Artificial Intelligence and Mergers and Acquisitions

Abstract

Using detailed data on employees’ job skills, this study examines the relationship
between firms’ artificial intelligence (AI) capabilities and mergers and acquisitions
(M&As). Our findings indicate that firms with higher concentrations of Al talent
(high-Al firms) achieve superior acquisition performance during announcement
periods. Further analysis shows that this superior performance is more pronounced
among acquisitions of data-intensive targets. We then test whether firms leverage the
strategic complementarity between Al expertise and data resources, and find that
high-AlI firms are significantly more likely to merge with data-intensive firms and
actively hire data analytics specialists. Moreover, mergers with high-Al acquirers and
data-intensive targets experience increased filings and citations of Al-related patents,
suggesting better innovation capabilities in the post-merger period. Our results are
robust to an instrumental variable approach and are not explained by higher post-
merger mobility of Al-skilled employees or better pre-merger fundamentals of
acquirers. By identifying Al-data synergy as a key driver of value creation in M&As,
this research sheds light on how technological advancements are reshaping firm
boundaries.
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1. Introduction

As a cornerstone of modern technological advancement, Al is revolutionizing
business by enabling firms to enhance workforce capabilities, analyze vast datasets, and
automate complex processes. Firms that excel in Al adoption demonstrate superior
growth and innovation (Babina, Fedyk, He, and Hodson, 2024). These advantages have
made Al an influencing factor for corporate decision-making (Agrawal, Gans, and
Goldfarb, 2019). As Al continues to evolve, its capacity to reshape firm boundaries has
become a compelling question for researchers and practitioners. On one hand, Al enables
firms to handle complex processes more efficiently, extending their operational reach
(Acemoglu and Restrepo, 2019). On the other hand, the rise of Al fuels a growing appetite
for sophisticated data processing infrastructure and perhaps more importantly, for large,
specialized datasets (Cockburn, Henderson, and Stern, 2018; Beraja, Yang, and Yuchtman,
2023). This forces firms to prioritize the accumulation of data, first from internal reserves,
and, if necessary, from external sources. These factors collectively expand the scope for
profit creation and redefine firm boundaries.

Mergers and acquisitions (M&As) are pivotal events in redefining firm boundaries,
providing an ideal context to examine the relationship between corporate Al capabilities
and firm boundaries. In this study, we gauge firms" Al capabilities using a dataset on
employee skills posted by individuals on a large job-hunting platform from 2009 to 2019.
We quantify firms” Al capabilities based on the Al skills possessed by firms” employees.
We then investigate the effect of acquirers” Al capabilities on their M&A performance,

measured by the cumulative abnormal return (CAR) for each acquisition announcement.



Our findings reveal that announcement-period CARs are positively associated with
acquirers’” Al capabilities, suggesting superior acquisition performance by firms with
greater Al capabilities compared to other firms. To address endogeneity, we employ an
instrumental variable approach, using the share of Al graduates from nearby universities
as an instrument for acquirers” Al capabilities. The corresponding two-stage least squares
(2SLS) estimates consistently show a significantly positive effect of acquirers’” Al
capabilities on announcement returns.

We next explore the source of value creation by Al in M&As. We find evidence
consistent with the strategic alignment between Al expertise and data assets. More
specifically, subsample analysis show that the superior returns of high-Al acquirers are
concentrated among acquisitions targeting data-rich firms. Economically, a one-standard-
deviation increase in our Al capability measure leads to a 1.76% increase in CARs for
acquisitions of data-intensive targets. In addition, tests that incorporate interactions
between acquirer and target characteristics confirm that acquisitions involving high-Al
acquirers and data-intensive targets outperform all other acquisition types. In contrast,
acquisitions involving either high-Al acquirers and data-poor targets or low-Al acquirers
and data-intensive targets yield poorer outcomes. These findings imply the synergies
between Al expertise and substantial data resources.

To further validate that Al-data synergy motivates firms’ acquisitions, we conduct
two sets of tests. First, we analyze hiring trends prior to acquisitions. Our findings show
that high-Al firms recruit more data analytics specialists than industry peers leading up

to acquisitions, while low-Al firms show a declining trend in such hiring. Additionally,



high-AlI firms hire more individuals with combined expertise in Al and data analytics,
further emphasizing their commitment to leveraging Al-data complementarity. In the
second set of tests, following Bena and Li (2014), we create a sample of potential merger
pairs. Using a conditional logit model, we find that acquirers with higher Al capabilities
and targets with substantial data assets are more likely to form merger pairs. This finding
further supports the notion that the complementarity between Al capabilities and data
assets drives M&As.

Next, a critical aspect of our study is understanding the specific benefits Al can create
when integrated with data assets. Prior research highlights Al’'s potential to drive
innovation by leveraging large datasets to uncover new opportunities and develop
cutting-edge technologies (Cockburn, Henderson, and Stern, 2018). To investigate
whether these potential benefits materialize by combining Al with data, we examine the
post-merger innovation outcomes of the merged firms. Our findings indicate that high-
Al acquirers targeting data-rich firms experience significant increases in patent filings and
citations during the post-merger period. We also find that such mergers experience a
surge in filings and citations of Al patents, a type of innovation that is particularly reliant
on data resources (Beraja, Yang, and Yuchtman, 2023). This suggests that the integration
of Al and data catalyzes innovation, fostering long-term value creation.

An alternative explanation is that the transferability of Al skills across firms might
create spillover effects, improving the performance of target firms and, ultimately, the
merged entities. However, despite the potentially high transferability of Al expertise

across corporate functions and organizations (Gathmann and Schénberg, 2010), our



analysis reveals limited evidence of post-merger Al skill mobility or spillover effects. This
suggests that the observed performance improvements are driven more by the strategic
complementarity of Al and data capabilities than by workforce integration.

Another explanation could be that high-Al firms achieve superior merger outcomes
due to their pre-merger financial strength or better governance (Wang and Xie, 2009).
However, we find that high-Al acquirers outperform even when their pre-merger
financial performance, measured by return on assets (ROA) and return on equity (ROE),
is weaker. This highlights that the synergies observed are not merely the result of superior
management or operational efficiency but are primarily attributable to the unique
contributions of Al talent.

Our research contributes to the literature in three key ways. First, it advances the
understanding of the determinants of M&A decisions and outcomes. The existing
literature has documented several motives for acquisitions, such as acquiring innovations
(Ahuja and Katila 2001; Celik, Tian, and Wang, 2022; Kaufmann and Schiereck, 2023),
organizational capital (Li, Li, Wang, and Zhang, 2018), and human capital (Ouimet and
Zarutskie, 2020; Chen, Gao, and Ma, 2021; Chen, Hshieh, and Zhang, 2024). Notable works,
such as those examining the role of product and innovation synergies (Hoberg and
Phillips, 2010; Makri, Hitt, and Lane, 2010; Bena and Li, 2014), highlight the importance
of strategic alignment in M&As. Add to this line of discussion, we show that the strategic
alignment between Al capabilities and data assets within mergers and acquisitions can
create value, thus identifying a novel source of acquisition synergy in the era of advanced

Al development. This insight provides a fresh perspective on how technological



advancements influence M&A strategies and outcomes.

Second, we contribute to the growing body of literature on the role of Al in corporate
finance and the sources of value creation by Al for corporations (e.g., Rammer, Fernandez,
and Czarnitzki, 2022; Czarnitzki, Fernandez, and Rammer, 2023; Acemoglu et al., 2024).
Prior research has demonstrated that Al creates value in various ways, such as enhancing
operational efficiency, increasing labor productivity, and fostering innovation (Graetz
and Michaels, 2018; Agrawal, Gans, and Goldfarb, 2019; Acemoglu and Restrepo, 2019;
Frank et al., 2019; Gofman and Jin, 2022; Babina et al., 2024). Using the context of M&As,
we provide empirical evidence that a major channel of value creation by Al lies in its
strategic integration with data assets, echoing the findings by Beraja, Yang, and Yuchtman
(2023). While their study emphasizes how the use of data assets helps develop Al
innovations, our paper suggests the proactive actions taken by firms with Al capabilities
in seeking synergies and integrating with data assets in the market.

Finally, our study adds to the literature on the role of labor skills in corporate finance.
The extant literature has established that labor upskilling benefits firms in multiple ways,
including boosting productivity and driving innovation (Bresnahan, Brynjolfsson, and
Hitt, 2002; Brynjolfsson and McAfee, 2014; Brynjolfsson, Mitchell, and Rock, 2018). While
the literature discusses the replacement of labor by automation technologies like Al
(Acemoglu and Autor, 2011; Acemoglu and Restrepo 2018), high-skill labor is the major
inventor, bearer, and user of new technologies (Tambe, 2014; Autor, 2015; Acemoglu and
Restrepo, 2019). Using detailed labor skills data reported in employee profiles, we show

that a specific type of upskilling - Al expertise - contributes to significant value creation



by firms. In particular, Al skills provide firms with a competitive edge in acquiring and
effectively utilizing data assets, as well as in fostering innovation. This evidence aligns
with the trend of increasing investments in Al talent by firms over the past decades,

highlighting its pivotal role in corporate success.

2. Literature Review
2.1 Drivers of M&A decisions and post-merger outcomes

Mergers and acquisitions represent a significant strategic maneuver for firms seeking
to enhance their competitive positioning by acquiring valuable resources from target
companies. One primary motivation for M&A is the pursuit of specific resources.
Numerous studies, such as those by Ahuja and Katila (2001), Celik, Tian, and Wang (2022),
and Kaufmann and Schiereck (2023), highlight that technological acquisitions can
significantly enhance the innovation performance of acquiring firms, particularly in
technology-intensive industries. Their longitudinal studies indicate that firms acquiring
technology-oriented assets tend to experience greater innovation outcomes compared to
those that do not. Beyond technology, the acquisition of skilled labor is another critical
driver of M&A activity. Research by Ouimet and Zarutskie (2020), Chen, Hshieh, and
Zhang (2024), Lee, Mauer, and Xu (2018), and Abramova (2024) underscores the
significance of human capital as a key resource sought in acquisitions. While the pursuit
of technological resources and skilled labor has long been recognized as primary
motivations for M&A, our paper introduces a new dimension to this understanding: the

increasing importance of data as a critical resource in the digital era.



When acquirers pursue resources from the target, the complementarity between the
two largely determines the outcome. This notion is further supported by Bena and Li
(2014), who argue that synergies derived from combining innovation capabilities are
crucial drivers of acquisitions. Capron and Pistre (2002) provide empirical evidence that
acquirers are more likely to earn abnormal returns when they successfully integrate
resources from the target firm, emphasizing the importance of resource transfer in
realizing the benefits of M&A. When it comes to the source of such complementarity,
theoretical modeling by Makri, Hitt, and Lane (2010) indicates that complementarity in
both scientific and technological knowledge enhances post-merger innovation
performance by fostering higher quality and more novel inventions. Works such as
Hoberg and Phillips (2010) and Yu, Umashankar, and Rao (2016) provide empirical
evidence that acquirers also value complementarity in product portfolios as a driver of
M&A success.

