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Abstract

The U.S. stock market’s return during the first month of a quarter positively predicts
the second month’s return, which then negatively predicts the first month’s return of
the next quarter. The pattern arises from a model in which investors do not fully rec-
ognize that earnings announced in the second month of a quarter are inherently similar
to those announced in the first month, thereby overreacting to such predictably repet-
itive earnings. The same pattern exists in the cross-section and time series of industry
returns. Evidence from survey data lends support to the mechanism of correlation
neglect.
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1 Introduction

Predicting stock market returns based on past returns is challenging. Research by [Kendall
and Hill| (1953) and |[Fama| (1965) from decades ago revealed that there is minimal serial
correlation in stock returns. [Famal (1970)) introduced the concept of the weak form of the
efficient market hypothesis, postulating that prices already incorporate all available informa-
tion from past prices. This hypothesis appears particularly applicable to the U.S. aggregate
market, as demonstrated by [Poterba and Summers| (1988), who found that monthly market
returns in the U.S. exhibit a small, statistically insignificant positive autocorrelation over a
12-month period[l| The lack of correlation between past and future market returns in the
U.S. is not only a well-recognized statistical phenomenon, but also an emblem of market
efficiency.

We document that the U.S. market return during the first month of a quarter positively
predicts the second month’s return, which then negatively predicts the first month’s return
of the next quarter. These first months of a quarter are special and important to investors
because they contain fresh earnings news about the aggregate economy. This is owing to the
nature of the earnings cycle in the United States. Take January as an example. At the end
of the December, firms close their books for Q4, and they announce Q4 earnings in January,
February, and March. January therefore contains the early earnings announcements and is
the first time that investors learn about the economy’s performance in Q4. The first months
of the quarters are famously known as the “earnings seasons” among practitioners and receive
heightened attention. Throughout this paper, we refer to them as “newsy” earnings months,
as they produce fresh news about aggregate earnings.

The second month of each quarter contains about equally many earnings announcements
as does a newsy month. The aggregate earnings announced in the second month are, how-

ever, predictably repetitive of those announced in the preceding newsy month because the

Furthermore, Poterba and Summers (1988) noted a negative autocorrelation in the U.S. market over
longer time horizons, while |Lo and MacKinlay| (1988) identified a positive autocorrelation in weekly returns
for small U.S. stocks. Despite these variations, the consistently low month-to-month autocorrelation in U.S.
market returns remains a crucial piece of evidence supporting the concept of market efficiency.



announced earnings are of the same fiscal quarter (Q4 in our example above). We call these
second months “repetitive” earnings months, as they contain earnings announcements that
produce repetitive aggregate earnings “news.” Such repetition is not verbatim—in fact, dif-
ferent firms announce in the first and the second month of a quarter—but rather subtle: the
earnings announced in the second month broadly resemble those in the first month, owing
to their common aggregate component. The third month of a quarter contains substantially
fewer earnings announcements and produce muted earnings news. The terminology allows us
to compactly describe our return pattern in one sentence: a newsy month’s return positively
predicts the next repetitive month’s return, which then negatively predicts the next newsy
month’s return.

One way to test our mechanism is to examine earnings expectations themselves. Specif-
ically, our hypothesis states that imperfectly rational investors use announced earnings to
forecast future earnings, but fail to fully account for the repetitive nature of the earnings in
the second month of a quarter. This act of correlation neglect leads to overreaction in the
repetitive months that are predictably in the same direction as the news in the preceding
newsy month, giving rise to the newsy-to-repetitive return continuation. As the next newsy
month comes, these overreactions are correctly, leading to the repetitive-to-newsy return
reversal. If this is accurate, we would see it not only in the return data, but also in the
expectations data.

We evaluate this prediction using survey data from IBES. We first show that sell-side
analysts indeed exhibit correlation neglect, leading to different types of predictability in
earnings growth revisions in the newsy and repetitive months. This evidence is uniquely
useful because survey data are direct measures of market expectations, albeit imperfect.
Moreover, we show that the predictable reversals in market returns do not occur until the
earnings seasons begin. This alignment in timing suggests that it is indeed the earnings
seasons that drive the return predictability, as opposed to other quarterly fluctuations un-
related to earnings announcements. As a further robustness chec, we find a similar result

in the cross-section: Industry returns in excess of the market predict returns in repetitive



months with a positive sign and in the next newsy month with a negative sign and in the
first month of the following quarter with a positive sign.

We formalize the correlation neglect mechanism with a model in which there is variability
in the second month regarding whether the information from the first is brought to investors’
attention or not. A fully rational investor would not react to this “news,” understanding that
the new information was correlated with the old. An investor who believes he or she is seeing
a genuinely new observation reacts; this reaction is predictable because the information is
in fact the same as in the first quarter, and it also causes stock prices to rise or fall by more
than is warranted.

These findings have broader implications. First, we provide evidence of return predictabil-
ity that is robust, and economically and statistically significant, with monthly out-of-sample
R? statistics of 4% , thus contributing to the debate on whether return predictability actually
exists (Goyal and Welch! 2008, (Campbell and Thompson 2008,Goyal et al. 2024).E| Second,
we show that three important and commonly made assumptions about stock market returns
are not innocuous: i) the expected stock market return is persistent, ii) the expected stock
market return almost always exceeds the risk-free rate, and iii) the stock market return is
covariance-stationary. Finally, we provide asset pricing and survey evidence for correlation
neglect: investors seem to treat repeated information as new independent observations, even
if they have substantial incentive to do otherwise.

Besides the very substantial literature on continuation and reversal, several recent papers
make points that are related to ours. First, the “tug-of-war” pattern between continuation
and reversal we document for monthly stock market returns is mirrored in intraday market
returns: Lou et al.|[(2024) show that open-to-close stock market returns positively predict fu-
ture close-to-open stock market returns, which then negatively predict future open-to-close
returnsﬁ The authors attribute their findings to clientele effects: the overreaction arises

from news being repeatedly consumed by a second clientele (households). In our paper, the

2In contrast, |Goyal et al.| (2024)) find out-of-sample R? statistics, should they be positive, tend to be in
the tens of basis points, a finding that we replicate using our methodology.

3Relatedly, |Lou et al.| (2019) find that close-to-open (open-to-close) stock returns positively predict future
close-to-open (open-to-close) returns, and negatively predict future open-to-close (close-to-open) returns.



overreaction aries from news itself being repeated in the second month of a quarter. Second,
Fedyk and Hodson (2023) document that repetitive “news” on Bloomberg terminals gener-
ates overreactions in returns of related stocks, and that such overreaction is stronger when
the repetition is more subtle, a result that, like ours, suggests correlation neglect. Finally,
Enke and Zimmermann| (2019) find that human subjects do not fully discount correlated
news in experiments even when they are given a simple setup and clear instructions. We
contribute to this literature by showing that the correlation neglect mechanism further exists

in aggregate stock market returns and the cross section of industry returns.

2 Predicting aggregate stock market returns

We first characterize the U.S. earnings cycle, which originates from i) aligned fiscal quarters
and ii) heterogeneous announcement lags. Panel A of Table [I| shows that the vast majority
of the US firms close their books for a given fiscal quarter on the last day of a calendar
quarter. Therefore, the fiscal quarters over which the earnings are recorded are effectively
the calendar quarters. While the fiscal quarters are aligned, firms do not announce their
quarterly earnings together. Almost all firms announce within the three months after the
fiscal quarter end date, but there is much variation in their announcement lags. Panel B
shows that among the on-cycle announcements, about 45% occur in the first month of a
quarter, about 48% in the second month, and about 8% in the last month.

The quarterly cycles of earnings announcements implies that each of the three months in
the quarter has a different status. The first month is the first time that investors learn about
the aggregate economy’s performance in the previous quarter. This economy-level learning
is possible because corporate earnings have a common time component: the aggregate eco-
nomic condition in fiscal quarter 4 (FQ4) of 2023 influences all firms, and consequently, if
early announcers’ FQ4 earnings are good, then FQ4 is more likely than not a good quarter
for everyone. Earnings announced in the first month of a quarter therefore provide new

information about aggregate earnings earned in the previous quarter. We refer to these first



months of quarters as the newsy earnings months, or newsy months for convenience.

The second months, in contrast, see earnings that are predictably repetitive of those
announced in the first months. This is again owing to the shared aggregate component of
corporate earnings: earnings announced in February, like those announced in January, are
earned in Q4 of the previous year and therefore inherently similar. We refer to the second
months of quarters as the repetitive earnings months, or simply repetitive months. The third
months of quarters also contain announcements of predictably repetitive earnings. However,

as they contain substantially fewer on-cycle earnings announcements, the repetition is muted.

2.1 Baseline return pattern

We demonstrate our baseline predictability pattern in the U.S. stock market returns with

the following monthly time-series regression:

mk‘tt =+ Bmk’tnr(t) + €. (].)

