the

literature studying stock market return predictability, which is that in a linear regression

model, any proposed signals to forecast returns can only be used with estimated coefficients,

and if such estimation is done on data available in real time, the signals often generate

negative “out-of-sample” (OOS) R2. This means that such signals, when employed to predict

the stock market returns in real time, often fail to outperform the returns’ historical average.

Table 3 presents the out-of-sample R2 generated by our signal. Following Campbell and

Thompson (2008), we extend the CRSP aggregate market return series to 1872 using GFD

data, and evaluate the R2 from 1926. The benchmark underlying these R2s is the expanding-

window mean excess return mktt, the average stock market return in excess of the risk free

rate up to month t. Our signal st−1, which forecasts mktt, is mktnr(t)−mktt−1 for a repetitive

t, −(mktnr(t) −mktt−1) for a newsy t, and 0 otherwise.

Table 3 estimates the expanding-window OLS coefficients for our signal and compute

the real-time forecasts for mktt in multiple ways. These methods are kept simple, with

no constraint or shrinkage applied. Column 1 shows that even the most naive method—

combining the signal values and the regression coefficients of historical returns on historical

signals and a freely estimated constant—generates an R2 of 4.20%. This number appears an

order of magnitude higher than what are generated by other time-series signals for monthly

US stock market returns surveyed in the comprehensive study of Goyal and Welch (2008),

Rapach and Zhou (2022), and Goyal et al. (2024). This high R2, along with those generated

with methods 2 and 3, mitigates the concern that the signal implied by the time-series results

in this paper could not have been successfully used to forecast stock market excess returns

in real time.

Trading strategy Good forecasting performance does not necessarily translate into suc-

cessful trading strategies.5 We now use our signal to construct a beta-neutral market-timing

strategy that rebalances positions in i) the stock market and ii) the risk-free bond and

5The converse of the statement is not true either.
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examine its performance.

Overall, the strategy implements two rules with data available in real time. First, it

places proportional weights on the market to the signal value, with a mean of zero. Second,

the portfolio weight is scaled so that the strategy has a historical volatility of 5% per month.

Specifically, for month t, the unscaled portfolio weight is simply st−1. The unscaled strategy

volatility σ̄st−1 is the unscaled strategy’s historical volatility up to t− 1. The scaled portfolio

weight is then st−1
0.05
σ̄s
t−1

. We further truncate the weight on the market at −3 and 3 to limit

the impact of extreme observations.6 The strategy’s construction involves no look-ahead

bias, and the scaling can be adjusted according to an investor’s risk appetite.

Column 1 of Table 4 shows that this trading strategy yields a monthly return of 0.668%

(i.e., 8.02% per annum). Columns 2-4 show that the CAPM alpha, Fama-French 3-factor

alpha, and FF3 + Momentum alpha are 0.554%, 0.402%, and 0.715% per month respectively.

Our time-series strategy adds value to these factors. Moreover, as it involves only positions

on aggregate stock market and the risk-free bond, it is likely much cheaper to implement

than the controlled cross sectional factors, which involve positions on individual stocks.

Relation to the existing literature Goyal et al. (2024) recently surveyed the literature

on aggregate stock market return predictability and examined the signals’ out-of-sample

forecasting performance. Table 3 of their paper shows that among an expanded set of 34

predictors, the monthly in-sample R2s are on average 0.32%, OOS R2 are on average -0.44%

after applying the regression constraints in Campbell and Thompson (2008). These results

reaffirm the conclusion of Goyal and Welch (2008) that existing signals “predicted poorly

both in-sample (IS) and out-of-sample (OOS). . . seem unstable. . . and would not have helped

an investor with access only to available information to profitably time the market.”

We replicate and extend their results in Table B1. The vast majority of OOS R2s in

this table are negative, with the maximum being 0.60% even as multiple implementations

of the regressions are attempted. This reaffirms the conclusion of Goyal and Welch (2008).

6Our results do not appreciably change if this step is dropped, although in practice, implausibly high
leverage cannot be implemented and a similar constraint would exist explicitly or implicitly.
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By documenting a predictor that generates an OOS R2 that is an order of magnitude larger

than the numbers in Table B1, we shift the literature’s prior on an important question: How

predictable is the U.S. monthly stock market returns?

Our paper also relates to Guo (2025), which also focuses on earnings seasons (newsy

months in our language). Guo (2025) also shows evidence for subtle expectational errors

around earnings data that lead to return predictability patterns. In his case, the error arises

from a mechanism called parameter compression: investors assume that earnings announce-

ments equally close in time are equally close in information content. However, earnings

announcements in any given quarter are closer than those in separate quarters. More gen-

erally, the true relevance of a newsy month’s earnings follows a step pattern, whereas the

hypothesis in the paper is that it follows a straight line. This mechanism leads to simultane-

ous under- and overreaction in the newsy months. In contrast, in our paper, the mechanism

is correlation neglect, and it leads to overreaction in the repetitive months.

The mechanisms are distinguishable in the data. Table 5 shows in monthly stock return

regressions that they remain highly significant after controlling for one another. Besides

the regressor mktnr(t), namely the return in the previous month if the second month in the

quarter (repetitive) or two months back if the first month in the quarter, the regressions also

have the regressor
∑4

j=1mktnm(t,j), the key signal used in Guo (2025) that represents the

average return over the last four newsy months. Both coefficients in column 3 are significantly

negative, implying that correlation neglect retains its predictive power even when controlling

for parameter compression.

Overall, our proposed signal featuring the tug-of-war between market return continuation

and reversal appears to i) generate positive OOS R2, ii) produce a profitable trading strategy,

and iii) add value to the existing literature. It is therefore worthwhile to consider possible

explanations for the pattern.
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3 Explaining the return pattern

Before proposing an explanation, we note two telltale features of the data that inform us

about the type of explanations that are likely to drive our return pattern.

First, the continuation and reversal arms appear tightly linked. We separate the return

of trading strategy (as constructed in subsection 2.2) in each year into the component earned

in the newsy months and that earned in the repetitive months. Table 6 regresses the two

components on each other, both in the raw return unit and ranked to limit the influence

of outliers. The significant positive coefficients imply that a year in which the continuation

effect is strong is also likely to see strong reversal. This means that the continuation and

reversal arms are likely driven by the same underlying economic force and should therefore

be explained by one story rather than two.

Second, our signal implies expected market excess returns that are frequently negative.

Figure 1 plots the expected stock market return implied by Method 2 of Table 3. This

time series of expected stock market excess return is negative 24% of the months. This

implies that an explanation based on risk alone is unlikely to explain the return pattern in

full. In such a risk-based framework, the negative expected returns means that the stock

market is safer than Treasury bills one month out of four. This feature is especially difficult

to accommodate, as it is implausible that investors find the stock market to be safer than

Treasury bills that often.

Given these two features, a parsimonious mechanism that jointly explain the continuation

and reversal arms of the return pattern is correlation neglect: investors do not fully discount

the inherently repetitive earnings announced in the second month of a quarter and thus

overreact to them, creating the return continuation that gets corrected in the next newsy

month. To formalize this intuition, we apply a model of correlation neglect, motivated by

Enke and Zimmermann (2019) to asset pricing.7

7Our model differs from that of Enke and Zimmermann (2019) in several respects. In Appendix A, we
show that directly applying the model of Enke and Zimmermann does not explain the effects in our paper,
and give intuition as to why.
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Assume that the economy is either in a high or low-productivity state. If the economy is

in the high-productivity state, the aggregate market is worth 1 whereas it is worth 0 if it is

in a low-productivity state. The high-productivity state occurs with probability p, which is

unknown to investors. Investors have a prior distribution over p. The distribution is beta,

such that they would estimate a probability p∗ with a sample size of τ . To fix ideas and

eliminate unnecessary notation, we set τ = 1.

