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Abstract

We analyze 18 quadrillion models for the joint pricing of corporate bond and stock returns.
Only a handful of factors, behavioural and nontradable, are robust sources of priced risk.
Yet, the true latent stochastic discount factor is dense in the space of observable factors.
A Bayesian Model Averaging Stochastic Discount Factor (BMA-SDF), combining the cor-
porate bond and stock factor zoos, explains risk premia better than all existing models,
both in- and out-of-sample. We show that multiple factors are noisy proxies for common
underlying sources of risk, and the BMA-SDF aggregates them optimally. The SDF, as
well as its conditional mean and volatility, are persistent, track the business cycle and
times of heightened economic uncertainty, and predict future asset returns. Finally, we
show that stock factors price the credit component of corporate bond excess returns well,
while the Treasury component is priced almost exclusively by the bond factors.
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Wherever there is risk, it must be compensated to the lender by a higher premium or interest.

— J. R. McCullough (1830, pp. 508-9)

In their seminal paper, Fama and French (1993) set themselves to “examine whether variables
that are important in bond returns help to explain stock returns, and vice versa.” Thirty years
later, the equity literature has produced its own, independent, ‘factor zoo,” as highlighted in
Cochrane (2011), while the corporate bond literature has effectively returned to square one
with Dickerson, Mueller, and Robotti (2023) showing that there is no satisfactory (observable)
factor model for that asset class.! Hence, to date, a model for the joint pricing of corporate
bonds and stocks has escaped discovery—we fill this gap.

We pick up the question asked in Fama and French (1993) and study which factors—bond,
stock or nontradable—contain relevant information to explain the cross-section of corporate
bond and stock returns. Leveraging recent advances in Bayesian econometrics, we compre-
hensively analyse all observable factors and models proposed to date in the bond and equity
literature. Our method allows us to not only study models or factors in isolation, but also con-
sider all of their possible combinations, resulting in over 18 quadrillion models stemming from
the joint zoo of corporate bond and stock factors. And we do so while relaxing the cornerstone
assumptions of previous studies: the existence of a unique, low-dimensional, correctly specified
and well identified factor model. Ultimately, this allows us to pinpoint the robust sources of
priced risk in both markets, and a novel benchmark Stochastic Discount Factor (SDF) that
prices both asset classes, in- and out-of-sample, significantly better than all existing models.

First, we find that the ‘true’ latent SDF of bonds and stocks is dense in the space of
observable bond and stock factors—Iliterally dozens of factors, both tradable and nontradable,
are necessary to span the risks driving asset prices. Yet, the SDF-implied maximum Sharpe ratio
is not excessive, indicating that, as we confirm in our analysis, multiple bond and stock factors
proxy for common sources of fundamental risk. Importantly, density of the SDF implies that
the sparse models considered in the previous literature are affected by severe misspecification
and, as we show, rejected by the data and outperformed by the most likely SDF components
that we identify.

Second, a Bayesian Model Averaging Stochastic Discount Factor (BMA-SDF) over the space

I'More precisely, they document that all low dimensional linear factor models in the previous literature add
little spanning to a simple bond version of the Capital Asset Pricing Model, the CAPMB. At the same time,
they show that the CAPMB is in itself an unsatisfactory pricing model.



of all possible models (including bond, stock, and nontradable factors) explains (jointly and
separately) corporate bond and equity risk premia better than all existing models and most
likely factors, both in- and out-of-sample. Moreover, the BMA-SDFs conditional mean and
volatility—hence, the conditional Sharpe ratio achievable in the economy—have clear business
cycle patterns. In particular, the volatility of the SDF increases sharply at the onset of recessions
and at times of heightened economic uncertainty. That is, the estimated SDF behaves as one
would expect from the intertemporal marginal rate of substitution of an agent exposed to the
risks arising from general economic conditions and market turmoil.

Third, the predictability of the first and second moments of the SDF suggests time-varying
risk premia in the economy and predictability of asset returns with lagged SDF information. We
verify this by running predictive regressions of future asset returns on the conditional variance
of the BMA-SDF, alone and interacted with the conditional mean of the SDF, as implied by
the Hansen and Jagannathan (1991) representation of the conditional SDF. We not only find
that lagged SDF information is highly significant in predicting future asset returns, but also
that the amount of explained time series variation in monthly and annual returns is much larger
than what is achievable with canonical predictors. This result is remarkable for two reasons.
First, the BMA-SDF is not by construction geared toward predicting future returns: it is
instead identified only under the restriction that a valid SDF should explain the cross-section
of risk premia—mnot the time series of returns. Second, it offers an important validation of our
estimation of the SDF': if risk premia are time-varying, future returns should be predictable
with lagged SDF information, and that is exactly what our BMA-SDF delivers.

Fourth, we shed light on which factors, and which types of risk, are reflected in the cross-
section of bond and equity risk premia. We find that only a handful of factors should be in
the SDF with high probability. In particular, two factors meant to capture the bond and stock
post-earnings announcement drift anomalies, PEADB and PEAD, respectively, are very likely
sources of priced risk in the joint cross-section of bond and stock returns.? In addition to these
two behavioural sources of risk, the other most likely components of the SDF are all nontradable
in nature, and are a proxy for the slope of the Treasury yield curve (YSP), the AAA/BAA yield
spread (CREDIT), and the idiosyncratic equity volatility (IVOL). As we show, these factors

2The post-earnings announcement drift phenomenon is the observation, first documented in equity markets,
that firms that experience positive earnings surprises subsequently earn higher returns than those with negative
earnings surprises. See, e.g., Hirshleifer and Teoh (2003), Della Vigna and Pollet (2009), Hirshleifer, Lim, and
Teoh (2011) and Nozawa, Qiu, and Xiong (2023) for the microfoundations of this phenomenon.



alone are enough to price the cross-section of bonds and stocks better than canonical observable
factor models. Nevertheless, the BMA-SDF outperforms these most likely factors, both in- and
(cross-sectionally) out-of-sample, as the true latent SDF is dense in the space of observable
factors and demands sizeable compensations for risks that are not fully spanned by the most
likely factors. Many nontradable, and both bond and stock tradable factors, are necessary—
jointly—for an accurate characterization of the SDF, because they represent multiple noisy
proxies for the same underlying sources of risk. Furthermore, we find that both discount rate
and cash-flow news are sources of priced risk, and yield sizeable contributions (albeit larger for
the former) to the Sharpe ratio of the latent SDF.

Fifth, we demonstrate that a portion of corporate bond risk premia serves as compensation
for their implicit Treasury term structure risk. Once this component is removed, the factors
proposed in the tradable bond factor zoo have very little residual information content for
characterizing the SDF: in this case, a BMA-SDF constructed only with stock and nontradable
factors can explain the joint cross-section of bonds and stocks as well as our full BMA-SDF.
This finding extends and explains the result in van Binsbergen, Nozawa, and Schwert (2024),
who show that once corporate bond returns are adjusted for duration risk, the equity CAPM
has higher explanatory power for bond risk premia than benchmark bond models. Furthermore,
we show that the empirical success of the bond factor zoo in the previous literature is largely
driven by its ability to price the Treasury term structure risk—a component of bond risk premia
that tradable stock factors do not capture.

