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Abstract 

This paper investigates the impact of generative AI on firms’ voluntary disclosure choices. Our 

theoretical model highlights a trade-off between AI’s improved ability to process disclosed 

information and its potential for misinformation, modeled as a random “hallucination” unrelated 

to the firms’ fundamentals. We predict that increased AI processing leads to more strategic non-

disclosure due to two related economic forces. First, hallucinations provide additional camouflage 

after strategic non-disclosure. Second, because users consider the risk of misinformation, they 

discount observed marginal disclosures, further reducing the benefit of disclosure. To test our 

predictions, we leverage OpenAI’s launch of ChatGPT in November 2022 as a shock to AI 

processing. Consistent with the theory, firms with more AI processing reduce their voluntary 

disclosures. Further, the introduction of ChatGPT reduces information processing failures, which 

manifests in increased information processing speed. Combining the crowding-out effect on 

information supply and the positive impact on information processing speed, we do not find 

evidence of a net increase in information quality. 

Keywords: AI hallucination, Information processing, Information crowding out, ChatGPT, 

Voluntary disclosure. 
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I. Introduction 

The development of generative AI has been transformative in capital markets. On the one 

hand, investors have been exposed to unprecedented advancements in information technology as 

machines’ cognitive and communication capabilities can be compared to those of humans for the 

first time in history. On the other hand, Geoffrey Hinton, the “godfather” of AI and 2024 Nobel 

Prize winner in Physics, repeatedly warns of the potential negative impacts of generative AI (New 

York Times, May 1, 2023).1 The rise of generative AI technologies, such as OpenAI’s ChatGPT, 

has amplified societal concerns, particularly regarding misinformation. Large language models 

(LLMs) can generate highly realistic text, raising significant concerns about the spread of difficult-

to-detect misinformation. Regulators, such as the European Commission, have called for attention 

to the risks of AI-generated misinformation, while public media outlets have highlighted the 

dangers of realistic yet factually incorrect content (NBC New York, 2023; DW, 2024).2  

At first glance, the impact of generative AI on the capital market’s information environment 

appears to be ambiguous. These tools, while potentially disseminating misinformation, also 

enhance the information processing capabilities of agents, accelerating the incorporation of 

information into prices (Sims, 2003; Dong et al., 2016; Blankespoor et al., 2020; Kim et al., 2024a). 

To understand this trade-off, we present a theoretical model that jointly captures AI’s incremental 

information processing capabilities and its potential for generating misinformation.3 Our main 

prediction is that as investors increasingly rely on AI information processing, this processing 

reduces firms’ incentives to disclose and thus crowds out firms’ voluntary disclosures. Our 

 
1 Geoffrey Hinton’s concerns about AI resonate with the notion of a potential digital dystopia, which was once 

depicted only in allegorical tales such as I, Robot, and 2001: A Space Odyssey. I, Robot is a novel written by Isaac 

Asimov in 1950 that explores the complex relationship between humans and robots. Asimov raises questions about 

human autonomy and potential consequences of advanced technology. 2001: A Space Odyssey is a collaboration 

between Arthur C. Clarke and Stanley Kubrick. The story follows a mission to Jupiter, during which an artificial 

intelligence begins to malfunction, posing an existential threat to the crew. Today, these fictional scenarios are 

becoming increasingly plausible with the significant impact of generative AI on the production and consumption of 

information. See https://www.nytimes.com/2023/05/01/technology/ai-google-chatbot-engineer-quits-hinton.html. 
2 See https://www.disinfo.eu/publications/platforms-policies-on-ai-manipulated-and-generated-misinformation/, 

https://www.bbc.com/news/technology-65110030, https://www.nbcnewyork.com/investigations/fake-news-chatgpt-

has-a-knack-for-making-up-phony-anonymous-sources/4120307/, and https://akademie.dw.com/en/generative-ai-is-

the-ultimate-disinformation-amplifier/a-68593890. 
3 This trade-off reflects a fundamental aspect of our modern society with the presence of generative AI. The pursuit 

of convenience and efficiency drives technological advancement. However, concerns about misinformation and 

information control by advanced technology have been longstanding themes in literature, such as Aldous Huxley’s 

dystopian novel - Brave New World.  

https://www.nytimes.com/2023/05/01/technology/ai-google-chatbot-engineer-quits-hinton.html
https://www.disinfo.eu/publications/platforms-policies-on-ai-manipulated-and-generated-misinformation/
https://www.bbc.com/news/technology-65110030
https://www.nbcnewyork.com/investigations/fake-news-chatgpt-has-a-knack-for-making-up-phony-anonymous-sources/4120307/
https://www.nbcnewyork.com/investigations/fake-news-chatgpt-has-a-knack-for-making-up-phony-anonymous-sources/4120307/
https://akademie.dw.com/en/generative-ai-is-the-ultimate-disinformation-amplifier/a-68593890
https://akademie.dw.com/en/generative-ai-is-the-ultimate-disinformation-amplifier/a-68593890
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empirical tests center on the model predictions and provide consistent evidence using management 

forecasts as proxies for firms’ voluntary disclosure and measures of firm-level AI-processing 

intensity.  

To set intuition for a theoretical mechanism, we develop a stylized voluntary disclosure game 

with a friction along the lines of Dye (1985) and Jung and Kwon (1988).4 In the model, the firm is 

always informed about a fundamental signal and chooses whether to disclose or stay silent. 

However, before disclosing, the firm does not know whether its message will be processed by an 

AI system (AI processing) or human analysis (human processing). We assume that human 

processing is constrained by processing capacity and may sometimes fail to see the disclosure even 

when one is made. This assumption is similar to what Blankespoor et al. (2019, 2020) define as 

the “awareness” cost of information processing (i.e., “monitoring for the disclosure’s existence”) 

and reflects that humans have limited capacity to scan all information sources for the presence of 

information. In the model, human processing does not distinguish whether the signal is disclosed 

but unobserved (i.e., unawareness) or the firm strategically withholds information.  

In contrast, AI processing is not subject to unawareness. For simplicity, we assume that AI 

processing can always process firms’ disclosures. However, its capacity to process extensive 

information sources carries an inherent limitation: it may mistakenly interpret unrelated evidence 

as informative disclosures, especially when firms strategically withhold information. This can be 

viewed as akin to an AI “hallucination.”5 Importantly, the resulting misinformation is, for our 

purpose, a modeling abstraction to anchor a simple and testable trade-off.6 We do not mean an AI 

would imagine fake products, contracts, or earnings announcements. However, an AI may 

(mistakenly) point users to assessments about the firm that are not descriptive of the information 

 
4 Our model does not aim to realistically represent information processing within a complex market institution. 

Instead, it is designed to illustrate a particular mechanism where certain types of processing frictions can discourage 

voluntary disclosure. Our theory may apply to settings other than AI, such as types of involuntarily confusing or 

complex information where a non-disclosure may be (incorrectly) interpreted as informative.  
5 Merriam-Webster (2023) defines hallucination as “a plausible but false or misleading response generated by an 

artificial intelligence algorithm.” 
6 We acknowledge that these assumptions only aim to clarify the key economic forces driving the theory and provide 

grounding for an empirical hypothesis. In practice, a comparison between AI and human processing is subject to many 

other differences that could invalidate the hypothesis. For example, we do not consider the roles of human experience. 

Similarly, AIs do not always hallucinate, nor are they guaranteed to identify and process information when it exists. 

In model extensions, we develop several of these forces formally and show that they can yield countervailing effects.  
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actually reported.7  

We show that while AI improves the processing of disclosure, a higher probability of AI 

processing reduces firms’ voluntary disclosure (i.e., increases the probability of strategic 

withholding). This occurs because of two interconnected forces. First, the potential for 

hallucination provides additional camouflage for a strategic non-disclosure. Non-disclosing firms 

are no longer pooled solely with an average signal if the disclosure is not processed by the human. 

When the AI hallucinates a message that would have been disclosed, non-disclosing firms are now 

pooled with firms with better information who voluntarily disclose. This implies that by holding 

the disclosure threshold fixed, the payoff to non-disclosure is typically greater than if only humans 

process information. Second, since information users must now consider the possibility of 

misinformation, a Bayesian correction is made to observed signals above the disclosure threshold, 

reducing their effects on firm value. This leads to a reduction in the payoff from disclosure, further 

increasing the benefit of strategic withholding. 

Applying the minimum principle (Acharya et al., 2011; Guttman et al., 2014), we further show 

that the increase in the disclosure threshold must shift the equilibrium away from the minimum 

non-disclosure belief and thus increase the non-disclosure price. Put differently, the change to the 

disclosure environment from greater AI processing offers a new test of the minimum principle. 

Because the threshold in this type of evidence game minimizes the non-disclosure price relative to 

any other threshold, we predict that the greater use of AI increases the non-disclosure price. 

Empirical tests of our model’s predictions are challenging because we do not directly observe 

how financial market participants use generative AI tools. To address the challenge, we utilize 

OpenAI’s launch of ChatGPT 3.5 in November 2022 as a significant technological advance in 

generative AI development. ChatGPT 3.5, recognized for its contextual awareness and coherent 

conversations, rapidly achieved 100 million monthly active users within two months after its 

introduction (Reuters, 2023).8 However, ChatGPT 3.5’s ability to produce highly realistic text 

raises concerns about misinformation. Therefore, the launch provides a natural setting to test our 

 
7 We empirically verify that ChatGPT 3.5 hallucinates by querying it about listed firms’ management forecasts a total 

of 10,000 times. Our results show a substantial probability that ChatGPT 3.5 provides a forecast when the firm does 

not issue one or fails to provide a forecast when one is issued. Additionally, the probability of hallucination is 

significantly higher for firms that withhold information. For more details, see Section 2.2.1. 
8 https://www.reuters.com/technology/chatgpt-sets-record-fastest-growing-user-base-analyst-note-2023-02-01/ 

https://www.reuters.com/technology/chatgpt-sets-record-fastest-growing-user-base-analyst-note-2023-02-01/
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theoretical predictions on the crowding-out effect of AI processing.9  

Our model predicts that the probability of AI processing impacts managers’ disclosure 

incentives. We construct a firm-level measure of AI-savvy sell-side financial analyst coverage to 

proxy for the probability of AI processing. We categorize analysts as AI-savvy (“technical 

analysts”) if they possess technical skills (e.g., artificial intelligence) or have majored in technical 

subjects (e.g., STEM majors). Our empirical proxy relies on two assumptions. First, we assume 

that financial analysts with technical backgrounds are more likely to use generative AI and, thus, 

are potentially more aware of its information processing capabilities and the associated risks of 

misinformation. This assumption is supported by the survey evidence from Bick et al. (2024).10  

Second, we assume that interactions between technical analysts and managers (e.g., conference 

calls and investor days) enhance managers’ awareness of the benefits of AI-facilitated information 

processing and the potential for misinformation. This awareness incentivizes managers to adjust 

their disclosure strategies accordingly. Based on these assumptions, we classify firms covered by 

tech-savvy analysts as treated firms—whose managers are more aware of the costs and benefits of 

generative AI—while firms not covered by such analysts serve as the control group. In this context, 

the interaction term between the treatment indicator (coverage by AI-savvy analysts) and the post-

ChatGPT time indicator proxies for the probability of AI processing in our model. This approach 

allows us to assess whether and how information receivers’ reliance on generative AI affects firms’ 

information supply.  

We employ a difference-in-differences research design to assess the impact of AI processing 

on voluntary disclosure. Treated firms exhibit an economically significant reduction in managerial 

forecasts in the post-ChatGPT 3.5 periods, using various managerial forecasts from 2021Q1 to 

2023Q4 as proxies for voluntary disclosures. Specifically, we document a 19.8% reduction in the 

 
9 When GPT-3 was launched in June 2020, it was offered with limited access, and its training data had a delay, with 

the initial version trained up to October 2019. Similarly, GPT 3.5 was trained with data until September 2021, 

reflecting a lag in updates. While this delay raises concerns about AI’s ability to provide timely information, it does 

not negate the relevance of older data. Rather than serving as a search engine replacement, GPT models are better 

suited for analyzing existing documents, such as firm disclosures (e.g., 10-K reports). Additionally, GPT’s capacity 

to integrate real-time web data (even though its neural network may not have been trained by this data), along with 

competing models like Gemini, offers the possibility to access and process up-to-date information. This suggests that 

AI tools, even with a lag in training data, may remain valuable for information processing. 
10 Bick et al. (2024) document survey evidence that 46 percent of workers with STEM degrees use generative AI at 

work, compared with 40 percent for those with business, economics, or communication majors, and 22 percent for 

those in other fields, including liberal arts and humanities. 
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overall volume of managerial forecasts compared to the sample average forecast probability. The 

observed trend reflects a significant reduction in firms’ propensity to provide voluntary disclosures 

due to information users (such as analysts) increasingly relying on generative AI. This supports 

our main hypothesis on the crowding-out effect of generative AI usage on firms’ information 

supply. To reinforce the causal relationship, we estimate the dynamic treatment effects from 

periods before to after the introduction of ChatGPT 3.5. Consistent with parallel trends, we find 

no disparities in voluntary disclosure between treated and control firms before the introduction of 

ChatGPT 3.5. Changes in disclosure practices begin to emerge a quarter after the launch of 

ChatGPT 3.5. 

An exogenous shock to AI processing and the resulting decrease in firm disclosure does not 

ensure that our empirical findings align with the theoretical model. The gap between the empirics 

and theory may occur if our empirical proxy of firm-level AI processing does not accurately reflect 

AI processing in the model. Additionally, the correlation between AI processing and voluntary 

disclosure might be influenced by omitted economic factors. For example, firms with more 

technology-savvy analysts may have been more affected by the emergence of AI. Changes in firm-

level operational risks due to AI could affect managers’ incentive to issue forecasts.  

Although these threats to identification cannot be fully resolved without a randomized 

assignment of AI, we test another important implication of our explanation to provide additional 

support for the theoretical mechanism. The impact of AI processing on firms’ voluntary disclosure 

is potentially more pronounced for more complex firms. The intuition is that, for complex firms, 

AI processing is more likely to encounter and mistakenly interpret unrelated information as 

relevant to the firm’s fundamentals, thereby increasing the potential for misinformation. This 

heightened probability of AI-hallucinated misinformation leads to a stronger effect on voluntary 

disclosure decisions. Empirically, we employ a triple difference-in-differences design and find 

consistent evidence that the decline in disclosure by treated firms after the introduction of 

ChatGPT is more pronounced for complex firms, as measured by whether firms have foreign 

operations.  

Moreover, we empirically test the beneficial effect of generative AI in mitigating humans’ 

information processing failures, as highlighted in the model. However, the probability of 

processing failure by information recipients is a deep parameter within the model and is 
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empirically unobservable. We adopt the structural approach outlined by Smith (2024) and estimate 

the information processing speeds of voluntary disclosure for both the treatment and control firms 

from before to after the ChatGPT 3.5 introduction.11 The underlying rationale is that information 

processing failures should manifest in a reduced speed of price discovery, as humans need more 

time to find the information. Our findings show that investors’ processing speeds increase for 

treated firms with management forecasts in the post-ChatGPT 3.5 periods relative to control firms, 

which is consistent with a lower likelihood of processing failures.  

Next, we explore whether the introduction of ChatGPT 3.5 has increased the overall 

information embedded in stock prices. We estimate the structural model in Smith (2024) to assess 

the changes in overall information being incorporated into stock prices after the introduction of 

ChatGPT 3.5. Importantly, we find an insignificant net effect on the information embedded in 

stock prices. One potential explanation is that the AI’s positive effect on mitigating information 

processing failures is offset by a negative crowding-out impact on firms’ information supply.12 

Nevertheless, we caution against overinterpreting this result. The net effects of ChatGPT 3.5 may 

take time to materialize and may not be fully captured by our analysis within this relatively limited 

investigation window. 

Furthermore, our model not only predicts a crowding-out effect on disclosure but also offers 

a testable implication about market reactions to disclosure. Since investors cannot perfectly 

distinguish between real and hallucinated disclosures, they apply a Bayesian correction (i.e., a 

discount) to observed disclosures. We use analyst forecast revisions around the issuance dates of 

management forecasts to identify market participants’ reactions to management forecasts. 

Consistent with the theory, we document that analysts’ reactions to management forecasts are 

significantly lower for treated firms following the launch of ChatGPT 3.5.  

 
11 Note that management forecasts are typically released alongside earnings announcements within a short timeframe 

(Rogers and Van Buskirk, 2013). In this context, using Smith’s (2024) approach, the processing speed of management 

forecasts reflects investors’ ability to process information embedded in both earnings announcements and management 

forecasts. To distinguish the specific processing speed of management forecasts, we compare two scenarios: earnings 

announcements from firms that issue management forecasts versus earnings announcements from firms without 

concurrent managerial forecasts. This comparison helps us to tease apart the processing speed attributed solely to 

management forecasts from those associated with both earnings announcements and managerial forecasts. See 

Section 5.3 for more details. 
12 Our findings of an insignificant increase in the informativeness of stock prices may help address an alternative 

explanation that investors utilize AI tools to become relatively more informed, which reduces the information gap 

between investors and managers and thus reduces managers’ incentives to issue forecasts (e.g., Verrecchia, 1983). 
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 Last, we explore the implications of the minimum principle in evidence games (Acharya et 

al., 2011; Guttman et al., 2014) by testing whether increased AI processing increases the non-

disclosure threshold and associated non-disclosure price. To this end, we utilize future earnings 

per share (EPS) as a measure of the non-disclosure threshold and employ the price-to-earnings (PE) 

ratio and Tobin’s Q as proxies for current non-disclosure prices. We test whether there are 

increases in these variables for firms choosing non-disclosure when their analysts increasingly rely 

on generative AI. Our results show an increase in the non-disclosure threshold, measured as a 

higher average future EPS for non-disclosing firms. Furthermore, we observe that the average PE 

and Tobin’s Q are higher for non-disclosing firms, which potentially reflects changes in investors’ 

posterior beliefs about non-disclosing firms following the introduction of ChatGPT-facilitated AI 

processing.  

Taken together, our tests using the ChatGPT introduction imply that AI processing enhances 

information processing speed while reducing firms’ information supply. However, we caveat that 

our model only seeks to address the trade-off between two primary factors: the concern of 

misinformation and the enhanced information processing capacity of generative AI. Other factors 

beyond our model may also contribute to the crowding-out effect in managerial forecasts in the 

real world. For example, Einhorn (2018), Banerjee et al. (2024), and Libgober et al. (2023) model 

environments in which other parties may possess private information separate from the firm’s 

disclosures. To the extent that AI facilitates access to such private information, these mechanisms 

may also be at play. However, these theories further demonstrate that the effects of these 

mechanisms can be subtle and, under certain conditions, lead to crowding-in. Another related study 

by Frenkel et al. (2020) identifies a potential for crowding out when a third party discloses 

information that may have been strategically withheld. Therefore, our empirical tests serve 

primarily as supportive evidence for one mechanism but do not exclude other explanations. 

Beyond validating the primary crowding-out prediction, our additional tests—including cross-

sectional analyses of firm complexity, processing speed assessments, evaluations of stock price 

informativeness, examinations of the sensitivity of analyst revisions to disclosure, and minimum 

principle tests—further substantiate multiple predictions that, jointly, are tied to our proposed 

theoretical mechanism. 

