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Abstract 

Using detailed data on employees’ job skills, this study examines the relationship 
between firms’ artificial intelligence (AI) capabilities and mergers and acquisitions 
(M&As). Our findings indicate that firms with higher concentrations of AI talent 
(high-AI firms) achieve superior acquisition performance during announcement 
periods. Further analysis shows that this superior performance is more pronounced 
among acquisitions of data-intensive targets. We then test whether firms leverage the 
strategic complementarity between AI expertise and data resources, and find that 
high-AI firms are significantly more likely to merge with data-intensive firms and 
actively hire data analytics specialists. Moreover, mergers with high-AI acquirers and 
data-intensive targets experience increased filings and citations of AI-related patents, 
suggesting better innovation capabilities in the post-merger period. Our results are 
robust to an instrumental variable approach and are not explained by higher post-
merger mobility of AI-skilled employees or better pre-merger fundamentals of 
acquirers. By identifying AI-data synergy as a key driver of value creation in M&As, 
this research sheds light on how technological advancements are reshaping firm 
boundaries. 
 
 
Keywords: Mergers and Acquisitions, Artificial Intelligence, Data Assets, Human 
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1. Introduction 

As a cornerstone of modern technological advancement, AI is revolutionizing 

business by enabling firms to enhance workforce capabilities, analyze vast datasets, and 

automate complex processes. Firms that excel in AI adoption demonstrate superior 

growth and innovation (Babina, Fedyk, He, and Hodson, 2024). These advantages have 

made AI an influencing factor for corporate decision-making (Agrawal, Gans, and 

Goldfarb, 2019). As AI continues to evolve, its capacity to reshape firm boundaries has 

become a compelling question for researchers and practitioners. On one hand, AI enables 

firms to handle complex processes more efficiently, extending their operational reach 

(Acemoglu and Restrepo, 2019). On the other hand, the rise of AI fuels a growing appetite 

for sophisticated data processing infrastructure and perhaps more importantly, for large, 

specialized datasets (Cockburn, Henderson, and Stern, 2018; Beraja, Yang, and Yuchtman, 

2023). This forces firms to prioritize the accumulation of data, first from internal reserves, 

and, if necessary, from external sources. These factors collectively expand the scope for 

profit creation and redefine firm boundaries. 

Mergers and acquisitions (M&As) are pivotal events in redefining firm boundaries, 

providing an ideal context to examine the relationship between corporate AI capabilities 

and firm boundaries. In this study, we gauge firms’ AI capabilities using a dataset on 

employee skills posted by individuals on a large job-hunting platform from 2009 to 2019. 

We quantify firms’ AI capabilities based on the AI skills possessed by firms’ employees. 

We then investigate the effect of acquirers’ AI capabilities on their M&A performance, 

measured by the cumulative abnormal return (CAR) for each acquisition announcement. 



3 
 

Our findings reveal that announcement-period CARs are positively associated with 

acquirers’ AI capabilities, suggesting superior acquisition performance by firms with 

greater AI capabilities compared to other firms. To address endogeneity, we employ an 

instrumental variable approach, using the share of AI graduates from nearby universities 

as an instrument for acquirers’ AI capabilities. The corresponding two-stage least squares 

(2SLS) estimates consistently show a significantly positive effect of acquirers’ AI 

capabilities on announcement returns. 

We next explore the source of value creation by AI in M&As. We find evidence 

consistent with the strategic alignment between AI expertise and data assets. More 

specifically, subsample analysis show that the superior returns of high-AI acquirers are 

concentrated among acquisitions targeting data-rich firms. Economically, a one-standard-

deviation increase in our AI capability measure leads to a 1.76% increase in CARs for 

acquisitions of data-intensive targets. In addition, tests that incorporate interactions 

between acquirer and target characteristics confirm that acquisitions involving high-AI 

acquirers and data-intensive targets outperform all other acquisition types. In contrast, 

acquisitions involving either high-AI acquirers and data-poor targets or low-AI acquirers 

and data-intensive targets yield poorer outcomes. These findings imply the synergies 

between AI expertise and substantial data resources. 

To further validate that AI-data synergy motivates firms’ acquisitions, we conduct 

two sets of tests. First, we analyze hiring trends prior to acquisitions. Our findings show 

that high-AI firms recruit more data analytics specialists than industry peers leading up 

to acquisitions, while low-AI firms show a declining trend in such hiring. Additionally, 



4 
 

high-AI firms hire more individuals with combined expertise in AI and data analytics, 

further emphasizing their commitment to leveraging AI-data complementarity. In the 

second set of tests, following Bena and Li (2014), we create a sample of potential merger 

pairs. Using a conditional logit model, we find that acquirers with higher AI capabilities 

and targets with substantial data assets are more likely to form merger pairs. This finding 

further supports the notion that the complementarity between AI capabilities and data 

assets drives M&As.  

Next, a critical aspect of our study is understanding the specific benefits AI can create 

when integrated with data assets. Prior research highlights AI’s potential to drive 

innovation by leveraging large datasets to uncover new opportunities and develop 

cutting-edge technologies (Cockburn, Henderson, and Stern, 2018). To investigate 

whether these potential benefits materialize by combining AI with data, we examine the 

post-merger innovation outcomes of the merged firms. Our findings indicate that high-

AI acquirers targeting data-rich firms experience significant increases in patent filings and 

citations during the post-merger period. We also find that such mergers experience a 

surge in filings and citations of AI patents, a type of innovation that is particularly reliant 

on data resources (Beraja, Yang, and Yuchtman, 2023). This suggests that the integration 

of AI and data catalyzes innovation, fostering long-term value creation. 

An alternative explanation is that the transferability of AI skills across firms might 

create spillover effects, improving the performance of target firms and, ultimately, the 

merged entities. However, despite the potentially high transferability of AI expertise 

across corporate functions and organizations (Gathmann and Schönberg, 2010), our 
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analysis reveals limited evidence of post-merger AI skill mobility or spillover effects. This 

suggests that the observed performance improvements are driven more by the strategic 

complementarity of AI and data capabilities than by workforce integration.  

Another explanation could be that high-AI firms achieve superior merger outcomes 

due to their pre-merger financial strength or better governance (Wang and Xie, 2009). 

However, we find that high-AI acquirers outperform even when their pre-merger 

financial performance, measured by return on assets (ROA) and return on equity (ROE), 

is weaker. This highlights that the synergies observed are not merely the result of superior 

management or operational efficiency but are primarily attributable to the unique 

contributions of AI talent. 

Our research contributes to the literature in three key ways. First, it advances the 

understanding of the determinants of M&A decisions and outcomes. The existing 

literature has documented several motives for acquisitions, such as acquiring innovations 

(Ahuja and Katila 2001; Celik, Tian, and Wang, 2022; Kaufmann and Schiereck, 2023), 

organizational capital (Li, Li, Wang, and Zhang, 2018), and human capital (Ouimet and 

Zarutskie, 2020; Chen, Gao, and Ma, 2021; Chen, Hshieh, and Zhang, 2024). Notable works, 

such as those examining the role of product and innovation synergies (Hoberg and 

Phillips, 2010; Makri, Hitt, and Lane, 2010; Bena and Li, 2014), highlight the importance 

of strategic alignment in M&As. Add to this line of discussion, we show that the strategic 

alignment between AI capabilities and data assets within mergers and acquisitions can 

create value, thus identifying a novel source of acquisition synergy in the era of advanced 

AI development. This insight provides a fresh perspective on how technological 
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advancements influence M&A strategies and outcomes. 

Second, we contribute to the growing body of literature on the role of AI in corporate 

finance and the sources of value creation by AI for corporations (e.g., Rammer, Fernández, 

and Czarnitzki, 2022; Czarnitzki, Fernández, and Rammer, 2023; Acemoglu et al., 2024). 

Prior research has demonstrated that AI creates value in various ways, such as enhancing 

operational efficiency, increasing labor productivity, and fostering innovation (Graetz 

and Michaels, 2018; Agrawal, Gans, and Goldfarb, 2019; Acemoglu and Restrepo, 2019; 

Frank et al., 2019; Gofman and Jin, 2022; Babina et al., 2024). Using the context of M&As, 

we provide empirical evidence that a major channel of value creation by AI lies in its 

strategic integration with data assets, echoing the findings by Beraja, Yang, and Yuchtman 

(2023). While their study emphasizes how the use of data assets helps develop AI 

innovations, our paper suggests the proactive actions taken by firms with AI capabilities 

in seeking synergies and integrating with data assets in the market. 

Finally, our study adds to the literature on the role of labor skills in corporate finance. 

The extant literature has established that labor upskilling benefits firms in multiple ways, 

including boosting productivity and driving innovation (Bresnahan, Brynjolfsson, and 

Hitt, 2002; Brynjolfsson and McAfee, 2014; Brynjolfsson, Mitchell, and Rock, 2018). While 

the literature discusses the replacement of labor by automation technologies like AI 

(Acemoglu and Autor, 2011; Acemoglu and Restrepo 2018), high-skill labor is the major 

inventor, bearer, and user of new technologies (Tambe, 2014; Autor, 2015; Acemoglu and 

Restrepo, 2019). Using detailed labor skills data reported in employee profiles, we show 

that a specific type of upskilling – AI expertise – contributes to significant value creation 
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by firms. In particular, AI skills provide firms with a competitive edge in acquiring and 

effectively utilizing data assets, as well as in fostering innovation. This evidence aligns 

with the trend of increasing investments in AI talent by firms over the past decades, 

highlighting its pivotal role in corporate success. 

 

2. Literature Review 

2.1 Drivers of M&A decisions and post-merger outcomes 

Mergers and acquisitions represent a significant strategic maneuver for firms seeking 

to enhance their competitive positioning by acquiring valuable resources from target 

companies. One primary motivation for M&A is the pursuit of specific resources. 

Numerous studies, such as those by Ahuja and Katila (2001), Celik, Tian, and Wang (2022), 

and Kaufmann and Schiereck (2023), highlight that technological acquisitions can 

significantly enhance the innovation performance of acquiring firms, particularly in 

technology-intensive industries. Their longitudinal studies indicate that firms acquiring 

technology-oriented assets tend to experience greater innovation outcomes compared to 

those that do not. Beyond technology, the acquisition of skilled labor is another critical 

driver of M&A activity. Research by Ouimet and Zarutskie (2020), Chen, Hshieh, and 

Zhang (2024), Lee, Mauer, and Xu (2018), and Abramova (2024) underscores the 

significance of human capital as a key resource sought in acquisitions. While the pursuit 

of technological resources and skilled labor has long been recognized as primary 

motivations for M&A, our paper introduces a new dimension to this understanding: the 

increasing importance of data as a critical resource in the digital era. 
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When acquirers pursue resources from the target, the complementarity between the 

two largely determines the outcome. This notion is further supported by Bena and Li 

(2014), who argue that synergies derived from combining innovation capabilities are 

crucial drivers of acquisitions. Capron and Pistre (2002) provide empirical evidence that 

acquirers are more likely to earn abnormal returns when they successfully integrate 

resources from the target firm, emphasizing the importance of resource transfer in 

realizing the benefits of M&A. When it comes to the source of such complementarity, 

theoretical modeling by Makri, Hitt, and Lane (2010) indicates that complementarity in 

both scientific and technological knowledge enhances post-merger innovation 

performance by fostering higher quality and more novel inventions. Works such as 

Hoberg and Phillips (2010) and Yu, Umashankar, and Rao (2016) provide empirical 

evidence that acquirers also value complementarity in product portfolios as a driver of 

M&A success.  

Furthering the idea of complementarity, we argue that data assets and AI capabilities 

represent a new type of resource complementarity driving M&A activity in the digital 

economy. This perspective is supported by the growing body of literature recognizing 

data as a vital asset and emphasizing its combination with relevant skillsets. Data is 

increasingly recognized not merely as a byproduct of economic activities but as a vital 

asset that can drive innovation, enhance productivity, and facilitate informed decision-

making across various sectors (Brynjolfsson, Hitt, and Kim, 2011; Jones and Tonetti 2020; 

Cong, Xie, and Zhang 2021; Farboodi and Veldkamp 2021; He, Huang, and Zhou, 2023). 

However, the value of data is maximized when utilized by workers possessing the 



9 
 

necessary AI skills, as presented in the seminal work of Acemoglu and Autor (2011). This 

idea is further supported by the empirical work of Tambe (2014), who demonstrates the 

complementary relationship between data analytics and human capital in enhancing firm 

performance. 

2.2 The impact of AI on firm performance 

The integration of AI into corporate practices has emerged as a transformative force, 

reshaping various aspects of business operations. Levy and Murnane (2003) and Bessen 

(2015) describe AI, as a specialized form of computer capital, capable of substituting for 

routine cognitive and manual tasks while simultaneously complementing non-routine 

problem-solving and interactive activities. Brynjolfsson, Rock, and Syverson (2019) model 

AI as a general-purpose technology (GPT), emphasizing that its full potential is unlocked 

through complementary innovations, with productivity gains likely materializing in later 

stages of adoption. These conceptualizations are further supported by emerging empirical 

evidence. Studies by Van Roy et al. (2020), Behrens and Trunschke (2020), and Czarnitzki, 

Fernández, and Rammer (2023) demonstrate a positive correlation between AI adoption 

and firm performance. 