Overall, our findings have first order implications for both theoretical and empirical analyses
that aim to explain the risk compensation demanded by investors in corporate bonds, stocks

and Treasury securities.

The remainder of the paper is organized as follows. Below we review the most closely related
literature and our contribution to it. Section 1 describes the data used in our analysis, while
Section 2 outlines the Bayesian SDF estimation method that we employ and its properties
for inference, selection, and model aggregation. Section 3 presents our empirical findings and
Section 4 concludes. Additional details and results are reported in the Appendix and the

Internet Appendix.

Closely related literature. Our research contributes to the active and growing body of

work that critically reevaluates existing findings in the empirical asset pricing literature using



robust inference methods. Following Harvey, Liu, and Zhu (2016), a large literature has tried to
understand which existing factors (or their combinations) drive the cross-section of returns. In
particular, Gospodinov, Kan, and Robotti (2014) develop a general method for misspecification-
robust inference, while Giglio and Xiu (2021) exploit the invariance principle of PCA and recover
the price of risk of a given factor from the projection on the span of latent factors driving a
cross-section of returns. Similarly, Dello Preite, Uppal, Zaffaroni, and Zviadadze (2024) recover
latent factors from the residuals of an asset pricing model, effectively completing the span of the
SDF. Feng, Giglio, and Xiu (2020) combine cross-sectional asset pricing regressions with the
double-selection LASSO of Belloni, Chernozhukov, and Hansen (2014) to provide valid inference
on the selected sources of risk when the true SDF is sparse. Kozak, Nagel, and Santosh (2020)
use a ridge-based approach to approximate the SDF and compare sparse models based on
principal components of returns. Our approach instead identifies a dominant pricing model—if
such a model exists—or a BMA across the space of all models, even if the true model is not
sparse in nature, hence cannot be proxied by a small number of factors. Furthermore, and
importantly, our work focuses on the co-pricing of corporate bond and stock returns, hence
shedding light on both the common, as well as the market specific, sources of risk.

As Harvey (2017) stresses in his American Finance Association presidential address, the
factor zoo naturally calls for a Bayesian solution—and we adopt one. In particular, we leverage
the Bayesian method for model estimation, selection, and averaging developed in Bryzgalova,
Huang, and Julliard (2023). Numerous strands of the literature rely on Bayesian tools for
asset allocation, model selection, and performance evaluation. Our approach is most closely
linked to Pastor and Stambaugh (2000) and Pastor (2000) in that we assign a prior distribution
to the vector of pricing errors, and this maps into a natural and transparent prior for the
maximal Sharpe ratio achievable in the economy. Barillas and Shanken (2018) also extend
the prior formulation of Pastor and Stambaugh (2000) and provide a closed-form solution for
the Bayes factors when all factors are tradable in nature. Chib, Zeng, and Zhao (2020) show
that the improper prior formulation of Barillas and Shanken (2018) is problematic, and provide
a new class of priors that leads to valid comparison for tradable factor models. As in these
papers, our model and factor selection is based on posterior probabilities, but our method is
designed to work with both tradable and nontradable factors—and as we show, the latter are
a first order source of priced risk in the joint space of corporate bonds and stock returns. Most

importantly, our approach can deal with a very large factor space, is not affected by the common



identification failures that invalidate inference in asset pricing, and provides an optimal method
for aggregating the pricing information stemming from the joint zoo of corporate and equity
factors.?

In the complete market benchmark, the pricing measure should be consistent across asset
classes, and equilibrium models normally yield nontradable state variables. Therefore, we focus
on the co-pricing of corporate bonds and stocks, and consider jointly a very broad collection of
potential sources of risk that goes well beyond the set of bond and stock tradable factors that
have been studied in isolation in the previous literature. Hence, our paper speaks to the large
literature on co-pricing, which started with the seminal work of Fama and French (1993), and
market segmentation of bonds and stocks (see, e.g., Chordia, Goyal, Nozawa, Subrahmanyam,
and Tong (2017), Choi and Kim (2018), or Sandulescu (2022)).

In particular, our paper is related to the body of work that explores whether equity market
risk proxies (see, e.g., Blume and Keim (1987) and Elton, Gruber, Agrawal, and Mann (2001)),
equity volatilities (see, e.g., Campbell and Taksler (2003) and Chung, Wang, and Wu (2019)),
and equity-based characteristics (see, e.g., Fisher (1959), Giesecke, Longstaff, Schaefer, and
Strebulaev (2011), and Gebhardt, Lee, and Swaminathan (2001)) are likely drivers of corporate
bond returns, and on the commonality of risks across markets (see, e.g., He, Kelly, and Manela
(2017), Lettau, Maggiori, and Weber (2014), and Chen, Roussanov, Wang, and Zou (2024)).
Overall, we find that factors in both the corporate bond and equity zoos are needed for the for
the joint pricing of both asset classes, and stock factors do carry relevant information to explain
bond returns. Yet, there is substantial overlap between the risks spanned by these two markets.
That is, multiple bond and stock factors are noisy proxies for common underlying sources of
risk. Nevertheless, as we show, corporate bond risk premia include an implicit compensation
for Treasury term structure risk—a risk that the bond factor zoo, and nontradable factors
proposed therein in particular, price very well, while equity factors do not. And once this term

structure risk component is removed, tradable bond factors become largely unnecessary for the

3BMA is an optimal aggregation procedure for a very wide set of optimality criteria (see, e.g., Raftery and
Zheng (2003) and Schervish (1995)). In particular, it is “optimal on average,” i.e., no alternative method can
outperform the BMA for all values of the true unknown parameters. Avramov, Cheng, Metzker, and Voigt
(2023) also propose a framework to integrate factor models via posterior probabilities in the presence of model
uncertainty, but their approach is only appropriate for tradable factors and is not designed to be robust to
the identification and inference problems arising from weak factors—problems that, as shown in Bryzgalova,
Huang, and Julliard (2023), cannot be solved by simply projecting nontradable factors on the space of returns
and then performing inference using the resulting mimicking portfolios. Furthermore, as shown in Heyerdahl-
Larsen, Illeditsch, and Walden (2023), a BMA-SDF can be microfounded thanks to the equivalence between an
economy populated by agents with heterogeneous beliefs, and a Bayesian representative agent setting.



joint pricing of bonds and stocks.

Several theoretical contributions stress that real economic activity and the business cycle
should be among the drivers of bond risk premia (see, e.g., Bhamra, Kuehn, and Strebulaev
(2010), Khan and Thomas (2013), Chen, Cui, He, and Milbradt (2018), and Favilukis, Lin, and
Zhao (2020)). Echoing both the general equilibrium model predictions of Gomes and Schmid
(2021) and the empirical findings of Elton, Gruber, and Blake (1995) and Elkamhi, Jo, and
Nozawa (2023), we show that the BMA-SDF conditional first and second moments have a
clear business cycle pattern and peak during recessions and at times of heightened economic
uncertainty, and that nontradable factors (especially proxies of the economic cycle such as the

* Furthermore, we

slope of the yield curve), are salient components of the pricing measure.
show that the business cycle properties of the BMA-SDF and its volatility are predictable, and
predict—as theory implies in this case—future asset returns, generating a substantial degree of
time variation in conditional risk premia.

