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1 Introduction

The macro-finance field has proposed several potential resolutions to major asset pricing

puzzles in equity and derivatives markets. Yet, Beason and Schreindorfer (2022) demon-

strate that leading theories are inconsistent with the shocks driving an equity premium in

the data. By decomposing the equity premium on the market return state space, they find

that most of it stems from negative but non-extreme returns. This novel decomposition

challenges leading theories that attribute the premium to extreme tail or small negative

returns. Our paper makes two key contributions. Empirically, we implement the decom-

position of the variance premium and demonstrate that extreme and intermediate negative

returns contribute more equally to the variance premium, though the latter returns remain

dominant. Theoretically, we propose a production-based model with parameter uncer-

tainty that explains these decompositions while capturing key macroeconomic moments,

equity returns, and option prices.

We illustrate this challenge in Figure 1 by comparing empirical and model-based esti-

mates of EP(x) and VP(x), which measure the fraction of the average equity and variance

premiums attributable to returns below x.1 The top panel shows that around three-quarters

of the equity premium are associated with monthly returns between −30% and −10%,

while returns below −30% account for less than one-sixth. The bottom panel demonstrates

that intermediate and left-tail returns contribute slightly more than half and a third of the

variance premium. Puzzling, however, is that well-known theories struggle to explain the

substantial contribution of large negative but non-disastrous returns to the equity premium

and the relatively balanced contributions of negative returns to the variance premium.

We capture the observed equity and variance premia decompositions by introducing pa-

rameter learning into a standard production economy. The model with known parameters

1Following Beason and Schreindorfer (2022), we consider the models featuring habits (Campbell and
Cochrane, 1999), long-run risks (Bansal and Yaron, 2004), disaster risk (Rietz, 1988; Barro, 2006), undiversifi-
able idiosyncratic risk (Constantinides and Ghosh, 2017), constrained intermediaries (He and Krishnamurthy,
2013), and mixture shocks with generalized disappointment aversion preferences (Schreindorfer, 2020).
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Panel A: Equity premium decomposition

Panel B: Variance premium decomposition

Figure 1. EP(x) and VP(x) in the data and models.
The figure shows the empirical and model-based EP(x) (Panel A) and VP(x) (Panel B)
curves for a monthly horizon. The shaded area denotes monthly returns between −30%
and −10%. The empirical curves are based on the data from January 1996 to December
2019.

generates abysmal risk premiums that are driven by small returns. Meanwhile, fully ratio-

nal pricing of parameter uncertainty amplifies the impact of shocks on marginal utility and

asset prices (Collin-Dufresne, Johannes, and Lochstoer, 2016; Babiak and Kozhan, 2024).

Furthermore, the production economy allows for the endogenous feedback from produc-

tivity innovations to consumption through parameter beliefs and investment (Kozlowski,

Veldkamp, and Venkateswaran, 2019, 2020), strengthening the amplification effects. Quan-

titatively, we demonstrate that this mechanism generates the realistic decompositions of

equity and variance premiums while matching a wide array of stylized facts in equity and

options markets.

Formally, we consider a real business cycle model with unknown parameters in a

parsimonious two-state Markov switching process for aggregate productivity growth. A
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Bayesian investor learns about the mean durations (e.g., transition probabilities) of regimes

and rationally prices parameter uncertainty in equilibrium, as in Collin-Dufresne et al.

(2016). Besides convex capital adjustment costs, we add no extra rigidities to the produc-

tion model. In the interest of a convenient inspection of the mechanism, we also price

exogenous dividends that enable us to generate procyclical cash-flow dynamics while iso-

lating the impact of parameter learning from other forces.

The economic mechanism is as follows. Bayesian learning produces time-varying be-

liefs that create a channel through which macroeconomic shocks affect equilibrium utility

and asset prices. The rational pricing of uncertainty amplifies the impact of belief updat-

ing. This creates additional risks in models with learning, leading to larger declines in

consumption and higher agent’s marginal utility during bad times. Hence, the investor is

willing to pay a large premium to hedge pessimistic beliefs. Variance swaps and out-of-

the-money put options on the stock market index pay off in states of high realized variance

and low valuations, which are associated with pessimistic beliefs and high marginal util-

ity. Thus, variance swaps and puts earn high prices that transmit to the larger risk premia

in a parameter learning setting compared to a full information case. We show that the

distribution of returns associated with amplified risk premia is close to the empirical one.

It is noteworthy that the model is calibrated to match the moments of macroeconomic

quantities and equity returns, while the risk premia decompositions and option-related

results are not directly targeted. Nevertheless, a single shock model with priced parameter

uncertainty can generate realistic unconditional moments of the variance premium and the

level, skew, and smirk patterns in option-implied volatilities. It does so with empirically

consistent dynamic properties of conditional equity variance, including its large volatility,

moderate persistence, high skewness, and kurtosis. Finally, the model closely matches

the salient features of the standard VIX index, the simple VIX index (SVIX), and the gap

between the two. This contrasts leading representative-agent models that cannot match

the behaviors of VIX and SVIX quantitatively or even qualitatively (Martin, 2017).

To better understand the mechanism, we look at conditional moments of consumption
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and dividends. Endogenous consumption exhibits similar mean growth in expansions in

models with known or unknown parameters but experiences markedly bigger declines in

recessions in the parameter learning specification. In addition, consumption and dividends

appear to be more correlated in bad states. The combination of the two effects leads

to amplified physical tail risks in the economy with priced parameter uncertainty. We

demonstrate that the model-implied declines in consumption are comparable to the U.S.

experience during the Great Depression and certainly more conservative than consumption

disasters (Rietz, 1988; Barro, 2006).2 The downside correlations between consumption and

dividends also align well with the empirical evidence.

The model with parameter learning also delivers additional testable implications for

conditional risk premiums. The most important is that the variance premium declines over

time as the amount of parameter uncertainty investors face in our model decreases with a

longer learning period. Empirically, we document 25 and 30 percent declines in the vari-

ance premium over the 10-year periods ending in 2012 and 2022. Theoretically, the variance

premium in the parameter learning framework decreases, on average, by 25 percent over

50 years. Although the model-implied drift is smaller compared to the data, additional

forces are likely to contribute to the observed decay. Overall, we believe the downward

trend predicted by the model and observed in the data supports our mechanism. This

insight relating priced parameter uncertainty to the declining variance premium is novel

evidence, which relates to a recent study on declining alphas of synthetic options strategies

(Dew-Becker and Giglio, 2024) and earlier literature on the declining equity premium.3

It is worth emphasizing that Bayesian learning alone is insufficient to generate a strong

amplification of risk premia, and one needs to rationally price parameter uncertainty. To

illustrate this point, we consider anticipated utility pricing commonly used by prior litera-

2The model-implied consumption declines are consistent with the empirical evidence in Backus, Chernov,
and Martin (2011) showing that option prices imply relatively small and frequent jumps in consumption
dynamics, counter to extreme declines predicted by disaster models.

3Notable studies documenting the declining equity premium include Blanchard, Shiller, and Siegel
(1993); Jagannathan, McGrattan, and Scherbina (2001), and Fama and French (2002). Lettau, Ludvigson,
and Wachter (2008) propose a fall in macroeconomic risk to explain the observed pattern.

5



ture (Kreps, 1998; Piazzesi and Schneider, 2009). The anticipated utility agent learns about

unknown parameters over time but treats current mean beliefs as true parameter values

in decision making, thus, ignoring parameter uncertainty in equilibrium. We show that

using the anticipated utility to deal with parameter uncertainty predicts virtually identical

results to a full information case.

Several observations guide the construction of our theoretical model. To rationalize

the puzzling equity premium decomposition, Beason and Schreindorfer (2022) suggest

connecting the stock market tails events with parameter uncertainty and bad states of the

real economy. Collin-Dufresne et al. (2016) show a strong impact of priced parameter

uncertainty on marginal utility in endowment models, whereas Babiak and Kozhan (2024)

demonstrate that this effect is further amplified by endogenous investment in production

models. Therefore, incorporating parameter learning into a production-based economy is

a natural step to reconcile the sources of equity and variance premiums in the data.

Our empirical analysis extends the novel equity premium decomposition of Beason and

Schreindorfer (2022) to the second-moment risk premium. Our theoretical mechanism is

related to the model of Schreindorfer (2020) with correlated endowments and a general-

ized disappointment risk-averse investor. Our model, however, endogenously produces

physical tail risks and employs priced parameter uncertainty as an amplification of risk

prices instead of asymmetric preferences.

Liu and Zhang (2022) are the first to explain the variance premium and equity index

options in a production economy. In their model, an ambiguity-averse agent does not ob-

serve a hidden state of the economy. Their paper, however, does not analyze the equity and

variance premia decompositions, a key focus of our work. In addition, priced parameter

uncertainty is a key mechanism in our model as opposed to ambiguity aversion prefer-

ences in their setting. Although both papers assume incomplete investor information, our

inference problem is opposite to their learning process. They assume hidden states and

known parameters of productivity growth, whereas the agent in our model observes states

but is uncertain about structural parameters.
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Our mechanism connects to other production models with imperfect information. Ai

(2010) is an early example of a real business cycle economy with learning. Jahan-Parvar

and Liu (2014) combine a state uncertainty with ambiguity aversion preferences. Both

articles focus on only equity returns. Andrei, Mann, and Moyen (2019) and Davis and

Segal (2022) show how learning improves the behaviour of investments and valuation ra-

tios. Kozlowski, Veldkamp, and Venkateswaran (2019) and Kozlowski, Veldkamp, and

Venkateswaran (2020) show that learning about the whole distribution of productivity

shocks can explain long-lasting effects of tail events on economic activity. Winkler (2020)

examines an alternative approach of learning about endogenous prices and show that it

provides substantial amplification of asset prices and real activity. In contrast to our pa-

per, the extant literature focuses on standard equity moments or the real economy. They

consider neither the risk premia decompositions nor option prices. In addition, their mech-

anisms differ from priced parameter uncertainty, a key driver of our paper’s results.

Our paper is also related to exchange economies focusing on the variance premium

and option prices. Leading examples include the extensions of endowment models with

habit (Du, 2010; Bekaert, Engstrom, and Ermolov, 2020), rare disasters (Liu, Pan, and

Wang, 2005; Seo and Wachter, 2019), and long-run risks (Eraker and Shaliastovich, 2008;

Bollerslev, Tauchen, and Zhou, 2009; Drechsler and Yaron, 2011; Zhou and Zhu, 2014;

Drechsler, 2013; Shaliastovich, 2015). Our paper is distinct from this literature because it

emphasizes the key role of rational pricing of parameter uncertainty. Further, the model

parameters are estimated from the post-war data and feature business cycle risks rather

than rare disasters or long-run risks. Finally, none of these papers jointly target a broad set

of features of macroeconomic quantities, equity returns, and index option prices.

Our framework also connects to Markov switching models with Bayesian learning. Most

closely, Cogley and Sargent (2008) examine learning about transition probabilities. Weitz-

man (2007) study uncertainty about variance parameters. Johannes, Lochstoer, and Mou

(2016) extend their approach to a multi-parameter inference problem. These papers, how-

ever, employ anticipated utility and focus only on equity moments. A number of papers
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(Pakos, 2013; Gillman, Kejak, and Pakos, 2015; Andrei, Carlin, and Hasler, 2019; Andrei,

Hasler, and Jeanneret, 2019) document quantitatively significant effects of learning about

hidden persistence on equity premiums. None of these models, however, consider the risk

premia decomposition, the variance premium, and option prices. Another notable exam-

ple is Benzoni, Collin-Dufresne, and Goldstein (2011) who introduce state uncertainty and

rare jumps in persistence into the long-run risks model to explain pre- and post-1987 crash

option prices. One important difference between this paper and ours is that we study pa-

rameter uncertainty instead of state uncertainty. We also consider learning about business

cycle risks instead of peso events in growth rates. Finally, we focus on additional asset

pricing moments that are not targeted in their paper.

2 A decomposition of the equity and variance premia

This section presents the decomposition of the equity and variance premia on the market

return state space. While Beason and Schreindorfer (2022) focus on the equity premium,

we take a similar approach to examine the variance premium. The goal is to determine

the contribution of market return states (e.g., the market return falling within an interval

[R, R+ dR]) to risk premia. Specifically, we estimate the functions EP(x) and VP(x), which

measure the fraction of the average equity and variance premiums associated with returns

below x. This section presents the empirical decompositions and compares them with

those predicted by leading asset pricing models.

2.1 A state-space decomposition

We first decompose the equity premium following the procedure in Beason and Schrein-

dorfer (2022).4 Let Rcum
t+1 be the cum-dividend market return and ft(R) be its conditional

probability density function (PDF) under a physical measure. No arbitrage assumption

4In our empirical analysis, we use the original codes of Beason and Schreindorfer (2022) and retrieve the
options data from OptionMetrics. We thank the authors for making the replication code package publicly
available. The replication files can be accessed via the following link:
https://www.journals.uchicago.edu/doi/suppl/10.1086/720396/suppl_file/20200045data.zip.
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implies that there exists a risk-neutral density function f ∗t (R) such that the risk-free rate

can be written as R f
t =

∫ ∞
−1 R f ∗t (R)dR, and hence, the equity premium equals to:

Et
[
Rcum

t+1
]
− R f

t =
∫ ∞

−1
R[ ft(R)− f ∗t (R)]dR. (1)

Next, the absence of arbitrage implies that for any arbitrary (twice-differentiable) function

g(R), the forward price of the claim with payoff g(R) is given by E∗t [g(R)] and the premium

associated with the buy-and-hold strategy is Et[g(R)]− E∗t [g(R)]. We capture the variance

premium by considering g(R) = (ln(1 + R))2 , which corresponds to a quadratic swap

strategy in Kozhan, Neuberger, and Schneider (2013).5 Thus, we can approximate the

variance premium as:

Et
[
g
(

Rcum
t+1
)]
− E∗t

[
g
(

Rcum
t+1
)]

=
∫ ∞

−1
g(R)[ ft(R)− f ∗t (R)]dR. (2)

In our analysis, we focus on unconditional premiums to avoid difficulties in estimat-

ing the conditional density functions. One can achieve this by taking the unconditional

expectations in Equations (1) and (2) and defining the premia decompositions as:

EP(x) ≡
∫ x
−1 R[ f (R)− f ∗(R)]dR∫ ∞
−1 R[ f (R)− f ∗(R)]dR

, (3)

VP(x) ≡
∫ x
−1 (ln(1 + R))2 [ f (R)− f ∗(R)]dR∫ ∞
−1 (ln(1 + R))2 [ f (R)− f ∗(R)]dR

, (4)

where the unconditional density functions are given as f (R) = E[ ft(R)] and f ∗(R) =

E[ f ∗t (R)]. The normalization in the denominators in Equations (3) and (4) ensures that

EP(x) and VP(x) approach zero when x goes to −1 and approach one for large values of x.

