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Abstract

Many active funds hold concentrated portfolios. Flow-driven trading causes price pressure, which
pushes up the funds’ existing positions resulting in realized returns. We decompose fund returns
into a price pressure (self-inflated) and a fundamental component and show that when allocating
capital across funds, investors are unable to identify whether realized returns are self-inflated or
fundamental. Because investors chase self-inflated fund returns at a high frequency, even short-
lived impact meaningfully affects fund flows at longer time scales. The combination of price impact
and return chasing causes an endogenous feedback loop and a reallocation of wealth to early fund
investors, which unravels once the price pressure reverts. We find that flows chasing self-inflated
returns predict bubbles in ETFs and their subsequent crashes, and lead to a daily wealth realloca-
tion of $500 Million from ETFs alone. We provide a simple regulatory reporting measure – fund
illiquidity – which captures a fund’s potential for self-inflated returns.
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1 Introduction

The collapse of Archegos Capital Management1 prominently showed that when investment funds

trade concentrated positions, portfolio returns can be driven by the funds’ own price impact. Market

participants seem unable to identify whether realized returns come from price impact as opposed to

fundamental determinants. Is this an isolated phenomenon or does investors’ inability to differentiate

self-inflated from fundamental returns have broader implications for the active investment management

industry as a whole?

A fast-growing literature investigates price pressure in financial markets and finds that non-

fundamental demand shocks caused by, for example, flows, mandates, or index reconstitutions have a

quantitatively meaningful impact on the cross-section of realized returns.2 An equally large literature

investigates the sensitivity of fund flows to past performance and finds that fund investors chase past

return realizations.3 In this paper, we empirically decompose realized fund returns at a high frequency

into a price pressure and a fundamental component and show that investors are unable to disentangle

managerial skill from price pressure, i.e. they equally chase realized returns from price impact and

fundamental determinants. This directly builds on the findings of Ben-David et al. (2022b) that house-

holds engage in naive return-chasing behavior as opposed to rational learning about managerial skill,

and has implications for the cross-section of fund performance, and the underlying security returns

more broadly. When funds trade based on flows, they exert price pressure on the securities in their

portfolios as shown by Lou (2012). Building on this mechanism, we show that the flow-performance

relationship causes endogenous price spirals in the spirit of Brunnermeier and Pedersen (2009) when

future fund flows chase price pressure. The price pressure is a realized return to earlier investors

in the affected securities resulting in what we label ‘self-inflated returns’. The inability of investors

to differentiate fundamental and self-inflated returns leads to flows chasing past price impact, which

causes further price pressure and an endogenous capital reallocation across investors: Via their own

price impact, active funds effectively reallocate capital from late to early investors. We emphasize

that the title of this paper does not suggest that concentrated investment funds are literal Ponzi

1Inside Archegos Epic Meltdown? (WSJ, 2021). Other episodes, such as the Gamestop saga, show how important
flow-driven returns can be at the individual stock level (Greenwood et al. (2023)).

2See e.g. Shleifer (1986), Harris and Gurel (1986), Chen et al. (2004), Frazzini and Lamont (2008), Koijen and Yogo
(2019), Pavlova and Sikorskaya (2023), Schmickler (2020), Greenwood (2005), Lou (2012), Gabaix and Koijen (2021),
Jansen (2021), Wurgler and Zhuravskaya (2002), Bretscher et al. (2022), Greenwood et al. (2023), Coval and Stafford
(2007).

3See e.g. Ippolito (1992), Dannhauser and Pontiff (2019), Goldstein et al. (2017), Chevalier and Ellison (1997), Sirri
and Tufano (1998), Lynch and Musto (2003), Huang et al. (2007), Brown et al. (1996), Spiegel and Zhang (2013)
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schemes as defined by the SEC: “A Ponzi scheme is an investment fraud that involves the payment of

purported returns to existing investors from funds contributed by new investors.”4 Instead, the term

‘Ponzi funds’ merely conveys the notion of self-inflated returns. The reallocation of capital happens

indirectly via observable market prices instead of direct capital transfers as in true Ponzi schemes.

The SEC also states that “Ponzi schemes inevitably collapse, most often when it becomes difficult to

recruit new investors or when a large number of investors ask for their funds to be returned.” This is

closer to our proposed mechanism, as the wealth reallocation from self-inflated returns unravels once

the price impact in the underlying securities reverts and investors stop misinterpreting self-inflated

returns as managerial skill.

To assess whether investor flows chase their own price impact, we proceed in four steps. We start by

laying out a simple analytical expression for self-inflated fund returns. Self-inflated returns are given

by fund flows interacted with fund illiquidity, scaled by price impact. Fund illiquidity is given by the

(portfolio-weighted) average of the fund’s ownership in the underlying securities relative to their daily

volume. Interacted with fund-flows, it measures how much of daily volume a fund on average buys

when it reinvests flows in its existing positions. Fund illiquidity can be further decomposed into the

product of portfolio concentration and fund size. We show that most funds have either concentrated

portfolios (small specialized funds) or are large (diversified index trackers). When concentrated funds

become large, their fund illiquidity spikes giving rise to self-inflated returns.

Next, we estimate the price impact of flow-induced trades using ETFs’ arbitrage-induced trading

as a laboratory. ETFs are ideally suited because their portfolio holdings and flows are observable

at a daily frequency, and because the vast majority of ETFs perfectly reinvest flows in their existing

positions on the same day. A positive correlation between ETF flows and ETF returns can be due to i)

price discovery or ii) price impact in the underlying securities from the flow-induced trades. Price dis-

covery refers to the possibility that fund flows are not pure noise, but are contemporaneously correlated

with fundamental news in the underlying. While raw fund flows may contain fundamental information

about the ETFs’ underlying holdings, self-inflated fund returns are driven by the interaction of flows

with the illiquidity of the underlying. This decomposition allows for a difference-in-difference estima-

tor, by conditioning the price impact of fund flows on fund illiquidity. Intuitively, if the correlation

between returns and flows is stronger when fund illiquidity is high, this suggests price impact. We

find that self-inflated returns explain 8% of time-series in variation in returns for funds that are both

4See https://www.sec.gov/spotlight/enf-actions-Ponzi.shtml.
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large and hold concentrated portfolios. The importance of self-inflated returns in explaining funds’

overall returns increases monotonically in both the size and the concentration of their portfolios.

Next, we investigate the performance sensitivity of fund flows at a daily frequency. We document

a strong relationship between fund flows and fund returns at a daily frequency and find that the

weight investors place on more distant fund returns decays exponentially. We then decompose past

fund returns into a self-inflated return and a fundamental component. Quite strikingly, the flow-

performance relationship is not confined to the fundamental component of fund returns. Instead,

investors also chase the price impact component of fund returns. The coefficients on both return

components are almost identical and both highly statistically significant. We conclude that investors

are unable to differentiate between self-inflated returns (price impact) and fundamental returns (stock-

picking skill). This has important implications for the wealth distribution of managed funds, to the

extent that ETFs are representative of the broader investment management industry. Our findings

place a relatively strong constraint on the rationality of ETF investors. While pure return chasing

may indicate learning about the fund manager’s skill (Berk and Green (2004)), we show that investors

chase their own impact and are hence unable to distinguish between realized and expected returns.

Last, we combine the self-inflated returns with return chasing to quantify the economic importance

endogenous price spirals caused by impact chasing: Funds with concentrated portfolios in illiquid bas-

ket securities have a high potential impact on the underlying. Flows into these funds push up the

price of the underlying, leading to higher realized fund returns. Following this price impact return,

investors allocate more flows to these funds, which we label ‘Ponzi flows’. The economic magnitude

of Ponzi flows and their price impact are meaningful. Around 2% of all daily flows and 8-12% of

flows in the top decile of illiquid funds can be attributed to Ponzi flows. We estimate that every day

around $500 Million of investor wealth is reallocated because of the price impact of Ponzi flows. We

furthermore find that funds with high Ponzi flows experience subsequent drawdowns of over 200%.

Related Literature. The performance of actively managed investment funds has been a widely

studied area in financial economics.5 This is partly owed to the fact that flows and the performance

of active fund managers give insights into the efficiency of financial markets, as well as the reaction

of consumers to observable measures of product quality. Starting with Ippolito (1992), Chevalier and

Ellison (1997), and Sirri and Tufano (1998), a large body of work examines the relationship between

5See Jensen (1968), Carhart (1997), Pástor and Stambaugh (2002) and Cohen et al. (2005)
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fund performance and fund flows. Berk and Green (2004) provide a rational explanation for the lack

of performance persistence in managed funds, which is driven by the fact that successful funds grow in

size until their own price impact eliminates their profitable investment opportunities. If investors can

rationally infer managers’ skills from the history of realized returns, then capital efficiently flows to

positive net present value opportunities (which are held by the most skilled managers). This seminal

framework has fueled extensive research on the flow-performance relationship.6 Following Berk and

Green (2004) the positive relationship between past performance and flows has been interpreted as

evidence for households rationally learning about managerial skill. Ben-David et al. (2022b) on the

other hand, show that households do not adequately assess managerial skill by chasing fund alpha and

instead follow raw past returns and Morningstar ratings. This suggests, that households are naive

performance chasers instead of rational Bayesian learners. Building on the evidence in Ben-David et al.

(2022b) we show that, when interpreting past return realizations, investors are unable to differentiate

between price impact and stock-picking skill. The constraint on the rationality of fund investors,

paired with a large price impact of active funds, leads to Ponzi-like reallocations of capital among

fund investors that unravels when the price impact in the underlying securities reverts. This is in line

with Broman (2022) and Ben-David et al. (2021), and Ben-David et al. (2022a) who show that the

flow-specific characteristics such as ratings-chasing or positive feedback trading are impounded in the

underlying securities the funds hold.

Second, our paper is related to growing literature on linking institutional demand shocks and

asset prices via estimating demand systems featuring downward-sloping demand curves (see Koijen

and Yogo (2019), Bretscher et al. (2022), Koijen et al. (2020), Haddad et al. (2021) and Gabaix and

Koijen (2021)). In a related paper Darmouni et al. (2022) study the interaction of return chasing

and price impact during asset fire sales. The majority of papers in this stream of literature are

studying the impact of demand shocks at a lower frequency. We contribute to these findings by

estimating the impact of institutional demand shocks at a high (daily) frequency and find similar

overall magnitudes. The high-frequency nature of our demand shocks allows us to investigate the

permanent versus transitory nature of price impact and how it aggregates over time.

We also provide a direct link to price impact estimates at a higher frequency (see e.g. Chacko et al.