Our work also relates to behavioural biases and market frictions in asset pricing. In particu-
lar, complementing the evidence of Daniel, Hirshleifer, and Sun (2020) and Bryzgalova, Huang,
and Julliard (2023) for the equity market, we show that the post earnings announcement drifts
of both bonds (see Nozawa, Qiu, and Xiong (2023)) and stocks are extremely likely drivers
of corporate bond and stock risk premia. Furthermore, we show that cash-flow and discount
rate news (see, e.g., Vuolteenaho (2002), Cohen, Gompers, and Vuolteenaho (2002), Zviadadze
(2021), and De la O, Han, and Myers (2023)) are both important drivers of risk premia in the

joint cross-section of bonds and stocks, but the latter are responsible for a larger share of the

volatility of the co-pricing SDF.

1 Data

Our analysis relies on a combination of corporate bond and equity data which we present in

detail below.

4Elton, Gruber, and Blake (1995) show that adding fundamental macro-risk variables (such as GNP, inflation
and term spread measures) significantly improves pricing performance relative to equity and bond market index
models. Elkamhi, Jo, and Nozawa (2023) show that the long-run consumption risk measure of Parker and
Julliard (2003) yields a one-factor model with significant explanatory power for corporate bonds, and such an
SDF, as documented in Parker and Julliard (2005), has a very strong business cycle pattern.



Corporate bond data. We use the constituents of the corporate bond data set from the
Bank of America Merrill Lynch (BAML) High Yield (HOAO) and Investment Grade (COAO)
indices made available via the Intercontinental Exchange (ICE), which starts in January 1997
and ends in December 2022 for the corporate bond-level data. For the period from January 1986
to December 1996 we rely on the Lehman Brothers Fixed Income Database (LHM). These data
are then merged with the Mergent Fixed Income Securities Database (FISD), which contains
additional bond characteristics. We follow van Binsbergen, Nozawa, and Schwert (2024) and
begin the LM sample in 1986.> After merging the two data sets and applying the standard
filters, our bond-level data spans 37 years over the period January 1986 to December 2022 for
a total of 444 months. and comprises over 30,000 unique bonds. A detailed description of
the databases and associated cleaning procedures is available in Section TA.1 of the Internet
Appendix.

We apply the following standard filters to the bond data: i) We remove bonds that are
not publicly traded in the U.S. market. These include bonds issued through private placement,
bonds issued under Rule 144A, bonds that are not traded in U.S. dollars, and bonds from issuers
not based in the U.S. ii) We remove bonds that are classified as structured notes, mortgage-
or asset-backed, agency-backed, equity-linked or convertible. iii) We exclude bonds that have
a floating coupon rate. iv) Finally, we exclude bonds that have less than one year remaining

until maturity.

Corporate bond returns. In the baseline analysis, we specify ezcess bond returns as the
total bond return minus the one-month risk-free rate of return. In addition, we follow van
Binsbergen, Nozawa, and Schwert (2024) and repeat our analysis with duration-adjusted re-
turns, where the bond excess return is computed as the total bond return minus the return on
a portfolio of duration-matched U.S. Treasury bonds. Details of the duration adjustment are
provided in Appendix C. We do not further winsorize, trim, or augment the underlying bond
return data in any way, avoiding the biases that such procedures normally induce (Duarte,

Jones, Mo, and Khorram (2024) and Dickerson, Robotti, and Rossetti (2024)).

®Prior to 1986, bonds in LHM are predominantly investment grade (91% of bonds) with 67% of all bonds
priced with matrix pricing (i.e., the prices are not actual dealer quotes).

6We source the one-month risk-free rate from Kenneth French’s website.


https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html

Equity data. We rely on the publicly available stock anomaly data from Chen and Zimmer-
mann (2022) and Jensen, Kelly, and Pedersen (2023). Full documentation and related data

construction methods are detailed on the aforementioned authors’ websites.

The joint factor zoo. We use all factors in published papers for which a monthly time series
matching our sample is publicly available. Our bond-specific factor zoo includes 16 tradable
bond factors. From the equity literature, we include an additional 24 tradable factors. This
set is smaller than the tradable equity zoo in Bryzgalova, Huang, and Julliard (2023) as for
several of their 34 tradable factors an updated series is not publicly available, and we also
exclude factors for which authors did not provide sufficient information for exact replication.”
Our nontradable zoo comprises 14 factors, and many of the nontradable factors used to analyse
corporate bond returns have also been used to study stock returns. Overall, we consider a total
of 54 factors, of which 40 are tradable and 14 are nontradable. We provide an overview of the
factors in Table A.1 of Appendix B. All of the factors are publicly available from the authors’
personal websites, and public repositories, listed therein.®
Corporate bond and stock test asset portfolios. We construct a set of bond portfo-
lios that are sorted on various bond characteristics. To ensure a broad enough cross-section
for our in-sample (IS) estimation of the BMA, we use 50 bond portfolios. The first 25 port-
folios are double-sorted on credit spreads and bond size. The remaining 25 portfolios are
double-sorted on bond ratings and time-to-maturity. All portfolios are value-weighted by
the market capitalization of the bond issue, defined as the bond dollar value multiplied by
the number of outstanding units of the bond. These portfolios are publicly available at
openbondassetpricing.com/corporate-bond-factor-zoo. For equity, we rely on a set of 33 port-
folios and anomalies very similar to the one used in Kozak, Nagel, and Santosh (2020) and
Bryzgalova, Huang, and Julliard (2023) which are publicly available from openassetpricing.com
and jkpfactors.com.

The chosen characteristics yield a significant dispersion of average in-sample stock and bond
portfolio returns. The inclusion of portfolios sorted on credit spreads is motivated by the work of

Nozawa (2017) who finds that bond credit spreads are an important driver of the cross-sectional

"The twelve excluded factors are all among the least likely drivers of stock premia in Bryzgalova, Huang,
and Julliard (2023).

8We make our 16 traded bond factors available on the companion website: openbondassetpricing.com


https://openbondassetpricing.com/corporate-bond-factor-zoo/
https://openassetpricing.com/
https://jkpfactors.com/
https://openbondassetpricing.com/

variation in excess corporate bond returns.” Bond ratings are provided by Standard & Poors
(S&P) and are a fundamental characteristic of bonds. They underpin most tradable bond
factors, define institutional investment guidelines, and capture default risk. Bond maturity has
been shown to be an important determinant of expected returns Gebhardt, Hvidkjaer, and
Swaminathan (2005) and bond mutual fund holdings in recent work by Bretscher, Schmid, and
Ye (2023). The chosen equity anomalies also capture a diverse array of possible risks and also
have a large degree of dispersion in their average returns.

Finally, we include the tradable factors as additional test assets since, as emphasized in
Barillas and Shanken (2016), factors included in a model should price any factor excluded from
the model. This, along with the use of a nonspherical pricing error formulation (i.e., GLS) also
imposes (asymptotically) the restriction of factors pricing themselves. For the estimation of
the co-pricing BMA-SDF, we naturally include both stock and bond tradable factors. For the
stock (bond) specific BMA-SDF, we only include the respective stock (bond) tradable factors.
Overall, the cross-section contains a broad array of 50 bond and 33 stock portfolios, sorted on

well-known bond or stock characteristics, and the underlying 40 tradable factors themselves.