Moreover, the functions increase for states that contribute positively to the corresponding

5The premium captured by this choice of function g is the second non-central moment rather than a
pure variance risk premium. Using the second non-central moment makes it possible to transition from the
conditional premium in Equation (1) to the unconditional premium in Equation (4). Furthermore, as shown
in Kozhan, Neuberger, and Schneider (2013), the variance risk premium defined by means of a function g is
almost identical empirically to the traditional variance risk premium based on the VIX measure.
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premium and decrease for states that contribute negatively.

Beason and Schreindorfer (2022) point out the potential mismatch between the phys-

ical and risk-neutrals densities. The former defines the probability distribution of the

cum-dividend returns, while option prices identify state prices for ex-dividend returns.

Following their procedure, we overcome this issue by assuming that (t + 1)-dividends are

in investors’ time-t information set. Thus, we can estimate the decompositions as functions

of the ex-dividend return because the dividends will drop out in Equations (3) and (4).6

2.2 Empirical EP(x) and VP(x)

Empirically, we use the S&P 500 index as a proxy for the aggregate stock market and

focus on a one-month return horizon. The availability of options data from OptionMetrics

limits the start date of our sample to January 1996. We perform the empirical analysis

using the data until December 2019 to eliminate the impact of the COVID period. We

sample daily to maximize the efficiency of our estimates, and hence, our sample comprises

T = 6, 037 overlapping 30 calendar day returns. We estimate the unconditional probability

density function f (R) using historical returns. Specifically, we calculate average payoffs

f (R) = E[1{R < Rt:t+30 < R+ dR}] where each one-month return observation Rt:t+30 has a

probability of 1/T. For robustness checks, we also estimate the smoothed PDF f smooth. We

then use market index options to obtain the risk-neutral probability density function f ∗t (R).

We estimate f ∗t (R) daily using Breeden and Litzenberger (1978) method and calculate the

unconditional density as f ∗(R) = 1
T ∑T

t=1 f ∗t (R).

Panel A of Figure 1 closely replicates the EP(x) curve in Beason and Schreindorfer

(2022). The far left tail (R < −30%) contributes about 0.15 to the equity premium, whereas

the intermediate left tail (−30% < R < −10%) accounts for 0.65. Thus, most of the equity

premium represents compensation for intermediate negative returns. Panel B of Figure

1 shows the resulting VP(x) curve. Over a third of the variance premium represents
6We effectively present the decomposition on the state space of ex-dividend returns. Although the equity

and variance premiums are defined in terms of cum-dividend returns, our assumption is inconsequential for
comparing model-based and empirical EP(x) and VP(x) because both employ ex-dividend returns.
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Table 1. Summary statistics of EP(x) and VP(x).

The table reports the contributions of different regions to the equity and variance premi-
ums for a monthly horizon. It also shows the probability of returns in the intermediate
region and the ratio of their risk-neutral to physical probabilities. The table reports the em-
pirical moments when f (R) is proxied by realized returns (the fR column) or is a smoothed
version (the f smooth

R column) of the empirical PDF. The last five columns report selected per-
centiles of the estimates based on a block bootstrap with a block size of 21 trading days.
The data is from January 1996 to December 2019.

Percentiles

fR f smooth
R 2.5% 5% 50% 95% 97.5%

EP
(
− .3

)
0.157 0.155 0.085 0.092 0.154 0.373 0.497

EP
(
− .1

)
− EP

(
− .3

)
0.728 0.709 0.465 0.499 0.738 1.458 1.845

1− EP
(
− .1

)
0.115 0.136 −1.320 −0.813 0.107 0.394 0.432

VP
(
− .3

)
0.362 0.341 0.268 0.279 0.347 0.466 0.501

VP
(
− .1

)
−VP

(
− .3

)
0.541 0.545 0.364 0.410 0.567 0.665 0.682

1−VP
(
− .1

)
0.097 0.113 −0.021 −0.001 0.089 0.171 0.189

−.1∫
−.3

f (R)dR 0.015 0.023 0.010 0.011 0.019 0.028 0.030

−.1∫
−.3

f ∗(R)dR
/ −.1∫
−.3

f (R)dR 3.121 2.087 1.633 1.741 2.550 4.190 4.694

compensation for extremely negative returns. The contribution of the intermediate left

tail is about 0.54, substantially smaller than in the case of the equity premium. In both

decompositions, the contribution of returns above−10% is around 0.1. In sum, the variance

premium decomposition demonstrates a dominant effect of intermediate market declines

and a more significant role of more extreme returns.

Table 1 presents summary statistics of EP(x) and VP(x). Consistent with average

values, the sampling distribution of VP(−0.3) is shifted to the right side compared to

EP(−0.3). For instance, VP(−0.3) exceeds 0.25 in more than 95% of samples, whereas

EP(−0.3) is above 0.25 in fewer than 50% of simulations. Consequently, EP(−0.1) −

EP(−0.3) exceeds 0.5 in almost 95% of bootstrap samples, VP(−0.1)−VP(−0.3) is above

0.5 slightly more than 50% cases.

Figure 2 plots the joint sample distribution of EP(−0.3) and EP(−0.1)− EP(−0.3) as
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Figure 2. Sampling distribution of EP(x) and VP(x).
The figure shows the contributions of the two regions — monthly returns below −30%
and between −30% and −10% — to the equity and variance premiums in the 1 million
bootstrap samples. For the sampling distribution, we implement a block bootstrap with a
block size of 21 trading days. The length of the artificially simulated data corresponds to
the length of the empirical data from January 1996 to December 2019. The shaded areas
mark the confidence regions, whereas the solid black line denotes the contributions to the
equity (variance) premium with a sum of 0.5 (0.8).

well as VP(−0.3) and VP(−0.1) − VP(−0.3). Two comments are noteworthy. First, the

negative returns – either intermediate or large declines – account for the bigger part of

both premia in the data. For instance, the contribution of the returns below −10% is above

one-half of the equity premium and four-fifths of the variance premium in more than 99%

of all simulations. Second, returns below −30% account for a much smaller share of the

equity premium than returns between −30% and −10%, whereas the two regions tend to

have more equal shares. Thus, the key findings cannot be attributed to sampling error.

Finally, the last two rows in Table 1 report the probability and risk price of returns

from −30% to −10%. The average statistics based on historical data are 0.015 and 3.121.

It is noteworthy that the confidence bounds are quite wide for both estimates. Once the

empirical PDF is smoothed, the probability of intermediate market returns increases to

0.023, leading to a substantial decline in the price of risk to 2.087.
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2.3 Representative agent models

We now examine how well different representative agent models can explain the empirical

EP(x) and VP(x). We consider the models from different streams of the literature: the

rare disaster model of Barro (2006) and its extensions with the time-varying probability

of disasters by Wachter (2013) and the “frequent disasters” by Backus et al. (2011), the

external habit model of Bekaert and Engstrom (2017), the long-run risks model of Drechsler

and Yaron (2011), the model with undiversifiable idiosyncratic risk of Constantinides and

Ghosh (2017), the intermediary based model of He and Krishnamurthy (2013) and the

GDA model with mixture shocks of Schreindorfer (2020).

Figure 1 compares EP(x) and VP(x) in the data and leading asset pricing models.

Similarly to the evidence presented in Beason and Schreindorfer (2022), only the model

with disappointment aversion preferences can partially capture the key patterns of the

equity premium decomposition. However, the VP(x) curves in all models differ from

the empirical counterpart more substantially. The frameworks of Backus et al. (2011),

He and Krishnamurthy (2013), Bekaert and Engstrom (2017), and Schreindorfer (2020)

underestimate the contribution of larger (in magnitude) negative returns, whereas the rare

disaster models associate the variance premium with extreme market declines. Moreover,

all mechanisms except those using rare disasters and disappointment aversion preferences

attribute a significant negative variance premium to positive returns. In unreported results,

we verify that none of these models can capture a non-zero contribution of returns below

−30% to the variance premium jointly with a significant role of returns between −30% and

−10% and a negligible contribution of returns above −10%.

In their Section V, Beason and Schreindorfer (2022) conjecture two channels that could

rationalize the sources of equity and variance premia in the data. First, they suggest pa-

rameter uncertainty as an amplification mechanism of shocks on asset prices. Second, they

suggest that stock market tail events might coincide with bad states of the real economy

and might not be a feature of investors’ preferences. Motivated by these conjectures, we
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incorporate parameter learning into a real business cycle model to reconcile the sources of

equity and variance premiums in the data.

3 The production economy

We consider a standard production economy with a representative household and firm.

This section presents the model, the equilibrium prices, and a sketch of the numerical

solution. The appendix provides a detailed description of the solution methodology.

3.1 Household, firm, and technology

The household has recursive utility of Epstein and Zin (1991) defined as:

Ut =

{
(1− β)C1−1/ψ

t + β
(

Et

[
U1−γ

t+1

]) 1−1/ψ
1−γ

} 1
1−1/ψ

, (5)

where Ut is the continuation utility, Ct is consumption, β ∈ (0, 1) is the discount factor, ψ >

0 is the elasticity of inter-temporal substitution, and γ > 0 is the risk aversion parameter.

The firm produces the output using a constant return to scale Cobb-Douglas production

function:

Yt = Kα
t (AtNt)

1−α,

where Yt is the output, Kt is the capital, Nt is labor hours, and At is an exogenous, labor-

enhancing technology level. We assume that the representative household supplies the

fixed number of labor hours, Nt = 1. This simplification considerably reduces the compu-

tational costs and is inconsequential for the economic intuition of the results.

The firm’s capital accumulation equation incorporates capital adjustment costs:

Kt+1 = (1− δ)Kt + ϕ(It/Kt)Kt,

where δ ∈ (0, 1) is the capital depreciation rate and It = Yt − Ct is a gross investment. ϕ(·)
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is a concave function capturing adjustment costs ϕ(x) = a1 +
a2

1−1/ξ x1−1/ξ , where ξ is the

elasticity of the investment rate. The lower value of ξ implies higher capital adjustment

costs, while the extreme case of ξ = ∞ means that capital adjustment costs are zero.7

The log technology growth follows a two-state Markov switching model:

∆at = µst + σst · εt, εt
iid∼ N(0, 1), (6)

where the mean µst and volatility σst of productivity growth depend on a two-state Markov

chain st ∈ {1, 2} with transition probabilities π11 = 1− π12 and π22 = 1− π21. Our choice

of a parsimonious two-state model of productivity growth is motivated by a convenient

inspection of the mechanism and the costly numerical model solution.

3.2 Equilibrium and asset prices

In equilibrium, the social planner chooses consumption and investment to maximize the

household’s utility subject to the resource constraint and the capital accumulation.8 The

first-order condition of the household’s maximization program implies the stochastic dis-

count factor (SDF):

Mt+1 = β

(
Ct+1

Ct

)−1/ψ

 Ut+1(
Et

[
U1−γ

t+1

]) 1
1−γ


1/ψ−γ

. (7)

The recursive preferences separate the relative risk aversion and the elasticity of inter-

temporal substitution. We consider the household with a preference for early resolution

7Following Boldrin, Christiano, and Fisher (2001), we choose a1 and a2 such that there are no adjustment
costs in the non-stochastic steady state. Specifically, a1 = 1

ξ−1 (1− δ− exp(µ̄)) , a2 = (exp(µ̄)− 1 + δ) ,
where µ̄ is the unconditional mean of the productivity growth rate. We find state values of remaining
quantities from the conditions ϕ

(
I
K

)
= 1, ϕ

′
(

I
K

)
= 1. In particular, the steady-state investment-capital

ratio is I
K = exp(µ̄)− 1 + δ.

8Following a standard approach, the economy can also be decentralized: the household works for the
firm and trades its shares and risk-free bonds to maximize the lifetime utility over a consumption stream,
while the firm chooses investment to maximize its value, the present value of future cash flows.

15



of uncertainty by setting γ > 1
ψ . This calibration is crucial for our results because belief

updates will be priced in the equilibrium. The real risk-free rate is 1/R f
t = Et [Mt+1] .

The first-order condition of the firm’s maximization problem implies that

Et
[
Mt+1Rj,t+1

]
= 1 (8)

for any gross return Rj,t+1. In particular, this equation holds for the investment return,

which can be interpreted as the return of a claim to the unlevered firm’s payouts. Before

advancing further, it is important to emphasize that a frictionless production economy fails

to capture the firm’s procyclical dividends, resulting in a low equity premium and vari-

ance. This countercyclicality is driven by investment, which is more volatile than output

and, hence, capital’s share of output. A shock that increases capital will also cause higher

investment. Since dividends net out investment expenditure from capital’s share, they are

countercyclical unless the model is modified. Although extending the model to generate

procyclical dividends is possible, we price the calibrated dividends to provide a convenient

interpretation of the economic mechanism and to isolation the effect of parameter learning

from other mechanisms in the extended model.9

Following Ai (2010), Kaltenbrunner and Lochstoer (2010), and Liu and Zhang (2022),

we define the process of aggregate dividends in the production economy as:

∆dt = gd + λ∆ct + σd · ηt, ηt
iid∼ N(0, 1), (9)

where λ is a leverage factor, gd and σd are the dividend growth rate and volatility. We

choose gd and σd to match the first and second moments of annual dividend growth.

We further set λ consistent with the extant literature to compare our results with those

reported in other studies. Then, the equity return Rt+1 = Pt+1+Dt+1
Pt+1

= 1+Pt+1/Dt+1
Pt/Dt

e∆dt+1

should satisfy Equation (8). We next define the main asset prices of interest.

9Uhlig (2007), Belo, Lin, and Bazdresch (2014), and Favilukis and Lin (2016) introduce wage rigidity
to generate more volatile and procyclical dividends. Babiak and Kozhan (2024) demonstrate that financial
leverage and asymmetric adjustment costs can also change the cyclicality of dividends .
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Variance premium and implied volatilities. The variance premium at time t is vpt =

VIX2
t − VOL2

t , where VIX2
t and VOL2

t are expectations of return variance under the risk-

neutral Q and physical P probability measures. Following Bollerslev, Tauchen, and Zhou

(2009) and Carr and Wu (2009), we define VIX2
t and VOL2

t as:

VIX2
t = E

Q
t [vart+1(rt+2)] = Et

[
dQ

dP
· vart+1(rt+2)

]
& VOL2

t = Et [vart+1(rt+2)] ,

where Et is the conditional expectation under the physical measure, rt+2 is the log eq-

uity return, vart+1(rt+2) = Et+1
[
r2

t+2
]
− [Et+1 [rt+2]]

2 , and dQ
dP

= Mt+1
Et(Mt+1)

is the Radon-

Nykodim derivative. Two comments are noteworthy. First, the literature has adopted

several definitions of the variance premium in discrete-time models. Section 5.3 verifies

that our findings are robust to alternative specifications. Second, the definition of the vari-

ance premium is inconsequential for the variance premium decomposition in the data and

the model because we only require realized returns and options price for the latter.