Nonetheless, while our findings are consistent with the trade-off between misinformation 
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concerns and enhanced information processing capacities described in our model, we recognize 

that they pertain to the early stages of AI processing and may evolve as the technology advances. 

On the one hand, the impact of AI-hallucinated misinformation could decrease with the 

development of new algorithms aimed at mitigating such misinformation.13 On the other hand, 

there is an increasing risk that third parties may deliberately abuse ChatGPT-related technologies 

to produce hard-to-verify fake news. These factors extend beyond the scope of our empirical 

analyses. 

  

II. Related Literature and Institutional Background  

2.1. Related Literature  

Our research advances the literature along several directions, with a particular focus on the 

rapidly evolving research on the processing of corporate disclosures. The foundational literature 

primarily focuses on frictions to communication due to characteristics of the information received 

by the disclosing firm, which prevent the disclosure of unfavorable information (e.g., Verrecchia, 

1983;  Dye, 1985). Recent research, by contrast, emphasizes frictions originating from the users 

of information, as users may face processing costs and capacity constraints when collecting and 

analyzing information from multiple sources (Blankespoor et al., 2020). These frictions, in turn, 

feed back into market prices and alter firms’ incentives to disclose voluntarily. We contribute to 

this line of research by theoretically integrating the challenge of misinformation, a particularly 

salient issue in the era of technology-assisted information processing. Our theoretical contribution 

is based on the presumption that AI-assisted information processing makes it more difficult, 

relative to humans, to identify “unknowns” (i.e., knowing when information does not exist)14 and 

easier to process “knowns” (i.e., when firms disclose the information). 

Second, our study extends the large body of empirical research on the determinants of 

corporate voluntary disclosure and market reactions to these disclosures (Beyer et al., 2010). We 

 
13 Example mitigation techniques include retrieval augmented generation (RAG) and knowledge graph integration 

(Gao et al., 2023; Pan et al., 2024).  
14 See Li et al. (2024) for a comprehensive survey of the literature on the honesty of large language models (LLMs). 

Honesty is a crucial principle for aligning LLMs with human values, as it requires these models to accurately recognize 

and communicate the limits of their knowledge. However, current LLMs still exhibit significant dishonest behaviors, 

such as confidently providing incorrect answers instead of admitting uncertainty with statements like “I don’t know” 

when they lack sufficient information. 
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provide empirical evidence on the impact of misinformation generated by generative AI on firms’ 

information supply. Our identification strategy and empirical measures are motivated by model 

parameters (e.g., probability of AI processing, processing failures, non-disclosure threshold and 

prices, etc.), and the findings are consistent with the model’s comparative statics.  

Our findings relate to those of Cao et al. (2023) but differ in several important aspects. Cao et 

al. (2023) show that firms make their SEC filings more machine-friendly when more information 

recipients use machines to download these filings. We focus on the benefits and costs of AI 

processing. On the benefit side, we estimate the structural model by Smith (2024) and document 

the positive impact of AI in mitigating information processing failures, which are empirically 

unobservable but can be inferred through structural estimation. On the cost side, we demonstrate 

that the potential for misinformation undermines the credibility of corporate disclosure and 

diminishes the voluntary supply of information. This highlights a significant crowding-out effect, 

where the presence of AI-hallucinated misinformation can obscure the value of real corporate 

disclosures, thereby influencing asset price informativeness. Our findings on the crowding-out 

effect of AI on information supply may be of general societal interest, as they may serve as a 

forewarning of new challenges emerging in the digital economy.  

A recent empirical study by Bertomeu et al. (2024) explores how the ChatGPT ban in Italy 

impacts information users, specifically the behavior of financial analysts. Their findings show that 

the ban discourages financial analysts from intermediating information and leads to greater 

information asymmetry among investors. This paper differs in several key ways. First, we focus 

on the trade-off between the information processing benefits of ChatGPT and its misinformation 

generation, and the resulting impacts on the information supplier—firm managers. Second, our 

finding that increased AI information processing does not significantly alter the information 

embedded in stock prices is not necessarily inconsistent with their results. The ChatGPT ban in 

Italy was short-lived, lasting only one month, and therefore, it may not have the time to 

significantly impact managers’ information supply decisions.15  

2.2. Institutional Background on AI Hallucinations 

Large language models (LLMs) show great promise in supporting investment-related tasks, 

 
15 In fact, our results in Figure 5 suggest that it may have taken at least one quarter for management forecast policies 

to adjust to the presence of AI processing, and the estimated coefficient of the second quarter is small.   
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such as analyzing corporate disclosures and forecasting earnings (Kim et al., 2024a, 2024b). 

However, these advancements come with challenges, notably the tendency of LLMs to produce 

“hallucinations,” or generate misleading information. AI hallucination has become a major 

concern given that LLMs may generate false information at an unexpectedly high frequency.16 

Merriam-Webster (2023) defines hallucination as “a plausible but false or misleading response 

generated by an artificial intelligence algorithm.” Hallucinations have garnered considerable 

media attention (Weise and Metz, 2023), and U.S. President Biden issued an Executive Order 

emphasizing the need for safeguards against misleading outputs from generative AI systems 

(Biden, 2023).  

2.2.1. Verification Test on ChatGPT 3.5 Hallucinations  

We empirically validate the potential of hallucinations in ChatGPT 3.5. Specifically, we access 

the GPT 3.5-Turbo API and use a prompt to request management forecasts for EPS for fiscal year 

2020. We randomly select 50 firms in our sample that issued forecasts for 2020, and 50 firms that 

did not. For each firm, we prompt ChatGPT with the following question: “What is [firm_name]’s 

management forecast for EPS for the fiscal year 2020? Your response should follow exactly the 

same pattern and do not add any additional words: 1. If there is a management forecast, return The 

value of the forecast: followed by ONLY a specific value or a range. 2. If there is no management 

forecast, return ONLY There is no management forecast.” We query ChatGPT 100 times for each 

of the 100 firms, resulting in 10,000 responses. 

Figure 1 illustrates the frequency of hallucination rates for firms with (red) and without (blue) 

management forecasts. We classify ChatGPT 3.5’s responses as hallucinations if ChatGPT 

provides a forecast when the firm did not issue one for fiscal year 2020 or ChatGPT fails to provide 

a forecast when one was issued. The hallucination rate for each firm is calculated by dividing the 

 
16 LLMs are built on deep learning architectures, typically using transformer networks. These models are trained on 

vast amounts of text data, learning patterns, and associations within the language by predicting the next word or 

sequence of words. This allows LLMs to generate human-like text based on the input they receive. See Kim et al. 

(2024a) section II. A for explanations of ChatGPT’s transformer architecture.  

In the computational literature, numerous explanations have been proposed for why LLMs hallucinate. First, 

hallucinations can occur due to inadequacies in the training data, which includes either false information within the 

training data itself (e.g., Ji et al., 2023) or outdated data that fail to account for current events and lead to gaps in 

accuracy (e.g., Aksitov et al., 2023). Second, hallucinations can occur due to the sequential generation of text. LLMs 

generate fluent and coherent text by predicting each subsequent word based on patterns in their training data, which 

can result in plausible sounding yet factually incorrect responses since they are optimized for text generation rather 

than verifying factual accuracy. Notably, Kalai and Vempala (2024) demonstrate a statistical lower bound on the rate 

at which pre-trained language models produce hallucinations. 
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number of hallucinated responses by the number of queries (i.e., 100). The histogram bars denote 

the frequency of hallucination rates, while the fitted density lines highlight the overall trends within 

each group of firms. We observe that ChatGPT 3.5 significantly hallucinates more for firms 

without management forecasts (the blue group).  

 
Figure 1: Histogram of Hallucination Rates by Firms With and Without Management Forecasts 

Table 1 presents the detailed statistics of ChatGPT 3.5’s hallucinations. First, we show that 

the hallucination rate is significantly higher for firms without disclosure (61.5%) compared to 

those with disclosure (23.3%), resulting in a statistically significant difference of 38.2%. This 

finding supports our model’s assumption that AI processing is more prone to generating 

misinformation when firms withhold disclosures. Second, conditional on ChatGPT providing an 

answer on management forecast, we assess the accuracy of its responses by calculating the absolute 

difference between ChatGPT’s answer and the actual EPS for fiscal year 2020. We also create a 

scaled measure by dividing the absolute difference by the stock price and multiplying by 100. 

Across both measures (rows 2 and 3), we find that ChatGPT’s answers are less accurate (i.e., 

higher absolute differences) for firms without management forecasts compared to those with 

forecasts, and the differences across the two groups of firms are statistically significant. Our results 

demonstrate that ChatGPT 3.5 generates significantly more hallucinations and incurs more 



 

12 

 

significant errors for firms without management forecasts, highlighting the increased risk of 

misinformation and inaccuracies when firms withhold information. 

Table 1: Summary Statistics of ChatGPT 3.5’s Hallucinations 
 Mean  

      Difference 

(1) – (2) 
Non-Disclosure 

Firms 

(1) 

Disclosure 

Firms 

(2) 

Hallucination Rate 0.615 0.233        0.382 (t=10.86) 

Forecast Error 3.057 1.951      1.106 (t=6.90) 

Forecast Error/Price(*100) 20.857 4.429        16.428 (t=5.13) 

 

III. Theoretical Framework  

3.1. Assumptions and Equilibrium 

We consider a disclosure game in the spirit of Dye (1985) and Jung and Kwon (1988), where 

an informed manager communicates information to investors. Our objective is to develop a 

straightforward economic trade-off capturing the potential differential impacts of AI versus human 

information processing. To achieve this, we employ an abstract model featuring a representative 

investor who can choose to process information either with an AI system or through human 

analysis. While this approach is not intended to offer descriptive realism, it aims to capture 

economic tensions from both types of information processing. We include the proofs for this 

section in Appendix B.  

In the model, the manager privately observes a value 𝑣̃, drawn from a distribution with c.d.f. 

𝐹( .) and p.d.f. 𝑓(. )  with support over 𝑉 = [𝑣, 𝑣‾]  and mean 𝜇 . The firm manager can report 

truthfully or, strategically, remain silent, which we write as 𝑑(𝑣) ∈ {𝑣, ∅} . We maintain the 

assumption that prosecuting strategic withholding is not possible and assume an informed manager 

to keep the model as minimal as possible. However, as will become evident in the model’s 

discussion, this assumption is not critical to our analysis. There are no other costs to disclose, and 

the model is intentionally designed so that any friction to information processing is sufficient to 

prevent classical unraveling (Milgrom, 1981; Dickhaut et al., 2003; Bourveau et al., 2020; Jin et 

al., 2021). 

Specifically, the investor does not directly observe the disclosure but instead processes an 

imperfect signal, consistent with theories of rational information processing (Blankespoor et al., 

2020; Bertomeu et al., 2023). With probability 𝑝 ∈ [0,1], investors’ information collection is 
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described as “human processing.” Humans have limited attention (Hirshleifer and Teoh, 2003; 

Abramova et al., 2020) and may fail to observe the disclosure with probability 𝑞 ∈ [0,1], in which 

case their information set is 𝑑ℎ(𝑣) = ∅ regardless of 𝑑(𝑣). With complementary probability 1 −

𝑞, human processing is able to correctly observe 𝑑ℎ(𝑣) = 𝑑(𝑣). The investor prices the firm 

according to the Bayes’ rule as 𝑃ℎ(𝑥) = 𝔼(𝑣 ∣ 𝑑ℎ(𝑣) = 𝑥) . When observing 𝑑ℎ(𝑣) = ∅ , the 

investor cannot differentiate whether the message is unobserved due to inattention or strategically 

withheld by the manager.17 

With probability 1 − 𝑝, the investor relies on AI to collect information. Unlike humans, the 

AI can always process the sender’s disclosure. We denote the AI’s observable report as 𝑑𝑎(𝑣) =

𝑣 conditional on disclosure.  However, the AI hallucinates when there is no disclosure, creating a 

new random noise signal 𝑑𝑎(𝑣) = 𝑣̃𝑎, similar to noisy talk in Blume et al. (2007) or fake news in 

Frenkel et al. (2024).18 We wish to avoid situations in which the noise is exogenously biased to 

issue good (resp., bad) signals, since then this would bias the analysis toward the AI rewarding 

(resp., punishing) non-disclosure. Hence, we set 𝑣𝑎 to be drawn from 𝐹(.) so the noise is calibrated 

to the correct distribution.19  

The noise signal 𝑣̃𝑎 is independent from the true fundamentals, and the AI is not reporting to 

the user whether 𝑣𝑎  or 𝑣  is being observed. In other words, we assume that the user cannot 

distinguish between misinformation and the true signal. The user applies Bayes’ rule, thereby 

rationally processing the imperfect information provided by the AI and recognizing that the signal 

may be garbled. 

We summarize the timeline of the model in Figure 2 below. 

 
17 Imperfect human processing is mathematically equivalent to the friction described by Dye (1985), as the information 

sets are identical whether the investor fails to receive the disclosures or the manager is uninformed and therefore 

unable to disclose. For the sake of exposition, we introduce an investor-level friction to create greater symmetry in 

the model between AI and human frictions. Our results remain robust even if the human is always informed (𝑞 = 0). 
The inclusion of imperfect human processing simply ensures that the model does not inherently assume that humans 

are superior to AI in terms of information processing. 
18 While AIs increasingly have the capacity to consult factual sources, this functionality is not always reliable. In our 

model, we assume that the AI always hallucinates, which is not literally accurate, as in reality, an AI might sometimes 

recognize when an answer does not exist or when it is unable to locate one. This model serves as a conceptual 

simplification to highlight the core idea. However, the comparative statics remain applicable in a generalized model 

where the AI may not always hallucinate with positive probability. Specifically, assuming that the AI is less prone to 

hallucination would increase voluntary disclosure by shifting the disclosure threshold closer to classical unraveling. 
19 This assumption also ensures that, in principle, a user cannot identify if an AI is systematically hallucinating by 

repeating a query many times and comparing the distribution of 𝑣̃𝑎 to 𝐹(.).  
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Figure 2: Model Timeline 

Definition 1.1 An equilibrium is given by a disclosure policy 𝑑(𝑣) ∈ {𝑣, ∅}, a pricing function 

after human 𝑃ℎ(. ) or AI 𝑃𝑎(. ) processing, and expected prices 𝑃(𝑣) conditional on disclosure and 

𝑃(∅) conditional on withholding, such that: 

(i) The manager discloses, 𝑑(𝑣) = 𝑣, when the payoff from disclosure is greater than the expected 

payoff from non-disclosure: 

   𝑝(𝑞𝑃ℎ(∅) + (1 − 𝑞)𝑃ℎ(𝑣)) + (1 − 𝑝)𝑃𝑎(𝑣)⏟                            
=𝑃(𝑣)

> 𝑝𝑃ℎ(∅) + (1 − 𝑝) ∫  𝑃𝑎(𝑣)𝑓(𝑣)𝑑𝑣⏟                      
=𝑃(∅)

 (1)

and does not disclose, 𝑑(𝑣) = ∅, when 𝑃(𝑣) < 𝑃(∅);  

(ii) Prices are formed according to the Bayes’ rule: (ii.a) 𝑃ℎ(𝑣) = 𝑣 and 𝑃ℎ(∅) = 𝔼(𝑣 ∣ 𝑑ℎ(𝑣) =

∅), (ii.b) 𝑃𝑎(𝑣) = 𝔼(𝑣̃ ∣ 𝑑𝑎(𝑣̃) = 𝑣). 

3.2. Analysis 

We restrict the attention to a threshold equilibrium (Guttman et al., 2014; Aghamolla and 

Smith, 2023), in which the receiver discloses if and only if 𝑣 ≥ 𝜏. The marginal discloser 𝑣 = 𝜏 

satisfies the indifference condition that sets Equation (1) at equality. Conditional on this threshold, 

the non-disclosure price set by the human is  

𝑃ℎ(∅) =
𝑞𝜇 + (1 − 𝑞) ∫  

𝜏

𝑣
 𝑣𝑓(𝑣)𝑑𝑣

𝑞 + (1 − 𝑞)𝐹(𝜏)
, (2) 

which is equal to the belief in Jung and Kwon (1988) since it is equivalent whether the manager is 

uninformed and cannot disclose or, as we assume here, the manager does disclose but there is a 

chance (𝑞) the message is not received. 
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The determination of the price 𝑃𝑎(𝑣) that follows an AI report is more complex, because the 

investor must determine this expectation by taking into account that the AI message is potentially 

garbled. There are two cases to consider. 

If 𝑑𝑎(𝑣) < 𝜏, the investor knows that the report must be a hallucination because the manager 

would never have disclosed a message below the threshold in the equilibrium. Hence, the investor 

forms the price based on a rational belief that the manager withholds signals below 𝜏, which 

implies that 𝑃(𝑣) = 𝔼( 𝑣̃ ∣ 𝑣̃ < 𝜏 ). In this case, the manager realizes no informational rents in 

expectation, because the garbled message perfectly reveals strategic withholding. Similar to 

Versano (2021), where non-disclosure conveys significant information when paired with 

discretionary disclosure, a garbled signal that provides no direct information about fundamentals 

can still be informative to the investor. 

In contrast, if 𝑑𝑎(𝑣) ≥ 𝜏 , the price must satisfy Bayes’ rule, requiring a probabilistic 

assessment of whether the AI is accurately reporting the sender’s signal or misreporting a 

hallucinated signal due to the manager’s non-disclosure. The price is a weighted average over two 

probabilistic events: 

𝑃𝑎(𝑣) =
𝐹(𝜏)𝑓(𝑣)𝔼( 𝑣̃ ∣ 𝑣̃ ≤ 𝜏 ) + (1 − 𝐹(𝜏))𝑓(𝑣)𝑣

𝐹(𝜏)𝑓(𝑣) + (1 − 𝐹(𝜏))𝑓(𝑣)
= 𝐹(𝜏)𝔼( 𝑣̃ ∣ 𝑣̃ ≤ 𝜏 ) + (1 − 𝐹(𝜏))𝑣.   (3) 

In the first event, the firm withholds information but the AI hallucinates, with probability 

𝐹(𝜏)𝑓(𝑣). The investor receives an average payoff of 𝔼( 𝑣̃ ∣ 𝑣̃ ≤ 𝜏 ), which reflects the manager’s 

strategic withholding. In the second event, the firm reports the information, which is then correctly 

processed by the AI, with probability (1 − 𝐹(𝜏))𝑓(𝑣). Then, the investor receives the payoff  𝑣. 

In equilibrium, the threshold discloser 𝑣 = 𝜏∗ must satisfy the indifference condition: 

𝑝(𝑞𝑃ℎ(∅) + (1 − 𝑞)𝜏
∗) + (1 − 𝑝)𝑃𝑎(𝜏

∗) = 𝑝𝑃ℎ(∅) + (1 − 𝑝)∫  𝑃𝑎(𝑣)𝑓(𝑣)𝑑𝑣, (4) 

where the left-hand side is the expected payoff from disclosure, in which case the human may not 

observe the message with probability 𝑞 but the AI always observes it. The right-hand side of 

Equation (4) is the expected payoff from withholding, in which case the human always prices the 

message at the non-disclosure price but the AI hallucinates a new uninformative random signal 

leading to a price 𝑃𝑎(𝑣̃). 