Out-of-sample test assets. To test the out-of-sample (OS) asset pricing efficacy of the
BMA-SDFs estimated on the IS test assets, we employ a broad cross-section of additional
corporate bond, stock and U.S. Treasury bond portfolios.

For bonds, we use decile-sorted portfolios on: bond historical 95% value-at-risk, duration,
bond value (Houweling and Van Zundert (2017)), bond book-to-market (Bartram, Grinblatt,
and Nozawa (2020)), long-term reversals (Bali, Subrahmanyam, and Wen (2021)), momentum
(Gebhardt, Hvidkjaer, and Swaminathan (2005)), as well as the bond version of the 17 Fama
French industry portfolios, for a total of 77 bond-based portfolios.!®

For stocks, we include decile-sorted portfolios on: earnings-to-price, momentum, long-term
reversal, accruals, size (market capitalization), equity variance, and the equity version of the 17
Fama French industry portfolios (following Lewellen, Nagel, and Shanken (2010)), for a total
of 77 equity-based portfolios all accessed from Kenneth French’s webpage.

For U.S. Treasury bonds, we download monthly annualized continuously-compounded zero-

coupon yields from Jing Cynthia Wu’s webpage (Liu and Wu, 2021). We price U.S. Treasury

"We follow the credit spread portfolio formation method in Elkamhi, Jo, and Nozawa (2023) and construct
the portfolios based on the average bond credit spreads between months ¢ — 12 and ¢ — 1.

10 A1l available at openbondassetpricing.com /corporate-bond-factor-zoo.


https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
https://sites.google.com/view/jingcynthiawu/yield-data
https://openbondassetpricing.com/corporate-bond-factor-zoo/

bonds each month using the yield curve data and then compute monthly discrete excess returns
across the term structure as the total return in excess of the one-month Treasury Bill rate. Our
set of OS U.S. Treasury portfolios consists of 29 portfolios, spanning 2-year Treasury notes up
30-year Treasury bonds in increments of one year.

Overall, our OS test assets comprise 154 stock and bond portfolios (77 each) from the 14
distinct cross-sections discussed above. We use these both as a joint cross-section and also to

construct 2'* = 16, 384 possible unique combinations of OS cross-sections.!!

2 Econometric method

This section introduces the notation and summarises the methods employed in our empirical
analysis. We consider linear factor models for the Stochastic Discount Factor and focus on the
SDF representation since we aim to identify the factors that have pricing ability for the joint
cross-section of corporate bond and stock returns.!?

The returns of NV test assets, which are long-short portfolios, are denoted by R, = (Ry; . .. RNt>T7

=1,...T. We consider K factors, f; = (fi;... fx:)', t =1,...T, that can be either tradable

or nontradable. A linear SDF takes the form M, = 1 — (f; — E[f]) " Ay, where Ay € R¥ is the
vector containing the market prices of risk associated with the individual factors. Throughout
the paper, E[X] or pux denote the unconditional expectation of an arbitrary random variable
X.

In the absence of arbitrage opportunities, we have that E[M;R;] = O, hence expected
returns are given by pugr = E[R;] = CyAy, where Cy is the covariance matrix between R, and

S+, and prices of risk, Ag, are commonly estimated via the cross-sectional regression
uR:)\clN+Cf)\f—|—a:C’)\+a, (1)

where C = (1n5,Cy), AT = ()\c,)\}), A is a scalar average mispricing (equal to zero under
the null of the model being correctly specified), 1 is an N-dimensional vector of ones, and
a € RY is the vector of pricing errors in excess of \. (also equal to zero under the null of the

model).

HFurther details about factors and in- and out-of-sample test assets, as well as links to the data sources, can
be found in Internet Appendix TA.1.

12Recall that a factor might have a significant risk premium even if it is not part of the SDF, just because it
has non-zero correlation with the true latent SDF. Hence, in order to identify the pricing measure, focusing on
the SDF representation is the natural choice.
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Such models are usually estimated via GMM, MLE or two-pass regression methods (see,
e.g., Hansen (1982), Cochrane (2005)). Nevertheless, as pointed out in a large literature, the
underlying assumptions for the validity of these methods (see, e.g., Newey and McFadden
(1994)), are often violated (see, e.g., Kleibergen and Zhan (2020) and Gospodinov and Robotti
(2021)), and identification problems arise in the presence of a weak factor (i.e., a factor that
does not have enough comovement with any of the assets, or has very little cross-sectional
dispersion in this comovement, but is nonetheless considered a part of the SDF). These issues
in turn lead to wrong inference for both weak and strong factors, erroneous model selection,
and inflate the canonical measures of model fit.'?

Albeit robust frequentist inference methods have been suggested in the literature for spe-
cific settings, our task is complicated by the fact that we want to parse the entire zoo of bond
and stock factors, rather than estimate and test an individual model. Furthermore, we aim to
identify the best specification—if a dominant model exist—or aggregate the information in the
factor zoo into a single SDF if no clear best model arises. Therefore, we rely on the Bayesian
method proposed in Bryzgalova, Huang, and Julliard (2023), since it is applicable to both trad-
able and nontradable factors, can handle the entire factor zoo, is valid under misspecification,
and is robust to weak inference problems. This Bayesian approach is conceptually simple, since
it leverages the naturally hierarchical structure of cross-sectional asset pricing, and restores the
validity of inference using transparent and economically motivated priors.

Consider first the time-series layer of the estimation problem. Without loss of generality,
we order the K, tradable factors first, ft(l), followed by K, nontradable factors, ft(Q), hence
fi = (ft(l)’T, ft(Q)’T)T and K1+ K5 = K. Denote by Y; = fiUR; the union of factors and returns,
where Y} is a p-dimensional vector.'* Modelling {Y;}._, as multivariate Gaussian with mean py
and variance matrix 3y, and adopting the conventional diffuse prior m(py, 3y) \Ey]_pTH
yields the canonical Normal-inverse-Wishart posterior for the time series parameters (py, Xy )
in equations (A.4)-(A.5) of Appendix A.

The cross-sectional layer of the inference problem allows for misspecification of the factor
model via the average pricing errors « in equation (1). We model these pricing errors, as

in the previous literature (e.g., (Pastor and Stambaugh, 2000) and (Pastor, 2000)), as a ~

3These problems are common to GMM (Kan and Zhang, 1999a), MLE (Gospodinov, Kan, and Robotti,
2019), Fama-MacBeth regressions (Kan and Zhang (1999b), Kleibergen (2009)), and even Bayesian approaches
with flat priors for risk prices (Bryzgalova, Huang, and Julliard, 2023).