The mechanisms driving this enhanced performance are diverse. One established area 

of research focuses on the role of AI in labor demand and labor productivity. Various 

studies find that AI can both replace and augment the human workforce, as evidenced by 

Graetz and Michaels (2018), Frank et al. (2019), Acemoglu and Restrepo (2019), Yang 

(2022), and Chen and Wang (2024). Both effects contribute to the value of firms by 

reducing labor costs or improving labor productivity. Furthermore, Agrawal, Gans, and 



10 
 

Goldfarb (2019) emphasize AI’s role as a powerful predictive tool. This argument is 

empirically supported by Brynjolfsson et al. (2011) and Shamim et al. (2020), who find that 

firms embracing data-driven managerial decisions, facilitated by AI’s predictive 

capabilities, outperform competitors. This improved decision-making reduces errors and 

enhances operational efficiency. Finally, AI serves as a catalyst for innovation. Babina et 

al. (2024) attribute enhanced firm performance to increased product innovation driven by 

AI, while Beraja, Yang, and Yuchtman (2023) demonstrate that innovative output is 

heavily reliant on a firm’s data assets, which AI can effectively leverage. 

 

3. Data and Sample 

3.1. Data sources 

As AI-skilled labor is a critical factor in the deployment of AI systems (Babina et al., 

2024), we propose a skills-based measure of firms’ AI capability based on AI human 

capital information. We obtain individual employees’ profiles from LinkedIn, the largest 

professional social network, which covered 169.9 million users in the US as of 2019, 

representing the vast majority of the US workforce. The LinkedIn profile dataset offers a 

wealth of self-reported information about each individual employee. This granular data 

includes details about their educational background (including institutions attended, time 

range of attendance, and fields of study), professional experience (including employer 

name, job title, start and end dates), skills, and other personal information. 

We collect firm-year-level financial information from Compustat, daily stock 

information from CRSP, and M&A deal information from the SDC M&A Platinum 
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database through WRDS. The financial data from Compustat is used to construct firm-

year-level control variables, and daily stock information from CRSP is mainly used to 

calculate cumulative abnormal returns (CARs). The SDC database contains M&A deal 

characteristics, including deal announcement date, deal value, payment type, shares 

owned by the acquirer, and deal status. 

To capture target firms’ data intensity, we use Item 1A of 10-K filings to obtain data 

risk information, as described in Section 4.2. In addition, to measure post-merger 

innovation performance, we collect firm-year patent data from Extended KPSS dataset 

following Kogan et al. (2017), and AI patent data from Artificial Intelligence Patent 

Dataset (AIPD). AIPD is developed by the USPTO’s Office of the Chief Economist to help 

researchers and policymakers study AI invention (Pairolero et al. 2024). The dataset 

identifies AI patents and pre-grant publications from US patent documents published 

between 2011 and 2019 using machine learning models.1  

3.2 Sample construction 

We start with the SDC dataset to construct our acquisition sample between 

January 1, 2009, and December 31, 2019. We restrict targets to US companies and only 

include transactions that change the control of target firms. Following Masulis et al. 

(2007) and Gokkaya et al. (2023), we apply the following filtering rules: (1) Deals that 

occur between January 1, 2009, and December 31, 2019. (2) Targets are US companies. 

(3) The acquirer owns less than 50% of the target before the deal announcement and 

controls more than 50% of the target after the transaction. (4) The deal value disclosed 

 
1 The current AIPD database version only covers the years from 2011-2019. 
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in SDC is more than $1 million and is at least 1% of the acquirer’s market value of 

equity measured on the 11th trading day prior to the announcement date. 

Next, we prepare other firm-level covariates. The financial data of acquirers and 

targets come from the Compustat database, and stock return information of acquirers 

(all acquirers are publicly listed in our sample) comes from the CRSP database. We 

merge these data with the filtered SDC deals as of the year prior to each deal 

announcement date indicated in SDC. This procedure results in a total of 11,921 

unique deals after excluding non-public acquirers. 

We then match the firm list of acquirers and targets in this merged dataset to the 

LinkedIn dataset. Specifically, we match employers in the LinkedIn data to the firm list 

extracted from the SDC-Compustat-CRSP merged data, including acquirers and targets. 

Our matching process consists of two steps. First, we use company website URLs 

available from Compustat as primary identifiers to match with the LinkedIn data, as most 

companies on LinkedIn list their official website URLs. We conduct internet searches for 

the missing URLs. Second, we manually match the remaining companies by name and 

other available information, such as location, year founded, and industry. We achieve a 

matching rate of about 80%.  

Within this matched sample, we use employee profile data to compute measures 

of AI skills and AI employees at the firm-year level. The employee profiles in LinkedIn 

are at the employee level, where we can see each worker’s skills, start date, end date, 

and employer for each of their employment. This allows us to count the number of AI 

skills (defined below in Section 4.1) owned by each individual and identify their 
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workplace for each month. Consequently, we can determine all the workers employed 

by each firm in each month and aggregate information such as the number of 

employees, AI employees (employees who own at least one AI skill), and AI skills 

(owned by all of its employees) to the firm-year level. 2 

Finally, we merge the firm-year-level AI measures with the acquirer and target of 

each deal in the SDC-Compustat-CRSP merged data according to the year preceding 

the deal announcement date. After excluding missing values for dependent and 

independent variables, the final sample consists of 3,904 unique transactions, with the 

AI information constructed from 24,959,167 employment records of 13,011,554 

employees involved. 

 

4. Variables and summary statistics 

4.1 AI measures  

We first employ the AI-related skill list provided by Babina et al. (2024) to define 

AI skills.3 Then, we identify and count these AI skills in the LinkedIn employee profiles 

for each employee. If an employee reports at least one AI skill, this individual is identified 

as an AI employee. For example, an employee possessing skills such as “Deep Learning” 

and “Xgboost” would be classified as an AI employee with two AI-related skills. Next, 

we aggregate the employee-level AI data to the firm-year level. Since we know each 

employee’s workplace in each month, we average the number of AI employees and 

 
2 We compute the year-level information using the average value of months in each year. 
3  The skill list includes 67 most AI-related skills, such as Deep Learning, Xgboost, NLP, and Machine 
Learning.  
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AI skills to the employer-year level (i.e., firm-year level), using values of all months 

over each year. 

For each deal, the acquirer’s AI skills and AI employees are defined as the 

acquirer’s firm-year number of AI skills (Acq_AI Skill) and AI employees (Acq_AI 

Employee), respectively, as of the year prior to the deal announcement date. The same 

definitions apply to the target AI measures at the deal level. The natural logarithm of 

acquirers’ AI measures serves as the main independent variable for subsequent 

analyses, defined as LnacqAIskill = log(1 + Acq_AI Skill) and LnacqAIemp = log(1 + 

Acq_AI Employee). 

After constructing the AI measures, we plot the trend of AI skills and AI employees 

over time in our M&A sample. Figure 1 shows a consistent upward trend in both AI 

measures over time, consistent with previous literature (Babina et al., 2024). In particular, 

Panel A of Figure 1 shows an obvious increase in both acquirers’ and targets’ AI skills. 

Panel B shows similar patterns in both acquirers’ and targets’ AI employees. These 

upward trends confirm that firms are placing growing emphasis on AI capabilities. 

Moreover, regardless of the AI measure used, the acquirers exhibit a faster growth rate 

than the targets, highlighting the acquirers’ greater initiative and significance in 

leveraging AI. 

Additionally, we create a map of the geographic distribution of AI skills (Figure 2).  

We geolocate AI skills using the work locations of their holders, and aggregate this data 

at the county level. As shown, the distribution of AI skills in our sample closely aligns 

with the locations of major US universities and technology hubs. Notably, some 
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metropolitan areas, such as the San Francisco Bay Area, Seattle, Boston, New York City, 

Austin, Denver, and the Washington D.C. area, appear as prominent red and orange zones, 

suggesting a strong correlation between AI talent and established tech hubs, confirming 

the validity of our AI measures constructed from LinkedIn employee skills. 

4.2 Data intensity measures 

We introduce a novel approach based on the frequency of data security keywords in 

Item 1A of 10-K filings to construct the data intensity measure. We posit that firms with 

larger and more complex datasets inherently face heightened data security risks due to 

the challenges of safeguarding sensitive information, complying with evolving privacy 

regulations (e.g., GDPR, CCPA), and mitigating breach-related costs. Therefore, the 

volume of data a company possesses is inherently linked to its data security risk: the 

greater the amount of data a company generates, the more likely data security risks occur 

and the higher the potential costs. To quantify such the relationship, we count word 

frequency in Item 1A of 10K in which such risks are systematically disclosed, as the SEC 

mandates transparent reporting of material risks, including cybersecurity threats. 

Specifically, we obtain a word list from the Data Security Glossary maintained by Cloud 

Security Alliance (CSA), a leading organization committed to awareness, practical 

implementation, and certification for the future of cloud and cybersecurity. We then 

employ Python to calculate the word frequency of the technical terms in the list, the 

prevalence of data security keywords in Item 1A. We define data intensity (DataIntense) 

as: 

                DataIntense = (# data risk keywords/#total words) 
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This normalized measure accounts for document length variability and captures the 

relative emphasis on data security risks, which we argue correlates with the scale and 

complexity of a firm’s data assets. 

To test the data-driven hypothesis, we also analyze the changes in the number of 

data analysts (i.e. data analytics specialists) and AI-skilled data analysts employed by 

the acquirer before and after the announcement date. To measure these changes, we 

construct relevant indicators based on the job titles from LinkedIn data for each work 

experience. We identify data analysts from the LinkedIn data by identifying the “data” 

keyword in the employee’s job title (e.g., an employee with a job title of “senior data 

analyst” falls into this category). 

4.3 Other variables  

Our dependent variables include cumulative abnormal returns (CARs), indicator 

variable for acquirer-target pairing and post-merger performance measures such as 

Patent Application and Patent Citation. Following the approach commonly used in M&A 

literature (Gokkaya et al., 2023), we employ the event study methodology to calculate the 

CAR of acquirers for each M&A event around the announcement date. Specifically, we 

estimate the market model in an estimation window of 180 to 11 days prior to the 

announcement date of each merger. The event window is defined as the period from 5 

days before to 5 days after the announcement date. For each day within the event window, 

the abnormal return (AR) is calculated as the difference between the actual return and the 

predicted return by the market model. The CARs are calculated as the sum of ARs within 

the event window [-5, +5]. We use alternative event windows [-3, +3] and [-10, +10] for 
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robustness. 

The dependent variable for acquirer-target pairing sample, Acquirer-Target, is equal 

to one for the acquirer-target firm pair, and zero for the control firm pairs that form 

the control group. Patent Application is defined as the logarithm value of sum of 

patents applied for by the acquirer and the target for the period before the acquisition 

and the number of patents applied for by the combined firm for the period after the 

acquisition. Patent Citation is defined as the logarithm value of sum of citation counts 

received by patents applied for by the acquirer and the target for the period before the 

acquisition and the citation counts received by patents applied for by the combined 

firm after the acquisition.  

We compute control variables used in the subsequent analyses, including acquirer 

characteristics such as the natural logarithm of firm market equity (Size), Tobin’s Q, 

Leverage, ROA, the natural logarithm of intangible assets (Lnintan), and free cash flow 

(Freecashflow). We also control target characteristics including the natural logarithm of 

target AI skills (LntarAIskill) and Tar_Hightech and control deal characteristics including 

payment type (Allstockdeal), relative deal value (Rel_Dealval), Tenderoffer, diversifying, 

Conglomerate and samestate. Detailed definitions of all variables are provided in Table 

A1 in the Appendix. Table 1 presents the summary statistics of the constructed 

variables of the final sample. 

  

4.4 Summary statistics 

Summary statistics are reported for acquirer characteristics in Panel A, target 

characteristics in Panel B, deal characteristics in Panel C, combined firm characteristics 
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in Panel D and employee/experience characteristics in the LinkedIn sample in Panel 

E. The matched LinkedIn dataset consists of 24,959,167 M&A-relevant work 

experience records (i.e., in firms involved in M&A transactions) of 13,011,554 

employees, 36.15% of whom are female and 49.15% of whom are male4. The average 

number of work experiences in a firm involved in M&A transactions for the sample 

employees is 1.918. The average duration of these work experiences is 55.926 months. 

Additionally, each employee, on average, possesses 0.023 AI-related skills, with 98.8% 

of them not having these skills, highlighting the scarcity of AI talent. 