We also price European put options on the index. Using the equilibrium condition (8),

the relative price Ot(K) =
Po

t (K)
Pt(πt)

of the one-quarter European put option with the strike

price K, expressed as a ratio to the price of the equity Pt, should satisfy

Ot(K) = Et

[
Mt+1 ·max

(
K− Pt+1

Pt
, 0
)]

= Et

[
Mt+1 ·max

(
K− Pt+1/Dt+1

Pt/Dt
e∆dt+1 , 0

)]
.

(10)

We numerically evaluate and convert put prices into Black-Scholes implied volatilities.10

SVIX and entropy of the risk-neutral return distribution. Many recent models with

long-run risks and rare disasters have been proposed to explain the large variance premium

and the implied volatility skew. These option-related premiums are associated with a high

degree of non-normality of the risk-neutral distribution of the market return. Martin (2017)

10Let r f
t denote the annualized continuous interest rate, qt is the dividend yield, τ = 1/4 is the maturity

time. The one-quarter implied volatility σBS
t = σBS

t (K) solves the equation:

Ot = e−r f
t τ · K · N(−d2)− e−qtτ · N(−d1), d1,2 =

[
− ln (K) + τ

(
r f

t − qt ±
(

σBS
t

)2
2
)]/ [

σBS
t
√

τ
]

.
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shows that the difference between the entropy of the risk-neutral return distribution and

the simple VIX index can alternatively measure the non-log-normality of the market return.

Furthermore, the author shows that equilibrium models, which can successfully explain

option prices, still have difficulty matching the difference between the risk-neutral and

simple VIX series.11 Adopting Equations (13) and (25) in Martin (2017), we define

SVIXt =
1

R f
t

√
varQ

t (Rex
t+1) & SQ =

√
2LQ

t (Rex
t+1) (11)

where Rex
t+1 = Pt+1

Pt
is the simple ex-dividend return, varQ

t (x) = E
Q
t
[
x2]− [EQ

t [x]
]2

and

LQ
t (x) = ln EQ

t [x]− EQ
t [ln x] denote the risk-neutral variance and entropy of x.

3.3 Numerical model solutions

The equilibrium utility and pricing ratios do not admit a closed-formed solution in mod-

els with learning or full information. In this section, we discuss the numerical solution

methods for models with known parameters and priced parameter uncertainty. A detailed

description of methodologies and delegated to the Internet Appendix.

We reformulate the household’s maximization problem in terms of stationary variables:

Ũt = max
C̃t, Ĩt

(1− β)C̃
1− 1

ψ

t + β
(

Et

[
Ũ1−γ

t+1 · e
(1−γ)∆at+1

]) 1− 1
ψ

1−γ


1

1−ψ

(12)

C̃t + Ĩt = K̃α
t (13)

e∆at+1K̃t+1 = (1− δ)K̃t + ϕ

(
Ĩt

K̃t

)
K̃t (14)

∆at = µst + σst εt, εt ∼ N(0, 1), (15)

where At is a common trend and
{

C̃t, Ĩt, Ỹt, K̃t, Ũt
}

=
{

Ct
At

, It
At

, Yt
At

, Kt
At

, Ut
At

}
. The solution

11Martin (2017) demonstrates that the models of Campbell and Cochrane (1999), Bansal and Yaron (2004),
Bansal, Kiku, and Yaron (2010), Bollerslev, Tauchen, and Zhou (2009), and Drechsler and Yaron (2011) gener-
ate too small spread, whereas a rare disaster model of Wachter (2013) produces too large gap.
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Figure 3. Priced parameter uncertainty.

The figure illustrates the agent’s continuation utility in the production economy with priced pa-
rameter uncertainty. The equilibrium utility is the function of the state st, capital K̃t, and sufficient
statistics for unknown parameters Xt. To find Ũt = Ũt(st, K̃t, Xt) at time t, the agent uses the back-
ward recursion starting from the known parameters boundary as shown by arrows in the diagram.
The boundary economy, in turn, is solved assuming the agent knows the true parameters in the
productivity growth process.

method for the model with known parameters is standard: we approximate the equilib-

rium utility as a function of the productivity growth regime and capital through value

function iteration. The solution procedure for the model with priced parameter uncer-

tainty consists of two steps illustrated in Figure 3. First, the household will have learned

the true parameters when a long data history becomes available. Thus, the household

begins solving the boundary economy with all known parameters. Second, the house-

hold applies the recursive equilibrium conditions to go backward and compute the utility

starting from boundary conditions.

Here, we sketch the backward recursion in the second step. Let st denote the regime,

K̃t is capital, and Xt is the vector of sufficient statistics for beliefs about unknown prob-

abilities. We employ standard, conjugate prior distributions for unknown parameters in

productivity growth. By assumption, the state st is observable. Thus, we can update

Xt+1 = g(st+1, st, Xt) via standard Bayes’ rule. Further, the law of motion of capital implies

that K̃t+1 = f (∆at+1, st, K̃t, Xt). Given these, we can now write the equilibrium utility as:

Ũt+1(st+1, K̃t+1, Xt+1) = Ũt+1(st+1, ∆at+1, st, K̃t, Xt)

to indicate that the utility evolution is the function of the two observable variables, st+1
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and ∆at+1. Using these notations, we can rewrite the recursive maximization as:

Ũt(st, K̃t, Xt) = max
C̃t, Ĩt,Nt

{
(1− β)Ṽ

1− 1
ψ

t (16)

+ β
(

Et

[
Ũ1−γ

t+1 (st+1, ∆at+1, st, K̃t, Xt) · e(1−γ)∆at+1
∣∣∣st, K̃t, Xt

]) 1− 1
ψ

1−γ


1

1−ψ

where the expectation on the right-hand side is equivalent to

Et

[
Ũ1−γ

t+1

(
st+1, ∆at+1, st, K̃t, Xt

)
· e(1−γ)∆at+1

∣∣∣st, K̃t, Xt

]
(17)

= ∑2
st+1=1 Et(πst+1,st |st, Xt)Et

[
Ũ1−γ

t+1

(
st+1, ∆at+1, st, K̃t, Xt

)
· e(1−γ)∆at+1

∣∣∣st+1, st, K̃t, Xt

]
.

We have an analytical expression for the conditional expectation of transition probabilities

and can use quadrature-type integration to evaluate the second expectation. The backward

recursion is completely defined by Equations (12)-(17) and Xt = g(st+1, st, ∆at+1, Xt).

4 Quantitative analysis

This section calibrates the production economy, discusses an inference problem about un-

known parameters, and presents the quantitative implications of the model.

4.1 Calibration

We choose the parameters in the model using the following guidelines. First, we estimate

a two-state Markov switching process of productivity growth using the historical data

from 1947:Q2 to 2019:Q4. Total factor productivity has experienced an extreme decline

during the first two quarters of 2020. If we include those data points in the estimation, the

recession state would feature disaster-like events. We refrain from doing so because we

aim to study the impact of learning about business cycle dynamics on asset prices. Second,

the subjective discount factor, the elasticity of intertemporal substitution, and relative risk
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Table 2. Parameter values.

The table reports the parameter values in the production economy. It shows the maximum
likelihood estimates of a two-state Markov-switching model for productivity growth, the
preference parameters, the calibrated parameters in the production function, capital adjust-
ment costs, and the dividend growth process. We obtain the estimates of the productivity
process by applying the expectation-maximization algorithm (Hamilton, 1990) to quarterly
total factor productivity growth rates from 1947:Q2 to 2019:Q4.

Productivity πa
11 πa

22 µa
1 µa

2 σa
1 σa

2
0.968 0.723 0.48% −1.26% 1.38% 2.19%

Preferences β4 γ ψ
0.985 8 1.5

Capital α a1 a2 δ ξ
0.36 −0.001 0.8546 0.02 24

Dividends λ gd σd
2.5 −0.54% 4.00%

aversion are set to values that enable us to generate a low interest rate and a large equity

premium. Third, all parameters in the production function and capital equation are set to

the common values in the literature. Fourth, the parameters in calibrated dividends are

chosen to match the first and second moments of dividends. Overall, all parameters are

pinned down by empirical moments of macroeconomic quantities, dividends, and equity

returns and are not selected to match option-related puzzles.

Table 2 reports the parameter values. Productivity is estimated to grow at the quarterly

rate of µa
1 = 0.48% in the expansion and µa

2 = −1.26% in the recession. The productivity

volatility comes out σa
1 = 1.38% in the expansion, whereas it is moderately higher and

about σa
2 = 2.19% in the recession. The mean duration of the expansion is (1− πa

11)
−1 =

31.25 quarters. The mean duration of the recession is (1−πa
22)
−1 = 3.61 quarters, which is

consistent with the sample mean duration of NBER recessions of around 3.44 quarters.12

The subjective discount factor is set to β4 = 0.985 and the elasticity of intertemporal

12For comparison, Cagetti, Hansen, Sargent, and Williams (2002) estimate a two-state model using a
different sample period and report mean productivity growth in the expansion and recession of 1.14% and
−2.9% and productivity volatility of 1.92% per quarter. Using the data from 1947:Q2 to 2016:Q4, Liu and
Zhang (2022) estimate a two-state model with regimes in the mean and volatility of productivity growth and
report the estimates similar to those in Table 2. The only noticeable difference is that Liu and Zhang (2022)
estimate productivity volatility in the recession much higher at 3.726% per quarter.
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substitution to ψ = 1.5. The relative risk aversion parameter is set to 8. Consistent with

the real business cycle literature, we set the capital share in a Cobb-Douglas production

function at α = 0.36 and the quarterly capital depreciation rate at δ = 0.02. The constants

a1 and a2 are chosen such that there are no adjustment costs in the non-stochastic steady

state. The costs for adjusting capital are ξ = 24, a value required to produce smooth

consumption and volatile investment in the model.

We set λ = 2.5, a conservative number among parameter values chosen in the literature.

We fix the remaining two parameters at gd = −0.54% and σd = 4.00% to approximately

capture the observed mean and volatility of aggregate stock market dividends. The choice

of λ and σd implies a positive sample correlation between consumption and dividends,

which corresponds well to the empirical point estimate of 0.24. This also leads to the

annual dividend growth volatility of less than 8%, which is close to the estimate in our

sample and substantially below the typically reported values.

4.2 Learning and priors

We consider the economies with known parameters and unknown transition probabilities.

For the latter case, we calibrate the hyperparameters by embedding realistic and rather

conservative prior information of the investor in the model. First, we consider various

lengths of a prior learning period incorporating the information based on 100, 150, and 200

years of prior learning. Since we begin our asset pricing exercise shortly after World War

II, training samples of 100 and 150 years effectively mean that the representative investor

started learning about the unknown persistence of productivity growth in the middle and

at the beginning of the nineteenth century. These dates approximately correspond to the

beginning of the historical U.S. consumption and GDP growth series in the Barro-Ursua

Macroeconomic Database. Second, we center the mean prior beliefs at the true maximum

likelihood estimates obtained from the post-war data and calibrate the standard deviation

of prior beliefs to reflect the length of the corresponding prior sample. Thus, our results

are not driven by the pessimistic experience of the Great Depression and the two World
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Wars but are the manifestation of rational pricing of hidden persistence in the post-war

data. We discuss the impact of alternative priors in Section 5.2.

4.3 Macroeconomic quantities and equity returns

This section evaluates the impact of priced parameter uncertainty on macroeconomic quan-

tities and equity returns. Panels A and B in Table 3 show that the models with parameter

learning reasonably capture the first and second moments of consumption, dividends,

and macroeconomic variables. Parameter learning amplifies the volatilities of consump-

tion/investment growth and lowers correlations between quantities, helping the model to

better capture empirical moments. In contrast, in the full information model, variables ex-

hibit substantially higher correlations and lower volatilities than the data. Model-implied

correlations between quantities and their persistence gradually increase with the length

of a training period. This aligns with the observed pattern of empirical macroeconomic

series, which appear more correlated in the post-war period than in the prior sample.

Panel C in Table 3 shows that the model with full information fails to produce the low

risk-free rate, the large equity premium and excess return volatility, and the low mean

of the log price-dividend ratio. Parameter uncertainty increases the equity premium and

volatility more than six and two times. The table further shows that rational pricing of

uncertainty about unknown parameters lowers the interest rates and equity valuations, al-

lowing a better match of the average risk-free rate and price-dividend ratio. Even though

the volatility of the log price-dividend ratio remains below a sample estimate, it is more

than four times higher than in the full information setting. Overall, the model with param-

eter learning generates realistic moments of macroeconomic variables and equity returns.

4.4 Variance premium and option prices

Table 4 provides summary statistics for the variance premium and return variances. The

model with known parameters produces a tiny variance premium. It also performs poorly
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Table 3. Macroeconomic quantities and equity returns.

The table reports summary statistics of macroeconomic quantities and equity returns from
the data and the production economies with unknown transition probabilities (assuming
priced parameter uncertainty and 100, 150, 200, and 10000 years of prior learning) and
known parameters. The model-based moments are the averages of small sample statistics
based on 1000 simulations corresponding to the empirical data. Consumption and div-
idends are time-averaged to an annual frequency. The mean and standard deviation of
investment, output, and returns are quarterly moments annualized by multiplying by an
appropriate number. The correlation and autocorrelation are expressed in quarterly terms.