141f one requires the tradable factors to price themselves, then Y; = (R/, ft(2)"T)—r and p= N + Ks.
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N (0N, 0*ER), vielding the cross-sectional likelihood (conditional on the time series parameters)

1 1
p(datalA, 02) = (270%)~ ¥ | S| % exp {_ﬁ

where in the cross-sectional regression the ‘data’ are the expected risk premia, pg, and the

(br — CX) '35 (nr — CA)} :

factor loadings, C' = (1n,Cy). The above likelihood can then be combined with a prior for
risk prices (presented below) to obtain a posterior distribution and guide inference and model
selection.

To handle model and factor selection we introduce a vector of binary latent variables v =
(Y0, 715 - -+, VK), where ; € {0,1}. When 7; = 1, the j-th factor (with associated loadings
C;) should be included in the SDF, and should be excluded otherwise.'® In the presence of
potentially weak factors, and hence unidentified prices of risk, the posterior probabilities of
models and factors are not well defined under flat priors. Hence, we introduce a (economically
motivated) prior that, albeit not informative, restores the validity of posterior inference (see
Bryzgalova, Huang, and Julliard (2023)). In particular, we model the uncertainty underlying
the estimation and model selection problem with a (continuous spike-and-slab) mixture prior,

(A, 02, v, w) =7(A| 0%, ¥)m(0H) (v | w)r(w), where

A | 5,07 ~ N0, 7 (7)507).

Note the presence of three new elements, 1;, r(v;), and 7(w), in the prior formulation.'®

First, r(y;) captures the ‘spike-and-slab’ nature of the prior formulation. When the factor
should be included, we have r(; = 1) = 1, and the prior, the ‘slab,” is just a diffuse distribution
centred at zero. When instead the factor should not be in the model, r(y; = 0) = r < 1, the
prior is extremely concentrated—a ‘spike’ at zero. As r — 0, the prior spike is just a Dirac
distribution at zero, hence it removes the factor from the SDF.*7

Second, we set

i = x p; py, (2)

where p; = p,; — (% sz\il pjﬂ-> X 1n, pjis an N x 1 vector of correlation coefficients between

'5In the baseline analysis, we always include the common intercept in the cross-sectional layer, that is, v = 1.

Nevertheless, we also consider 9 = 0, i.e., no common intercept, in the robustness analysis.

2 2

16For the cross-sectional variance scale parameter o2 we assume the customary diffuse prior m(0?) o< o2,
As per Proposition 1 of Chib, Zeng, and Zhao (2020), since the parameter ¢ is common across models and
has the same support in each model, the marginal likelihoods obtained under this improper prior are valid and
comparable.

"We set r = 0.001 in our empirical analysis.

12



factor j and the test assets, and ¢y € R, is a tuning parameter that controls the degree
of shrinkage across all factors. That is, factors that have vanishing correlation with asset
returns, or extremely low cross-sectional dispersion in their correlations (hence cannot help
in explaining cross-sectional differences in returns), have a low value of ¢, and are therefore
endogenously shrunk toward zero. Instead, such prior has no effect on the estimation of strong
factors since these have large and disperse correlations with the test assets, yielding a large v,
and consequently a diffuse prior. Pure ‘level’ factors—i.e., factors that have no explanatory
power for cross-sectional differences in asset returns, but help in capturing the average level
of risk premia across assets—can be accommodated removing the free intercept in the SDF
(since it would be collinear with a pure level factor), and use simple correlations (instead of
cross-sectionally demeaned ones) in equation (2), hence setting ¢; = ¢ X pijj. We consider
this particular case among our robustness exercises, and it leaves our main findings virtually
unchanged.

Third, the prior 7(w) not only gives us a way to sample from the space of potential models,
but also encodes belief about the sparsity of the true model using the prior distribution (v, =

l|lwj) = w;. Following the literature on predictors selection, we set
(v = l|lw;) = wj, w; ~ Beta(ay,b,) .

Different hyperparameters a,, and b, determine whether one a priori favors more parsimonious

models or not. The prior expected probability of selecting a factor is simply aw‘ﬂfbw. We set
a,, = b, = 1 in the benchmark case, that is, we have a uniform (hence flat) prior for the model
dimensionality and each factor has an ex ante expected probability of being selected equal to
50%.18

Note that the only free ‘tuning’ parameter in our setting, ¢ in equation (2), has a straight-
forward economic interpretation, since the expected prior Sharpe ratio (SR) achievable with the
factors is just E-[SR3 | 0?] = $1po? S Bl pr as T — 0.19 That is, in our empirical analysis
we report results for various prior expectations of the Sharpe ratio achievable in the economy.?’

The above hierarchical system yields a well defined posterior distribution from which all

8However, we could set for instance, a,, = 1 and b, >> 1 to favor sparser models.
YWithout a uniform prior for the SDF dimensionality the prior Sharpe ratio value becomes E,[SR} | 0% =
aw

- Yo Zszl [);r pr as r — 0. Hence, beliefs about the prior Sharpe ratio and model dimensionality fully pin
down our hyperparameters.

20More precisely, we report results for different prior values of , /E, [SR% | o2.

13



the unknown parameters and quantities of interest (e.g., R?, SDF-implied Sharpe ratio, and
model dimensionality), can be sampled to compute posterior means and credible intervals via
the Gibbs sampling algorithm in Appendix A. Most importantly, these posterior draws can be
used to compute posterior model and factor probabilities, and, hence, identify robust sources
of priced risk and—if such model exists—a dominant model for pricing assets.

Model and factor probabilities can also be used for aggregating optimally, rather than
selecting, the pricing information in the factor zoo. For each possible model ™ that one
could construct with the universe of factors, we have the corresponding SDF: M, m = 1 —
(frAm — E[ft,wn])T A,m. Therefore, we construct a BMA-SDF by averaging all possible SDFs

using as weights the posterior probability of each model:?!

MPMA = Z M; om Pr (4™|data) ,

m=1
where m is the total number of possible models.

The BMA aggregates information about the true latent SDF over the space of all possible
models, rather than conditioning on a particular model. At the same time, if a dominant model
exists (a model for which Pr(y™|data) ~ 1), the BMA will use that model alone. Impor-
tantly, pricing with the BMA-SDF is robust to the problems arising from collinear loadings of
assets on the factors, since any convex linear combination of factors with collinear loadings has
exactly the same pricing implications. Moreover, the BMA-SDF can be microfounded, as in
Heyerdahl-Larsen, Illeditsch, and Walden (2023), thanks to the equivalence of a log utilities and
heterogenous beliefs economy with a representative agent using the Bayes rule. Furthermore,
BMA aggregation is optimal under a wide range of criteria, but in particular, it is optimal on
average: no alternative estimator can outperform it for all possible values of the true unknown
parameters.?? Finally, since its predictive distribution minimizes the Kullback-Leibler informa-
tion divergence relative to the true unknown data-generating process, the BMA aggregation
delivers the most likely SDF given the data, and the estimated density is as close as possible

to the true unknown one, even if all of the models considered are misspecified.

21Gee, e.g., Raftery, Madigan, and Hoeting (1997) and Hoeting, Madigan, Raftery, and Volinsky (1999).
%2Gee, e.g., Raftery and Zheng (2003) and Schervish (1995).
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3 Estimation results

In this section, we apply the hierarchical Bayesian method to a large set of factors proposed in
the previous bond and equity literature. Overall, we consider 40 tradable and 14 nontradable
factors, yielding 2°% ~ 18 quadrillion possible models for the combined bond and stock factor
z00. In Sections 3.1 and 3.3 we only consider returns for the bond portfolios in excess of the
short term risk free rate (calculated as outlined in Section 1). In Section 3.2, we also use
duration-adjusted excess returns, as well as U.S. Treasury portfolios, to disentangle the credit

and Treasury term structure components of corporate bond returns.