This model has three periods. Period 1 corresponds to the first month of a quarter, namely

a newsy month. Period 2 is the repetitive month that follows. Period 3 is the first month

of the following quarter. In period 1, investors receive a signal s, with s ∼ Bernoulli(p). In

period 2, this signal is potentially repeated (as opposed to an independent signal being drawn

from Bernoulli(p)). Whether or not the signal is repeated is determined by x ∼ Bernoulli(px).

If x = 1, then s is brought again to investors’ attention.

To focus on our main mechanism, we assume investors are risk-neutral and the riskfree

rate is equal to zero. Under these conditions, the value of the market is equal to the posterior

mean of p, which equals:

E[p|N out of T ] =
N + p∗τ + 1

T + τ + 2
(3)

The investors’ prior implies that the price prior to observing the signal in the first period is

P0 = E[p] = (p∗ + 1)/3. After observing signal s, the mean shifts so that the price equals

P1 = E[p|s] =
s+ p∗ + 1

4
.

For simplicity, we define returns as differences in prices rather than percent changes. The

return R1 = P1 − P0. Note that E[R1] = 0.

Equilibrium with rational investors

There is no information and hence no change in the second period, P2 = P1 and R2 = 0.

The return in the third period R3, conditional on both p and s is Bernoulli outcomes 1−P1

11



with probability p and −P1 with probability 1− p. Note that

E[R3|s] = E[E[R3|p, s]|s] = E[[p|s]− P1 = 0.

In addition,

E[R1R3] = E[E[R1R3|s]] = E[R1E[R3|s]] = 0

Because E[R1] = E[R3] = 0, this shows Cov(R1, R3) = 0. Because R2 is a constant, it also

has zero covariance with both random variables.

Equilibrium with correlation neglect

Investors form

P2 = ECN[p|x, s] =


2s+p∗+1

5
for x = 1

s+p∗+1
4

= P1 for x = 0

Then

E[P2] = E[E[P2|s]]

= E

[
px

2s+ p∗ + 1

5
+ (1− px)P1

]
= E

[
px

(
2s+ p∗ + 1

5
− P1

)
+ P1

]
= pxE

[
2s+ p∗ + 1

5
− s+ p∗ + 1

4

]
+ P1

= P1,

where we use the fact that E[s] = E[p] = (p∗ + 1)/3. Therefore the investor is, on average,

neither optimistic nor pessimistic.

However, unlike in the case with the rational agent, R2 is positively correlated with R1.

Intuitively, the agent double-counts s in the second period, not realizing that it is the same

signal as before. Because R2 has mean zero, it suffices to show that E[R2R1] > 0. First,
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note that a useful intermediate result following from (4) is:

E[R2|s] = px

(
3s− p∗ − 1

20

)

E[R2R1] = E[E[R2R1|s]]

= E[E[R2|s]R1]

= E[E[R2|s](P1 − P0)]

= E

[
px

(
3s− p∗ − 1

20

)(
3s− p∗ − 1

12

)]
> 0

where the second line follows because R1 is a constant in s.

Finally, we show that E[R3R2] < 0, namely that returns in the second and third period

are negatively correlated. Note that P3 is identical in the equilibrium with correlation neglect

and with rational investors. Also, in both economies, E[P3|s] = E[P3|x, s] = P1. Finally, by

definition, P3−P1 = P3−P2 +P2−P1 and so E[R3−R2|x, s] = 0. That is, the price in the

first period is the optimal forecast. Therefore, any reaction to “news” in the second period

will be an over-reaction that will on average be corrected in the final period:

E[R3R2] = E[E[R3R2|x, s]]

= E[E[R3|x, s]R2],

= −E[R2
2] < 0.

where the second line follows because R2 is a constant in x, s.

This model establishes continuation and reversal. It also makes several additional pre-

dictions. Our model is based on expectations driven by announcements. This leads to two

additional hypotheses.

Prediction 1 (Survey data). Revisions in a repetitive month are likely to be in the same
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direction as those in the previous newsy month, and revisions in a newsy month are likely in

the opposite direction to revisions in the previous repetitive month.

Note that the expectation revision in a newsy month is ECN[p|s] − p∗, which equals

R1. The revision in the repetitive month is ECN[p|s, x]− ECN[p|s], which equals R2. These

are positively correlated as we show above. In the following newsy month, the expectation

revision, if there is a positive outcome, is 1 − ECN[p|s, x] and −ECN[p|s, x] otherwise. For

the reasons described above, this is negatively correlated with the revision in the repetitive

month.

Prediction 2 (Similarity of announcements). If continuation and over-reaction arise from

announcements, the effect will be stronger when the announcement in the repetitive month

is more similar to the previous newsy month.

4 Testing the hypothesis

Having stated our hypothesis of correlation neglect, we further test it from four additional

angles.

4.1 The pre-season periods

Our previous analysis primarily focused on monthly stock returns and utilized the concept

of newsy months. However, the period with a significant number of earnings announcements

does not immediately begin on the first day of these newsy months. Even the quickest

announcers require some time to prepare their statements. Specifically, among companies

with fiscal periods aligned with calendar quarters, only 0.27% of earnings announcements

occur within the initial week (or the first five trading days) of the quarter. This percentage

is significantly lower compared to the average weekly announcement rate of about 8%. In

contrast, the second week of each quarter sees 2.93% of the announcements, which aligns more

closely with the average weekly rate. Therefore, any market return reversals, if stemming
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from these earnings announcements, are not expected to occur in the first week of newsy

months. Table 7 confirms this prediction. Columns 2 and 3 show a weak reversal in the

first week of newsy months and a strong reversal in remaining periods, with the coefficients

disproportionate to the length of the predicted returns (about one to three). This analysis

suggests that our observed return pattern is indeed tied to the early earnings announcements.

This piece of evidence speaks in favor of stories involving these earnings announcements and

against those built upon other unrelated quarterly fluctuations.

4.2 Survey data

An influential branch of the behavioral finance literature uses survey data from IBES to

measure investors’ expectations of aggregate cash flow growth. In particular, Nagel and Xu

(2022) and Bordalo et al. (2024) argue that the long-term growth (LTG) measure in IBES is

what matters for aggregate asset price variations. As Prediction 1 states, our model traces

the continuation and reversal effects to beliefs, which this branch of the literature has argued

can be extracted using the LTG measure from the IBES Adjusted Details file.8 Following

Bordalo et al. (2024), we use medians across analysts to represent firm level consensus, and

then aggregate firm level LTG revisions in each month using the market capitalization weight

within the S&P 500 universe to obtain revisions in aggregate cash flow growth expectations.

Our model predicts that investors overreact in the repetitive months in the sense that i)

revisions in a repetitive month are likely in the same direction as those in the preceding

newsy month and ii) revisions in a repetitive month are likely followed by correction in the

opposite direction in the subsequent newsy month. These lead to two predictions on the

time series of aggregate LTG revisions. First, revisions in a repetitive month are positively

correlated with revisions in the previous newsy month. Second, revisions in a newsy month

are negatively correlated with revisions in the previous repetitive month.

Column 1 of Table 8 tests prediction i) by running the following regression on the sample

8We do not use the Summary files, which contain middle-of-the-month consensuses struck on the Thurs-
day after the 3rd Friday of the month, because we need revisions month-end to month-end.
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in which t is repetitive:

Revt = α + βRevt−1 + εt.