Data Priors (training sample) Known

100 yrs 150 yrs 200 yrs 10000 yrs parameters

Panel A: Consumption and dividends

ET(∆ct) 1.74 1.33 1.30 1.28 1.21 1.21
σT(∆ct) 1.41 1.60 1.51 1.44 1.23 1.23
ar1T(∆ct) 0.42 0.16 0.21 0.26 0.46 0.47

ET(∆dt) 1.21 1.18 1.13 1.07 0.84 0.90
σT(∆dt) 7.07 7.64 7.59 7.50 7.21 7.27
ar1T(∆dt) 0.21 0.19 0.21 0.22 0.25 0.26

ρT(∆ct, ∆dt) 0.24 0.51 0.49 0.48 0.41 0.42

Panel B: Consumption, investment, and output

σT(∆it) 4.69 4.80 4.64 4.52 4.17 4.17
σT(∆yt) 2.52 2.02 2.02 2.02 2.02 2.02
ρT(∆it, ∆yt) 0.62 0.72 0.76 0.79 0.94 0.94
ρT(∆ct, ∆yt) 0.35 0.53 0.57 0.62 0.84 0.84
ρT(∆ct, ∆it) 0.28 0.05 0.07 0.17 0.60 0.61

Panel C: Returns

ET(r
f
t ) 0.49 1.16 1.36 1.48 1.88 1.89

σT(r
f
t ) 0.91 0.26 0.25 0.25 0.24 0.24

ar1T(R f ) 0.91 0.91 0.92 0.92 0.91 0.91

ET(rt − r f
t ) 6.64 6.72 5.47 4.45 1.04 1.05

σT(rt − r f
t ) 16.24 21.22 19.44 17.55 10.66 10.62

ET(pdt) 3.50 2.77 2.94 3.09 3.88 3.90
σT(pdt) 0.43 0.13 0.12 0.10 0.03 0.03
ar1T(pdt) 0.94 0.84 0.84 0.84 0.75 0.75

by generating too low volatility of the conditional return variance under both probability

measures. Introducing priced parameter uncertainty amplifies the mean and volatility of

the variance premium by a factor of more than ten and six, respectively, and yields values

comparable to observed statistics. The results also demonstrate that parameter learning

generates a large and volatile variance premium with realistic properties of conditional
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Table 4. Variance premium.

The table reports summary statistics of the variance premium and return variances from
the data and the production economies with unknown transition probabilities (assum-
ing priced parameter uncertainty and 100, 150, 200, and 10000 years of prior learning)
and known parameters. The empirical moments are based on the data from 1990:Q1 to
2019:Q4. The model-based moments are the averages of small sample statistics based on
1000 simulations corresponding to the empirical data. The mean, median, standard de-
viation, and maximum statistics are quarterly moments converted to monthly units by
multiplying by an appropriate number. The skewness, kurtosis, and autocorrelation are
expressed in quarterly terms.

Data Priors (training sample) Known

100 yrs 150 yrs 200 yrs 10000 yrs parameters

ET(vpt) 10.05 7.16 5.53 3.94 0.30 0.52
σT(vpt) 12.00 5.24 4.30 3.10 0.22 0.85

ET(VIX2
t ) 35.05 40.41 35.22 28.66 9.68 9.75

MdT(VIX2
t ) 24.13 30.47 26.29 21.52 8.74 8.67

σT(VIX2
t ) 30.99 30.50 27.13 21.24 2.59 3.10

skewT(VIX2
t ) 2.34 3.17 3.29 3.28 3.11 3.22

kurtT(VIX2
t ) 8.97 14.42 15.83 15.77 14.35 15.37

ar1T(VIX2
t ) 0.50 0.62 0.61 0.60 0.61 0.60

ar2T(VIX2
t ) 0.38 0.39 0.38 0.37 0.38 0.37

ET(VOL2
t ) 25.01 33.25 29.69 24.72 9.38 9.24

MdT(VOL2
t ) 18.07 24.91 22.11 18.59 8.53 8.45

σT(VOL2
t ) 23.86 25.29 22.84 18.14 2.37 2.26

skewT(VOL2
t ) 3.42 3.16 3.29 3.28 3.11 3.20

kurtT(VOL2
t ) 17.43 16.37 15.81 15.77 14.34 15.22

ar1T(VOL2
t ) 0.55 0.62 0.61 0.60 0.61 0.60

ar2T(VOL2
t ) 0.31 0.39 0.38 0.37 0.37 0.37

variances. With parameter uncertainty, the model-implied VIX2 and VOL2 exhibit a high

volatility, a large positive skewness and kurtosis, and a moderate persistence. Thus, ratio-

nally accounting for parameter uncertainty also helps to reconcile salient moments of the

variance premium and conditional variances.

Figure 4 shows the empirical and model-based one-quarter implied volatilities. With

known parameters, implied volatilities are flat and approximately equal to the annualized

equity return volatility. Parameter learning again improves the fit with the data. The

higher degree of parameter uncertainty, as measured by a shorter prior sample, leads

to an upward shift in the implied volatility line. Similarly to a level shift, the implied

volatility curve becomes steeper at both ends of the moneyness range in response to more
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Figure 4. One-quarter implied volatilities.
The figure shows one-quarter implied volatilities from the data and the production
economies with unknown transition probabilities (assuming priced parameter uncertainty
and 100, 150, 200, and 10000 years of prior learning) and known parameters. The em-
pirical curve corresponds to implied volatilities for S&P 500 index options from 1996:Q1
to 2019:Q4. The model-based curves are the averages of small sample implied volatilities
based on 1000 simulations corresponding to the empirical data. Implied volatilities for the
data and the models are annual. Strikes are expressed in moneyness (Strike Price/Spot
Price).

uncertainty about unknown parameters. Hence, priced parameter uncertainty inflates the

level and the slope of the implied volatility curve, capturing both skew and smirk patterns

well. The impact of parameter learning remains significant after 200 years of prior learning.

Indeed, the implied volatility curve in the model using a 200-year prior flattens and shifts

downward but remains only slightly below the empirical line and well about the known

parameter case. The effect of parameter uncertainty disappears after a very long learning

period, as indicated by the convergence of the curves in the 10,000 years of learning and

full information models.

Table 3 shows that the average equity premium generated by the model with priced

parameter uncertainty drops by 20 percent when the prior length is increased by 50 years.

The declining equity premium predicted by our mechanism is consistent with the empiri-

cal literature (Blanchard, Shiller, and Siegel, 1993; Jagannathan, McGrattan, and Scherbina,

2001; Fama and French, 2002). Lettau, Ludvigson, and Wachter (2008) present one partic-
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ular explanation and advocate for a fall in macroeconomic risk. We present an alternative

interpretation: the decrease in parameter uncertainty over time.

Furthermore, Table 4 reports a novel prediction of our model: the average variance pre-

mium drops around 25 percent over 50 years. Do we observe this decline in the data?

If yes, is the degree of the decay reasonable? Although it is beyond the scope of this

paper to examine the question of the declining variance premium, we provide evidence

favoring a positive answer to both questions. Qualitatively, our results resonate well with

Dew-Becker and Giglio (2024) demonstrating the decline in alphas of synthetic options

strategies, which include the variance premium as a version of a delta-hedged put. Quan-

titatively, we estimate the variance premium from 1992:Q1 to 2022:Q1 using a rolling win-

dow procedure. The historical mean for decades ending in 2002:Q1, 2012:Q1, and 2022:Q1

are 13.97, 10.49, and 7.33, respectively. Consequently, the average variance premium has

declined by around 25 and 30 percent over a decade-long period. In fact, in the data, it

appears to decline, if anything, faster than in the production economy. Therefore, our re-

sults are not unreasonable and have support in the data in that the decline in parameter

uncertainty could contribute to the decrease in the variance premium.

4.5 SVIX and entropy of the risk-neutral return distribution

We now examine the model’s ability to account for salient features of the risk-neutral

entropy of the return distribution and the simple volatility index. We retrieve the historical

data for SVIX from Ian Martin’s website. The data include the time series from 1996 to

2012, as in the original publication. Note that the empirical SQ and SVIX are computed

for the quarterly horizon and reported in annual volatility terms.

Table 5 shows that the empirical SQ and SVIX have high mean and volatility, positive

skewness, excess kurtosis, and moderate persistence. The difference between the series is

positive on average and exhibits high volatility. The known parameter model has difficulty

matching the properties of risk-neutral and simple VIX indexes. For instance, the mean and
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median values of the model-based quantities are twice as small as in the data, while their

volatility is more than five times smaller. In addition, the mean and volatility of SQ− SVIX

predicted by the model are an order of magnitude below the empirical estimates.

The table also shows that priced parameter uncertainty leads to a substantial amplifi-

cation of the first and second moments of variances. Focusing on the 100-year prior, the

model with parameter learning closely matches the mean, median, and volatility of risk-

neutral and simple variances. It generates a sufficiently large and volatile gap between SQ

and SVIX: 1.28 and 1.27 in the data versus 1.58 and 1.49 for the model with priced pa-

rameter uncertainty. The parameter learning model can also account for the spikiness and

autocorrelation of variance measures as indicated by high and positive skewness, excess

kurtosis, and relatively low autocorrelation. It is worth emphasizing that the productivity

growth process primarily determines higher moments and autocorrelation, while parame-

ter learning does not significantly alter these statistics.

4.6 EP(x) and VP(x)

Here, we assess the ability of different models to capture the key patterns of the empirical

EP(x) and VP(x). Similar to Schreindorfer (2020), we first compare the empirical moments

with the corresponding population moments based on many observations. Then, we test

the model performance in small samples where we generate many simulations of length

corresponding to the empirical data and then report percentiles of small-sample statistics.

Figure 5 illustrates the population moment results. Note that we decompose the equity

and variance premiums in the data for a quarterly horizon to align with the quarterly fre-

quency in the production economy.13 In the model with known parameters, both curves

are very low within the interval from −30% ·
√

3 to −10% ·
√

3, inconsistent with the pri-

mary role of such returns in the data. The model with priced parameter uncertainty does

a good job of capturing the key patterns in EP(x) and VP(x). The model-implied curves

begin to grow on the left side of an intermediate left tail region and steadily increase
13Appendix D provides the replication results of the empirical EP(x) and VP(x) for a quarterly horizon.
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Table 5. SVIX and entropy of the risk-neutral return distribution.

The table reports summary statistics of SQ − SVIX, SQ, and SVIX from the data and the
production economies with unknown transition probabilities (assuming priced parameter
uncertainty and 100, 150, 200, and 10000 years of prior learning) and known parameters.
The empirical moments are based on the data from 1996:Q1 to 2012:Q1. The model-based
moments are the averages of small sample statistics based on 1000 simulations correspond-
ing to the empirical data. The mean, median, standard deviation, and maximum statistics
are quarterly moments converted to annual units by multiplying by an appropriate num-
ber. The skewness, kurtosis, and autocorrelation are expressed in quarterly terms.

Data Priors (training sample) Known

100 yrs 150 yrs 200 yrs 10000 yrs parameters

ET(SQ − SVIXt) 1.28 1.58 1.22 0.89 0.17 0.16
σT(SQ − SVIXt) 1.27 1.49 1.28 0.98 0.12 0.11

ET(SQ) 22.41 21.63 19.89 17.88 10.98 10.89
MdT(SQ) 21.47 20.87 18.82 16.76 10.53 10.48
σT(SQ) 7.89 3.01 3.58 3.50 1.22 1.16

skewT(SQ) 1.42 2.61 2.90 3.05 2.91 3.00
kurtT(SQ) 6.53 11.29 13.13 14.41 12.29 13.25
ar1T(SQ) 0.63 0.65 0.64 0.62 0.62 0.62
ar2T(SQ) 0.40 0.43 0.41 0.39 0.39 0.39

ET(SVIXt) 21.13 20.05 18.67 16.99 10.81 10.72
MdT(SVIXt) 20.51 18.74 17.13 15.51 10.32 10.28
σT(SVIXt) 6.80 4.36 4.78 4.43 1.34 1.26

skewT(SVIXt) 1.33 3.08 3.12 3.21 2.93 3.03
kurtT(SVIXt) 6.14 14.09 14.55 15.53 12.49 13.46
ar1T(SVIXt) 0.64 0.61 0.62 0.61 0.62 0.62
ar2T(SVIXt) 0.42 0.38 0.39 0.38 0.39 0.39

within the gray-shaded area. Comparing the results for various priors, the effect of priced

parameter uncertainty disappears slowly with EP(x) and VP(x) resembling the empirical

counterparts even after 200 years of prior learning.

Table 6 provides summary statistics of return state contributions. It shows that the

model with known parameters attributes 0 of the equity (variance) premium to returns

below −30% ·
√

3 and 0.901 (0.500) to returns above −10% ·
√

3, the numbers outside of

the empirical 95% confidence intervals. The contribution of the intermediate region to the

equity premium is also significantly below the empirical counterpart. Introducing priced

parameter uncertainty helps the production economy to match the moments well. The

model with a 100-year prior produces the contributions of different intervals that are close
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Figure 5. EP(x) and VP(x).
The figure shows the EP(x) and VP(x) curves from the data and the production economies
with unknown transition probabilities (assuming priced parameter uncertainty and 100,
150, 200, and 10000 years of prior learning) and known parameters. The shaded area
denotes the quarterly returns between −30% ·

√
3 and −10% ·

√
3. The empirical curve

is based on the data from January 1996 to December 2019. The model-based curves are
computed for the population of 1 million random draws.

to the mean estimates in the data and fall within the empirical 95% confidence intervals.

Specifically, it predicts a non-negligible role of the far left tail – 0.087 and 0.206 versus 0.064

and 0.250 in the data – and a dominant impact of the intermediate left tail – 0.709 and 0.788

versus 0.571 and 0.626 in the data.

The bottom of Table 6 shows that more realistic risk prices drive the model improve-

ment. The probability and price of the bad but non-disastrous events significantly under-

shoot the empirical estimates and are located on the left side of the 95% confidence inter-
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Table 6. EP(x) and VP(x): population statistics.

The table reports the summary statistics of EP(x), VP(x), physical and risk-neutral PDFs
from the data and the production economies with unknown transition probabilities (as-
suming priced parameter uncertainty and 100, 150, 200, and 10000 years of prior learning)
and known parameters. The empirical moments are based on the data from 1996:Q1 to
2019:Q4. The table reports the empirical moments when f (R) is proxied by realized re-
turns (the fR column) or is a smoothed version (the f smooth

R column) of the empirical PDF.
The entries in squared brackets are the empirical 95% confidence intervals. The model-
based moments are computed for the population of 1 million random draws.