Furthering the idea of complementarity, we argue that data assets and Al capabilities
represent a new type of resource complementarity driving M&A activity in the digital
economy. This perspective is supported by the growing body of literature recognizing
data as a vital asset and emphasizing its combination with relevant skillsets. Data is
increasingly recognized not merely as a byproduct of economic activities but as a vital
asset that can drive innovation, enhance productivity, and facilitate informed decision-
making across various sectors (Brynjolfsson, Hitt, and Kim, 2011; Jones and Tonetti 2020;
Cong, Xie, and Zhang 2021; Farboodi and Veldkamp 2021; He, Huang, and Zhou, 2023).

However, the value of data is maximized when utilized by workers possessing the



necessary Al skills, as presented in the seminal work of Acemoglu and Autor (2011). This
idea is further supported by the empirical work of Tambe (2014), who demonstrates the
complementary relationship between data analytics and human capital in enhancing firm
performance.

2.2 The impact of Al on firm performance

The integration of Al into corporate practices has emerged as a transformative force,
reshaping various aspects of business operations. Levy and Murnane (2003) and Bessen
(2015) describe Al, as a specialized form of computer capital, capable of substituting for
routine cognitive and manual tasks while simultaneously complementing non-routine
problem-solving and interactive activities. Brynjolfsson, Rock, and Syverson (2019) model
Al as a general-purpose technology (GPT), emphasizing that its full potential is unlocked
through complementary innovations, with productivity gains likely materializing in later
stages of adoption. These conceptualizations are further supported by emerging empirical
evidence. Studies by Van Roy et al. (2020), Behrens and Trunschke (2020), and Czarnitzki,
Fernandez, and Rammer (2023) demonstrate a positive correlation between Al adoption
and firm performance.

The mechanisms driving this enhanced performance are diverse. One established area
of research focuses on the role of Al in labor demand and labor productivity. Various
studies find that Al can both replace and augment the human workforce, as evidenced by
Graetz and Michaels (2018), Frank et al. (2019), Acemoglu and Restrepo (2019), Yang
(2022), and Chen and Wang (2024). Both effects contribute to the value of firms by

reducing labor costs or improving labor productivity. Furthermore, Agrawal, Gans, and



Goldfarb (2019) emphasize Al's role as a powerful predictive tool. This argument is
empirically supported by Brynjolfsson et al. (2011) and Shamim et al. (2020), who find that
firms embracing data-driven managerial decisions, facilitated by Al's predictive
capabilities, outperform competitors. This improved decision-making reduces errors and
enhances operational efficiency. Finally, Al serves as a catalyst for innovation. Babina et
al. (2024) attribute enhanced firm performance to increased product innovation driven by
Al while Beraja, Yang, and Yuchtman (2023) demonstrate that innovative output is

heavily reliant on a firm’s data assets, which Al can effectively leverage.

3. Data and Sample

3.1. Data sources

As Al-skilled labor is a critical factor in the deployment of Al systems (Babina et al.,
2024), we propose a skills-based measure of firms" Al capability based on Al human
capital information. We obtain individual employees’ profiles from LinkedlIn, the largest
professional social network, which covered 169.9 million users in the US as of 2019,
representing the vast majority of the US workforce. The LinkedIn profile dataset offers a
wealth of self-reported information about each individual employee. This granular data
includes details about their educational background (including institutions attended, time
range of attendance, and fields of study), professional experience (including employer
name, job title, start and end dates), skills, and other personal information.

We collect firm-year-level financial information from Compustat, daily stock

information from CRSP, and M&A deal information from the SDC M&A Platinum
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database through WRDS. The financial data from Compustat is used to construct firm-
year-level control variables, and daily stock information from CRSP is mainly used to
calculate cumulative abnormal returns (CARs). The SDC database contains M&A deal
characteristics, including deal announcement date, deal value, payment type, shares
owned by the acquirer, and deal status.

To capture target firms’ data intensity, we use Item 1A of 10-K filings to obtain data
risk information, as described in Section 4.2. In addition, to measure post-merger
innovation performance, we collect firm-year patent data from Extended KPSS dataset
following Kogan et al. (2017), and Al patent data from Artificial Intelligence Patent
Dataset (AIPD). AIPD is developed by the USPTO’s Office of the Chief Economist to help
researchers and policymakers study Al invention (Pairolero et al. 2024). The dataset
identifies Al patents and pre-grant publications from US patent documents published
between 2011 and 2019 using machine learning models.!

3.2 Sample construction

We start with the SDC dataset to construct our acquisition sample between
January 1, 2009, and December 31, 2019. We restrict targets to US companies and only
include transactions that change the control of target firms. Following Masulis et al.
(2007) and Gokkaya et al. (2023), we apply the following filtering rules: (1) Deals that
occur between January 1, 2009, and December 31, 2019. (2) Targets are US companies.
(3) The acquirer owns less than 50% of the target before the deal announcement and

controls more than 50% of the target after the transaction. (4) The deal value disclosed

! The current AIPD database version only covers the years from 2011-2019.
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in SDC is more than $1 million and is at least 1% of the acquirer’s market value of
equity measured on the 11th trading day prior to the announcement date.

Next, we prepare other firm-level covariates. The financial data of acquirers and
targets come from the Compustat database, and stock return information of acquirers
(all acquirers are publicly listed in our sample) comes from the CRSP database. We
merge these data with the filtered SDC deals as of the year prior to each deal
announcement date indicated in SDC. This procedure results in a total of 11,921
unique deals after excluding non-public acquirers.

We then match the firm list of acquirers and targets in this merged dataset to the
LinkedIn dataset. Specifically, we match employers in the LinkedIn data to the firm list
extracted from the SDC-Compustat-CRSP merged data, including acquirers and targets.
Our matching process consists of two steps. First, we use company website URLs
available from Compustat as primary identifiers to match with the LinkedIn data, as most
companies on LinkedIn list their official website URLs. We conduct internet searches for
the missing URLs. Second, we manually match the remaining companies by name and
other available information, such as location, year founded, and industry. We achieve a
matching rate of about 80%.

Within this matched sample, we use employee profile data to compute measures
of Al skills and Al employees at the firm-year level. The employee profiles in LinkedIn
are at the employee level, where we can see each worker’s skills, start date, end date,
and employer for each of their employment. This allows us to count the number of Al
skills (defined below in Section 4.1) owned by each individual and identify their
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workplace for each month. Consequently, we can determine all the workers employed
by each firm in each month and aggregate information such as the number of
employees, Al employees (employees who own at least one Al skill), and Al skills
(owned by all of its employees) to the firm-year level. 2

Finally, we merge the firm-year-level Al measures with the acquirer and target of
each deal in the SDC-Compustat-CRSP merged data according to the year preceding
the deal announcement date. After excluding missing values for dependent and
independent variables, the final sample consists of 3,904 unique transactions, with the
Al information constructed from 24,959,167 employment records of 13,011,554

employees involved.

4. Variables and summary statistics

4.1 AI measures

We first employ the Al-related skill list provided by Babina et al. (2024) to define
Al skills.? Then, we identify and count these Al skills in the LinkedIn employee profiles
for each employee. If an employee reports at least one Al skill, this individual is identified
as an Al employee. For example, an employee possessing skills such as “Deep Learning”
and “Xgboost” would be classified as an Al employee with two Al-related skills. Next,
we aggregate the employee-level Al data to the firm-year level. Since we know each

employee’s workplace in each month, we average the number of Al employees and

2 We compute the year-level information using the average value of months in each year.
3 The skill list includes 67 most Al-related skills, such as Deep Learning, Xgboost, NLP, and Machine

Learning.
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Al skills to the employer-year level (i.e., firm-year level), using values of all months
over each year.

For each deal, the acquirer’s Al skills and Al employees are defined as the
acquirer’s firm-year number of Al skills (Acg_AI Skill) and Al employees (Acg_Al
Employee), respectively, as of the year prior to the deal announcement date. The same
definitions apply to the target Al measures at the deal level. The natural logarithm of
acquirers’ Al measures serves as the main independent variable for subsequent
analyses, defined as LnacqAlskill = log(1 + Acq_AI Skill) and LnacgAlemp = log(1 +
Acq_AI Employee).

After constructing the Al measures, we plot the trend of Al skills and Al employees
over time in our M&A sample. Figure 1 shows a consistent upward trend in both Al
measures over time, consistent with previous literature (Babina et al., 2024). In particular,
Panel A of Figure 1 shows an obvious increase in both acquirers” and targets” Al skills.
Panel B shows similar patterns in both acquirers’ and targets” Al employees. These
upward trends confirm that firms are placing growing emphasis on Al capabilities.
Moreover, regardless of the Al measure used, the acquirers exhibit a faster growth rate
than the targets, highlighting the acquirers’ greater initiative and significance in
leveraging Al

Additionally, we create a map of the geographic distribution of Al skills (Figure 2).
We geolocate Al skills using the work locations of their holders, and aggregate this data
at the county level. As shown, the distribution of Al skills in our sample closely aligns
with the locations of major US universities and technology hubs. Notably, some
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metropolitan areas, such as the San Francisco Bay Area, Seattle, Boston, New York City,
Austin, Denver, and the Washington D.C. area, appear as prominent red and orange zones,
suggesting a strong correlation between Al talent and established tech hubs, confirming
the validity of our Al measures constructed from LinkedIn employee skills.

4.2 Data intensity measures

We introduce a novel approach based on the frequency of data security keywords in
Item 1A of 10-K filings to construct the data intensity measure. We posit that firms with
larger and more complex datasets inherently face heightened data security risks due to
the challenges of safeguarding sensitive information, complying with evolving privacy
regulations (e.g., GDPR, CCPA), and mitigating breach-related costs. Therefore, the
volume of data a company possesses is inherently linked to its data security risk: the
greater the amount of data a company generates, the more likely data security risks occur
and the higher the potential costs. To quantify such the relationship, we count word
frequency in Item 1A of 10K in which such risks are systematically disclosed, as the SEC
mandates transparent reporting of material risks, including cybersecurity threats.
Specifically, we obtain a word list from the Data Security Glossary maintained by Cloud
Security Alliance (CSA), a leading organization committed to awareness, practical
implementation, and certification for the future of cloud and cybersecurity. We then
employ Python to calculate the word frequency of the technical terms in the list, the
prevalence of data security keywords in Item 1A. We define data intensity (Datalntense)
as:

Datalntense = (# data risk keywords/ #total words)
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This normalized measure accounts for document length variability and captures the
relative emphasis on data security risks, which we argue correlates with the scale and
complexity of a firm’s data assets.