Lemma 1.1 The expected price conditional on a hallucination  
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𝐻 ≡ ∫  𝑃𝑎(𝑣)𝑓(𝑣)𝑑𝑣 = 𝐹(𝜏
∗)𝔼(𝑣̃ ∣ 𝑣̃ ≤ 𝜏∗) + (1 − 𝐹(𝜏∗))𝜇 (5) 

is lower than the unconditional mean 𝜇. 

Lemma 1.1 further demonstrates that hallucinations do not result in a complete loss of 

information, even though the observed message is independent of the firm’s fundamentals. With 

probability 𝐹(𝜏∗), the hallucinated message is below 𝜏∗, which reveals to the user the presence of 

strategic withholding. As a result, hallucinations imply an expected payoff that is strictly less than 

the unconditional mean, proportional to the probability that strategic withholding is revealed. 

We characterize below the disclosure threshold by simplifying the equations above and using 

an integration by parts to express the solution in terms of the unconditional mean and the 

distribution function.  

Proposition 1.1 There exists an equilibrium, and the equilibrium threshold 𝜏∗  is given by a 

solution to 

(
(1 − 𝑝)(1 − 𝐹(𝜏∗))(𝑞 + (1 − 𝑞)𝐹(𝜏∗))

𝑝(1 − 𝑞)⏟                        
≡𝜁

+ 𝑞)(𝜇 − 𝜏∗) = (1 − 𝑞)∫  
𝜏∗

𝑣

 𝐹(𝑣)𝑑𝑣. (6)
 

Further, the equilibrium has the following properties: 

(i) 𝜏𝑑 < 𝑃ℎ(∅) < 𝜏
∗ < 𝐻 < 𝜇, where 𝜏𝑑 is the solution with human processing only (𝑝 = 1); 

(ii) If 𝐹(.) is logconcave, 𝜏∗is unique.  

We consider two special cases with only human or AI processing. In the special case of 𝑝 = 1 

(i.e., only human processing), Equation (6) simplifies to the threshold in Jung and Kwon (1988). 

In comparison, in the special case of 𝑝 = 0 (i.e., only AI processing), the disclosure threshold is 

𝜏∗ = 𝜇, so that the manager discloses if and only if the signal is above average. Intuitively, with 

only AI processing, the manager is always better off resampling a new garbled message, which, 

on average, will compare favorably to the unconditional mean. Human processing reduces this 

benefit because there is a non-zero probability that a non-disclosure is detected, which triggers an 

unfavorable posterior belief 𝑃ℎ(∅) < 𝜏
∗. 

We prove more generally in Proposition 1.1 that the manager will tend to disclose less with 

AI processing, that is, 𝜏∗ > 𝜏𝑑, where 𝜏𝑑 is the solution with human processing only (i.e., 𝑝 = 1). 

Specifically, relative to Jung and Kwon (1988), Equation (6) contains an additional positive term 
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𝜁 =
1−𝑝

𝑝
× (𝑞 + (1 − 𝑞)𝐹(𝜏∗)) ×

1−𝐹(𝜏∗)

1−𝑞
, 

which increases the net benefit of withholding. 

To gain additional intuition, we decompose 𝜁 into three parts. The first part (i.e., 
1−𝑝

𝑝
) is the 

odds ratio of the AI processing to the human processing, which captures the importance of the 

distortion due to AI. The second term (i.e., 𝑞 + (1 − 𝑞)𝐹(𝜏∗)) reflects that the AI only facilitates 

pooling when choosing a non-disclosure, as it is only in this case that the AI muddles the message. 

In other words, holding all else equal, the effect of AI processing is proportional to the probability 

of non-disclosure. The third part (i.e., 
1−𝐹(𝜏∗)

1−𝑞
) captures the interaction between human and AI 

processing and is the odds ratio of the probability of a manager’s voluntary disclosure to the 

probability of informative human processing (i.e., 1−𝑞 , where 𝑞  is the probability of human 

processing failure). As 1 − 𝐹(𝜏∗) becomes larger, the manager is more likely to use the AI’s 

hallucinations to pool a non-disclosure with above-threshold disclosures. However, the greater 

1 − 𝑞, the higher the risk that the manager will be identified as engaging in strategic non-disclosure 

by attentive human processing. 

The presence of this last term can be further explained by ranking several possible ex-post 

outcomes for the manager. The non-disclosure price set by human processing (i.e., 𝑃ℎ(∅)) is a 

weighted average of signals below 𝜏  and the unconditional distribution of 𝑣̃  when the human 

involuntarily fails to process information. Hence, humans always respond skeptically to a non-

disclosure, that is, 𝑃ℎ(∅) < 𝜇. Consistent with models with uncertain information endowment, 

strategic reporting involves pooling with below-average types and requires a threshold 𝜏∗ < 𝜇. 

This property is preserved in the presence of AI processing. 

Comparing Equations (3) and (5) and given that we have shown that 𝜏∗ < 𝜇, it must hold that 

𝑃𝑎(𝜏
∗) < 𝐻. Hence, the marginal discloser, whose preferences determine the equilibrium threshold, 

is better off when the AI hallucinates, even though they might occasionally receive a price 

𝔼( 𝑣̃ ∣ 𝑣̃ ≤ 𝜏 ) ≤ 𝑃𝑎(𝜏
∗) with probability 𝐹(𝜏∗). Central to the intuition of our model, the manager 

tends to withhold information to induce a hallucination. As 1 − 𝐹(𝜏∗) increases, the hallucinated 

signal becomes less informative because there are fewer revealing messages below the threshold 

𝜏∗. Therefore, withholding information becomes more attractive to the marginal discloser. 
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Combining 𝑃𝑎(𝜏
∗) < 𝐻 and the indifference condition in Equation (4), we deduce that 𝜏∗ > 

𝑃ℎ(∅). This implies that, unlike in Jung and Kwon (1988), where these terms are equal, the human 

is relatively more skeptical of non-disclosure in the presence of AI processing. Consequently, the 

manager tends to withhold information 𝑣 ∈ (𝑃ℎ(∅), 𝜏
∗),  which would have attained a higher price 

under only human processing. The manager avoids disclosing infra-marginal news in the presence 

of AI processing, expecting that the non-disclosure may be garbled by the AI. Taken together, the 

disclosure probability is lower with AI processing than with only human processing.   

3.3. Comparative Statics 

As discussed above, a positive probability of AI processing implies less disclosure than only 

human processing. Additionally, a model with only AI processing achieves the lowest level of 

disclosure (i.e., when 𝑝 = 0, 𝜏∗ = 𝜇) and is such that the manager discloses only above-average 

news. We prove in Corollary 1.1 below the full comparative static in human processing probability 

𝑝. Specifically, the disclosure threshold (i.e., 𝜏∗)  is increasing in the probability of AI processing 

(i.e., 1 − 𝑝). The intuition is similar to the corner values of 𝑝 and relies on how hallucinations 

muddle the non-disclosure signal. 

Corollary 1.1 If 𝐹(. )  is log-concave, 𝜏∗  and 𝑃ℎ(∅)  are increasing in the probability of AI 

processing 1-𝑝. 

Another property of the non-disclosure price under AI processing is that the disclosure 

threshold 𝜏∗ > 𝜏𝑑 no longer satisfies the minimum principle, a well-known property in this type 

of model stating that the equilibrium threshold 𝜏𝑑 minimizes the non-disclosure price (Acharya et 

al., 2011). The minimum principle is derived from the intuition that an informed manager can 

always separate by disclosing, and such separation is privately beneficial to the discloser if and 

only if it reduces the non-disclosure price. Hence, the existence of possibly lower non-disclosure 

prices would imply that such profitable deviations exist, contradicting the equilibrium behavior. 

In contrast, disclosers in our model can never perfectly separate because they are endogenously 

pooled with hallucinations. As a result, the minimum principle breaks down. Consequently, the 

non-disclosure price must be higher than it would be absent AI processing, and because 𝑃ℎ(∅) is 

increasing for 𝜏 ≥ 𝜏𝑑 , a higher probability of AI processing (monotonically) leads to less 

skepticism and a higher non-disclosure price. 
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Finally, the presence of AI processing will tend to increase skepticism toward actual 

disclosures, since investors anticipate the possibility of a below-threshold hallucination. As shown 

in Corollary 1.2 below, the price conditional on disclosure and the price response sensitivity to 

disclosed signals are decreasing in the probability of AI processing.  

Corollary 1.2 The expected price conditional on disclosure 𝑀(𝑣) ≡ 𝑝𝑣 + (1 − 𝑝)𝑃𝑎(𝑣) and the 

price response sensitivity 𝑀′(𝑣) are increasing in 𝑝. 

To provide additional intuition, we consider two parametric versions of the model that 

illustrate how unraveling fails in the presence of AI processing. First, assume that firm value 

follows a centered uniform distribution 𝑣̃ ∼ 𝑈(−𝜎, 𝜎) . The price conditional on a human 

observing non-disclosure can be explicitly written as: 

𝑃ℎ(∅) = −
1

2

(1 − 𝑞)(𝜎2 − 𝜏2)

𝜎 + 𝜏 + 𝑞(𝜎 − 𝜏)
. (7) 

Equation (6) implies that 𝜏∗ is a solution to a third-order polynomial.20 In the limit case where the 

human is almost always able to perfectly process the message (i.e., 𝑞 → 0), the price becomes: 

𝑃ℎ(∅) =
−𝜎 + 𝜏

2
, (8) 

which implies that the human always perfectly infers that a non-disclosure is due to strategic 

withholding. However, having humans perfectly process the message alone is not sufficient to lead 

to unraveling in our model because there is a probability 1 − 𝑝 that the AI processes the signal and 

the AI hallucinates a signal upon a strategic non-disclosure. Specifically, we solve for 𝜏∗: 

𝜏∗ = 𝜎
1 − √1 + 4𝑝(1 − 𝑝)

2(1 − 𝑝)
, (9) 

which decreases in 𝑝 from 𝜏∗ = 0 when 𝑝 = 0 and the information is always processed by an AI, 

to 𝜏∗ = −𝜎  when 𝑝 = 1 and the information is always processed by a human. Hence, in this 

example, the manager discloses less when there is a higher probability of AI processing.  

Second, we consider a normal distribution where 𝑣̃ ∼ 𝑁(0, 1). Figure 3 below illustrates 

how the disclosure threshold (𝜏∗) varies with the probability of human processing (𝑝) and the 

probability of human processing failure (𝑞). The disclosure threshold is decreasing (increasing) in 

 
20  This polynomial can be simplified to −(1 − 𝑝 − 𝑞 + 𝑝𝑞)(𝜏∗)3 + (𝑝 − 2𝑞 + 𝑝𝑞2)(𝜏∗)2 + (1 + 𝑝 + 𝑞 − 𝑝𝑞 −
2𝑝𝑞2)𝜏∗ + 𝑝(1 − 𝑞)2 = 0. 
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human processing probability (processing failure). In other words, a greater likelihood of AI 

processing or imperfect human processing reduces the probability of disclosure. Interestingly, in 

this specification, the disclosure threshold is approximately symmetric with respect to the two 

probabilities. This suggests that AI processing has a quantitative effect comparable to the friction 

in human processing. 

 

Figure 3: Disclosure Threshold With 𝑣̃ ∼ 𝑁(0, 1) 

 

IV. Empirical Hypotheses and Sample Construction 

4.1. Hypothesis Development 

Our model introduces AI, a critical information processing technology, into a disclosure game 

where an informed manager decides whether to communicate the information. We assume that the 

investor does not directly observe the disclosure and is subject to information processing 

constraints (Blankespoor et al., 2020), relying on an information intermediary using either AI or 

human processing. Our model illustrates the differential impacts of AI-driven versus human-driven 

information processing on managers’ disclosure incentives. 

First, we hypothesize that increased use of AI processing reduces firms’ voluntary disclosures. 

This hypothesis stems from the notion that AI is more prone to generating misinformation when 

substantive information is lacking, such as when a firm does not disclose. Typically, non-

disclosure elicits skepticism from investors, who may interpret it as withholding unfavorable news. 

However, misinformation produced by AI is more easily mistaken for true disclosures. 
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Furthermore, the value of voluntary disclosure diminishes as investors discount disclosed 

information due to the increased risk of misinformation. Consequently, higher probabilities of AI 

processing incentivize firms to withhold information, as non-disclosure leads to more favorable 

expected price reactions. Our first hypothesis follows:  

Hypothesis 1: Increased use of AI processing by information receivers diminishes firms’ 

incentives to disclose voluntarily. 

Second, the effect of AI processing on voluntary disclosure depends on the potential for AI-

generated errors, especially when firm-specific information is unavailable. This potential for errors 

increases for more complex firms, where the AI may find unrelated information and interpret it as 

relevant to a firm’s fundamentals, particularly if it did not originate from the firm. Conversely, for 

relatively simple firms, the risk of misinformation is less pronounced because the user is better 

able to recognize whether there is misinformation. Hence, the impact of AI processing on firms’ 

voluntary disclosure is stronger when the likelihood of hallucinations is higher or when 

misinformation produces less predictably identifiable signals.21 

Hypothesis 2: The impact of AI processing on firms’ voluntary disclosure is more pronounced 

for more complex firms. 

A key assumption in our model is that the use of AI reduces information processing failures. 

However, a significant empirical challenge is that receivers’ information processing failures are 

inherently unobservable. To overcome this challenge, we rely on the close relation between 

information processing failures and value-relevant information not being incorporated into the 

stock price in a timely manner. In this context, processing failures can be empirically captured by 

the speed at which relevant information is incorporated into the prices. Therefore, we use 

information processing speed as a manifestation of information processing failure and propose the 

following hypothesis: 

Hypothesis 3: Increased use of AI processing increases the information processing speed (i.e., 

reduces human processing failures). 

Next, we shift our focus to the impact of AI processing on investors’ beliefs and price reactions. 

An important implication of our theory is that investors become more skeptical of firms’ voluntary 

disclosures in the presence of AI-generated hallucinations. Because investors must consider the 

 
21 We derive this hypothesis from the generalized models in Section 6.  
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potential for hallucinations, they discount observed disclosures. This contrasts with standard 

disclosure models, where any disclosure reflects the actual evidence and is not discounted. Our 

fourth hypothesis follows: 

Hypothesis 4: Increased use of AI processing reduces the sensitivity of information users’ 

responses to firms’ voluntary disclosures. 

Last, our model predicts that increased use of AI processing raises both non-disclosure 

thresholds and prices. This hypothesis derives from the theoretical implication of the minimum 

principle in evidence games (Acharya et al., 2011; Guttman et al., 2014). According to this 

principle, if an informed sender can disclose all her evidence without friction, the equilibrium 

disclosure threshold minimizes the non-disclosure price compared to all other possible thresholds. 

However, the presence of AI processing complicates the disclosure of evidence and moves the 

equilibrium away from this minimum, thereby increasing the non-disclosure price. In other words, 

beyond studying the effect of AI on disclosure, we can test the impact of AI processing on non-

disclosure prices, which provides an empirical test of the minimum principle in evidence games. 

Hypothesis 5: Increased use of AI processing increases the non-disclosure thresholds and 

investors’ posterior beliefs about the fundamentals of non-disclosing firms.  

4.2. Sample Construction and Measurement of Key Variables 

We construct our sample by combining multiple datasets. We use quarterly management 

forecasts reported in the I/B/E/S Guidance database from January 1, 2021, to December 31, 2023, 

covering 5,920 U.S. firms. We obtain data on institutional ownership from the Thomson Reuters 

13F institutional holdings database. Firm-level characteristics are from Compustat Fundamental 

Quarterly, and stock prices are from CRSP Security Daily.  

To identify sell-side financial analysts’ backgrounds, we match analysts surveyed by I/B/E/S 

with the résumé data from Revelio Labs. 22  We employ fuzzy matching, utilizing both the 

brokerage houses’ and analysts’ names, to match analysts on I/B/E/S with the records from Revelio 

Labs.23 Our final sample consists of 6,689 sell-side financial analysts located in the United States. 

 
22 Revelio Labs is a leading provider of labor market analytics, gathering information from professionals’ online 

profiles and resumes on platforms such as LinkedIn. 
23 We note that I/B/E/S only provides abbreviated brokerage house names and the analysts’ last names along with 

their first initials. We use ChatGPT to expand the abbreviated brokerage names into their full names. After the fuzzy 

matching between I/B/E/S and Revelio Labs, we manually review and exclude incorrect matches. 
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We proxy for analysts’ likelihood of using AI based on their skills and educational histories. 

Following Frank et al. (2023), we classify analysts as “technical analysts” if they possess technical 

skills such as machine learning, artificial intelligence, and advanced statistics or if they have 

majored in technical fields—primarily science, technology, engineering, or mathematics (STEM) 

subjects.24 In our sample, 1,944 out of 6,689 analysts (29%) are classified as technical analysts. 

Our final dataset comprises 9,866 firm-quarter observations covering 2021Q1 to 2023Q4 after 

matching datasets and keeping observations with complete data for all key variables. Our sample 

comprises 1,252 U.S. firms, which are covered by at least one analyst with available resume 

information and whose management has issued at least one forecast during the sample period. We 

winsorize all continuous variables, except for return and volatility, at the 1st and 99th percentiles to 

reduce the influence of outliers. 

Table 2 presents the summary statistics. An average firm-quarter in our sample has a market 

capitalization of $21.17 billion (Size) and a book-to-market ratio of 0.48 (BM). The average firm-

quarter has a leverage ratio of 30.3% (Leverage), with negative quarterly earnings 23.4% of the 

time (Loss), and earnings higher than four quarters ago 57.8% of the time (EPS Increase). The 

average firm-quarter has around 11 analysts providing at least one forecast on EPS for the firm 

over the quarter (AnalystCover), with 81.4% of shares held by institutional investors (InsOwn) and 

36.0% held by the top five institutional investors (InsOwnTop5). 

Regarding voluntary disclosure, an average firm issues 0.81 management forecasts per quarter 

on various financial metrics (MgrForecasts – All). Of these, 0.17 forecasts pertain to EPS 

(MgrForecasts – EPS) and 0.39 to sales (MgrForecasts – SALES). Among analysts matched to 

valid resume information from Revelio Labs, 18.3% are likely to use AI (Tech Analyst). In our 

sample, 525 firms (41.9%) are covered by at least one technical analyst, while 727 firms (59.1%) 

are covered exclusively by non-technical analysts. 