Here, mkt, is the U.S. stock market return in excess of the risk free rate in month ¢, and
nr(t) is the most recent month before ¢ that is newsy or repetitive. For example, if ¢ is
February, then nr(t) is January, and if ¢ is March or April, nr(t) is February.

Panel A, Column 1 of Table [2] conducts regression [I] on the subsample in which the
dependent variable month ¢ is repetitive. The positive coefficient of 0.279 implies that a
newsy month’s return positively predicts the return in the subsequent repetitive month.
Column 2 is on the subsample in which ¢ is newsy. The negative coefficient of -0.279 shows
that a repetitive month’s return negatively predicts the return in the next newsy month.
These values are economically sizable, as they are bounded by -1 and 1 in stationary time
series.

Column 3 extracts the difference of the coefficients in Column 1 and 2 by conducting the



following regression on the combined sample in which ¢ is either newsy or repetitive:

mkty = a + fimktyq) + Bomktpeg X I + 71" + €. (2)

Here, I]' is a dummy variable indicating whether month ¢ is newsy. The most important
number in Table 2] is the coefficient on the interaction term, f5. Its value of -0.557 captures
the difference in Columns 1 and 2 and emblematizes the table. Economically, it demon-
strates that monthly autocorrelation of the U.S. stock market returns varies strongly and
predictably. Without the third months of quarters that contain muted earnings news, the
first order autocorrelation of the monthly U.S. stock market returns alternates between
strongly positive (newsy predicting repetitive) and strongly negative (repetitive predicting
newsy). The associated t-statistic of -4.35 implies that the observed relation is unlikely to
arise from pure noise or pure data—mining.ﬁ While this statistic is an useful diagnostic, the
time-series return forecasting literature (e.g., |Goyal and Welch (2008)) has critiqued and
moved away from it. We examine more standard performance metrics such as out-of-sample
R? and trading strategy behaviors in the next subsection.

Panel B, C, and D of Table 2| report results of the same regressions as in Panel A, except
that they are on the first half, second half, and the post-WWII portion of the full sample,
respectively. The pattern operates in each of these episodes and is not the sole result of a

small number of observations, warranting further evaluation of its reliability.

2.2 Further evaluation

We now evaluate the baseline pattern from three additional aspects: i) out-of-sample forecast-
ing performance, ii) trading strategy performance, and iii) and contribution to the existing

literature.

4Tt further implies that an in-sample, market-neutral trading strategy that bets on both the contin-
uation in Column 1 and the reversal in Column 2 approximately yields an annualized Sharpe ratio of
4.35/1/98 = 0.44, where the number 98 is the number of years in the sample. This back-of-envelope calcula-
tion approximates the market excess returns with the regression residuals (which works in low-R? settings)
and is merely a convenient heuristic. We formally construct a trading strategy in the next subsection.



Forecasting performance |Goyal and Welch (2008) made an important critique on the
literature studying stock market return predictability, which is that in a linear regression
model, any proposed signals to forecast returns can only be used with estimated coefficients,
and if such estimation is done on data available in real time, the signals often generate
negative “out-of-sample” (OOS) R?. This means that such signals, when employed to predict
the stock market returns in real time, often fail to outperform the returns’ historical average.

Table [3| presents the out-of-sample R? generated by our signal. Following |Campbell and
Thompson| (2008)), we extend the CRSP aggregate market return series to 1872 using GFD
data, and evaluate the R? from 1926. The benchmark underlying these R?s is the expanding-
window mean excess return mkt,, the average stock market return in excess of the risk free
rate up to month ¢. Our signal s,_;, which forecasts mkt;, is mkt,.( —mkt,_, for a repetitive
t, —(mktpe@) — mkt,_1) for a newsy ¢, and 0 otherwise.

Table [3] estimates the expanding-window OLS coefficients for our signal and compute
the real-time forecasts for mkt;, in multiple ways. These methods are kept simple, with
no constraint or shrinkage applied. Column 1 shows that even the most naive method—
combining the signal values and the regression coefficients of historical returns on historical
signals and a freely estimated constant—generates an R? of 4.20%. This number appears an
order of magnitude higher than what are generated by other time-series signals for monthly
US stock market returns surveyed in the comprehensive study of (Goyal and Welch (2008]),
Rapach and Zhou| (2022), and |Goyal et al|(2024). This high R?, along with those generated
with methods 2 and 3, mitigates the concern that the signal implied by the time-series results
in this paper could not have been successfully used to forecast stock market excess returns

in real time.

Trading strategy Good forecasting performance does not necessarily translate into suc-
cessful trading strategies | We now use our signal to construct a beta-neutral market-timing

strategy that rebalances positions in i) the stock market and ii) the risk-free bond and

5The converse of the statement is not true either.



examine its performance.

Overall, the strategy implements two rules with data available in real time. First, it
places proportional weights on the market to the signal value, with a mean of zero. Second,
the portfolio weight is scaled so that the strategy has a historical volatility of 5% per month.
Specifically, for month ¢, the unscaled portfolio weight is simply s;_;. The unscaled strategy
volatility o;_; is the unscaled strategy’s historical volatility up to ¢ — 1. The scaled portfolio

0.05

weight is then St—155

We further truncate the weight on the market at —3 and 3 to limit
the impact of extreme observations[| The strategy’s construction involves no look-ahead
bias, and the scaling can be adjusted according to an investor’s risk appetite.

Column 1 of Table {4f shows that this trading strategy yields a monthly return of 0.668%
(i.e., 8.02% per annum). Columns 2-4 show that the CAPM alpha, Fama-French 3-factor
alpha, and FF3 + Momentum alpha are 0.554%, 0.402%, and 0.715% per month respectively.
Our time-series strategy adds value to these factors. Moreover, as it involves only positions
on aggregate stock market and the risk-free bond, it is likely much cheaper to implement

than the controlled cross sectional factors, which involve positions on individual stocks.

Relation to the existing literature |Goyal et al|(2024)) recently surveyed the literature
on aggregate stock market return predictability and examined the signals’ out-of-sample
forecasting performance. Table 3 of their paper shows that among an expanded set of 34
predictors, the monthly in-sample R2s are on average 0.32%, OOS R? are on average -0.44%
after applying the regression constraints in (Campbell and Thompson| (2008)). These results
reaffirm the conclusion of |Goyal and Welch (2008) that existing signals “predicted poorly
both in-sample (IS) and out-of-sample (OOS). .. seem unstable. .. and would not have helped
an investor with access only to available information to profitably time the market.”

We replicate and extend their results in Table [B1} The vast majority of OOS RZ?s in
this table are negative, with the maximum being 0.60% even as multiple implementations

of the regressions are attempted. This reaffirms the conclusion of |(Goyal and Welch! (2008)).

50ur results do not appreciably change if this step is dropped, although in practice, implausibly high
leverage cannot be implemented and a similar constraint would exist explicitly or implicitly.



By documenting a predictor that generates an OOS R? that is an order of magnitude larger
than the numbers in Table we shift the literature’s prior on an important question: How
predictable is the U.S. monthly stock market returns?

Our paper also relates to |Guo| (2025), which also focuses on earnings seasons (newsy
months in our language). |Guo (2025) also shows evidence for subtle expectational errors
around earnings data that lead to return predictability patterns. In his case, the error arises
from a mechanism called parameter compression: investors assume that earnings announce-
ments equally close in time are equally close in information content. However, earnings
announcements in any given quarter are closer than those in separate quarters. More gen-
erally, the true relevance of a newsy month’s earnings follows a step pattern, whereas the
hypothesis in the paper is that it follows a straight line. This mechanism leads to simultane-
ous under- and overreaction in the newsy months. In contrast, in our paper, the mechanism
is correlation neglect, and it leads to overreaction in the repetitive months.

The mechanisms are distinguishable in the data. Table [5[ shows in monthly stock return
regressions that they remain highly significant after controlling for one another. Besides
the regressor mkt,, ), namely the return in the previous month if the second month in the
quarter (repetitive) or two months back if the first month in the quarter, the regressions also
have the regressor ijl Mktnmt,j), the key signal used in |Guo, (2025) that represents the
average return over the last four newsy months. Both coefficients in column 3 are significantly
negative, implying that correlation neglect retains its predictive power even when controlling
for parameter compression.

Overall, our proposed signal featuring the tug-of-war between market return continuation
and reversal appears to i) generate positive OOS R? ii) produce a profitable trading strategy,
and iii) add value to the existing literature. It is therefore worthwhile to consider possible

explanations for the pattern.



3 Explaining the return pattern

Before proposing an explanation, we note two telltale features of the data that inform us
about the type of explanations that are likely to drive our return pattern.

First, the continuation and reversal arms appear tightly linked. We separate the return
of trading strategy (as constructed in subsection in each year into the component earned
in the newsy months and that earned in the repetitive months. Table [0] regresses the two
components on each other, both in the raw return unit and ranked to limit the influence
of outliers. The significant positive coefficients imply that a year in which the continuation
effect is strong is also likely to see strong reversal. This means that the continuation and
reversal arms are likely driven by the same underlying economic force and should therefore
be explained by one story rather than two.