(2008), Tóth et al. (2011), Frazzini et al. (2018), Bouchaud et al. (2018), Kyle and Obizhaeva (2016))

6See Huang et al. (2007), Goldstein et al. (2017)), Jiang and Zheng (2018), Berk and Van Binsbergen (2016), Barber
et al. (2016),Dannhauser and Pontiff (2019), Jin et al. (2022), Falato et al. (2021).
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and show that a square root specification and scaling demand shocks by daily volatility strongly

dominates the linear specification at a daily frequency. We find that around 50% of the initial daily

price impact from flow-induced trades reverts in the subsequent 5-10 days. This is in line with the

results of Bucci et al. (2018) for the relaxation of impact on single stocks, using very different data.

Last, this paper is related to the growing literature studying the rise of ETFs and the relationship

between ETF flows and returns (see Ben-David et al. (2018), Glosten et al. (2021), Ben-David et al.

(2023), Box et al. (2021), Dannhauser and Pontiff (2019), Brown et al. (2021), Davies (2022), Broman

(2022), Broman (2016)). On the one hand, ETFs may improve price discovery in the underlying

basket securities by offering investors superior liquidity.7 On the other hand, the liquidity of ETFs

may attract a new clientele which introduces non-fundamental volatility in the underlying basket

securities. In this paper, we follow Davies (2022) and Ben-David et al. (2018) and argue that the

nature of ETFs – a liquid vehicle that tracks a potentially illiquid basket of securities – can cause

considerable price distortions in the underlying securities. Specifically, we argue that when ETFs hold

concentrated positions in individual stocks, they accumulate substantial ownership in these securities

as the ETF grows in size. The ETF arbitrage mechanism propagates ETF demand in the underlying

securities causing a non-fundamental price impact, which enhances the ETF’s own return. Our impulse

responses of ETF flows and returns are close to the estimates in Ben-David et al. (2018). ETF investors

are return chasing and cannot differentiate the mechanical price impact due to ETF arbitrage from

fund manager skill. They, hence, purchase further ETF shares leading to continued price impact,

further ETF share issuance, and endogenous boom and bust cycles in both the ETF price and the

underlying. Using a reform to Morningstar’s rating system, Ben-David et al. (2021) and Ben-David

et al. (2022a) study the causal impact of flows on style level returns. Building on their results we

show that it is not only aggregate positive feedback trading that affects style level returns, but that

positive feedback trading at the individual fund level can lead to self-inflated returns, if funds hold

illiquid portfolios.

The remainder of this paper is structured as follows. Sections 2 and 3 provides a case study of an

anonymized thematic ETF that motivates our study and a brief description of our main data sources.

The remaining sections closely follow the four steps outlined above. Section 4 provides an analytical

expression for self-inflated fund returns and introduces the concepts of fund illiquidity and portfolio

concentration. In section 5 we estimate self-inflated returns. Section 7 tests whether investors chase

7See Blackrock ETF Market Realities
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past self-inflated returns. Section 8 estimates the economic importance of the self-inflated feedback

loop and provides applications. Section 9 concludes.

2 Case Study: The price impact of a large thematic ETF

For illustration, consider the simple case study of an anonymized thematic ETF, whose price quadru-

pled between March 2020 and August of 2021 and collapsed shortly thereafter. Figure 1 plots the

cumulative daily price impact of the thematic ETF’s flow-induced trades against its cumulative re-

turn.8

Figure 1: Flow-Driven Price Impact of a Large Thematic ETF. The figure plots the cumu-
lative return and cumulative price impact of an anonymized thematic ETF. Price impact (red line)
is computed as the portfolio-weighted average of stock-specific price impact, summed cumulatively
over time. Stock-specific price impact is modeled as σ

√
Q/V where σ and V are daily volatility and

volume; and Q are the daily flow-driven trades of the ETF (see Section 4 for details on the modeling
of price impact). The ETFs’ cumulative return is the daily net asset value scaled by its January 2019
value.
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The figure shows a strikingly high quantitative resemblance between the thematic ETF’s cumulative

price impact and its return. Its raw daily returns and flow-induced trades are over 40% correlated.

During this period, the thematic ETF’s positions were 20 times larger than the daily dollar volume in

8The price impact estimation is explained in the following sections. Importantly, it does not use prices or returns and
is only calculated using daily share volumes, past volatility, and flow-driven purchases. Our results remain unchanged
if we, instead of estimating our own price impact, take existing price impact calibrations/estimations from both the
micro-structure (see e.g. Hasbrouck (2007)) and asset pricing literature (see e.g. Shleifer (1986)).

7



those securities. This implies that whenever the thematic ETF received a 1% inflow on a certain day

and proportionally rescaled its positions, it bought 20% of the daily volume of the underlying stocks.

Because its portfolio was heavily concentrated in these individual securities and it received over 200%

inflows, a large portion of its portfolio return was driven by its own price impact.

3 Data

We obtain daily holdings of all ETFs in the US from 2019 to 2024 from ETF Global. The holdings data

include the daily shareholdings of each ETF provider in the underlying securities, as well as the ETFs’

daily shares outstanding. This allows us to construct a host of daily portfolio-level variables, such as

flows, liquidity of the underlying portfolio, and flow-driven trades. Security prices and characteristics

are from CRSP and Compustat. In order to minimize potential data errors, we restrict the universe of

funds to US 1500 most liquid equity funds, computed point-in-time. Neverthless we have conducted

multiple explorations, increasing the pool of funds both geographically and in terms of liquidity, and

observed only minor changes.

Table 1 provides summary statistics of the ETF data. Our main analysis focuses on ETF data, for

which daily holdings are available. While ETFs are exchange-traded vehicles that generally attempt

to replicate a rules-based index, the portfolios of thematic ETFs are subjectively chosen by fund

managers. Our sample consists of 1,868 ETFs with 1,175,487 ETF-day observations and 34,897,091

ETF-day-stock observations. The median ETF has $150 million dollars under management, holds

62 stocks in its portfolio, has an active share of 31% (i.e. it tilts 31% of its assets away from the

value-weighted market portfolio), receives a daily inflow of $1.6 Million (0.13% relative to assets).

4 Price Impact and Self-Inflated Fund Returns

In this section, we define fund-level illiquidity and show that self-inflated fund returns can mathemat-

ically be expressed as the product of fund flows and illiquidity.

Notation

The setup closely follows Pástor et al. (2020). There are n = 1, ..., N underlying securities with price

Pn,t at time t, realized return rn,t+1, and a fund i with assets Ai,t that tracks a portfolio of securities.

The fund’s portfolio weight in stock n at time t is wi,n,t and the total portfolio return (in the absence of

8



Table 1: Summary Statistics.
The table reports summary statistics of the sample of daily ETF holdings from 2019 to 2024. Active
share is computed as relative to the value-weighted portfolio of all stocks in the ETFs universe and
Industry HHI measures the industry tilt of ETFs, i.e.

∑
j(wi,t(j)−wm

t (j))2, where wi,t(j) and wm
t (j)

are the weights of the ETF and the market portfolio in industry j respectively. Portfolio illiquidity I,
concentration C and size S are defined in Section 4). Daily alphas are computed with respect to the
CRSP total stock market return.

Mean Std Min Q1 Median Q3 Max

AUM ($ Billion) 2.45 14.99 0.00 0.03 0.15 0.81 498.40

Daily Flow (% AUM) 0.44 5.02 -36.85 -0.45 0.13 0.83 47.69

Daily Flow ($ Million) 4.17 175.12 -4948.75 -4.47 1.60 8.29 4963.34

Daily Return (%) 0.01 2.12 -767.68 -0.68 0.06 0.77 57.13

Daily Alpha (%) -0.05 1.03 -99.74 -0.41 -0.04 0.31 54.04

Number of Stocks 142.68 200.32 1.00 29.00 62.00 155.00 1538.00

Active Share 0.31 0.20 0.00 0.13 0.31 0.47 0.94

Industry HHI 0.24 0.30 0.00 0.03 0.09 0.34 0.97

Fund Illiquidity I 0.19 1.54 0.00 0.00 0.02 0.09 325.76

Portfolio Concentration C 1.75 2.08 0.00 0.35 0.82 1.98 418.58

Fund Size S 0.36 4.40 0.00 0.00 0.02 0.12 453.49

management fees) is Ri,t+1 =
∑

nwi,n,trn,t+1. Dollar flows in the fund between t and t+1 are denoted

by Fi,t+1, and flows relative to assets are given by fi,t+1 = Fi,t+1/Ai,t. We define the flow-driven trade

Qi,n,t = wi,n,t−1Fi,t as the dollar trade of fund i in stock n at time t resulting from reinvesting flows

in proportion to existing portfolio weights.

Price Impact

For simplicity of exposition, we omit the fund-level indicator i when there is no ambiguity. Flow-driven

trading Qn,t in the underlying securities causes a price impact. We assume that the price impact is

larger when trading a larger fraction of n’s average daily dollar volume Vn,t. The main results in

the paper remain unchanged when we scale demand shocks by other measures of liquidity such as

float-adjusted market cap. Following the literature on transaction costs (see e.g. Chacko et al. (2008),

9



Frazzini et al. (2018), Tóth et al. (2011), Kyle and Obizhaeva (2016)) we model price impact as

Price Impactn,t = θσn

(
Qn,t

Vn,t

)η

(1)

The price impact (expressed as a return) is proportional to the volatility of the stock σn and the trade

relative to supply
(Qn,t

Vn,t

)η
. We allow for non-linearity η in the relationship between trade size and

price impact. A large empirical literature estimates the price impact of trades at a high frequency

at finds a square root impact η ≈ 0.5 and a θ of order unity.9 The literature on flow-driven trading

at a quarterly frequency (see e.g. Lou (2012)) typically assumes a linear specification η = 1, scaling

demand shocks by market cap, and omitting the volatility pre-factor.10 Defining price impact in this

way leaves the qualitative results of the paper unchanged. Figures B.5, B.6, and C.10 in the Appendix

show that (1) strongly dominates the linear model in a horse race at different levels of aggregation.

Fund Illiquidity, Portfolio Concentration, and Size

The dollar position of a fund in n is given by wn,tAt. We define the position-level illiquidity as

In,t ≡ σn

(
wn,tAt

Vn,t

)η

. (2)

It is the dollar position relative to underlying liquidity. For example, as of Tuesday April 23rd 2024,

the ARK Technology ETF held a $525 Million position in Roku Inc., which has an average daily

volume of $150 Million and an average daily volatility of 1.3%, resulting in In,t ≈ 0.05.11. We can

decompose position-level illiquidity into a component that is related to the portfolio weight (i.e. the

degree of concentration of the fund’s position) and the assets under management (i.e. size of the fund).