 

V. Empirical Analyses  

 
24 Bick et al. (2024) present survey evidence showing that workers with STEM degrees adopt generative AI in their 

roles at significantly higher rates than those with other majors. According to the August 2024 wave of the Real-Time 

Population Survey, 46 percent of STEM-educated workers utilize generative AI at work, compared to 40 percent of 

individuals with business, economics, or communication majors, and 22 percent of those in other fields, including 

liberal arts and humanities. 
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5.1. Testing the Impact of AI Processing on Voluntary Disclosure  

Our first hypothesis posits that managers disclose less when the probability of AI processing 

is higher. To empirically test this, we focus on the introduction of ChatGPT 3.5, a transformative 

large language model that may positively impact AI processing. We examine differences in 

the disclosure practices of firms covered by analysts with varying levels of technical expertise 

from before to after the introduction of ChatGPT 3.5 in 2022Q4. Our identifying assumption is 

that analysts with greater technical proficiency are more likely to adopt generative AI tools, 

thereby making managers more aware of the benefits of AI-facilitated information processing and 

the risks associated with AI-generated misinformation. 

Empirically, we estimate the following difference-in-differences design: 

                            Mgr Forecasts
i,t

=  β
1
TechAnalyst

i
× Postt + Controls +αt+γ

i
+ ϵi,t,                   (10) 

where Mgr Forecasts
i,t

 is an indicator variable that equals one if the firm i issues at least one 

forecast in quarter t and zero otherwise.25 TechAnalyst
i
 equals one if the firm i is covered by at 

least one technical analyst at the end of 2021 (i.e., before the ChatGPT introduction) and zero 

otherwise. Postt equals one for all quarters after 2022Q4 (inclusive). We follow Abramova et al. 

(2020) in controlling for other firm-level characteristics that could affect corporate disclosure. 

Specifically, the control variables include institutional ownership, return, loss, EPS increase, 

absolute change in EPS, leverage, size, BM, return volatility, and analyst coverage. We lag all 

control variables by one quarter and present variable definitions in Appendix A. We include firm 

and year-quarter fixed effects to absorb unobserved heterogeneity at the firm level regarding 

voluntary disclosure decisions and common time-series shocks. We cluster standard errors by firm 

to account for within-firm correlations over time. 

Table 3 reports the results testing the differential impacts of the ChatGPT introduction on 

quarterly management forecasts from 2021 to 2023 between firms covered by technical analysts 

and other firms. Firms covered by technical analysts significantly lower their number of 

management forecasts compared with control firms after the introduction of ChatGPT. Regarding 

economic magnitudes, the probabilities of issuing at least one forecast on any financial metric, 

EPS, and sales decrease by 19.8%, 37.0%, and 19.8%, respectively, relative to the sample mean 

 
25 Our main results remain robust when using the number of management forecasts as an alternative dependent variable 

and applying a Poisson regression to deal with the count data.  
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probability. Our findings indicate that managers at firms covered by tech-savvy analysts 

significantly reduce voluntary disclosure following the introduction of ChatGPT.  

Our difference-in-differences design hinges on the crucial assumption that treated firms 

(those covered by technical analysts) and control firms exhibit comparable disclosure trends in the 

periods before the introduction of ChatGPT. A potential concern is that firms covered by technical 

analysts may have been influenced by broader business or technological trends. While we cannot 

entirely rule out the possibility that such trends coincide with the introduction of ChatGPT, such a 

scenario would likely exhibit pre-existing patterns in the firms’ disclosure practices before 

ChatGPT’s launch. To assess this assumption, we examine the dynamic treatment effects of 

ChatGPT introduction from 2021Q1 to 2023Q4. Our specification follows:  

                Mgr Forecasts
i,t

= β
s

∑ TechAnalyst
i
×Ds(t)

s=-7~+4,s≠-1

+Controls +αt+γ
i
+ ϵi,t,                   (11) 

where the control variables are the same as those in Equation (10). Ds(t) is a set of indicator 

variables that take value one if, in quarter t, the introduction of ChatGPT is s quarters away. For 

example, D0(t) equals one in 2022Q4 and zero otherwise, while D1(t), D2(t), D3(t), and D4(t) are 

indicator variables for each of the four quarters after the introduction of ChatGPT. Similarly,  

D-7(t),…, D-1(t) are indicator variables for each of the seven quarters before the introduction of 

ChatGPT. 

 Figure 5 presents our findings. The results do not reject the parallel trends assumption, as 

there are no significant differences in management forecasts between treated and control firms 

during the seven quarters preceding the introduction of ChatGPT. In 2022Q4, with the launch of 

ChatGPT 3.5, the impact of AI processing on voluntary disclosure begins to turn negative, 

although it remains insignificant. This finding suggests that the introduction of ChatGPT 3.5 in 

November 2022 does not produce an immediate impact. Notably, the reduction in disclosure by 

treated firms persists and intensifies in the subsequent quarters, indicating a sustained effect of AI 

processing on firms’ disclosure practices. 26  This pattern is consistently observed across 

 
26 We note that the introduction of ChatGPT 3.5 coincides with a broader rise in AI technology that offers sufficient 

flexibility for adoption by market participants. Our difference-in-differences design cannot determine whether the 

observed effects are specifically attributable to ChatGPT or to other AI-assisted tools that proliferate following its 

release. Our primary focus is on whether the overall growth in AI processing influences corporate disclosure practices, 

rather than attributing the effects to any single generative AI tool. As shown in Figure 5, the impact of AI processing 

intensifies over time, consistent with other AI tools than ChatGPT contributing to this effect. 
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management forecasts for all financial metrics, EPS, and sales, as shown in Panels A, B, and C. 

5.2. How Firm Complexity Affects the Relation Between AI Processing and Voluntary 

Disclosure   

 We test the second hypothesis that the impact of AI processing on firms’ voluntary disclosure 

is more pronounced for more complex firms. Intuitively, AI is more prone to misinterpreting 

unrelated information as relevant to a firm’s fundamentals when dealing with more complex firms. 

In contrast, the risk of misinformation is less significant for simpler firms because inaccuracies are 

more easily recognized by the AI or the user.  

Empirically, we measure firms’ complexity using international operations data from the 

Compustat Historical Segments File, focusing on international operations as a key source of 

corporate complexity. International operations amplify earnings volatility by exposing firms to 

additional economic factors, such as currency and political risks, regulatory interventions, and 

market turbulence (Duru and Reeb, 2002). We predict that the decline in voluntary disclosure for 

treated firms after the introduction of ChatGPT is concentrated in more complex firms. Our 

specification follows:  

Mgr Forecasts
i,t

= β
1
TechAnalyst

i
×Postt×Complexity

i
+ β

2
TechAnalyst

i
×Postt 

+ β
3
Complexity

i
×Postt+Controls+αt+γ

i
+ ϵi,t,                  (12) 

where Complexity
i
 is proxied by two measures: (1) whether the firm operates at least one foreign 

segment outside the U.S., and (2) the number of geographic segments.27 Table 4 reports the results. 

Consistent with our hypothesis, the decline in disclosure by treated firms is generally more 

pronounced for the firms that are more complex. For foreign operations (columns 1 to 3), the 

interaction term TechAnalyst × Post × Complexity is significantly negative, while TechAnalyst × 

Post is generally negative but not statistically significant. These results hold across all management 

forecasts, EPS forecasts, and sales forecasts. Turning to geographic segments (columns 4 to 6), the 

incremental treatment effect is much weaker for more complex firms. Taken together, our results 

imply that the crowding-out effect of AI information processing on firms’ voluntary disclosure is 

 
27 We follow Cohen and Lou (2012) in including only firms where the total sales of all segments account for at least 

80% of firm-level sales, ensuring the validity of both measures of firm complexity. Our results remain robust after 

removing this sample restriction. 
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significantly stronger for firms with foreign operations, where AI is potentially more likely to 

confuse unrelated information with firms’ actual disclosures.   

5.3. Testing the Impact of AI Processing on Information Processing Speed 

A key assumption and benefit of AI processing is its ability to reduce information processing 

failures. However, these failures are empirically unobservable, making it challenging to directly 

measure their reduction. To address this issue, we utilize the structural model developed by Smith 

(2024), which allows us to estimate the information processing speed. The strength of this 

approach lies in its use of daily stock return data to infer unobservable deep parameters, such as 

the processing speed and incremental informativeness of the earnings announcements, and its 

ability to disentangle abnormal earnings announcement volatility. By leveraging this model, we 

can indirectly capture the impact of AI on investors’ ability to process information, offering 

insights into how AI reduces information processing failures in our model. 

Our empirical exercise involves measuring the speed at which capital markets process new 

information from management forecasts. However, the majority of management forecasts are 

bundled with earnings announcements, as they are generally released within a short time window 

(Rogers and Van Buskirk, 2013). This means that the identified information processing speed of 

management forecasts reflects the speed of processing combined earnings announcements and 

management forecasts.28 Our identification approach thus has to rely on two scenarios: 1) for firms 

with management forecasts, Smith’s (2024) method captures the speed of processing the bundled 

management forecasts and earnings announcements, and 2) for firms without management 

forecasts, it captures the speed of processing earnings announcements alone.29 Therefore, the 

comparison between these two scenarios helps isolate the specific speed of processing 

management forecasts. The model utilizes daily stock return variances as inputs, which capture the 

perceived uncertainty associated with the information content of EAs and non-earnings sources. 

Our empirical analysis examines volatility throughout the quarter following an EA to understand 

the dynamics of information processing, distinguishing periods influenced by EA-related 

 
28 We note that in our sample, 93.7% of management forecasts are announced within a [-1, +2]-day range relative to 

earnings announcement dates. Our results remain robust when we restrict the sample to firm-quarters with 

management forecast dates falling within this [-1, +2]-day window. 
29 We identify earnings announcement (EA) dates following DellaVigna and Pollet (2009) by comparing EA dates 

from IBES and Compustat, selecting the earlier date when discrepancies arise. 
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information from those driven by non-earnings information arrivals. 

Importantly, a failure in information processing in our model is interpreted as low information 

processing speed in Smith (2024). We employ the ∅̂(x) statistic estimated from Smith’s (2024) 

structural model. ∅̂(3) (∅̂(5)) represents the fraction of earnings information processed by the 

market three (five) days after the earnings release, indicating the extent of investor uncertainty 

reduction within that period. For each firm, we estimate two ∅̂(x): one for the pre-period using 

four quarters before 2022Q4 and the other for the post-period using four quarters after 2022Q4 

(inclusive).30  

We conduct a difference-in-differences analysis of the changes in information processing 

speeds for treated firms compared with control firms from before to after the introduction of 

ChatGPT 3.5 in Nov. 2022. We estimate the following specification:   

∅̂(x)i,t=  β
1
TechAnalyst

i
× Postt + Controls + αt + γi

+ ϵi,t,                     (13) 

The treatment sample consists of public firms covered by at least one tech-savvy financial analyst, 

while the control sample includes public firms without such coverage. The pre-period covers the 

four quarters prior to 2022Q4, and the post-period consists of the four quarters starting from 

2022Q4 (inclusive).  

Table 5, Panel A presents the results of our firm-level analysis of the information processing 

speed of earnings announcements. We report results for three different samples of firms: full 

sample (columns 1 and 4), firm-quarters with management forecasts (columns 2 and 5), and firm-

quarters without management forecasts (columns 3 and 6). First, we do not find significant 

evidence in the full sample that firms covered by tech-savvy analysts show higher information 

processing speeds post–ChatGPT introduction than control firms, although the coefficients are 

directionally consistent with higher processing speed (columns 1 and 4). Second, subsample 

analyses reveal that information processing speed significantly increases for firm-quarters with 

management forecasts (columns 2 and 5), while no significant impact is observed for firm-quarters 

 
30 The average of firm-level measure of information speed (∅̂(3)) is 0.31, which means that around 31% of the 

information from a typical earnings announcement is processed within the first three days following the 

announcement. We note that our estimate is lower than the 0.79 reported by Smith (2024) for the full sample. One 

potential explanation is that our estimation is conducted at the firm level, capturing more idiosyncratic information, 

whereas Smith (2024) uses a group-level model, which averages out firm-specific idiosyncrasies. Thus, while a 

significant portion of information is integrated quickly, much of the firm-specific information takes longer to fully 

influence investor valuations.  
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without management forecasts (columns 3 and 6).31  In other words, the processing speed of 

bundled management forecasts and earnings announcements increases, whereas the processing 

speed of stand-alone earnings announcements does not significantly change. These findings 

suggest that AI processing may facilitate the market’s interpretation of voluntary disclosures. 

5.4. Testing the Impact of AI Processing on the Informativeness of Earnings Announcements 

Another benefit of the approach by Smith (2024) is that it jointly estimates the informativeness 

of earnings, including immediate informativeness (I), earnings horizon (H), and adjusted 

incremental informativeness ((𝜋𝑁𝑅 − 𝜋𝑅)̂
𝑎𝑑𝑗). The estimates are used to infer the effect of EAs in 

reducing investor uncertainty. We use these measures to assess the changes in the informativeness 

of voluntary disclosures post-ChatGPT introduction. While our model does not have explicit 

predictions on incremental informativeness, the test on informativeness allows us to rule out 

alternative factors driving the reduced managerial forecasts. For example, Verrecchia (1983) 

suggests that voluntary disclosure decreases in managers’ relative information advantage over 

external investors. Better-informed investors, facilitated by AI utilization, could lead to more 

informativeness of stock prices, thereby reducing the need for voluntary disclosure. While this 

alternative explanation does not align with Hypotheses 2, 4, and 5, which suggest evidence of 

information muddling due to AI, it proposes an alternative mechanism with a testable implication. 

To address both the stand-alone question of whether generative AI enhances the informativeness 

of stock prices, given its potential crowding-out effect, and to assess this alternative explanation, 

we examine the impact of AI processing on total information content. 

We conduct a difference-in-differences analysis to test changes in the informativeness of 

earnings announcements for treated and control firms. We report the results in Table 5, Panel B, 

for three different samples of firms: full sample (columns 1, 4, and 7), firm-quarters with 

management forecasts (columns 2, 5, and 8), and firm-quarters without management forecasts 

(columns 3, 6, and 9).32 First, we do not find significant evidence in the full sample that AI 

processing affects the informativeness of earnings announcements. Second, focusing on the 

subsample of firm-quarters with management forecasts, we find significant evidence that AI 

 
31 Regarding economic magnitudes, the two processing speed measures, ∅̂(3) and ∅̂(5), increase by 47.6% and 60%, 

respectively, relative to the sample mean of firm-quarters with management forecasts. 
32 We note that the firm-level estimates of 𝐼 and (𝜋𝑁𝑅 − 𝜋𝑅)̂

𝑎𝑑𝑗  have larger standard errors than the estimates in Smith 

(2024).  
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processing increases the earnings horizon (column 2). Additionally, AI processing has 

insignificant but positive effects on immediate informativeness (column 5) and adjusted 

incremental informativeness (column 8). These results suggest that AI’s enhanced processing 

capacity, compared to human processing, facilitates the incorporation of information from 

voluntary disclosures into prices. This finding is consistent with our results in Table 5 Panel A that 

information processing speed increases in the post-period for firms covered by tech-savvy analysts. 

Last, we do not find a significant impact of AI processing on the informativeness of firm-quarters 

without management forecasts.33 Overall, our results suggest that the introduction of AI processing 

tools, such as ChatGPT, potentially enhances the information quality of earnings announcements 

for firms that provide management forecasts. However, for firms that withhold information, our 

analyses imply that the risk of misinformation potentially offsets the benefit of increased 

processing speed, leaving the net effect on informativeness ambiguous. 

5.5. Testing the Sensitivity to Disclosure using Analyst Forecast Revisions Around Management 

Forecasts  

We examine whether the probability of AI processing influences the sensitivity of market 

participants’ reactions to disclosures. In our model, increased AI processing elevates the disclosure 

threshold, thereby increasing the likelihood of misinformation. As market participants may not 

differentiate real versus hallucinated disclosures, they become more skeptical, leading to muted 

reactions to firms’ real disclosures.34  

To test this prediction, we examine analyst forecast revisions around the issuance dates of 

management forecasts to capture market participants’ reactions to management forecasts (Rogers 

and Van Buskirk, 2013; Hsu and Wang, 2021). Analyst forecast revisions serve as a high-

frequency measure of how new information from management forecasts is incorporated into 

market participants’ expectations of firms’ future performance.35 Our specification follows:  

 
33 In untabulated analyses, we employ the empirical framework of Lundholm and Myers (2002) to assess the forward-

looking information embedded in current stock prices on firms’ future performance. Similar to Lundholm and Myers 

(2002), we regress current quarterly stock returns on lagged quarterly earnings, current earnings, and future earnings, 

controlling for future quarterly stock returns. Consistent with our findings in Table 5, Panel B, we do not observe 

significant increases in the forward-looking information of stock prices for treated firms following the introduction of 

ChatGPT. 
34 We acknowledge that empirically, we have only one stock price per firm, making it challenging to disentangle stock 

price reactions resulting from AI processing from those due to human processing. 
35  An alternative is to use price responses to management forecasts. However, unlike forecast revisions, price 

responses tend to be much more volatile and not solely driven by current forecasts. 
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AFRevi,t= β1
TechAnalyst

i
×Postt×MFNewsi,t +  β2

TechAnalyst
i
×Postt + β3

Post
t
×MFNewsi,t 

+ β
4
TechAnalyst

i
×MFNewsi,t + Controls + αt + γi

+ ϵi,t,      (14) 

where AFRev is calculated as the difference between the first analyst forecast issued after the 

managerial guidance date and the last analyst forecast issued before the managerial guidance date, 

scaled by the firm’s stock price three trading days before the guidance date. MFNews proxies for 

the new information in management forecasts and is calculated as the difference between 

managerial guidance and the last analyst forecast prior to the guidance date, scaled by the firm’s 

stock price three trading days before the guidance date. We include firm and year-quarter fixed 

effects and cluster standard errors by firm. 

Table 6 presents our findings. We utilize the full sample in columns 1 and 4, the subsample 

with positive MFNews in columns 2 and 5 (i.e., management forecast is higher than the last analyst 

forecast), and the subsample with negative MFNews in columns 3 and 6 (i.e., management forecast 

is lower than the last analyst forecast). First, columns 1 to 3 show that analyst forecast revisions 

respond strongly to management forecast news, indicating that analysts promptly incorporate 

management forecast information into their forecasts. Second, analysts’ reactions to management 

forecasts are significantly muted for firms that are covered by technical analysts in periods after 

the ChatGPT introduction (i.e., TechAnalyst×Post×MFNews is significantly negative in column 

4). Third, this effect is particularly more pronounced for positive MFNews and not significant for 

negative MFNews (i.e., TechAnalyst×Post×MFNews is significantly negative in column 5 but not 

in column 6), which potentially suggests that it is more challenging to differentiate positive 

disclosures from AI-generated hallucinations than negative ones. Our findings indicate that the 

widespread adoption of AI processing following ChatGPT’s introduction—particularly among 

firms covered by technical analysts—leads to an increase in AI-hallucinated disclosures blending 

with real disclosures, thereby reducing the market’s responsiveness.  

5.6. Testing The Minimum Principle  

Our final hypothesis posits that higher probabilities of AI processing elevate non-disclosure 

thresholds and prices. In evidence games where a sender can disclose all available evidence upon 

receipt, a common property known as the “minimum principle” dictates that the equilibrium 

disclosure threshold minimizes the non-disclosure price relative to all other possible thresholds. 