Second, our signal implies expected market excess returns that are frequently negative.
Figure [I] plots the expected stock market return implied by Method 2 of Table [3| This
time series of expected stock market excess return is negative 24% of the months. This
implies that an explanation based on risk alone is unlikely to explain the return pattern in
full. In such a risk-based framework, the negative expected returns means that the stock
market is safer than Treasury bills one month out of four. This feature is especially difficult
to accommodate, as it is implausible that investors find the stock market to be safer than
Treasury bills that often.

Given these two features, a parsimonious mechanism that jointly explain the continuation
and reversal arms of the return pattern is correlation neglect: investors do not fully discount
the inherently repetitive earnings announced in the second month of a quarter and thus
overreact to them, creating the return continuation that gets corrected in the next newsy
month. To formalize this intuition, we apply a model of correlation neglect, motivated by

Enke and Zimmermann| (2019) to asset pricing][]

7Our model differs from that of Enke and Zimmermann| (2019) in several respects. In Appendix [Al we
show that directly applying the model of |[Enke and Zimmermann| does not explain the effects in our paper,
and give intuition as to why.
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Assume that the economy is either in a high or low-productivity state. If the economy is
in the high-productivity state, the aggregate market is worth 1 whereas it is worth 0 if it is
in a low-productivity state. The high-productivity state occurs with probability p, which is
unknown to investors. Investors have a prior distribution over p. The distribution is beta,
such that they would estimate a probability p* with a sample size of 7. To fix ideas and
eliminate unnecessary notation, we set 7 = 1.

This model has three periods. Period 1 corresponds to the first month of a quarter, namely
a newsy month. Period 2 is the repetitive month that follows. Period 3 is the first month
of the following quarter. In period 1, investors receive a signal s, with s ~ Bernoulli(p). In
period 2, this signal is potentially repeated (as opposed to an independent signal being drawn
from Bernoulli(p)). Whether or not the signal is repeated is determined by x ~ Bernoulli(p,).
If x =1, then s is brought again to investors’ attention.

To focus on our main mechanism, we assume investors are risk-neutral and the riskfree
rate is equal to zero. Under these conditions, the value of the market is equal to the posterior

mean of p, which equals:
N+p't+1

E[p|N out of T = T2

(3)

The investors’ prior implies that the price prior to observing the signal in the first period is

Py = E[p] = (p* +1)/3. After observing signal s, the mean shifts so that the price equals

s+pt+1

For simplicity, we define returns as differences in prices rather than percent changes. The

return Ry = P; — Fy. Note that F[R;] = 0.

Equilibrium with rational investors

There is no information and hence no change in the second period, P, = P; and Ry = 0.

The return in the third period Rj3, conditional on both p and s is Bernoulli outcomes 1 — P;

11



with probability p and —P; with probability 1 — p. Note that
E[Rs|s] = E|E[Rs|p, s]|s] = E[p|s] — P = 0.
In addition,
E[RyR3] = E[E[R 1 R3|s]] = E[R1E[R3|s]] =0
Because E[Ry] = E[R3] = 0, this shows Cov(Ry, R3) = 0. Because Rj is a constant, it also
has zero covariance with both random variables.

Equilibrium with correlation neglect

Investors form
254+p*+1
CN 5
Py, = E*¥p|x, s] = "
HPE =P forz=0

forx =1

Then

E[R] = E[E[P)s]]
+ (1 - px>P1:|

2s +p*+1
b ()

B E[2s+p*+1_s+p*+1

P
5 1 }—1-1

= P17

where we use the fact that E[s| = E[p] = (p* + 1)/3. Therefore the investor is, on average,
neither optimistic nor pessimistic.

However, unlike in the case with the rational agent, Ry is positively correlated with R;.
Intuitively, the agent double-counts s in the second period, not realizing that it is the same

signal as before. Because R, has mean zero, it suffices to show that E[RyR,| > 0. First,

12



note that a useful intermediate result following from (4) is:

3s —p*—1
E[R2|3] = Dz <T)

E[ReRi] = E[E[RyR]s]]
= E[E[Rz’s]Rl]
— E[E[Ry|s](P, — By)]

- (5 ()

> 0

where the second line follows because R; is a constant in s.

Finally, we show that E[R3Rs] < 0, namely that returns in the second and third period
are negatively correlated. Note that P; is identical in the equilibrium with correlation neglect
and with rational investors. Also, in both economies, E[Ps|s| = E[Ps|x, s] = P;. Finally, by
definition, Ps — P, = Py — P, + P, — Py and so E[R3 — Rs|z, s] = 0. That is, the price in the
first period is the optimal forecast. Therefore, any reaction to “news” in the second period

will be an over-reaction that will on average be corrected in the final period:

E[R3R;] = E[FE[R3Rs|x,s]]
= E[E[Rs|z, s|Rs),

= —E[R3) <0.

where the second line follows because R, is a constant in x, s.
This model establishes continuation and reversal. It also makes several additional pre-
dictions. Our model is based on expectations driven by announcements. This leads to two

additional hypotheses.

Prediction 1 (Survey data). Revisions in a repetitive month are likely to be in the same

13



direction as those in the previous newsy month, and revisions in a newsy month are likely in

the opposite direction to revisions in the previous repetitive month.

Note that the expectation revision in a newsy month is E°N[p|s] — p*, which equals
R;. The revision in the repetitive month is EN[p|s, 2] — E“N[p|s], which equals R,. These
are positively correlated as we show above. In the following newsy month, the expectation
revision, if there is a positive outcome, is 1 — E°N[p|s, 2] and —E“N|[p|s, ] otherwise. For
the reasons described above, this is negatively correlated with the revision in the repetitive

month.

Prediction 2 (Similarity of announcements). If continuation and over-reaction arise from
announcements, the effect will be stronger when the announcement in the repetitive month

1s more similar to the previous newsy month.

4 Testing the hypothesis

Having stated our hypothesis of correlation neglect, we further test it from four additional

angles.

4.1 The pre-season periods

Our previous analysis primarily focused on monthly stock returns and utilized the concept
of newsy months. However, the period with a significant number of earnings announcements
does not immediately begin on the first day of these newsy months. Even the quickest
announcers require some time to prepare their statements. Specifically, among companies
with fiscal periods aligned with calendar quarters, only 0.27% of earnings announcements
occur within the initial week (or the first five trading days) of the quarter. This percentage
is significantly lower compared to the average weekly announcement rate of about 8%. In
contrast, the second week of each quarter sees 2.93% of the announcements, which aligns more

closely with the average weekly rate. Therefore, any market return reversals, if stemming

14



from these earnings announcements, are not expected to occur in the first week of newsy
months. Table [7] confirms this prediction. Columns 2 and 3 show a weak reversal in the
first week of newsy months and a strong reversal in remaining periods, with the coefficients
disproportionate to the length of the predicted returns (about one to three). This analysis
suggests that our observed return pattern is indeed tied to the early earnings announcements.
This piece of evidence speaks in favor of stories involving these earnings announcements and

against those built upon other unrelated quarterly fluctuations.

4.2 Survey data

An influential branch of the behavioral finance literature uses survey data from IBES to
measure investors’ expectations of aggregate cash flow growth. In particular, Nagel and Xu
(2022) and Bordalo et al.| (2024]) argue that the long-term growth (LTG) measure in IBES is
what matters for aggregate asset price variations. As Prediction [l states, our model traces
the continuation and reversal effects to beliefs, which this branch of the literature has argued
can be extracted using the LTG measure from the IBES Adjusted Details fileff| Following
Bordalo et al.| (2024), we use medians across analysts to represent firm level consensus, and
then aggregate firm level LTG revisions in each month using the market capitalization weight
within the S&P 500 universe to obtain revisions in aggregate cash flow growth expectations.
Our model predicts that investors overreact in the repetitive months in the sense that i)
revisions in a repetitive month are likely in the same direction as those in the preceding
newsy month and ii) revisions in a repetitive month are likely followed by correction in the
opposite direction in the subsequent newsy month. These lead to two predictions on the
time series of aggregate LTG revisions. First, revisions in a repetitive month are positively
correlated with revisions in the previous newsy month. Second, revisions in a newsy month
are negatively correlated with revisions in the previous repetitive month.

Column 1 of Table §| tests prediction i) by running the following regression on the sample

8We do not use the Summary files, which contain middle-of-the-month consensuses struck on the Thurs-
day after the 3rd Friday of the month, because we need revisions month-end to month-end.
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in which ¢ is repetitive:

Revy = o+ fRevi_1 + €.