Position-level illiquidity can be further decomposed into the product of position-level concentration

Cn,t and fund size St

In,t = Cn,t × St (3)

In the spirit of Pástor et al. (2020) we define concentration Cn,t as a measure of how strongly the

portfolio weight deviates from that of a liquid portfolio. Formally, Cn,t ≡
(wn,t

vn,t

)η
where vn,t =

9See Bouchaud et al. (2018) for a detailed literature summary.
10Formally, the linear price impact specification in e.g. Lou (2012), Pavlova and Sikorskaya (2023), Koijen and Yogo

(2019) is given by Price Impactn,t = θ
Qi,n,t

Mn,t
where Mn,t is the market capitalization of n.

11Using η = 1, we have that I = 0.013× 525
150

. See https://ark-funds.com/funds/arkk/
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Ṽn,t∑
n Ṽn,t

are hypothetical liquidity weights within the fund’s universe and Ṽn,t = Vn,tσ
−1/η
n is effective

liquidity. Interestingly, when η = 1, effective liquidity
Vn,t

σn
is of the same order of magnitude as market

capitalization.12 Therefore, it is not too surprising that the estimated θ from low and high-frequency

studies tend to be of similar magnitude despite the different scaling (see Section 5 for details.) Fund

size St ≡ At∑
n Ṽn,t

are the assets under management relative to the total effective liquidity of the

underlying portfolio. The position-level variables In,t and Cn,t can be summed across the portfolio

to arrive at fund-level illiquidity It ≡
∑

nwn,tIn,t and portfolio-concentration Ct ≡
∑

nwn,tCn,t. The

decomposition of illiquidity into concentration and size also holds at the fund-level

It = Ct × St (4)

Fund illiquidity is the average ownership of the fund relative to the liquidity of its underlying portfolio

constituents.13 In the linear low-frequency specification (i.e. when η = 1, supply is equal to market

equity, and the prefactor is one) Ct =
∑

n

w2
n,t

mn,t
where mn,t are market weights as in Pástor et al. (2020).

In this case It =
∑

nwn,tzn,t where zn,t is the fraction of shares outstanding held by the fund. It is

higher for portfolios with a high weight in assets with a small market cap. Thus It is conceptually

similar to the active share by Cremers and Petajisto (2009), but takes into account the supply of the

underlying by dividing by (as opposed to subtracting) market weights. Figure 2 plots the average

portfolio concentration Ct and size St for each ETF in our sample.

12Daily volatility (∼ 2%) and daily volume (∼ 0.5% of market cap) are of the same order of magnitude. As noted in
Bouchaud (2022), this actually provides an alternative explanation for the fact that the multiplier in Gabaix and Koijen
(2021) is O(1).

13Formally It =

(∑
n σn,twn,t

(wn,tAt

Vn,t

)η)1/η
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Figure 2: Portfolio Concentration versus Fund Size in ETFs. The figure plots the average
portfolio concentration Ct and size St for each ETF in our sample. Each dot represents a single
ETF. Portfolio concentration (on the x-axis) is Ct =

∑
nw

1+η
n,t /vηn,t where vn,t = Ṽn,t/

∑
n Ṽn,t are

hypothetical liquidity weights and Ṽn,t = Vn,tσ
−1/η
n is effective liquidity. Fund size (on the y-axis)

St = At/
∑

n Ṽn,t is total assets relative to the total liquidity of the underlying securities. We choose
η = 0.5 for the computation of all measures. The labeled dots represent illustrative examples.
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In line with the findings in Pástor et al. (2020), larger ETFs (such as the SPDR S&P500 ETF)

typically hold less concentrated portfolios and ETFs with the most concentrated portfolio (such as the

Kelly Gene Editing ETF) are small relative to the volume of the stocks they hold. The ETFs that are

located close to the axes have a low fund illiquidity It and are therefore not affected by self-inflated

fund returns. All ETFs that are located towards the center of the figure have a high fund illiquidity

and are prone to self-inflated fund returns. The next section describes the relationship between fund

illiquidity and self-inflated returns.

Self-Inflated Fund Returns

Price impact from flow-driven trading is a realized return on the existing positions of the fund. The

realized fund return due to flow-driven price impact is given by the portfolio weighted sum of stock-

specific price impact
∑

nwn,t−1Price Impactn,t. Plugging in (1) and Qn,t = wn,t−1Ft yields the self-
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inflated fund return RI
t :

RI
t = θfη

t It−1 (5)

where It is the fund-level illiquidity as defined above. The self-inflated fund return RI
t is given by

the relative flow in the fund fη
t , interacted with fund illiquidity It−1, scaled by price impact θ.14 In

essence, It measures the potential impact of a fund on the underlying portfolio constituents: The

more concentrated the fund’s portfolio weights are relative to the underlying supply, the greater the

potential impact of a 1% flow in the fund. Naturally, if a fund holds a concentrated portfolio, not only

are the trades in individual securities larger, but the price impact on individual securities also has a

greater effect on the entire fund return. As shown above, fund illiquidity is driven by the size of the

fund relative to its underlying constituents, as well as the portfolio tilts within the fund’s universe.

Pástor et al. (2020) find, that larger funds typically hold less concentrated portfolios which results in

moderate values of It in the cross-section of managed funds.15 However, when a concentrated fund

attracts significant inflows and becomes large without readjusting its portfolio towards more liquid

securities, it will have a high It and be subject to self-inflated fund returns.

5 Estimating Self-Inflated Returns

The difficulty in estimating price impact lies in the fact that trades likely contain information about

the underlying fundamentals or risk exposures. They are correlated with unobserved variation in prices

(the error term) leading to biased price impact estimates. At a lower frequency, the empirical literature

on low-frequency price impact has therefore carefully constructed exogenous variation in demand

from index inclusions (Shleifer (1986)), mutual fund flows (Lou (2012)), and dividend reinvestments

(Hartzmark and Solomon (2022)). Building on this literature, we estimate high-frequency price impact

from flow-driven trades by ETFs. While the exchange-traded nature of ETFs slightly alters the

construction of flows and flow-driven trading (see Appendix for details), the underlying mechanics of

flow-driven trading in mutual funds and ETFs are identical. The advantage of using ETF data is that

the vast majority of ETFs perfectly reinvest flows (via their APs) in their existing positions on the

same day. The timing of the reinvestment is more difficult to confirm for mutual funds as portfolio

holdings are reported at a monthly or quarterly frequency.

14For simplicity of exposition, we assume that flows ft are positive. In the presence of outflows (ft < 0), which is the
empirically relevant case, the expression becomes RI

t = θsign(ft)|f |ηt I
η
t−1.

15Empirically, the largest funds are index funds which hold market weights and therefore tilt towards the most liquid
securities within their portfolio. Therefore their high St is offset by a low Ct.
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5.1 Qualitative Evidence from Portfolio Sorts

Before diving into the quantitative estimation, we first provide some intuitive evidence for the existence

of self-inflated fund returns from simple portfolio sorts. Every day, we sort all 1,868 ETFs into decile

buckets based on their inflows. Within each bucket, we split the sample into ETFs with a high fund

illiquidity (It in top decile) and all other funds. We then compute the average return across ETFs for

each bucket.

Figure 3: Daily ETF Returns and Inflows. The figure plots the daily average return of ETFs
across different flow buckets. Every day, we sort ETFs into deciles based on their inflows and compute
their average return. Within each bucket, we split the sample into ETFs with a high fund illiquidity,
for which It is in the top decile (red bars), and all other funds (green bars).
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When the funds hold a liquid portfolio, there is virtually no relationship between daily flows and

returns. However, for the most illiquid funds, the realized return increases monotonically with the

flow. In Appendix B.10 we show that this pattern holds for raw returns, excess returns, and abnormal

returns, as well as for different sorts and definitions of flows and illiquidity. While this is preliminary

qualitative evidence for the hypothesis that fund flows affect fund-level returns if the funds hold illiquid

portfolios, it does not get at the quantitative magnitude. The next section estimates the quantitative

link (θ), using ordinary least squares in a difference-in-difference setting.
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5.2 Price Impact at the Stock Level

For simplicity of exposition we focus on the estimation of θ and take and take the square root functional

form (η = 0.5) as given.16 On a given day t, the return rn,t on stock n is driven by a flow-driven

trading component (θfη
t In,t−1), and a residual component (r⊥n,t) capturing for example fundamental

news or risk factor exposures. Formally, rn,t = θfη
t In,t−1 + r⊥n,t. A potential concern with using flow-

driven trading as exogenous variation in investor demand is that the flows themselves may contain

information about the underlying securities held by the fund. This may be particularly worrisome for

ETFs, which are precisely used by investors to take theme and sector-specific bets. We, therefore,

propose to estimate price impact in a pooled regression across fund-stock-time observations as opposed

to aggregating flow-driven trades across funds. This allows us to control for the information in flows

using fund-time fixed effects αi,t:

rn,t = αi,t + βIi,n,t−1 + θfη
i,tIi,n,t−1 +Controls + ϵi,n,t. (6)

The different funds in our sample are denoted by i = 1, ..., I. Note that portfolio tilts may contain

information about the underlying resulting in a positive correlation of Ii,n,t−1 and return determi-

nants in the cross-section. The impact of flow-driven trading, however, comes from the interaction of

position-level illiquidity and fund flows. Thus controlling for position-level illiquidity Ii,n,t−1 results

in an implicit difference-in-difference estimator. Intuitively, a positive correlation between flow-driven

trades and returns could be i) because fund flows contain information, which is captured by αi,t, ii)

because fund tilts contain information, which is captured by β, or iii) because of price impact, which

is captured by θ. We estimate 6 over the panel of pooled ETF-stock-day observations from 2018 to

2024 using ordinary least squares. Table 2 reports the estimated coefficients.

16In Appendix Figure B.6 we show that the square root specification dominates the linear specification in terms of
statistical significance and incremental R2. We also estimate η ≈ 0.6 in a joint nonlinear panel estimation of θ and η.
The results are available upon request.
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Table 2: Price Impact at the Stock Level. The table reports the estimated price impact coefficients
from pooled OLS regressions using daily data on stock returns, ETF flows fη

i,t, and position-level
illiquidity Ii,t−1,n. Specification (1) regresses daily stock returns onto flows. Specification (2) estimates
the price impact using the interaction of illiquidity and flows fη

i,tIi,t−1,n including fund and time fixed
effects. Specification (3) removes the fund-time fixed effects. Specification (4) adds concentration
Ci,t−1,n and the interaction of concentration and flows fη

i,tCi,t−1,n. We have fixed η = 0.5 such that
fη
i,t are square-root flows. For simplicity of exposition the table reports fη

i,t and Ii,t−1,n as f and I
respectively. Standard errors are double clustered at the day and the stock-day level.