Data Priors (training sample) Known

fR f smooth
R 100 yrs 150 yrs 200 yrs 10000 yrs parameters

EP
(
− .3
√

3
)

0.064 0.064 0.087 0.033 0.011 0.000 0.000
[0.032, 0.226]

EP
(
− .1
√

3
)
− EP

(
− .3
√

3
)

0.571 0.571 0.709 0.694 0.655 0.109 0.099
[0.305, 1.532]

1− EP
(
− .1
√

3
)

0.365 0.364 0.204 0.273 0.334 0.891 0.901
[-0.738, 0.644]

VP
(
− .3
√

3
)

0.250 0.251 0.206 0.106 0.046 0.000 0.000
[0.162, 0.356]

VP
(
− .1
√

3
)
−VP

(
− .3
√

3
)

0.626 0.641 0.788 0.894 0.968 0.541 0.500
[0.444, 0.756]

1−VP
(
− .1
√

3
)

0.124 0.108 0.017 0.005 0.014 0.459 0.500
[0.012, 0.254]

−.1
√

3∫
−.3
√

3

f (R)dR 0.013 0.019 0.026 0.026 0.025 0.004 0.003
[0.003, 0.038]

−.1
√

3∫
−.3
√

3

f ∗(R)dR
/ −.1

√
3∫

−.3
√

3

f (R)dR 4.032 2.765 2.520 2.217 2.073 1.773 1.755
[1.453, 17.147]

vals. In the model with parameter learning, the probability and risk price of returns in

[−30%,−10%] ·
√

3 increases substantially. Note that the simulated results are population

moments based on a large number of observations, whereas the empirical counterparts are

the historical averages based on a small sample. When we use the smoothed probability

density function to compute the empirical estimates, the model-based values of 0.026 and

2.520 align better with the empirical averages of 0.019 and 2.765.
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Table 7. EP(x) and VP(x): small sample statistics.

The table reports the summary statistics of EP(x), VP(x), physical and risk-neutral PDFs
from the data and the production economies with unknown transition probabilities (as-
suming priced parameter uncertainty and 100, 150, 200, and 10000 years of prior learn-
ing) and known parameters. The empirical moments are based on the data from 1996:Q1
to 2019:Q4. The table reports the empirical moments when f (R) is proxied by realized
returns (the fR column) or is a smoothed version (the f smooth

R column) of the empiri-
cal PDF. The model-based moments are the medians with the 95% confidence intervals
in squared brackets of small sample statistics based on 10000 simulations correspond-
ing to the empirical data. The table reports the model-based moments when the phys-
ical PDF is proxied by realized returns in the simulation. The last row in the table
shows p-value for the test H0 : EP(−.1)− EP(−.3) ≥ 0.571 & VP(−.1)− VP(−.3) ≥

0.626 &
−.1
√

3∫
−.3
√

3

f ∗(R)dR
/ −.1

√
3∫

−.3
√

3

f (R)dR ≥ 4.032.

Data Priors (training sample) Known

fR f smooth
R 100 yrs 150 yrs 200 yrs 10000 yrs parameters

EP
(
− .3
√

3
)

0.064 0.064 0.000 0.000 0.000 0.000 0.000
[-0.276, 0.731] [0.000, 0.381] [0.000, 0.120] [0.000, 0.000] [0.000, 0.000]

EP
(
− .1
√

3
)

0.571 0.571 0.896 0.843 0.781 0.147 0.142

−EP
(
− .3
√

3
)

[-0.427, 3.422] [-1.886, 4.508] [-3.166, 5.096] [-2.696, 2.633] [-2.625, 2.541]

1− EP
(
− .1
√

3
)

0.365 0.364 0.044 0.126 0.209 0.853 0.858
[-2.482, 1.445] [-3.380, 2.917] [-4.146, 4.146] [-1.633, 3.696] [-1.541, 3.625]

VP
(
− .3
√

3
)

0.250 0.251 0.000 0.000 0.000 0.000 0.000
[-0.345, 0.892] [0.000, 0.553] [0, 0.176] [0.000, 0.000] [0.000, 0.000]

VP
(
− .1
√

3
)

0.626 0.641 0.877 0.863 0.860 0.402 0.389

−VP
(
− .3
√

3
)

[-0.288, 1.719] [-0.583, 1.652] [-1.046, 2.17] [-5.576, 6.271] [-5.665, 6.185]

1−VP
(
− .1
√

3
)

0.124 0.108 0.069 0.103 0.122 0.598 0.611
[-0.316, 0.842] [-0.580, 1.365] [-1.144, 1.908] [-5.271, 6.576] [-5.185, 6.665]

−.1
√

3∫
−.3
√

3

f (R)dR 0.013 0.019 0.022 0.022 0.022 0.000 0.000
[0.000, 0.054] [0.000, 0.054] [0.000, 0.054] [0.000, 0.022] [0.000, 0.022]

−.1
√

3∫
−.3
√

3

f ∗(R)dR 4.032 2.765 2.405 2.144 2.024 0.592 0.538/ −.1
√

3∫
−.3
√

3

f (R)dR [1.006, 7.434] [0.879, 6.619] [0.792, 6.160] [0.223, 0.989] [0.222, 0.683]

p-value 0.161 0.167 0.159 0.000 0.000

The two comments are noteworthy before we present the small sample tests. First, the

empirical statistics are based on the daily overlapping one-quarter returns. Due to the
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Table 8. EP(x) and VP(x): small sample statistics (continuation).

The table reports the summary statistics of EP(x), VP(x), physical and risk-neutral PDFs
from the data and the production economies with unknown transition probabilities (as-
suming priced parameter uncertainty and 100, 150, 200, and 10000 years of prior learning)
and known parameters. The empirical moments are based on the data from 1996:Q1 to
2019:Q4. The table reports the empirical moments when f (R) is proxied by realized re-
turns (the fR column) or is a smoothed version (the f smooth

R column) of the empirical PDF.
The model-based moments are the medians with the 95% confidence intervals in squared
brackets of small sample statistics based on 10000 simulations corresponding to the empir-
ical data. The table reports the model-based moments when the physical PDF is proxied
by the model-implied density function of the return distribution. The last row in the table
shows p-value for the test H0 : EP(−.1)− EP(−.3) ≥ 0.571 & VP(−.1)− VP(−.3) ≥

0.641 &
−.1
√

3∫
−.3
√

3

f ∗(R)dR
/ −.1

√
3∫

−.3
√

3

f (R)dR ≥ 2.765.

Data Priors (training sample) Known

fR f smooth
R 100 yrs 150 yrs 200 yrs 10000 yrs parameters

EP
(
− .3
√

3
)

0.064 0.064 0.000 0.000 0.000 0.000 0.000
[0.000, 0.532] [0.000, 0.381] [0.000, 0.12] [0.000, 0.000] [0.000, 0.000]

EP
(
− .1
√

3
)

0.571 0.571 0.773 0.740 0.707 0.109 0.102

−EP
(
− .3
√

3
)

[0.256, 0.91] [0.238, 0.889] [0.188, 0.875] [0.056, 0.189] [0.056, 0.155]

1− EP
(
− .1
√

3
)

0.365 0.364 0.180 0.233 0.286 0.891 0.898
[0.075, 0.610] [0.097, 0.752] [0.114, 0.811] [0.811, 0.944] [0.845, 0.944]

VP
(
− .3
√

3
)

0.250 0.251 0.001 0.000 0.000 0.000 0.000
[0.000, 0.690] [0.000, 0.348] [0.000, 0.106] [0.000, 0.000] [0.000, 0.000]

VP
(
− .1
√

3
)

0.626 0.641 0.980 0.996 1.007 0.509 0.473

−VP
(
− .3
√

3
)

[0.277, 1.156] [0.566, 1.526] [0.697, 2.147] [0.322, 1.721] [0.356, 1.485]

1−VP
(
− .1
√

3
)

0.124 0.108 0.004 0.000 −0.008 0.491 0.527
[-0.156, 0.089] [-0.526, 0.120] [-1.147, 0.187] [-0.721, 0.678] [-0.485, 0.644]

−.1
√

3∫
−.3
√

3

f (R)dR 0.013 0.019 0.029 0.028 0.027 0.004 0.004
[0.011, 0.039] [0.014, 0.035] [0.011, 0.034] [0.002, 0.006] [0.003, 0.005]

−.1
√

3∫
−.3
√

3

f ∗(R)dR 4.032 2.765 2.267 2.144 2.024 1.723 1.720/ −.1
√

3∫
−.3
√

3

f (R)dR [1.804, 3.412] [1.775, 2.761] [1.761, 2.500] [1.707, 1.74] [1.713, 1.729]

p-value 0.129 0.021 0.004 0.000 0.000

model’s quarterly frequency, we cannot replicate this daily approach in simulations. One

possible solution is to generate the same number of observations in each simulation. How-
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ever, this would counterfactually imply that the agent learns about unknown parameters

for 24× 12× 21 = 6048 quarters in a single simulation. For this reason, we simulate mod-

els of length 24× 4 = 196 quarters following the approach in Schreindorfer (2020). Note,

however, that this leads to wide model-based confidence intervals because the simulated

moments employ observations less than 3× 21 times in the data (also much wider intervals

compared to monthly model simulations considered in Schreindorfer (2020)). Second, the

unconditional PDF under a physical measure in the data is based on historical frequencies

of returns, while the unconditional PDF under a risk-neutral measure is the average of

daily conditional PDFs obtained from option prices. In the model, the exact conditional

PDFs are available for each period. Hence, we can use the true conditional physical PDF

to obtain a more precise estimate of the unconditional distribution. Furthermore, this also

alleviates the discrepancy in sampling daily and quarterly observations in the data and the

model. Indeed, as we generate more returns, unconditional distribution based on sampled

returns will converge to the true distribution.

Table 7 reports the results for the case when f (R) is proxied by realized returns in

simulations. The model with known parameters generates the median values of return

contributions far from the empirical estimates. However, the confidence intervals of some

statistics are very wide and might contain empirical estimates. The full information econ-

omy can still be rejected based on low risk prices of tail events. In specifications with priced

parameter uncertainty, the median statistics better align with the empirical estimates. Con-

sequently, we cannot reject the model with a 100-year prior based on any of the univariate

confidence intervals.

The bottom line in the table further reports the p-values of a multivariate test consid-

ered in Schreindorfer (2020). For each model, it shows the fraction of samples across all

simulations of the economy satisfying three conditions: the equity and variance premia

contributions and risk prices of returns in [−30%,−10%] ·
√

3 are larger than empirical

estimates. One can interpret these fractions as p-values for a one-sided test of the model

generating a significant impact of tail returns as in the data. We see that parameter learning
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models cannot be rejected even based on the joint test.

Table 8 shows the results for the case when f (R) is estimated based on the exact prob-

ability distribution function in the model. Note that, in this case, the construction of

model-based statistics aligns better with empirical estimates using the smoothed physical

PDF. As shown in the table, median statistics change slightly while the confidence intervals

narrow significantly compared to the previous construction. As a result, we can reject the

known parameter specification based on almost any univariate confidence interval. The

models with parameter learning also have a harder time explaining the data. Still, the

specification with 100 years of prior learning cannot be rejected based on univariate or

multivariate tests.

5 Inspecting the mechanism and additional results

We have demonstrated that a single-shock production economy with priced parameter

uncertainty can jointly capture (1) basic macroeconomic moments, (2) basic asset pric-

ing moments, (3) salient features of the variance premium and return variances including

SVIX, (4) option-implied volatilities, and (5) the equity and variance premia decomposi-

tions. This section explains the economic mechanism of how the model achieves these

results and discusses additional implications.

5.1 Macroeconomic tail risks

This section demonstrates that the key intuition stems from sizable physical tail risks

driven by priced parameter uncertainty in the production economy. To illustrate this point,

Table 9 reports conditional moments of consumption and dividend growth in expansion

and recession, assuming unbiased initial beliefs. In expansions, the mean consumption

and dividend growth rates are similar across different specifications with parameter learn-

ing and are slightly higher compared to the full information case. In recessions, however,

consumption and dividends decline, on average, more than twice as much in models with

35



Table 9. Conditional moments.

The table reports conditional moments of log consumption and dividend growth from the
production economies with unknown transition probabilities (assuming priced parameter
uncertainty and 100, 150, 200, and 10000 years of prior learning) and known parameters.
The conditional moments are computed for the economy in expansion and recession where
the initial capital is equal to the steady state value and initial mean beliefs are centered at
the true parameter values. The mean, standard deviation, and correlation of consumption
and dividends are expressed in quarterly terms.

st = expansion st = recession

Priors (training sample) Known Priors (training sample) Known

100 yrs 150 yrs 200 yrs 10000 yrs param. 100 yrs 150 yrs 200 yrs 10000 yrs param.

ET(∆ct) 0.83 0.75 0.68 0.49 0.49 −3.65 −3.57 −3.28 −1.49 −1.49
σT(∆ct) 0.47 0.40 0.39 0.47 0.46 0.66 0.62 0.62 0.65 0.65

ET(∆dt) 1.57 1.34 1.12 0.65 0.65 −9.66 −9.49 −8.70 −4.29 −4.29
σT(∆dt) 4.19 4.17 4.13 4.18 4.18 4.36 4.32 4.26 4.33 4.33

ρT(∆ct, ∆dt) 0.29 0.25 0.24 0.29 0.29 0.38 0.36 0.36 0.38 0.38

parameter learning. This occurs because priced parameter uncertainty amplifies the im-

pact of macroeconomic shocks in equilibrium models. The production economy allows for

endogenous feedback from productivity shocks to consumption through parameter beliefs

and investment decisions, further amplifying the decline in consumption and dividends.

The bottom line of Table 9 also shows that the correlation between consumption and

dividend growth strengthens in a recession. A higher positive correlation implies that

low consumption growth (and hence high marginal utility values) in a low productivity

growth state is more likely to occur with low dividend growth. This creates a higher

covariance between the SDF and the payoff to the equity and variance claims. Hence, a

larger part of the equity and variance premia is associated with negative stock returns.

Quantitatively, we demonstrate that the magnitude of tail risk in the parameter learning

model is consistent with the observed equity and variance premia decompositions, even

though these moments are not directly targeted in the calibration.

It is noteworthy that Schreindorfer (2020) presents a similar mechanism to explain the

option prices. There are two key differences between the two approaches. First, his model

generates the state-dependent correlation between consumption and dividends because

their innovations are exogenously modeled as a mixture of Gaussian distributions, con-
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sistent with the empirical evidence. In contrast, the production economy in our setting

generates this feature endogenously. Second, the author employs generalized disappoint-

ment aversion preferences as risk price amplification, whereas our model relies on priced

parameter uncertainty.

We now demonstrate that the degree of tail risks in consumption and dividends in our

model is consistent with the data. We examine the downside correlation between the log

consumption and log dividend growth (∆ct and ∆dt) defined as follows:

ρ(∆c) = corr[∆ct, ∆dt|∆ct ≤ x].

Following the procedure in Schreindorfer (2020), we first aggregate the consumption and

dividends in the data and simulations by time-averaging quarterly consumption and divi-

dends to an annual frequency and then compute the downside correlation between the two

series. Figure 6 demonstrates the downside correlations in the data and the model with

a 100-year prior. The median of model-based downside correlations reasonably tracks its

empirical counterpart. The data-based values tend to be within the 95% confidence inter-

val. Furthermore, the figure confirms that the downside correlation is high in periods of

low consumption growth, which is in line with the key mechanism of the model.