Here, Revt is the aggregate LTG revisions in month t, and as t is repetitive, t− 1 is newsy.

The positive and significant coefficient of 0.543 indicates that revisions in a repetitive month

indeed tend to be in the same direction as those in the previous newsy month. However, this

number is not in itself convincing. Survey data naturally incorporate latency,9 resulting in a

positive unconditional autocorrelation in revisions. Column 2 controls for this unconditional

latency and extracts the overreaction effect using an interaction term between Revt−1 and a

dummy variable indicating whether t is repetitive. The resulting coefficient of 0.323 is again

highly significant, indicating that the positive relation between the revisions in a repetitive

month and the previous newsy month goes above and beyond what is implied by the data

latency alone.

Column 3 tests prediction ii) by running the following regression on the sample in which

t is newsy:

Revt = α + βRevt−2 + εt.

Here, as t is newsy, t− 2 is repetitive. We do not observe the negative coefficient predicted

by our theory, but rather a near-zero coefficient of 0.038. However, this is simply owing to

the confounding latency effect said above. Column 4 controls for this effect and extract the

overreaction coefficient using the interaction term between Revt−2 and a dummy variable

indicating whether t is newsy. Here, we can clearly see a significantly negative coefficient of

-0.174. This implies that reactions in the repetitive months are indeed overreactions that

get corrected in the subsequent newsy month.

9One factor contributing to the latency in survey data is the requirement for analysts to produce detailed
analyst reports (as examined in Barth et al. (2024) and Li et al. (2024)) in addition to their estimates. This
increases the cost of generating estimates, thus causing delays in their release.
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4.3 Earnings similarity and the strength of the return pattern

According to our mechanism, investors see a signal in the second month, which they believe

is an independent draw from the distribution that produced the signal in the first month.

In the data, however, this second signal are in fact earnings announcements from a different

set of firms. These signals have a range of similarities with the first signal, which we capture

with differences between aggregate return on equity in the two months. If the signal that

investors see is highly dis-similar, then investors are not likely to interpret it as a draw

from the same distribution. Thus one test of our underlying mechanism (see Prediction 2

is that over-reaction is likely to be especially strong when the earnings in the repetitive

month are similar to those announced in the previous newsy month. We now test this

prediction. Table 9 reports the key parameter β2 on the interaction term from regression 2

conducted separately for episodes in which the earnings announced in an repetitive month

and the preceding newsy month, as measured by ROE, are unusually similar, moderate, and

unusually dissimilar. It shows that, when the earnings announced in the repetitive month

more closely resemble those in the preceding newsy month, we indeed observe an amplified

pattern of dynamic autocorrelation in the return of this repetitive month and the next newsy

month. This confirms our model’s prediction that investors overreact more to a repetitive

month’s earnings when they are more similar to those in the preceding newsy month.

4.4 The cross section of industries

4.4.1 Baseline return pattern

The main intuition behind the theory is as follows. If a group of stocks are 1) tightly and

obviously connected in fundamentals, so that investors actively infer group-level information

from its members’ announcements and 2) sizable in number, so that the group as a whole

announces progressively along the earnings cycle, then earnings announced in the second

month of a quarter will be predictably similar to those announced in the first month. Failure

to recognize this inherent similarity leads to predictable overreaction in the second month
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that later reverses.

This story applies naturally to all stocks in the US economy, but should additionally

apply to industry-level returns. Two stocks randomly drawn from an industry are more

connected with each other than two random stocks drawn from an economy. An indus-

try is a smaller economy except more tightly connected. Investors clearly understand the

tight intra-industry connection and actively learn industry-level information from the early

earnings announcements (e.g., Foster (1981)). If the story is indeed about the early earn-

ings announcements, the dynamic serial predictive relation in the aggregate market returns

should also exist in industry returns in excess of the aggregate market returns.

Table 10 tests this prediction by conducting the following regression:

exreti,t = α + βexreti,nr(t) + εi,t. (4)

Here exreti,t is the return of industry i in excess of the market return in month t. The returns

are weighted by market capitalization, and the regression is weighted by industry level market

capitalization scaled to sum to 1 in each cross section. Following Lou et al. (2019), we drop

stocks with a smaller market capitalization than the 10th percentile on NYSE. We further

drop industries with less than 10 constituents to ensure a sufficient number of announcers.

Table 10 shows that the same tug-of-war pattern between continuation and reversal exists

in industry excess returns in addition to aggregate market returns.

Two points are worth noting. First, this piece of cross sectional evidence is important in

its own right. Table 11 shows that it can also be converted into a profitable trading strategy.

Like the regressions in Table 10, this strategy uses market capitalization weights, making

it highly implementable. Second, the consistency between aggregate and cross sectional

evidence is not always seen in the return predictability literature. This piece of evidence

thus speaks potently in favor of our hypothesis.
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4.4.2 Heterogeneities across industries

Rich variation across industries offers us a good opportunity to further test our theory. As

said in the previous subsection, our theory works on a group of stocks that are i) tightly

connected in fundamentals and ii) sizable in numbers. These two elements are both necessary

to set up the stage of intra-group learning, generate the newsy and repetitive signals for

group-level cash flow in the first and second month of a quarter, and allow the possibility

of correlation neglect. A natural implication of our theory is the return pattern should be

stronger on industries that are more tightly connected and have more constituents.

Panel A of Table 12 test these predictions. We measure industry level earnings connec-

tivity by first computing the covariance of normalized excess ROE (winsorized at -4 and 4)

for each pair of stocks in the same industry-quarter, and then taking the within-industry

average weighted by the average of the market capitalization of the pair of stocks. We then

split each cross section is then split between high connectivity industries and low connectivity

ones, and run the regression:

exreti,t = α + β1exreti,nr(t) + β2exreti,nr(t) × Int + γInt + εi,t. (5)

We clearly see that the effect of correlation neglect, as measured by the size of the

coefficient β2 on the interaction term, is much larger on the high connectivity industries.

Panel B conducts a similar exercise for the number of firms in each industry, and show that

the effect of correlation neglect is larger on the larger industries. Furthermore, as argued in

Section 3, our theory predicts that the overreaction in the repetitive months is larger when

the earnings in them more closely resemble those in the preceding newsy months. Panel C

show that this is indeed the case in data.

To further demonstrate that the empirical pattern relates to the economic structure of

real industries, we conduct a placebo test in Panel B of Table 12 by randomly generating fake

“industries” and conduct regression 5 on the panel of these fake industries. The random-

ization approaches follow those in Chen et al. (2024). Panel B1 randomly assign each stock
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to 1 of the 39 (median number of industries across cross sections) “industries” with uniform

probability. This approach generates random industries of roughly equal size (number of

constituents). Panel B2 assign each stock to the industry of a randomly chosen stock in

the same cross section without replacement. This approach preserves the size distribution

of the industries in each cross section. Panel B3 first sorts each cross section into deciles by

exrets,nr(t), where s is a stock, and then assigns each stock to the industry of a randomly

chosen stock in the same cross section-decile. This approach preserves the size distribution of

the industries in each cross section and further controls for exreti,nr(t). The 1st percentiles in

Panel B of Table 12 are much less negative than the -0.164 observed in Panel A of Table 12.

The results in Panel B3 are especially useful. It tells us that the observed return pattern in

Table 12 depends critically on the economic structure of genuine industries and is not the

sole result of the regressor exreti,nr(t) itself.

5 Alternative explanations

Predictable resolution of risks. The most important set of explanations for return pre-

dictability comes from predictable resolution of risks, which leads to high expected returns,

as well as going through predictably low-risk periods, which leads to low expected returns.