To test the data-driven hypothesis, we also analyze the changes in the number of
data analysts (i.e. data analytics specialists) and Al-skilled data analysts employed by
the acquirer before and after the announcement date. To measure these changes, we
construct relevant indicators based on the job titles from LinkedIn data for each work
experience. We identify data analysts from the LinkedIn data by identifying the “data”
keyword in the employee’s job title (e.g., an employee with a job title of “senior data
analyst” falls into this category).

4.3 Other variables

Our dependent variables include cumulative abnormal returns (CARs), indicator
variable for acquirer-target pairing and post-merger performance measures such as
Patent Application and Patent Citation. Following the approach commonly used in M&A
literature (Gokkaya et al., 2023), we employ the event study methodology to calculate the
CAR of acquirers for each M&A event around the announcement date. Specifically, we
estimate the market model in an estimation window of 180 to 11 days prior to the
announcement date of each merger. The event window is defined as the period from 5
days before to 5 days after the announcement date. For each day within the event window,
the abnormal return (AR) is calculated as the difference between the actual return and the
predicted return by the market model. The CARs are calculated as the sum of ARs within

the event window [-5, +5]. We use alternative event windows [-3, +3] and [-10, +10] for
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robustness.

The dependent variable for acquirer-target pairing sample, Acquirer-Target, is equal
to one for the acquirer-target firm pair, and zero for the control firm pairs that form
the control group. Patent Application is defined as the logarithm value of sum of
patents applied for by the acquirer and the target for the period before the acquisition
and the number of patents applied for by the combined firm for the period after the
acquisition. Patent Citation is defined as the logarithm value of sum of citation counts
received by patents applied for by the acquirer and the target for the period before the
acquisition and the citation counts received by patents applied for by the combined
firm after the acquisition.

We compute control variables used in the subsequent analyses, including acquirer
characteristics such as the natural logarithm of firm market equity (Size), Tobin’s Q,
Leverage, ROA, the natural logarithm of intangible assets (Lnintan), and free cash flow
(Freecashflow). We also control target characteristics including the natural logarithm of
target Al skills (LntarAlskill) and Tar_Hightech and control deal characteristics including
payment type (Allstockdeal), relative deal value (Rel_Dealval), Tenderoffer, diversifying,
Conglomerate and samestate. Detailed definitions of all variables are provided in Table
Al in the Appendix. Table 1 presents the summary statistics of the constructed

variables of the final sample.

4.4 Summary statistics

Summary statistics are reported for acquirer characteristics in Panel A, target

characteristics in Panel B, deal characteristics in Panel C, combined firm characteristics
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in Panel D and employee/experience characteristics in the LinkedIn sample in Panel
E. The matched LinkedIn dataset consists of 24,959,167 M&A-relevant work
experience records (i.e., in firms involved in Mé&A transactions) of 13,011,554
employees, 36.15% of whom are female and 49.15% of whom are male*. The average
number of work experiences in a firm involved in M&A transactions for the sample
employees is 1.918. The average duration of these work experiences is 55.926 months.
Additionally, each employee, on average, possesses 0.023 Al-related skills, with 98.8%
of them not having these skills, highlighting the scarcity of Al talent.

We find that an average acquirer in our final sample has an average of 22.82 Al
talents per month in the year prior to the deal (1.64% of all employees), with an
average of 31.67 Al skills. In contrast, an average target firm in our sample has an
average of 4.91 Al talents per month in the year prior to the deal (1.39% of all
employees), with an average of 6.44 Al skills. This distribution is consistent with our
expectations that acquirers have more Al human capital and skills than targets, which

can potentially create synergy when merged with targets possessing large data assets.

5. Empirical Results

5.1 The impact of acquirer Al capabilities on acquisition announcement returns

5.1.1 Baseline result

We begin by examining the impact of acquirer AI capabilities on acquisition

announcement returns. In our context, a greater CAR indicates that the market has reacted

4 The remaining 14.7% are not reported.
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favorably to the announcement of a merger or acquisition. We use CARs as the dependent
variable and estimate the model below:

CARs;; = a + B1Acquirer’s Al; 1 + [,AcquirerControls;,_, + f3TargetControls; ;4

+piDealControls; s + Acquirer Industry FE + Year FE + ¢;, (1)
where Acquirer’s Al;,_,, the primary variable of interest, representing two measures of
acquirer’s Al capability of deal i in year ¢-1. One is LnacqAlskill;,_,, which denotes the
average Al skills in acquirers in the year prior to the announcement date. The other is
LnacqAlemp;,_,, which denotes the average Al employees in the acquirer in the year prior
to the announcement date. Following the M&A literature, we control for a list of acquirer
characteristics (AcquirerControls;,_,), including the natural logarithm of firm market
equity (Size), Tobin’s Q, Leverage, ROA, the natural logarithm of intangible assets (Lnintan),
and free cash flow (Freecashflow). We also control several target characteristics
(TargetControls;,_,) and deal characteristics (DealControls;,), including the natural
logarithm of target Al skills (LntarAlskill), Tar_Hightech, payment type (Allstockdeal),
relative deal value (Rel_Dealval), Tenderoffer, and Conglomerate. Acquirer industry fixed
effects (based on six-digit SIC code) and year fixed effects are incorporated to account for
inherent industry characteristics and annual macroeconomic conditions.

The results are presented in Table 2. Columns (1) to (3) show the results when using
the count of Al skills of all employees (LnacgAlskill) as the main independent variable. We
alternate time window lengths ([-3,+3], [-5,+5], [-10,+10]), and observe that LnacgAlIskill
consistently exhibits a positive and significant coefficient, suggesting a positive
association between acquirers’ Al capabilities and their acquisition performance. In
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columns (4) to (6), we use the count of acquirer’s Al employees as the main independent
variable and the results remain quantitatively similar. Our findings provide evidence that
Al talent is a valuable asset that can contribute to firm value in the context of M&A. For
simplicity, we adopt CAR[-5,+5] in all the ensuing analyses, as alternative windows yield
highly consistent results.

5.1.2 Instrumental variable approach

To address endogeneity concerns, we employ an instrumental variable (IV) strategy
that exploits firm’s exposure to Al talents supply following Babina et al. (2024). This
method isolates exogenous variation in firms” Al skill acquisition stemming from local
talent supply, reducing bias from unobserved demand factors affecting both Al
investments and firm performance.

To be specific, we employ a distance-based instrument: the share of Al graduates that
graduate from universities within 100 miles of a company’s headquarters, weighted by
the size of each university. The IV is constructed in three stages:

First, identifying Al-strong universities. We classify universities as Al-strong
university if the average number of Al researchers during 2006-2008 (ex ante M&A
sample period) is in the top 3% of the distribution across all universities. University-year
level data for Al researchers is provided by Babina et al. (2024). This classification ensures
that universities” Al-talent-producing abilities reflects pre-determined characteristics
unaffected by later firm decisions. Second, measuring geographic proximity of firms and
Al-strong universities. Using U.S. Census county distance data from NBER, we calculate

the distance between the counties of each firm’s headquarter and Al-strong universities.
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We retain universities within a 100-mile radius, as closer proximity strengthens labor
market spillovers. Third, construct the size-weighted IV. For each firm-year, we aggregate
the share of Al graduates from Al-strong universities within 100-mile county distance,
weighted by university size to construct the firm-year IV for firms" Al skills. The IV is

defined as:

Al _Grads jt
All_Grads jt

Wi = Yjey,, X Weight_sizej, )
where Al_Grads;j, is the number of fresh graduates from university j in year ¢t whose first
job after graduationis an Al-skilled job; All_Grads;, isthe total number of fresh graduates
from university j in year t; J;; represents the set of Al-strong universities within a 100-
mile radius of firm i's headquarter in year t; and Weight_sizej; is the size-based weight
of university j in year t (defined in Equation 3). Data for fresh graduates from each

university is from Babina et al. (2024).

The size-based weight of university in Equation 2 is defined as:

i i In(All_Gradsj;)
Weight_size;; =
ZjelOO—mile radius ln(All_Gradsjt)

(3)
where All_Gradsj, is the total number of fresh graduates from university j in year ¢. This
size-based weight represents the proportion of graduates from university j among all Al-
strong universities within a 100-mile radius.

We then link the firm-year IV to our deal-level baseline sample using the IV for each
acquirer firm at the year t+1 relative to the deal announcement because IV in these years
performs a great first stage outcome, which allows it to serve as a suitable instrument.

Table 3 shows instrumental variable estimate results. Column (1) and (3) report the
first stage of the instrument, where we regress our key independent variable (LnacqAIskill)
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on the instrument, which measures acquirer firm-level exposure to the supply of Al
talents. Column (2) and (4) report the second stage results. All specifications control for
acquirer-industry sector fixed effects and year fixed effects. Columns (1)-(2) show the
results without baseline control variables. Columns (3)-(4) include the baseline controls:
acquirer characteristics (Size, Tobin’s Q, Leverage, ROA, Lnintan and Freecashflow), target
characteristics (LntarAlskill and Tar_Hightech) and deal characteristics (Allstockdeal,
Rel_Dealval, Tenderoffer and Conglomerate).

The instrument has a strong first stage with positive and significant relationship
between IV and core independent variable (LnacgAlIskill), and with F-statistics above 10.
Next, the 25LS estimates results show a positive and significant effect of acquirers” Al
capability on CAR[-5,+5]. When baseline controls are included, a one-standard-deviation
increase in Al capability leads to a 5.76% increase in CAR[-5,+5]. The IV estimation results
are consistent with those of OLS, both demonstrating the positive impact of acquirer Al
capability on acquisition performance.

5.2 Source of Value Creation by Al

5.2.1 The effect of combining AI with data assets

After documenting that firms with more Al skills tend to have greater announcement
returns, the next question is what is the source of this value creation. Al products, at their
core, resulted from learning patterns and generating insights by analyzing vast quantities
of data using the appropriate techniques. We thus posit that a primary function of Al
employees within acquiring firms is to unlock the potential that emerges from combining

Al skills with the target’s stocks of data assets. When an acquirer’s Al expertise joins
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hands with a target’s rich data assets, this creates value by enabling the development of
more sophisticated and effective Al solutions. Therefore, we argue that successful Al-
driven M&A arises when: (1) the acquirer possesses advanced Al technology but lacks
sufficient data to train and optimize its algorithms, and (2) the target possesses data-rich
assets but lacks the Al capabilities to leverage them effectively.