Here, Rev, is the aggregate LTG revisions in month ¢, and as t is repetitive, t — 1 is newsy.
The positive and significant coefficient of 0.543 indicates that revisions in a repetitive month
indeed tend to be in the same direction as those in the previous newsy month. However, this
number is not in itself convincing. Survey data naturally incorporate latencyﬂ resulting in a
positive unconditional autocorrelation in revisions. Column 2 controls for this unconditional
latency and extracts the overreaction effect using an interaction term between Rev;_; and a
dummy variable indicating whether ¢ is repetitive. The resulting coefficient of 0.323 is again
highly significant, indicating that the positive relation between the revisions in a repetitive
month and the previous newsy month goes above and beyond what is implied by the data
latency alone.

Column 3 tests prediction ii) by running the following regression on the sample in which
t is newsy:

Revy = o+ fRevi_o + €.

Here, as t is newsy, t — 2 is repetitive. We do not observe the negative coefficient predicted
by our theory, but rather a near-zero coefficient of 0.038. However, this is simply owing to
the confounding latency effect said above. Column 4 controls for this effect and extract the
overreaction coefficient using the interaction term between Rev; , and a dummy variable
indicating whether ¢ is newsy. Here, we can clearly see a significantly negative coefficient of
-0.174. This implies that reactions in the repetitive months are indeed overreactions that

get corrected in the subsequent newsy month.

90ne factor contributing to the latency in survey data is the requirement for analysts to produce detailed
analyst reports (as examined in Barth et al.| (2024) and |Li et al.| (2024))) in addition to their estimates. This
increases the cost of generating estimates, thus causing delays in their release.
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4.3 Earnings similarity and the strength of the return pattern

According to our mechanism, investors see a signal in the second month, which they believe
is an independent draw from the distribution that produced the signal in the first month.
In the data, however, this second signal are in fact earnings announcements from a different
set of firms. These signals have a range of similarities with the first signal, which we capture
with differences between aggregate return on equity in the two months. If the signal that
investors see is highly dis-similar, then investors are not likely to interpret it as a draw
from the same distribution. Thus one test of our underlying mechanism (see Prediction
is that over-reaction is likely to be especially strong when the earnings in the repetitive
month are similar to those announced in the previous newsy month. We now test this
prediction. Table [9] reports the key parameter S5 on the interaction term from regression
conducted separately for episodes in which the earnings announced in an repetitive month
and the preceding newsy month, as measured by ROE, are unusually similar, moderate, and
unusually dissimilar. It shows that, when the earnings announced in the repetitive month
more closely resemble those in the preceding newsy month, we indeed observe an amplified
pattern of dynamic autocorrelation in the return of this repetitive month and the next newsy
month. This confirms our model’s prediction that investors overreact more to a repetitive

month’s earnings when they are more similar to those in the preceding newsy month.

4.4 The cross section of industries

4.4.1 Baseline return pattern

The main intuition behind the theory is as follows. If a group of stocks are 1) tightly and
obviously connected in fundamentals, so that investors actively infer group-level information
from its members’ announcements and 2) sizable in number, so that the group as a whole
announces progressively along the earnings cycle, then earnings announced in the second
month of a quarter will be predictably similar to those announced in the first month. Failure

to recognize this inherent similarity leads to predictable overreaction in the second month
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that later reverses.

This story applies naturally to all stocks in the US economy, but should additionally
apply to industry-level returns. Two stocks randomly drawn from an industry are more
connected with each other than two random stocks drawn from an economy. An indus-
try is a smaller economy except more tightly connected. Investors clearly understand the
tight intra-industry connection and actively learn industry-level information from the early
earnings announcements (e.g., Foster (1981)). If the story is indeed about the early earn-
ings announcements, the dynamic serial predictive relation in the aggregate market returns
should also exist in industry returns in excess of the aggregate market returns.

Table [10] tests this prediction by conducting the following regression:

exret;y = a + Bexret; pew) + €t (4)

Here exret; ; is the return of industry ¢ in excess of the market return in month ¢. The returns
are weighted by market capitalization, and the regression is weighted by industry level market
capitalization scaled to sum to 1 in each cross section. Following |Lou et al. (2019), we drop
stocks with a smaller market capitalization than the 10th percentile on NYSE. We further
drop industries with less than 10 constituents to ensure a sufficient number of announcers.
Table [10] shows that the same tug-of-war pattern between continuation and reversal exists
in industry excess returns in addition to aggregate market returns.

Two points are worth noting. First, this piece of cross sectional evidence is important in
its own right. Table|L1|shows that it can also be converted into a profitable trading strategy.
Like the regressions in Table [I0] this strategy uses market capitalization weights, making
it highly implementable. Second, the consistency between aggregate and cross sectional
evidence is not always seen in the return predictability literature. This piece of evidence

thus speaks potently in favor of our hypothesis.
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4.4.2 Heterogeneities across industries

Rich variation across industries offers us a good opportunity to further test our theory. As
said in the previous subsection, our theory works on a group of stocks that are i) tightly
connected in fundamentals and ii) sizable in numbers. These two elements are both necessary
to set up the stage of intra-group learning, generate the newsy and repetitive signals for
group-level cash flow in the first and second month of a quarter, and allow the possibility
of correlation neglect. A natural implication of our theory is the return pattern should be
stronger on industries that are more tightly connected and have more constituents.

Panel A of Table [12] test these predictions. We measure industry level earnings connec-
tivity by first computing the covariance of normalized excess ROE (winsorized at -4 and 4)
for each pair of stocks in the same industry-quarter, and then taking the within-industry
average weighted by the average of the market capitalization of the pair of stocks. We then
split each cross section is then split between high connectivity industries and low connectivity

ones, and run the regression:

exrelyy = o+ Prexret; pyw) + Poexret; priy X I + I + €. (5)

We clearly see that the effect of correlation neglect, as measured by the size of the
coefficient 35 on the interaction term, is much larger on the high connectivity industries.
Panel B conducts a similar exercise for the number of firms in each industry, and show that
the effect of correlation neglect is larger on the larger industries. Furthermore, as argued in
Section [3], our theory predicts that the overreaction in the repetitive months is larger when
the earnings in them more closely resemble those in the preceding newsy months. Panel C
show that this is indeed the case in data.

To further demonstrate that the empirical pattern relates to the economic structure of
real industries, we conduct a placebo test in Panel B of Table |12/ by randomly generating fake
“industries” and conduct regression |5 on the panel of these fake industries. The random-

ization approaches follow those in (Chen et al.| (2024)). Panel Bl randomly assign each stock
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to 1 of the 39 (median number of industries across cross sections) “industries” with uniform
probability. This approach generates random industries of roughly equal size (number of
constituents). Panel B2 assign each stock to the industry of a randomly chosen stock in
the same cross section without replacement. This approach preserves the size distribution
of the industries in each cross section. Panel B3 first sorts each cross section into deciles by
exrets ), Where s is a stock, and then assigns each stock to the industry of a randomly
chosen stock in the same cross section-decile. This approach preserves the size distribution of
the industries in each cross section and further controls for exret; ;). The 1st percentiles in
Panel B of Table [12] are much less negative than the -0.164 observed in Panel A of Table [12]
The results in Panel B3 are especially useful. It tells us that the observed return pattern in
Table [12] depends critically on the economic structure of genuine industries and is not the

sole result of the regressor exret; ) itself.

5 Alternative explanations

Predictable resolution of risks. The most important set of explanations for return pre-
dictability comes from predictable resolution of risks, which leads to high expected returns,
as well as going through predictably low-risk periods, which leads to low expected returns.
We have argued that this type of explanations is unlikely to account for our return pattern
in its full scale owing to the frequency at which the expected stock market excess returns are
negative. We now ignore this aspect of scale and discuss potential stories that can explain
the pattern in direction.

The type of variation in risks that is necessary to explain my time-series results is that,
i) after a good newsy month, the stock market is risky in the subsequent repetitive month,
and ii) after a good repetitive month, the subsequent newsy month is safe. Individually,
both points are not difficult to accommodate in a risk-based framework. In fact, point ii)
naturally arises when a repetitive month resolve risks and take them away from the next

newsy month. However, as we show in Table[0], we ideally should have one story that jointly
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explain both arms of the return pattern. This first requires the risk of the market to vary at
a monthly frequency. Standard asset pricing models such as habit, long-run risk, disaster,
and intermediary-based asset pricing all involve risks that should be rather persistent at a
monthly frequency. So it does not appear hopeful to use standard macro risk factors to
explain my predictability pattern.

Another candidate is the risk resolution associated with earnings announcements. Em-
pirically, Savor and Wilson| (2016) show that early announcers earn higher excess returns
than later announcers (Table IV), which is indeed consistent with the overall importance of
the earnings season. This, however, does not explain why the current earnings season being
good makes the next repetitive month risky. Neither does it explain why a good repetitive
month is followed by a safe newsy month.

Savor and Wilson| (2013) document that the equity premium on macroeconomic an-
nouncement days is especially large and argue that this is because it resolves important
macroeconomic risks. If this contributes to our pattern of return predictability, the return
predictability would be realized on macroeconomic announcement days. A straightforward
empirical investigation reveals that the predictability in fact works about equally well on
the top five macroeconomic announcement dates on Bloomberg (i.e., FOMC, employment
condition, GDP, PPI, and Institute for Supply Management manufacturing). The data sug-
gest that the return predictability documented in this paper does not obviously relate to

macroeconomic announcements.