However, the introduction of AI processing shifts the equilibrium away from this minimum, 
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resulting in increased non-disclosure prices. We evaluate the impact of AI processing on investors’ 

pricing of non-disclosing firms, thereby providing an empirical test of the minimum principle in 

voluntary disclosure models. 

Empirically, we assess investors’ pricing of non-disclosing firms by restricting our analysis to 

a subsample of firms without management forecasts. Our specification follows: 

ND Threshold or ND Pricesi,t= β1
TechAnalyst

i
×Postt+Controls+αt+γ

i
+ ϵi,t,            (15) 

where ND Threshold is proxied by future EPS, which is earnings per share for firm i in quarter 

t+1. ND Prices  are proxied by current Price-to-Earnings Ratio (PE) and Tobin’s Q, where 

PE is the price at the end of the quarter t divided by earnings per share for firm i in quarter t. 

Tobin’s Q is defined as the market equity plus long-term debt and short-term debt in quarter t 

scaled by book assets for firm i in quarter t. We include firm and year-quarter fixed effects and 

cluster standard errors by firm. 

Table 7 presents the results. We find that among non-disclosure firms, the ones covered by 

technical analysts exhibit significantly higher future EPS, current PE, and current Tobin’s Q, 

compared with the control firms after the introduction of ChatGPT. These findings are consistent 

with the hypothesis that increased AI processing shapes investors’ posterior beliefs about the 

fundamentals of non-disclosing firms. 

5.7. Robustness Checks  

We conduct several robustness checks. First, our main analyses focus on managers’ quarterly 

forecasts, and we examine whether our results hold for annual management forecasts. Annual 

forecasts are less sticky than quarterly forecasts, involve significantly higher levels of uncertainty, 

and provide more information to the market. Consequently, annual management forecasts may 

better align with voluntary disclosure theory, which posits that investors must contend with 

substantial uncertainty about firm fundamentals. However, unlike interpretations that suggest 

managers have an uncertain information endowment—typically more relevant for longer 

horizons—our baseline model assumes that managers are always informed, while humans may not 

always process the information effectively. Nevertheless, we redo the analyses using annual 

management forecasts from 2018 and 2023 and present the results in Table 8. Consistent with our 

previous findings, we observe a significant decrease in annual management forecasts in the years 

following the introduction of ChatGPT for firms covered by technical analysts. 



 

33 

 

Second, we examine whether our main findings are robust to using an alternative definition 

of management forecasts and treated firms. Specifically, we use the number of management 

forecasts as the dependent variable and define a continuous treatment variable as the percentage 

of analysts with technical skills at the firm level. Table 9 shows that firms with a higher proportion 

of technical analysts issue fewer management forecasts following the introduction of ChatGPT. 

These results align with our earlier findings based on indicator variables for management forecasts 

and treated firms.  

 

VI. Model Extensions and Discussion of Hypotheses 

We aim to present straightforward intuition through a simple model, which is not intended to 

offer a general perspective on AI information processing. Nevertheless, we note that certain 

assumptions about the information structure can be altered or relaxed without significant 

qualitative changes to our analysis.  

6.1. The Investor Does Not Know Whether Processing Is by AI or Human 

Our baseline model assumes that the investor knows whether the message is processed by a 

human or an AI. This assumption reflects situations where investors use specific tools for 

information processing or have established relationships with their information intermediaries, 

which is particularly relevant for institutional investors who maintain long-term relationships with 

sell-side analysts from different brokerage houses. However, it is also possible to consider the 

opposite scenario where the investor lacks knowledge about the intermediary’s processing 

mechanism. While this introduces additional complexity to the model, we explore this case further 

and show that, under certain conditions, our analysis still holds. 

Denoting the price function as 𝑃(.), Equation (2) for the non-disclosure price 𝑃(∅) = 𝑃ℎ(∅) 

is unchanged because only human processing is consistent with no message being observed. 

Similarly, the price remains 𝑃(𝑣) = 𝔼( 𝑣̃ ∣ 𝑣̃ ≤ 𝜏 )  if 𝑣 ≤ 𝜏  because the user can infer in 

equilibrium that this disclosure is a hallucination following strategic withholding. However, the 

price 𝑃(𝑣)  conditional on a disclosure 𝑣 > 𝜏  must now incorporate the possibility of human 

processing: 
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𝑃(𝑣) =
𝑝(1 − 𝑞)𝑓(𝑣)𝑣 + (1 − 𝑝)(𝐹(𝜏)𝑓(𝑣)𝔼(𝑣̃ ∣ 𝑣̃ ≤ 𝜏) + (1 − 𝐹(𝜏))𝑓(𝑣)𝑣)

𝑝(1 − 𝑞)𝑓(𝑣) + (1 − 𝑝) (𝐹(𝜏)𝑓(𝑣) + (1 − 𝐹(𝜏))𝑓(𝑣))

 = 𝔼(𝑣̃ ∣ 𝑣̃ ≤ 𝜏) + 1𝑣≥𝜏 (1 −
1 − 𝑝

1 − 𝑝𝑞
𝐹(𝜏)) (𝑣 − 𝔼(𝑣̃ ∣ 𝑣̃ ≤ 𝜏))                   (16)

 

Compared to the baseline, the user is less skeptical toward AI disclosures because these could 

originate from a human and, vice-versa, more skeptical toward human disclosures, which can no 

longer be distinguished from the AI. The indifference condition at the disclosure threshold 

becomes: 

𝑝𝑞𝑃(∅) + (1 − 𝑝𝑞)𝑃(𝜏∗) = 𝑝𝑃(∅) + (1 − 𝑝)∫  𝑃(𝑣)𝑓(𝑣)𝑑𝑣. (17) 

Note that a greater probability that the human is subject to a friction makes the user more skeptical 

of all disclosures as they are more likely to be from an AI hallucination. Simple algebraic 

manipulations similar to Lemma 1.1 yield 

𝐻 ≡ ∫  𝑃(𝑣)𝑓(𝑣)𝑑𝑣 =
1 − 𝑝

1 − 𝑝𝑞
𝐹(𝜏)𝔼(𝑣̃ ∣ 𝑣̃ ≤ 𝜏) + (1 −

1 − 𝑝

1 − 𝑝𝑞
𝐹(𝜏))𝜇, (18) 

which implies that, for a given disclosure threshold, the hallucination is now more beneficial to 

the manager given the higher weight on 𝜇 and, for any threshold, the value of withholding is 

increased relative to the baseline information structure: 

𝑝𝑃(∅) + (1 − 𝑝)∫  𝑃(𝑣)𝑓(𝑣)𝑑𝑣 > 𝑝𝑃ℎ(∅) + (1 − 𝑝)∫  𝑃𝑎(𝑣)𝑓(𝑣)𝑑𝑣. (19) 

Vice-versa, a similar exercise implies the inequality: 

𝑝𝑞𝑃(∅) + (1 − 𝑝𝑞)𝑃(𝜏∗) > 𝑝(𝑞𝑃ℎ(∅) + (1 − 𝑞)𝜏
∗) + (1 − 𝑝)𝑃𝑎(𝜏

∗), (20) 

so that there is also a greater benefit to disclosure in the baseline information structure for the 

marginal discloser. Put differently, the lack of knowledge by the investor further muddles the 

message by jointly increasing the payoff to non-disclosure and the payoff to the marginal 

disclosure. 

The comparative statics of the probability of human processing is more complicated in this 

context. Specifically, if 𝑃(∅) is high relative to the (discounted) 𝑃(𝜏∗), which occurs when human 

processing is sufficiently ineffective (i.e., when 𝑞  is large), the manager will have stronger 

incentives to strategically withhold information. It is important to note that this scenario does not 
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arise when the probability or efficiency of human information processing is large because, in these 

cases, 𝑃(∅) is compared directly to 𝜏∗. 

To develop more intuition, we analytically examine the setting where the human is not subject 

to processing frictions (i.e., 𝑞 = 0) and demonstrate that our baseline conclusions remain valid. 

Consequently, by continuity, these conclusions also hold when human processing is sufficiently 

effective. We show in the Appendix that the equilibrium is characterized by 

(1 − 𝑝)(𝜇 − 𝜏∗)𝐹(𝜏∗) = 𝑝∫  
𝜏∗

𝑣

 𝐹(𝑣)𝑑𝑣, (21) 

which closely resembles the result of Jung and Kwon (1988), except that 1 − 𝑝 now represents the 

probability of AI processing, rather than an information endowment friction. Moreover, the left-

hand term is multiplied by 𝐹(𝜏∗). This additional term indicates that a hallucination is informative 

when sending a message below 𝜏∗, implying that the probability of disclosure is higher than in a 

comparably calibrated model with uncertain information endowment (i.e., a model where there is 

no hallucination, but the probability of information endowment is 𝑝). Furthermore, it can be readily 

verified that the equilibrium is unique if 𝐹(⋅) is log-concave, and that an increase in the probability 

of human processing 𝑝 leads to higher disclosure. 

When 𝑞 > 0, an additional factor influences the equilibrium: increased human processing 

raises the likelihood of achieving the (potentially high) non-disclosure price 𝑃(∅) and avoiding 

the AI’s processing of adverse news. In the limit, as 𝑞 approaches one, the non-disclosure price 

𝑃(∅) converges to the unconditional mean 𝜇, which is strictly higher than 𝑃(𝜏∗). Thus, in this 

context, more human processing can crowd-out voluntary disclosure. Figure 4 illustrates the 

disclosure threshold for the case where 𝑣̃ ∼ 𝑁(0,1) . While the surface is generally flat or 

decreasing in 𝑝, there is a region in the top right corner where the threshold (slightly) increases 

with the probability of human processing, consistent with the above intuition. In summary, this 

analysis suggests that in environments where all of the following conditions are met: (i) human 

processing is sufficiently imperfect, (ii) the probability of human processing is not excessively 

high, and (iii) investors are entirely unaware of the processing method, the probability of disclosure 

may decrease with increased human processing. 



 

36 

 

 

Figure 4: Disclosure Threshold With 𝑣̃ ∼ 𝑁(0,1): Unknown Processing 

6.2. Varying the Probability of AI Hallucination Upon Non-Disclosure 

We assume in the baseline model that the AI always generates a garbled signal when non-

disclosure occurs. This assumption ensures a model structure where only human processing can 

interpret non-disclosure. However, this may imply that the reduction in voluntary disclosures 

occurs not only because the AI cannot understand the absence of information, but also because the 

AI is extremely poor at processing information. 

To address this question, we modify the model so that the AI, upon non-disclosure, 

hallucinates a garbled signal unrelated to the firm’s fundamentals with probability 𝜌 ∈ (0,1).36 

With probability 1 − 𝜌, the AI does not hallucinate, and we explore two different formulations.  In 

the first formulation, we assume that the AI independently identifies the information even if it has 

not been disclosed. This variation represents an ideal scenario where the AI has access to more 

information than humans in both disclosure and non-disclosure situations, while still preserving 

the key aspect that human processing is better than AI processing at understanding the absence of 

 
36 The special case 𝜌 = 1 corresponds to the baseline model. 
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information.37 In the second formulation, we assume that the information known to the manager 

is not accessible to the AI, so the AI observes a non-disclosure with probability 1 − 𝜌. 

For the first formulation, generalizing Equation (3), the price conditional on a report 𝑣 is 

𝑃𝑎(𝑣) =
𝐹(𝜏)𝜌𝑓(𝑣)𝔼( 𝑣̃ ∣ 𝑣̃ ≤ 𝜏 ) + (1 − 𝐹(𝜏))(1 − 1𝑣<𝜏𝜌)𝑓(𝑣)𝑣

𝐹(𝜏)𝜌𝑓(𝑣) + (1 − 𝐹(𝜏))(1 − 𝜌1𝑣<𝜏)𝑓(𝑣)
,                            (22) 

such that infra-marginal reports 𝑣 < 𝜏 are more likely to originate from a hallucination and receive 

a lower price. We solve for the indifference condition as follows: 

𝑝(1 − 𝑞)(𝜏∗ − 𝑃ℎ(∅)) =
𝜌(1 − 𝑝)(1 − 𝐹(𝜏∗))

1 − (1 − 𝜌)𝐹(𝜏∗)
(𝜇 − 𝜏∗).                                 (23) 

The disclosure threshold is similar to the baseline model (i.e., with 𝜌 = 1 ) except that the 

equivalent probability of AI when mapping to the baseline is 𝑝′ > 𝑝 with 

1 − 𝑝′

𝑝′
=
1 − 𝑝

𝑝

𝜌

1 − (1 − 𝜌)𝐹(𝜏∗)
 ,                                                  (24) 

so that a lower probability of hallucination is “equivalent” to a model with more human processing 

and thus tends to feature a higher probability of disclosure. This is intuitive because making the 

AI more effective tends to reduce the disclosure frictions and moves the main prediction toward 

unraveling. 

   From this observation, one might conjecture that a sufficiently low probability of 

hallucination would reverse the crowding out effect of AI processing and unambiguously improve 

the information environment. Indeed, it is always the case that a lower 𝜌 increases the information 

released by the AI conditional on non-disclosure. When 𝜌 → 0, the AI becomes fully informative. 

However, this does not remove the crowding-out of voluntary disclosure: as we note next (subject 

to a unique equilibrium), the disclosure threshold remains decreasing in the probability of human 

processing regardless of 𝜌. The intuition for this result is that any hallucination pools below-

average news with above-average news, versus average news in the case of human processing. As 

such, any level of hallucination pushes the disclosure threshold above the level that would occur 

under human processing. 

 
37 It is important to recognize that in a voluntary disclosure model, the information disclosed may not be exclusive to 

the manager. Instead, it may consist of data that the manager has collected, which is also part of the public record but 

is difficult to find, access, or process. For example, detailed knowledge of the industry, competitors, or new 

innovations. Consequently, AI may be able to obtain this undisclosed information more effectively than humans. We 

evaluate this alternative scenario in the first formulation. 
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   In the second formulation, we assume that the manager’s signal is entirely private and cannot 

be accessed by the AI from other sources in the event of non-disclosure. The main difference with 

this setting is that the AI will assign a price: 

𝑃𝑎(∅) = 𝑃𝑎(𝑣) = 𝔼( 𝑣̃ ∣ 𝑣̃ ≤ 𝜏 )                                                         (25) 

conditional on non-disclosure or a disclosure of 𝑣 < 𝜏 , because this fully reveals strategic 

withholding. In turn, this implies that, in the absence of hallucination, the AI imposes a strongly 

skeptical belief with probability 1 − 𝜌  toward a non-disclosure - in fact, more skeptical than 

human processing 𝑃ℎ(∅). This heightened skepticism serves as a new incentive for managers to 

increase disclosure. 

   Using similar steps to solve for 𝑃𝑎(𝑣) for 𝑣 ≥ 𝜏 and 𝐻, and then solving for the indifference 

condition yields: 

            
(1 − 𝑝)(1 − 𝐹(𝜏))

1 − (1 − 𝜌)𝐹(𝜏)
(𝜌𝜇 + (1 − 𝜌)𝔼(𝑣̃ ∣ 𝑣̃ ≤ 𝜏∗) − 𝜏∗) = 𝑝(1 − 𝑞)(𝜏∗ − 𝑃ℎ(∅)),        (26) 

which we show in the Appendix, subject to the solution remaining unique, implies that 𝜏∗ 

monotonically converges to 𝜏𝑑 as 𝑝 converges to one. Evaluating at 𝑝 = 0, the comparative static 

in 𝑝 thus depends on the solution 𝜏0
∗ relative to 𝜏𝑑 where 

𝜌𝜇 + (1 − 𝜌)𝔼(𝑣̃ ∣ 𝑣̃ ≤ 𝜏0
∗) = 𝜏0

∗                                                    (27) 

and is such that the disclosure threshold is decreasing in 𝑝 if and only if 𝜌 is sufficiently large or 

𝑞  is sufficiently low. In other words, this result suggests that the crowding-out effect of AI 

processing on voluntary disclosure depends on the relative quality of AI processing compared with 

human processing. Specifically, the crowding-out effect occurs if the AI hallucination problem is 

sufficiently severe relative to human processing failure. 

6.3. The Manager is Informed About the Choice of Information Processing  

In our baseline model, we assume the manager has common knowledge of human processing 

probability 𝑝 but does not know with certainty how their information will be processed, enabling 

a more thorough exploration of the interaction between AI and human processing. However, this 

assumption is not essential to our hypothesis. If the manager is informed about AI processing, the 

problem can be framed as a game where, with probability 𝑝, the manager employs the Jung and 

Kwon (1988) threshold 𝜏∗ = 𝜏𝑑 , and with probability 1 − 𝑝 , the manager adopts the AI-only 

threshold 𝜏∗ = 𝜇. Consequently, the probability of disclosure increases with 𝑝 and thus decreases 
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with AI processing (i.e., 1 − 𝑝). The main difference is that the threshold becomes random and 

dependent on AI processing. 

An interesting variation of this information structure may arise if the manager endogenously 

chooses the type of information processing. While there may be additional legal considerations in 

delegating the disclosure decisions to AI, certain price considerations within the model may still 

be examined. Specifically, we assume that, upon observing 𝑣, the manager can choose between AI 

and human processing. One challenge is that equilibria with a single type of processing can be 

sustained, as long as investors believe that any off-equilibrium processing is chosen only by firms 

with sufficiently unfavorable private information. 

One manner to rule out such off-equilibrium forcing beliefs is to restrict the attention to 

equilibria in which all messages that need interpretation are on the equilibrium path, which rules 

out knife-edge equilibria in which the probability of hallucination or human processing is zero. In 

addition, noting that there would be no reason for the manager to condition their processing on 

private information when not disclosing it (since this renders it irrelevant), we assume that the 

manager always chooses AI when not disclosing. In summary, we consider an equilibrium in 

which information below 𝜏 is not disclosed and processed by AI, while given 𝑣 ≥ 𝜏∗, the manager 

can choose over AI versus human processing. 

Under AI processing, the update is given by Equation (3) and 𝑃(𝑣) = 𝐹(𝜏∗)𝔼(𝑣̃ ∣ 𝑣̃ ≤ 𝜏∗) +

(1 − 𝐹(𝜏∗))𝑣, which reduces the price sensitivity to the signal by (1 − 𝐹(𝜏∗)), whereas under 

human processing, the price is 𝑃ℎ(𝑣) = 𝑞𝑃ℎ(∅) + (1 − 𝑞)𝑣. The resulting mathematics of the 

model thus present a strong parallel to Aghamolla and Smith (2023), where a manager chooses 

between communication mechanisms with different price sensitivities and intercepts. Specifically, 

when 𝐹(𝜏∗) < 𝑞, AI processing can be interpreted in the model by Aghamolla and Smith (2023) 

as a “complex” disclosure which yields a higher price sensitivity but a greater discount on level 

due to the possibility of hallucinations. A non-disclosure paired with AI processing “obfuscates” 

information and is chosen by managers with bad news, while an “informative” disclosure with AI 

processing ensures that a greater fraction of the information is incorporated into the price. Vice-

versa, a “simple” human disclosure may involve a probability 𝑞 of information loss. As a result, 

the equilibrium involves both low and high signals being conveyed via AI, while intermediate 
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signals use human processing. Vice-versa, if 𝐹(𝜏∗) > 𝑞 , better news tends to rely on human 

processing.38 

6.4. Discussion on the Distribution of Misinformation Signals  

In our baseline model, we calibrate the distribution of AI-hallucinated signals to match the 

true distribution of firm fundamentals. This calibration ensures that hallucinations are neither 

systematically favorable nor unfavorable and is based on the assumption that large language 

models are generally pre-trained to have a realistic prior. If hallucinations were to produce more 

favorable or unfavorable news more frequently, AI processing could mechanically alter the 

probability of disclosure independently of the manager’s strategic considerations. 