(1) (2) (3) (4)

const 9.528e-07 -0.0002*** -0.0002*** -1.29e-05

(0.0019) (-31.531) (-31.966) (-0.0261)

f 0.0013** -8.424e-06

(2.5481) (-0.9349)

I -0.0244 -0.0308 0.0111

(-1.2042) (-1.0676) (0.4932)

f × I 0.3354*** 0.3337*** 0.6951***

(7.5979) (7.4173) (7.3457)

Effects Investor-Time Investor-Time

Triple Diff. Yes Yes

No. Observations 34897091 34897091 34897091 34897091

R-squared 7.341e-05 8.005e-05 8.927e-05 0.0008

To set the stage, we initially estimate an ordinary regression of daily stock returns rn,t onto

ETF flows fi,t. The coefficient is close to 0, but statistically significant suggesting that there is

some information contained in the fund-level flows. Next, we estimate the difference-in-difference

specification via the interaction term with fund illiquidity fη
i,tIi,n,t−1, controlling for fund-day fixed

effects. The coefficient on the interaction term is around 0.33 and highly statistically significant (t-stat

>7). It has the following structural interpretation: If a fund’s average weighted ownership relative to

supply is 50% (Ii,n,t = 0.5), a 10% inflow causes an additional ETF return of 0.33×10%×0.5 = 1.7%.

Notably, the estimated θ is of the same order of magnitude as micro-structure estimates of price impact

(see e.g. Tóth et al. (2011); Frazzini et al. (2018) and Bouchaud et al. (2018) for more references).

Lastly, specification (4) removes the fund-time fixed effect. The coefficient doubles in size suggesting

that flows do indeed affect all stocks in a funds portfolio irrespective of the illiquidity of the stock-level
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positions. It is therefore important to control for fund-time fixed effects, as one cannot rule out that

flows contain information about the funds’ underlying holdings. Note that the return rn,t on stock

n at time t does not vary across investors. The advantage of the pooled triple difference estimator

therefore comes at the cost of potentially overestimating (underestimating) θ if an individual stock

receives (offsetting) flow-driven trades of many funds on the same day. In Table C.8 we aggregate

flow-driven trades at the stock level (FIT) as in Lou (2012) and find a larger price impact of 0.55 (with

a t-Statistic of 16). Therefore, overlapping trades do not seem to inflate the coefficient. When we

remove co-held stocks in the estimation of (6) the coefficient remains unchanged. Appendix C spells

out the difference between FIT and our specification in greater detail.

Triple Difference Estimator. Holding portfolio concentration Ci,n,t constant, a larger fund implies

a larger Ii,n,t. Holdings size Si,t constant, a higher position concentration implies a larger Ii,n,t.

Hence, two concerns that may remain are i) that flows may become more informed as a fund grows

in size or ii) that flows are more informed for funds that hold more concentrated positions. In both

cases fη
i,tIi,n,t−1 would be correlated with the error term. To address this concern we note that

fη
i,tIi,n,t−1 = fη

i,tCi,n,t−1Si,t−1. We can therefore separately control for fη
i,tCi,n,t−1 (f

η
i,tSi,t−1 is subsumed

by the fund-time fixed effect). This effectively turns θ into a triple difference estimator that accounts

for the possibility that the information in flows is correlated with fund size and position concentration.

Specification (3) in Table 2 reports the results. The triple difference specification leaves the estimated

price impact unchanged, suggesting that the information contained in flows is largely unrelated to fund

size and position concentration. Appendix B reports further robustness tests including a horserace

of the linear against the square root specification, scaling by volume versus shares outstanding, and

including versus excluding the volatility prefactor. We find that at a daily frequency, the square root

specification with scaling by volume dominates the standard linear specification in terms of statistical

significance and incremental explained variation. This holds both for disaggregated specification (6)

as well as for the standard FIT specification.

5.3 Estimating Impact at the Fund Level

Note, that we can also estimate θ in a fund-level regression of ETF returns onto ETF flows interacted

with fund-level illiquidity as suggested by equation (5). While aggregating stock-level trades at the

fund level removes heterogeneity, it is a more direct test of the hypothesis that fund-level flows affect

the returns of illiquid funds (see equation 5). Furthermore, if markets accommodate the flow-driven
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trades primarily by substituting towards similar stocks held in the respective ETF’s portfolio, the price

impact may be larger at the fund than at the individual stock level. In other words, groups of stocks

(e.g. factors) may have fewer substitutes than individual stocks. Chaudhary et al. (2022) provide

compelling evidence for lower substitutability across aggregated corporate bond portfolios than for

individual bonds within e.g. rating categories. Li and Lin (2022) directly estimates price impact

in equities at different levels of aggregation and finds higher multipliers for aggregated portfolios of

similar stocks.

We first decompose aggregate fund returns Ri,t into a flow-driven component and a residual

component R⊥
t =

∑
nwt−1,nr

⊥
n,t capturing fundamental news or risk factor exposures. Formally,

Rn,t = θfη
t It−1 +R⊥

t . We can estimate price impact in a pooled regression across fund-time observa-

tions, which is simply a portfolio-weighted version of (6). We replace position-level returns rn,t and

illiquidity Ii,n,t−1 with their portfolio-level counterparts Ri,t and Ii,t−1:

Ri,t = αi + αt + γfη
i,t + βIi,t−1 + θfη

i,tIi,t−1 +Controls + ϵi,t (7)

Note, that as the estimation is at the fund-time level, we cannot control for fund-time fixed effects.

We instead control for flows fη
i,t, fund and time fixed effects separately. Table 3 reports the results.
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Table 3: Price Impact at the Fund-level. The table reports the estimated price impact coefficients
from pooled OLS regressions using daily data on ETF returns, ETF flows fη

i,t, and fund-level illiquidity
Ii,t−1. Specification (1) regresses daily fund returns onto flows. Specification (2) estimates the price
impact using the interaction of illiquidity and flows fη

i,tIi,t−1 including fund and time fixed effects.
Specification (3) controls for Ci,t−1, the interaction of concentration and flows fη

i,tCi,t−1, and the return
on the total US stock market mkt. Specification (4) to (6) include fixed effects. In all specifications,
we have fixed η = 0.5 such that fη

i,t are square-root flows. For simplicity of exposition the table reports
fη
i,t and Ii,t−1 as f and I respectively. Standard errors are double clustered at the day, and the stock-
day level (to account for the fact the same stock-day observations appear for many investors).

(1) (2) (3) (4) (5) (6)

const -0.0006*** -0.0006*** -0.0006*** -0.0006*** -0.0006*** -0.0006***

(-8.0613) (-8.5812) (-8.6846) (-5.0616) (-27.368) (-7.3679)

f 0.0020** -0.0023** -0.0018* -0.0018* -0.0020* -0.0020*

(2.0361) (-2.3702) (-1.7191) (-1.7210) (-1.9272) (-1.9404)

f × I 0.6183*** 0.7978*** 0.8073*** 0.7654*** 0.7765***

(7.0562) (5.2081) (5.2604) (5.1069) (5.1699)

I -0.0071** -0.0072** -0.0123 -0.0063** -0.0056

(-2.0683) (-2.0752) (-0.7963) (-2.1367) (-0.4796)

mkt 0.0245 0.0244

(1.3143) (1.3086)

Effects Entity Time Entity

Time

Triple Diff. Yes Yes Yes Yes

No. Observations 1175487 1175487 1175487 1175487 1175487 1175487

R-squared 6.952e-05 0.0008 0.0013 0.0013 0.0008 0.0008

Across all specifications, we find a price impact of around 0.78. Despite the fund-level aggregation,

the price impact coefficients are still relatively precisely estimated with t-statistics between 5 and

7. The magnitudes are in line with the stock-level regression without fund-time fixed effects. This

underlines the notion that at the portfolio level, price impact can be larger. Funds hold similar stocks

in a portfolio, which – among themselves – are closer substitutes than aggregate groups of stocks. The

fund-time fixed effects in the stock-level specification controls for the higher substitutability among
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co-held stocks as in Chaudhary et al. (2022).17 As we are concerned with the return chasing at the

aggregate fund level, we henceforth use the fund-level estimates as the relevant price impact in our

structural specifications. However, all results remain qualitatively unchanged (with slightly lower

magnitudes) when choosing the conservative stock-level price impact of θ̂ = 0.33. Overall, we view

the stock-level price impact of 0.78 as a conservative estimate that lies on the lower spectrum of

price impact documented by other high-frequency studies that find an impact closer to 1 (Chacko

et al. (2008)). One possible reason is that the flow-driven trades combined with the triple difference

estimator contain less information than the raw orders typically used in high-frequency studies leading

to lower impact estimates.

5.4 Modelling Reversal

Do self-inflated fund returns revert? To this end, it is useful to take a stance on the nature of the price

impact of flow-driven trades. At a quarterly frequency (see e.g. Lou (2012), Edmans et al. (2012)

and Khan et al. (2012)), statistically distinguishing between the permanent and transitory impact

of flow-driven trading is difficult as the variance of long-run returns greatly exceeds the variance of

the initial demand shock. The high-frequency nature of our data allows us to estimate reversal with

greater precision. We estimate permanent versus transitory impact in a distributed lag model of daily

fund-level returns onto S = 40 lags of flow-driven trades. Formally,

Ri,t =

S∑
s=0

θs(f
η
i,t−sIi,t−1−s) + Controls + ϵi,t (8)

The long run price impact until t∗ is given by the sum of the coefficients
∑t∗

s=0 θs. Figure 4 plots

the cumulative sum of the coefficients. Bucci et al. (2018) (Figure 3) estimate a strikingly similar

relaxation of impact for single stocks using institutional trades from Ancerno.

17For a microstructural interpretation of such “cross-impact” effects, see Benzaquen et al. (2017); Tomas et al. (2022).

20



Figure 4: Reversal. The figure plots the cumulative sum of the coefficients from the distributed
lag model of daily fund returns onto S = 40 lags of flow-driven trades fη

i,t−sIi,t−1−s of them form

Ri,t =
∑S

s=0 θs(f
η
i,t−sIi,t−1−s) + Controls + ϵi,t. The control variables include lagged flows, re-

turns, Ci,t−1−s and fη
i,t−sCi,t−1−s up to 40 days, as well as fund-time fixed effects. The red line

reports the simulated estimates of an exponential decay model of the form, Ri,t = θ0f
η
i,tIi,t−1 +

θ1
∑S

s=1 e
−λθ(s−1)(fη

i,t−sIi,t−1−s)+Controls+ϵi,n,t, estimated via nonlinear least squares over the same
panel of stock-fund-day observations from 2019 to 2024. The estimated exponential decay coefficients
are (θ0, θ1, λθ) = (0.664,−0.087, 0.323). The controls are the same as in Table 3 plus daily return lags
up to 40 days. The shaded areas indicate 95% confidence bands where the cumulative standard errors
are clustered at the day and stock-day level. Cumulative standard errors are computed accounting
for the covariance across coefficient estimates, i.e.