3.1 Co-pricing bonds and stocks

We now consider the pricing power of the 54 factors to gauge to what extent the cross-section
of corporate bond and stock returns is priced by the joint factor zoo. The IS test assets include
the 50 bond and 33 stock portfolios described in Section 1 in addition to the 40 tradable factor
portfolios (N = 123). Throughout, we use the continuous spike-and-slab approach described in
Section 2. To report the results, we refer to the priors as a fraction of the ex post maximum
Sharpe ratio in the data, which is equal to 5.4 annualized for the joint cross-section of portfolios,
from a very strong degree of shrinkage (20%, i.e., a prior annualized Sharpe ratio of 1.0), to
a very moderate one (80% or a prior annualized Sharpe ratio of 4.2). Given that the results
demonstrate considerable stability across a wide range of prior Sharpe ratio values, we present
selected findings for a prior set at 80% of the ex post maximum Sharpe ratio, as this choice

tends to yield the best out-of-sample performance.??

3.1.1 The co-pricing SDF

We start by asking which factors are likely components of the latent Stochastic Discount Factor
in the economy. Figure 1 reports the posterior probabilities (given the data) of each factor (i.e.,
E[v,|data], Vj) for different values of the prior Sharpe ratio achievable with the linear SDF
(expressed as a percentage of the ex post maximum Sharpe ratio). In Figure 2 we list all 54
factors in increasing order of posterior probabilities (top panel), for a prior Sharpe ratio of 80%

of the maximum ex post Sharpe ratio, along with the corresponding annualised posterior means

23 Additional results for different values of the prior Sharpe ratio are reported in Table A.2 of the Appendix.
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Figure 1: Posterior factor probabilities: co-pricing factor zoo.

Posterior probabilities, E[y;|data], of the 54 bond and stock factors described in Appendix B. The labels are
ordered by each factor’s average posterior probability across the four levels of shrinkage (high to low). Test
assets include the 83 bond and stock portfolios and the 40 tradable bond and stock factors (N = 123). The
prior distribution for the j'" factor inclusion is a Beta(1, 1), yielding a 0.5 prior expectation for 7. Posterior

probabilities for different values of the prior Sharpe ratio, |/E, [SR?E | 02], set to 20%, 40%, 60% and 80% of

the ex post maximum Sharpe ratio of the 83 bond and stock portfolios and tradable factors. Sample period:
1986:01 to 2022:12 (T = 444).

of the price of risk of the factors (i.e., E[\;|data], Vj, bottom panel).?*

Recall that we have a uniform (hence flat) prior for the model dimensionality and each
factor has an ex ante expected probability of being selected equal to 50% (dashed horizontal
lines in Figure 1 and top panel of Figure 2). Figure 1 illustrates that—with some notable
exceptions—most factors proposed in the corporate bond and equity literatures have (individ-
ually) a posterior probability of being part of the SDF that is below its prior value of 50%.

Several observations are in order. First, given their posterior probabilities across the range
of prior Sharpe ratios considered, there is strong evidence for including PEADB and PEAD

(i.e., respectively, the bond and equity post-earnings announcement drift factors) as a source of

24Posterior probabilities and market prices of risk for different priors are tabulated in Table A.2 of the
Appendix. See Table A.1 in Appendix B for a detailed description of the factors.
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Figure 2: Posterior factor probabilities and market prices of risk — joint bond and stock factor
200 (excess bond returns).

Posterior factor probabilities (top panel), E[y;|data], and the corresponding posterior market prices of risk
(bottom panel), E[);|data], of the 54 bond and stock factors described in Appendix B. Test assets include the
83 bond and stock portfolios and the 40 tradable bond and stock factors (N = 123). The prior distribution for
the j*I factor inclusion is a Beta(l, 1), yielding a 0.5 prior expectation for ;- The prior Sharpe ratio is set to
80% of the ex post maximum Sharpe ratio of the 83 stock and bond portfolios and tradable factors. Sample
period: 1986:01 to 2022:12 (T = 444).

priced risk in the SDF. Partially, this is a rather surprising result, as PEADB has not specifically
been proposed as a priced risk factor in the previous literature. Nozawa, Qiu, and Xiong (2023)
are the first to document a post-earnings announcement drift in corporate bond prices, and they
rationalise their finding with a stylised model of disagreement. They also show that a strategy
that purchases bonds issued by firms with high earnings surprises and sells bonds of firms with
low earnings surprises generates sizeable Sharpe ratios and large risk-adjusted returns. On the

other hand, Bryzgalova, Huang, and Julliard (2023) and Avramov, Cheng, Metzker, and Voigt
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(2023) find strong evidence that the stock market post-earnings announcement drift (PEAD)
factor of Daniel, Hirshleifer, and Sun (2020) exhibits a particularly strong posterior probability
of being part of the SDF for equity returns. In fact, PEAD is the only other tradable factor with
a posterior probability of being part of the SDF that prices the joint cross-section of corporate
bond and stock returns that is above 50%. That is, the only two tradable factors with high
posterior probabilities are the bond and stock versions of the post-earnings announcement drift.
Note that, in equilibrium models in which rational agents with limited risk bearing capacity
face behavioural asset demand, the drivers of the latter become part of the pricing measure—
exactly as we find (see, e.g., De Long, Shleifer, Summers, and Waldman (1990)). Note also that,
as shown in Tables IA.Il and IA.IIl of the Internet Appendix, these are the tradable factors
with the highest Sharpe ratio in our full sample. Moreover, PEADB has the highest Sharpe
ratio among bond factors also in the first and second halves of the sample (1986:01 to 1999:12
and 2000:01 to 2022:12, respectively), while PEAD has the highest Sharpe ratio among equity
factors in the first half, and one of the highest in the second half.

Second, the stock as well as the bond market factors (MKTS and MKTB, respectively) both
exhibit posterior probabilities below 50% for the full range of prior Sharpe ratios for the joint
cross-section of returns. Nevertheless, when separately pricing the cross-sections of bond and
stock returns with only the factors in their respective zoo, both market indices become likely
components of the SDF: for all prior levels in the MKTS case, and when sparse models are
ex ante considered more likely in the MKTB case (see, respectively, Tables TA.IV and TA.V
of the Internet Appendix). This confirms the findings that the equity market index contains
valuable information for pricing stocks in an unconstrained SDF based on stock factors (as in
(Bryzgalova, Huang, and Julliard, 2023)) and that the bond market index is a valuable factor
when focusing on low dimensional bond models for pricing corporate bonds (as in (Dickerson,
Mueller, and Robotti, 2023)). However, when the space of potential factors is expanded to
include both bond and stock factors, without dimensionality restrictions on the SDF as we do
in our baseline co-pricing exercise, models with MKTS and MKTB overall perform worse than
denser models containing factors from both zoos. That is, the information in the two market
indices appears to be spanned by the other factors in the zoos. Note that this finding is unlikely
to be driven by the market indices acting as ‘level’ or ‘weak’ factors since asset returns display
large and well dispersed loadings on these factors, the market prices of risk they command are

substantial when included in the SDF (see bottom panel of Figure 2), and similar results hold
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when omitting the common intercept from the SDF models considered (see Table TA.VT of the
Internet Appendix).