We investigate alternative calibrations of AI-hallucinated signals. More generally, suppose 

that hallucinations draw a garbled message from a distribution with density 𝑔(⋅), resulting in an 

AI-generated price: 

𝑃𝑎(𝑣) = 𝔼(𝑣̃ ∣ 𝑣̃ ≤ 𝜏
∗) + 1𝑣≥𝜏∗

(1 − 𝐹(𝜏∗))𝑓(𝑣)

𝐹(𝜏∗)𝑔(𝑣) + (1 − 𝐹(𝜏∗))𝑓(𝑣)
(𝑣 − 𝔼(𝑣̃ ∣ 𝑣̃ ≤ 𝜏∗)),   (28) 

which generates more negative beliefs for events more likely to arise from a hallucination. 

 For illustrative purposes, consider a scenario where hallucinations are sufficiently biased 

toward unfavorable outcomes, such that the mass of 𝑔(⋅) is concentrated below the disclosure 

threshold 𝜏∗. In this case, hallucinations lead to 𝐻 = 𝑃𝑎(𝑣) = 𝔼(𝑣̃ ∣ 𝑣̃ ≤ 𝜏
∗), as they fully reveal 

the strategic withholding of information. The indifference condition is then given by: 

                        𝑝(𝑞𝑃ℎ(∅) + (1 − 𝑞)𝜏
∗) + (1 − 𝑝)𝜏∗ = 𝑝𝑃ℎ(∅) + (1 − 𝑝)𝔼(𝑣̃ ∣ 𝑣̃ ≤ 𝜏

∗),          (29)                               

which simplifies to 

                          (1 − 𝑝𝑞)(𝑃ℎ(∅) − 𝜏
∗) = (1 − 𝑝)(𝑃ℎ(∅) − 𝔼(𝑣̃ ∣ 𝑣̃ ≤ 𝜏

∗)).                           (30) 

Since the right-hand side is positive, the non-disclosure price 𝑃ℎ(∅) now exceeds the disclosure 

threshold 𝜏∗. Given that 𝑃ℎ(∅) follows a U-shaped curve with a minimum at 𝜏𝑑 = 𝑃ℎ(∅), it then 

follows that 𝜏∗ < 𝜏𝑑: the likelihood of disclosure increases compared to only human processing. 

In other words, hallucinations tend to be fully revealing, and AI processing provides more 

 
38 In an equilibrium where the marginal discloser uses AI, we have shown in the baseline model that 𝜏∗ = 𝜇. Further, 

for this equilibrium not to be AI-only, it must hold that 𝑞 < 𝐹(𝜇), indicating that 𝑞 < 𝐹(𝜇) is a sufficient condition 

for the existence of an equilibrium where sufficiently good news is processed by humans. 
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informational content than human processing, pushing the disclosure threshold toward 

unraveling.39 

Importantly, hallucinations that are biased toward favorable outcomes do not necessarily 

reduce the likelihood of disclosure. For instance, if hallucinations consistently imply a specific 

value 𝑣0, even if 𝑣0 approaches 𝑣‾, they become fully revealing. In summary, hallucinations that 

are more easily identifiable on the equilibrium path, either because they are unfavorable or 

predictable, will, in general, increase the value of AI for information processing and increase 

voluntary disclosure.  

 

VII. Conclusion 

This paper explores the trade-off between the benefits of enhanced information processing by 

AI and the potential drawbacks posed by misinformation. Our analysis starts with a disclosure 

game where firms, equipped with information about their fundamentals, must decide whether to 

disclose or withhold it. We depart from traditional models (e.g., Dye, 1985) by incorporating 

misinformation caused by the use of AI by market participants. Unlike human processing, AI is 

not limited by capacity but is prone to generating misleading signals when information is withheld. 

We obtain a set of new predictions from the model: while AI can enhance the processing of 

disclosed information, its potential for misinformation discourages voluntary disclosure, 

encouraging strategic non-disclosure. This crowding-out effect is driven by the potential for 

hallucination to camouflage a strategic non-disclosure. Users make a Bayesian correction to 

observed signals above the disclosure threshold, reducing their effect on firm value and the payoff 

from disclosure. 

Next, we employ an identification strategy to test our predictions empirically. Specifically, 

we use OpenAI’s launch of ChatGPT 3.5 in November 2022 as a significant advancement in AI-

facilitated information processing. By examining analysts’ propensity to adopt AI processing 

based on their educational background, we classify firms covered by these tech-savvy analysts as 

 
39 If 𝑞 were zero, unraveling implies 𝜏∗ = 𝑣. This case can only apply if the distribution of hallucinated messages does 

not have full support. This example is intended to illustrate the (potential) informational value of hallucinations and 

demonstrates that, on its own, misinformation does not necessarily reduce information and, in certain environments, 

could lead to unraveling. 
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treated firms, while those not covered are assigned to the control group, aligning with our 

theoretical model on how information receivers rely on generative AI. 

We apply the structural approach developed by Smith (2024) to document a positive effect of 

ChatGPT 3.5 in reducing processing failures, on average, for the treatment group, with an impact 

concentrated in firms with voluntary disclosures. This finding highlights the beneficial effect of 

AI processing. Then, we find that treated firms exhibit an economically significant reduction in 

providing managerial forecasts in the post-ChatGPT 3.5 period. This suggests that information 

users’ greater reliance on generative AI lowers firms’ propensity to disclose information 

voluntarily. We strengthen the link between our model and empirical tests by showing that 1) firm 

complexity further aggravates the crowding out effect of AI on firms’ disclosure, 2) non-disclosure 

treated firms exhibit an increase in disclosure threshold and a higher share price in the post-

ChatGPT 3.5 period (i.e., minimum principle suggested by Acharya et al. (2011) and Guttman et 

al. (2014)), and 3) the crowding-out effect further manifests in the analysts’ reduced responses to 

treated firms’ disclosures. 

An important caveat for our theoretical model is that it addresses only one, albeit presumably 

important, trade-off rather than incorporating all possible mechanisms. Specifically, we 

conceptualize a tension between the risk of misinformation and an advantage of generative AI in 

information processing capacity. The crowding-out effect on firms’ information supply serves as 

a cautionary tale, hinting at outcomes where digital advancements could lead to a decline in 

information provision. At the same time, additional research is needed to capture other important 

mechanisms through which AI affects information processing, as its effects extend well beyond 

misinformation. For example, greater access to AI may asymmetrically impact awareness and 

processing, level the playing field, enhance liquidity by making AI more accessible to 

unsophisticated investors, or correlate returns across different firms through the use of common 

information processing tools. While these important questions are beyond our current focus, our 

primary message is that AI involves trade-offs that may not always, or necessarily, lead to 

improvements in the information environment. 
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Appendix A: Variable Definitions 

Dependent Variables 

# MgrForecasts The number of forecasts issued by a firm within a quarter for all types of 

financial metrics, for EPS, and for sales, respectively. 

MgrForecasts An indicator equals one if a firm makes a forecast within a quarter for all types 

of financial metrics, for EPS, and for sales, respectively, and zero otherwise. 

EPS The earnings per share before extraordinary items and discontinued operations. 

PE The share price at the end of the quarter divided by earnings per share excluding 

extraordinary items in the same quarter. 

Tobin’s Q The market equity (price per share times the number of shares outstanding) plus 

long-term debt and short-term debt scaled by book assets. 

Independent Variables 

TechAnalyst  An indicator equals one if a firm is covered by at least one technical analyst at 

the end of 2021, and zero otherwise. 

Post An indicator equals one for quarters after 2022Q4 (inclusive), and zero 

otherwise. 

# Geographic Segments The number of geographic segments. We require the total sales of all segments 

within a firm to be larger than 80% of the firm-level sales (Cohen and Lou, 

2012). 

Foreign Operations An indicator equals one if a firm has a segment operating outside the U.S. and 

zero otherwise. We require the total sales of all segments within a firm to be 

larger than 80% of the firm-level sales (Cohen and Lou, 2012). 

Control Variables 

InsOwn The percentage ownership by institutional investors at the end of the quarter. 

InsOwnTop5 The percentage ownership by the five largest institutional investors at the end of 

the quarter. 

Return Cumulative stock return over the quarter. 

Loss An indicator equals one if the EPS is negative in the quarter. 

EPS Increase An indicator equals one if a firm reports an increase in earnings per share this 

quarter compared with four quarters ago. 

AbsEPSChange The absolute change in a firm’s earnings for the current quarter compared with 

four quarters ago, normalized by last year’s stock price. 

Leverage The sum of the amount of long-term debt exceeding maturity of one year and 

debt in current liabilities (including long-term debt due within one year) divided 

by the total value of assets. 

Size The market value of equity for a firm at the end of the quarter. 

BM The book value of a firm’s common equity divided by the market value of equity. 

Return Volatility The standard deviation of daily returns for a firm over the quarter. 

AnalystCover The number of analysts with at least one forecast on EPS for the firm over the 

quarter. 
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Figure 5: The Dynamic Treatment Effects of AI Processing on Voluntary Disclosure 

Around the Introduction of ChatGPT  

We assess the dynamic treatment effects of AI information processing on voluntary disclosure around the 

introduction of ChatGPT in 2022Q4. Specifically, we estimate the following specification:  

                Mgr Forecasts
i,t

= β
s

∑ TechAnalyst
i
×Ds(t)

s=-7~+4, s≠-1

+ Controls + αt + γi
+ ϵi,t,                    

where Mgr Forecasts
i,t

 is an indicator variable that equals one if the firm i issues at least one forecast in 

quarter t and zero otherwise. Ds(t) is a set of indicator variables that equals one if the time period is s quarters 

away from 2022Q4 (s=0 when ChatGPT was introduced), with the 2022Q3 (s=-1) omitted and used as the 

benchmark. TechAnalyst
i
 equals one if the firm i is covered by at least one technical analyst at the end of 

2021 (i.e., before the ChatGPT introduction) and zero otherwise. We control for other firm-level 

characteristics that could affect corporate disclosure. We lag all control variables by one quarter. The 

sample covers all quarters from 2021 to 2023. We include firm and year-quarter fixed effects, and cluster 

standard errors by firm. 

 

Panel A: All Management Forecasts 

 

Panel B: EPS Forecasts 
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Panel C: Sales Forecasts 
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Table 2: Summary Statistics 
This table presents the summary statistics for the variables used in our main analyses. We report the number 

of observations, mean, standard deviation, and the 25th, 50th, and 75th percentiles for all key variables. All 

continuous variables, except for return-related variables, are winsorized at the 1st and 99th percentiles to 

mitigate the effects of outliers.  

 

Variable Number of Obs Mean Standard Deviation 25% Median 75% 

# MgrForecasts - All 9866  0.806  1.441  0.000  0.000  1.000  

# MgrForecasts – EPS 9866  0.171  0.424  0.000  0.000  0.000  

# MgrForecasts – SALES 9866  0.295  0.543  0.000  0.000  1.000  

MgrForecasts - All 9866  0.338  0.473  0.000  0.000  1.000  

MgrForecasts – EPS 9866  0.154  0.361  0.000  0.000  0.000  

MgrForecasts – SALES 9866  0.258  0.438  0.000  0.000  1.000  

TechAnalyst  9866  0.419  0.493  0.000  0.000  1.000  

# Tech Analyst / # Analyst  9866  0.183  0.275  0.000  0.000  0.333  

Foreign Operations 8289  0.728  0.444  0.000  1.000  1.000  

# Geographic Segments  8289  3.076  2.378  1.000  2.000  4.000  

InsOwn 9866  0.814  0.204  0.726  0.841  0.929  

InsOwnTop5 9866  0.360  0.105  0.298  0.354  0.415  

AnalystCover 9866  10.851  7.575  5.000  9.000  16.000  

Leverage  9866  0.303  0.191  0.145  0.300  0.438  

Loss   9866  0.234  0.424  0.000  0.000  0.000  

EPS Increase  9866  0.578  0.494  0.000  1.000  1.000  

AbsEPSChange 9866  0.022  0.052  0.002  0.006  0.018  

Return Volatility  9866  0.037  0.036  0.018  0.025  0.038  

Return 9866  -0.068  0.404  -0.157  -0.015  0.122  

Size (Billions) 9866  21.165  48.148  1.497  4.593  17.044  

BM  9866  0.480  0.394  0.188  0.378  0.673  

𝐻̂ 1266  0.496  0.208  0.294  0.462  0.715  

𝐼 1266  635.759  809.051  168.988  324.991  758.246  

(𝜋𝑁𝑅 − 𝜋𝑅)̂
𝑎𝑑𝑗 784  74.143  111.248  11.104  30.939  84.888  

∅̂(3) 1266  0.309  0.200  0.144  0.293  0.442  

∅̂(5)  1266  0.367  0.213  0.200  0.361  0.521  
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Table 3: The Impact of AI Processing on Management Forecasts 
This table reports the results testing the impact of AI processing on quarterly management forecasts from 

2021 to 2023. We estimate the following difference-in-differences design: 

                            Mgr Forecasts
i,t

=  β
1
TechAnalyst

i
× Postt + Controls +αt+γ

i
+ ϵi,t,                    

where Mgr Forecasts
i,t

 is an indicator variable that equals one if the firm i issues at least one forecast in 

quarter t and zero otherwise. TechAnalyst
i
 equals one if the firm i is covered by at least one technical analyst 

at the end of 2021 (i.e., before the ChatGPT introduction) and zero otherwise. Postt equals one for all 

quarters after 2022Q4 (inclusive). We control for other firm-level characteristics that could affect corporate 

disclosure. We lag all control variables by one quarter. We include firm and year-quarter fixed effects, and 

cluster standard errors by firm. 

 

Dependent Var.                                                                                            MgrForecasts 

    All 

(1) 

EPS 

(2) 

SALES 

(3) 

TechAnalyst × Post -0.067*** -0.057*** -0.051*** 

 (0.014) (0.008) (0.012) 

InsOwn -0.128*   -0.014    -0.086    

  (0.077)   (0.040)   (0.060)   

InsOwnTop5  0.220     0.092     0.180    

    (0.140)   (0.064)   (0.116)   

AnalystCover  0.002     0.003**  -0.0005   

     (0.002)   (0.001)   (0.001)   

Leverage -0.047    -0.058    -0.035    

      (0.081)   (0.045)   (0.071)   

Loss  -0.013    -0.0008   -0.0001  

       (0.013)   (0.006)   (0.011)   

EPS Increase -0.005    -0.009**  -0.003    

        (0.007)   (0.004)   (0.006)   

AbsEPSChange -0.068    -0.002    -0.074    

         (0.092)   (0.037)   (0.077)   

Return Volatility -0.002     0.025     0.027    

          (0.162)   (0.075)   (0.134)   

Return -0.010    -0.003    -0.0006   

           (0.016)   (0.007)   (0.012)   

Size -0.766**   0.213    -0.377    

            (0.325)   (0.227)   (0.287)   

BM -0.021     0.003    -0.030*   

             (0.023)   (0.014)   (0.018)   

Firm FE Yes Yes Yes 

Year-Quarter FE Yes Yes Yes 

Observations 9,866 9,866 9,866 

R2 0.70 0.83 0.75 
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Table 4: Cross-sectional Tests on Firm Complexity 

This table reports the results of cross-sectional tests on the impact of AI processing on management 

forecasts. We estimate the following triple difference-in-differences specification: 

Mgr Forecasts
i,t

= β
1
TechAnalyst

i
×Postt×Complexity

i
+ β

2
TechAnalyst

i
×Postt 

  + β
3
Complexity

i
×Postt+Controls+αt+γ

i
+ ϵi,t,            

where Mgr Forecasts
i,t

 is an indicator variable that equals one if the firm i issues at least one forecast in 

quarter t and zero otherwise. TechAnalyst
i
 equals one if the firm i is covered by at least one technical analyst 

at the end of 2021 (i.e., before the ChatGPT introduction) and zero otherwise. Postt equals one for all 

quarters after 2022Q4 (inclusive). Complexity
i
 is proxied by two measures: (1) whether the firm operates 

foreign segments outside the U.S. and (2) the number of geographic segments. We follow Cohen and Lou 

(2012) in requiring that the total sales of all segments within a firm exceed 80% of firm-level sales to ensure 

the validity of both measures, which reduces the number of observations. We examine foreign operations 

in columns 1 to 3 and the number of geographic segments in columns 4 to 6. We control for other firm-

level characteristics that could affect corporate disclosure. We lag all control variables by one quarter. We 

include firm and year-quarter fixed effects, and cluster standard errors by firm. 

 
Dependent Var. MgrForecasts 

Complexity Foreign Operations # Geographic Segments 

 All 

(1) 

EPS 

(2) 

SALES 

(3) 

All 

(4) 

EPS 

(5) 

SALES 

(6) 

TechAnalyst × Post × Complexity -0.074*** -0.078*** -0.036* -0.009** -0.008* 0.003 

 (0.028) (0.014) (0.021) (0.004) (0.004) (0.004) 

TechAnalyst × Post -0.014 -0.005 -0.023 -0.041** -0.039*** -0.060*** 

 (0.022) (0.008) (0.015) (0.021) (0.014) (0.017) 

Post × Complexity 0.011 0.028** 0.007 0.0003 0.004 -0.001 

 (0.019) (0.011) (0.016) (0.003) (0.003) (0.003) 

Controls 

Firm FE 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Year-Quarter FE Yes Yes Yes Yes Yes Yes 

Observations 8,289 8,289 8,289 8,289 8,289 8,289 

R2 0.70 0.71 0.84 0.71 0.84 0.77 
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Table 5: The Impact of AI Processing on Information Processing Speed and 

Informativeness 
The table reports the impact of AI processing on information processing speed (Panel A) and earnings 

announcement informativeness (Panel B). Specifically, we estimate the structural model from Smith (2024) 

using firm-level return volatility. In Panel A, we estimate the following regression specification: 

∅̂(x)i,t=  β
1
TechAnalyst

i
× Postt + Controls +αt+γ

i
+ ϵi,t,   

where ∅̂(x)  is a firm-level measure of information processing speed estimated from Smith’s (2024) 

structural model. ∅̂(3) (∅̂(5)) represents the fraction of earnings information processed by the market three 

(five) days after the earnings release, indicating the extent of investor uncertainty reduction within that 

period. For each firm, we estimate two ∅̂(x): one for the pre-period using four quarters before 2022Q4 and 

the other for the post-period using four quarters after 2022Q4 (inclusive). TechAnalyst
i
 equals one if the 

firm i is covered by at least one technical analyst at the end of 2021 (i.e., before the ChatGPT introduction) 

and zero otherwise. Postt equals one for all quarters after 2022Q4 (inclusive). We use the full sample 

(columns 1 and 4) as well as subsamples consisting of firms with (columns 2 and 5) and without (columns 

3 and 6) management forecasts on earnings. In Panel B, we estimate the same specification as Panel A but 

employ different dependent variables that proxy for the informativeness of earnings announcements, 

including 𝐻̂, 𝐼, and (𝜋𝑁𝑅 − 𝜋𝑅)̂
𝑎𝑑𝑗 estimated following Smith (2024). For both Panels A and B, we include 

firm fixed effects and a time dummy indicating pre- and post-periods. Standard errors are clustered by firm. 
 