Firms endogenously changing their announcing latency. A large accounting literature
examines the relation between the timing of firms’ earnings announcements and the news they
convey. A clear empirical pattern that emerges is that early announcers tend to announce
better news than late announcers (e.g., Kross||1981; Kross and Schroeder||1984; |(Chambers
and Penman|1984; \Johnson and So|2018; Noh et al.[2021)). The literature has also extensively
studied the reasons behind this pattern and has partially attributed it to firms’ endogenous

choices of the announcing lag. For instance, deHaan et al. (2015) argue that firms delay
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earnings announcements with bad results to avoid the early portion of the earnings cycle
that receives heightened attention. |Givoly and Palmon| (1982) argue that they do so to buy
time so that they can manipulate their accounting results.

However, it is not clear how this empirical regularity alone speaks to our results. Overall,
it implies that early announcers announce better results than late announcers. If investors
fail to anticipate that, then early announcers will have higher earnings surprises and higher
announcement excess returns. It is not clear why it would cause the market return in the
newsy month to positively correlate with that in the next repetitive month. If anything,
exogenous variation in the intensity of this self-selection effect seems to lead to a negative
correlation of early announcement returns and late announcement returns within the quarter,
as bad announcers being moved out of the newsy months makes the newsy months look
better, and the subsequent repetitive months look worse than they otherwise would. And
even then, it is not clear why a pattern of return reversal would exist between a repetitive

month and the upcoming newsy month.

6 Conclusion

Contrary to prior beliefs, monthly stock market returns in the United States can in fact
be predicted with past returns. Specifically, the U.S. stock market’s return during the first
month of a quarter positively predicts the second month’s return, which then negatively pre-
dicts the first month’s return of the next quarter. The first months of a quarter are “newsy”
because they contain fresh earnings news about the aggregate economy, whereas the second
months of a quarter contain earnings announcements that produce predictably repetitive
“news.” We hypothesize that the return predictability pattern arises because investors use
announced earnings to predict future earnings, but did not recognize that earnings in the
second months of a quarter are inherently repetitive of those in the previous newsy month.
Survey data support this hypothesis of correlation neglect, as does out-of-sample evidence

across industries. These results challenge the efficient market hypothesis by documenting a
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strong and pervasive form of return predictability.
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Table 1: When do firms end their fiscal quarters and when do they announce earnings

A: FQ-end month B: Earnings announcement month
Count Percent Count Percent
Group 1: Jan/Apr/Jul/Oct 82,257 8.6% 358,128 44.7%
Group 2: Feb/May/Aug/Nov 51,169 5.4% 382,162 47.7%
Group 3: Mar/Jun/Sep/Dec 819,534 86.0% 60,649 7.6%
Total 952,960 100.0% 800,939 100.0%

Panel A counts the company-fiscal quarters in Compustat by the months in which they end. The fiscal quarters always end on
the last day of a month, and 86.0% means that 86.0% of the fiscal quarters end on the last day of March, June, September,
or December. Panel B counts the company-fiscal quarters by the months in which the fiscal quarters’ earnings are announced,
requiring that 1) the fiscal quarter ends in the Group 3 months and ii) the earnings announcement occurs within 92 days of the
fiscal quarter end date. Data are quarterly from 1971 to 2023.



Table 2: Continuation and reversal in the U.S. aggregate market returns

(1) (2)

(3)

Repetitive ~ Newsy Difference
A: Full sample
Mmhtnpy — 0.279%%F  -0.279%%* -0.557H**
[3.13] -3.02] [-4.35]
N 386 386 772
B: First half
mkty @y 0.358%FF  -0.327** -0.685%**
[2.71] [-2.48] [-3.67]
N 190 190 380
C: Second half
Mmktpeey  0.167F%  -0.194** -0.360***
[2.77] [-2.14] [-3.31]
N 196 196 392
D: Post-WWII
Mmktppy — 0.142%%F  -0.163** -0.305%**
[2.69] [-2.31] [-3.46]
N 304 304 608
This table presents estimated (s from the monthly time-series regression mkt; = o +

pmkt,,. ) + €. Here, mkt; is the U.S. stock market return in excess of the risk free rate
in month ¢, and nr(t) is the most recent month before ¢ that is newsy or repetitive. Column
1 is on the sample in which the dependent variable month ¢ is a second month of a quarter
(repetitive); column 2 is on the sample in which the dependent variable month ¢ is a first
month of a quarter (newsy). Column 3 shows there difference, extracted as [y from the
regression mkt, = o + Symkt,,.q) + Bamkt,, ) X I' + VI + € on the combined sample in
column 1 and 2, where I} is a dummy variable taking the value of 1 if month ¢ is newsy, and
0 otherwise. In Panel A, B, C, and D, data are monthly from 1926 to 2023, from 1926 to
1973, from 1974 to 2023, and 1947 to 2023, respectively. T-statistics computed with White

standard errors are reported in square brackets.
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Table 3: Out-of-sample R? in forecasting the U.S. stock market returns

Method 1 2 3
O0S R? 4.20% 4.26% 4.73%

The R? in this table are calculated as 1 — %, where 7; is the expanding window mean
t=

of past stock returns and 7; is the forecast being evaluated. The signal is mkt,,,.) — mkt,_;
for a repetitive t, —(mktm(t) — mk%t,l) for a newsy t, and 0 otherwise. For each month
t, 2 coefficients—one for the signal and one for the constant term—are extracted from a
simple expanding-window OLS regression of historical market excess returns on historical
signal values and a constant. For method 1, the forecast in a given month is the estimated
coefficient on the signal multiplied with the signal value plus the estimated constant. Method
2 replaces the estimated constant coefficient with 7;. Method 3 replaces the estimated
constant with the average signal (of the dividend/price, earnings/price, and book-to-market
based numbers) proposed by |Campbell and Thompson| (2008)) in the valuation constraint +
growth specification with fixed coefficients. Data are monthly from 1926 to 2023.
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Table 4: Time-series strategy performance

(1) (2) (3) (4)
TSP, TSP, TSP, TSP

MKT, 0.169  0.050  -0.024
0.96]  [0.39]  [-0.23]

HML, 0.575%%  0.425%*
217  [2.22]

SMB, 0.165  0.148
[0.88]  [0.76]

MOM, -0.331%*
[-2.22]

a 0.668%** 0.554%%F (.402%F 0.715%%*
[3.51] [3.24]  [2.32]  [3.73]

N 1,165 1,165 1,165 1,164

Column 1 shows results from the following monthly time-series regression: TSP, = a + €.
Here, T'SP, is our time-series portfolio return in month ¢. This portfolio takes long or
short positions in the aggregate market for a given month, and the weight is proportional
to the previous-month-end signal value s;_;, which is mkt,, ) — mkt;_, for a repetitive ¢,
—(mktyr) — mkt,_y) for a newsy t, and 0 otherwise. The market weight is then scaled so
that the strategy has a historical volatility of 5% as of ¢ — 1, and then truncated at 3 and
-3. Columns 2-4 add in the market, value, size, and momentum factor returns on the right-
hand-side. In Column 1, the coefficient of the constant represents the average return of the
time-series portfolio. In Columns 2-4, it represents its alphas with different factor models.
Data are monthly from 1926 to 2023. Returns are all in percentage units. 7T-statistics
computed with White standard errors are reported in the square brackets.
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Table 5: Continuation and reversal in the U.S. aggregate market returns, with controls

(1) (2) (3)

Repetitive  Newsy Difference
mkt ) 0.213%*  -0.248%** -0.4617%%*
2.22] [-2.70] [-3.46]
S Mkt 0.320%F  -0.251% -0.580%#*
2.46] [-1.85] [-3.05]
N 383 383 766
This table presents estimated (s from the monthly time-series regression mkt; = o +

Bimktye) + P2 2?21 mkt,mj) + €. Here, mkt, is the U.S. stock market return in ex-
cess of the risk free rate in month ¢, nr(t) is the most recent month before ¢ that is newsy
or repetitive, and nm(t, j) is the jth most recent newsy month before ¢t. Column 1 is on the
sample in which the dependent variable month ¢ is a second month of a quarter (repetitive);
column 2 is on the sample in which the dependent variable month ¢ is a first month of a
quarter (newsy). Column 3 shows there difference, extracted as [, from the regression of
mkt, = oz—i—ﬁlmktm(t) +Bzmk‘tm~(t) X Itn—l-ﬁg Z?:l mktnm(t,j) + 4 2?21 mktnm(m) X Itn—l-’}/ff—i-ﬁt
on the combined sample in column 1 and 2, where [* is a dummy variable taking the value
of 1 if month ¢ is newsy, and 0 otherwise. Data are monthly from 1926 to 2023. T-statistics
computed with White standard errors are reported in square brackets.
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Table 6: The link between the continuation and reversal effects