Third, in Figure 1 there is a small number of nontradable factors that have posterior prob-
abilities of being part of the SDF above 50% percent for all values of the prior Sharpe ratio:
the slope of the Treasury yield curve (YSP, (Koijen, Lustig, and Van Nieuwerburgh, 2017)),
the AAA/BAA yield spread (CREDIT, (Fama and French, 1993)), and idiosyncratic equity
volatility (IVOL, (Campbell and Taksler, 2003)). Interestingly, the term premium and default
risk factors had originally been suggested in Fama and French (1993) exactly for the purpose
of co-pricing bonds and stocks.

Fourth, while there are a few factors for which the posterior probability is roughly equal
to the prior (implying that at least some of these factors are likely to be weakly identified at
best), there are a large set of factors that are unlikely to be individually part of the SDF pricing
the joint cross-section of bond and stock returns. Specifically, besides PEADB and PEAD, the
tradable bond and stock market factors are overall unlikely to be individually included in the
SDF. For instance, with a prior Sharpe ratio set to 80% of the ex post maximum, the posterior
probabilities of 29 of the 40 tradable bond and stock factors are below 40% (see top panel of
Figure 2). Nevertheless, as shown and discussed extensively below, this does not imply that
these factors, jointly, do not carry relevant information to characterise the true latent SDF.

Finally, as shown in Figure TA.2 and Tables IA.VI-TA.VIII of the Internet Appendix, re-
moving the free intercept, and the consequent prior penalization of pure level factors, leaves all
of the above results virtually unnchaged.

The bottom panel of Figure 2 reports the posterior (annualized) market prices of risk of the
factors (that are also tabulated, for different values of the prior Sharpe ratio, in Table A.2 of
the Appendix). All five factors with posterior probabilities higher than their prior values (i.e.,
PEADB, IVOL, PEAD, CREDIT and YSP) command substantial market prices of risk. Out of
the next fifteen factors with highest (individual) posterior probabilities, ten are also nontradable
in nature. That said, the risk prices of many of these nontradable factors are small and in some
cases effectively shrunk toward zero. This is due to the fact that these are likely weak factors in
the joint cross-section of corporate bond and stock returns.?®> The occurrence of weak factors,

which, in fact, is most common among the nontradable ones, causes identification failure and

25That is, their correlations with the test assets are small and have little cross-sectional dispersion. See, e.g.,
Gospodinov, Kan, and Robotti (2019), Kleibergen (2009), and Bryzgalova, Huang, and Julliard (2023) for a
formal definition of weak and level factors.
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Figure 3: Posterior SDF dimensionality and Sharpe ratios — co-pricing factor zoo.

Posterior distributions of the number of factors to be included in the co-pricing SDF (top panel) and of the
SDF-implied Sharpe ratio (bottom panel), computed using the 54 bond and stock factors described in Appendix
B. The labels are ordered by each factor’s average posterior probability across the four levels of shrinkage (high
to low). The prior distribution for the ;" factor inclusion is a Beta(1, 1), yielding a 0.5 prior expectation for
«v;. The prior Sharpe ratio is set to 80% of the ex post maximum Sharpe ratio of the bond and stock portfolios
and tradable factors. Sample period: 1986:01 to 2022:12 (T = 444).

invalidates canonical estimation approaches (e.g., GMM, MLE, and two-pass regressions). This
is not an issue for our Bayesian method, which restores inference, by design, by regularizing
the marginal likelihood.

The above findings raise the question of whether the handful of most likely factors that we
have identified are enough to characterise the true, latent, SDF that jointly prices bonds and
stocks. Moreover, are the less likely to be included factors really devoid of useful pricing infor-
mation? Since our method does not ex ante impose the existence of a unique, low dimensional,
and correctly specified model (all assumptions that are needed with conventional frequentist
asset pricing methods), we can formally answer these questions.

The top panel of Figure 3 reports the posterior dimensionality of the SDF in terms of
observable factors to be included in it, and the bottom panel shows the posterior distribution

of the Sharpe ratios achievable with such an SDF. It is evident that the low dimensional models
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suggested in the previous corporate bond and equity literature have very weak support in the
data, and are misspecified with very high probability as a substantial number of factors is
needed to construct a likely SDF: the posterior median number of factor is 23 with a centered
95% coverage of 16 to 30 factors. In fact, the posterior probability of a model with less than
10 factors is virtually zero, indicating that the quest for a sparse, unique, SDF model among
the observable factors in the joint bond and stock factor zoo is misguided at best.

The bottom panel of Figure 3 highlights that the ex post achievable Sharpe ratio given the
SDF is not unrealistically large (recall that the ex post maximum Sharpe ratio in the data is
5.4), suggesting that many factors are likely to cover a lot of common risk. Furthermore, Table 1
shows that albeit the most likely (top five) factors to be included in the SDF are responsible
for a substantial Sharpe ratio (E[SRs|data], about 0.79 to 1.23 for a 60% to 80% prior in Panel

2
% |datal) is

A), the share of the SDF squared Sharpe ratio generated by these factors (E[
quite limited, highlighting that the less likely factors are needed, jointly, to provide an accurate
characterisation of the risks priced by the true latent SDF. This feature of the data arises not
only when jointly pricing bonds and stocks (Panel A), but also when separately focusing on the
pricing of the two asset classes using their respective factor zoos (Panels B and C).

In Figure 4 we plot the cumulative SDF implied Sharpe ratio when subsequently adding
factors ordered on their (individual) posterior probability. While the Sharpe ratio is monotoni-
cally increasing in the number of factors, some factors seem to add more to the implied Sharpe
ratio than others. For example the factors ranked 8 to 11 (INFLC, LVL, UNCr, INFLV) do
not seem to add much individually, while the Sharpe ratio increases distinctly once factor 12
(CRY) is added. This is due to the fact that many factors are potentially noisy proxies for the
same fundamental sources of risk that are important for the SDF. All factors that are noisy
proxies for a particular fundamental source of risk will display nonzero posterior probabilities
and market prices of risk. However, the Sharpe ratio only jumps once the first of the factors
spanning (at least partially) a common risk is included in the analysis. Instead, subsequent
factors spanning the same risk generate a much smaller increase in the Sharpe ratio, due to the
improved signal extraction of the common risk. Further examining the four factors in spots 8 to
11, these are all nontradable in nature and related to inflation, interest rates and uncertainty.
Similarly, factors in spots 17 to 20 are all related to different measures of macroeconomic un-
certainty. While it is important to include all of these factors in the SDF to increase the signal

to noise ratio, their individual marginal contribution to the Sharpe ratio may be minimal as
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Table 1: Most likely (top five) factor contribution to the SDF

Total prior Sharpe ratio
20%  40% 60%  80%

Panel A: Co-pricing SDF

E[SR/|datal 016 042 079 123
E (57 |datal 001 004 013 028
Panel B: Bond SDF
E[SR/|datal 022 064 109 1.44
E[ st |datal 002 016 044 068
Panel C: Stock SDF
E[SR;|datal 017 041 072 112
E (57 |datal 001 007 020 043

Posterior mean of the implied Sharpe ratios, E[SRy|data], and share of the SDF squared Sharpe ratio,
E[SR? /SR? |data], of the top five factors. The subsets are split across the five most likely factors to be

m

included in the BMA-SDF versus the remaining factors. The top five co-pricing factors are PEADB, IVOL,
PEAD, CREDIT and YSP. The top five bond factors are PEADB, CREDIT, MOMRBS, IVOL and YSP. The
top five stock factors are PEAD, MKTS, IVOL, CMAs and EPUT. Panels A, B and C report results for the

co-pricing, bond-only and stock-only BMA-SDFs, respectively, using the corresponding factor zoos.

they have common spanning of the underlying priced risk.