√
1Tt Ωt1t where Ωt is the covariance matrix of the

coefficients up until lag t and 1t is a t× 1 vector of ones.
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We find that part of the initial price impact reverts over the following 5-10 days leading to a long-run

impact of roughly 0.4. We also estimate a parsimonious exponential decay model by parameterizing

θs as a function of time. Specifically, we assume an exponentially reverting transient price impact.

This implies estimating the level of the impact and the speed of reversion, as opposed to heterogenous

coefficients on all the lags. Formally,

Ri,t = θ0f
η
i,tIi,t−1︸ ︷︷ ︸

Initial Impact

+ θ1

S∑
s=1

e−λθ(s−1)(fη
i,t−sIi,t−1−s)︸ ︷︷ ︸

Reversal

+Controls + ϵi,n,t, (9)
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where θ0 is the contemporaneous price impact, θ1 measures the impact decay and λθ measures the

speed of the decay.18 The long-term price impact is given by θ0−θ1/λθ. The red line in Figure 4 plots

the fitted price impact from the exponential decay model. The nonlinear model fits the cumulative

sum of the reduced form coefficients remarkably well. The estimated exponential decay coefficients are

(θ0, θ1, λθ) = (0.664,−0.087, 0.323). The reversal is intriguingly close to the price impact estimates in

Ben-David et al. (2018), who find that roughly half of the initial price impact reverts within 10 days

(see Table VII in their paper). In all subsequent sections, we take this partial reversal of price impact

into account whenever we aggregate impact returns over time. See Appendix A for details.

5.5 Variance Decomposition of Fund Returns

To what extent are self-inflated returns economically meaningful relative to the total returns that

funds generate? We decompose realized fund returns into a self-inflated component RI
i,t and a residual

component R⊥
i,t capturing fundamental returns drivers such as risk exposures or news.

Ri,t = θ̂fη
i,tIi,t−1︸ ︷︷ ︸
RI

i,t

+R⊥
i,t

where the self-inflated component is computed using the estimated price impact θ̂ = 0.78 from the fund-

level difference-in-difference estimator (Table 3, model (6)). When aggregating returns at different

frequencies, we use the coefficients from the exponential decay model estimated above.

In most neoclassical models, price impact (θ) is close to 0, and therefore flows do not affect realized

returns (Ri,t ≈ R⊥
i,t). In the presence of non-zero price impact (θ > 0) returns are driven by both

fundamentals and price impact. The impact depends on the liquidity of the underlying portfolio Ii,t

and on the size of the flows fi,t. Even if θ is large, RI
i,t is still close to zero for most ETFs that track

a broad index because either Ii,t−1 or fi,t are small. The extent to which self-inflated returns are

economically meaningful relative to total returns is therefore an empirical question. For each fund i,

the fraction of total return variation explained by self-inflated returns is given by βI
i =

covi(R
I
i,t,Ri,t)

vari(Ri,t)
.

Note, that self-inflated fund returns RI
t = θfη

t It−1 are large, when funds’ illiquidity It is high, i.e.

when the fund is both large (high S) and holds a concentrated portfolio (high C). Therefore we expect

βI
i to be higher for large concentrated funds (i.e. the funds in the northeast corner of Figure 2).

18There is a subtle point here: we expect the square-root dependence of impact at high frequencies to become linear
at low frequencies, whereas Eq. (9) assumes a square-root dependence for all frequencies. A better model accounting for
such a cross-over is discussed in Bouchaud (2022), but is cumbersome and more difficult to calibrate.
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Figure 5: Variance Decomposition: Monthly ETF Returns.. The figure plots the explained
variance of monthly fund returns due to self-inflated returns βI

i = covi(R
I
i,t, Ri,t)/vari(Ri,t). We group

funds by fund size S and portfolio concentration C and compute the βI
i . The horizontal axis displays

fund size quintiles. The orange bars represent the top 10% of funds with the most concentrated
portfolios within each size quintile. The blue bars represent the remaining 90%.
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6 Self-Inflated Fund Returns and the Dumb-Money Effect

Frazzini and Lamont (2008) find that stocks bought by funds with disproportionately high inflows have

low subsequent returns. Their stock-level “dumb-money” measure, dmn,t, is approximately given by

dmn,t =

∑
iDi,n,t(fi,t − ft)

Mn,t
, (10)

where ft are total flows in the mutual fund sector relative to total mutual fund assets.19 This is

effectively equal to flow-induced trading by Lou (2012), apart from using current as opposed to lagged

dollar holdings Di,n,t−1. To the extent that the dumb-money effect is driven by price pressure from

observable fund flows (and not some other investors whose trades are correlated with mutual fund

trades), this effect should be particularly pronounced for stocks held by Ponzi funds. Intuitively, active

19To see this note that Frazzini and Lamont (2008) compute counterfactual assets Âi,t held by a fund if total fund flows
were (starting from some prior date t − k) invested in proportion to total assets. Counterfactual assets are computed

via the recursion Âi,t = Âi,t−1(1 +Ri,t) + Ft
Ai,t−k

At−k
, where At are the total assets of and Ft total inflows into all funds.

When k = 1, this simplifies to (10).
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funds that “wisely” reallocate their portfolio to more liquid positions in response to large inflows should

have a smaller price impact than inflated funds that naively scale up their existing positions. In the

language of Lou (2012), return reversal from flow-induced trades should be more pronounced among

illiquid funds.

7 Do fund flows chase self-inflated returns?

We now investigate, whether fund flows chase self-inflated returns at a high frequency. The flow-

performance relationship for mutual funds is typically tested by regressing quarterly fund flows on

past long-run returns.20 Barber et al. (2016) and Dannhauser and Pontiff (2019) regress monthly

flows onto monthly return lags and find that the first lag contributes most strongly to the aggregate

flow-performance relationship. It is possible that the self-inflated return only materially affects overall

returns over an even shorter window. This can be either because the price impact quickly reverts or

because fundamental returns are volatile, which conceals the self-inflated return at longer horizons. If

investors primarily allocate flows based on average long-run returns, the positive feedback loop from

self-inflated returns is potentially small.

7.1 High-frequency Return Chasing

We therefore first test the origins of the low-frequency flow-performance relationship. To what extent

is the flow-performance relationship driven by the most recent returns? If investors place a higher

weight on the most recent fund return, even a quickly dissipating price impact can affect future inflows.

Following Schmickler (2020), we regress daily ETF flows on up to L = 200 lags of daily ETF returns

and flows. In essence, we estimate the weights that investors place on lagged returns at a daily

frequency.

fi,t+1 = αt +
L∑

s=0

βsRi,t−s +Controls + ϵi,t+1 (11)

The return chasing kernel, {βs}Ls=0 is the weighting scheme that investors place on past returns when

allocating future flows. We estimate the return chasing kernel over the panel of ETF flows and returns

from 2019 to 2024 and report the cumulative sum of the coefficients over increasing time lags. Figure

plots the results.

The figure shows that more recent returns receive a higher weight in the return chasing kernel.

20See e.g. Ippolito (1992), Chevalier and Ellison (1997), Huang et al. (2007), and Goldstein et al. (2017).
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Figure 6: Return Chasing Kernel. The figure plots the cumulative return-chasing coefficient
from the following model fi,t+1 = αt +

∑L
s=0 βsRi,t−s + Controls + ϵi,t+1. The blue line reports the

cumulative sum of the OLS coefficients {
∑k

s=0 βs}Lk=1 using L = 200 lags. The shaded areas indicate
95% confidence bands where the cumulative standard errors are clustered at the day and fund level.
Cumulative standard errors are computed accounting for the covariance across coefficient estimates,
i.e.

√
1Tt Ωt1t where Ωt is the covariance matrix of the coefficients up until lag t and 1t is a t × 1

vector of ones. The red line reports the cumulative return chasing from an exponential decay model
estimated: fi,t+1 = β

∑65
s=0 e

−λβsRi,t−s +Controls + ϵi,t+1. We estimate λ̂β = 0.01 via nonlinear least
squares (NLLS) over the panel of daily ETF-flow observations from 2019 to 2024.
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Thus the flow-performance relationship is predominantly driven by the most recent returns. This is in

line with exponential decaying weights on past returns in extrapolative expectations (see Greenwood

and Shleifer (2014), Barberis et al. (2015), and Da et al. (2021)). Following Barber et al. (2016)

we also estimate an exponential decay model (red line) which well-fits the cumulative sum of the

OLS coefficients. The exponential decay parameterizes the coefficients on all the lags as a function

of time, βs = βe−λβs. We estimate λ̂β = 0.01 via nonlinear least squares (NLLS) over the panel

of daily ETF-flow observations from 2019 to 2024. The exponential decay formulation allows for a

parsimonious representation of the return-chasing behavior that is unrelated to the horizon. This is

useful when comparing the return-chasing behavior across different return decompositions, such as

price impact versus fundamental return (as in this paper), or abnormal versus factor return (as in

Barber et al. (2016)). The cumulative coefficient implies that a 10% return realization leads to an
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additional 10%×0.2 = 2% inflows, the first 1% occurring within 50 days of the initial return. In Figure

B.11 we show that the exponential weighting scheme holds generally across sample splits, such as for

both positive and negative past returns, active and passive ETFs, when adding fund-fixed effects, and

when estimating the coefficients via AUM-weighted least squares. Notably, we find a stronger flow-

performance sensitivity when we restrict the sample to active funds. The exponential over-weighting

of the most recent return is what allows flow-driven price impact to affect the cross-section of fund

flows. If investors weighted all past return realizations equally, then self-inflated returns would have a

smaller effect on flows: Over long time scales, average returns are less affected by self-inflated returns

which are primarily driven by short-lived spikes in inflows. However, because investors place a high

weight on the most recent return, even short-lived self-inflated returns can strongly affect future flows

leading to a positive feedback loop. The strength of the effect depends on i) how much of the variation

in fund returns is driven by self-inflated returns and ii) how persistent the price impact is.