We find that an average acquirer in our final sample has an average of 22.82 AI 

talents per month in the year prior to the deal (1.64% of all employees), with an 

average of 31.67 AI skills. In contrast, an average target firm in our sample has an 

average of 4.91 AI talents per month in the year prior to the deal (1.39% of all 

employees), with an average of 6.44 AI skills. This distribution is consistent with our 

expectations that acquirers have more AI human capital and skills than targets, which 

can potentially create synergy when merged with targets possessing large data assets. 

 

5. Empirical Results 

5.1 The impact of acquirer AI capabilities on acquisition announcement returns 

5.1.1 Baseline result 

We begin by examining the impact of acquirer AI capabilities on acquisition 

announcement returns. In our context, a greater CAR indicates that the market has reacted 

 
4 The remaining 14.7% are not reported. 
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favorably to the announcement of a merger or acquisition. We use CARs as the dependent 

variable and estimate the model below:  

𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑖𝑖,𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽1𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟′𝑠𝑠 𝐴𝐴𝐴𝐴𝑖𝑖,𝑡𝑡−1  + 𝛽𝛽2𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖,𝑡𝑡−1 + 𝛽𝛽3𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖,𝑡𝑡−1 

+𝛽𝛽4𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖,𝑡𝑡 + 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐹𝐹𝐹𝐹 + 𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 𝐹𝐹𝐹𝐹 + 𝜀𝜀𝑖𝑖,𝑡𝑡 ,           (1) 

where 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴′𝑠𝑠 𝐴𝐴𝐴𝐴𝑖𝑖,𝑡𝑡−1, the primary variable of interest, representing two measures of 

acquirer’s AI capability of deal i in year t-1. One is 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖,𝑡𝑡−1, which denotes the 

average AI skills in acquirers in the year prior to the announcement date. The other is 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖,𝑡𝑡−1, which denotes the average AI employees in the acquirer in the year prior 

to the announcement date. Following the M&A literature, we control for a list of acquirer 

characteristics (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖,𝑡𝑡−1 ), including the natural logarithm of firm market 

equity (Size), Tobin’s Q, Leverage, ROA, the natural logarithm of intangible assets (Lnintan), 

and free cash flow (Freecashflow). We also control several target characteristics 

(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖,𝑡𝑡−1 ) and deal characteristics (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖,𝑡𝑡 ), including the natural 

logarithm of target AI skills (LntarAIskill), Tar_Hightech, payment type (Allstockdeal), 

relative deal value (Rel_Dealval), Tenderoffer, and Conglomerate. Acquirer industry fixed 

effects (based on six-digit SIC code) and year fixed effects are incorporated to account for 

inherent industry characteristics and annual macroeconomic conditions. 

The results are presented in Table 2. Columns (1) to (3) show the results when using 

the count of AI skills of all employees (LnacqAIskill) as the main independent variable. We 

alternate time window lengths ([-3,+3], [-5,+5], [-10,+10]), and observe that LnacqAIskill 

consistently exhibits a positive and significant coefficient, suggesting a positive 

association between acquirers’ AI capabilities and their acquisition performance. In 
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columns (4) to (6), we use the count of acquirer’s AI employees as the main independent 

variable and the results remain quantitatively similar. Our findings provide evidence that 

AI talent is a valuable asset that can contribute to firm value in the context of M&A. For 

simplicity, we adopt CAR[-5,+5] in all the ensuing analyses, as alternative windows yield 

highly consistent results. 

5.1.2 Instrumental variable approach  

To address endogeneity concerns, we employ an instrumental variable (IV) strategy 

that exploits firm’s exposure to AI talents supply following Babina et al. (2024). This 

method isolates exogenous variation in firms’ AI skill acquisition stemming from local 

talent supply, reducing bias from unobserved demand factors affecting both AI 

investments and firm performance. 

To be specific, we employ a distance-based instrument: the share of AI graduates that 

graduate from universities within 100 miles of a company’s headquarters, weighted by 

the size of each university. The IV is constructed in three stages: 

First, identifying AI-strong universities. We classify universities as AI-strong 

university if the average number of AI researchers during 2006–2008 (ex ante M&A 

sample period) is in the top 3% of the distribution across all universities. University-year 

level data for AI researchers is provided by Babina et al. (2024). This classification ensures 

that universities’ AI-talent-producing abilities reflects pre-determined characteristics 

unaffected by later firm decisions. Second, measuring geographic proximity of firms and 

AI-strong universities. Using U.S. Census county distance data from NBER, we calculate 

the distance between the counties of each firm’s headquarter and AI-strong universities. 
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We retain universities within a 100-mile radius, as closer proximity strengthens labor 

market spillovers. Third, construct the size-weighted IV. For each firm-year, we aggregate 

the share of AI graduates from AI-strong universities within 100-mile county distance, 

weighted by university size to construct the firm-year IV for firms’ AI skills. The IV is 

defined as:  

𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖 =  ∑ 𝐴𝐴𝐴𝐴_𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑗𝑗𝑗𝑗
𝐴𝐴𝐴𝐴𝐴𝐴_𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑗𝑗𝑗𝑗𝑗𝑗∈𝐽𝐽𝑖𝑖𝑖𝑖  ×  𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑗𝑗𝑗𝑗           (2) 

where 𝐴𝐴𝐴𝐴_𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑗𝑗𝑗𝑗  is the number of fresh graduates from university j in year t whose first 

job after graduation is an AI-skilled job;  𝐴𝐴𝐴𝐴𝐴𝐴_𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑗𝑗𝑗𝑗  is the total number of fresh graduates 

from university j in year t;  𝐽𝐽𝑖𝑖𝑖𝑖 represents the set of AI-strong universities within a 100-

mile radius of firm i’s headquarter in year t; and 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑗𝑗𝑗𝑗   is the size-based weight 

of university j in year t (defined in Equation 3). Data for fresh graduates from each 

university is from Babina et al. (2024). 

The size-based weight of university in Equation 2 is defined as: 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑗𝑗𝑗𝑗  =  
𝑙𝑙𝑙𝑙(𝐴𝐴𝐴𝐴𝐴𝐴_𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑗𝑗𝑗𝑗)

∑ 𝑙𝑙𝑙𝑙(𝐴𝐴𝐴𝐴𝐴𝐴_𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑗𝑗𝑡𝑡)𝑗𝑗∈100−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
        (3) 

where 𝐴𝐴𝐴𝐴𝐴𝐴_𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑗𝑗𝑗𝑗 is the total number of fresh graduates from university j in year t. This 

size-based weight represents the proportion of graduates from university j among all AI-

strong universities within a 100-mile radius. 

We then link the firm-year IV to our deal-level baseline sample using the IV for each 

acquirer firm at the year t+1 relative to the deal announcement because IV in these years 

performs a great first stage outcome, which allows it to serve as a suitable instrument. 

Table 3 shows instrumental variable estimate results.  Column (1) and (3) report the 

first stage of the instrument, where we regress our key independent variable (LnacqAIskill) 
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on the instrument, which measures acquirer firm-level exposure to the supply of AI 

talents. Column (2) and (4) report the second stage results. All specifications control for 

acquirer-industry sector fixed effects and year fixed effects. Columns (1)-(2) show the 

results without baseline control variables. Columns (3)-(4) include the baseline controls: 

acquirer characteristics (Size, Tobin’s Q, Leverage, ROA, Lnintan and Freecashflow), target 

characteristics (LntarAIskill and Tar_Hightech) and deal characteristics (Allstockdeal, 

Rel_Dealval, Tenderoffer and Conglomerate).  

The instrument has a strong first stage with positive and significant relationship 

between IV and core independent variable (LnacqAIskill), and with F-statistics above 10. 

Next, the 2SLS estimates results show a positive and significant effect of acquirers’ AI 

capability on CAR[-5,+5]. When baseline controls are included, a one-standard-deviation 

increase in AI capability leads to a 5.76% increase in CAR[-5,+5]. The IV estimation results 

are consistent with those of OLS, both demonstrating the positive impact of acquirer AI 

capability on acquisition performance. 

5.2 Source of Value Creation by AI 

5.2.1 The effect of combining AI with data assets 

After documenting that firms with more AI skills tend to have greater announcement 

returns, the next question is what is the source of this value creation. AI products, at their 

core, resulted from learning patterns and generating insights by analyzing vast quantities 

of data using the appropriate techniques. We thus posit that a primary function of AI 

employees within acquiring firms is to unlock the potential that emerges from combining 

AI skills with the target’s stocks of data assets. When an acquirer’s AI expertise joins 
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hands with a target’s rich data assets, this creates value by enabling the development of 

more sophisticated and effective AI solutions. Therefore, we argue that successful AI-

driven M&A arises when: (1) the acquirer possesses advanced AI technology but lacks 

sufficient data to train and optimize its algorithms, and (2) the target possesses data-rich 

assets but lacks the AI capabilities to leverage them effectively.  

To verify the conjecture, we construct a novel measure of firms’ data intensity based 

on the frequency of data security keywords in Item 1A of its 10-K filings, as described 

earlier. We match the computed data intensity measure to target firms as of the year 

prior the deal announcement. Then, to test whether the data intensity in the target firm 

helps building up synergy with AI talents of the acquirer and causes the positive CAR, 

we partition target companies in our sample by the median values of target data intensity, 

into high-data subgroup (Hightardata, equals 1 when DataIntense of  the firm is greater 

than the median) and low-data subgroup (Lowtardata, equals 1 when DataIntense  of the 

firm is lower than the median). We then re-estimate Equation (1) for these two groups. 

The result is reported in column (1)-(2) in Table 4. The positive and significant association 

between acquirer AI and CAR are only observed in the acquisition subgroup with high 

data intensity targets. Economically, a one-standard-deviation increase in LnacqAIskill 

leads to a 1.76% increase in CAR for acquisitions of data-intensive targets. The results 

imply that it is the target’s data assets that creates synergistic value with acquirer AI 

expertise. 

It is possible that targets with high data intensity are those with high AI capabilities 

as well, and it is the overlap of AI expertise between acquirers and targets that constitutes 
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the synergistic value of the merger. To rule out this idea, we partition our sample by the 

median-level of target’s AI capabilities (computed the same way as acquirer’s) into high 

target AI subgroup (HightarAI, equals 1 when the target has more AI skills than the 

median) and low target AI subgroup (LowtarAI, equals 1 when the target has less AI skills 

than the median). We tabulate the subsample test of high/low target firm AI capabilities 

in column (3)-(4) in Table 4. We can observe that acquirer AI (LnacqAIskill) is only positive 

and significant for the low-AI target subgroup. This result is inconsistent with acquirer-

target AI overlap creating synergy for the merger, rather, it aligns with the notion that 

target is in needs of greater AI capabilities. 

In addition to the subsample analysis, we next conduct more detailed analysis that 

directly shows the value creation by different combinations of acquirer and target 

characteristics in M&As. To this end, we add interaction terms between indicators of 

acquirer AI and target data characteristics. Specifically, HighacqAI (LowacqAI) is a dummy 

variable indicating whether the acquirer’s AI capability is greater (lower) than the sample 

median. We construct target’s AI capability indicators in a similar manner. Moreover, 

Hightardata (Lowtardata) indicates whether the target’s data intensity is greater (lower) 

than the sample median. We incorporate interactions among these indicators into 

Equation (1) and re-conduct the estimation. 

The results are presented in Table 5. Columns (1) to (3) show results when the 

dependent variable is CAR[-5,+5]. Only Hightardata*HighacqAI carries a positive and 

significant sign. These results suggest that the positive M&A return that we discover in 

the baseline regression is mainly driven by high-AI acquirers merging with data-intensive 
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targets, confirming the existence of synergy between the two productive factors. On the 

contrary, coefficients on HighacqAI*Lowtardata and LowacqAI*Hightardata are both 

negative and significant, suggesting poor performance when high AI capability is 

combined with scarce data or when poor AI capability is integrated with rich data. 

5.2.2 The pursuit of data by high-AI acquirers 

If AI-data integration is an important source of value creation in M&As, it is sensible 

for high-AI firms to actively seek data assets in their business process to enhance their 

strategic position. To test this idea, before proceeding to the acquisition decisions made 

by high-AI firms, we first examine the decisions of these firms in hiring employees to 

conduct data related work (i.e., data analyst). We define data analyst by identify “data” 

keyword in the employee’s job title (e.g., an employee with a job title of “senior data 

analyst” falls into the category). 

Panel A in Figure 3 plots the time series of data analytics employees by high-AI 

acquirers and low-AI acquirers, respectively. We find that prior to the acquisition, 

acquirers with advanced AI capabilities exhibit a steadily increasing trend in hiring data 

analysts relative to industry-level prior to the deal, while acquirers without advanced AI 

capabilities exhibit a decreasing trend. This evidence implies that data analysts are valued 

by acquirers with strong AI capabilities before carrying out M&As. In addition, the 

divergence of the trends become even more pronounced when we plot employees with 

both data-related skills and AI skills (Panel B in Figure 3), suggesting that high-AI 

acquirers emphasize the vesting of both AI and data-related skills on their employees. 