We have argued that this type of explanations is unlikely to account for our return pattern

in its full scale owing to the frequency at which the expected stock market excess returns are

negative. We now ignore this aspect of scale and discuss potential stories that can explain

the pattern in direction.

The type of variation in risks that is necessary to explain my time-series results is that,

i) after a good newsy month, the stock market is risky in the subsequent repetitive month,

and ii) after a good repetitive month, the subsequent newsy month is safe. Individually,

both points are not difficult to accommodate in a risk-based framework. In fact, point ii)

naturally arises when a repetitive month resolve risks and take them away from the next

newsy month. However, as we show in Table 6, we ideally should have one story that jointly
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explain both arms of the return pattern. This first requires the risk of the market to vary at

a monthly frequency. Standard asset pricing models such as habit, long-run risk, disaster,

and intermediary-based asset pricing all involve risks that should be rather persistent at a

monthly frequency. So it does not appear hopeful to use standard macro risk factors to

explain my predictability pattern.

Another candidate is the risk resolution associated with earnings announcements. Em-

pirically, Savor and Wilson (2016) show that early announcers earn higher excess returns

than later announcers (Table IV), which is indeed consistent with the overall importance of

the earnings season. This, however, does not explain why the current earnings season being

good makes the next repetitive month risky. Neither does it explain why a good repetitive

month is followed by a safe newsy month.

Savor and Wilson (2013) document that the equity premium on macroeconomic an-

nouncement days is especially large and argue that this is because it resolves important

macroeconomic risks. If this contributes to our pattern of return predictability, the return

predictability would be realized on macroeconomic announcement days. A straightforward

empirical investigation reveals that the predictability in fact works about equally well on

the top five macroeconomic announcement dates on Bloomberg (i.e., FOMC, employment

condition, GDP, PPI, and Institute for Supply Management manufacturing). The data sug-

gest that the return predictability documented in this paper does not obviously relate to

macroeconomic announcements.

Firms endogenously changing their announcing latency. A large accounting literature

examines the relation between the timing of firms’ earnings announcements and the news they

convey. A clear empirical pattern that emerges is that early announcers tend to announce

better news than late announcers (e.g., Kross 1981; Kross and Schroeder 1984; Chambers

and Penman 1984; Johnson and So 2018; Noh et al. 2021). The literature has also extensively

studied the reasons behind this pattern and has partially attributed it to firms’ endogenous

choices of the announcing lag. For instance, deHaan et al. (2015) argue that firms delay

21



earnings announcements with bad results to avoid the early portion of the earnings cycle

that receives heightened attention. Givoly and Palmon (1982) argue that they do so to buy

time so that they can manipulate their accounting results.

However, it is not clear how this empirical regularity alone speaks to our results. Overall,

it implies that early announcers announce better results than late announcers. If investors

fail to anticipate that, then early announcers will have higher earnings surprises and higher

announcement excess returns. It is not clear why it would cause the market return in the

newsy month to positively correlate with that in the next repetitive month. If anything,

exogenous variation in the intensity of this self-selection effect seems to lead to a negative

correlation of early announcement returns and late announcement returns within the quarter,

as bad announcers being moved out of the newsy months makes the newsy months look

better, and the subsequent repetitive months look worse than they otherwise would. And

even then, it is not clear why a pattern of return reversal would exist between a repetitive

month and the upcoming newsy month.

6 Conclusion

Contrary to prior beliefs, monthly stock market returns in the United States can in fact

be predicted with past returns. Specifically, the U.S. stock market’s return during the first

month of a quarter positively predicts the second month’s return, which then negatively pre-

dicts the first month’s return of the next quarter. The first months of a quarter are “newsy”

because they contain fresh earnings news about the aggregate economy, whereas the second

months of a quarter contain earnings announcements that produce predictably repetitive

“news.” We hypothesize that the return predictability pattern arises because investors use

announced earnings to predict future earnings, but did not recognize that earnings in the

second months of a quarter are inherently repetitive of those in the previous newsy month.

Survey data support this hypothesis of correlation neglect, as does out-of-sample evidence

across industries. These results challenge the efficient market hypothesis by documenting a
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strong and pervasive form of return predictability.
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Table 1: When do firms end their fiscal quarters and when do they announce earnings

A: FQ-end month B: Earnings announcement month
Count Percent Count Percent

Group 1: Jan/Apr/Jul/Oct 82,257 8.6% 358,128 44.7%
Group 2: Feb/May/Aug/Nov 51,169 5.4% 382,162 47.7%
Group 3: Mar/Jun/Sep/Dec 819,534 86.0% 60,649 7.6%
Total 952,960 100.0% 800,939 100.0%

Panel A counts the company-fiscal quarters in Compustat by the months in which they end. The fiscal quarters always end on
the last day of a month, and 86.0% means that 86.0% of the fiscal quarters end on the last day of March, June, September,
or December. Panel B counts the company-fiscal quarters by the months in which the fiscal quarters’ earnings are announced,
requiring that i) the fiscal quarter ends in the Group 3 months and ii) the earnings announcement occurs within 92 days of the
fiscal quarter end date. Data are quarterly from 1971 to 2023.
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Table 2: Continuation and reversal in the U.S. aggregate market returns

(1) (2) (3)
Repetitive Newsy Difference

A: Full sample

mktnr(t) 0.279*** -0.279*** -0.557***
[3.13] [-3.02] [-4.35]

N 386 386 772
B: First half

mktnr(t) 0.358*** -0.327** -0.685***
[2.71] [-2.48] [-3.67]

N 190 190 380
C: Second half

mktnr(t) 0.167*** -0.194** -0.360***
[2.77] [-2.14] [-3.31]

N 196 196 392
D: Post-WWII

mktnr(t) 0.142*** -0.163** -0.305***
[2.69] [-2.31] [-3.46]

N 304 304 608

This table presents estimated βs from the monthly time-series regression mktt = α +
βmktnr(t) + εt. Here, mktt is the U.S. stock market return in excess of the risk free rate
in month t, and nr(t) is the most recent month before t that is newsy or repetitive. Column
1 is on the sample in which the dependent variable month t is a second month of a quarter
(repetitive); column 2 is on the sample in which the dependent variable month t is a first
month of a quarter (newsy). Column 3 shows there difference, extracted as β2 from the
regression mktt = α + β1mktnr(t) + β2mktnr(t) × Int + γInt + εt on the combined sample in
column 1 and 2, where Int is a dummy variable taking the value of 1 if month t is newsy, and
0 otherwise. In Panel A, B, C, and D, data are monthly from 1926 to 2023, from 1926 to
1973, from 1974 to 2023, and 1947 to 2023, respectively. T -statistics computed with White
standard errors are reported in square brackets.
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Table 3: Out-of-sample R2 in forecasting the U.S. stock market returns

Method 1 2 3

OOS R2 4.20% 4.26% 4.73%

The R2 in this table are calculated as 1−
∑n

t=1(rt−r̂t)2∑n
t=1(rt−rt)2 , where rt is the expanding window mean

of past stock returns and r̂t is the forecast being evaluated. The signal is mktnr(t) − ¯mktt−1

for a repetitive t, −(mktnr(t) − ¯mktt−1) for a newsy t, and 0 otherwise. For each month
t, 2 coefficients—one for the signal and one for the constant term—are extracted from a
simple expanding-window OLS regression of historical market excess returns on historical
signal values and a constant. For method 1, the forecast in a given month is the estimated
coefficient on the signal multiplied with the signal value plus the estimated constant. Method
2 replaces the estimated constant coefficient with rt. Method 3 replaces the estimated
constant with the average signal (of the dividend/price, earnings/price, and book-to-market
based numbers) proposed by Campbell and Thompson (2008) in the valuation constraint +
growth specification with fixed coefficients. Data are monthly from 1926 to 2023.
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Table 4: Time-series strategy performance