7.2 Chasing Impact versus Fundamentals

We now decompose realized fund returns into a self-inflated component (driven by flow-induced trades)

and a residual (fundamental) component, taking into account price impact reversal. To this end, note

that a fund’s returns are not only impacted by its self-inflated return but also by the self-inflated return

of all other funds that hold overlapping securities. The residual component R⊥
i,t is the remaining fund

return that is unexplained by the aggregate self-inflated returns.

Ri,t = RI
i,t +R⊥

i,t (12)

where, with a slight abuse of notation, RI
i,t measures the price impact from flow-driven trades of all

funds including the reversal from past trades. Appendix A provides further details on how RI
i,t is

constructed. Following the methodology proposed by Barber et al. (2016) we construct a weighted

average of past returns based on the exponential decay model estimated above. In particular, we

define weighted versions of past fundamental and impact returns as R̃⊥
i,t =

∑L
s=0wsR

⊥
i,t−s and R̃I

i,t =∑L
s=0wsR

I
i,t−l where the weights ws = e

−λβs∑L
s=0 e

−λβs are determined by the exponential decay λβ of

the flow-return sensitivity. Regressing daily flows on the exponentially weighted past return allows

comparing individual coefficient sensitivity coefficients as opposed to 200 coefficients on the different

lags. The decomposition R̃i,t = R̃I
i,t+R̃⊥

i,t allows assessing whether investors equally chase both impact
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returns (R̃I
i,t) and fundamental returns (R̃⊥

i,t) when deciding how to allocate their capital. We run the

decomposed regression

fi,t+1 = αt + β1R̃
I
i,t + β2R̃

⊥
i,t + Controls+ ϵi,t+1 (13)

and report the results in Table 4. To set the stage we first regress daily fund flows onto undecomposed

Table 4: Price Impact Chasing. The table reports the estimated coefficients of pooled OLS regres-
sions of daily flows onto (exponentially weighted) average past returns, as well as decomposed average
returns into an impact and a fundamental component. Specification (1) reports the coefficient to the
regression on raw returns fi,t+1 = αt+βR̃+Controls+ϵi,t+1. Specification (2) reports the coefficients
to the regression on the decomposed returns fi,t+1 = αt + β1R̃

I
i,t + β2R̃

⊥
i,t + Controls + ϵi,t+1. All

specifications control for a constant, lagged flows up to 200 days, and time-fixed effects. The sample
period is 2019 to 2024. Standard errors are double clustered at the day and the fund level.

(1) (2)

R 0.2136***

(3.4301)

RI 0.2375***

(3.5943)

R⊥ 0.2229***

(3.3425)

Controls Yes Yes

Effects Time Time

No. Obs. 1139565 1139565

R-squared 0.0150 0.0150

average past returns R̃i,t and obtain a coefficient of 0.21 (t-stat 3.4).21 We then regress daily fund

flows onto decomposed returns R̃I
i,t and R̃⊥

i,t according to (13). If investors are able to differentiate

between price impact and fundamental returns, we should observe that the coefficient on R̃I
i,t is 0

and statistically insignificant as a high price impact is not reflecting higher future expected returns.

However (and perhaps unsurprisingly), we find that fund flows cannot distinguish the two sources of

past returns and significantly respond to both components. We furthermore cannot reject the null

hypothesis that the coefficients are identical. When observing past performance, investors are hence

21Note, that this is roughly equal to the sum of all coefficients of regression (11).
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not able to differentiate between price impact and fundamental returns (or ‘managerial skill’). In

Appendix Table B.7 we split the sample into active (non-benchmarked) and passive (benchmarked)

funds. For passive funds, the coefficients on R̃I
i,t and R̃⊥

i,t are 0.20 (t-stat 2.9) and 0.18 (t-stat 2.7)

respectively. For active funds, the coefficients are 0.77 (t-stat 4.3) and 0.90 (t-stat 8.1) respectively.

For both active and passive funds we can strongly reject the null hypothesis that investors do not pay

attention to self-inflated returns. We furthermore cannot reject that the return-chasing coefficient is

the same for both self-inflated and fundamental returns.

8 Self-Inflated Feedback Loops

The previous section showed that because investors place a higher weight on the most recent return,

even short-lived price pressure can have an impact on the distribution of fund flows. This can cause

an endogenous feedback loop: Flows cause a price impact, which is a realized return that causes

further inflows and amplifies the initial price impact. The magnitude of this feedback loop remains

an empirical question, which we address in this section.

8.1 Ponzi Flows

We follow Darmouni et al. (2022) and use the linear flow-performance relationship as a structural

equation.22 Combined with the exponentially decaying price impact, this allows us to decompose fund

flows into a self-inflated and a fundamental component, identify bubble funds (i.e. funds with strong

self-inflated returns), and predict drawdowns. We define Ponzi flows fP
i,t+1 as the component of flows

that chase past price impact,

fP
i,t+1 ≡ β̂1R̃

I
i,t, (14)

where β̂1 is the estimated coefficient from equation (13). Note, that R̃I
i,t measures the price impact on

i’s portfolio from the flow-driven trades of all funds and includes the reversal from previous trades.23

To illustrate the economic importance of price impact chasing flows, we compute the fraction of total

flow volume that can be attributed to fP
i,t+1. Formally, we compute

∑
i |fP

i,t+1|Ai,t∑
i |fi,t+1|Ai,t

. Figure 7 plots the

relative Ponzi volume over time. Among the most illiquid funds (top decile I), around 10% of the

daily flow volume can be attributed to Ponzi flows, i.e. flows chasing past price impact. Among all

22Darmouni et al. (2022) microfound the linear relationship from households’ logit demand over the cross-section of
fund characteristics.

23See Appendix A for details.
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Figure 7: Ponzi Flows Relative to Total Flows. The figure plots the fraction of fund flow volume

that can be attributed to chasing past price impact. Formally, we compute
∑

i |fP
i,t+1|Ai,t∑

i |fi,t+1|Ai,t
over different

subsets of funds and report the rolling monthly mean. The red line reports the fraction for the top
decile of illiquid funds (highest I). The black line reports the fraction for all other funds.
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other funds, Ponzi flows are still sizeable and account for 2-3% of total flow volume.

8.2 Identifying Bubble Funds

Following Greenwood et al. (2019), we investigate whether flow-driven trading predicts crashes of

ETFs with extreme price runups. To this end, we select ‘run-up ETFs’ that outperformed the market

by over 50% over the previous two years at any point in our sample. We compute the cumulative

future 1-year returns for all run-up ETFs as well as for ‘bubble ETFs’, whose cumulative Ponzi flow

fP
i,t is in the top 30%, 20%, 10%, 5% among run-up funds. Figure 8 plots the cumulative returns over

the event window for the run-up ETFs and the bubble ETFs.
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Figure 8: ETF Bubbles and Ponzi Flows. The figure plots the cumulative return of all ETFs
that outperformed the market by over 50% in the past two years. The black line reports the average
cumulative return across bubble ETFs over the event window. The red line plots the cumulative
return of the subset of bubble ETFs whose cumulative Ponzi flows are in the top 30%, 20%, 10% and
5% among run-up ETFs.
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(b) Top 20% cumulative fP
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(c) Top 10% cumulative fP
i,t
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(d) Top 5% cumulative fP
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The black line reports the average cumulative return over the event window across all run-up ETFs.

As in Greenwood et al. (2019), excessive outperformance is on average not followed by a subsequent

crash. Cumulative returns rather converge back to the market return. The red line splits the sample

of run-up ETFs into the funds that received the highest cumulative Ponzi flows fP
i,t during the period.

On average, these bubble funds experienced steep crashes, with cumulative returns exceeding -200%

in the two years following the runup. However, as in Greenwood et al. (2019), timing the crash is

difficult. On average, bubble ETFs do not crash within the first year of the run-up.

8.3 Ponzi Returns

Can Ponzi flows, i.e. flows chasing past price impact, meaningfully affect asset prices? We now turn

to the wealth reallocation that is caused by the price impact of Ponzi flows. To this end, we define
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Ponzi returns as the price impact caused by reinvested Ponzi flows RP
i,t ≡ θfP

i,tIi,t−1. The daily dollar

reallocation of wealth due to Ponzi return is given by
∑

i |RP
i,t|Ai,t−1. Figure 9 plots the total wealth

reallocation due to Ponzi returns from 2019 to 2024.

Figure 9: Ponzi Wealth Reallocation. The figure plots the daily dollar amount of capital reallocated
via Ponzi flows (left vertical axis) as well as the cumulative sum (right vertical axis). We define Ponzi
returns RP

i,t as the return that is caused by flows chasing past price impact. Weighting by lagged
assets under management Ai,t−1 and summing across funds yields the total dollar wealth reallocation
due to Ponzi flows

∑
iR

P
i,tAi,t−1.
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Every day, ETFs reallocate around $500 million among investors because of the price impact from

flows that chase past price impact. Since 2019, the total cumulative dollars that ETFs have reallocated

via this endogenous feedback loop is around 440 Billion.

9 Conclusion

Price impact is a realized return for the incumbent holders of an asset. The inability of market

participants to distinguish between realized fund returns stemming from fundamental determinants

and those driven by price impact has important implications for asset markets. We show that among

ETFs alone, $500 Million dollars are reallocated daily because market participants chase the price

impact of past flow-driven trades.

The focus of this paper lies on managed funds and the self-inflated feedback loop that arises from

the combination of flow-driven trading and the flow-performance relationship. ETFs are a suitable

setting to establish first evidence for the interplay of price impact and belief formation because i)

we can directly observe demand (via flows) and ii) the proportional reinvestment of flows at a daily
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frequency allows for cleanly identifying the price impact of non-fundamental demand shocks.

However, the underlying drivers of this feedback loop – return chasing and price impact – apply

more generally. For example, trend following in futures markets and the $300 Billion wide CTA indus-

try, are likely prone to self-inflated price spirals (see Lempérière et al. (2014) and references therein).

Similarly, the “quant crunch” in 2007 (Khandani and Lo (2011)) and other deleveraging spirals can

be seen as outcomes of the interaction between return chasing and price impact (Brunnermeier and

Pedersen (2009); Bouchaud et al. (2012); Cont and Wagalath (2013); Kyle and Obizhaeva (2023)).

The increased availability of investor-level holdings and flow data allows quantifying these effects.

Revisiting these studies through the lens of portfolio holdings, for example via structural models of

investor demand as in Koijen and Yogo (2019), is an exciting avenue for future research. Quite re-

markably, our price impact estimate from flow-induced trades matches well the estimates from the

recent microstructure literature (e.g. Tóth et al. (2011); Frazzini et al. (2018); Bouchaud et al. (2018)).