Panel A: Testing the Information Processing Speed  

Dependent Var. ∅̂(𝟑) ∅̂(𝟓) 

With Forecast?  Y&N 

(1) 

Y 

(2) 

N 

(3) 

Y&N 

(4) 

Y 

(5) 

N 

(6) 

TechAnalyst × Post  0.017   0.179***  0.004   0.013   0.254*** -0.010  

 (0.022) (0.062)   (0.023) (0.026) (0.068)   (0.027) 

Firm FE Yes Yes Yes Yes Yes Yes 

Time FE Yes Yes Yes Yes Yes Yes 

Observations 988 215 773 988 215 773 

R2 0.83 0.85 0.86 0.82 0.86 0.85 

 
Panel B: Testing the Informativeness of Earnings Announcements 

Dependent Var.  𝑯̂   𝑰̂     (𝝅𝑵𝑹 − 𝝅𝑹)̂
𝒂𝒅𝒋 

With Forecast? Y&N 

(1) 

Y 

(2) 

N 

(3) 

Y&N 

(4) 

Y 

(5) 

N 

(6) 

Y&N 

(7) 

Y 

(8) 

N 

(9) 

TechAnalyst × Post 0.040 0.167** 0.028 -7.38 153.4 -32.2 7.65 53.8 -3.06 

 (0.027) (0.064) (0.031) (65.9) (112.4) (81.3) (12.0) (32.6) (13.0) 

Firm FE Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Time FE Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Observations 
988 215 773 988 215 773 673 134 539 

R2 
0.70 0.77 0.71 0.84 0.93 0.83 0.90 0.91 0.91 
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Table 6: Analyst Forecast Revisions Following Management Forecasts 

This table reports the results testing the impact of AI processing on the analyst forecast revisions following 

management forecast news. We estimate the specification below: 

AFRevi,t= β1
TechAnalyst

i
×Postt×MFNewsi,t +  β2

TechAnalyst
i
×Postt + β3

Post
t
×MFNewsi,t 

+ β
4
TechAnalyst

i
×MFNewsi,t + Controls + αt + γi

+ ϵi,t,       

where AFRev is calculated as the difference between the first analyst forecast issued after the managerial 

guidance date and the last analyst forecast issued before the managerial guidance date, scaled by the firm’s 

stock price three trading days before the guidance date. MFNews proxies for the new information in 

management forecasts and is calculated as the difference between managerial guidance and the last analyst 

forecast prior to the guidance date, scaled by the firm’s stock price three trading days before the guidance 

date.TechAnalyst
i
 equals one if the firm i is covered by at least one technical analyst at the end of 2021 (i.e., 

before the ChatGPT introduction) and zero otherwise. Postt  equals one for all quarters after 2022Q4 

(inclusive). We control for firm-level characteristics that affect corporate disclosure. We utilize the full 

sample in columns 1 and 4, the subsample with positive MFNews in columns 2 and 5 (i.e., management 

forecast is higher than the last analyst forecast), and the subsample with negative MFNews in columns 3 

and 6 (i.e., management forecast is lower than the last analyst forecast). We include firm and year-quarter 

fixed effects. Standard errors are clustered by firm. 

 
Dependent Var. AFRev 

Sample Selection Full 

(1) 

Pos. 

(2) 

Neg. 

(3) 

Full 

(4) 

Pos. 

(5) 

Neg. 

(6) 

TechAnalyst × Post × MFNews    -0.441*** -0.937** -0.274   

    (0.131)   (0.429)  (0.506)  

MFNews    0.277***  0.372***  0.331***  0.262*    0.194    0.302** 

   (0.066)   (0.059)   (0.100)   (0.125)   (0.136)  (0.144)  

TechAnalyst × MFNews     0.110     0.283*  -0.048   

    (0.110)   (0.166)  (0.211)  

TechAnalyst × Post     0.00004  -0.0003   0.0002  

    (0.0001)  (0.0002) (0.0003) 

Post × MFNews     0.084     0.143    0.133   

    (0.137)   (0.167)  (0.147)  

Controls Yes Yes Yes Yes Yes Yes 

Firm FE Yes Yes Yes Yes Yes Yes 

Year-Quarter FE Yes Yes Yes Yes Yes Yes 

Observations 619 260 339 619 260 339 

R2 0.55 0.68 0.59 0.57 0.69 0.60 
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Table 7: Testing The Minimum Principle 

This table reports the results testing the implications of the minimum principle in evidence games (Acharya 

et al., 2011; Guttman et al., 2014) by examining whether increased AI processing increases the non-

disclosure thresholds and prices. To this end, we utilize future EPS as a measure of the non-disclosure 

threshold and employ the price-to-earnings (PE) ratio and Tobin’s Q as proxies for current non-disclosure 

prices. We test whether there are increases in these variables for firms choosing non-disclosure when their 

analysts increasingly rely on generative AI by estimating the following specification: 

ND Threshold or ND Pricesi,t= β
1
TechAnalyst

i
×Postt+Controls+αt+γ

i
+ ϵi,t,          

where ND Threshold is proxied by future EPS, which is earnings per share for firm i in quarter t+1. 

ND Prices are proxied by current Price-to-Earnings Ratio (PE) and Tobin’s Q, where PE is price at the end 

of the quarter t divided by earnings per share for firm i in quarter t. Tobin’s Q is defined as the market equity 

plus long-term debt and short-term debt in quarter t scaled by book assets for firm i in quarter t. 

TechAnalyst
i
 equals one if the firm i is covered by at least one technical analyst at the end of 2021 (i.e., 

before the ChatGPT introduction) and zero otherwise. Postt  equals one for all quarters after 2022Q4 

(inclusive). Our sample consists of firms without management forecasts. We include firm and year-quarter 

fixed effects and cluster standard errors by firm. 

 

Dependent Var.                    EPS 

(1) 

PE 

(2) 

Tobin’s Q 

(3) 

TechAnalyst × Post  0.194***  0.900***  0.736*** 

 (0.046)   (0.143)   (0.106)   

InsOwn  0.616***  0.728     0.589    

  (0.236)   (0.699)   (0.382)   

InsOwnTop5 -1.38***   0.100    -0.527    

    (0.393)   (1.20)    (0.706)   

AnalystCover  0.009    -0.018    -0.022*** 

     (0.006)   (0.015)   (0.007)   

Leverage  0.104     1.42**   -1.20**   

      (0.302)   (0.659)   (0.519)   

Loss   0.047     0.212    -0.071**  

       (0.043)   (0.157)   (0.035)   

EPS Increase  0.171*** -0.049     0.088*** 

        (0.024)   (0.062)   (0.032)   

AbsEPSChange -0.274    -0.441    -0.228    

         (0.294)   (0.529)   (0.215)   

Return Volatility -1.84***   2.71**   -2.40**   

          (0.553)   (1.14)    (0.991)   

Return  0.118*** -0.152     0.409*** 

           (0.044)   (0.112)   (0.076)   

Size  5.10**    3.07     16.3***   

            (2.21)    (4.20)    (4.28)    

Firm FE Yes Yes Yes 

Year-Quarter FE Yes Yes Yes 

Observations 6,947 6,722 6,586 

R2 0.75 0.35 0.88 
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Table 8: The Impact of AI Processing on Annual Management Forecasts 

This table reports the results testing the impact of AI processing on annual management forecasts from 

2018 to 2023. We estimate the following difference-in-differences design: 

                            Mgr Forecasts
i,t

=  β
1
TechAnalyst

i
× Postt + Controls +αt+γ

i
+ ϵi,t,                    

where Mgr Forecasts
i,t

 is an indicator variable that equals one if the firm i issues at least one forecast in 

year t and zero otherwise. TechAnalyst
i
 equals one if the firm i is covered by at least one technical analyst 

at the end of 2021 (i.e., before the ChatGPT introduction) and zero otherwise. Postt equals one for the years 

2022 and 2023. We control for other firm-level characteristics that could affect corporate disclosure. We 

lag all control variables by one year. We include firm and year fixed effects, and cluster standard errors by 

firm. 

 

Dependent Var.                                                                                       MgrForecasts 

                       All 

(1) 

EPS 

(2) 

SALES 

(3) 

TechAnalyst × Post -0.066*** -0.028*   -0.093*** 

 (0.018)   (0.016)   (0.019)   

InsOwn  0.231**   0.165**   0.217**  

  (0.097)   (0.066)   (0.094)   

InsOwnTop5 -0.239*   -0.208*   -0.118    

    (0.138)   (0.110)   (0.145)   

AnalystCover  0.010***  0.005***  0.006*** 

     (0.002)   (0.002)   (0.002)   

Leverage  0.142**   0.013     0.182*** 

      (0.057)   (0.053)   (0.060)   

Loss   0.002    -0.053*** -0.005    

       (0.017)   (0.014)   (0.017)   

EPS Increase  0.017**   0.002     0.028*** 

        (0.008)   (0.007)   (0.009)   

AbsEPSChange  0.006    -0.033    -0.007    

         (0.044)   (0.031)   (0.041)   

Return Volatility -2.56***  -1.30***  -1.77***  

          (0.717)   (0.470)   (0.677)   

Return  0.017**   0.008*    0.020*** 

           (0.008)   (0.004)   (0.008)   

Size -0.598  -0.462  -0.638  

            (0.578) (0.359) (0.424) 

BM  0.014     0.004     0.004    

             (0.022)   (0.014)   (0.019)   

Firm FE Yes Yes Yes 

Year FE Yes Yes Yes 

Observations 6,414 6,414 6,414 

R2 0.65 0.84 0.76 
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Table 9: The Impact of AI Processing on Management Forecasts Using Number of 

Forecasts and A Continuous Treatment Variable 
This table reports the results testing the impact of AI processing on quarterly management forecasts from 

2021 to 2023 using the number of forecasts and a continuous treatment variable. We estimate the following 

difference-in-differences design: 

                            # Mgr Forecasts
i,t

=  β
1
TechAnalyst

i
× Postt + Controls +αt+γ

i
+ ϵi,t,                    

where  # Mgr Forecasts
i,t

 is the number of forecasts issued by firm i in quarter t. TechAnalyst
i
 is a 

continuous treatment variable at the firm level as the percentage of technical analysts at the end of 2021 

(i.e., before the ChatGPT introduction). Postt equals one for all quarters after 2022Q4 (inclusive). We 

control for other firm-level characteristics that could affect corporate disclosure. We lag all control variables 

by one quarter. We include firm and year-quarter fixed effects, and cluster standard errors by firm. 

 

Dependent Var.                                                                                          # MgrForecasts 
    All 

(1) 

EPS 

(2) 

SALES 

(3) 

TechAnalyst × Post -0.189*** -0.083*** -0.068*** 

 (0.060) (0.017) (0.026) 

InsOwn -0.277    -0.002    -0.118    

  (0.212)   (0.047)   (0.090)   

InsOwnTop5  0.659*    0.114     0.313**  

    (0.359)   (0.081)   (0.152)   

AnalystCover  0.003     0.002    -0.0001   

     (0.005)   (0.001)   (0.002)   

Leverage -0.055    -0.034    -0.043    

      (0.207)   (0.056)   (0.093)   

Loss  -0.004    -0.002     0.001    

       (0.033)   (0.008)   (0.014)   

EPS Increase -0.033*   -0.012**  -0.009    

        (0.020)   (0.005)   (0.008)   

AbsEPSChange -0.242    -0.038    -0.097    

         (0.182)   (0.046)   (0.088)   

Return Volatility -0.004     0.075     0.077    

          (0.410)   (0.101)   (0.177)   

Return -0.009     0.0006   -0.012    

           (0.042)   (0.010)   (0.019)   

Size -0.419     0.332    -0.424    

            (0.887)   (0.317)   (0.347)   

BM -0.035     0.011    -0.034    

             (0.074)   (0.015)   (0.021)   

Firm FE Yes Yes Yes 

Year-Quarter FE Yes Yes Yes 

Observations 9,866 9,866 9,866 

R2 0.76 0.77 0.69 
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Appendix B: Proofs in Sections 3 and 6  

Proof of Lemma 1.1: We have shown in text that 

            𝑃𝑎(𝑣) = 𝔼( 𝑣̃ ∣ 𝑣̃ ≤ 𝜏 ) + 1𝑣≥𝜏(1 − 𝐹(𝜏))(𝑣 − 𝔼( 𝑣̃ ∣ 𝑣̃ ≤ 𝜏 ))                        (A1) 

It then follows that: 

∫  𝑃𝑎(𝑣)𝑓(𝑣)𝑑𝑣 =𝔼(𝑣̃ ∣ 𝑣̃ ≤ 𝜏) +∫  
𝑣‾

𝜏

  (1 − 𝐹(𝜏))(𝑣 − 𝔼(𝑣̃ ∣ 𝑣̃ ≤ 𝜏))𝑓(𝑣)𝑑𝑣

=𝔼(𝑣̃ ∣ 𝑣̃ ≤ 𝜏) +∫  
𝑣‾

𝑣‾

  (1 − 𝐹(𝜏))(𝑣 − 𝔼(𝑣̃ ∣ 𝑣̃ ≤ 𝜏))𝑓(𝑣)𝑑𝑣

  −∫  
𝜏

𝑣

  (1 − 𝐹(𝜏))(𝑣 − 𝔼(𝑣̃ ∣ 𝑣̃ ≤ 𝜏))𝑓(𝑣)𝑑𝑣

=𝐹(𝜏)𝔼(𝑣̃ ∣ 𝑣̃ ≤ 𝜏) + (1 − 𝐹(𝜏))𝜇

  −∫  
𝜏

𝑣

  (1 − 𝐹(𝜏))𝑣𝑓(𝑣)𝑑𝑣 + ∫  
𝜏

𝑣

  (1 − 𝐹(𝜏))𝔼(𝑣̃ ∣ 𝑣̃ ≤ 𝜏)𝑓(𝑣)𝑑𝑣

=𝐹(𝜏)𝔼(𝑣̃ ∣ 𝑣̃ ≤ 𝜏) + (1 − 𝐹(𝜏))𝜇
  −(1 − 𝐹(𝜏))𝐹(𝜏)𝔼(𝑣̃ ∣ 𝑣̃ ≤ 𝜏) + (1 − 𝐹(𝜏))𝐹(𝜏)𝔼(𝑣̃ ∣ 𝑣̃ ≤ 𝜏)
=𝐹(𝜏)𝔼(𝑣̃ ∣ 𝑣̃ ≤ 𝜏) + (1 − 𝐹(𝜏))𝜇

 

 

Proof of Proposition 1.1: From (4) and (5), the indifference condition can be re-arranged as 

𝑝(1 − 𝑞)(𝜏∗ − 𝑃ℎ(∅)) = (1 − 𝑝)(∫  𝑃𝑎(𝑣)𝑓(𝑣)𝑑𝑣 − 𝑃𝑎(𝜏
∗))

  = (1 − 𝑝) (𝐹(𝜏∗)𝔼(𝑣̃ ∣ 𝑣̃ ≤ 𝜏∗) + (1 − 𝐹(𝜏∗))𝜇 − 𝑃𝑎(𝜏
∗))

  = (1 − 𝑝)(1 − 𝐹(𝜏∗))(𝜇 − 𝜏∗)                                                                (A2)

 

Using an integration by parts to develop the left-hand side of the above 

𝜏∗ − 𝑃ℎ(∅) = 𝜏
∗ −

𝑞𝜇 + (1 − 𝑞)∫  
𝜏∗

𝑣
 𝑣𝑓(𝑣)𝑑𝑣

𝑞 + (1 − 𝑞)𝐹(𝜏∗)
=
𝑞(𝜏∗ − 𝜇) + (1 − 𝑞)∫  

𝜏∗

𝑣
 𝐹(𝑣)𝑑𝑣

𝑞 + (1 − 𝑞)𝐹(𝜏∗)
            (A3) 

which implies an equilibrium condition: 

𝑝(1 − 𝑞)
𝑞(𝜏∗ − 𝜇) + (1 − 𝑞)∫  

𝜏∗

𝑣
 𝐹(𝑣)𝑑𝑣

𝑞 + (1 − 𝑞)𝐹(𝜏∗)
= (1 − 𝑝)(1 − 𝐹(𝜏∗))(𝜇 − 𝜏∗) 

which can be reorganized as 

Γ(𝜏∗) ≡ (
1 − 𝑝

𝑝
(1 − 𝐹(𝜏∗)) +

𝑞(1 − 𝑞)

𝑞 + (1 − 𝑞)𝐹(𝜏∗)
) (𝜇 − 𝜏∗) −

(1 − 𝑞)2 ∫  
𝜏∗

𝑣
 𝐹(𝑣)𝑑𝑣

𝑞 + (1 − 𝑞)𝐹(𝜏∗)
= 0 

Denote 𝜏𝑑 as the solution of the above equation at 𝑝 = 1, in which case the solution coincides with the 

threshold in Jung and Kwon (1988). 

Existence. Note that 
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Γ(𝜇) = −
(1 − 𝑞)2 ∫  

𝜇

𝑣
 𝐹(𝑣)𝑑𝑣

𝑞 + (1 − 𝑞)𝐹(𝜇)
< 0                                                (A4) 

and, because 𝜏𝑑 < 𝜇 is given by 

(1 − 𝑞)∫  
𝜏𝑑

𝑣

𝐹(𝑣)𝑑𝑣 = 𝑞(𝜇 − 𝜏∗)                                                      (A5) 

it must hold that: 

Γ(𝜏𝑑) = (
1 − 𝑝

𝑝
(1 − 𝐹(𝜏𝑑)) +

𝑞(1 − 𝑞)

𝑞 + (1 − 𝑞)𝐹(𝜏𝑑)
) (𝜇 − 𝜏𝑑) −

(1 − 𝑞)2 ∫  
𝜏𝑑
𝑣
 𝐹(𝑣)𝑑𝑣

𝑞 + (1 − 𝑞)𝐹(𝜏𝑑)

  = (
1 − 𝑝

𝑝
(1 − 𝐹(𝜏𝑑)) +

𝑞(1 − 𝑞)

𝑞 + (1 − 𝑞)𝐹(𝜏𝑑)
) (𝜇 − 𝜏𝑑) −

(1 − 𝑞)𝑞(𝜇 − 𝜏𝑑)

𝑞 + (1 − 𝑞)𝐹(𝜏𝑑)

  =
1 − 𝑝

𝑝
(1 − 𝐹(𝜏𝑑))(𝜇 − 𝜏𝑑) > 0            

 

which, by continuity, implies the existence of at least one solution 𝜏∗ ∈ (𝜏𝑑 , 𝜇). Next, we show that there 

are no solutions outside of this interval. It is readily verified that Γ(𝜏) < 0 for any 𝜏 ≥ 𝜇. To show that 

Γ(𝜏) > 0 for 𝜏 < 𝜏𝑑, it is sufficient to verify that 

𝛾(𝜏) ≡ 𝑞(𝜇 − 𝜏) − (1 − 𝑞)∫  
𝜏

𝑣

𝐹(𝑣)𝑑𝑣 > 0                                      (A6) 

The function 𝛾(𝜏) is decreasing in 𝜏, attaining zero at 𝜏 = 𝜏𝑑, which confirms that the inequality (A6) holds. 