(1) (2) (3) (4)

TSP TSP Rank(TSP}*) Rank(TSPY)
TSP 0.957%%*

[15.16]
TSPy 0,893+

[6.87]
Rank(TSP)) 0.3617%+%
3.42]
Rank(T'SP}) 0.3617%*
[3.40]

N 97 97 97 97

Column 1 shows results from the following annual time-series regression: TSP = o +
BT SP] +¢€,. Here, T'SP, is our time-series portfolio return in year ¢. This portfolio takes long
or short positions in the aggregate market for a given month, and the weight is proportional
to the previous-month-end signal value s,_;, which is mkt,,.) — mkt,_; for a repetitive ¢,
—(mktm(t) — mkty_1) for a newsy ¢, and 0 otherwise. The market weight is then scaled so
that the strategy has a historical volatility of 5% as of ¢ — 1, and then truncated at 3 and
-3. T'SP]" is the portfolio’s return in the newsy months of year ¢, and T'SF/ is the return
in the repetitive months of year t. The Rank(-) function ranks the TSP} and T'SP}* across
years, thus transforming them into integers between 1 and 97. T-statistics computed with
White standard errors are reported in the square brackets.
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Table 7: The first weeks of the newsy months

(1) (2) (3)
Newsy  Week 1 Ex week 1

mktpeey -0.279%**  -0.021  -0.256***

[-3.02] [-0.53] [-2.76]
N 386 386 386
Column 1 presents estimated (s from the monthly time-series regression mkt, = « +

Bmkt,.) + €. Here, mkt, is the U.S. stock market return in excess of the risk free rate
in month ¢, and nr(t) is the most recent month before ¢ that is newsy or repetitive. Column
1 is on the sample in which the dependent variable month ¢ is a first month of a quarter
(newsy). Column 2 replaces the dependent variable with mkt/" | the market excess return
during the first five trading days of month ¢. Column 3 replaces the dependent variable with
mktZ*EW the excess market return during ¢ excluding the first five trading days. Data are
monthly from 1926 to 2023. T-statistics computed with White standard errors are reported
in square brackets.
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Table 8: Evidence from survey data

(1) (2) (3) (4)

Rev, Rev, Rev, Reuv,
Rev,_4 0.543***  (.220%**
[4.91] [2.94]
Iy 0.078
[1.15]
Revy_y x IT 0.323%4%
[3.42]
Rev,_, 0.038 0.211%**
[1.02] 3.92]
K -0.052
[-1.05]
Revy_o x I -0.174%**
[-2.72]
const -0.032  -0.110** -0.143***  -0.091*
[-0.81] [-2.03] [-3.04] [-1.93]
N 170 509 170 509

Column 1 runs the following monthly time-series regression on the sample in which ¢ is
repetitive: Rev; = a + fRev,_1 + €. Here, Rev; is the aggregate revision in the IBES long-
term growth (LTG) measure for month ¢ within the S&P 500 universe using the market
capitalization weight. Column 2 adds in a dummy variable indicating whether ¢ is repetitive
and its interaction with Rev; ;, and expands the sample to all months. Columns 3 and
4 conduct analogous regressions to columns 1 and 2, but for newsy months rather than
repetitive months. Data are monthly from 1982 to 2024. T-statistics computed with Newey-
West standard errors are reported in square brackets.
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Table 9: Aggregate earnings distance and the strength of the return pattern

(1) (2) (3) (4) (5)
Lowest 10% 10%-50% 50%-90% Highest 10% Low - High

Mkt X I -0.769%%%  -0.398%  -0.228 -0.084 -0.684**
[-4.33] 1.94]  [1.51] [-0.31] [-2.12]
N 42 170 170 42 84

This table presents estimated [s from the monthly time-series regression mkt, = o + Symkt,.q) + Bkt X I + vI + €.
Here, mkt, is the U.S. stock market return in excess of the risk free rate in month ¢, nr(t) is the most recent month before
t that is newsy or repetitive, and I}’ is a dummy variable taking the value of 1 if month ¢ is newsy, and 0 otherwise. Across
columns, the regression sorts on the distance between the aggregate ROE announced in the most recent newsy months before ¢
and the subsequent repetitive month. The aggregate ROE in a given month is defined as the total earnings announced in the
month divided by the total book value of equity of these announcing firms. The ROE distance is computed as the absolute
value of the difference between the newsy and the repetitive months” ROE relative to the median value of the difference across
time. The distance increases from column 1 to 6 and are between the 0-10th, 10-50th, 50-90th, and 90-100th percentiles of the
sample, respective. Data are monthly from 1971-2023. T-statistics computed with White standard errors are reported in square
brackets.



Table 10: Continuation and reversal in the U.S. industry excess returns

(1) (2) (3)
Repetitive  Newsy Difference
A: Full sample

exret; pry  0.083%**  -0.081** -0.164***

[2.68] -2.36] -3.55]
N 16214 16,283 32,497
B: First half
exret; pr(p) 0.085* -0.067 -0.152%*
[1.73] [-1.36] [2.19]
4,049 4,107 8,156
C: Second half
exretppy  0.082%* -0.089* -0.171%%*
[2.06] [1.94] [-2.82]
12,165 12,176 24,341
D: Post-WWII
exret; ey 0.071%* -0.067* -0.138%**
[2.17] [-1.72] [-2.71]
15,044 15,102 30,146

This table presents estimated (s from the industry-monthly panel regression exret;; = o +
Bexret; nyq) + €. Here, exret;; is the return of industry 7 in excess of market return in
month ¢, and nr(t) is the most recent month before ¢ that is newsy or repetitive. Column
1 is on the sample in which the dependent variable month ¢ is a second month of a quarter
(repetitive); column 2 is on the sample in which the dependent variable month ¢ is a first
month of a quarter (newsy). Column 3 shows there difference, extracted as o from the
regression of exret;; = o + Biewret; pew) + Bacrret; pewy X I + I + € on the combined
sample in column 1 and 2, where []' is a dummy variable taking the value of 1 if month
t is newsy, and 0 otherwise. The returns are weighted by market capitalization, and the
regression is weighted by industry level market capitalization scaled to sum to 1 in each
cross section. The regressions require at least 10 firms in an industry. In Panel A, B, C, and
D, data are monthly from 1926 to 2023, from 1926 to 1973, from 1974 to 2023, and 1947
to 2023, respectively. T-statistics computed with standard errors clustered by month are
reported in square brackets.
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Table 11: Cross sectional strategy performance

(1) (2) (3) (4)
CSP,  CSP,  CSP, CSP,

MKT, 0.062  0.041  -0.044
[0.92] [0.68] [-0.83)]
HML, 0.160  -0.017
[1.20] [-0.14]
SMB, 0.017  -0.035
[0.20]  [-0.44]

MOM, -0.381 0
[-3.58]

a 0.533%FFF 0. 497%¥% (. A5TRRE () 82THH
[3.37] [3.08] [2.92] [4.20]
N 1,154 1,153 1,153 1,152

Column 1 shows results from the following monthly time-series regression: CSP, = a + €.
Here, C'SP, is our cross-sectional portfolio return in month ¢. This portfolio takes long
and short positions on industries in a given month, and the weight is constructed with
the following steps: i) Compute signal value s;;_1, which is exret; ,,¢—1) for a repetitive
t, —exret; ;1) for a newsy ¢, and 0 otherwise; ii) cross sectionally demean with market
capitalization weight; iii) scale by standard deviation of the signal computed with data up
to t — 1 and Winsorize at [-3, 3] to limit the influence of extreme values; iv) interact with the
industry’s market capitalization divided by the total market capitalization in ¢ — 1. Step iv)
is a simple way to amply positions in large stocks to lower trading costs. Columns 2-4 add
in the market, value, size, and momentum factor returns on the right-hand-side. In Column
1, the coefficient of the constant represents the average return of the time-series portfolio.
In Columns 2-4, it represents its alphas with respect to different factor models. Data are
monthly from 1926 to 2023. Returns are all in percentage units. T-statistics computed with
White standard errors are reported in the square brackets.
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Table 12: Further analyses across industries

A: Heterogeneity across industries

B: Random “industries”

Low High High-Low 1% 5% 50%  95%  99%
Al: Size B1: Uniform probability
exret; pry X I -0.062%*  -0.141%** -0.079** -0.049 -0.035 0.001 0.035 0.049
231 [-3.62] [-2.57]

A2: Connectivity

B2: Preserve industry sizes

exret; pry X I -0.127%%  -0.235%**  -0.108**
2.14]  [-3.30] [-2.00]

-0.053 -0.036 -0.001 0.033 0.050

A3: Earnings similarity

B3: Control for exret;

exret; prey X I -0.105  -0.255***  -0.150** -0.066 -0.050 -0.015 0.021 0.036
1.36]  [-4.14] [-2.30]
Panel A of this table presents estimated (s from the industry-monthly panel regression: exret;; = o + Biexret; @) +

Brexret; ey X I + 1] + €. Here, ewxret;; is the return of industry 7 in excess of market return in month ¢, nr(t) is the
most recent month before ¢ that is newsy or repetitive, and I}* is a dummy variable taking the value of 1 if month ¢ is newsy,
and 0 otherwise. The returns are weighted by market capitalization, and the regression is weighted by industry level market
capitalization scaled to sum to 1 in each cross section. The regressions require at least 10 firms in an industry. Panel Al
separates the regression by whether an industry has below- or above-average number of constituents in its cross section and
shows the difference in f in the 3rd column. Panel A2 conducts a similar exercise for within-industry earnings connectivity,
measured by first computing the covariance of normalized excess ROE, winsorized at -4 and 4, for each pair of stocks in the same
industry-quarter, and then taking the within-industry average weighted by the average of the market capitalization of the pair
of stocks. Panel A3 does so for earnings similarity, computed as the absolute value of the distance between the industry’s ROE
announced in the newsy month before ¢ and the subsequent repetitive month. Panel B conducts 3 placebo tests on randomly
generated, fake “industries,” and report the 1st, 5th, 50th, 95th, and 99th percentiles of the distribution of 35 generated in
1000 simulations. Data are monthly from 1971-2023. T-statistics computed with standard errors clustered at monthly level are
reported in square brackets.