Bridging the gap between low-frequency portfolio holdings data and trade data at a higher frequency

provides an explicit link between market micro-structure, intermediary asset pricing, and (eventually)

corporate finance.
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Appendix A Aggregating Self-Inflated Fund Returns

Self-inflated returns do not only impact the fund’s own realized return but also the realized returns of

all funds i = 1, ..., I that are invested in the affected securities. The return of fund i that is driven by

its own flows is given by RI
i,t = θfη

i,tIi,t−1 where Ii,t−1 =
∑

nwi,t−1,nIi,t−1,n is portfolio level illiquidity.

Flows into fund i also affect the return of other portfolios (here j) that hold overlapping stocks. We

therefore define the cross-fund illiquidity as

It,ij ≡
N∑

n=1

wj,t,nIi,t (15)

Note that Iij,t = Ii,t if fund j holds the same portfolio weights as fund i. Note also, that It,ij ̸= It,ji

unless both funds hold the same portfolio weights and have the same assets under management. The

total flow-induced return for fund i is therefore

RI,Total, Permanent
i,t ≡ θ

I∑
j=1

fη
j,tIt−1,ji (16)

where
∑

j is summing over all I funds including i. Note that this assumes permanent price impact,

in that past flows do not affect the current return. Including price impact reversal (see (8)) yields

RI,Total
i,t ≡

S∑
s=0

θs
∑
j

fη
j,t−sIt−1−s,ji (17)

where θ0 is the contemporaneous impact and {θs}s>0 captures the reversal from past flow-driven

trades. The flow-performance relationship suggests that the sensitivity of flows to past returns decays

at speed λβ. Therefore, long-run average past returns are computed using the exponential λβ-weighted

as described in 7.2. We compute the weighted average past return using total flow-induced trading

including reversal RI,Total
i,t as

R̃I
i,t ≡

L∑
s=0

wsR
I,Total
i,t (18)

where ws =
e
−λβs∑L

s=0 e
−λβs are the exponential decay weights following Barber et al. (2016).
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Appendix B Additional Figures

Figure B.10: Daily ETF Returns and Inflows: Robustness. The figure plots the daily average
return of ETFs across different flow buckets. Every day, we sort ETFs into deciles based on their
inflows and compute their average return. Subfigure (a) and (b) report average excess returns and
CAPM alphas based on sorts by flows relative to AUM fi,t+1 = Fi,t+1/Ai,t and fund illiquidity Ii,t.
Subfigure (c) reports returns for an alternative sort based on flows relative to underlying liquidity
Fi,t+1/Vi,t and portfolio concentration Ci,t. Note, that Fi,t+1V

−1
i,t Ci,t = fi,t+1Ii,t.
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Figure B.11: Return Chasing Kernel by ETF types. The figure plots the cumulative sum of
the return chasing coefficients {

∑l
s=1 βs}Ll=1 for different estimators and sample splits. Panel a) splits

flows by in and outflows. Panel b) splits funds into benchmark trackers and non-benchmarked (active)
funds. Panel c) estimates the flow-performance regression via AUM-weighted least squares. Panel d)
provides time-series evidence by replacing the time-fixed effect with a fund-fixed effect. The shaded
areas indicate 95% confidence bands where the cumulative standard errors are clustered at the day and
fund level. Cumulative standard errors are computed accounting for the covariance across coefficient
estimates, i.e.

√
1Tt Ωt1t where Ωt is the covariance matrix of the coefficients up until lag t and 1t is

a t× 1 vector of ones.
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Figure B.12: Variance Decomposition: Daily ETF Returns. The figure plots the explained
variance of daily fund returns due to self-incited returns βI

i = covi(R
I
i,t, Ri,t)/vari(Ri,t). We group

funds by fund size S and portfolio concentration C and compute the βI
i . The horizontal axis displays

fund size quintiles. The orange bars represent the top 10% of funds with the most concentrated
portfolios within each size quintile. The blue bars represent the remaining 90%.
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Table B.5: Stock-Level Price Impact: Horse Race. The table reports the estimated price impact
coefficients from a horse race of different transformations of stock-level price impact. Specification
(1) uses fη

i,tIi,n,t−1 constructed using η = 1, scaling demand shocks by market cap, and omitting
the volatility pre-factor. Specification (2) uses fη

i,tIi,n,t−1 constructed using η = 1/2, scaling demand
shocks by market cap, and omitting the volatility pre-factor. Specification (3) uses fη

i,tIi,n,t−1 con-
structed using η = 1/2, scaling demand shocks by daily volume, and including the volatility pre-factor.
For simplicity of exposition the table reports fη

i,t and Ii,n,t−1 as f and I. Standard errors are double-
clustered at the stock and fund-day level.

(1) (2) (3) (4)

f × I (Linear) 0.4831*** 0.0768

(3.7541) (0.5593)

f × I (Sqrt) 0.1296*** -0.1552***

(3.7415) (-3.7283)

f × I (Sqrt, Volume) 0.3353*** 0.3987***

(7.6032) (6.8188)

Effects Investor-Time Investor-Time Investor-Time Investor-Time

Triple Diff. Yes Yes Yes Yes

No. Observations 34897091 34897091 34897091 34897091

R-squared 3.933e-05 3.954e-05 8.862e-05 9.312e-05
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Table B.6: Fund-Level Price Impact: Horse Race. The table reports the estimated price impact
coefficients from a horse race of different transformations of stock-level price impact. Specification
(1) uses fη

i,tIi,t−1 constructed using η = 1, scaling demand shocks by market cap, and omitting the
volatility pre-factor. Specification (2) uses fη

i,tIi,t−1 constructed using η = 1/2, scaling demand shocks
by market cap, and omitting the volatility pre-factor. Specification (3) uses fη

i,tIi,t−1 constructed using
η = 1/2, scaling demand shocks by daily volume, and including the volatility pre-factor. For simplicity
of exposition the table reports fη

i,t and Ii,t−1 as f and I. Standard errors are double-clustered at the
fund and day level.

(1) (2) (3) (4)

f × I (Linear) 1.4791 -2.4266***

(1.6305) (-4.5066)

f × I (Sqrt) 0.2397*** 0.1463*

(4.5632) (1.7689)

f × I (Sqrt, Volume) 0.7762*** 0.6667***

(5.1606) (2.8960)

Effects Entity Entity Entity Entity

Time Time Time Time

No. Observations 1175487 1175487 1175487 1175487

R-squared 0.0004 0.0007 0.0008 0.0008
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Table B.7: Price Impact Chasing: Active versus Passive. The table reports the estimated
coefficients of pooled OLS regressions of daily flows onto (exponentially weighted) average past returns,
as well as decomposed average returns into an impact and a fundamental component. Specification (1)
reports the coefficient to the regression on raw returns fi,t+1 = αt+βR̃+Controls+ϵi,t+1. Specification
(2) reports the coefficients to the regression on the decomposed returns fi,t+1 = αt + β1R̃

I
i,t + β2R̃

⊥
i,t +

Controls + ϵi,t+1. All specifications control for a constant, lagged flows up to 200 days as well as
time-fixed effects. The sample period is 2019 to 2024. Standard errors are double clustered at the day,
and the fund level. We split the sample by benchmarked and active (non-benchmark-tracking) funds.
All specifications control for a constant, lagged flows up to 200 days, and time-fixed effects. Standard
errors are double clustered at the day and the fund level.

Benchmarked Funds Active Funds

(1) (2) (1) (2)

R 0.1746*** 0.8160***

(2.7785) (8.8652)

RI 0.1950*** 0.7734***

(2.9203) (4.2745)

R⊥ 0.1804*** 0.8967***

(2.6787) (8.1457)

Controls Yes Yes Yes Yes

Effects Time Time Time Time

No. Obs. 1050040 1050040 89525 89525

R-squared 0.0140 0.0141 0.0346 0.0351

Appendix C Flow-Induced Trading: ETFs versus Mutual Funds

Flow-induced trading by ETF underlies slightly different microstructural mechanics than flow-induced

trading by ordinary mutual funds as in Lou (2012). We therefore first define the ETF-specific analog

of flow-induced trading (FIT), which we label arbitrage-induced trading (AIT).

C.1 Arbitrage-Induced Trading

In this section, we outline how ETF flow-driven trading can be constructed from ETF shares out-

standing and the stock-level positions held by the ETF. The ETF has Si,t shares outstanding with

price Pi,t, where time (in business days) is denoted by t. Total ETF assets under management are

Ai,t = Pi,tSi,t. The current trading volume (expressed in shares) of each stock is given by Vn,t. The
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return of each stock n is given by rn,t. Let wi,n,t denote the portfolio weight of the ETF in stock n

and Ri,t+1 =
∑

nwi,n,trn,t+1 the total return of ETF i. We assume that at time t the ETF and the

underlying basket have the same price, and therefore the ETF return is given by the weighted sum

of the underlying returns. During day t, however, the ETF price may deviate from the price of the

underlying basket, creating an arbitrage opportunity. For example, high demand for the ETF may

drive the ETF price above the underlying. The arbitrage trade implies selling ETF shares (at elevated

prices) and buying the underlying. To reduce arbitrage risk, the arbitrageur does not have to bet on

the convergence of the spread, but can directly hand the underlying shares to the provider in exchange

for ETF shares, which they can sell in the secondary market.

To this end, the ETF provider specifies to the arbitrageur (authorized participant, AP) the creation

basket {qCU
i,n,t}Nn=1 for each creation unit of the ETF (known also as portfolio composition file, PCF).

The creation basket constituents qCU
i,n,t (denoted in dollars based on current market prices) specify the

dollar value of the underlying shares the AP must deliver to the ETF provider in order to receive

one ETF share.24 The arbitrage-induced trade of an authorized participant i in stock n is given by

∆Si,t+1q
CU
i,n,t, where ∆Si,t+1 is the number of ETF shares issued between the close of date t and the

close of date t + 1 and qCU
i,n,t the creation basket (denoted in dollars based on current market prices)

specified by the ETF provider at the close of date t. The creation basket specifies the dollar value of

the underlying shares the AP must deliver to the ETF provider in order to receive one ETF share. For

example, by deliveringK×{qCU
i,n,t}Nn=1, the authorized participant receivesK ETF shares in the primary

market and can sell them in the secondary market. Note that the ETF provider has the discretion to

supply a trading basket qCU
i,n,t that may differ from the actual constituents Qi,n,t per unit of ETF share.

This flexibility allows the provider to optimize for costs or other operational considerations. However,

we have verified that our results remain unaffected by this potential discrepancy. Therefore, for all

practical purposes in our analysis, the actual constituents Qi,n,t can be used, as we do in the main

text. To see the equivalence to flow-induced trading, note that the dollar flow Fi,t+1 into the ETF

between t and t+1 is the change in ETF shares outstanding multiplied by the price of the ETF Pi,t, i.e.