As an additional exercise, we compare the empirical distribution of aggregate con-

sumption and dividends with those predicted by the calibration. The macro-finance lit-

erature follows a standard approach to calibrate the models for shorter time horizons (e.g.,

monthly) and target moments of annual (time-aggregated) quantities. Figure 7 compares

the distribution of annual log consumption and dividend growth in the data and model

simulations. For each simulation, we perform the Andersen-Darling test for equality of

the empirical and the simulated distribution. Focusing on the parameter learning results

in top panels, the proportions of simulations for which the test does not reject the null

hypothesis of equality of the distributions at the 5% confidence level are 0.631 and 0.845

for consumption and dividend growth. The empirical distributions are generally within
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Figure 6. Downside correlations.
The figure shows downside correlations between annual log consumption and dividend
growth from the data and production economies with unknown transition probabilities (as-
suming priced parameter uncertainty and 100 years of prior learning) and known param-
eters. The empirical curve is based on the data from 1947:Q2 to 2019:Q4. The model-based
lines are the medians of small sample statistics based on 1000 simulations corresponding to
the empirical data. The shaded area denotes the 95% confidence region. We time-average
quarterly consumption and dividends to an annual frequency and compute the correla-
tion between the two series below the threshold for consumption (shown on the horizontal
axis) consistent with Schreindorfer (2020).

95% confidence intervals predicted by model-based distributions. This demonstrates that

the model with parameter learning produces distributions of cash flows close to those

observed in the data.

We emphasize an additional aspect: the distribution of consumption growth exhibits a

fatter tail in the parameter learning model compared to the data and the specification with

known parameters. Although we have not observed such big declines in consumption and

dividends in the post-war data from Q1:1947 to Q4:2019, the large declines in consumption

and dividends at the onset of the COVID outbreak (as well as even more extreme observa-

tions before 1947) clearly indicate a non-zero likelihood of such events. Thus, we conclude

that the observed data in the post-war period could be likely generated by our model.
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Figure 7. Distributions of annual log consumption and dividend growth.
The figure shows the distribution of annual log consumption and dividend growth from
the data and production economies with unknown transition probabilities (assuming
priced parameter uncertainty and 100 years of prior learning) and known parameters.
The empirical distribution is based on the data from 1947:Q2 to 2019:Q4. The model-based
lines are the medians of small sample statistics based on 1000 simulations corresponding to
the empirical data. The shaded area denotes the 95% confidence region. We time-average
quarterly consumption and dividends to an annual frequency and plot the histogram of
the two series.

5.2 Anticipated utility

This section emphasizes the key role of priced parameter uncertainty for our results. Antic-

ipated utility (AU) pricing (Kreps, 1998; Piazzesi and Schneider, 2009) is a benchmark ap-

proach to dealing with parameter uncertainty in equilibrium models (Piazzesi and Schnei-

der, 2009; Johannes et al., 2016). AU investors learn about unknown parameters over time

and treat their current mean beliefs as true parameter values when making decisions. Thus,

they ignore parameter uncertainty when computing utility and asset prices. We now solve
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Figure 8. Implied volatilities: anticipated utility.
The figures show one-quarter implied volatilities from the data and the production
economies with unknown transition probabilities under different priors, as well as known
parameters. The models with parameter learning assume anticipated utility pricing and
a 100-year prior period. We report the results for look-ahead priors equal to maximum
likelihood estimates of transition probabilities and initial beliefs centered at the historical
priors in 1947:Q1. In both cases with look-ahead and historical priors, we use the orig-
inal calibration of the production economy. The empirical curve corresponds to implied
volatilities for S&P 500 index options from 1996:Q1 to 2019:Q4. Implied volatilities for the
data and the models are annualized. Strikes are expressed in moneyness (Strike Price/Spot
Price).

the benchmark calibration with unknown transition probabilities by applying anticipated

utility pricing. We report the results for the two types of initial beliefs: look-ahead un-

biased priors employed in the main analysis and historical beliefs estimated from annual

productivity growth from 1929 to 1946. Appendix C discusses the estimation procedure

used to obtain these priors.

Table 10 reports the key moments. Panel A demonstrates that feeding forward-looking

priors into the model produces almost identical moments to those implied by the known

parameter specification. One notable difference between the two cases is the increased

volatility of excess returns (12.23% versus 10.62%) and the price-dividend ratio (0.08%

versus 0.03%). Panel A demonstrates further improvements in unconditional moments

when using pessimistic priors based on historical data. Specifically, we observe an almost

two-fold increase in the volatility of excess returns and a more than three-fold increase
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Table 10. Sample moments: anticipated utility

This table reports asset pricing moments from the data and the production economies with
unknown transition probabilities under different priors, as well as known parameters. The
models with parameter learning assume anticipated utility pricing and a 100-year prior
period. We report the results for look-ahead priors equal to the maximum likelihood
estimates of transition probabilities and initial beliefs centered at the historical priors in
1947:Q1. In both cases, we use the original calibration of the production economy.

Data Prior: 100 yrs Known

Look-ahead Historical parameters

Panel A: Returns and variances

E(R f )− 1 0.49 1.90 1.61 1.89
σ(R f ) 0.91 0.24 0.25 0.24

E(R− R f ) 6.64 1.08 3.86 1.05
σ(R− R f ) 16.24 12.23 18.67 10.62

E(pd) 3.50 3.90 3.33 3.90
σ(pd) 0.43 0.08 0.20 0.03

E(VP) 10.0 0.52 1.56 0.52
σ(VP) 12.00 0.86 1.11 0.85

ET(SQ − SVIXt) 1.28 0.16 0.88 0.16
σT(SQ − SVIXt) 1.27 0.12 0.83 0.11

Panel B: EP(x) and VP(x)

EP
(
− .3
√

3
)

0.064 0.064 0.001 0.014 0.000
[0.032, 0.226]

EP
(
− .1
√

3
)
− EP

(
− .3
√

3
)

0.571 0.571 0.222 0.528 0.099
[0.305, 1.532]

1− EP
(
− .1
√

3
)

0.365 0.364 0.777 0.459 0.901
[-0.738, 0.644]

VP
(
− .3
√

3
)

0.250 0.251 0.017 0.074 0.000
[0.162, 0.356]

VP
(
− .1
√

3
)
−VP

(
− .3
√

3
)

0.626 0.641 0.918 0.967 0.500
[0.444, 0.756]

1−VP
(
− .1
√

3
)

0.124 0.108 0.065 −0.042 0.500
[0.012, 0.254]

−.1
√

3∫
−.3
√

3

f (R)dR 0.013 0.019 0.009 0.019 0.003
[0.003, 0.038]

−.1
√

3∫
−.3
√

3

f ∗(R)dR
/ −.1

√
3∫

−.3
√

3

f (R)dR 4.032 2.765 1.306 1.815 1.755
[1.453, 17.147]

p-value 0.000 0.000 0.000
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in the average equity and variance premiums compared to the known parameter specifi-

cation. The difference between VIX and SVIX becomes more than five times larger and

more volatile. As equity returns and valuations become more volatile and risk-neutral

properties of returns improve, a larger fraction of the average equity (variance) premium

is attributable to larger market declines. Panel B shows that returns from −30% to −10%

contribute only 0.099 (0.500) in the full information model, but 0.222 (0.918) and 0.528

(0.967) in the parameter learning models with look-ahead and historical priors. Although

combining anticipated utility pricing with pessimistic beliefs improves the fit with the data,

the moments appear far from empirical estimates. In addition, the bottom three lines in

Panel B show that risk prices of left-tail returns still remain abysmal compared to the data,

and hence, we can reject these specifications based on p-values close to zero. Figure 8

further illustrates the implied volatility curves in the data and models. Consistent with

previous results, pessimistic priors inflate the level and slope of implied volatilities, but

the effect is quantitatively small to match the empirical line.

Our results are not inconsistent with Cogley and Sargent (2008) who also examine learn-

ing about the mean duration of recessions and document some asset pricing advantages of

anticipated utility. In their setting, a calibrated model with pessimistic priors based on the

Great Depression can match the equity premium. As shown in Table 10 and Figure 8, pes-

simistic priors in our setting indeed lead to a several-fold increase in risk premiums and

volatility of conditional return variances, and steeper and higher option-implied volatil-

ities. Naturally, one can improve further the performance by introducing more complex

inference problems with state, parameter, and model uncertainty. This would slow down

learning due to confounding and, hence, amplify the impact of belief revisions on asset

prices. In particular, it would be interesting to extend this approach to model uncertainty

similarly to Johannes, Lochstoer, and Mou (2016) and study the implications for deriva-

tives. Alternatively, anticipated utility with learning about the whole distribution of shocks

may lead to long-lasting belief revisions that would translate into more pronounced asset

pricing implications. We leave these interesting avenues for future research.
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5.3 Alternative definitions of the variance premium

The empirical and theoretical literature on the variance premium has developed signifi-

cantly in the past decade. Surprisingly, however, disagreement remains on a standardized

estimation procedure for the variance premium in the data and a universally accepted def-

inition in discrete-time models. The divergence in empirical methodologies arises from

different approaches to estimating conditional expectations of return variance under the

physical measure. Theoretical discrepancies primarily stem from the mismatch between

data sampling (e.g., daily) and model frequency (e.g., monthly). Our definition in Section

3.2 and results in Section 4.4 are based on the original variance premium specification by

Bollerslev, Tauchen, and Zhou (2009) and Carr and Wu (2009). This section demonstrates

that our key findings are robust under alternative definitions proposed in other studies.

Drechsler and Yaron (2011) define the variance premium as EQ
t

[
varQ

t+1(rt+2)
]
−Et

[
vart+1(rt+2)

]
to reflect not only the level difference in variance under different measures but also the dif-

ference in the drifts of conditional variance due to its time-varying nature. Bekaert et al.

(2020) define the variance premium as varQ
t (rt+1) − vart(rt+1). This definition is more

suitable for shorter horizons (such as a month or shorter). It differs from ours in that it

does not skip the equity log return and assumes that the agents form their conditional

expectations instantaneously and have perfect foresight of future variance. Next, we fol-

low Schreindorfer (2020) and use the risk-neutral entropy SQ
t to measure the risk-neutral

variance expectation (to capture deviations from log-normality) and define the variance

premium as 2SQ
t − vart(rt+1). Finally, Lorenz, Schmedders, and Schumacher (2020) de-

fine the variance premium as the squared deviation of a one-period ahead return from its

mean under the physical measure EQ
t

[
(rt+1− Et(rt+1))

2
]
− Et

[
(rt+1− Et(rt+1))

2
]

to reflect

a discrete nature of returns in the model.

The results for alternative specifications are reported in Table 11. Note that we compute

the empirical variance premium consistent with the theory-based definitions. For instance,

we employ the forecast of future variance for the definition in Drechsler and Yaron (2011)
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Table 11. Variance premium: alternative definitions.

The table reports summary statistics of the variance premium from the data and the pro-
duction economies with unknown transition probabilities (assuming priced parameter un-
certainty and 100, 150, 200, and 10000 years of prior learning) and known parameters.
We report the empirical and model-based results for alternative definitions of the variance
premium encountered in the literature. Following Drechsler and Yaron (2011), Panel A
defines the variance premium as the difference between the risk-neutral and physical ex-
pectations of return variance, which is computed by the risk-neutral and physical expecta-
tions, respectively. Panel B follows the definition of Bekaert et al. (2020) where the variance
premium is simply the difference between the risk-neutral and physical return variances.
Panel C modifies this definition by computing the risk-neutral variance as the entropy of
returns, similar to the VIX definition in Schreindorfer (2020). Panel D adopts a discrete-
time analogous of realized return variance, which is measured as the squared deviation of
a one-period ahead return from its mean, consistent with Lorenz et al. (2020). The empir-
ical moments are based on the data from 1990:Q1 to 2019:Q4. The model-based moments
are the averages of small sample statistics based on 1000 simulations corresponding to the
empirical data. The mean and standard deviation are quarterly moments converted to
monthly units by multiplying by an appropriate number.

Data Priors (training sample) Known

100 yrs 150 yrs 200 yrs 10000 yrs parameters

Panel A: vpt = E
Q
t

[
varQ

t+1(rt+2)
]
−Et

[
vart+1(rt+2)

]
(Drechsler and Yaron, 2011)

ET(vpt) 10.05 9.56 7.20 5.38 1.04 0.87
σT(vpt) 12.00 19.31 14.19 9.70 0.64 0.73

Panel B: vpt = varQ
t (rt+1)− vart(rt+1) (Bekaert et al., 2020)

ET(vpt) 9.26 7.91 5.42 3.83 0.84 0.83
σT(vpt) 27.19 29.72 22.36 15.62 1.14 1.06

Panel C: vpt = 2SQ
t − vart(rt+1) (Schreindorfer, 2020)

ET(vpt) 9.26 6.54 4.58 3.33 0.77 0.75
σT(vpt) 27.19 25.97 19.06 13.22 0.99 0.92

Panel D: vpt = EQ
t

[
(rt+1 − Et(rt+1))

2
]
− EP

t

[
(rt+1 − Et(rt+1))

2
]

(Lorenz et al., 2020)

ET(vpt) 9.26 11.27 7.76 5.40 0.96 0.94
σT(vpt) 27.19 22.61 17.28 12.25 0.95 0.88

and the one-month realized variance measure for others. The summary statistics of the

variance premium in the data vary across different definitions, an observation previously

pointed out by Bekaert et al. (2020). Nevertheless, the key takeaways of our main analysis

remain unchanged. Priced parameter uncertainty strongly amplifies the magnitude and

variation of the variance premium. The model with a 100-year prior produces variance

premium statistics close to empirical counterparts. Finally, the decay rate in model-based

44



statistics is similar across different definitions and equals 25 to 30 percent per 50 years of

learning – all consistent with our findings in Section 4.4.

6 Conclusion

This paper studies the decomposition of the average equity and variance premiums on

the market return state space. Empirically, we document that left-tail returns contribute

significantly to both premia, with low but non-disastrous returns playing a dominant role.

This dominance is more pronounced in the equity premium decomposition, whereas more

extreme returns account for a larger fraction of the variance premium in relative terms.

Theoretically, we propose a real business cycle model with parameter learning to explain

the equity and variance premia decompositions while simultaneously matching a wide

array of salient moments of macroeconomic variables, equity returns, and option prices.