To verify the conjecture, we construct a novel measure of firms” data intensity based
on the frequency of data security keywords in Item 1A of its 10-K filings, as described
earlier. We match the computed data intensity measure to target firms as of the year
prior the deal announcement. Then, to test whether the data intensity in the target firm
helps building up synergy with Al talents of the acquirer and causes the positive CAR,
we partition target companies in our sample by the median values of target data intensity,
into high-data subgroup (Hightardata, equals 1 when Datalntense of the firm is greater
than the median) and low-data subgroup (Lowtardata, equals 1 when Datalntense of the
firm is lower than the median). We then re-estimate Equation (1) for these two groups.
The result is reported in column (1)-(2) in Table 4. The positive and significant association
between acquirer Al and CAR are only observed in the acquisition subgroup with high
data intensity targets. Economically, a one-standard-deviation increase in LnacqAlskill
leads to a 1.76% increase in CAR for acquisitions of data-intensive targets. The results
imply that it is the target’s data assets that creates synergistic value with acquirer Al
expertise.

It is possible that targets with high data intensity are those with high Al capabilities
as well, and it is the overlap of Al expertise between acquirers and targets that constitutes
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the synergistic value of the merger. To rule out this idea, we partition our sample by the
median-level of target’s Al capabilities (computed the same way as acquirer’s) into high
target Al subgroup (HightarAl, equals 1 when the target has more Al skills than the
median) and low target Al subgroup (LowtarAl, equals 1 when the target has less Al skills
than the median). We tabulate the subsample test of high/low target firm Al capabilities
in column (3)-(4) in Table 4. We can observe that acquirer Al (LnacqAlIskill) is only positive
and significant for the low-Al target subgroup. This result is inconsistent with acquirer-
target Al overlap creating synergy for the merger, rather, it aligns with the notion that
target is in needs of greater Al capabilities.

In addition to the subsample analysis, we next conduct more detailed analysis that
directly shows the value creation by different combinations of acquirer and target
characteristics in M&As. To this end, we add interaction terms between indicators of
acquirer Al and target data characteristics. Specifically, HighacgAI (LowacgAl) is a dummy
variable indicating whether the acquirer’s Al capability is greater (lower) than the sample
median. We construct target’s Al capability indicators in a similar manner. Moreover,
Hightardata (Lowtardata) indicates whether the target’s data intensity is greater (lower)
than the sample median. We incorporate interactions among these indicators into
Equation (1) and re-conduct the estimation.

The results are presented in Table 5. Columns (1) to (3) show results when the
dependent variable is CAR[-5,+5]. Only Hightardata*HighacqAl carries a positive and
significant sign. These results suggest that the positive M&A return that we discover in
the baseline regression is mainly driven by high-Al acquirers merging with data-intensive
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targets, confirming the existence of synergy between the two productive factors. On the
contrary, coefficients on HighacgAI*Lowtardata and LowacqAI*Hightardata are both
negative and significant, suggesting poor performance when high AI capability is
combined with scarce data or when poor Al capability is integrated with rich data.

5.2.2 The pursuit of data by high-AI acquirers

If Al-data integration is an important source of value creation in M&As, it is sensible
for high-Al firms to actively seek data assets in their business process to enhance their
strategic position. To test this idea, before proceeding to the acquisition decisions made
by high-Al firms, we first examine the decisions of these firms in hiring employees to
conduct data related work (i.e., data analyst). We define data analyst by identify “data”
keyword in the employee’s job title (e.g., an employee with a job title of “senior data
analyst” falls into the category).

Panel A in Figure 3 plots the time series of data analytics employees by high-Al
acquirers and low-Al acquirers, respectively. We find that prior to the acquisition,
acquirers with advanced Al capabilities exhibit a steadily increasing trend in hiring data
analysts relative to industry-level prior to the deal, while acquirers without advanced Al
capabilities exhibit a decreasing trend. This evidence implies that data analysts are valued
by acquirers with strong Al capabilities before carrying out M&As. In addition, the
divergence of the trends become even more pronounced when we plot employees with
both data-related skills and Al skills (Panel B in Figure 3), suggesting that high-Al
acquirers emphasize the vesting of both Al and data-related skills on their employees.

Notably, the increasing trends of employees with data-related skills continue in the post-
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merger phase in both figures. Evidence from these figures point to the demand of high-
Al acquirers for seeking Al-data integration, rather than a single skill alone.

Next, we conduct merger pairing analysis to investigate whether firms with strong
Al capabilities actively seek data-intensive target in making acquisitions decisions. If
acquiring a data-intensive target strengthens high-Al acquirers’ strategic position and
wins recognition from the market, such deals will be more likely to occur. To test this idea,
we investigate what types of acquirers and targets are likely to form M&A pairs to exploit
the opportunity of synergistic value creation. Our methodology follows Bena and Li (2014)
by testing the likelihood of acquirer-target firm pairing using a conditional logit model.
The sample consists of cross-sectional data as of the fiscal year end before the deal
announcement, with one observation for each deal (real acquirer-target pair) and multiple
observations for control deals (potential acquirer-target pairs).

To construct the pool of control deals, we form Industry- and Size-Matched Control
Sample using propensity-score matches (PSM), which find up to five closest matches to
the acquirer for each target, and up to five closest matches to the target for each acquirer.
We also use Industry-, Size-, and ROA-Matched Control Sample, and Industry-, Size-, ROA-,
and Tobin’s Q-Matched Control Sample to ensure the robustness of our inference.> We then
employ conditional logit model on the constructed sample after matching to estimate the

following equation:

5 The benefit of the method is that it controls for the potential influence of horizontal and vertical
relatedness between industry pairs on merger formation likelihood, as highlighted by Fan and Goyal
(2006) and Ahern and Harford (2014).
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Acquirer — Targetjm: = a + PHighacqAlyy ., * Hightardatajm .4
+p,HighacqAlm -1 * Lowtardatay, 4
+psLowacqAlim 1 * Hightardatajpy, 4
+p4Acquirer CharacteristicS;y ¢
+psTarget Characteristicsjmy 1
+peDeal Characteristics;jy,

+Deal Group FE + &;jm 4)

where the dependent variable, Acquirer — Target;,, . , is equal to one if the firm pair m
with acquirer i and target j is the real acquirer-target firm pair, and zero otherwise. We
construct high/low acquirer Al indicator variables (HighacqAl;y, ¢~ /LowacqAl;y, ;1)
and high/low target data indicator variables (Hightardata;y .,/ Lowtardata;,—),
relative to their respective sample medians, and incorporate their interactions in the
regression model to test the probability of merger pairing for each combination in the
sample. We include the following control variables: sales growth, the natural logarithm
of intangible assets, size, Tobin’s Q, leverage, ROA, and free cash flow of both the acquirer
and the target, and two binary variables indicating whether the firms are in the same state
and whether they are in different industry sectors.

The results from this analysis are presented in Table 6. Among all interaction terms,
only HighacgAI*Hightardata bears a positive and significant coefficient, suggesting that
M&A is more likely to occur between high-Al acquirers and data-intensive targets. This
finding supports the notion that acquirers with strong Al capabilities seek out targets with
rich data assets, as the combination of these resources can potentially generate significant

value. This result is consistent with earlier findings that acquisitions with high-Al
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acquirers and data-intensive targets tend to have greater announcement returns, and that
high-AI acquirers value data talents prior to the M&A process. Together, these findings
regarding acquirers’ pursuit of data-related labor and assets further validate our
argument that the strategic complementarity between Al skills and data resources is an
important factor driving M&A decisions and outcomes.

5.3 Realizing value of Al-data integration: Post-merger innovation output

The value creation resulting from the merger of high-Al acquirers and data-intensive
targets has been well-documented and discussed. However, an important question that
remains unanswered is what specific benefits are generated from Al-data integration.
While the strategic alignment of Al and data can enhance various performance metrics
post-merger, we argue that innovation stands out as a particularly crucial benefit. First,
Al enables firms to learn more effectively and efficiently from vast quantities of data,
significantly improving business decision-making, uncovering new patterns, and
generating potentially innovative ideas (Babena et al., 2024). The literature also highlights
the potential of data assets to drive innovation (Beraja, Yang, and Yuchtman, 2023). By
successfully combining Al and data, firms can leverage Al's advanced data analysis
capabilities and the rich information contained within data assets, thereby creating
significant synergy potential through technological complementarity (Bena and Li, 2014).

The primary identification challenge in this analysis lies in the potential endogeneity
of firm pair selection. The observed relationship between the pairing of acquirers with Al
capabilities and targets with data, and the resulting post-merger innovation output, could

be driven by the firms” endogenous decision to engage in a merger, rather than the actual
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impact of the “acquirer Al - target data” synergy on innovation. As previously discussed,
acquisitions are more likely to occur between firms that already exhibit these
complementary characteristics.

To address this concern and avoid biased estimates, we adopt a quasi-experimental
approach inspired by Bena and Li (2014) and Seru (2014). Specifically, we use a control
sample of withdrawn bids: deals that failed for reasons unrelated to the innovative
activities of either merging firm. This approach allows us to treat the assignment of firm
pairs to the treatment sample (completed deals) versus the control sample (withdrawn
bids) as essentially random with respect to the innovation output variable we are
analyzing. By comparing the innovation outcomes of completed deals with those of
withdrawn bids, we can more accurately isolate the true impact of the “acquirer Al - target
data” synergy on post-merger innovation.

We use samples of both treatment and control deals involving acquirer and target
firms that were innovative prior to the bid to obtain a clear post-merger innovation effect
following Bena and Li (2014), defined as having at least one patent application or citation.
To construct the control sample, we start with 48 innovative withdrawn bids announced
between 2009 and 2019, which have the necessary firm-level data in Compustat and CRSP.
Next, we search relevant information from news articles and various other sources for
each withdrawn bid to confirm that the failure of these bids was not related to the
innovative activities of either merger partner.

Then, we select completed deals to form the treatment sample based on their
comparability to control deals. Specifically, we focus on completed deals from 2009 to
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2019 that meet the following criteria: (1) they involve innovative acquirers and target firms;
(2) they occur in acquirer-target industry pairs that match those of the withdrawn bids in
the control sample; (3) their announcement year falls within a three-year window centered

around the announcement year of the control bids to minimize time-related differences.

Table A2 in the Appendix details the number of remaining samples at each stage.

During the process of removing ineligible treatment samples, the number of control
samples also decreases. This occurs because some control deals lack any eligible treatment
deals for matching and are excluded from the sample. For instance, if the industry pair of
a control deal does not match any completed deal, or if the matched completed deal falls
outside the three-year window, the control deal will be dropped.