(1) (2) (3) (4)
TSPt TSPt TSPt TSPt

MKTt 0.169 0.050 -0.024
[0.96] [0.39] [-0.23]

HMLt 0.575** 0.425**
[2.17] [2.22]

SMBt 0.165 0.148
[0.88] [0.76]

MOMt -0.331**
[-2.22]

α 0.668*** 0.554*** 0.402** 0.715***
[3.51] [3.24] [2.32] [3.73]

N 1,165 1,165 1,165 1,164

Column 1 shows results from the following monthly time-series regression: TSPt = α + εt.
Here, TSPt is our time-series portfolio return in month t. This portfolio takes long or
short positions in the aggregate market for a given month, and the weight is proportional
to the previous-month-end signal value st−1, which is mktnr(t) − mktt−1 for a repetitive t,

−(mktnr(t) −mktt−1) for a newsy t, and 0 otherwise. The market weight is then scaled so
that the strategy has a historical volatility of 5% as of t − 1, and then truncated at 3 and
-3. Columns 2-4 add in the market, value, size, and momentum factor returns on the right-
hand-side. In Column 1, the coefficient of the constant represents the average return of the
time-series portfolio. In Columns 2-4, it represents its alphas with different factor models.
Data are monthly from 1926 to 2023. Returns are all in percentage units. T -statistics
computed with White standard errors are reported in the square brackets.
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Table 5: Continuation and reversal in the U.S. aggregate market returns, with controls

(1) (2) (3)
Repetitive Newsy Difference

mktnr(t) 0.213** -0.248*** -0.461***
[2.22] [-2.70] [-3.46]∑4

j=1 mktnm(t,j) 0.329** -0.251* -0.580***

[2.46] [-1.85] [-3.05]

N 383 383 766

This table presents estimated βs from the monthly time-series regression mktt = α +
β1mktnr(t) + β2

∑4
j=1mktnm(t,j) + εt. Here, mktt is the U.S. stock market return in ex-

cess of the risk free rate in month t, nr(t) is the most recent month before t that is newsy
or repetitive, and nm(t, j) is the jth most recent newsy month before t. Column 1 is on the
sample in which the dependent variable month t is a second month of a quarter (repetitive);
column 2 is on the sample in which the dependent variable month t is a first month of a
quarter (newsy). Column 3 shows there difference, extracted as β2 from the regression of
mktt = α+β1mktnr(t)+β2mktnr(t)×Int +β3

∑4
j=1mktnm(t,j)+β4

∑4
j=1mktnm(t,j)×Int +γInt +εt

on the combined sample in column 1 and 2, where Int is a dummy variable taking the value
of 1 if month t is newsy, and 0 otherwise. Data are monthly from 1926 to 2023. T -statistics
computed with White standard errors are reported in square brackets.
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Table 6: The link between the continuation and reversal effects

(1) (2) (3) (4)
TSP n

t TSP r
t Rank(TSP n

t ) Rank(TSP r
t )

TSP r
t 0.957***

[15.16]

TSP n
t 0.893***

[6.87]

Rank(TSP r
t ) 0.361***

[3.42]

Rank(TSP n
t ) 0.361***

[3.40]

N 97 97 97 97

Column 1 shows results from the following annual time-series regression: TSP n
t = α +

βTSP r
t +εt. Here, TSPt is our time-series portfolio return in year t. This portfolio takes long

or short positions in the aggregate market for a given month, and the weight is proportional
to the previous-month-end signal value st−1, which is mktnr(t) − mktt−1 for a repetitive t,

−(mktnr(t) −mktt−1) for a newsy t, and 0 otherwise. The market weight is then scaled so
that the strategy has a historical volatility of 5% as of t − 1, and then truncated at 3 and
-3. TSP n

t is the portfolio’s return in the newsy months of year t, and TSP r
t is the return

in the repetitive months of year t. The Rank(·) function ranks the TSP r
t and TSP n

t across
years, thus transforming them into integers between 1 and 97. T -statistics computed with
White standard errors are reported in the square brackets.
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Table 7: The first weeks of the newsy months

(1) (2) (3)
Newsy Week 1 Ex week 1

mktnr(t) -0.279*** -0.021 -0.256***
[-3.02] [-0.53] [-2.76]

N 386 386 386

Column 1 presents estimated βs from the monthly time-series regression mktt = α +
βmktnr(t) + εt. Here, mktt is the U.S. stock market return in excess of the risk free rate
in month t, and nr(t) is the most recent month before t that is newsy or repetitive. Column
1 is on the sample in which the dependent variable month t is a first month of a quarter
(newsy). Column 2 replaces the dependent variable with mktFWt , the market excess return
during the first five trading days of month t. Column 3 replaces the dependent variable with
mktExclFWt , the excess market return during t excluding the first five trading days. Data are
monthly from 1926 to 2023. T -statistics computed with White standard errors are reported
in square brackets.
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Table 8: Evidence from survey data

(1) (2) (3) (4)
Revt Revt Revt Revt

Revt−1 0.543*** 0.220***
[4.91] [2.94]

Irt 0.078
[1.15]

Revt−1 × Irt 0.323***
[3.42]

Revt−2 0.038 0.211***
[1.02] [3.92]

Int -0.052
[-1.05]

Revt−2 × Int -0.174***
[-2.72]

const -0.032 -0.110** -0.143*** -0.091*
[-0.81] [-2.03] [-3.04] [-1.93]

N 170 509 170 509

Column 1 runs the following monthly time-series regression on the sample in which t is
repetitive: Revt = α + βRevt−1 + εt. Here, Revt is the aggregate revision in the IBES long-
term growth (LTG) measure for month t within the S&P 500 universe using the market
capitalization weight. Column 2 adds in a dummy variable indicating whether t is repetitive
and its interaction with Revt−1, and expands the sample to all months. Columns 3 and
4 conduct analogous regressions to columns 1 and 2, but for newsy months rather than
repetitive months. Data are monthly from 1982 to 2024. T -statistics computed with Newey-
West standard errors are reported in square brackets.
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Table 9: Aggregate earnings distance and the strength of the return pattern

(1) (2) (3) (4) (5)
Lowest 10% 10%-50% 50%-90% Highest 10% Low - High

mktnr(t) × Int -0.769*** -0.398* -0.228 -0.084 -0.684**
[-4.33] [-1.94] [-1.51] [-0.31] [-2.12]

N 42 170 170 42 84

This table presents estimated β2s from the monthly time-series regression mktt = α+ β1mktnr(t) + β2mktnr(t) × Int + γInt + εt..
Here, mktt is the U.S. stock market return in excess of the risk free rate in month t, nr(t) is the most recent month before
t that is newsy or repetitive, and Int is a dummy variable taking the value of 1 if month t is newsy, and 0 otherwise. Across
columns, the regression sorts on the distance between the aggregate ROE announced in the most recent newsy months before t
and the subsequent repetitive month. The aggregate ROE in a given month is defined as the total earnings announced in the
month divided by the total book value of equity of these announcing firms. The ROE distance is computed as the absolute
value of the difference between the newsy and the repetitive months’ ROE relative to the median value of the difference across
time. The distance increases from column 1 to 6 and are between the 0-10th, 10-50th, 50-90th, and 90-100th percentiles of the
sample, respective. Data are monthly from 1971-2023. T -statistics computed with White standard errors are reported in square
brackets.
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Table 10: Continuation and reversal in the U.S. industry excess returns