Notably, the increasing trends of employees with data-related skills continue in the post-
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merger phase in both figures. Evidence from these figures point to the demand of high-

AI acquirers for seeking AI-data integration, rather than a single skill alone.  

Next, we conduct merger pairing analysis to investigate whether firms with strong 

AI capabilities actively seek data-intensive target in making acquisitions decisions. If 

acquiring a data-intensive target strengthens high-AI acquirers’ strategic position and 

wins recognition from the market, such deals will be more likely to occur. To test this idea, 

we investigate what types of acquirers and targets are likely to form M&A pairs to exploit 

the opportunity of synergistic value creation. Our methodology follows Bena and Li (2014) 

by testing the likelihood of acquirer-target firm pairing using a conditional logit model. 

The sample consists of cross-sectional data as of the fiscal year end before the deal 

announcement, with one observation for each deal (real acquirer-target pair) and multiple 

observations for control deals (potential acquirer-target pairs).  

To construct the pool of control deals, we form Industry- and Size-Matched Control 

Sample using propensity-score matches (PSM), which find up to five closest matches to 

the acquirer for each target, and up to five closest matches to the target for each acquirer. 

We also use Industry-, Size-, and ROA-Matched Control Sample, and Industry-, Size-, ROA-, 

and Tobin’s Q-Matched Control Sample to ensure the robustness of our inference.5 We then 

employ conditional logit model on the constructed sample after matching to estimate the 

following equation:  

 

 
5 The benefit of the method is that it controls for the potential influence of horizontal and vertical 
relatedness between industry pairs on merger formation likelihood, as highlighted by Fan and Goyal 
(2006) and Ahern and Harford (2014). 
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𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖,𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽1𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑡𝑡−1 ∗ 𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑗𝑗𝑗𝑗,𝑡𝑡−1 

+𝛽𝛽2𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑡𝑡−1 ∗ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑗𝑗𝑗𝑗,𝑡𝑡−1  

+𝛽𝛽3𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖,𝑡𝑡−1 ∗ 𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑗𝑗𝑗𝑗,𝑡𝑡−1  

+𝛽𝛽4𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖𝑖𝑖,𝑡𝑡−1  

+𝛽𝛽5𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗,𝑡𝑡−1  

+𝛽𝛽6𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖  

+𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝐹𝐹𝐹𝐹 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖,𝑡𝑡                         (4) 

where the dependent variable, 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖,𝑡𝑡 , is equal to one if the firm pair m 

with acquirer i and target j is the real acquirer-target firm pair, and zero otherwise. We 

construct high/low acquirer AI  indicator variables (𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑡𝑡−1/𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖,𝑡𝑡−1 ) 

and high/low target data indicator variables (𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖,𝑡𝑡−1 /𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖,𝑡𝑡−1 ), 

relative to their respective sample medians, and incorporate their interactions in the 

regression model to test the probability of merger pairing for each combination in the 

sample. We include the following control variables: sales growth, the natural logarithm 

of intangible assets, size, Tobin’s Q, leverage, ROA, and free cash flow of both the acquirer 

and the target, and two binary variables indicating whether the firms are in the same state 

and whether they are in different industry sectors.  

The results from this analysis are presented in Table 6. Among all interaction terms, 

only HighacqAI*Hightardata bears a positive and significant coefficient, suggesting that 

M&A is more likely to occur between high-AI acquirers and data-intensive targets. This 

finding supports the notion that acquirers with strong AI capabilities seek out targets with 

rich data assets, as the combination of these resources can potentially generate significant 

value. This result is consistent with earlier findings that acquisitions with high-AI 
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acquirers and data-intensive targets tend to have greater announcement returns, and that 

high-AI acquirers value data talents prior to the M&A process. Together, these findings 

regarding acquirers’ pursuit of data-related labor and assets further validate our 

argument that the strategic complementarity between AI skills and data resources is an 

important factor driving M&A decisions and outcomes. 

5.3 Realizing value of AI-data integration: Post-merger innovation output 

The value creation resulting from the merger of high-AI acquirers and data-intensive 

targets has been well-documented and discussed. However, an important question that 

remains unanswered is what specific benefits are generated from AI-data integration. 

While the strategic alignment of AI and data can enhance various performance metrics 

post-merger, we argue that innovation stands out as a particularly crucial benefit. First, 

AI enables firms to learn more effectively and efficiently from vast quantities of data, 

significantly improving business decision-making, uncovering new patterns, and 

generating potentially innovative ideas (Babena et al., 2024). The literature also highlights 

the potential of data assets to drive innovation (Beraja, Yang, and Yuchtman, 2023). By 

successfully combining AI and data, firms can leverage AI’s advanced data analysis 

capabilities and the rich information contained within data assets, thereby creating 

significant synergy potential through technological complementarity (Bena and Li, 2014). 

The primary identification challenge in this analysis lies in the potential endogeneity 

of firm pair selection. The observed relationship between the pairing of acquirers with AI 

capabilities and targets with data, and the resulting post-merger innovation output, could 

be driven by the firms’ endogenous decision to engage in a merger, rather than the actual 
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impact of the “acquirer AI - target data” synergy on innovation. As previously discussed, 

acquisitions are more likely to occur between firms that already exhibit these 

complementary characteristics.  

To address this concern and avoid biased estimates, we adopt a quasi-experimental 

approach inspired by Bena and Li (2014) and Seru (2014). Specifically, we use a control 

sample of withdrawn bids: deals that failed for reasons unrelated to the innovative 

activities of either merging firm. This approach allows us to treat the assignment of firm 

pairs to the treatment sample (completed deals) versus the control sample (withdrawn 

bids) as essentially random with respect to the innovation output variable we are 

analyzing. By comparing the innovation outcomes of completed deals with those of 

withdrawn bids, we can more accurately isolate the true impact of the “acquirer AI - target 

data” synergy on post-merger innovation. 

We use samples of both treatment and control deals involving acquirer and target 

firms that were innovative prior to the bid to obtain a clear post-merger innovation effect 

following Bena and Li (2014), defined as having at least one patent application or citation. 

To construct the control sample, we start with 48 innovative withdrawn bids announced 

between 2009 and 2019, which have the necessary firm-level data in Compustat and CRSP. 

Next, we search relevant information from news articles and various other sources for 

each withdrawn bid to confirm that the failure of these bids was not related to the 

innovative activities of either merger partner.  

Then, we select completed deals to form the treatment sample based on their 

comparability to control deals. Specifically, we focus on completed deals from 2009 to 
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2019 that meet the following criteria: (1) they involve innovative acquirers and target firms; 

(2) they occur in acquirer-target industry pairs that match those of the withdrawn bids in 

the control sample; (3) their announcement year falls within a three-year window centered 

around the announcement year of the control bids to minimize time-related differences. 

Table A2 in the Appendix details the number of remaining samples at each stage.  

During the process of removing ineligible treatment samples, the number of control 

samples also decreases. This occurs because some control deals lack any eligible treatment 

deals for matching and are excluded from the sample. For instance, if the industry pair of 

a control deal does not match any completed deal, or if the matched completed deal falls 

outside the three-year window, the control deal will be dropped.  

For each remaining control deal, we select the closest completed deal in terms of 

relative size ratio (i.e., the target firm’s total assets divided by the acquirer’s total assets) 

from the sample that meet the criteria mentioned above to become its treatment deal. This 

approach ensures that the treatment and control samples are comparable along key 

dimensions relevant to M&As, such as industry composition and time clustering (Roberts 

and Whited, 2013). We obtain patent and citation information from the Extended KPSS 

dataset following Kogan et al. (2017), and use the filing year of a patent as the time of its 

invention to measure a firm’s innovation output (Hall et al., 2005).  

We then estimate a difference-in-differences regression using a panel data set that 

contains information on deals in the treatment and control samples from five years before 

to five years after the deal announcement. We employ the following regression to test the 

impact of AI-data integration on innovation performance: 
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𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖,𝑡𝑡 =  𝛼𝛼 + 𝛽𝛽1𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖,𝑡𝑡 + 𝛽𝛽2𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖,𝑡𝑡  

+ 𝛽𝛽3𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖,𝑡𝑡 ∗ 𝐻𝐻𝑖𝑖𝑖𝑖ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖  

+ 𝛽𝛽4𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖,𝑡𝑡 ∗ 𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑗𝑗  

+ 𝛽𝛽5𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖,𝑡𝑡 ∗ 𝐻𝐻𝑖𝑖𝑖𝑖ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖 ∗ 𝐻𝐻𝑖𝑖𝑖𝑖ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑗𝑗  

+𝛾𝛾𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑡𝑡   

+𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐹𝐹𝐹𝐹 +  𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 𝐹𝐹𝐹𝐹 + 𝜀𝜀𝑖𝑖𝑖𝑖,𝑡𝑡                                           (5) 

 

where 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖,𝑡𝑡  represents combined patent applications (Patent Application) or 

combined patent citations (Patent Citation) of acquirer i and target j in each year t. Patent 

Application is defined as the natural logarithm of the sum of patent applications by the 

acquirer and the target for the period before the acquisition and the number of patent 

applications by the combined firm for the period after the acquisition. Patent Citation is 

defined as the natural logarithm of the sum of citation counts received by patents of the 

acquirer and the target for the period before the acquisition and the citation counts 

received by patents of the combined firm after the acquisition. 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖,𝑡𝑡 equals one for the 

post-merger time period (from t+1 to t+5), and zero otherwise. 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 equals one for 

treatment deals, and zero otherwise. We construct indicator variables, 𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖  and 

𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑗𝑗, which equal one if acquirer i’s AI capability and target j’s data intensity are 

higher than their respective sample medians. We then incorporate their interactions in the 

regression model. We control for financial variables of the merged firm, weighted by the 

relative size of the acquirer and the target. Deal and year fixed effects are included in all 

specifications. 



32 
 

The results are tabulated in Table 7, Panel A. The dependent variable is Patent 

Application in columns (1) and (2) and Patent Citation in columns (3) and (4). Across all 

specifications, the coefficients on Treat*After*HighacqAI*Hightardata bear positive and 

significant signs, suggesting that mergers with high-AI acquirers and data-intensive 

targets experience greater increases in innovation output after the merger relative to the 

control group not experiencing such mergers. To ensure robustness, Panel B presents the 

results from falsification tests where we assign pseudo announcement dates of treatment 

that are four years before its actual occurrence. The results indicate no significant 

difference in post-merger innovation output between the “treated” and control samples, 

which validates the findings in Panel A. 

Next, we examine if the increase in innovative output is driven by AI patents. Beraja, 

Yang, and Yuchtman (2023) demonstrate that rich data content nurtures more AI 

innovations. By the same token, we conjecture that integrating AI technics with rich data 

assets is likely to produce more innovations that are particularly related to AI technologies. 

To identify AI patents, we employ the Artificial Intelligence Patent Dataset (AIPD), 

developed by the USPTO’s Office of the Chief Economist to help researchers and 

policymakers study AI invention (Pairolero et al., 2024). The dataset identifies AI patents 

and pre-grant publications from US patent documents published between 2011 and 2019 

using machine learning models.6 AI patents are those whose patent documents published 

contain AI component technology based on the documents’ text and citations (separately 

 
6 Since the AIPD consists solely of raw patent data, we merge it with patent and citation data from 
USPatents provided by Wharton Research Data Services (WRDS) to obtain common IDs needed to merge 
the datasets with our deal-level dataset. 
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identified for the eight AI component technologies from the AIPD, including machine 

learning, vision, natural language processing, speech, evolutionary computation, AI 

hardware, knowledge processing, and planning and control). For example, the Tensor 

Processing Unit (TPU) designed by Google to run neural network algorithms more 

efficiently is an AI patent that contains AI hardware. 

We construct the treatment and control samples using the same filters as before, with 

the exception that restrictions on patents are now specific to AI patents. Using this 

updated sample, we re-estimate Equation (5), replacing the dependent variable with AI 

Patent Application and AI Patent Citation (industry-adjusted combined AI patent 

applications and citations). Results reported in Table 8 show that the coefficients on 

Treat*After*HighacqAI carry negative and significant signs across all columns, indicating 

that AI talent stock per se does not warrant greater innovative output after merger deals 

compared with the control group. Throughout all specifications with differing dependent 

variables, the coefficients on Treat*After*HighacqAI*Hightardata carry significantly positive 

signs consistently, suggesting that deals with high-AI acquirers and data-intensive targets 

generate more AI patents and receive more AI patent citations relative to the control deals 

not experiencing such mergers. This result emphasizes the AI-driven nature of post-

merger innovation and validates our story: combined firms use AI techniques to analyze 

the data they acquire to innovate.  

Furthermore, we again conduct a falsification test by assigning pseudo 

announcement dates that are four years prior to their actual occurrence and re-estimating 

the regression. The results, presented in Panel B, demonstrate that the post-merger 
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innovation effect disappears between the fake “treated” and control samples, and hence 

validate that our findings in Panel A are driven by the de facto mergers of the two parties. 