For each remaining control deal, we select the closest completed deal in terms of
relative size ratio (i.e., the target firm’s total assets divided by the acquirer’s total assets)
from the sample that meet the criteria mentioned above to become its treatment deal. This
approach ensures that the treatment and control samples are comparable along key
dimensions relevant to Mé&As, such as industry composition and time clustering (Roberts
and Whited, 2013). We obtain patent and citation information from the Extended KPSS
dataset following Kogan et al. (2017), and use the filing year of a patent as the time of its
invention to measure a firm’s innovation output (Hall et al., 2005).

We then estimate a difference-in-differences regression using a panel data set that
contains information on deals in the treatment and control samples from five years before
to five years after the deal announcement. We employ the following regression to test the
impact of Al-data integration on innovation performance:
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where Patent;;, represents combined patent applications (Patent Application) or
combined patent citations (Patent Citation) of acquirer i and target j in each year ¢. Patent
Application is defined as the natural logarithm of the sum of patent applications by the
acquirer and the target for the period before the acquisition and the number of patent
applications by the combined firm for the period after the acquisition. Patent Citation is
defined as the natural logarithm of the sum of citation counts received by patents of the
acquirer and the target for the period before the acquisition and the citation counts
received by patents of the combined firm after the acquisition. After;;, equals one for the
post-merger time period (from t+1 to t+5), and zero otherwise. Treat;; equals one for
treatment deals, and zero otherwise. We construct indicator variables, HighacqAl; and
Hightardata;, which equal one if acquirer i’s Al capability and target j’s data intensity are
higher than their respective sample medians. We then incorporate their interactions in the
regression model. We control for financial variables of the merged firm, weighted by the
relative size of the acquirer and the target. Deal and year fixed effects are included in all

specifications.
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The results are tabulated in Table 7, Panel A. The dependent variable is Patent
Application in columns (1) and (2) and Patent Citation in columns (3) and (4). Across all
specifications, the coefficients on Treat*After*HighacqAI*Hightardata bear positive and
significant signs, suggesting that mergers with high-Al acquirers and data-intensive
targets experience greater increases in innovation output after the merger relative to the
control group not experiencing such mergers. To ensure robustness, Panel B presents the
results from falsification tests where we assign pseudo announcement dates of treatment
that are four years before its actual occurrence. The results indicate no significant
difference in post-merger innovation output between the “treated” and control samples,
which validates the findings in Panel A.

Next, we examine if the increase in innovative output is driven by Al patents. Beraja,
Yang, and Yuchtman (2023) demonstrate that rich data content nurtures more Al
innovations. By the same token, we conjecture that integrating Al technics with rich data
assets is likely to produce more innovations that are particularly related to Al technologies.
To identify Al patents, we employ the Artificial Intelligence Patent Dataset (AIPD),
developed by the USPTO’s Office of the Chief Economist to help researchers and
policymakers study Al invention (Pairolero et al., 2024). The dataset identifies Al patents
and pre-grant publications from US patent documents published between 2011 and 2019
using machine learning models.® Al patents are those whose patent documents published

contain Al component technology based on the documents’ text and citations (separately

6 Since the AIPD consists solely of raw patent data, we merge it with patent and citation data from
USPatents provided by Wharton Research Data Services (WRDS) to obtain common IDs needed to merge
the datasets with our deal-level dataset.
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identified for the eight AI component technologies from the AIPD, including machine
learning, vision, natural language processing, speech, evolutionary computation, Al
hardware, knowledge processing, and planning and control). For example, the Tensor
Processing Unit (TPU) designed by Google to run neural network algorithms more
efficiently is an Al patent that contains Al hardware.

We construct the treatment and control samples using the same filters as before, with
the exception that restrictions on patents are now specific to Al patents. Using this
updated sample, we re-estimate Equation (5), replacing the dependent variable with Al
Patent Application and AI Patent Citation (industry-adjusted combined AI patent
applications and citations). Results reported in Table 8 show that the coefficients on
Treat*After*HighacqAl carry negative and significant signs across all columns, indicating
that Al talent stock per se does not warrant greater innovative output after merger deals
compared with the control group. Throughout all specifications with differing dependent
variables, the coefficients on Treat*After*HighacgAI*Hightardata carry significantly positive
signs consistently, suggesting that deals with high-Al acquirers and data-intensive targets
generate more Al patents and receive more Al patent citations relative to the control deals
not experiencing such mergers. This result emphasizes the Al-driven nature of post-
merger innovation and validates our story: combined firms use Al techniques to analyze
the data they acquire to innovate.

Furthermore, we again conduct a falsification test by assigning pseudo
announcement dates that are four years prior to their actual occurrence and re-estimating
the regression. The results, presented in Panel B, demonstrate that the post-merger
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innovation effect disappears between the fake “treated” and control samples, and hence
validate that our findings in Panel A are driven by the de facto mergers of the two parties.

5.4 Alternative Explanations
5.4.1 Generalizability of Al skills

There are alternative explanations for our main findings. One such explanation
pertains to the generalizability of Al skills. Employees with Al-related expertise are likely
to adapt to different job positions or apply their skills across various job functions more
easily. The acquiring firm could benefit from the broader applicability of its Al talent,
either through the talents directly contributing to the target firm’s operations or by
leveraging their skills to improve resource management and operational efficiency,
ultimately enhancing the performance of the combined firm. This explanation is in line
with Lee, Mauer, and Xu (2018), who suggest that merged firms can benefit from the
mobility of labor between the merging parties. In this case, the flow of generalizable labor
skills can influence M&A decisions, particularly when the acquirer seeks to consolidate
its workforce. Here, the data assets in the target firm represent just one type of asset upon
which the acquirer’s talent can apply their skills to generate profits and growth potential.

To test this possibility, we plot the labor mobility ratio (defined as the ratio of
migrated employees to total headcount) between acquirer and target in Figure 4. We
define migrated employees as those who have adjacent work records at the acquirer and
the target firm within one M&A deal. Our observations reveal that Al employees do not
exhibit a higher mobility rate, neither moving from the acquirer to the target nor vice versa.

In fact, Al workers tend to have a higher retention rate than their non-Al counterparts,
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and labor flow is more likely to occur from the target to the acquirer. This may be due to
the acquirer’s comparative advantage in Al, which attracts more compatible talent with
relevant skills. This finding contradicts the alternative explanation that labor mobility
among Al employees would improve acquisition performance.

5.4.2 Acquirer fundamentals

It is also possible that strong Al capabilities are merely a reflection of acquirers’
superior financial and management performance, as developing and implementing Al
capabilities requires significant financial investment. In this scenario, the results
documented in this study would represent strong firms acquiring weaker targets and
leveraging their superior management to optimize a broader scope of assets or improve
the target’s operations, leading to better overall performance for the merged firm. If this
were the case, the findings could not be specifically attributed to the contribution of Al
skills.

To test this hypothesis, we partition acquirers into groups based on their pre-merger
ROA (High Acquirer ROA/Low Acquirer ROA) and ROE (High Acquirer ROE/Low Acquirer
ROE) relative to the sample median, and re-estimate the CAR regression separately for
these subsamples. If the observed CAR were solely driven by pre-existing firm
performance, we would not expect a positive impact of Al talent among acquirers with
below-median financial performance. The results, presented in Table 9, show that the
positive and significant effect of Al capability on acquisition announcement CAR is
observed only for acquirers with below-median ROA or ROE. This finding suggests that

the observed synergies are not merely a byproduct of well-managed firms performing
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well and applying their superior management to target firms. Instead, these results
reinforce our conclusion that Al talent serves as a specific and distinct driver of value

creation in M&A.

6. Conclusion

Leveraging a novel employee skills dataset, this paper examines the impact of
corporate artificial intelligence on M&A outcomes. Our findings reveal that acquirers with
strong Al capabilities are positively associated with acquisition performance, as measured
by higher announcement returns. Further analyses support the idea that the integration
between Al capabilities and data assets drives the observed superior performance. We
also find that acquirers with strong Al capabilities actively pursue employees with data-
related skills and target data-rich firms. Using exogenously withdrawn deals as a control
group, we show that high-Al acquirers targeting data-rich firms experience significant
increases in post-merger patent filings and citations, especially for Al-related patents. This
suggests that integrating Al and data fosters innovation and long-term value creation.

This study advances our understanding of M&A decision-making by identifying a
novel source of synergy in the Al era-the strategic alighment between Al capabilities and
data assets-making one of the first contributions to the finance literature on this topic.
Additionally, by highlighting the synergistic relationship between Al talent and data, our
results also contribute to the ongoing academic (Acquisti, Taylor, and Wagman, 2016;
Cockburn, Rock, and Syverson, 2018; Fainmesser, Galeotti, and Momot, 2023; Goldfarb
and Que, 2023; Liu, Sockin, and Xiong, 2023) and policy (Ilan, Ronco, and Rosen, 2018;
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McQuinn and Castro, 2019; Sundara and Narendran, 2023; Hutchinson, 2024) debate on
the optimal balance between protecting data privacy and unleashing the full potential of

economic efficiency.
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Figure 1. Time Series of Al capability

This figure shows the time series of the two measures of Al capability for acquirer firms and target
firms. Panel A shows the average Al skills for firms during 2009-2019. Panel B shows the average
Al employees for firms during 2009-2019. Both AI measures are constructed from LinkedIn data.
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Figure 2. Geographic Distribution of AI Skills
We calculate the total number of Al skills of all employees in our sample at the county-level based on
their reported work locations. The warmth of the color represents greater Al talent density.
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Figure 3. Time Series of Data Analytics Employees

This figure shows the industry-adjusted (based on 6-digit SIC industry codes) average number of
data analysts in high-Al/low-Al acquirers during the period from 10 years before to 3 years after
the announcement year of our sample deals. High/low-acquirer Al is determined according to the
median of acquirer Al skills using LinkedIn data. We identify data analysts from the LinkedIn data
by searching for the keyword “data” in job titles. The blue line represents data analysts in the high-
Al group, and the green line represents data analysts in the low-Al group, both are industry-
adjusted. Panel A plots the statistics for data analysts. Panel B plots the statistics for data analysts
who also report Al-related skills in their skill set.
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Figure 4. Labor Mobility Between Acquirer and Target for Al Talents and Other Employees
This figure presents the proportions of Al/non-Al talents” migrated employees relative to the total
headcount, and the ratio of mobility direction. We define as those who have adjacent work records at
the acquirer and the target firm within one M&A deal. The mobility direction (i.e., from acquirer to
target or the opposite) is identified by tracing each employee’s work experiences in the two firms. Labor
mobility records are sourced from LinkedIn data. The statistics are computed for deals in our baseline
sample.
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Table 1. Summary Statistics

This table reports descriptive statistics over the period from 2009 to 2019. Panels A, B, C and D present
the mean, median, standard deviation, minimum, and maximum for the acquirer characteristics, target
characteristics, deal characteristics and combined firm characteristics, respectively. Panel E presents
employee/experience characteristics from SDC-LinkedIn matched data. M&A sample is drawn from
the Thomson One Platinum Securities Data Company (SDC) M&A database and includes deals with
worldwide public acquirers and US public and private targets announced between January 1, 2009, and
December 31, 2019. A detailed description of variables can be found at Appendix.