(1) (2) (3)
Repetitive Newsy Difference

A: Full sample

exreti,nr(t) 0.083*** -0.081** -0.164***
[2.68] [-2.36] [-3.55]

N 16,214 16,283 32,497
B: First half

exreti,nr(t) 0.085* -0.067 -0.152**
[1.73] [-1.36] [-2.19]
4,049 4,107 8,156

C: Second half

exreti,nr(t) 0.082** -0.089* -0.171***
[2.06] [-1.94] [-2.82]
12,165 12,176 24,341

D: Post-WWII

exreti,nr(t) 0.071** -0.067* -0.138***
[2.17] [-1.72] [-2.71]
15,044 15,102 30,146

This table presents estimated βs from the industry-monthly panel regression exreti,t = α +
βexreti,nr(t) + εi,t. Here, exreti,t is the return of industry i in excess of market return in
month t, and nr(t) is the most recent month before t that is newsy or repetitive. Column
1 is on the sample in which the dependent variable month t is a second month of a quarter
(repetitive); column 2 is on the sample in which the dependent variable month t is a first
month of a quarter (newsy). Column 3 shows there difference, extracted as β2 from the
regression of exreti,t = α + β1exreti,nr(t) + β2exreti,nr(t) × Int + γInt + εt on the combined
sample in column 1 and 2, where Int is a dummy variable taking the value of 1 if month
t is newsy, and 0 otherwise. The returns are weighted by market capitalization, and the
regression is weighted by industry level market capitalization scaled to sum to 1 in each
cross section. The regressions require at least 10 firms in an industry. In Panel A, B, C, and
D, data are monthly from 1926 to 2023, from 1926 to 1973, from 1974 to 2023, and 1947
to 2023, respectively. T -statistics computed with standard errors clustered by month are
reported in square brackets.
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Table 11: Cross sectional strategy performance

(1) (2) (3) (4)
CSPt CSPt CSPt CSPt

MKTt 0.062 0.041 -0.044
[0.92] [0.68] [-0.83]

HMLt 0.160 -0.017
[1.20] [-0.14]

SMBt -0.017 -0.035
[-0.20] [-0.44]

MOMt -0.381***
[-3.58]

α 0.533*** 0.497*** 0.457*** 0.827***
[3.37] [3.08] [2.92] [4.20]

N 1,154 1,153 1,153 1,152

Column 1 shows results from the following monthly time-series regression: CSPt = α + εt.
Here, CSPt is our cross-sectional portfolio return in month t. This portfolio takes long
and short positions on industries in a given month, and the weight is constructed with
the following steps: i) Compute signal value si,t−1, which is exreti,nr(t−1) for a repetitive
t, −exreti,nr(t−1) for a newsy t, and 0 otherwise; ii) cross sectionally demean with market
capitalization weight; iii) scale by standard deviation of the signal computed with data up
to t−1 and Winsorize at [-3, 3] to limit the influence of extreme values; iv) interact with the
industry’s market capitalization divided by the total market capitalization in t− 1. Step iv)
is a simple way to amply positions in large stocks to lower trading costs. Columns 2-4 add
in the market, value, size, and momentum factor returns on the right-hand-side. In Column
1, the coefficient of the constant represents the average return of the time-series portfolio.
In Columns 2-4, it represents its alphas with respect to different factor models. Data are
monthly from 1926 to 2023. Returns are all in percentage units. T -statistics computed with
White standard errors are reported in the square brackets.
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Table 12: Further analyses across industries

A: Heterogeneity across industries B: Random “industries”
Low High High-Low 1% 5% 50% 95% 99%

A1: Size B1: Uniform probability

exreti,nr(t) × Int -0.062** -0.141*** -0.079** -0.049 -0.035 0.001 0.035 0.049
[-2.31] [-3.62] [-2.57]

A2: Connectivity B2: Preserve industry sizes

exreti,nr(t) × Int -0.127** -0.235*** -0.108** -0.053 -0.036 -0.001 0.033 0.050
[-2.14] [-3.30] [-2.00]

A3: Earnings similarity B3: Control for exreti,nr(t)

exreti,nr(t) × Int -0.105 -0.255*** -0.150** -0.066 -0.050 -0.015 0.021 0.036
[-1.36] [-4.14] [-2.30]

Panel A of this table presents estimated β2s from the industry-monthly panel regression: exreti,t = α + β1exreti,nr(t) +
β2exreti,nr(t) × Int + γInt + εt. Here, exreti,t is the return of industry i in excess of market return in month t, nr(t) is the
most recent month before t that is newsy or repetitive, and Int is a dummy variable taking the value of 1 if month t is newsy,
and 0 otherwise. The returns are weighted by market capitalization, and the regression is weighted by industry level market
capitalization scaled to sum to 1 in each cross section. The regressions require at least 10 firms in an industry. Panel A1
separates the regression by whether an industry has below- or above-average number of constituents in its cross section and
shows the difference in β2 in the 3rd column. Panel A2 conducts a similar exercise for within-industry earnings connectivity,
measured by first computing the covariance of normalized excess ROE, winsorized at -4 and 4, for each pair of stocks in the same
industry-quarter, and then taking the within-industry average weighted by the average of the market capitalization of the pair
of stocks. Panel A3 does so for earnings similarity, computed as the absolute value of the distance between the industry’s ROE
announced in the newsy month before t and the subsequent repetitive month. Panel B conducts 3 placebo tests on randomly
generated, fake “industries,” and report the 1st, 5th, 50th, 95th, and 99th percentiles of the distribution of β2 generated in
1000 simulations. Data are monthly from 1971-2023. T -statistics computed with standard errors clustered at monthly level are
reported in square brackets.
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Figure 1: Implied expected stock market excess returns over time
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This figure plots the expected stock market return as in Method 2 of Table 3. The unit is
percent per month.
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Appendix

A Alternative model of correlation neglect

In this section, we consider an alternative model that is based more closely on Enke and

Zimmermann (2019). As in the model in Section 3, assume there are three periods, corre-

sponding to the newsy month, the repetitive month, and the first month of the next quarter

when the value of the market portfolio P̃ is drawn from the normal distribution with mean

µ. As in Enke and Zimmermann (2019), assume there are latent signals sj, j = 1, 2, jointly

normally distributed, independent, and with mean µ. Investors directly observe s1 in period

1 and ŝ2 = 1/2(s1 + s2) in period 2. Investors need to estimate µ. Under the assumption

of a flat prior on µ, ŝ2 is the optimal forecast. Computing returns requires taking a stance

on the full prior distribution. To focus attention on correlation neglect, we assume known

variance of sj and take the limit as the prior becomes uninformative.

Equilibrium with rational investors

In period 1, P1 = s1, and R1 = P1 − µ. In period 2, P2 = ŝ2 and R2 = 1
2
(s2 − s1). Note

that E[R1] = E[R2] = 0, and therefore Cov(R1, R2) = E[R1R2] = 1
2
E[(s1 − µ)(s2 − s1)].

Returns ex post appear to be predictable: E[R2R1] < 0. However, as Lewellen and Shanken

(2002) emphasize, the investor cannot profit from this opportunity in real time: E[R2|s1] =

1/2(E[s2|s1]− s1) = 0. Finally,

E[R3R2] =
1

2
E[(P̃ − ŝ2)(s2 − s1)]

=
1

2

(
E[(P̃ − ŝ2)s2]− E[(P̃ − ŝ2)s1]

)
= 0

where the last equation follows from the symmetry in s1 and s2. It may seem surprising

that this too is not negative. The reason is that the initial “over-reaction” from s1 is “over-

corrected” by s2. In fact R3 is negatively correlated with the overall return R2 − µ.