Uniqueness. Logconcavity implies that 𝜙(𝜏) ≡ 𝔼(𝑣̃ ∣ 𝑣̃ ≤ 𝜏) has a derivative that is less than one 

(Bergstrom and Bagnoli, 2005). We can then rewrite 

𝑃ℎ(∅) = 𝛼(𝜏)𝜇 + (1 − 𝛼(𝜏))𝜙(𝜏)                                         (A7) 

where 𝛼(𝜏) ≡
𝑞

𝑞+(1−𝑞)𝐹(𝜏)
 is decreasing in 𝜏. Differentiating this expression: 

∂𝑃ℎ(∅)

∂𝜏
= 𝛼′(𝜏)(𝜇 − 𝜙(𝜏)) + (1 − 𝛼(𝜏))𝜙′(𝜏) < 𝜙′(𝜏) < 1                    (A8) 

so that the non-disclosure price 𝑃ℎ(𝑁𝐷)  preserves the property of log-concave distributions on the 

conditional expectation. It then follows from the fact that the left-hand side of (6) is increasing in 𝜏 while 

the right-hand side is decreasing in 𝜏, that (6) has at most one solution.  

 

Proof of Corollary 1.1: An immediate application of the implicit function theorem yields: 

∂𝜏∗

∂𝑝
= −

(1 − 𝑞)(𝜏∗ − 𝑃ℎ(𝑁𝐷)) + (1 − 𝐹(𝜏
∗))(𝜇 − 𝜏∗)

𝑝(1 − 𝑞)(1 − 𝜙′(𝜏∗)) + (1 − 𝑝)𝑓(𝜏∗)(𝜇 − 𝜏∗) + (1 − 𝑝)(1 − 𝐹(𝜏∗))
        (A9) 

The denominator is positive, and the term in the numerator is positive because (i) 𝜏∗ > 𝑃ℎ(𝑁𝐷) since 

𝑃ℎ(𝑁𝐷) is U-shaped in 𝜏 (Bertomeu et al., 2021) with a minimum at 𝜏 = 𝜏𝑑 < 𝜏
∗, (ii) 𝜇 − 𝜏∗ > 0. The 
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comparative statics for 𝑃ℎ(∅) readily follows from the fact that 𝑃ℎ(∅) is U-shaped in 𝜏 with a minimum at 

𝜏𝑑. 

 

Proof of Corollary 1.2: The expected price after an equilibrium disclosure 𝑑(𝑣) = 𝑣 ≥ 𝜏∗ is 

𝑀(𝑣) = 𝑝𝑣 + (1 − 𝑝)𝑃𝑎(𝑣)

  = 𝑝𝑣 + (1 − 𝑝)(∫  
𝜏∗

𝑣

 𝑓(𝑣′)𝑣′𝑑𝑣′ + (1 − 𝐹(𝜏∗))𝑣)

∂𝑀(𝑣)

∂𝑝
 = (1 − 𝑝)(𝜏∗ − 𝑣)𝑓(𝜏∗)

∂𝜏∗

∂𝑝
> 0

∂𝑀′(𝑣)

∂𝑝
 = −(1 − 𝑝)𝑓(𝜏∗)

∂𝜏∗

∂𝑝
> 0

 

 

Proofs for Section 6.1. The expected price conditional on a hallucination is 

𝐻 = ∫  𝑃(𝑣)𝑓(𝑣)𝑑𝑣 =𝔼(𝑣̃ ∣ 𝑣̃ ≤ 𝜏) + ∫  
𝑣‾

𝜏

  (1 −
1 − 𝑝

1 − 𝑝𝑞
𝐹(𝜏)) (𝑣 − 𝔼(𝑣̃ ∣ 𝑣̃ ≤ 𝜏))𝑓(𝑣)𝑑𝑣

=𝔼(𝑣̃ ∣ 𝑣̃ ≤ 𝜏) + (1 −
1 − 𝑝

1 − 𝑝𝑞
𝐹(𝜏)) (𝜇 − 𝔼(𝑣̃ ∣ 𝑣̃ ≤ 𝜏))

  −∫  
𝜏

𝑣

  (1 −
1 − 𝑝

1 − 𝑝𝑞
𝐹(𝜏)) (𝑣 − 𝔼(𝑣̃ ∣ 𝑣̃ ≤ 𝜏))𝑓(𝑣)𝑑𝑣

=
1 − 𝑝

1 − 𝑝𝑞
𝐹(𝜏)𝔼( 𝑣̃ ∣ 𝑣̃ ≤ 𝜏 ) + (1 −

1 − 𝑝

1 − 𝑝𝑞
𝐹(𝜏)) 𝜇                        (A10)

 

In the above expression, (1 − 𝑝)/(1 − 𝑝𝑞) < 1  assigns a lower probability weight on the lowest 

expectation 𝔼(𝑣̃ ∣ 𝑣̃ ≤ 𝜏) < 𝜇 than in the baseline model. Hence, for any given threshold, the payoff to 

hallucination is higher. This immediately implies (19) given that 𝑃ℎ(∅) = 𝑃(∅). To show (20): 

Δ =𝑝𝑞𝑃(∅) + (1 − 𝑝𝑞)𝑃(𝜏) − (𝑝(𝑞𝑃ℎ(∅) + (1 − 𝑞)𝜏) + (1 − 𝑝)𝑃𝑎(𝜏))

= (1 − 𝑝𝑞)𝑃(𝜏) − 𝑝(1 − 𝑞)𝜏 − (1 − 𝑝)𝑃𝑎(𝜏)
= (1 − 𝑝𝑞)𝔼(𝑣̃ ∣ 𝑣̃ ≤ 𝜏) − 𝑝(1 − 𝑞)𝜏 − (1 − 𝑝)𝔼(𝑣̃ ∣ 𝑣̃ ≤ 𝜏)

  + ((1 − 𝑝𝑞) (1 −
1 − 𝑝

1 − 𝑝𝑞
𝐹(𝜏)) − (1 − 𝑝)(1 − 𝐹(𝜏))) (𝜏 − 𝔼(𝑣̃ ∣ 𝑣̃ ≤ 𝜏))

=𝑝𝑞(1 − 𝐹(𝜏))(1 − 𝑝)(𝜏 − 𝔼(𝑣̃ ∣ 𝑣̃ ≤ 𝜏)) > 0.

 

Rearranging the indifference condition (17) and substituting the hallucination expected price from (18): 

𝑝𝑃(∅) + (1 − 𝑝)∫  𝑃(𝑣)𝑓(𝑣)𝑑𝑣 = 𝑝𝑞𝑃(∅) + (1 − 𝑝𝑞)𝑃(𝜏∗)

(1 − 𝑝)∫  (𝑃(𝑣) − 𝑃(𝜏∗))𝑓(𝑣)𝑑𝑣 = 𝑝𝑞𝑃(∅) − 𝑝𝑃(∅) − (1 − 𝑝)𝑃(𝜏∗) + (1 − 𝑝𝑞)𝑃(𝜏∗)

(1 − 𝑝)(1 −
1 − 𝑝

1 − 𝑝𝑞
𝐹(𝜏∗)) (𝜇 − 𝜏∗) = 𝑝(1 − 𝑞)(𝑃(𝜏∗) − 𝑃(∅))                                         (A11)
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Because the left-hand side is positive (negative) and the right-hand side is negative (positive) if 𝜏∗ = 𝑣 (if 

𝜏∗ = 𝑣‾ ), there is always an interior threshold equilibrium. Suppose next that 𝑞 = 0 , so that 𝑃(∅) =

𝔼(𝑣̃ ∣ 𝑣̃ ≤ 𝜏∗) and 

𝑃(𝑣) = 𝔼(𝑣̃ ∣ 𝑣̃ ≤ 𝜏∗) + 1𝑣≥𝜏∗(1 − (1 − 𝑝)𝐹(𝜏
∗))(𝑣 − 𝔼(𝑣̃ ∣ 𝑣̃ ≤ 𝜏∗)) 

implying that  

(1 − 𝑝)(1 − (1 − 𝑝)𝐹(𝜏∗))(𝜇 − 𝜏∗) = 𝑝(𝑃(𝜏∗) − 𝔼(𝑣̃ ∣ 𝑣̃ ≤ 𝜏∗))

  = 𝑝(1 − (1 − 𝑝)𝐹(𝜏∗))(𝜏∗ − 𝔼(𝑣̃ ∣ 𝑣̃ ≤ 𝜏∗))

(1 − 𝑝)(𝜇 − 𝜏∗) = 𝑝(𝜏∗ − 𝔼(𝑣̃ ∣ 𝑣̃ ≤ 𝜏∗))

  = 𝑝(𝜏∗ −
𝐹(𝜏∗)𝜏∗ − ∫  

𝜏∗

𝑣
 𝐹(𝑣)𝑑𝑣

𝐹(𝜏∗)
)

 

which yields equation (21) in text. Logconcavity implies that the right-hand side is increasing in 𝜏 and the 

left-hand side is decreasing in 𝜏 , implying that the equilibrium is unique. Further, as (1 − 𝑝)/𝑝  is 

decreasing in 𝑝 , an immediate application of the implicit function theorem demonstrates that 𝜏∗  is 

decreasing in 𝑝, in line with the baseline model. 

 

Proofs for Section 6.2. As discussed in Section 6.2., we modify the baseline model so that, upon non-

disclosure, the AI hallucinates a garbled signal unrelated to the firm’s fundamentals with probability 𝜌 ∈

(0,1). With probability 1 − 𝜌, the AI does not hallucinate, leading us to explore two different formulations. 

In the first formulation, we assume that the AI independently identifies information even when it has not 

been disclosed. This represents an ideal scenario where the AI can access more information than humans 

in non-disclosure situations. In the second formulation, we assume that information known to the manager 

is not accessible to the AI, resulting in the AI observing a non-disclosure with probability 1 − 𝜌. 

First, we consider the formulation in which the AI hallucinates with probability 𝜌 but is otherwise 

(i.e., with probability 1 − 𝜌) reporting the true information. Equation (22) simplifies to 

𝑃𝑎(𝑣) = 𝔼(𝑣̃ ∣ 𝑣̃ ≤ 𝜏) +
(1 − 𝐹(𝜏))(1 − 1𝑣<𝜏𝜌)

1 − (1 − 𝜌)𝐹(𝜏) − 1𝑣<𝜏𝜌(1 − 𝐹(𝜏))
(𝑣 − 𝔼(𝑣̃ ∣ 𝑣̃ ≤ 𝜏)) 

so that the expected value from hallucination is 
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𝐻 = 𝔼(𝑣̃ ∣ 𝑣̃ ≤ 𝜏) + 𝔼(𝑣̃ ∣ 𝑣̃ ≤ 𝜏) +
1 − 𝐹(𝜏)

1 − (1 − 𝜌)𝐹(𝜏)
(𝜇 − 𝔼(𝑣̃ ∣ 𝑣̃ ≤ 𝜏))

 −∫  
𝜏

𝑣

 
1 − 𝐹(𝜏)

1 − (1 − 𝜌)𝐹(𝜏)
(𝑣 − 𝔼(𝑣̃ ∣ 𝑣̃ ≤ 𝜏))𝑓(𝑣)𝑑𝑣

 +
(1 − 𝐹(𝜏))(1 − 𝜌)

1 − (1 − 𝜌)𝐹(𝜏) − 𝜌(1 − 𝐹(𝜏))
∫  
𝜏

𝑣

  (𝑣 − 𝔼(𝑣̃ ∣ 𝑣̃ ≤ 𝜏))𝑓(𝑣)𝑑𝑣

 = 
𝜌𝐹(𝜏)

1 − (1 − 𝜌)𝐹(𝜏)
𝔼( 𝑣̃ ∣ 𝑣̃ ≤ 𝜏 ) +

1 − 𝐹(𝜏)

1 − (1 − 𝜌)𝐹(𝜏)
𝜇                                           (A12)

 

The indifference condition in this setting is: 

𝑝(𝑞𝑃ℎ(∅) + (1 − 𝑞)𝜏
∗) + (1 − 𝑝)𝑃𝑎(𝜏

∗) = 𝑝𝑃ℎ(∅) + (1 − 𝑝)((1 − 𝜌)𝑃𝑎(𝜏
∗) + 𝜌𝐻)

𝑝(1 − 𝑞)𝜏∗ + 𝜌(1 − 𝑝)𝑃𝑎(𝜏
∗) = 𝑝(1 − 𝑞)𝑃ℎ(∅) + (1 − 𝑝)𝜌𝐻

𝑝(1 − 𝑞)(𝜏∗ − 𝑃ℎ(∅)) =
𝜌(1 − 𝑝)(1 − 𝐹(𝜏∗))

1 − (1 − 𝜌)𝐹(𝜏∗)
(𝜇 − 𝜏∗)                        (A13)

 

We prove next the existence and uniqueness. The function 

Γ(𝜏) =
𝜌(1 − 𝑝)(1 − 𝐹(𝜏∗))

1 − (1 − 𝜌)𝐹(𝜏∗)
(𝜇 − 𝜏∗) − 𝑝(1 − 𝑞)(𝜏∗ − 𝑃ℎ(∅))                         (A14) 

satisfies Γ(𝜇) < 0 < Γ(𝑣) and therefore has a solution with Γ′(𝜏∗) < 0. It can also be readily verified that 

there is no solution above 𝜇, because this would imply that the left-hand side is negative, i.e., 𝑃ℎ(∅) > 𝜏
∗ >

𝜇 , which would contradict 𝑃ℎ(∅) ≤ 𝜇 . Further, if 𝐹(.) is log-concave, we have already shown in the 

baseline model that, in the proof of Corollary 1, 𝜏∗ − 𝑃ℎ(∅) is increasing in the threshold. The right-hand 

side is the product of two positive decreasing functions, and thus must be decreasing. Hence, the solution 

is unique. Conditional on uniqueness, the implicit function theorem yields 

𝜕𝜏∗

𝜕𝑝
=
−

𝜌(1 − 𝐹(𝜏∗))
1 − (1 − 𝜌)𝐹(𝜏∗)

(𝜇 − 𝜏∗) − (1 − 𝑞)(𝜏∗ − 𝑃ℎ(∅))

−Γ′(𝜏∗)
< 0,                   (A15) 

so that the probability of disclosure increases in human processing 𝑝.  

Second, we consider the formulation that the AI yields a non-disclosure with probability 1 − 𝜌 and, 

in this case, 

𝑃𝑎(𝑣) = 𝔼(𝑣̃ ∣ 𝑣̃ ≤ 𝜏) +
1 − 𝐹(𝜏)

1 − (1 − 𝜌)𝐹(𝜏)
(𝑣 − 𝔼(𝑣̃ ∣ 𝑣̃ ≤ 𝜏)) 

which can be readily verified to imply the same 𝐻 as in (A12). The indifference condition in this setting is: 

𝑝𝑃ℎ(∅) + (1 − 𝑝)((1 − 𝜌)𝔼(𝑣̃ ∣ 𝑣̃ ≤ 𝜏
∗) + 𝜌𝐻) = 𝑝(𝑞𝑃ℎ(∅) + (1 − 𝑞)𝜏

∗) + (1 − 𝑝)𝑃𝑎(𝜏
∗)

𝑝(1 − 𝑞)𝑃ℎ(∅) + (1 − 𝑝)𝜌(𝐻 − 𝔼(𝑣̃ ∣ 𝑣̃ ≤ 𝜏
∗)) = 𝑝(1 − 𝑞)𝜏∗ + (1 − 𝑝)(𝑃𝑎(𝜏

∗) − 𝔼(𝑣̃ ∣ 𝑣̃ ≤ 𝜏∗))

(1 − 𝑝)(1 − 𝐹(𝜏))

1 − (1 − 𝜌)𝐹(𝜏)
(𝜌𝜇 + (1 − 𝜌)𝔼(𝑣̃ ∣ 𝑣̃ ≤ 𝜏∗) − 𝜏∗) = 𝑝(1 − 𝑞)(𝜏∗ − 𝑃ℎ(∅))                                    (A16)

 

To show existence, we similarly define 
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Γ(𝜏) =
𝜌(1 − 𝑝)(1 − 𝐹(𝜏))

1 − (1 − 𝜌)𝐹(𝜏)
(𝜌𝜇 + (1 − 𝜌)𝔼( 𝑣̃ ∣ 𝑣̃ ≤ 𝜏 ) − 𝜏) − 𝑝(1 − 𝑞)(𝜏 − 𝑃ℎ(∅))      (A17) 

which satisfies Γ(𝜇) < 0 < Γ(𝑣) and therefore has a solution with Γ′(𝜏∗) < 0. Further, Γ(𝜏) < 0 for any 

𝜏 ≥ 𝜇. Unfortunately, because the left-hand side is no longer known to be positive or negative, there is no 

longer a simple characterization of uniqueness via logconcavity (which implies that the left-hand side is 

increasing in threshold). We assume in what follows that the solution is unique for all 𝑝 and the implicit 

function theorem yields 

𝜕𝜏∗

𝜕𝑝
 =
−

𝜌(1 − 𝐹(𝜏∗))
1 − (1 − 𝜌)𝐹(𝜏∗)

(𝜌𝜇 + (1 − 𝜌)𝔼(𝑣̃ ∣ 𝑣̃ ≤ 𝜏∗) − 𝜏∗) − (1 − 𝑞)(𝜏∗ − 𝑃ℎ(∅))

−Γ′(𝜏∗)

  =
−

𝑝
1 − 𝑝

(1 − 𝑞)(𝜏 − 𝑃ℎ(∅)) − (1 − 𝑞)(𝜏
∗ − 𝑃ℎ(∅))

−Γ′(𝜏∗)

  =
(1 − 𝑞)(𝜏∗ − 𝑃ℎ(∅))

Γ′(𝜏∗)(1 − 𝑝)
.                                                                                                      (A18)

 

Defining 𝜏0
∗ from (27), there are three cases to consider. First, if 𝜏0

∗ = 𝜏𝑑, then the solution 𝜏∗ = 𝜏𝑑 satisfies 

Γ(𝜏∗) = 0  for all 𝑝 . Second, if 𝜏0
∗ > 𝜏𝑑 , we know from the minimum principle that 𝜏0

∗ > 𝑃ℎ(∅)  and 

therefore 𝜏∗ initially decreases in 𝑝 for 𝑝 small from until 𝜏∗ = 𝜏𝑑 at 𝑝 = 1. Third, the case with 𝜏0
∗ < 𝜏𝑑 

is a mirror image and implies that 𝜏∗ increases until 𝜏∗ = 𝜏𝑑 at 𝑝 = 1. 