(1) (2) ©) (4) ©)

N Mean SD Min Max
Panel A: Acquirer Characteristics:
Acq_AI Employee 3,904 22.82 152.7 0 4,577
Acq_AISkill 3,904 31.67 229.5 0 7,413
Acq_Employee 3,904 1,391.52 4,326 0 70,888
Freecashflow 3,904 0.037 0.156 -6.573 0.538
Leverage 3,904 0.283 0.230 0 6.207
LnacqAlskill 3,904 1.305 1.600 0 8.911
Lnintan 3,904 6.023 2.185 -2.453 12.31
ROA 3,904 0.022 0.165 -6.049 0.558
ROE 3,904 0.007 0.212 -7.689 1.366
Size 3,904 7.327 1.851 1.520 13.51
Tobin’s Q 3,904 1.938 1.168 0.525 22.34
Panel B: Target Characteristics:
Datalntense 628 0.525 1.520 0 20
LntarAlskill 3,904 0.571 1.071 0 8.022
Tar_AI Employee 3,904 4.911 53.22 0 2,867
Tar_AI skill 3,904 6.439 62.55 0 3,046
Tar_Employee 3,904 353.6 1,901 0 84,097
Tar_Hightech 3,904 0.299 0.458 0 1
Panel C: Deal Characteristics:
Allstockdeal 3,904 0.030 0.171 0 1
CAR[-3,+3] 3,904 0.012 0.098 -0.624 1.843
CAR[-5,+5] 3,904 0.012 0.105 -0.607 1.835
CARJ[-10,+10] 3,904 0.012 0.126 -0.625 1.525
Conglomerate 3,904 0.405 0.491 0 1
Rel_Dealval 3,904 -2.149 1.463 -7.770 5.881
Tenderoffer 3,904 0.039 0.195 0 1

Panel D: Combined Firm Characteristics:

Al Patent Application 297 0.001 0.819 -2.577 3.718
Al Patent Citation 297 0.002 0.989 -3.241 3.693
Patent Application 368 3.125 1.939 0 7.944
Patent Citation 368 3.605 2.573 0 9.002

Panel E: Employee/Experience Characteristics:

Al skills owned 13,011,554 0.023 0.229 0 16
Duration of Experience(month) 24,959,167 55.926 27.678 2 613
No. of Experience 13,011,554 1.918 1.483 1 32
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Table 2. Acquirer Al Capabilities and Acquisition Announcement Returns

This table presents market-model cumulative abnormal returns (CARs) over the [-3, +3], [-5,+5] and [-10,+10] windows surrounding the M&A announcement
dates, where the parameters of the market model are estimated using the CRSP value-weighted index over [-180, -11] days relative to the acquisition
announcement date. Columns (1)-(3) presents the effect of acquirer’s Al skills on CARs, and Columns (4)-(6) presents the effect of acquirer’s Al employees
(employees who own at least one Al-related skills). LnacgAlskill is defined as log(Acq_AI skill +1), and LnacqAlemp is defined as log(Acq_AI Employee+1). All
specifications control for the 6-digit SIC acquirer-industry sector fixed effects and year fixed effects. Robust t-statistics adjusted for firm-level clustering are
reported in parentheses. *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.

M) @) G) @) ) 6)
CAR[-3,+3] CAR[-5,+5] CAR[-10,+10] CAR[-3,+3] CAR[-5,+5] CAR[-10,+10]
LnacqAlskill 0.004*** 0.004%* 0.004%*
(2.88) (2.59) (2.75)
LnacqAlemp 0.004** 0.004** 0.005%**
(2.56) (2.56) (2.77)
Size -0.018%+* -0.019%+* -0.024%%* -0.019%+* -0.021%+* -0.026***
(-6.37) (-6.55) (-6.65) (-6.18) (-6.35) (-6.73)
Tobin’s Q 0.006** 0.008%** 0.010%* 0.005** 0.007%** 0.009%**
(3.13) (3.65) (3.50) (2.49) (3.13) (3.05)
Leverage 0.044** 0.039* 0.034* 0.046** 0.039* 0.032
(2.22) (1.96) (1.80) (2.11) (1.81) (1.64)
ROA 0.014 0.042 0.062 0.010 0.040 0.056
(0.36) (1.15) (1.47) (0.25) (0.99) (1.23)
Lnintan 0.007#** 0.008*** 0.009%** 0.007%** 0.008*** 0.010%*
(3.25) (3.58) (3.51) (3.26) (3.48) (3.49)
Freecashflow 0.053 0.025 0.034 0.050 0.016 0.026
(1.13) (0.54) (0.73) (1.01) (0.32) (0.53)
LntarAlskill -0.001 -0.001 0.000 -0.000 -0.000 0.001
(-0.30) (-0.52) (0.08) (-0.09) (-0.03) (0.35)
Tar_Hightech -0.004 -0.005 -0.008 -0.004 -0.004 -0.006
(-0.97) (-1.09) (-1.36) (-0.98) (-0.72) (-1.10)
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Allstockdeal
Conglomerate
Rel_Dealval
Tenderoffer
Constant
Observations
R-squared

Acq. ind. FE
Year FE

-0.011
(-0.91)
-0.005
(-1.49)
0.004***
(2.72)
-0.004
(-0.60)
0.087%**
(7.22)
3,865
0.151
Yes
Yes

-0.009
(-0.78)
-0.008**
(-2.22)
0.005***
(2.96)
-0.005
(-0.63)
0.090***
(7.10)
3,865
0.147
Yes
Yes

-0.008
(-0.60)
-0.005
(-1.15)
0.003
(1.60)
-0.007
(-0.68)
0.106***
(6.96)
3,865
0.136
Yes
Yes

-0.014
(-1.23)
-0.002
(-0.63)
0.004**
(2.47)
-0.004
(-0.53)
0.092%**
(6.64)
3,830
0.164
Yes
Yes

-0.010
(-0.82)
-0.005
(-1.40)
0.004**
(2.37)
-0.005
(-0.54)
0.095%**
(6.57)
3,830
0.151
Yes
Yes

-0.003
(-0.18)
-0.002
(-0.48)
0.003
(1.30)
-0.005
(-0.53)
0.115%**
(6.88)
3,830
0.150
Yes
Yes

48



Table 3. Acquirer Al Capabilities and Acquisition Announcement Returns: IV Estimates

This table reports the IV estimates for baseline results. Column (1) and (3) report the first stage of the
instrument, where we regress our key independent variable (LnacgAIskill) on the instrument, which
measures acquirer firm-level exposure to the supply of Al talents. The definition of the instrument is in
Section 5.1.2. Column (2) and (4) report the second stage results. Columns (3)-(4) include the baseline
controls: acquirer characteristics (Size, Tobin’s Q, Leverage, ROA, Lnintan and Freecashflow), target
characteristics (LntarAlskill and Tar_Hightech) and deal characteristics (Allstockdeal, Rel_Dealval,
Tenderoffer and Conglomerate). Standard errors are clustered at firm level. Robust t-statistics are reported
in parentheses. *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.

M) @) G) @
LnacqAlskill CAR[-5,+5] LnacqAlskill CAR[-5,+5]
v 3.124%* 2.093***
(3.25) (3.21)
LnacqAlskill 0.024** 0.036**
(2.12) (2.17)
Size 0.590%** -0.033***
(7.58) (-2.94)
Tobin’s Q -0.106 0.010**
(-1.58) (2.58)
Leverage -0.235 0.021
(-0.63) (0.98)
ROA -0.027 0.036
(-0.03) (0.65)
Lnintan -0.084 0.007*
(-1.23) (1.66)
Freecashflow 0.284 -0.017
(0.25) (-0.27)
LntarAlskill -0.047 -0.002
(-1.09) (-0.53)
Tar_Hightech 0.249** -0.010
(2.10) (-1.24)
Allstockdeal 0.243 -0.036*
(0.91) (-1.68)
Conglomerate -0.025 -0.004
(-0.28) (-0.58)
Rel_Dealval -0.044 0.003
(-1.23) (1.25)
Tenderoffer -0.106 0.011
(-0.51) (0.88)
Observations 1,625 1,625 1,625 1,625
Acq. ind. FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
F Statistic 10.55 10.55 10.33 10.33
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Table 4. Subsample Test: The Role of Target Data Intensity/ Target AI Skills

This table presents the results of CAR[-5,+5] regression on subsamples divided according to the median
value of target data intensity and target Al skills. Acquisitions with targets whose data intensity is
higher than the median fall into the high-target data intensity group (columns (1)), and the rest fall into
the low-target data intensity group (columns (2)). Information on target data intensity is computed
using a word frequency analysis on item 1a in 10-K filings. Acquisitions with targets whose Al skills of
employees is higher than the median fall into the high-target Al group (columns (3)), and the rest fall
into the low-target Al group (columns (4)). Target Al skills are computed using the same way as
computing acquirer Al skills. Robust t-statistics adjusted for firm-level clustering are reported in

parentheses. *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.