Equilibrium with correlation neglect

In period 1, again P1 = s1 and R1 = s1−µ. However, in period 2, investors form an inefficient

forecast that over-weights s1, P2 = 1
2
(s1 + ŝ2) = 3

4
s1 + 1

4
s2, because they mistakenly believe

that ŝ2 is an independent draw. The period 2 return equals R2 = P2 − P1 = 1/4(s2 − s1).

As before E[R1] = E[R2] = 0. Again, Cov(R1, R2) = E[R1R2]. Though prices in the second

period differ in this economy as compared with the one above, the return R2 differs only by
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a multiplicative constant. Therefore, by the logic for the rational investor, Cov(R1, R2) < 0,

which is counterfactual.

Furthermore, Cov(R3, R2) > 0. It suffices to show E[R3R2] > 0. We have

E[R3R2] =
1

4
E[(P̃ − 3

4
s1 −

1

4
s2)(s2 − s1)]

=
1

4
E[(P̃ − ŝ2)− 1

4
s1 +

1

4
s2)))(s2 − s1)]

=
1

4
E[(P̃ − ŝ2)(s2 − s1)] +

1

16
E[(s2 − s1)2]

=
1

16
E[(s2 − s1)2] > 0

The fact that the first term is zero follows from the same reasoning as for the rational

investor. The intuition for the positive correlation is that P2 contains “too much” s1 and

“too little” s2. Thus on average, R3 moves in the same direction as R2, which is to say

toward s2 and away from s1. It might seem surprising that R2 moves from s2 and away

from s1 given that the point of correlation neglect is to have P2 incorporate too much s1.

However, under this form of uncertainty it is impossible for it to incorporate more than is

already in P1. In effect, the information in s1 is fully priced in at time 1.

This model differs from the one in the main text in two respects. Most obviously, investors

here learn about the mean of a normal distribution, whereas in main modle, investors learn

about a probability. When learning about the mean, receiving the same signal twice and

incorporating it does not change the investor’s estimate of the price (though it does shrink the

variance). However, when one is learning about a probability, receiving a signal always causes

the mean to update (see Equation 3), though eventually by a vanishingly small amount. In

a model with normally distributed risks, over-reaction only occurs in the second moment,

not in the first, as in the data. A second difference lies in the unique source of randomness

in the second period. In this model, that source of randomness is an extra signal, and

creates a negative correlation. In the model in the main text, the source of randomness is

whether the first signal is brought to investors’ attention or not. Despite these differences,

the models have an important source of similarity in that incorrect inference arises from

neglecting correlations.

B Timing-series signals and trading strategies

In the cross sectional return forecasting literature, it is a common practice to form long-short

portfolios according to a signal’s values across stocks. For example, Fama and French (1993)
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create the HML factor, which takes a long position in the 30% of stocks with the highest

book-to-market ratios and shorting the 30% of stocks with the lowest book-to-market ratios.

This approach has many benefits, among which are the following three. First, it does not

require explicit forecasts for stock returns and estimates no parameter. Second, it works with

any stock-level signal. Third, it creates a reasonable risk exposure that makes the portfolio

returns comparable across signals, as the equity exposures of the long and short arms of the

portfolio are the same 100% and -100%.

In the time-series literature, we do not yet have a commonly used approach to create

analogous portfolios. Such portfolios are an useful diagnostic tool that complements the

standard metric of out-of-sample R2 put forth by Goyal and Welch (2008). We develop such

a tool in this section. Overall, for a generic signal s, we construct a beta-neutral market-

timing strategy that rebalances positions in i) aggregate stock market and ii) the risk-free

bond. The strategy implements two rules with data available in real time. First, it places

proportional weights on the market to the signal value, with a target mean of zero. Second,

the portfolio weight is scaled so that the strategy has a target volatility of, say, 5% per

month.

Let st be the signal value at the end of period t. Then, the unscaled portfolio weight

on the market is st−1, and the unscaled strategy volatility σ̄st−1 is the unscaled strategy’s

historical volatility up to t− 1. The scaled portfolio weight is st−1
0.05
σ̄s
t−1

. We further truncate

the weight on the market at −3 and 3 to avoid unrealistic strategies.10 The strategy’s

construction involves no look-ahead bias, and the scaling can be adjusted according to an

investor’s risk appetite.

Columns Return5 and Sharpe5 of Table B1 tabulates means and Sharpe ratios of the

portfolios for existing signals in the literature forecasting aggregate stock market returns.

Four points are worth noting. First, likely owing to a consistent risk appetite targeting

i) a historical strategy volatility of 5% and ii) a maximum market weight of 300% and -

300%, the returns are Sharpe ratios of the diagnostic portfolios are rarely catastrophic. This

sharply contrasts the message conveyed by the OOS R2s, which can be several or even tens of

percentage points negative, even with the constraints from Campbell and Thompson (2008).

Second, the returns and Sharpe ratios have positive mean and median across the 23

signals. The average returns have a mean and median of 0.07% per month, and the Sharpe

ratios have a mean and median of 0.05 and 0.04 per annum. This relates to the first point,

and again contrasts the message in the OOS R2s, which, with a 5 year burn-in period, have

a mean of -4.42% and a median of -1.49%, and a mean of -1.14% and a median of -0.22%

10Since overly high leverages are unattainable in practice, such truncation is always (though perhaps
implicitly) present when trading in real world.
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with the CT constraints.

Third, the two metrics based on our diagnostic portfolios are (perhaps surprisingly)

dissimilar to the OOS R2s. Table B2 show that with the same burn-in period of 5 years, the

returns and Sharpe ratios have a near-zero correlation of 0.03 and 0.12 with the original OOS

R2 in Goyal and Welch (2008), and a negative correlation of -0.50 and -0.32 with the OOS

R2 in Campbell and Thompson (2008). In contrast, the portfolio-based metrics positively

correlate with the in-sample R2, though at 0.5, this correlation is far from perfect.

Fourth, related to the third point, it is entirely possible for a signal to have very low R2

but high diagnostic portfolio returns and Sharpe ratio. The signal rtz proposed in Rapach

et al. (2016) is such an example. It has low OOS R2s around −10% but the highest diagnostic

portfolio average return of 0.87% per month, and the highest Sharpe ratio of 0.43 per annum.

These four differences arise from a key economic difference between the two sets of metrics.

The R2 computation involves explicit return forecasts and therefore the estimation of an

regression coefficient on the signal in real time. This coefficient is an representation of the

signal’s historical performance: A time-series regression of the market excess return mktt on

the signal st−1 and a constant yield a coefficient of βs =
∑

t
(st−1−s̄)∑
t (st−1−s̄)2mktt =

∑
twt−1mktt

on s. Here, s̄ is the in-sample mean of the signal s. Note that βs is the mean excess return

of a portfolio that rebalances between positions in the aggregate stock market (which yields

an excess return of mktt) and the risk-free bond (which yields an excess return of 0). The

month-t portfolio weight on the stock market wt−1 = (st−1−s̄)∑
t (st−1−s̄)2 is i) linear in the signal’s

value st−1, ii) on average 0, so that the portfolio is on average market neutral, and iii) scaled

by
∑

t (st−1 − s̄)2, so that the portfolio has unit exposure to s (i.e.,
∑

t
(st−1−s̄)∑
t (st−1−s̄)2 st−1 = 1).11

Using this coefficient to form a quantitative forecast of the market excess return implic-

itly assumes that performance of the signal’s coefficient portfolio is so stable that its past

performance reliably predicts its future performance at any point in history. This is a some-

what paradoxical assumption in the first place, as it likely implies too high a T -statistic and

a Sharpe ratio—as the coefficient portfolio’s return volatility approaches 0, the T -statistic in

the regression and the portfolio’s Sharpe ratio both approach infinity. In particular, extreme

performance at the beginning of the sample, whether good or bad, tend to lead to forecasts

that are overly or insufficiently disperse, degrading the signal’s OOS R2.