5.4 Alternative Explanations 

5.4.1 Generalizability of AI skills 

There are alternative explanations for our main findings. One such explanation 

pertains to the generalizability of AI skills. Employees with AI-related expertise are likely 

to adapt to different job positions or apply their skills across various job functions more 

easily. The acquiring firm could benefit from the broader applicability of its AI talent, 

either through the talents directly contributing to the target firm’s operations or by 

leveraging their skills to improve resource management and operational efficiency, 

ultimately enhancing the performance of the combined firm. This explanation is in line 

with Lee, Mauer, and Xu (2018), who suggest that merged firms can benefit from the 

mobility of labor between the merging parties. In this case, the flow of generalizable labor 

skills can influence M&A decisions, particularly when the acquirer seeks to consolidate 

its workforce. Here, the data assets in the target firm represent just one type of asset upon 

which the acquirer’s talent can apply their skills to generate profits and growth potential. 

To test this possibility, we plot the labor mobility ratio (defined as the ratio of 

migrated employees to total headcount) between acquirer and target in Figure 4. We 

define migrated employees as those who have adjacent work records at the acquirer and 

the target firm within one M&A deal. Our observations reveal that AI employees do not 

exhibit a higher mobility rate, neither moving from the acquirer to the target nor vice versa. 

In fact, AI workers tend to have a higher retention rate than their non-AI counterparts, 
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and labor flow is more likely to occur from the target to the acquirer. This may be due to 

the acquirer’s comparative advantage in AI, which attracts more compatible talent with 

relevant skills. This finding contradicts the alternative explanation that labor mobility 

among AI employees would improve acquisition performance. 

5.4.2 Acquirer fundamentals 

It is also possible that strong AI capabilities are merely a reflection of acquirers’ 

superior financial and management performance, as developing and implementing AI 

capabilities requires significant financial investment. In this scenario, the results 

documented in this study would represent strong firms acquiring weaker targets and 

leveraging their superior management to optimize a broader scope of assets or improve 

the target’s operations, leading to better overall performance for the merged firm. If this 

were the case, the findings could not be specifically attributed to the contribution of AI 

skills. 

To test this hypothesis, we partition acquirers into groups based on their pre-merger 

ROA (High Acquirer ROA/Low Acquirer ROA) and ROE (High Acquirer ROE/Low Acquirer 

ROE) relative to the sample median, and re-estimate the CAR regression separately for 

these subsamples. If the observed CAR were solely driven by pre-existing firm 

performance, we would not expect a positive impact of AI talent among acquirers with 

below-median financial performance. The results, presented in Table 9, show that the 

positive and significant effect of AI capability on acquisition announcement CAR is 

observed only for acquirers with below-median ROA or ROE. This finding suggests that 

the observed synergies are not merely a byproduct of well-managed firms performing 
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well and applying their superior management to target firms. Instead, these results 

reinforce our conclusion that AI talent serves as a specific and distinct driver of value 

creation in M&A. 

 

6. Conclusion 

Leveraging a novel employee skills dataset, this paper examines the impact of 

corporate artificial intelligence on M&A outcomes. Our findings reveal that acquirers with 

strong AI capabilities are positively associated with acquisition performance, as measured 

by higher announcement returns. Further analyses support the idea that the integration 

between AI capabilities and data assets drives the observed superior performance. We 

also find that acquirers with strong AI capabilities actively pursue employees with data-

related skills and target data-rich firms. Using exogenously withdrawn deals as a control 

group, we show that high-AI acquirers targeting data-rich firms experience significant 

increases in post-merger patent filings and citations, especially for AI-related patents. This 

suggests that integrating AI and data fosters innovation and long-term value creation.  

This study advances our understanding of M&A decision-making by identifying a 

novel source of synergy in the AI era-the strategic alignment between AI capabilities and 

data assets-making one of the first contributions to the finance literature on this topic. 

Additionally, by highlighting the synergistic relationship between AI talent and data, our 

results also contribute to the ongoing academic (Acquisti, Taylor, and Wagman, 2016; 

Cockburn, Rock, and Syverson, 2018; Fainmesser, Galeotti, and Momot, 2023; Goldfarb 

and Que, 2023; Liu, Sockin, and Xiong, 2023) and policy (Ilan, Ronco, and Rosen, 2018; 
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McQuinn and Castro, 2019; Sundara and Narendran, 2023; Hutchinson, 2024) debate on 

the optimal balance between protecting data privacy and unleashing the full potential of 

economic efficiency.   



38 
 

Reference  
Abramova, I. (2024). Labor supply and M&A in the audit market. Journal of Accounting 

and Economics, 101700.  

Acemoglu, D., & Autor, D. (2011). Skills, tasks and technologies: Implications for 
employment earnings. In O. Ashenfelter & D. Card (Eds.), The Handbook of Labor 
Economics, 4b, 1043-1171. Elsevier. 

Acemoglu, D., Anderson, G., Beede, D., ... & Zolas, N. (2024). Automation and the 
workforce: A firm-level view from the 2019 Annual Business Survey. Technology, 
Productivity, and Economic Growth, Susanto Basu, Lucy Eldridge, John Haltiwanger 
and Erich Strassner, eds., University of Chicago Press. 

Acemoglu, D., & Restrepo, P. (2018). The race between man and machine: Implications 
of technology for growth, factor shares, and employment. American Economic 
Review, 108(6), 1488-1542. 

Acemoglu, D., & Restrepo, P. (2019). Automation and new tasks: How technology 
displaces and reinstates labor. Journal of Economic Perspectives, 33 (2): 3–30. 

Acquisti, A., Taylor, C., & Wagman, L. (2016). The economics of privacy. Journal of 
Economic Literature, 54(2), 442-492.  

Agrawal, A., Gans, J., & Goldfarb, A. (Eds.). (2019). The economics of artificial 
intelligence: An agenda. University of Chicago Press. 

Ahuja, G., & Katila, R. (2001). Technological acquisitions and the innovation 
performance of acquiring firms: A longitudinal study. Strategic management journal, 
22(3), 197-220. 

Autor, D. H. (2015). Why are there still so many jobs? The history and future of 
workplace automation. Journal of Economic Perspectives, 29(3), 3-30. 

Autor, D. H., Levy, F., & Murnane, R. J. (2003). The skill content of recent technological 
change: An empirical exploration. Quarterly Journal of Economics, 118(4), 1279-1333.  

Babina, T., Fedyk, A., He, A., & Hodson, J. (2024). Artificial intelligence, firm growth, 
and product innovation. Journal of Financial Economics, 151, 103745.  

Behrens, V., & Trunschke, M. (2020). Industry 4.0 related innovation and firm growth. 
ZEW-Centre for European Economic Research Discussion Paper, (20-070). 

Bena, J., & Li, K. (2014). Corporate innovations and mergers and acquisitions. Journal of 
Finance, 69(5), 1923-1960.  

Beraja, M., Yang, D. Y., & Yuchtman, N. (2023). Data-intensive innovation and the state: 
Evidence from AI firms in China. Review of Economic Studies, 90(4), 1701-1723. 

Bessen, J. E. (2015). How computer automation affects occupations: Technology, jobs, 
and skills. Boston University School of Law, Law and Economics Research Paper, (15-
49).  



39 
 

Bresnahan, T. F., Brynjolfsson, E., & Hitt, L. M. (2002). Information technology, 
workplace organization, and the demand for skilled labor: Firm-level evidence. 
Quarterly Journal of Economics, 117(1), 339-376. 

Brynjolfsson, E., Hitt, L. M., & Kim, H. H. (2011). Strength in numbers: How does data-
driven decision making affect firm performance?. ICIS 2011 Proceedings, 13. 

Brynjolfsson, E., & McAfee, A. (2014). The second machine age: Work, progress, and 
prosperity in a time of brilliant technologies. W W Norton & Co. 

Brynjolfsson, E., Mitchell T., & Rock. D. (2018). What can machines learn, and what does 
it mean for occupations and the economy?. AEA Papers and Proceedings, 108: 43–47. 

Brynjolfsson, E., Rock, D., & Syverson, C. (2019). Artificial intelligence and the modern 
productivity paradox. In The economics of artificial intelligence: An agenda (pp. 
23-57). University of Chicago Press.  

Capron, L., & Pistre, N. (2002). When do acquirers earn abnormal returns?. Strategic 
management journal, 23(9), 781-794. 

Celik, M. A., Tian, X., & Wang, W. (2022). Acquiring innovation under information 
frictions. The Review of Financial Studies, 35(10), 4474-4517. 

Chen, D., Gao, H., & Ma, Y. (2021). Human capital-driven acquisition: Evidence from the 
inevitable disclosure doctrine. Management Science, 67(8), 4643-4664.  

Chen, J., Hshieh, S., & Zhang, F. (2024). Hiring high-skilled labor through mergers and 
acquisitions. Journal of Financial and Quantitative Analysis, 59(2), 672-705.  

Chen, M. A., & Wang, X. (2024). Displacement or augmentation? The effects of AI 
innovation on workforce dynamics and firm value, working paper. 

Cockburn, I. M., Henderson, R., & Stern, S. (2018). The impact of artificial intelligence on 
innovation (Vol. 24449). Cambridge, MA, USA: National bureau of economic research. 

Cong, L. W., Xie, D., & Zhang, L. (2021). Knowledge accumulation, privacy, and growth 
in a data economy. Management Science, 67(10), 6480-6492.  

Czarnitzki, D., Fernández, G. P., & Rammer, C. (2023). Artificial intelligence and firm-
level productivity. Journal of Economic Behavior & Organization, 211, 188-205.  

Fainmesser, I. P., Galeotti, A., & Momot, R. (2023). Digital privacy. Management Science, 
69(6), 3157-3173.  

Fan, J. P. H., & Goyal, V. K. (2006). On the Patterns and Wealth Effects of Vertical 
Mergers. Journal of Business, 79(2), 877–902.  

Farboodi, M., & Veldkamp, L. (2021). A model of the data economy (No. w28427). 
National Bureau of Economic Research. 

Ficery, K., Herd, T., & Pursche, B. (2007). Where has all the synergy gone? The M&A 
puzzle. Journal of Business Strategy, 28(5), 29-35.  

Frank, M. R., Autor, D., Bessen, J. E., Brynjolfsson, E., Cebrian, M., Deming, D. J., ... & 
Rahwan, I. (2019). Toward understanding the impact of artificial intelligence on 



40 
 

labor. Proceedings of the National Academy of Sciences, 116(14), 6531-6539.  

Gathmann, C., & Schönberg, U. (2010). How general is human capital? A task‐based 
approach. Journal of Labor Economics, 28(1), 1–49. 

Gofman, M., & Jin, Z. (2022). Artificial intelligence, education, and entrepreneurship. 
Journal of Finance, 79(1), 631–667. 

Gokkaya, S., Liu, X., & Stulz, R. M. (2023). Do firms with specialized M&A staff make 
better acquisitions?. Journal of Financial Economics, 147(1), 75-105. 

Goldfarb, A., & Que, V. F. (2023). The economics of digital privacy. Annual Review of 
Economics, 15(1), 267-286.  

Graetz, G., & Michaels, G. (2018). Robots at work. Review of Economics and Statistics, 
100(5), 753-768.  

Hall, B., Jaffe, A., & Trajtenberg, M. (2005). Market value and patent citations. RAND 
Journal of Economics, 36(1), 16-38.  

He, Z., Huang, J., & Zhou, J. (2023). Open banking: Credit market competition when 
borrowers own the data. Journal of Financial Economics, 147(2), 449-474.  

Hoberg, G., & Phillips, G. (2010). Product market synergies and competition in mergers 
and acquisitions: A text-based analysis. Review of Financial Studies, 23(10), 3773-
3811.  

Hutchinson, C. S. (2024). Incorporating privacy considerations into EU data-driven 
merger review. European Competition Journal, 20(1), 78-112.  

Ilan, D., Ronco, E., & Rosen, J. (2018, July-August). Data privacy and cybersecurity in 
M&A: A new era. Landslide, 10(6).  

Jones, C. I., & Tonetti, C. (2020). Nonrivalry and the economics of data. American 
Economic Review, 110(9), 2819-2858.  

Kaufmann, M., & Schiereck, D. (2023). Acquiring for innovation: Evidence from the US 
technology industry. Journal of Economic Dynamics and Control, 152, 104673. 

Kogan, L., Papanikolaou, D., Seru, A., & Stoffman, N. (2017). Technological innovation, 
resource allocation, and growth. Quarterly Journal of Economics, 132(2), 665-712. 

Lee, K. H., Mauer, D. C., & Xu, E. Q. (2018). Human capital relatedness and mergers and 
acquisitions. Journal of Financial Economics, 129(1), 111-135.  

Li, P., Li, F. W., Wang, B., & Zhang, Z. (2018). Acquiring organizational capital. Finance 
Research Letters, 25, 30-35. 