CAR[-5,+5]
(1) ) () (4)
High Low High Low
target data target data target Al target Al
LnacqAlskill 0.011* -0.003 0.001 0.006***
(1.89) (-0.85) (0.63) (2.80)
LntarAlskill -0.013 -0.010%
(-1.29) (-1.74)
Size -0.009 -0.003 -0.019** -0.021%*
(-0.54) (-0.42) (-3.49) (-5.86)
Tobin’s Q 0.014 0.026** 0.006* 0.009%**
(0.80) (2.21) (1.91) (3.07)
Leverage 0.078 0.083* 0.059%** 0.028
(0.92) (1.68) (2.66) (1.05)
ROA 0.297 -0.246 0.117** 0.018
(0.78) (-1.60) (2.14) (0.40)
Lnintan 0.006 0.010 0.007* 0.010%**
(0.43) (1.46) (1.85) (3.61)
Freecashflow 0.168 0.009 -0.067 0.046
(0.54) (0.06) (-0.94) (0.80)
Tar_Hightech -0.039 0.012 -0.004 -0.004
(-1.04) (0.58) (-0.43) (-0.58)
Allstockdeal 0.021 0.009 -0.032 0.006
(0.46) (0.33) (-1.58) (0.37)
Conglomerate -0.023 0.020 -0.004 -0.009*
(-0.91) (1.29) (-0.60) (-1.96)
Rel_Dealval 0.004 -0.005 0.003 0.006***
(0.26) (-0.83) (0.87) (3.21)
Tenderoffer 0.015 0.002 0.005 -0.015
(0.49) (0.15) (0.41) (-0.94)
Constant -0.042 -0.120** 0.081*** 0.098***
(-0.56) (-2.29) (3.50) (5.91)
Observations 124 270 1,237 2,539
R-squared 0.457 0.318 0.215 0.171
Acq. ind. FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes

50



Table 5. Testing the Synergy between Acquirer Al and Target Data

This table estimates the impacts of different types of acquirer-target combinations on CAR[-5,+5]. We

construct High/LowacqAI dummy and High/Lowtardata dummy according to the median value of

acquirer Al skills and target data intensity, and incorporate their intersections to the right-hand side of

the model. Columns (1), (2) and (3) examine the effect of high-Al acquirers combined with data-

intensive targets, high-Al acquirers combined with data-poor targets, and low-Al acquirers combined

with data-intensive targets, respectively. Robust t-statistics adjusted for firm-level clustering are

reported in parentheses. *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels,

respectively.
CAR[-5,+5]
M @) ()
HighacqAI*Hightardata 0.048**
(2.27)
HighacqAI*Lowtardata -0.048**
(-2.27)
LowacqAI*Hightardata -0.048**
(-2.27)
HighacqAl -0.006 0.042** -0.006
(-0.50) (2.36) (-0.50)
Hightardata -0.051*** -0.051*** -0.002
(-2.97) (-2.97) (-0.16)
Size -0.005 -0.005 -0.005
(-0.91) (-0.91) (-0.91)
Tobin’s Q 0.015* 0.015* 0.015*
(1.73) (1.73) (1.73)
Leverage 0.057 0.057 0.057
(1.49) (1.49) (1.49)
ROA -0.146 -0.146 -0.146
(-1.10) (-1.10) (-1.10)
Lnintan 0.010 0.010 0.010
(1.64) (1.64) (1.64)
Freecashflow 0.115 0.115 0.115
(0.84) (0.84) (0.84)
LntarAlskill -0.009** -0.009** -0.009**
(-2.10) (-2.10) (-2.10)
Tar_Hightech 0.014 0.014 0.014
(0.87) (0.87) (0.87)
Allstockdeal 0.020 0.020 0.020
(1.01) (1.01) (1.01)
Conglomerate -0.001 -0.001 -0.001
(-0.10) (-0.10) (-0.10)
Rel_Dealval -0.006 -0.006 -0.006
(-1.31) (-1.31) (-1.31)
Tenderoffer -0.006 -0.006 -0.006
(-0.55) (-0.55) (-0.55)
Constant -0.073* -0.073* -0.073*
(-1.84) (-1.84) (-1.84)
Observations 448 448 448
R-squared 0.289 0.289 0.289
Acq. ind. FE Yes Yes Yes
Year FE Yes Yes Yes
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Table 6. Likelihood of Acquirer-Target Firm Pairing

This table reports coefficient estimates from conditional logit models using acquisitions of the US public
targets and a control sample of potential deals matched using PSM. The dependent variable is equal to
one for the acquirer-target firm pairing, and zero for the control firm pairs. Columns (1)-(3) present the
results using three different control samples respectively. Definitions of all the variables are provided
in the Appendix. All specifications include deal group fixed effects. Robust t-statistics adjusted for deal-
level clustering are reported in parentheses. *, **, and *** denote statistical significance at the 10%, 5%,
and 1% levels, respectively.

Acquirer-Target

M) @) G)
Ind-Size Ind-Size-ROA Ind-Size-ROA-Tobin’s Q
HighacqAI*Hightardata 0.373* 0.480** 0.577%**
(1.93) (2.29) (2.61)
HighacqAI*Lowtardata 0.095 0.169 0.086
(0.64) (1.04) (0.50)
LowacqAI*Hightardata 0.316 0.166 0.165
(1.38) (0.76) (0.77)
Bothhighpatent 0.230 0.262 0.355
(0.94) (0.98) (1.18)
Salesgrowth 0.654*** 0.732%* 0.422*
(3.13) (3.16) (1.85)
Tar_Salesgrowth 0.172 0.248* -0.134
(1.16) (1.70) (-0.98)
Size -0.076 -0.102 -0.139
(-1.00) (-1.26) (-1.62)
Tar_Size -0.106 0.095 -0.115
(-0.96) (1.10) (-1.58)
Tobin’s Q -0.069 -0.107 -0.019
(-0.96) (-1.46) (-0.29)
Tar_Tobin’s Q -0.061 -0.014 0.272%*
(-1.05) (-0.27) (4.68)
Leverage 0.340 0.862** 0.513
(1.03) (2.19) (1.42)
Tar_Leverage -0.230 0.341 0.416
(-0.70) (0.98) (1.17)
Lnintan 0.070 0.082 0.129**
(1.48) (1.51) (2.28)
Tar_Lnintan -0.015 0.018 0.073
(-0.31) (0.38) (1.51)
Freecashflow 1.944* 2.196** 2.408**x
(2.08) (2.32) (2.67)
Tar_Freecashflow 0.136 1.111 0.298
(0.21) (1.22) (0.39)
ROA 0.197 -2.028** -0.947
(0.27) (-2.10) (-1.23)
Tar_ROA 0.476 -3.856** -1.221*
(0.96) (-4.76) (-1.93)
Diversifying -4.270%** -4.553%** -4.380%*
(-19.67) (-18.98) (-20.19)
Samestate 1.016*** 0.992%* 0.841**
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(5.06) (4.92) (4.07)

Observations 4,623 4,603 4,447
Deal group FE Yes Yes Yes
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Table 7. Post-Merger Innovation Performance

This table presents results for the treatment effect of a merger on post-merger innovation output. Panel
A presents regression results using a panel data set that, for each deal in the treatment sample (i.e.,
completed deals) and the control sample (i.e., bids withdrawn due to reasons exogenous to innovation),
has observations running from five years prior to deal announcement to five years after deal
announcement. The dependent variable is, in each year, the logarithm value of sum of the acquirer’s
and the target’s innovation output measured by patent applications and citation. Panel B presents the
results from falsification tests when we assign pseudo announcement dates to our sample mergers.
Definitions of all the variables are provided in the Appendix. All specifications include deal and year
fixed effects. Robust t-statistics adjusted for deal-level clustering are reported in parentheses. *, **, and

*** denote statistical significance at the 10%, 5%, and 1% levels, respectively.

Panel A: Post-merger innovation

Patent Application Patent Citation
) ) ©) )
Treat*After*HighacqAI*Hightardata 0.422** 0.453* 1.189** 1.234*
(2.13) (1.78) (2.42) (2.20)
Treat*After*HighacqAl -0.007 -0.157 -1.163*** -1.281**
(-0.03) (-0.64) (-3.03) (-2.68)
Treat*After*Hightardata -0.640%** -0.600%** -0.660** -0.522*
(-4.10) (-3.08) (-2.66) (-1.72)
Treat*After 0.186 0.324 0.633** 0.937**
(0.92) (1.29) (2.16) (2.26)
After 0.081 0.153 -0.116 -0.109
(0.59) (0.83) (-0.43) (-0.35)
Weighted_Size -0.022 0.030
(-0.09) (0.10)
Weighted_Q -0.024 0.065
(-0.19) (0.50)
Weighted_Leverage 0.495 1.129
(0.59) (1.23)
Weighted_Intan -0.050 -0.191
(-0.31) (-1.09)
Weighted_Freecashflow 0.813 0.112
(0.85) (0.09)
Weighted_ROA 0.890 0.787
(1.15) (0.75)
Constant 3.145%** 3.650%** 3.671%* 4.429**
(59.71) (2.79) (33.35) (2.50)
Observations 368 313 368 313
R-squared 0.916 0.926 0.881 0.898
Deal FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
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Panel B: Falsification tests

Patent Application Patent Citation
1) (2) ©) 4)
Treat*After*HighacqAI*Hightardata 0.315 0.324 -0.028 0.132
(1.55) (1.55) (-0.07) (0.31)
Treat*After*HighacqAl 0.307 0.343 0.437 0.056
(0.72) (0.79) (0.47) (0.05)
Treat*After*Hightardata -0.288 -0.225 0.223 0.292
(-1.54) (-1.08) (0.63) (0.76)
Treat*After -0.201 -0.355 -0.710 -0.323
(-0.49) (-0.78) (-0.78) (-0.30)
After 0.273* 0.317* 0.253 0.014
(1.81) (2.02) (0.76) (0.05)
Weighted characteristics controls Yes Yes Yes Yes
Observations 368 313 368 313
R-squared 0.916 0.926 0.882 0.897
Deal FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
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Table 8. Post-Merger Performance of Al-Related Innovation

This table reports results for the treatment effect of a merger on post-merger Al-related innovations.

Panel A presents regression results obtained by using a panel data set that, for each deal in the treatment

sample (i.e., completed deals) and the control sample (i.e., bids withdrawn due to reasons exogenous

to innovation), has observations running from five years prior to deal announcement to five years after

deal announcement. The dependent variable is, in each year, the logarithm value of sum of the

acquirer’s and the target's Al-related innovation output measured by Al patent applications and

citations, adjusted by SIC industry sector. Panel B presents the results from falsification tests when we

assign pseudo announcement dates to our sample mergers. Definitions of all the variables are provided

in the Appendix. All specifications include deal and year fixed effects. Robust t-statistics adjusted for

deal-level clustering are reported in parentheses. *, **, and *** denote statistical significance at the 10%,

5%, and 1% levels, respectively.
Panel A: Post-merger Al-related innovation

M) B G) @)
Al Patent Al Patent Al Patent Al Patent
Application  Citation =~ Application  Citation
Treat*After*HighacqAI*Hightardata 0.880*** 0.960*** 0.955*** 1.196***
(4.82) (3.71) (5.61) (4.66)
Treat*After*HighacqAl -0.937*** -0.711* -0.967*+* -0.913**
(-4.65) (-2.24) (-3.27) (-2.23)
Treat*After*Hightardata 0.031 0.003 -0.048 -0.040
(0.30) (0.02) (-0.32) (-0.20)
Treat*After 0.343** 0.456* 0.461** 0.563**
(2.09) (1.87) (2.13) (2.20)
After -0.216** -0.369** -0.361** -0.445
(-2.19) (-2.36) (-2.30) (-1.71)
Weighted_Size 0.802** 0.721**
(2.75) (2.13)
Weighted_Q -0.240* -0.361*
(-1.83) (-2.05)
Weighted_Leverage -0.186 0.385
(-0.29) (0.42)
Weighted_Intan -0.442%+* -0.505**
(-2.86) (-2.49)
Weighted_Freecashflow -0.008 -0.786
(-0.01) (-0.43)
Weighted_ROA 0.314 0.520
(0.43) (0.52)
Constant 0.028 0.056 -3.196** -1.866
(0.68) (0.94) (-2.22) (-0.94)
Observations 297 297 278 278
R-squared 0.724 0.570 0.753 0.608
Deal FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
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Panel B: Falsification tests