We show that the model’s success is attributable to fully rational pricing of parameter

uncertainty in equilibrium, which amplifies the impact of productivity shocks on marginal

utility and asset prices. Specifically, priced parameter uncertainty gives rise to endogenous

physical tail risks in consumption and dividends, which helps match the magnitude of

market returns driving the risk premia in the data.
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Internet Appendix to

“Parameter learning, tail risks, and

risk premia decomposition”

Abstract

This appendix provides a detailed description of the data, the numerical methods

used to solve different models, and additional results not included in the main body of

the paper.
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A Data description

Macroeconomic quantities and productivity. We construct quarterly Sollow residuals to

obtain quarterly productivity growth from 1947:Q2 to 2019:Q4. We follow the procedure

adopted from Stock and Watson (1999). We retrieve quarterly real non-farm gross domes-

tic product (A358RX1Q020SBEA), quarterly nominal private non-residential fixed invest-

ment (PNFI) and corresponding price index (B008RG3Q086SBEA), quarterly labor prox-

ied by hours of non-farm business sector (HOANBS), annual non-residential capital stock

(K1NTOTL1ES000) and corresponding price index (B008RG3A086NBEA) from FRED. The

data are U.S. series provided by NIPA. We deflate nominal capital and investment by the

corresponding price indices. Following Hall (2001), we interpolate annual capital using

quarterly investment to obtain quarterly values according to the recursion:

Kt+1 = (1− δK)Kt + It,

where capital depreciation δK is constant within a year and is chosen to match annual

capital values. Using a capital share of α = 0.36, we construct the Sollow residuals as:

ln At = ln Yt − α ln Kt − (1− α) ln Nt.

We rescale the Sollow residuals by 1− α = 0.64 to obtain labor-augmenting technology.

Aggregate consumption. We construct quarterly real per capita consumption growth

series for the longest available sample from 1947:Q2 to 2019:Q4. Following Bansal and

Yaron (2004), consumption is defined as a sum of nondurable goods and services. We

retrieve nominal personal consumption expenditures on nondurable goods (PCND) and

services (PCESV) from the Federal Reserve Economic Data (FRED) at the Federal Reserve

Bank of St. Louis. The data are U.S. consumption series provided by National Income

and Product Accounts (NIPA). We obtain real per capita time series by deflating by the

end-of-quarter consumer price index (CPIAUCSL) and dividing by the population (POP).

A-1
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Aggregate dividends, risk-free rate, excess market returns. We construct quarterly

real per capita dividend growth series from 1947:Q2 to 2019:Q4. We follow the procedure

adopted from Andrei, Hasler, and Jeanneret (2019). We retrieve the quarterly series of

the value-weighted index including distributions (vwretd) and the value-weighted index

excluding distributions (vwretx) from the Center for Research in Security Prices (CRSP).

The data cover NYSE, Amex, and Nasdaq. We denote the returns of indices with or without

distributions by RD,t and RnoD,t. We start by constructing quarterly price index as:

Pt = Pt−1(1 + RnoD,t).

We then compute the quarterly dividend series as:

Dt = Pt

(
1 + RD,t

1 + RnoD,t
− 1
)

.

We obtain real per capita time series by deflating by the end-of-quarter consumer price

index (CPIAUCSL) and dividing by the population (POP). We remove the large seasonal

component in dividend growth by using the X-12-ARIMA Seasonal Adjustment Program.

We construct the ex-ante real risk-free rate following Beeler and Campbell (2012). We

retrieve monthly series of the three-month nominal treasury bill secondary market rate

(TB3MS) and consumer price index (CPIAUCSL) from FRED. The nominal rate is continu-

ously compounded as y3,t = ln (1 + y3,t,obs/100) /4. We estimate the following regression:

y3,t − πt,t+3 = β0 + β1y3,t + β1πt−12,t + εt+3,

where y3,t, πt,t+3, and πt−12,t are monthly series of nominal three-month bill rate, three-

month inflation from t to t + 3, and twelve-month inflation from t− 12 to t, respectively.

We use the predicted values from this regression as a proxy for the ex-ante real risk-free

rate. We obtain the real stock market return by deflating the return of the value-weighted

index, including distributions with the consumer price index. The excess stock market
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return is the difference between the real stock market return and the real risk-free rate.

Variance premium. For the empirical variance premium, we obtain the daily data of

the VIX index, S&P 500 index futures, and the S&P 500 index from the Chicago Board of

Options Exchange (CBOE) from 1990:Q1 to 2019:Q4. We follow Drechsler (2013) to calcu-

late the variance risk premium. The variance risk premium is the difference between the

risk-neutral and physical expectations of stock market return variance for a given horizon.

We construct our own quarterly VIX index (expressed in annual volatility units) using the

S&P index options. We use the last available observation of a particular quarter, take it to

a second power, and divide by 4 to obtain a series expressed in quarterly variance units.

We compute the objective expectation of return variance as the one-quarter-ahead forecast

from a predictive regression of the futures realized variance on the squared VIX and an

index realized variance measure. The quarterly futures and index realized variance mea-

sures are calculated as the sum over a quarter of the squared daily log returns on the S&P

500 futures and S&P 500 index. We estimate the predictive regression on an expanding

window basis with the first two years as a burn-in period. We adopt the same procedure

to construct the monthly variance premium.

Implied volatilities. For the empirical analysis of implied volatility surface, we use

European options written on the S&P 500 index and traded on the CBOE. The option data

set covers the period from January 1996 to December 2019 and is from OptionMetrics.

Option data elements include the type of options (call/put) along with the contract’s vari-

ables (strike price, time to expiration, Greeks, Black-Scholes implied volatilities, closing

spot prices of the underlying) and trading statistics (volume, open interest, closing bid

and ask quotes), among other details. To construct the empirical implied volatility curves,

we first compute the moneyness for each observed option using the daily S&P 500 index

on a particular trading day. We filter out all data entries with non-standard settlements.

We use the remaining observations to construct the implied volatility surface for a range

of moneyness and maturities. In particular, we follow Christoffersen and Jacobs (2004)

and perform polynomial extrapolation of volatilities in the maturity time and strike prices.
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This strategy makes use of all available options and not only those with a specific maturity

time. The fitted values are further used to construct the implied volatility curves.

Decomposition of the equity and variance premiums. We construct the empirical de-

composition of the equity and variance risk premiums using the replication files of Beason

and Schreindorfer (2022), which can be accessed via the following link: https://www.

journals.uchicago.edu/doi/suppl/10.1086/720396/suppl_file/20200045data.zip. In

our analysis, we use options data from OptionMetrics covering the period from January

1996 to December 2019.

B Numerical solution methodology

This section provides the solution methodology of the production economy with known

parameters and unknown transition probabilities assuming fully rational or anticipated

utility pricing of parameter uncertainty.

B.1 Known parameters

Productivity growth is given by:

∆at = µst + σst · εt, εt
iid∼ N(0, 1)

where st is a two-state Markov chain with transition probabilities π11 = 1− π12 and π22 =

1− π21. The regime switches in st are independent of εt. Denoting the stationary variables{
C̃t, Ĩt, Ỹt, K̃t, Ũt

}
=
{

Ct
At

, It
At

, Yt
At

, Kt
At

, Ut
At

}
, the household’s problem is:

Ũt = max
C̃t, Ĩt

(1− β)C̃
1− 1

ψ

t + β

(
Et

[
Ũ1−γ

t+1 ·
(

At+1

At

)1−γ
]) 1− 1

ψ
1−γ


1

1−ψ

(B.1)

A-4

https://www.journals.uchicago.edu/doi/suppl/10.1086/720396/suppl_file/20200045data.zip
https://www.journals.uchicago.edu/doi/suppl/10.1086/720396/suppl_file/20200045data.zip


C̃t + Ĩt = K̃α
t N̄1−α, N̄ = 1, (B.2)

e∆at+1K̃t+1 = (1− δ)K̃t + ϕ

(
Ĩt

K̃t

)
K̃t, (B.3)

∆at+1 = µst+1 + σst+1 · εt+1, εt+1
iid∼ N(0, 1), (B.4)

C̃t ≥ 0, K̃t+1 ≥ 0. (B.5)

The true parameters are assumed to be known and, hence, st and K̃t are the only state

variables in the economy. Equation (B.1) can be rewritten as:

Ũt(st, K̃t) (B.6)

= max
C̃t, Ĩt

(1− β)C̃
1− 1

ψ

t + β
(

Et

[
Ũt+1

(
st+1, K̃t+1

)1−γ · e(1−γ)∆at+1
]) 1− 1

ψ
1−γ


1

1−ψ

We perform the following steps to solve Equation (B.6):

1. We find the de-trended steady state capital K̃ss, assuming the productivity growth

equals the steady state growth predicted by a Markov switching model. The state

space for capital normalized by technology is [0.2K̃ss, 3.5K̃ss]. We use nk = 200 points

on a grid for capital.

2. For any level of capital K̃t at time t, we construct a grid for Ĩt with uniformly dis-

tributed points between 0 and K̃α
t N̄1−α. Specifically, we use ni = 4000 points.

3. For the expectation, we use Gauss-Hermite quadrature with ngh = 16 points. Us-

ing quadrature weights and nodes, we evaluate the right hand side of Equation

(B.6) and update a new value function Ũt = Ũt(st, K̃t) given the old one Ũt+1 =

Ũt+1(st+1, K̃t+1).

4. We iterate Steps 1-3 by updating the continuation utility at each iteration until a

suitable convergence is achieved. Specifically, the stopping rule is that the distance

between the new and old value functions satisfies |Ũt+1 − Ũt|/|Ũt| < 10−12.

A-5



Having found the household’s utility, we price a claim on calibrated stock market divi-

dends:

∆dt = gd + λ∆ct + σd · ηt, ηt
iid∼ N(0, 1).

The equilibrium condition for the price-dividend ratio is given by:

˜PDt (B.7)

= Et

βe
(

λ− 1
ψ

)
(∆c̃t+1+∆at+1)+gd+0.5σ2

d

(
Ũt+1 · e∆at+1

Rt
(
Ũt+1 · e∆at+1

)) 1
ψ−γ ( ˜PDt+1 + 1

) .

We use the value function iteration algorithm to solve this equation. The stopping rule is

that the distance between the new and old value functions satisfies | ˜PDt+1− ˜PDt|/| ˜PDt| <

10−12.

B.2 Priced parameter uncertainty

The numerical solution for the case of priced parameter uncertainty consists of two main

steps.14 First, we solve for the equilibrium pricing ratios when true parameters are known

by the household (by assumption, these are learned at T = ∞). We find the solution for

this simplest limiting economy with known parameters by applying the methods outlined

in Appendix B.1. Second, we use the known parameters boundary economy as a terminal

value in the backward recursion to obtain the equilibrium model solution at each time

t. In our solution, we set the period when the economy reaches the known parameters

boundary equal to T = 2000 periods or 500 years. In this section, we present details of the

solution methodology employed in the second step for the model with unknown transition

probabilities. It is straightforward to extend the numerical methodology to the cases with

(1) unknown transition probabilities and mean growth rates, and (2) unknown transition

probabilities, mean growth rates, and volatilities.

14Johnson (2007) uses the solution methodology with the power utility. Collin-Dufresne, Johannes, and
Lochstoer (2016) extend this approach to the case of Epstein-Zin utility in the endowment economy. In this
paper, we further examine priced parameter uncertainty in the production economy with Epstein-Zin utility.
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Productivity growth is given by:

∆at = µst + σst εt, εt
iid∼ N(0, 1),

where st is a two-state Markov chain with a transition matrix:

Π =

 π11 1− π11

1− π22 π22

 ,

with πii ∈ (0, 1). The regime switches in st are independent of the Gaussian shocks εt. In

the case of unknown transition probabilities, the representative household knows the true

values of the parameters within each state (µ1, µ2, σ1, σ2) and observes states (st) but does

not know the transition probabilities (π11, π22). At time t = 0, the household holds priors

about unknown probabilities in the transition matrix and updates beliefs each period upon

realization of new series and regimes.

We assume a Beta distributed prior for unknown transition probabilities and, hence,

posterior beliefs are also Beta distributed. We use two pairs of hyperparameters (a1, b1)

and (a2, b2) for unknown transition probabilities π11 and π22. At time t, the household uses

Bayes’ rule and the fact that states are observable to update hyperparameters for each state

ai,t = ai,0 + #(state i has been followed by state i), (B.8)

bi,t = bi,0 + #(state i has been followed by state j), (B.9)

given the initial prior beliefs ai,0 and bi,0.

Having found the limiting boundary economies from the first step, we then perform

a backward recursion using the following state variables: the regime of the economy st,
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capital K̃t, and the vector Xt = {τ1,t, λ1,t, τ2,t, λ2,t} of sufficient statistics for the priors:

τ1,t = a1,t + b1,t, λ1,t = Et[π11] =
a1,t

a1,t + b1,t
, (B.10)

τ2,t = a2,t + b2,t, λ2,t = Et[π22] =
a2,t

a2,t + b2,t
. (B.11)

Note from Equations (B.3) and (B.8)-(B.11) that we can write K̃t+1 = f (∆at+1, st, K̃t, Xt) and

Xt+1 = g(st+1, st, Xt). Given this, we can now write the equilibrium utility as

Ũt+1(st+1, K̃t+1, Xt+1) = Ũt+1(st+1, ∆at+1, st, K̃t, Xt)

to indicate that the utility evolution is the function of the two observable variables, st+1

and ∆at+1. Ultimately, the recursive equation (B.1) can be rewritten as:

Ũt(st, K̃t, Xt) = max
C̃t, Ĩt,Nt

{
(1− β)C̃

1− 1
ψ

t (B.12)

+ β
(

Et

[
Ũ1−γ

t+1

(
st+1, ∆at+1, st, K̃t, Xt

)
· e(1−γ)∆at+1

∣∣∣st, K̃t, Xt

]) 1− 1
ψ

1−γ


1

1−ψ

,

where the expectation on the right-hand side is equivalent to:

Et

[
Ũ1−γ

t+1

(
st+1, ∆at+1, st, K̃t, Xt

)
· e(1−γ)∆at+1

∣∣∣st, K̃t, Xt

]
(B.13)

= Et

[
Et

[
Ũ1−γ

t+1

(
st+1, ∆at+1, st, K̃t, Xt

)
· e(1−γ)∆at+1

∣∣∣st+1, st, K̃t, Xt

] ∣∣∣st, K̃t, Xt

]
=

2

∑
st+1=1

P(st+1|st, Xt)× Et

[
Ũ1−γ

t+1

(
st+1, ∆at+1, st, K̃t, Xt

)
· e(1−γ)∆at+1

∣∣∣st+1, st, K̃t, Xt

]
=

2

∑
st+1=1

Et(πst+1,st |st, Xt)× Et

[
Ũ1−γ

t+1

(
st+1, ∆at+1, st, K̃t, Xt

)
· e(1−γ)∆at+1

∣∣∣st+1, st, K̃t, Xt

]
.