Liu, Z., Sockin, M., & Xiong, W. (2023). Data privacy and algorithmic inequality (No. 
w31250). National Bureau of Economic Research.  

Makri, M., Hitt, M. A., & Lane, P. J. (2010). Complementary technologies, knowledge 
relatedness, and invention outcomes in high technology mergers and acquisitions. 
Strategic Management Journal, 31(6), 602–628. 



41 
 

Masulis, R. W., Wang, C., & Xie, F. (2007). Corporate governance and acquirer returns. 
Journal of Finance, 62(4), 1851-1889.  

McQuinn, A., & Castro, D. (2019). The costs of an unnecessarily stringent federal data 
privacy law. Information Technology and Innovation Foundation. 

Ouimet, P., & Zarutskie, R. (2020). Acquiring labor. Quarterly Journal of Finance, 10(3), 
Article 2050011.  

Pairolero, N., Giczy, A., Torres, G., Erana, T. I., Finlayson, M., & Toole, A. (2024). The 
Artificial Intelligence Patent Dataset (AIPD) 2023 update. 

Rammer, C., Fernández, G. P., & Czarnitzki, D. (2022). Artificial intelligence and 
industrial innovation: Evidence from German firm-level data. Research Policy, 51(7), 
104555.  

Roberts, M. R., & Whited, T. M. (2013). Endogeneity in empirical corporate finance. In G. 
Constantinides, R. Stulz, & M. Harris (Eds.), Handbook of the Economics of Finance, 
493-572. Elsevier.  

Seru, A. (2014). Firm boundaries matter: Evidence from Conglomerates and R&D 
activity. Journal of Financial Economics, 111(2), 381-405.  

Shamim, S., Zeng, J., Khan, Z., & Zia, N. U. (2020). Big data analytics capability and 
decision making performance in emerging market firms: The role of contractual 
and relational governance mechanisms. Technological Forecasting and Social Change, 
161, 120315. 

Sundara, K., & Narendran, N. (2023). Protecting Digital Personal Data in India in 2023: Is 
the lite approach, the right approach?. Computer Law Review International, 24(1), 9-
16. 

Tambe, P. (2014). Big data investment, skills, and firm value. Management science, 60(6), 
1452-1469. 

Van Roy, V., Vertesy, D., & Damioli, G. (2020). AI and robotics innovation (pp. 1-35). 
Springer International Publishing. 

Yang, W. (2022). Artificial Intelligence education for young children: Why, what, and 
how in curriculum design and implementation. Computers and Education: Artificial 
Intelligence, 3, 100061. 

Yu, Y., Umashankar, N., & Rao, V. R. (2016). Choosing the right target: Relative 
preferences for resource similarity and complementarity in acquisition choice. 
Strategic management journal, 37(8), 1808-1825. 

 
  



42 
 

 
Figure 1. Time Series of AI capability 
This figure shows the time series of the two measures of AI capability for acquirer firms and target 
firms. Panel A shows the average AI skills for firms during 2009-2019. Panel B shows the average 
AI employees for firms during 2009-2019. Both AI measures are constructed from LinkedIn data. 
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Figure 2. Geographic Distribution of AI Skills  
We calculate the total number of AI skills of all employees in our sample at the county-level based on 
their reported work locations. The warmth of the color represents greater AI talent density. 
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Figure 3. Time Series of Data Analytics Employees 
This figure shows the industry-adjusted (based on 6-digit SIC industry codes) average number of 
data analysts in high-AI/low-AI acquirers during the period from 10 years before to 3 years after 
the announcement year of our sample deals. High/low-acquirer AI is determined according to the 
median of acquirer AI skills using LinkedIn data. We identify data analysts from the LinkedIn data 
by searching for the keyword “data” in job titles. The blue line represents data analysts in the high-
AI group, and the green line represents data analysts in the low-AI group, both are industry-
adjusted. Panel A plots the statistics for data analysts. Panel B plots the statistics for data analysts 
who also report AI-related skills in their skill set. 
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Figure 4. Labor Mobility Between Acquirer and Target for AI Talents and Other Employees 
This figure presents the proportions of AI/non-AI talents’ migrated employees relative to the total 
headcount, and the ratio of mobility direction. We define as those who have adjacent work records at 
the acquirer and the target firm within one M&A deal. The mobility direction (i.e., from acquirer to 
target or the opposite) is identified by tracing each employee’s work experiences in the two firms. Labor 
mobility records are sourced from LinkedIn data. The statistics are computed for deals in our baseline 
sample. 
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Table 1. Summary Statistics 
This table reports descriptive statistics over the period from 2009 to 2019. Panels A, B, C and D present 
the mean, median, standard deviation, minimum, and maximum for the acquirer characteristics, target 
characteristics, deal characteristics and combined firm characteristics, respectively. Panel E presents 
employee/experience characteristics from SDC-LinkedIn matched data.  M&A sample is drawn from 
the Thomson One Platinum Securities Data Company (SDC) M&A database and includes deals with 
worldwide public acquirers and US public and private targets announced between January 1, 2009, and 
December 31, 2019. A detailed description of variables can be found at Appendix. 
 (1) (2) (3) (4) (5) 
 N Mean SD Min Max 
Panel A: Acquirer Characteristics: 
      
Acq_AI Employee 3,904 22.82 152.7 0 4,577 
Acq_AI Skill 3,904 31.67 229.5 0 7,413 
Acq_Employee 3,904 1,391.52 4,326 0 70,888 
Freecashflow 3,904 0.037 0.156 -6.573 0.538 
Leverage 3,904 0.283 0.230 0 6.207 
LnacqAIskill 3,904 1.305 1.600 0 8.911 
Lnintan 3,904 6.023 2.185 -2.453 12.31 
ROA 3,904 0.022 0.165 -6.049 0.558 
ROE 3,904 0.007 0.212 -7.689 1.366 
Size 3,904 7.327 1.851 1.520 13.51 
Tobin’s Q 3,904 1.938 1.168 0.525 22.34 
Panel B: Target Characteristics: 
 
DataIntense 628 0.525 1.520 0 20 
LntarAIskill 3,904 0.571 1.071 0 8.022 
Tar_AI Employee 3,904 4.911 53.22 0 2,867 
Tar_AI skill 3,904 6.439 62.55 0 3,046 
Tar_Employee 3,904 353.6 1,901 0 84,097 
Tar_Hightech 3,904 0.299 0.458 0 1 
Panel C: Deal Characteristics: 
 
Allstockdeal 3,904 0.030 0.171 0 1 
CAR[-3,+3] 3,904 0.012 0.098 -0.624 1.843 
CAR[-5,+5] 3,904 0.012 0.105 -0.607 1.835 
CAR[-10,+10] 3,904 0.012 0.126 -0.625 1.525 
Conglomerate 3,904 0.405 0.491 0 1 
Rel_Dealval 3,904 -2.149 1.463 -7.770 5.881 
Tenderoffer 3,904 0.039 0.195 0 1 
Panel D: Combined Firm Characteristics:     
      
AI Patent Application 297 0.001 0.819 -2.577 3.718 
AI Patent Citation 297 0.002 0.989 -3.241 3.693 
Patent Application 368 3.125 1.939 0 7.944 
Patent Citation 368 3.605 2.573 0 9.002 
Panel E: Employee/Experience Characteristics: 
 
AI skills owned 13,011,554 0.023 0.229 0 16 
Duration of Experience(month) 24,959,167 55.926 27.678 2 613 
No. of Experience 13,011,554 1.918 1.483 1 32 
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Table 2. Acquirer AI Capabilities and Acquisition Announcement Returns 
This table presents market-model cumulative abnormal returns (CARs) over the [-3, +3], [-5,+5] and [-10,+10] windows surrounding the M&A announcement 
dates, where the parameters of the market model are estimated using the CRSP value-weighted index over [-180, -11] days relative to the acquisition 
announcement date. Columns (1)-(3) presents the effect of acquirer’s AI skills on CARs, and Columns (4)-(6) presents the effect of acquirer’s AI employees 
(employees who own at least one AI-related skills). LnacqAIskill is defined as log(Acq_AI skill +1), and LnacqAIemp is defined as log(Acq_AI Employee+1). All 
specifications control for the 6-digit SIC acquirer-industry sector fixed effects and year fixed effects. Robust t-statistics adjusted for firm-level clustering are 
reported in parentheses. *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively. 

 (1) (2) (3) (4) (5) (6) 
 CAR[-3,+3] CAR[-5,+5] CAR[-10,+10] CAR[-3,+3] CAR[-5,+5] CAR[-10,+10] 
LnacqAIskill 0.004*** 0.004*** 0.004***    
 (2.88) (2.59) (2.75)    
LnacqAIemp    0.004** 0.004** 0.005*** 
    (2.56) (2.56) (2.77) 
Size -0.018*** -0.019*** -0.024*** -0.019*** -0.021*** -0.026*** 
 (-6.37) (-6.55) (-6.65) (-6.18) (-6.35) (-6.73) 
Tobin’s Q 0.006*** 0.008*** 0.010*** 0.005** 0.007*** 0.009*** 
 (3.13) (3.65) (3.50) (2.49) (3.13) (3.05) 
Leverage 0.044** 0.039* 0.034* 0.046** 0.039* 0.032 
 (2.22) (1.96) (1.80) (2.11) (1.81) (1.64) 
ROA 0.014 0.042 0.062 0.010 0.040 0.056 
 (0.36) (1.15) (1.47) (0.25) (0.99) (1.23) 
Lnintan 0.007*** 0.008*** 0.009*** 0.007*** 0.008*** 0.010*** 
 (3.25) (3.58) (3.51) (3.26) (3.48) (3.49) 
Freecashflow 0.053 0.025 0.034 0.050 0.016 0.026 
 (1.13) (0.54) (0.73) (1.01) (0.32) (0.53) 
LntarAIskill -0.001 -0.001 0.000 -0.000 -0.000 0.001 
 (-0.30) (-0.52) (0.08) (-0.09) (-0.03) (0.35) 
Tar_Hightech -0.004 -0.005 -0.008 -0.004 -0.004 -0.006 
 (-0.97) (-1.09) (-1.36) (-0.98) (-0.72) (-1.10) 
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Allstockdeal -0.011 -0.009 -0.008 -0.014 -0.010 -0.003 
 (-0.91) (-0.78) (-0.60) (-1.23) (-0.82) (-0.18) 
Conglomerate -0.005 -0.008** -0.005 -0.002 -0.005 -0.002 
 (-1.49) (-2.22) (-1.15) (-0.63) (-1.40) (-0.48) 
Rel_Dealval 0.004*** 0.005*** 0.003 0.004** 0.004** 0.003 
 (2.72) (2.96) (1.60) (2.47) (2.37) (1.30) 
Tenderoffer -0.004 -0.005 -0.007 -0.004 -0.005 -0.005 
 (-0.60) (-0.63) (-0.68) (-0.53) (-0.54) (-0.53) 
Constant 0.087*** 0.090*** 0.106*** 0.092*** 0.095*** 0.115*** 
 (7.22) (7.10) (6.96) (6.64) (6.57) (6.88) 
Observations 3,865 3,865 3,865 3,830 3,830 3,830 
R-squared 0.151 0.147 0.136 0.164 0.151 0.150 
Acq. ind. FE Yes Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes Yes 



49 
 

Table 3. Acquirer AI Capabilities and Acquisition Announcement Returns: IV Estimates  
This table reports the IV estimates for baseline results. Column (1) and (3) report the first stage of the 
instrument, where we regress our key independent variable (LnacqAIskill) on the instrument, which 
measures acquirer firm-level exposure to the supply of AI talents. The definition of the instrument is in 
Section 5.1.2. Column (2) and (4) report the second stage results.  Columns (3)-(4) include the baseline 
controls: acquirer characteristics (Size, Tobin’s Q, Leverage, ROA, Lnintan and Freecashflow), target 
characteristics (LntarAIskill and Tar_Hightech) and deal characteristics (Allstockdeal, Rel_Dealval, 
Tenderoffer and Conglomerate). Standard errors are clustered at firm level. Robust t-statistics are reported 
in parentheses. *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively. 
 (1) (2) (3) (4) 
  LnacqAIskill CAR[-5,+5] LnacqAIskill CAR[-5,+5] 
          
IV 3.124***   2.093***   
  (3.25)   (3.21)   
LnacqAIskill   0.024**   0.036** 
    (2.12)   (2.11) 
Size     0.590*** -0.033*** 
      (7.58) (-2.94) 
Tobin’s Q     -0.106 0.010** 
      (-1.58) (2.58) 
Leverage     -0.235 0.021 
      (-0.63) (0.98) 
ROA     -0.027 0.036 
      (-0.03) (0.65) 
Lnintan     -0.084 0.007* 
      (-1.23) (1.66) 
Freecashflow     0.284 -0.017 
      (0.25) (-0.27) 
LntarAIskill     -0.047 -0.002 
      (-1.09) (-0.53) 
Tar_Hightech     0.249** -0.010 
      (2.10) (-1.24) 
Allstockdeal     0.243 -0.036* 
      (0.91) (-1.68) 
Conglomerate     -0.025 -0.004 
      (-0.28) (-0.58) 
Rel_Dealval     -0.044 0.003 
      (-1.23) (1.25) 
Tenderoffer     -0.106 0.011 
      (-0.51) (0.88) 
          
Observations 1,625 1,625 1,625 1,625 
Acq. ind. FE Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes 
F Statistic 10.55 10.55 10.33 10.33 
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Table 4. Subsample Test: The Role of Target Data Intensity/ Target AI Skills 
This table presents the results of CAR[-5,+5] regression on subsamples divided according to the median 
value of target data intensity and target AI skills. Acquisitions with targets whose data intensity is 
higher than the median fall into the high-target data intensity group (columns (1)), and the rest fall into 
the low-target data intensity group (columns (2)). Information on target data intensity is computed 
using a word frequency analysis on item 1a in 10-K filings. Acquisitions with targets whose AI skills of 
employees is higher than the median fall into the high-target AI group (columns (3)), and the rest fall 
into the low-target AI group (columns (4)). Target AI skills are computed using the same way as 
computing acquirer AI skills. Robust t-statistics adjusted for firm-level clustering are reported in 
parentheses. *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively. 