Figure 1: Implied expected stock market excess returns over time
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This figure plots the expected stock market return as in Method 2 of Table [3] The unit is
percent per month.
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Appendix

A Alternative model of correlation neglect

In this section, we consider an alternative model that is based more closely on Enke and
Zimmermann| (2019). As in the model in Section [3, assume there are three periods, corre-
sponding to the newsy month, the repetitive month, and the first month of the next quarter
when the value of the market portfolio P is drawn from the normal distribution with mean
p. As in Enke and Zimmermann| (2019)), assume there are latent signals s;, j = 1,2, jointly
normally distributed, independent, and with mean . Investors directly observe s; in period
1 and Sy = 1/2(s; + s2) in period 2. Investors need to estimate p. Under the assumption
of a flat prior on u, $5 is the optimal forecast. Computing returns requires taking a stance
on the full prior distribution. To focus attention on correlation neglect, we assume known

variance of s; and take the limit as the prior becomes uninformative.

Equilibrium with rational investors

In period 1, P, = s, and Ry = P, — p. In period 2, P, = 35 and Ry = %(32 — s1). Note
that E[R;] = E[R,] = 0, and therefore Cov(Ry, Ry) = E[RiRy] = $E[(s1 — p1)(s2 — s1)].
Returns ex post appear to be predictable: E[RsR;] < 0. However, as Lewellen and Shanken
(2002) emphasize, the investor cannot profit from this opportunity in real time: E[Ry|s;] =
1/2(E[s3]s1] — s1) = 0. Finally,

E[RgRQ] = E[(P - §2)(82 — 81)]

N~ N

<E[(]5 ~ 8y)s0] — E[(P — §2)31]) —0

where the last equation follows from the symmetry in s; and s,. It may seem surprising
that this too is not negative. The reason is that the initial “over-reaction” from s; is “over-

corrected” by so. In fact R3 is negatively correlated with the overall return Ry — pu.

Equilibrium with correlation neglect

In period 1, again P; = s; and Ry = s;—u. However, in period 2, investors form an inefficient
forecast that over-weights s, P, = %(51 + 89) = %51 + }152, because they mistakenly believe
that S, is an independent draw. The period 2 return equals Ry = P, — Py = 1/4(sy — s1).
As before E[Ry]| = E[Rs] = 0. Again, Cov(Ry, Ry) = E[R1Ry]. Though prices in the second

period differ in this economy as compared with the one above, the return Ry differs only by
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a multiplicative constant. Therefore, by the logic for the rational investor, Cov(R;, Ry) < 0,
which is counterfactual.
Furthermore, Cov(R3, Ry) > 0. It suffices to show E[R3Ry] > 0. We have

1 3 1

E[R3Ry] = ZE[(‘E) RV 152)(52 = 51)]
1 P s 1 1
= Z [( — 82) — 131 + 132)))<32 - 51)]
1 = 1 2
= 2P - sa)(s - 3]+ = Elsa - 1)
_ %E[(SQ — s3>0

The fact that the first term is zero follows from the same reasoning as for the rational
investor. The intuition for the positive correlation is that P, contains “too much” s; and
“too little” sy. Thus on average, R3 moves in the same direction as Ry, which is to say
toward s, and away from s;. It might seem surprising that R, moves from sy and away
from s; given that the point of correlation neglect is to have P, incorporate too much si.
However, under this form of uncertainty it is impossible for it to incorporate more than is
already in Pj. In effect, the information in s; is fully priced in at time 1.

This model differs from the one in the main text in two respects. Most obviously, investors
here learn about the mean of a normal distribution, whereas in main modle, investors learn
about a probability. When learning about the mean, receiving the same signal twice and
incorporating it does not change the investor’s estimate of the price (though it does shrink the
variance). However, when one is learning about a probability, receiving a signal always causes
the mean to update (see Equation , though eventually by a vanishingly small amount. In
a model with normally distributed risks, over-reaction only occurs in the second moment,
not in the first, as in the data. A second difference lies in the unique source of randomness
in the second period. In this model, that source of randomness is an extra signal, and
creates a negative correlation. In the model in the main text, the source of randomness is
whether the first signal is brought to investors’ attention or not. Despite these differences,
the models have an important source of similarity in that incorrect inference arises from

neglecting correlations.

B Timing-series signals and trading strategies

In the cross sectional return forecasting literature, it is a common practice to form long-short

portfolios according to a signal’s values across stocks. For example, Fama and French (1993))
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create the HML factor, which takes a long position in the 30% of stocks with the highest
book-to-market ratios and shorting the 30% of stocks with the lowest book-to-market ratios.
This approach has many benefits, among which are the following three. First, it does not
require explicit forecasts for stock returns and estimates no parameter. Second, it works with
any stock-level signal. Third, it creates a reasonable risk exposure that makes the portfolio
returns comparable across signals, as the equity exposures of the long and short arms of the
portfolio are the same 100% and -100%.

In the time-series literature, we do not yet have a commonly used approach to create
analogous portfolios. Such portfolios are an useful diagnostic tool that complements the
standard metric of out-of-sample R? put forth by (Goyal and Welch| (2008). We develop such
a tool in this section. Overall, for a generic signal s, we construct a beta-neutral market-
timing strategy that rebalances positions in i) aggregate stock market and ii) the risk-free
bond. The strategy implements two rules with data available in real time. First, it places
proportional weights on the market to the signal value, with a target mean of zero. Second,
the portfolio weight is scaled so that the strategy has a target volatility of, say, 5% per
month.

Let s; be the signal value at the end of period ¢. Then, the unscaled portfolio weight

on the market is s;_1, and the unscaled strategy volatility o; ; is the unscaled strategy’s

0.05
oi1’

We further truncate

historical volatility up to ¢t — 1. The scaled portfolio weight is s;_;
the weight on the market at —3 and 3 to avoid unrealistic strategies.m The strategy’s
construction involves no look-ahead bias, and the scaling can be adjusted according to an
investor’s risk appetite.

Columns Return5 and Sharpe5 of Table tabulates means and Sharpe ratios of the
portfolios for existing signals in the literature forecasting aggregate stock market returns.
Four points are worth noting. First, likely owing to a consistent risk appetite targeting
i) a historical strategy volatility of 5% and ii) a maximum market weight of 300% and -
300%, the returns are Sharpe ratios of the diagnostic portfolios are rarely catastrophic. This
sharply contrasts the message conveyed by the OOS R2s, which can be several or even tens of
percentage points negative, even with the constraints from |(Campbell and Thompson! (2008]).

Second, the returns and Sharpe ratios have positive mean and median across the 23
signals. The average returns have a mean and median of 0.07% per month, and the Sharpe
ratios have a mean and median of 0.05 and 0.04 per annum. This relates to the first point,
and again contrasts the message in the OOS R?s, which, with a 5 year burn-in period, have
a mean of -4.42% and a median of -1.49%, and a mean of -1.14% and a median of -0.22%

0Since overly high leverages are unattainable in practice, such truncation is always (though perhaps
implicitly) present when trading in real world.
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with the CT constraints.

Third, the two metrics based on our diagnostic portfolios are (perhaps surprisingly)
dissimilar to the OOS R?s. Table show that with the same burn-in period of 5 years, the
returns and Sharpe ratios have a near-zero correlation of 0.03 and 0.12 with the original OOS
R? in |Goyal and Welch| (2008), and a negative correlation of -0.50 and -0.32 with the OOS
R? in |(Campbell and Thompson| (2008). In contrast, the portfolio-based metrics positively
correlate with the in-sample R%, though at 0.5, this correlation is far from perfect.