Fi,t+1 = ∆Si,t+1Pi,t. Similarly, the implied ETF portfolio is given by wi,n,t =
qCU
i,n,tPi,n,t∑
n qCU

i,n,tPi,n,t
. Therefore,

the arbitrage-induced trade ∆Si,t+1q
CU
i,n,t can also be expressed as wi,n,tFi,t+1. Note that wi,n,tFi,t+1

is precisely the flow-induced trade by mutual funds, assuming that 100% of flows are reinvested in

24The basket is typically denoted in number of shares. For expositional simplicity (in line with the structural model
in the main text) we convert to dollar units using current market prices.
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line with previous portfolio weights. Aggregating the daily implied arbitrage trades across ETFs and

normalizing by supply (market cap Mn,t−1, yields daily Arbitrage-Induced-Trading (AIT)

AITn,t =

∑
i∆Si,tq

CU
i,n,t−1

Mn,t−1
(19)

which matches the definition of FIT in Lou (2012).

C.2 AIT’s price impact

We first estimate the price impact of daily arbitrage-induced trades in the following simple contem-

poraneous panel regression over daily stock returns from 2019 to 2024.

rn,t = θt + µi + γAITn,t + ϵn,t. (20)

Table C.8 reports the results.

Table C.8: Arbitrage-Induced Trading: Linear Specification. The table reports the estimated
price impact coefficients from pooled OLS regressions using daily data on stock returns and different
measures of arbitrage-induced trading AITn,t. Specification (1) to (4) include different combinations
of fixed effects. Across all specifications, we control for a constant, momentum and stock-specific
volatility. Standard errors are double-clustered at the stock and day level.

(1) (2) (3) (4)

AIT 1.5591** 1.5555** 0.9880** 0.9814**

(2.2604) (2.2579) (2.1381) (2.1248)

Controls Yes Yes Yes

Effects Time Entity

Time

No. Observations 2036923 2036923 2036923 2036923

R-squared 0.0014 0.0020 0.0007 0.0008

Across all specifications, AIT significantly affects daily contemporaneous returns. The price impact

estimated from arbitrage-induced trading including time fixed effects is close to 1 (t-stat 2.1), implying

that buying 1% of the shares outstanding increases stock prices by around 1%. Because we are

estimating price impact at a daily frequency, we also introduce a transformed version of AIT based
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on equation 1 and the literature on market impact at a high frequency (Tóth et al. (2011)).

ÂITn,t = σn

√∑
i∆Si,tqCU

i,n,t−1

Vn,t−1
(21)

The transformed version includes scaling arbitrage-induced trades by average daily volume Vn,t−1,

taking a square root, and pre-multiplying by stock-specific volatility σn. If the arbitrage-induced

trade is negative, we take the absolute value and sign the transformed ÂITn,t.
25 Table C.9 reports

the results.

Table C.9: Arbitrage-Induced Trading: Square Root Specification. The table reports the
estimated price impact coefficients from pooled OLS regressions using daily data on stock returns and
different measures of transformed arbitrage-induced trading ÂITn,t. Specification (1) to (5) include
different combinations of fixed effects. Across all specifications, we control for a constant, momentum
and stock-specific volatility. Standard errors are double-clustered at the stock and day level.

(1) (2) (3) (4)

ÂIT 0.8279*** 0.8289*** 0.5502*** 0.5503***

(10.451) (10.456) (16.327) (16.261)

Controls Yes Yes Yes

Effects Time Entity

Time

No. Observations 2036923 2036923 2036923 2036923

R-squared 0.0122 0.0128 0.0061 0.0062

Across all specifications, the price impact estimated from transformed arbitrage-induced trade

ÂITn,t is 0.55 with considerably higher t-stats of 16. Table C.10 runs a horserace between the ÂITn,t

and AITn,t. We also include
√
AITn,t as an additional transformation, to see whether the outperfor-

mance of ÂITn,t is - beyond the square root transformation - also driven by the alternative scaling

(i.e. ADV and the volatility pre-factor).

25Formally ÂITn,t = sign(∆Si,t)σn

√∑
i |∆Si,t|qCU

i,n,t−1

Vn,t−1
.
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Table C.10: Arbitrage-Induced Trading: Horse Race. The table reports the estimated price
impact coefficients from a horse race of different transformations of arbitrage-induced trading AIT .
Specifications (1) to (3) compare the estimates in separate univariate specification. Specification (4)
considers all transformations jointly. Across all specifications, we control for a constant, momentum
and stock-specific volatility. Standard errors are double-clustered at the stock and day level.

(1) (2) (3) (4)

AIT 0.9814** -0.5009***

(2.1248) (-3.2425)
√
AIT 0.1571*** -0.0507**

(16.023) (-2.2105)

ÂIT 0.5503*** 0.7408***

(16.261) (8.8815)

Controls Yes Yes Yes Yes

Effects Entity Entity Entity Entity

Time Time Time Time

No. Observations 2036923 2036923 2036923 2036923

R-squared 0.0008 0.0047 0.0062 0.0064

Across all specifications ÂITn,t emerges victoriously. In univariate specifications, it achieves the

highest R2. In the joint kitchen-sink regression with all transformations, ÂITn,t fully subsumes the

effect leaving the other impact measures with negative coefficients.

C.3 Reversal of AIT’s price impact

Does the arbitrage-induced price impact revert over time? Simple regressions of future cumulative

returns on lagged AIT are contaminated by the autocorrelation in ETF flows and therefore AIT. A

flow today that causes arbitrage-induced price impact is followed by flows tomorrow, therefore masking

a potential reversal of the impact. We therefore estimate a distributed lag model over L̄=30 lags of

AIT

rn,t = θt + µi +
L̄∑
l=0

γlÂIT t−l,n + ϵn,t. (22)

Figure C.13 plots the cumulative sum of the coefficients βl =
∑L̄

l=0 γl together with 95% confidence

bands. The cumulative coefficients suggest significant short-term reversal within 10 days following the
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flow-induced trade. However, after 10 days, the effect stabilizes and around 50% of the initial impact

remains in the price.

Figure C.13: AIT Impact Reversal.
The figure plots the cumulative coefficient sum βLinear Model

s =
∑s

l=0 γl from the distributed lag model (estimated via

OLS) rn,t = θt + µi +
∑L̄

l=0 γlÂIT t−l,n + ϵn,t. We choose 40 days for L̄. The model is estimated over the panel of daily
stock returns from 2019 to 2024. The shaded region indicates the 95% confidence interval of the linear model, where
standard errors are clustered at the day level.

0 5 10 15 20 25 30 35 40
Days

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Cu
m

ul
ati

ve
 Im

pa
ct

C.4 Factor Structure in ETF demand

In this section, we show that using aggregated flow-induced trading (AIT) does not necessarily deliver

an unbiased estimate of price impact θ if both fundamental returns r⊥t+1,n and ETF flows fi,t+1

are driven by a common factor Kt+1. To this end, note that AIT can be rewritten as AITn,t =∑
i Q̃i,n,t−1fi,t where Q̃i,n,t−1 = qCU

i,n,t−1/Mn,t−1 is ETF ownership relative to shares outstanding and

fi,t =
∆Si,t

Si,t−1
is the flow relative to lagged assets. For example, interest cuts may cause a decline in

the prices of technology firms. If ETF flows are also affected by this common factor Kt+1 (here:

interest rates) then ETF flows with a technology tilt simultaneously receive outflows. ETF flow-

driven buying will therefore be lower for tech stocks, causing a positive correlation between rt+1,n and

AITt+1,n purely because of the latent factor and therefore an upward bias in θ. Formally, assume

that r⊥t+1,n = Kt+1βn + ϵt+1,n and fi,t+1 = Kt+1β
i + ut+1,n. Because of the ownership-weighting,

the flow exposure to the latent factor Kt+1 varies across stocks n and is given by βQ
n,t =

∑
i Q̃i,n,tβ

i.

If the flow exposure and the return exposure are cross-sectionally correlated cov(βQ
n,t, βn) ̸= 0, then
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cov(r⊥t+1,n, f
Q
t+1,n) ̸= 0 and θ is biased. We can further decompose the bias as

cov(βQ
n,t, βn) =

∑
i

βi covi,t(Q̃i,n,t, βn)︸ ︷︷ ︸
Factor Tiltit

(23)

where Factor Tiltit measures the correlation of ETF portfolio tilts and factor exposure, i.e. the extent

to which ETF i tilts towards characteristics that drive returns. Therefore, the bias is essentially

driven by the extent to which ETF flows are attentive to the portfolio tilts of ETFs. If flows are pure

noise, i.e. they are entirely driven by factors unrelated to portfolio holdings, then flow-driven trading

uncovers the true θ. If ETF demand - at least to some extent - follows the portfolio tilts of ETFs,

then θ is potentially biased. This concern may be small if ETF flows i) did not obey a strong factor

structure and ii) if any commonality is unrelated to portfolio holdings (e.g. only driven by marketing

expenses). Both are strongly rejected in the data.

Figure C.14: Factor Structure in ETF Demand.
The figure plots the cross-sectional variation in weekly ETF flows (share issuances) explained by the first 10 principal
components. ETF flows f i

t+1 = Si,t+1/Si,t − 1 are given by the percentage shares in ETF shares outstanding Si,t. We
winsorize daily and weekly ETF flows at the 99% level and group them into 10 bins based on their AUM. We then
compute value-weighted average flows for each bin and estimate 10 principal components across the 10 value-weighted
average flow series.
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We circumvent this by including either fund-time fixed effects (in the stock-level specification) or

controlling for raw flows (in the fund-level specification).

51


	Introduction
	Case Study: The price impact of a large thematic ETF
	Data
	Price Impact and Self-Inflated Fund Returns
	Estimating Self-Inflated Returns
	Qualitative Evidence from Portfolio Sorts
	Price Impact at the Stock Level
	Estimating Impact at the Fund Level
	Modelling Reversal
	Variance Decomposition of Fund Returns

	Self-Inflated Fund Returns and the Dumb-Money Effect
	Do fund flows chase self-inflated returns?
	High-frequency Return Chasing
	Chasing Impact versus Fundamentals

	Self-Inflated Feedback Loops
	Ponzi Flows
	Identifying Bubble Funds
	Ponzi Returns

	Conclusion
	Appendices
	Appendix Aggregating Self-Inflated Fund Returns
	Appendix Additional Figures
	Appendix Flow-Induced Trading: ETFs versus Mutual Funds
	Arbitrage-Induced Trading
	AIT's price impact
	Reversal of AIT's price impact
	Factor Structure in ETF demand