Our diagnostic portfolio, on the other hand, requires no quantitative prediction of the

signal’s performance.12 The size of the bet on the market is based on a constant risk appetite

11If s does not have an economically interpretable scale itself, the scaling in step iii) has no economic
interpretation either. Our diagnostic portfolio is designed to mimic this coefficient portfolio, except that
we replace the in-sample mean with the expanding mean for implementability, adjust the scaling in iii) for
economic interpretability, and impose a position constraint that is inevitable in reality.

12If one is evaluating signals individually, it is not obvious why such quantitative prediction is necessary
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(5% in our example) and does not change with the past returns of the signal’s coefficient

portfolio. This is consistent with the construction of cross sectional factors (e.g., HML,

SMB, MOM, etc.), in which the stock weights also do not change with the past factor

returns. Removing the intermediate step of predicting the signal’s performance removes

potential errors in that step. Therefore, the diagnostic portfolio-based performance metrics

appear better than the OOS R2s overall. A well-behaved diagnostic portfolio does depend on

the stability of the signal’s mean and volatility over time, and such stability appears much

better supported by the data.

To more directly see why the diagnostic portfolio based metrics can be so different from

the OOS R2, we plot in Figure B1 the univariate expanding window regression coefficients

of the aggregate stock market excess return on the signals and a constant. The signals are

scaled to have a standard deviation of 1 to make the coefficients comparable. As explained

above, degradation in OOS R2 from in-sample R2 is in large part owing to these coefficients

not being a constant. As the sample size grows over time, the coefficients become increasingly

stable, resembling the full sample coefficients which are the last observation in each series.

Hence, the largest deviations occur at the beginning of the sample. From this figure, it is

immediately obvious that csp, aem, rrz, vrp, gm, and svix are the 6 signals with large and

persistent deviations in the coefficients. They are precisely the 6 signals with the lowest

OOS R2.

It is worth emphasizing that we do not imply that the metric of OOS R2s used in Goyal

and Welch (2008) is inappropriate. On the contrary, we believe it is a good, consistent, and

general metric. We do want to point out that there are more to this metric. Importantly,

poor OOS R2s do not imply that the corresponding signal cannot be successfully employed

in real time trading. The diagnostic portfolio we propose is a simple approach that both

complements the OOS R2s and fills an obvious gap between the practices of two literatures

studying the time-series and the cross-sections of stock returns.

in the first place.
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Table B1: R2 in forecasting monthly stock market returns using other signals

IS CTOOS10 CTOOS5 OOS10 OOS5 Return5 Sharpe5 Begin End
dy 0.68% -0.28% -0.28% -0.48% -0.48% -0.19% -0.08 1871m2 2019m12
ep 0.88% 0.27% 0.27% 0.28% 0.28% 0.16% 0.09 1871m1 2019m12
bm 1.04% 0.16% 0.07% -3.02% -2.93% -0.14% -0.09 1921m3 2019m12
svar 0.25% 0.03% 0.03% -1.49% -1.49% 0.06% 0.04 1885m2 2019m12
csp 0.90% -0.31% 0.24% -5.81% -6.12% -0.16% -0.10 1937m5 2002m12
ntis 0.75% -0.18% 0.02% -0.13% -0.78% 0.10%** 0.24 1926m12 2019m12
eqis 0.29% -0.43% -1.62% -0.40% -2.11% -0.06% -0.11 1926m10 2008m4
tbl 0.23% -0.80% -0.61% -1.70% -1.61% 0.08% 0.05 1920m1 2019m12
lty 0.22% -1.33% -1.08% -1.64% -1.39% 0.14% 0.07 1919m1 2019m12
dfy 0.49% -0.22% -0.22% -2.45% -2.24% -0.24% -0.16 1919m1 2019m12
dfr 0.37% -0.30% -1.72% -0.21% -1.69% 0.14% 0.12 1926m1 2019m12
infl 0.35% -0.05% -0.05% -0.03% -0.03% 0.10% 0.10 1913m2 2019m12
ik 1.09% 0.30% 0.30% -0.03% -0.01% 0.37%* 0.21 1947m3 2019m12
cay 0.37% -0.32% -0.31% -0.39% -0.97% 0.25% 0.16 1947m4 2019m12
tms 0.29% -0.10% -0.20% -1.04% -1.32% 0.14% 0.09 1920m1 2019m12
aem 0.31% -2.12% -2.01% -40.25% -38.18% -0.02% -0.01 1947m4 2009m4
hkm 0.60% -0.09% 0.00% -0.28% -0.30% -0.03% -0.02 1970m1 2012m12
rrz 1.45% -10.18% -12.30% -9.83% -12.00% 0.87** 0.43 1973m1 2014m12
kp 1.05% 0.31% 0.23% 0.36% 0.27% 0.19%*** 0.37 1930m1 2019m11
svix 0.21% -5.04% -6.21% -7.26% -8.67% -0.27% -0.12 1996m1 2012m1
gm 0.78% 0.60% 0.36% -0.52% -5.20% 0.07% 0.04 1996m1 2012m1
vrp 0.10% -0.67% -0.53% -17.98% -14.02% -0.09% -0.06 1989m12 2019m12
sent 0.39% -0.10% -0.64% -0.01% -0.67% 0.02% 0.02 1965m7 2019m12

This table displays R2 and the sample start/end month of various monthly signals that predict monthly stock market returns in the US.
The “IS” column shows the in-sample R2s, the next 4 columns show the out-of-sample R2s as in Goyal and Welch (2008), and the next 2
columns show the monthly returns and annualized Sharpe ratios of the diagnostic portfolios. Columns with the 5 and 10 suffixes evaluate
the R2s 5 and 10 years after the date’s inception (but not after 1926m1). Columns with the “CT” prefix i) truncates the estimated
coefficient on the signal at 0 if it has a different sign from that estimated on the full sample and ii) truncates the forecast at the risk-free
rate if it exceeds the risk-free rate, as in Campbell and Thompson (2008). All predictors are sourced from Amit Goyal’s website (and
follow his naming convention) except for the following: eqis is the new equity issuance share from Baker and Wurgler (2000), aem is the
financial factor from Adrian et al. (2014), hkm is the leverage factor from He et al. (2017), rrz is the short interest from Rapach et al.
(2016), svix is from Martin (2017), gm is the implied cash flow growth from Gao and Martin (2021), sent is the orthogonalized investor
sentiment from Baker et al. (2021). I thank Li and Wang (2023) for sharing the data they use, and all the mentioned authors for making
their data available online.
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Table B2: Correlation among evaluation metrics for aggregate stock market return predictors

Ret5 Sharpe5 IS OOS5 CTOOS5
Ret5 1.00
Sharpe5 0.90 1.00
IS 0.50 0.51 1.00
OOS5 0.03 0.12 0.12 1.00
CTOOS5 -0.50 -0.32 -0.26 0.34 1.00

This table tabulates the correlation among different measures across the 23 signals in Ta-
ble B1.
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Figure B1: The expanding-window averages of the signals’ coefficient portfolio returns
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This figure plots the expanding window regression coefficients of the aggregate stock market excess returns on the 23 signals in
Table B1.
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