Fourth, related to the third point, it is entirely possible for a signal to have very low R?
but high diagnostic portfolio returns and Sharpe ratio. The signal rtz proposed in Rapach
et al.| (2016]) is such an example. It has low OOS R%s around —10% but the highest diagnostic
portfolio average return of 0.87% per month, and the highest Sharpe ratio of 0.43 per annum.

These four differences arise from a key economic difference between the two sets of metrics.
The R? computation involves explicit return forecasts and therefore the estimation of an
regression coefficient on the signal in real time. This coefficient is an representation of the
signal’s historical performance: A time-series regression of the market excess return mkt; on
the signal s,_; and a constant yield a coefficient of 5 =", %mktt =, w_ymkt,
on s. Here, 5 is the in-sample mean of the signal s. Note that 5° is the mean excess return
of a portfolio that rebalances between positions in the aggregate stock market (which yields

an excess return of mkt,) and the risk-free bond (which yields an excess return of 0). The
(8t-1—8)
t (st—1—5
value s;_1, ii) on average 0, so that the portfolio is on average market neutral, and iii) scaled
by >, (si—1 — §)?, so that the portfolio has unit exposure to s (i.e., >, %st,l = 1)

Using this coefficient to form a quantitative forecast of the market excess return implic-

month-¢ portfolio weight on the stock market w; | = 5 ) is 1) linear in the signal’s

itly assumes that performance of the signal’s coefficient portfolio is so stable that its past
performance reliably predicts its future performance at any point in history. This is a some-
what paradoxical assumption in the first place, as it likely implies too high a T-statistic and
a Sharpe ratio—as the coefficient portfolio’s return volatility approaches 0, the T-statistic in
the regression and the portfolio’s Sharpe ratio both approach infinity. In particular, extreme
performance at the beginning of the sample, whether good or bad, tend to lead to forecasts
that are overly or insufficiently disperse, degrading the signal’s OOS R2.

Our diagnostic portfolio, on the other hand, requires no quantitative prediction of the

signal’s performance.m The size of the bet on the market is based on a constant risk appetite

HTf s does not have an economically interpretable scale itself, the scaling in step iii) has no economic
interpretation either. Our diagnostic portfolio is designed to mimic this coefficient portfolio, except that
we replace the in-sample mean with the expanding mean for implementability, adjust the scaling in iii) for
economic interpretability, and impose a position constraint that is inevitable in reality.

121f one is evaluating signals individually, it is not obvious why such quantitative prediction is necessary
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(5% in our example) and does not change with the past returns of the signal’s coefficient
portfolio. This is consistent with the construction of cross sectional factors (e.g., HML,
SMB, MOM, etc.), in which the stock weights also do not change with the past factor
returns. Removing the intermediate step of predicting the signal’s performance removes
potential errors in that step. Therefore, the diagnostic portfolio-based performance metrics
appear better than the OOS R2s overall. A well-behaved diagnostic portfolio does depend on
the stability of the signal’s mean and volatility over time, and such stability appears much
better supported by the data.

To more directly see why the diagnostic portfolio based metrics can be so different from
the OOS R?2, we plot in Figure the univariate expanding window regression coefficients
of the aggregate stock market excess return on the signals and a constant. The signals are
scaled to have a standard deviation of 1 to make the coefficients comparable. As explained
above, degradation in OOS R? from in-sample R? is in large part owing to these coefficients
not being a constant. As the sample size grows over time, the coefficients become increasingly
stable, resembling the full sample coefficients which are the last observation in each series.
Hence, the largest deviations occur at the beginning of the sample. From this figure, it is
immediately obvious that csp, aem, rrz, vrp, gm, and svix are the 6 signals with large and
persistent deviations in the coefficients. They are precisely the 6 signals with the lowest
00S R2.

It is worth emphasizing that we do not imply that the metric of OOS R2s used in Goyal
and Welch| (2008)) is inappropriate. On the contrary, we believe it is a good, consistent, and
general metric. We do want to point out that there are more to this metric. Importantly,
poor OOS R?s do not imply that the corresponding signal cannot be successfully employed
in real time trading. The diagnostic portfolio we propose is a simple approach that both
complements the OOS R2s and fills an obvious gap between the practices of two literatures

studying the time-series and the cross-sections of stock returns.

in the first place.
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Table B1: R? in forecasting monthly stock market returns using other signals

ep
bm
svar
csp
ntis
eqis
tbl
Ity
dfy
dfr
infl
ik
cay
tms
aem
hkm
ITZ
kp
SVix
gm
vIp
sent

IS CTOOS10 CTOOSH 00510  0O0S5 Returnb  Sharpeb Begin End
0.68% -0.28% -0.28% -0.48%  -0.48% -0.19% -0.08 1871m2  2019m12
0.88% 0.27% 0.27% 0.28% 0.28% 0.16% 0.09 1871m1  2019m12
1.04% 0.16% 0.07% -3.02%  -2.93% -0.14% -0.09 1921m3  2019m12
0.25% 0.03% 0.03% -1.49%  -1.49% 0.06% 0.04 1885m2  2019m12
0.90% -0.31% 0.24% -5.81%  -6.12% -0.16% -0.10 1937m5  2002m12
0.75% -0.18% 0.02% -0.13%  -0.78% 0.10%** 0.24 1926m12 2019m12
0.29% -0.43% -1.62% -0.40%  -2.11% -0.06% -0.11 1926m10  2008m4
0.23% -0.80% -0.61% -1.70%  -1.61% 0.08% 0.05 1920m1  2019ml12
0.22% -1.33% -1.08% -1.64%  -1.39% 0.14% 0.07 1919m1  2019m12
0.49% -0.22% -0.22% -2.45%  -2.24% -0.24% -0.16 1919m1  2019m12
0.37% -0.30% -1.72% -0.21%  -1.69% 0.14% 0.12 1926m1  2019m12
0.35% -0.05% -0.05% -0.03%  -0.03% 0.10% 0.10 1913m2  2019m12
1.09% 0.30% 0.30% -0.03%  -0.01% 0.37%* 0.21 1947m3  2019m12
0.37% -0.32% -0.31% -0.39%  -0.97% 0.25% 0.16 1947m4  2019m12
0.29% -0.10% -0.20% -1.04%  -1.32% 0.14% 0.09 1920m1  2019m12
0.31% -2.12% -2.01% -40.25% -38.18% -0.02% -0.01 1947m4  2009m4
0.60% -0.09% 0.00% -0.28%  -0.30% -0.03% -0.02 1970m1  2012m12
1.45% -10.18% -12.30% -9.83%  -12.00% 0.87** 0.43 1973m1  2014m12
1.05% 0.31% 0.23% 0.36% 0.27% 0.19%*** 0.37 1930m1  2019ml11
0.21% -5.04% -6.21% -7.26%  -8.67% -0.27% -0.12 1996m1 2012m1
0.78% 0.60% 0.36% -0.52%  -5.20% 0.07% 0.04 1996m1  2012m1
0.10% -0.67% -0.53% -17.98% -14.02% -0.09% -0.06 1989m12 2019m12
0.39% -0.10% -0.64% -0.01%  -0.67% 0.02% 0.02 1965m7  2019m12

This table displays R? and the sample start/end month of various monthly signals that predict monthly stock market returns in the US.
The “IS” column shows the in-sample R?s, the next 4 columns show the out-of-sample R?s as in |Goyal and Welch|(2008), and the next 2
columns show the monthly returns and annualized Sharpe ratios of the diagnostic portfolios. Columns with the 5 and 10 suffixes evaluate
the R%s 5 and 10 years after the date’s inception (but not after 1926m1). Columns with the “CT” prefix i) truncates the estimated
coefficient on the signal at 0 if it has a different sign from that estimated on the full sample and ii) truncates the forecast at the risk-free
rate if it exceeds the risk-free rate, as in |(Campbell and Thompson| (2008). All predictors are sourced from Amit Goyal’s website (and
follow his naming convention) except for the following: eqis is the new equity issuance share from Baker and Wurgler|(2000), aem is the
financial factor from |Adrian et al. (2014), hkm is the leverage factor from He et al.|(2017), rrz is the short interest from Rapach et al.
(2016), svix is from |[Martin|(2017), gm is the implied cash flow growth from |Gao and Martin|(2021), sent is the orthogonalized investor
sentiment from Baker et al.|(2021). I thank Li and Wang|(2023) for sharing the data they use, and all the mentioned authors for making

their data available online.



Table B2: Correlation among evaluation metrics for aggregate stock market return predictors

Retb Sharpeb IS  0OOS5 CTOOSH

Reth 1.00
Sharpeb  0.90 1.00
IS 0.50 0.51 1.00

00S5 0.03 0.12 0.12  1.00
CTOOS5 -0.50  -0.32 -0.26 0.34 1.00

This table tabulates the correlation among different measures across the 23 signals in Ta-

ble [B1l.
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Figure B1: The expanding-window averages of the signals’ coefficient portfolio returns
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This figure plots the expanding window regression coefficients of the aggregate stock market excess returns on the 23 signals in

Table [B1]
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