The first and second equalities follow from the independency of regime changes and Gaus-

sian shocks to productivity growth (st+1 and εt+1). The third equality follows from

P(st+1|st, Xt) =
∫ 1

0
πst+1,st g(πst+1,st |st, Xt)dπst+1,st = Et(πst+1,st |st, Xt),
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where g(πst+1,st |st, Xt) denotes the conditional density of πst+1,st .

Using the definition of state variables, we have an analytical expression for the con-

ditional expectation of transition probabilities in Equation (B.13), which is either λst,t or

1− λst,t. For the conditional expectation in Equation (B.13), we do not have a closed form

because the continuation utility depends on the realized productivity growth through K̃t+1.

Therefore, we use quadrature-type numerical methods to evaluate this expectation as fol-

lows:

Et

[
Ũ1−γ

t+1

(
st+1, ∆at+1, st, K̃t, Xt

)
· e(1−γ)∆at+1

∣∣∣st+1, st, K̃t, Xt

]
≈

J

∑
j=1

ωε(j)
[
Ũ1−γ

t+1

(
st+1, ∆a(j), st, K̃t, Xt

)
· e(1−γ)∆a(j)

∣∣∣st+1, st, K̃t, Xt

]
, (B.14)

where ωε(j) is the quadrature weight corresponding to the quadrature node nε(j) used

for the integration of a standard normal shock εt+1 in productivity growth. The observed

realized productivity growth, ∆a(j), and a state variable, K̃t+1(j), are updated as follows:

∆a(j) = µst+1 + σst+1 · nε(j) (B.15)

e∆a(j)K̃t+1(j) = (1− δ)K̃t + ϕ

(
Ĩt

K̃t

)
K̃t, (B.16)

Ĩt = K̃α
t N1−α

t − C̃t. (B.17)

The backward recursion can be performed by using Equations (B.12)-(B.17).

We also solve for the price-dividend ratio of the equity claim on aggregate dividends,

which are defined as leverage to aggregate consumption. Let exogenous aggregate divi-

dends be given by:

∆dt+1 = gd + λ∆ct+1 + σdεd,t+1,

where gd =
(

1− λ
)(

E(P(s∞ = 1|π11, π22))µ1 + E(P(s∞ = 2|π11, π22))µ2

)
and P(s∞ =

i|π11, π22) is the ergodic probability of being in the state i conditional on the transition

probabilities π11 and π22. Note that the long-run mean of dividends growth, gd, is chang-
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ing under the household’s filtration, though the true long-run growth is constant. The

subjective beliefs about the true parameter values induce fluctuations in gd, which can be

expressed as gd = gd(st+1, st, Xt).

The equilibrium condition for the price-dividend ratio is standard in the Epstein-Zin:

PDt = Et

 β
(

C̃t+1
C̃t

)− 1
ψ
(

1−Nt+1
1−Nt

)(1− 1
ψ

)
ν (At+1

At

)− 1
ψ

(
Ũt+1·

( At+1
At

)
Rt

(
Ũt+1·

( At+1
At

))
) 1

ψ−γ

...

×
(

Dt+1
Dt

)
(PDt+1 + 1)

 (B.18)

First, we solve for the price-dividend ratio defined by Equation (B.18) for the simplest

limiting economy with all known parameters. In this case, st and K̃t are the only state

variables in the economy. We find the price-dividend ratio on a grid of π11 and π22. Second,

we use the known parameters boundary price-dividend ratios as terminal values in the

backward recursion to obtain the equilibrium pricing functions at the time t. We rewrite

all variables as a function of state variables and use quadrature-type numerical methods

to evaluate expectations. We update the long-run dividend growth, gd(st+1, st, Xt). The

equilibrium recursion used to solve the model is then:

PDt(st, K̃t, Xt)

= Et

 βe
(

λ− 1
ψ

)
(∆c̃t+1+∆at+1)

(
1−Nt+1

1−Nt

)(1− 1
ψ

)
ν
(

Ũt+1e∆at+1

Rt(Ũt+1e∆at+1)

) 1
ψ−γ

...

×egd(st+1,st,Xt)+0.5σ2
d
(

PDt+1
(
st+1, ∆at+1, st, K̃t, Xt

)
+ 1
)

∣∣∣∣∣st, K̃t, Xt



= Et

Et

 βe
(

λ− 1
ψ

)
(∆c̃t+1+∆at+1)

(
1−Nt+1

1−Nt

)(1− 1
ψ

)
ν
(

Ũt+1e∆at+1

Rt(Ũt+1e∆at+1)

) 1
ψ−γ

×egd(st+1,st,Xt)+0.5σ2
d
(

PDt+1
(
st+1, ∆at+1, st, K̃t, Xt

)
+ 1
)

∣∣∣∣∣ st+1, st,

K̃t, Xt


∣∣∣∣∣ st,

K̃t, Xt


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=
2

∑
st+1=1

P(st+1|st, Xt) ...

× Et

 βe
(

λ− 1
ψ

)
(∆c̃t+1+∆at+1)

(
1−Nt+1

1−Nt

)(1− 1
ψ

)
ν
(

Ũt+1e∆at+1

Rt(Ũt+1e∆at+1)

) 1
ψ−γ

×egd(st+1,st,Xt)+0.5σ2
d
(

PDt+1
(
st+1, ∆at+1, st, K̃t, Xt

)
+ 1
)

∣∣∣∣∣st+1, st, K̃t, Xt


=

2

∑
st+1=1

Et(πst+1,st |st, Xt)

× Et

 βe
(

λ− 1
ψ

)
(∆c̃t+1+∆at+1)

(
1−Nt+1

1−Nt

)(1− 1
ψ

)
ν
(

Ũt+1e∆at+1

Rt(Ũt+1e∆at+1)

) 1
ψ−γ

×egd(st+1,st,Xt)+0.5σ2
d
(

PDt+1
(
st+1, ∆at+1, st, K̃t, Xt

)
+ 1
)

∣∣∣∣∣st+1, st, K̃t, Xt


Again, the conditional expectation of transition probabilities under the household’s filtra-

tion permits an analytical formula, while the inner expectation in the expression above can

be evaluated using the quadrature-type integration methods.

The numerical solutions are computationally intensive with a high-dimensional vector

of state variables, which include one variable for a regime of the economy in a two-state

Markov process, one variable for the endogenous capital, and hyperparameters govern-

ing parameter beliefs in the production economies with unknown transition probabilities.

Furthermore, each iteration in the backward recursion requires solving the optimization

problem to find optimal investment. For this reason, we perform all computations on a

high-performance computing cluster at Lancaster University. We solve the models using

parallel computing techniques, efficiently programmed in Matlab. Specifically, we paral-

lelize our code at each iteration of a backward recursion such that for each iterative step a

large number of equilibrium conditions can be solved on a high-dimensional space of state

variables in parallel before moving to the next iteration. Furthermore, we build the MEX

files for the model solutions to accelerate the computations and to provide performance

comparable to codes in C++. In terms of the grids, we use the grid of normalized capi-

tal [0.2K̃ss, 3.5K̃ss] with nk = 200 grid points and employ ni = 4000 uniformly distributed

points to find the optimal investment. For normally distributed productivity shocks, we

use Gauss-Hermite quadrature with ngh = 16 points. We use 7 and 27 points for the grids
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of π11 and π22 in the models with unknown transition probabilities.

B.3 Anticipated utility

In the anticipated utility case, the representative household learns about unknown param-

eters but ignores parameter uncertainty when making decisions. The numerical solution

proceeds as follows. At each time t, the household holds current beliefs and solves for

the continuation utility and the levered equity claim prices in the rational expectations

model in which the true parameter values in the productivity growth process are centered

at the time t posterior means. In the next period t + 1, the household updates beliefs upon

observing new data and resolves the rational expectations economy in which the true pa-

rameters are centered at the time t + 1 posterior means. In sum, the numerical algorithm

reduces to applying the methodology for the full information case with a set of model

parameters, which are equal to the mean beliefs at each point in time.

C Historical prior estimation

This section provides details of the data and the empirical strategy used to estimate the

historical priors for the post-war data. We begin by constructing the annual productivity

growth series from 1929 to 1946 using the methodology outlined in Appendix A. The start

date is restricted by the historical time series provided by NIPA. The end date corresponds

to the first observation of quarterly data.

We consider the most general inference problem with hidden regimes and uncertainty

about all parameters in the two-state Markov model. We apply Monte Carlo methods

called particle filters to sequentially generate particles approximating the posterior distri-

bution. Assuming beta priors for transition probabilities and normal and inverse gamma

priors for mean and variance parameters, particle filtering provides state and parameter

learning in the two-state economy. Internet Appendix of Johannes, Lochstoer, and Mou

(2016) provides a general discussion of the methods, whereas Johannes and Polson (2009),
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Table A1. Priors and posteriors

This table reports the initial priors in 1929 and posteriors in 1946 from a particle filtering
algorithm applied to annual productivity growth from 1929 to 1946. We employ beta priors
for transition probabilities and normal and inverse gamma priors for mean and variance
parameters in the two-state Markov switching processes. It also reports the initial priors
in 1947:Q1.

Panel A: Priors for annual parameters in 1929

Parameter Mean St. dev

µ1 8.00% 4.00%
µ2 -10.00% 4.00%
σ1 (6.00%)2 (2.00%)2

σ2 (8.00%)2 (4.00%)2

π11 0.80 0.16
π22 0.50 0.24

Panel B: Posteriors for annual parameters in 1946

µ1 6.32% 2.40%
µ2 -9.12% 3.92%
σ1 (6.00%)2 (2.00%)2

σ2 (7.92%)2 (3.92%)2

π11 0.87 0.11
π22 0.57 0.19

Panel C: Priors for quarterly parameters in 1947:Q1

µ1 0.79% 0.30%
µ2 -1.14% 0.49%
σ1 (1.50%)2 (0.50%)2

σ2 (1.98%)2 (0.98%)2

π11 0.9658 0.0240
π22 0.8689 0.0656

Carvalho, Johannes, Lopes, and Polson (2010), and Carvalho, Johannes, Lopes, and Polson

(2011) present a detailed overview of the algorithms.

Furthermore, we need to specify the priors to begin the estimation in 1929. Following

a standard approach in the literature, we make the priors as uninformative as possible

while trying to avoid the state identification problem. Panel A in Table A1 reports prior

parameters for the two-state and productivity growth process. We set wide mean beliefs

and standard deviations due to a wide range of realized productivity growth rates. The

priors for transition probabilities are the same in the two cases.
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Panel B in Table A1 summarizes the 1946 posteriors of annual parameters. We now con-

vert these annual estimates into quarterly using the same reasoning as Johannes, Lochstoer,

and Mou (2016). We take the mean beliefs about the transition probabilities to the power

of 1/4 to obtain the probabilities in the quarterly transition matrix. Similarly, we compute

95% confidence intervals of the annual estimates of each probability. We then take the

lower and upper bounds to the power of 1/4 to obtain approximately +/- two standard

deviations around the mean beliefs of quarterly transition probabilities. We transform the

mean and standard deviation of annual mean beliefs into the quarterly estimates by divid-

ing them by 4*2. The average productivity growth was more than twice stronger over the

1929-1946 sample. Thus, we choose to divide the 1946 posteriors of mean beliefs by 4*2

to better reflect a likely structural break in productivity growth data. Turning to variance

beliefs, we follow Johannes, Lochstoer, and Mou (2016) and divide the mean and standard

deviation by 2*2 to reflect the change in the quality of data.

Panel C in Table A1 summarizes the results of converting annual to quarterly priors.

We treat these estimates as historical priors in 1947:Q1 for the anticipated utility model.

We further compare the results based on historical priors with look-ahead priors equal to

the maximum likelihood estimates over the post-war period.

D EP(x) and VP(x) for a quarterly horizon

This section replicates the empirical equity and variance premia decompositions for a quar-

terly horizon. Figure A1 shows EP(x) and VP(x) in the data. Table A2 reports summary

statistics of the return state contributions and risk prices of returns between −30% ·
√

3

and −10% ·
√

3. Figure A2 illustrates the sampling distribution of contributions of extreme

and intermediate negative returns.
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Figure A1. EP(x) and VP(x) in the data: quarterly horizon.
The figure shows the empirical EP(x) and VP(x) curves for a quarterly horizon. The
shaded area denotes quarterly returns between −30% ·

√
3 and −10% ·

√
3. The empirical

curves are based on the data from January 1996 to December 2019.
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Table A2. Summary statistics of EP(x) and VP(x) : quarterly horizon.

The table reports the contributions of different regions to the equity and variance premi-
ums for a quarterly horizon. It also shows the probability of returns in the intermediate
region and the ratio of their risk-neutral to physical probabilities. The table reports the em-
pirical moments when f (R) is proxied by realized returns (the fR column) or a smoothed
version (the f smooth

R column) of the empirical PDF. The last five columns report selected
percentiles of the estimates based on a block bootstrap with a block size of 21 · 3 trading
days. The data is from January 1996 to December 2019.

Percentiles

fR f smooth
R 2.5% 5% 50% 95% 97.5%

EP
(
− .3
√

3
)

0.064 0.064 0.032 0.035 0.061 0.163 0.226

EP
(
− .1
√

3
)
− EP

(
− .3
√

3
)

0.571 0.571 0.305 0.350 0.568 1.186 1.532

1− EP
(
− .1
√

3
)

0.365 0.364 −0.738 −0.335 0.370 0.603 0.644

VP
(
− .3
√

3
)

0.250 0.251 0.162 0.171 0.230 0.327 0.356

VP
(
− .1
√

3
)
−VP

(
− .3
√

3
)

0.626 0.641 0.444 0.493 0.646 0.739 0.756

1−VP
(
− .1
√

3
)

0.124 0.108 0.012 0.032 0.127 0.228 0.254

−.1
√

3∫
−.3
√

3

f (R)dR 0.013 0.019 0.003 0.004 0.016 0.034 0.038

−.1
√

3∫
−.3
√

3

f ∗(R)dR
/ −.1

√
3∫

−.3
√

3

f (R)dR 4.032 2.765 1.453 1.624 3.415 12.281 17.147
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Figure A2. Sampling distribution of EP(x) and VP(x) : quarterly horizon.
The figure shows the contributions of the two regions — quarterly returns below−30% ·

√
3

and between −30% ·
√

3 and −10% ·
√

3 — to the equity and variance premiums in the 1
million bootstrap samples. For the sampling distribution, we implement a block bootstrap
with a block size of 21 ·

√
3 trading days. The length of the artificially simulated data

corresponds to the length of the empirical data from January 1996 to December 2019.
The shaded areas mark the confidence regions, whereas the solid black line denotes the
contributions to the equity (variance) premium with a sum of 0.5 (0.8).
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