 CAR[-5,+5] 

 (1) 
High 

target data 

(2) 
Low 

target data 

(3) 
High 

target AI 

(4) 
Low 

target AI 
     
LnacqAIskill 0.011* -0.003 0.001 0.006*** 
 (1.89) (-0.85) (0.63) (2.80) 
LntarAIskill -0.013 -0.010*   
 (-1.29) (-1.74)   
Size -0.009 -0.003 -0.019*** -0.021*** 
 (-0.54) (-0.42) (-3.49) (-5.86) 
Tobin’s Q 0.014 0.026** 0.006* 0.009*** 
 (0.80) (2.21) (1.91) (3.07) 
Leverage 0.078 0.083* 0.059*** 0.028 
 (0.92) (1.68) (2.66) (1.05) 
ROA 0.297 -0.246 0.117** 0.018 
 (0.78) (-1.60) (2.14) (0.40) 
Lnintan 0.006 0.010 0.007* 0.010*** 
 (0.43) (1.46) (1.85) (3.61) 
Freecashflow 0.168 0.009 -0.067 0.046 
 (0.54) (0.06) (-0.94) (0.80) 
Tar_Hightech -0.039 0.012 -0.004 -0.004 
 (-1.04) (0.58) (-0.43) (-0.58) 
Allstockdeal 0.021 0.009 -0.032 0.006 
 (0.46) (0.33) (-1.58) (0.37) 
Conglomerate -0.023 0.020 -0.004 -0.009* 
 (-0.91) (1.29) (-0.60) (-1.96) 
Rel_Dealval 0.004 -0.005 0.003 0.006*** 
 (0.26) (-0.83) (0.87) (3.21) 
Tenderoffer 0.015 0.002 0.005 -0.015 
 (0.49) (0.15) (0.41) (-0.94) 
Constant -0.042 -0.120** 0.081*** 0.098*** 
 (-0.56) (-2.29) (3.50) (5.91) 
     
Observations 124 270 1,237 2,539 
R-squared 0.457 0.318 0.215 0.171 
Acq. ind. FE Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes 
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Table 5. Testing the Synergy between Acquirer AI and Target Data 
This table estimates the impacts of different types of acquirer-target combinations on CAR[-5,+5]. We 
construct High/LowacqAI dummy and High/Lowtardata dummy according to the median value of 
acquirer AI skills and target data intensity, and incorporate their intersections to the right-hand side of 
the model. Columns (1), (2) and (3) examine the effect of high-AI acquirers combined with data-
intensive targets, high-AI acquirers combined with data-poor targets, and low-AI acquirers combined 
with data-intensive targets, respectively. Robust t-statistics adjusted for firm-level clustering are 
reported in parentheses. *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, 
respectively. 
 CAR[-5,+5] 
 (1) (2) (3) 
    
HighacqAI*Hightardata 0.048**   
 (2.27)   
HighacqAI*Lowtardata  -0.048**  
  (-2.27)  
LowacqAI*Hightardata   -0.048** 
   (-2.27) 
HighacqAI -0.006 0.042** -0.006 
 (-0.50) (2.36) (-0.50) 
Hightardata -0.051*** -0.051*** -0.002 
 (-2.97) (-2.97) (-0.16) 
Size -0.005 -0.005 -0.005 
 (-0.91) (-0.91) (-0.91) 
Tobin’s Q 0.015* 0.015* 0.015* 
 (1.73) (1.73) (1.73) 
Leverage 0.057 0.057 0.057 
 (1.49) (1.49) (1.49) 
ROA -0.146 -0.146 -0.146 
 (-1.10) (-1.10) (-1.10) 
Lnintan 0.010 0.010 0.010 
 (1.64) (1.64) (1.64) 
Freecashflow 0.115 0.115 0.115 
 (0.84) (0.84) (0.84) 
LntarAIskill -0.009** -0.009** -0.009** 
 (-2.10) (-2.10) (-2.10) 
Tar_Hightech 0.014 0.014 0.014 
 (0.87) (0.87) (0.87) 
Allstockdeal 0.020 0.020 0.020 
 (1.01) (1.01) (1.01) 
Conglomerate -0.001 -0.001 -0.001 
 (-0.10) (-0.10) (-0.10) 
Rel_Dealval -0.006 -0.006 -0.006 
 (-1.31) (-1.31) (-1.31) 
Tenderoffer -0.006 -0.006 -0.006 
 (-0.55) (-0.55) (-0.55) 
Constant -0.073* -0.073* -0.073* 
 (-1.84) (-1.84) (-1.84) 
Observations 448 448 448 
R-squared 0.289 0.289 0.289 
Acq. ind. FE Yes Yes Yes 
Year FE Yes Yes Yes 

 



52 
 

Table 6. Likelihood of Acquirer-Target Firm Pairing 
This table reports coefficient estimates from conditional logit models using acquisitions of the US public 
targets and a control sample of potential deals matched using PSM. The dependent variable is equal to 
one for the acquirer-target firm pairing, and zero for the control firm pairs. Columns (1)-(3) present the 
results using three different control samples respectively. Definitions of all the variables are provided 
in the Appendix. All specifications include deal group fixed effects. Robust t-statistics adjusted for deal-
level clustering are reported in parentheses. *, **, and *** denote statistical significance at the 10%, 5%, 
and 1% levels, respectively. 
 

Acquirer-Target 
 (1) (2) (3) 
 Ind-Size Ind-Size-ROA Ind-Size-ROA-Tobin’s Q 

    
HighacqAI*Hightardata 0.373* 0.480** 0.577*** 
 (1.93) (2.29) (2.61) 
HighacqAI*Lowtardata 0.095 0.169 0.086 
 (0.64) (1.04) (0.50) 
LowacqAI*Hightardata 0.316 0.166 0.165 
 (1.38) (0.76) (0.77) 
Bothhighpatent 0.230 0.262 0.355 
 (0.94) (0.98) (1.18) 
Salesgrowth 0.654*** 0.732*** 0.422* 
 (3.13) (3.16) (1.85) 
Tar_Salesgrowth 0.172 0.248* -0.134 
 (1.16) (1.70) (-0.98) 
Size -0.076 -0.102 -0.139 
 (-1.00) (-1.26) (-1.62) 
Tar_Size -0.106 0.095 -0.115 
 (-0.96) (1.10) (-1.58) 
Tobin’s Q -0.069 -0.107 -0.019 
 (-0.96) (-1.46) (-0.29) 
Tar_Tobin’s Q -0.061 -0.014 0.272*** 
 (-1.05) (-0.27) (4.68) 
Leverage 0.340 0.862** 0.513 
 (1.03) (2.19) (1.42) 
Tar_Leverage -0.230 0.341 0.416 
 (-0.70) (0.98) (1.17) 
Lnintan 0.070 0.082 0.129** 
 (1.48) (1.51) (2.28) 
Tar_Lnintan -0.015 0.018 0.073 
 (-0.31) (0.38) (1.51) 
Freecashflow 1.944** 2.196** 2.408*** 
 (2.08) (2.32) (2.67) 
Tar_Freecashflow 0.136 1.111 0.298 
 (0.21) (1.22) (0.39) 
ROA 0.197 -2.028** -0.947 
 (0.27) (-2.10) (-1.23) 
Tar_ROA 0.476 -3.856*** -1.221* 
 (0.96) (-4.76) (-1.93) 
Diversifying -4.270*** -4.553*** -4.380*** 
 (-19.67) (-18.98) (-20.19) 
Samestate 1.016*** 0.992*** 0.841*** 
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 (5.06) (4.92) (4.07) 
    
Observations 4,623 4,603 4,447 
Deal group FE Yes Yes Yes 
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Table 7. Post-Merger Innovation Performance 
This table presents results for the treatment effect of a merger on post-merger innovation output. Panel 
A presents regression results using a panel data set that, for each deal in the treatment sample (i.e., 
completed deals) and the control sample (i.e., bids withdrawn due to reasons exogenous to innovation), 
has observations running from five years prior to deal announcement to five years after deal 
announcement. The dependent variable is, in each year, the logarithm value of sum of the acquirer’s 
and the target’s innovation output measured by patent applications and citation. Panel B presents the 
results from falsification tests when we assign pseudo announcement dates to our sample mergers. 
Definitions of all the variables are provided in the Appendix. All specifications include deal and year 
fixed effects. Robust t-statistics adjusted for deal-level clustering are reported in parentheses. *, **, and 
*** denote statistical significance at the 10%, 5%, and 1% levels, respectively. 
Panel A: Post-merger innovation 

 Patent Application Patent Citation 
  (1)  (2)  (3)  (4) 

Treat*After*HighacqAI*Hightardata 0.422** 0.453* 1.189** 1.234** 
 (2.13) (1.78) (2.42) (2.20) 
Treat*After*HighacqAI -0.007 -0.157 -1.163*** -1.281** 
 (-0.03) (-0.64) (-3.03) (-2.68) 
Treat*After*Hightardata -0.640*** -0.600*** -0.660** -0.522* 
 (-4.10) (-3.08) (-2.66) (-1.72) 
Treat*After 0.186 0.324 0.633** 0.937** 
 (0.92) (1.29) (2.16) (2.26) 
After 0.081 0.153 -0.116 -0.109 
 (0.59) (0.83) (-0.43) (-0.35) 
Weighted_Size  -0.022  0.030 
  (-0.09)  (0.10) 
Weighted_Q  -0.024  0.065 
  (-0.19)  (0.50) 
Weighted_Leverage  0.495  1.129 
  (0.59)  (1.23) 
Weighted_Intan  -0.050  -0.191 
  (-0.31)  (-1.09) 
Weighted_Freecashflow  0.813  0.112 
  (0.85)  (0.09) 
Weighted_ROA  0.890  0.787 
  (1.15)  (0.75) 
Constant 3.145*** 3.650*** 3.671*** 4.429** 
 (59.71) (2.79) (33.35) (2.50) 
     
Observations 368 313 368 313 
R-squared 0.916 0.926 0.881 0.898 
Deal FE Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes 
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Panel B: Falsification tests 
 Patent Application Patent Citation 
  (1)  (2)  (3)  (4) 
Treat*After*HighacqAI*Hightardata 0.315 0.324 -0.028 0.132 
 (1.55) (1.55) (-0.07) (0.31) 
Treat*After*HighacqAI 0.307 0.343 0.437 0.056 
 (0.72) (0.79) (0.47) (0.05) 
Treat*After*Hightardata -0.288 -0.225 0.223 0.292 
 (-1.54) (-1.08) (0.63) (0.76) 
Treat*After -0.201 -0.355 -0.710 -0.323 
 (-0.49) (-0.78) (-0.78) (-0.30) 
After 0.273* 0.317* 0.253 0.014 
 (1.81) (2.02) (0.76) (0.05) 
     
Weighted characteristics controls Yes Yes Yes Yes 
Observations 368 313 368 313 
R-squared 0.916 0.926 0.882 0.897 
Deal FE Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes 
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Table 8. Post-Merger Performance of AI-Related Innovation  
This table reports results for the treatment effect of a merger on post-merger AI-related innovations. 
Panel A presents regression results obtained by using a panel data set that, for each deal in the treatment 
sample (i.e., completed deals) and the control sample (i.e., bids withdrawn due to reasons exogenous 
to innovation), has observations running from five years prior to deal announcement to five years after 
deal announcement. The dependent variable is, in each year, the logarithm value of sum of the 
acquirer’s and the target’s AI-related innovation output measured by AI patent applications and 
citations, adjusted by SIC industry sector. Panel B presents the results from falsification tests when we 
assign pseudo announcement dates to our sample mergers. Definitions of all the variables are provided 
in the Appendix. All specifications include deal and year fixed effects. Robust t-statistics adjusted for 
deal-level clustering are reported in parentheses. *, **, and *** denote statistical significance at the 10%, 
5%, and 1% levels, respectively. 
Panel A: Post-merger AI-related innovation 
 (1) (2) (3) (4) 
 AI Patent 