M) B G) @)
Al Patent Al Patent Al Patent Al Patent
Application  Citation = Application  Citation
Treat*After*HighacqAI*Hightardata 0.063 0.263 0.182 0.450
(0.15) (0.41) (0.47) (0.75)
Treat*After*HighacqAl -0.357 -0.320 -0.362 -0.615
(-1.00) (-0.54) (-0.96) (-1.17)
Treat*After*Hightardata 0.274** 0.495** 0.244* 0.454**
(2.22) (2.49) (1.87) (2.28)
Treat*After 0.076 -0.155 0.335 0.459
(0.30) (-0.34) (1.27) (1.18)
After 0.095 0.297 0.052 0.082
(0.79) (1.33) (0.30) (0.33)
Weighted characteristics controls Yes Yes Yes Yes
Observations 297 297 278 278
R-squared 0.719 0.571 0.748 0.611
Deal FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
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Table 9. Subsample Test: The Role of Operating Performance

This table presents the results of CAR[-5,+5] regression on subsamples divided according to the median
value of acquirers’ ROA /ROE. Acquisitions with acquirers whose ROA /ROE is higher than the median
fall into the high ROA /ROE group (columns (1) and (3)), and the rest fall into the low ROA /ROE group
(columns (2) and (4)). All specifications control for the 6-digit SIC acquirer-industry sector fixed effects
and year fixed effects. Robust t-statistics adjusted for firm-level clustering are reported in parentheses.

*, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.

CAR[-5,+5]
@) ) ) 4)
High Low High Low
Acquirer ROA Acquirer ROA Acquirer ROE Acquirer ROE
LnacqAlskill 0.001 0.007*** 0.001 0.007***
(0.64) (2.85) (0.57) (2.81)
Size -0.011*** -0.028*** -0.011*** -0.029***
(-3.75) (-5.71) (-3.78) (-5.67)
Tobin’s Q 0.006** 0.014*** 0.007** 0.014***
(2.25) (3.56) (2.38) (3.56)
Leverage 0.032** 0.036 0.028** 0.037
(2.41) (1.17) (2.14) (1.16)
ROA -0.052 0.051 -0.053 0.043
(-0.79) (1.06) (-0.82) (0.87)
Lnintan 0.005* 0.011%** 0.005* 0.012%**
(1.91) (3.15) (1.95) (3.15)
Freecashflow -0.058 0.045 -0.055 0.054
(-1.06) (0.73) (-1.04) (0.84)
Tar_Hightech -0.005 -0.008 -0.005 -0.009
(-0.84) (-1.07) (-0.82) (-1.12)
Allstockdeal -0.034** -0.002 -0.033* -0.002
(-2.04) (-0.14) (-1.94) (-0.12)
Conglomerate -0.003 -0.015** -0.003 -0.014**
(-0.76) (-2.43) (-0.78) (-2.29)
Rel_Dealval 0.006*** 0.005* 0.006*** 0.005*
(2.72) (1.83) (2.89) (1.73)
Tenderoffer -0.004 -0.016 -0.004 -0.015
(-0.40) (-0.91) (-0.40) (-0.84)
Constant 0.074*** 0.116*** 0.074*** 0.118***
4.77) (5.65) (4.90) (5.55)
Observations 1,894 1,910 1,969 1,832
R-squared 0.171 0.211 0.165 0.213
Acq. ind. FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
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Appendix

Table 1A: Definition of Variables

Variable Name

Definition

Acquirer-Target

An indicator variable which is equal to one if the firm pair ij is
the real acquirer-target firm pair, and zero otherwise

Al Patent Application

The logarithm value of sum of Al patents applied for by the
acquirer and the target for the period before the acquisition
and the number of Al patents applied for by the combined
firm for the period after the acquisition, minus industry (SIC)
average number

Al Patent Citation

The logarithm value of sum of citation counts received by Al
patents applied for by the acquirer and the target for the
period before the acquisition and the citation counts received
by Al patents applied for by the combined firm after the
acquisition, minus industry (SIC) average number

Allstockdeal

Transaction Payment is stock only (SDC ofstock = 100)

Bothhighpatent

An indicator variable which is equal to one if both the acquirer
and target's patent applications are above their respective
medians, and zero otherwise

CAR[-3,+3]

Market model cumulative abnormal returns (CARs) over the [-
3, +3] event windows surrounding the M&A announcement
dates, where the parameters of the market model are
estimated using the CRSP value-weighted index over [-180, -
11] days relative to the acquisition announcement date

CAR[-5,+5]

Market model cumulative abnormal returns (CARs) over the [-
5, +5] event windows surrounding the M&A announcement
dates, where the parameters of the market model are
estimated using the CRSP value-weighted index over [-180, -
11] days relative to the acquisition announcement date

CAR[-10,+10]

Market model cumulative abnormal returns (CARs) over the [-
10, +10] event windows surrounding the M&A announcement
dates, where the parameters of the market model are
estimated using the CRSP value-weighted index over [-180, -
11] days relative to the acquisition announcement date

Patent Application

The logarithm value of sum of patents applied for by the
acquirer and the target for the period before the acquisition
and the number of patents applied for by the combined firm
for the period after the acquisition

Patent Citation

The logarithm value of sum of citation counts received by
patents applied for by the acquirer and the target for the
period before the acquisition and the citation counts received
by patents applied for by the combined firm after the
acquisition

Conglomerate

An indicator variable which is equal to one if the acquirer and
target are in the same industry (when they have the same 2-
digit SIC code) , and zero otherwise

Diversifying

An indicator variable which is equal to one if the acquirer and
target are not in the same industry (when they have different
2-digit NAICS code) , and zero otherwise

Freecashflow

Freecashflow =(oibdp-xint-txt-capx)/at of acquirer (for the
year prior to deal announcement for deal-level regressions),
with data from Compustat
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An indicator variable which is equal to one if the acquirer’s

HighacqAl Acq_AlI Skill is above the median, and zero otherwise

Hightardata An indicator variable which is equal to one if the target’s
Datalntense is above the median, and zero otherwise
Leverage =(dlc+dltt)/at of acquirer (for the year prior to deal

Leverage announcement for deal-level regressions), with data from
Compustat

. log(Acq_AISkill +1), for the year prior to deal announcement

LnacqAlskill s, Acq_AI)Skill ic defined in Section 3.1
log(Acq_AI Employee+1), for the year prior to deal

LnacqAlemp announcement for deal-level regressions. Acq_Al Employee is
defined in Section 3.1

Lnintan log(intan) of acquirer (for the year prior to deal announcement
for deal-level regressions), with data from Compustat

LntarAlskill log(Tar_AI Skill +1). Tar_AI Skill is defined in Section 3.1

Rel_Dealval

log(valueoftransactionmil /sale), for the year prior to deal
announcement for deal-level regressions, with data from
Compustat

ni/at of acquirer (for the year prior to deal announcement for

ROA deal-level regressions) with data from Compustat

Sales,-Sales,_, of acquirer (for the year prior to deal
Salesgrowth announcement for deal-level regressions) with data from

Compustat

An indicator variable which is equal to one if the acquirer and
Samestate . .

target are in the same state, and zero otherwise

Log(me) and Log(at) of acquirer (for the year prior to deal
Size announcement for deal-level regressions), where me=

abs(PRC*SHROUT) /1000 from CRSP and at from Compustat

Tar_Freecashflow

Freecashflow =(oibdp-xint-txt-capx)/at of target (for the year
prior to deal announcement for deal-level regressions), with
data from Compustat

Tar_Leverage

Leverage =(dlc+dltt)/at of target (for the year prior to deal
announcement for deal-level regressions), with data from
Compustat

Tar_Hightech

An indicator variable which is equal to one if the target’s 4-
digit SIC is in: 3571, 3572, 3575, 3577, 3578, 3661, 3663, 3669,
3671, 3672, 3674, 3675, 3677, 3678, 3679, 3812, 3823, 3825, 3826,
3827, 3829, 3841, 3845, 4812, 4813, 4899, 7371, 7372, 7373, 7374,
7375, 7378, 7379, and zero otherwise.

Tar_Lnintan

log(intan) of target (for the year prior to deal announcement
for deal-level regressions), with data from Compustat

Tar_ROA

ni/at of target (for the year prior to deal announcement for
deal-level regressions) with data from Compustat

Tar_Salesgrowth

Sales,-Sales,_, of target (for the year prior to deal
announcement for deal-level regressions) with data from
Compustat

Tar_Size

Log(at) of target (for the year prior to deal announcement for
deal-level regressions), with data from Compustat

Tar_Tobin’s Q

(at-ceq+prec_f*csho)/at of target (for the year prior to deal
announcement for deal-level regressions) with data from
Compustat

Tenderoffer

An indicator variable which is equal to one if
Tenderoffer="Yes” from SDC, and zero otherwise
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Tobin's Q

(at-ceq+prec_f*csho)/at of acquirer (for the year prior to deal
announcement for deal-level regressions) with data from
Compustat

Weighted_Freecashflow

The weighted average Freecashflow based on the acquirer’s
and target’s total assets for the period before the acquisition;
and the Freecashflow of the combined firm for the period after
the acquisition

Weighted_Intan

The weighted average intan (in Compustat) based on the
acquirer’s and target’s total assets for the period before the
acquisition; and the Intan of the combined firm for the period
after the acquisition

Weighted_Leverage

The weighted average Leverage based on the acquirer’s and
target’s total assets for the period before the acquisition; and
the Leverage of the combined firm for the period after the
acquisition

Weighted_ROA

The weighted average ROA based on the acquirer’s and
target’s total assets for the period before the acquisition; and
the ROA of the combined firm for the period after the
acquisition

Weighted_Size

The weighted average size based on the acquirer’s and target’s
total assets for the period before the acquisition; and the size
of the combined firm for the period after the acquisition

Weighted_Q

The weighted average Tobin’s Q based on the acquirer’s and
target’s total assets for the period before the acquisition; and
the Tobin’s Q of the combined firm for the period after the
acquisition
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Table A2: Post-merger innovation treatment sample criteria

Criteria Treated Deals Left Control Deals Left

They Involve innovative
. : 436 48
acquirers and target firms

They occur in acquirer-

target industry pairs that

match those of the 108 24
withdrawn bids in the

control sample

Their announcement year
falls within a three-year
window centered around
82 18
the announcement year of
the control bids to minimize

time-related differences
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