Application 
AI Patent 
Citation 

AI Patent 
Application 

AI Patent 
Citation 

     
Treat*After*HighacqAI*Hightardata 0.880*** 0.960*** 0.955*** 1.196*** 
 (4.82) (3.71) (5.61) (4.66) 
Treat*After*HighacqAI -0.937*** -0.711** -0.967*** -0.913** 
 (-4.65) (-2.24) (-3.27) (-2.23) 
Treat*After*Hightardata 0.031 0.003 -0.048 -0.040 
 (0.30) (0.02) (-0.32) (-0.20) 
Treat*After 0.343** 0.456* 0.461** 0.563** 
 (2.09) (1.87) (2.13) (2.20) 
After -0.216** -0.369** -0.361** -0.445 
 (-2.19) (-2.36) (-2.30) (-1.71) 
Weighted_Size   0.802** 0.721** 
   (2.75) (2.13) 
Weighted_Q   -0.240* -0.361* 
   (-1.83) (-2.05) 
Weighted_Leverage   -0.186 0.385 
   (-0.29) (0.42) 
Weighted_Intan   -0.442*** -0.505** 
   (-2.86) (-2.49) 
Weighted_Freecashflow   -0.008 -0.786 
   (-0.01) (-0.43) 
Weighted_ROA   0.314 0.520 
   (0.43) (0.52) 
Constant 0.028 0.056 -3.196** -1.866 
 (0.68) (0.94) (-2.22) (-0.94) 
     
Observations 297 297 278 278 
R-squared 0.724 0.570 0.753 0.608 
Deal FE Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes 
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Panel B: Falsification tests 
 (1) (2) (3) (4) 
 AI Patent 

Application 
AI Patent 
Citation 

AI Patent 
Application 

AI Patent 
Citation 

     
Treat*After*HighacqAI*Hightardata 0.063 0.263 0.182 0.450 
 (0.15) (0.41) (0.47) (0.75) 
Treat*After*HighacqAI -0.357 -0.320 -0.362 -0.615 
 (-1.00) (-0.54) (-0.96) (-1.17) 
Treat*After*Hightardata 0.274** 0.495** 0.244* 0.454** 
 (2.22) (2.49) (1.87) (2.28) 
Treat*After 0.076 -0.155 0.335 0.459 
 (0.30) (-0.34) (1.27) (1.18) 
After 0.095 0.297 0.052 0.082 
 (0.79) (1.33) (0.30) (0.33) 
     
Weighted characteristics controls Yes Yes Yes Yes 
Observations 297 297 278 278 
R-squared 0.719 0.571 0.748 0.611 
Deal FE Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes 
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Table 9. Subsample Test: The Role of Operating Performance 
This table presents the results of CAR[-5,+5] regression on subsamples divided according to the median 
value of acquirers’ ROA/ROE. Acquisitions with acquirers whose ROA/ROE is higher than the median 
fall into the high ROA/ROE group (columns (1) and (3)), and the rest fall into the low ROA/ROE group 
(columns (2) and (4)). All specifications control for the 6-digit SIC acquirer-industry sector fixed effects 
and year fixed effects. Robust t-statistics adjusted for firm-level clustering are reported in parentheses. 
*, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.  
 CAR[-5,+5] 

 (1) (2) (3) (4) 

 High 
Acquirer ROA 

Low 
Acquirer ROA 

High 
Acquirer ROE 

Low 
Acquirer ROE 

LnacqAIskill 0.001 0.007*** 0.001 0.007*** 
 (0.64) (2.85) (0.57) (2.81) 
Size -0.011*** -0.028*** -0.011*** -0.029*** 
 (-3.75) (-5.71) (-3.78) (-5.67) 
Tobin’s Q 0.006** 0.014*** 0.007** 0.014*** 
 (2.25) (3.56) (2.38) (3.56) 
Leverage 0.032** 0.036 0.028** 0.037 
 (2.41) (1.17) (2.14) (1.16) 
ROA -0.052 0.051 -0.053 0.043 
 (-0.79) (1.06) (-0.82) (0.87) 
Lnintan 0.005* 0.011*** 0.005* 0.012*** 
 (1.91) (3.15) (1.95) (3.15) 
Freecashflow -0.058 0.045 -0.055 0.054 
 (-1.06) (0.73) (-1.04) (0.84) 
Tar_Hightech -0.005 -0.008 -0.005 -0.009 
 (-0.84) (-1.07) (-0.82) (-1.12) 
Allstockdeal -0.034** -0.002 -0.033* -0.002 
 (-2.04) (-0.14) (-1.94) (-0.12) 
Conglomerate -0.003 -0.015** -0.003 -0.014** 
 (-0.76) (-2.43) (-0.78) (-2.29) 
Rel_Dealval 0.006*** 0.005* 0.006*** 0.005* 
 (2.72) (1.83) (2.89) (1.73) 
Tenderoffer -0.004 -0.016 -0.004 -0.015 
 (-0.40) (-0.91) (-0.40) (-0.84) 
Constant 0.074*** 0.116*** 0.074*** 0.118*** 
 (4.77) (5.65) (4.90) (5.55) 
     
Observations 1,894 1,910 1,969 1,832 
R-squared 0.171 0.211 0.165 0.213 
Acq. ind. FE Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes 
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Appendix  
Table 1A: Definition of Variables 
Variable Name Definition 

Acquirer-Target An indicator variable which is equal to one if the firm pair ij is 
the real acquirer-target firm pair, and zero otherwise 

AI Patent Application 

The logarithm value of sum of AI patents applied for by the 
acquirer and the target for the period before the acquisition 
and the number of AI patents applied for by the combined 
firm for the period after the acquisition, minus industry (SIC) 
average number  

AI Patent Citation 

The logarithm value of sum of citation counts received by AI 
patents applied for by the acquirer and the target for the 
period before the acquisition and the citation counts received 
by AI patents applied for by the combined firm after the 
acquisition, minus industry (SIC) average number 

Allstockdeal Transaction Payment is stock only (SDC ofstock = 100) 

Bothhighpatent 
An indicator variable which is equal to one if both the acquirer 
and target's patent applications are above their respective 
medians, and zero otherwise 

CAR[-3,+3] 

Market model cumulative abnormal returns (CARs) over the [-
3, +3] event windows surrounding the M&A announcement 
dates, where the parameters of the market model are 
estimated using the CRSP value-weighted index over [-180, -
11] days relative to the acquisition announcement date 

CAR[-5,+5] 

Market model cumulative abnormal returns (CARs) over the [-
5, +5] event windows surrounding the M&A announcement 
dates, where the parameters of the market model are 
estimated using the CRSP value-weighted index over [-180, -
11] days relative to the acquisition announcement date 

CAR[-10,+10] 

Market model cumulative abnormal returns (CARs) over the [-
10, +10] event windows surrounding the M&A announcement 
dates, where the parameters of the market model are 
estimated using the CRSP value-weighted index over [-180, -
11] days relative to the acquisition announcement date 

Patent Application 

The logarithm value of sum of patents applied for by the 
acquirer and the target for the period before the acquisition 
and the number of patents applied for by the combined firm 
for the period after the acquisition 

Patent Citation 

The logarithm value of sum of citation counts received by 
patents applied for by the acquirer and the target for the 
period before the acquisition and the citation counts received 
by patents applied for by the combined firm after the 
acquisition 

Conglomerate 
An indicator variable which is equal to one if the acquirer and 
target are in the same industry (when they have the same 2-
digit SIC code) , and zero otherwise 

Diversifying 
An indicator variable which is equal to one if the acquirer and 
target are not in the same industry (when they have different 
2-digit NAICS code) , and zero otherwise 

Freecashflow 
Freecashflow =(oibdp-xint-txt-capx)/at of acquirer (for the 
year prior to deal announcement for deal-level regressions), 
with data from Compustat 
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HighacqAI     An indicator variable which is equal to one if the acquirer’s 
Acq_AI Skill is above the median, and zero otherwise 

Hightardata     An indicator variable which is equal to one if the target’s 
DataIntense is above the median, and zero otherwise 

Leverage 
Leverage =(dlc+dltt)/at of acquirer (for the year prior to deal 
announcement for deal-level regressions), with data from 
Compustat 

LnacqAIskill log(Acq_AI Skill +1) , for the year prior to deal announcement 
in Table2-5. Acq_AI Skill is defined in Section 3.1 

LnacqAIemp 
log(Acq_AI Employee+1), for the year prior to deal 
announcement for deal-level regressions. Acq_AI Employee is 
defined in Section 3.1 

Lnintan log(intan) of acquirer (for the year prior to deal announcement 
for deal-level regressions), with data from Compustat 

LntarAIskill     log(Tar_AI Skill +1). Tar_AI Skill is defined in Section 3.1 

Rel_Dealval 
log(valueoftransactionmil/sale), for the year prior to deal 
announcement for deal-level regressions, with data from 
Compustat 

ROA ni/at of acquirer (for the year prior to deal announcement for 
deal-level regressions) with data from Compustat 

Salesgrowth 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡-𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡−1 of acquirer (for the year prior to deal 
announcement for deal-level regressions) with data from 
Compustat 

Samestate An indicator variable which is equal to one if the acquirer and 
target are in the same state, and zero otherwise 

Size 
Log(me) and Log(at) of acquirer (for the year prior to deal 
announcement for deal-level regressions), where me= 
abs(PRC*SHROUT)/1000 from CRSP and at from Compustat 

Tar_Freecashflow 
Freecashflow =(oibdp-xint-txt-capx)/at of target (for the year 
prior to deal announcement for deal-level regressions), with 
data from Compustat 

Tar_Leverage 
Leverage =(dlc+dltt)/at of target (for the year prior to deal 
announcement for deal-level regressions), with data from 
Compustat 

Tar_Hightech 

An indicator variable which is equal to one if the target’s 4-
digit SIC is in: 3571, 3572, 3575, 3577, 3578, 3661, 3663, 3669, 
3671, 3672, 3674, 3675, 3677, 3678, 3679, 3812, 3823, 3825, 3826, 
3827, 3829, 3841, 3845, 4812, 4813, 4899, 7371, 7372, 7373, 7374, 
7375, 7378, 7379, and zero otherwise. 

Tar_Lnintan log(intan) of target (for the year prior to deal announcement 
for deal-level regressions), with data from Compustat 

Tar_ROA ni/at of target (for the year prior to deal announcement for 
deal-level regressions) with data from Compustat 

Tar_Salesgrowth 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡-𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡−1 of target (for the year prior to deal 
announcement for deal-level regressions) with data from 
Compustat 

Tar_Size Log(at) of target (for the year prior to deal announcement for 
deal-level regressions), with data from Compustat 

Tar_Tobin’s Q 
(at-ceq+prcc_f*csho)/at of target (for the year prior to deal 
announcement for deal-level regressions) with data from 
Compustat 

Tenderoffer     An indicator variable which is equal to one if 
Tenderoffer=”Yes” from SDC, and zero otherwise 
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Tobin’s Q 
(at-ceq+prcc_f*csho)/at of acquirer (for the year prior to deal 
announcement for deal-level regressions)  with data from 
Compustat 

Weighted_Freecashflow  The weighted average Freecashflow based on the acquirer’s 
and target’s total assets for the period before the acquisition; 
and the Freecashflow of the combined firm for the period after 
the acquisition 

Weighted_Intan The weighted average intan (in Compustat) based on the 
acquirer’s and target’s total assets for the period before the 
acquisition; and the Intan of the combined firm for the period 
after the acquisition 

Weighted_Leverage  The weighted average Leverage based on the acquirer’s and 
target’s total assets for the period before the acquisition; and 
the Leverage of the combined firm for the period after the 
acquisition 

Weighted_ROA  The weighted average ROA based on the acquirer’s and 
target’s total assets for the period before the acquisition; and 
the ROA of the combined firm for the period after the 
acquisition 

Weighted_Size  The weighted average size based on the acquirer’s and target’s 
total assets for the period before the acquisition; and the size 
of the combined firm for the period after the acquisition 

Weighted_Q The weighted average Tobin’s Q based on the acquirer’s and 
target’s total assets for the period before the acquisition; and 
the Tobin’s Q of the combined firm for the period after the 
acquisition 
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Table A2: Post-merger innovation treatment sample criteria 
Criteria Treated Deals Left Control Deals Left 
They Involve innovative 
acquirers and target firms 436 48 

They occur in acquirer-
target industry pairs that 
match those of the 
withdrawn bids in the 
control sample 

108 24 

Their announcement year 
falls within a three-year 
window centered around 
the announcement year of 
the control bids to minimize 
time-related differences 

82 18 
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