3.1.2 Which risks?

Next, we further decompose the posterior dimensionality of the SDF, and its implied Sharpe
ratio, to better understand which types of risk are likely to be part of the true latent pricing
measure, and to what extent different factors capture common information.

Table 2 presents the decomposition of the posterior SDF dimensionality and Sharpe ra-
tio split between nontradable and tradable bond and stock factors, for different prior values.
Panel A reports results for the pricing of the joint cross-section of stock and corporate bond
returns using factors from both zoos to construct the SDF. Instead, Panels B and C focus,
respectively, on the separate pricing of corporate bonds and stocks using only factors from their
respective zoos. Several salient patterns are evident.

First, Panel A shows that an accurate characterisation of the pricing measure requires an

SDF that is dense not only in the overall space of observable factors (as per top Panel of Figure
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Figure 4: Cumulative co-pricing SDF implied Sharpe ratio.

We incrementally compute the implied Sharpe ratio of the SDF by including sequentially each of the 54 factors
(including all factors up to that point) ordered by their posterior probability of inclusion (see top Panel of
Figure 2). We estimate the factor implied Sharpe ratio as the annualized standard deviation of the SDF. The
vertical red dashed line denotes the posterior median number of factors that should be included in the SDF.
The light blue squares (red triangles) represent tradable bond (stock) factors. The dark blue circles represent
nontradable factors. The light blue dashed lines and shaded area denote the centred 90% confidence interval.
The 54 factors that comprise the co-pricing factor zoo are described in Appendix B. The prior Sharpe ratio
is set to 80% of the ex post maximum Sharpe ratio of the 83 bond and stock portfolios and tradable factors.
Sample period: 1986:01 to 2022:12 (T' = 444).

3), but also over the individual subspaces of nontradable as well as bond and stock tradable
factors: the posterior mean number of factors is about 7 for notradable factors, 6 to 8 for bond,
and 9 to 12 for stock tradable factors. Furthermore, this density of the SDF is not driven by
the co-pricing task: even pricing only bonds (Panel B) or stocks (Panel C), requires about 7
nontradable factors, 6 to 8 for bond, and 10 to 12 stock tradable factors.

Second, each of the three categories of factors is economically important. Focusing on the
moderate prior shrinkage case (i.e., 80% of the ex post achievable Sharpe ratio) in Panel A,
the posterior mean of the (annualised) Sharpe ratio ascribable to the various types of factors
(E[SRy|datal) is 1.12 for the notradable ones, and 1.58 and 1.78, respectively, for the bond and
stock tradable ones.

Third, there is substantial common priced information across the categories of factors, as

23



Table 2: SDF dimensionality and SR decomposition by type of factor

Total prior SR Total prior SR

20% 40% 60% 80% 20% 40% 60%  80%
Panel A: Co-pricing SDF
Nontradable factors Tradable factors
Mean 6.93 6.96 6.93 6.84  19.47 18.86 17.85 15.48
5% 4 4 4 4 14 14 13 10
95% 10 10 10 10 25 24 23 21
E[SRf|data] 0.21 0.43 0.70 1.12 0.86 1.44 191 2.26
2
E[oif|data] 0.01 0.04 010 023 013 036 063 084
Bond tradable Stock tradable factors
Mean 778 7.56 7.7 6.23 11.69 11.31 10.68 9.25
5% 5 4 4 3 8 7 7 5
95% 11 11 10 10 16 15 15 13
E[SRf|data] 0.56 0.96 1.28 1.51 0.66 1.14 1.50 1.78
2
E[oif|data] 0.06 0.17 030 039 008 023 040 053
Panel B: Bond SDF
Nontradable factors Tradable factors
Mean 6.96 6.98 7.08 7.09 788 778 7.35  6.32
5% 4 4 4 4 5 5 4 3
95% 10 10 10 10 11 11 11 10
E[SRf|data] 0.18 0.38 0.62 0.99 053 092 1.25 1.43
2
E[srf|data] 0.01 0.05 0.14 034 010 030 053 065
Panel C: Stock SDF
Nontradable factors Tradable factors
Mean 6.97 7.00 7.03 6.98 11.75 11.45 1091 9.84
5% 4 4 4 4 8 7 7 6
95% 10 10 10 10 16 15 15 14
E[SRys|data] 0.14 0.29 0.48 0.78 060 1.03 1.38 1.69
2
E[sif|data] 0.01 0.03 009 023 012 035 062 087

Posterior means of: number of factors (with 90% C.I.), implied Sharpe ratios, E[SRy|data], and ratio of SR?
to the total SDF Sharpe ratio, E[SR?/SRE,L\data], of a subset of factors. Subsets are split across tradable and
nontradable factors, and within tradable factors we further separate bond and stock factors. Panels A, B and
C report results for the co-pricing, bond-only and stock-only BMA-SDFs, respectively, using the corresponding
factor zoos.
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the sum of the Sharpe ratios generated by the three sets of factors (1.1241.51+1.78 = 4.41 in
Panel A) is much larger than the average posterior SDF implied Sharpe ratio (which is around
2.5 in the bottom panel of Figure 3). This overlap in risks captured by different types of factors
is particularly strong among the tradable ones, where the sum of the Sharpe ratios of bond and
stock factors in the SDF is 1.51 + 1.78 = 3.29, while the posterior mean Sharpe ratio for all
tradable factors jointly is about 2.26.

The degree of common spanning of priced risks can be formally assessed focusing on the
estimated share of the squared Sharpe ratio of the SDF generated by the different types of
factors, E[%Mata]. Summing the shares in Panel A ascribable to, respectively, nontradable
(0.23) and tradable bond (0.39) and stock (0.53) factors yields a total of 1.15, i.e., more than
100%, indicating substantial commonality among the fundamental risks spanned by the different
types of factors. Furthermore, the sum of the shares for bond and stock factors (0.39 4+ 0.53 =
0.92) is much larger than the share due to all tradable factors jointly (0.84). That is, tradable
bond and stock factors capture, at least partially, the same underlying sources of priced risk.
Similarly, summing the shares of squared Sharpe ratios ascribable to nontradable and tradable
factors in Panels A to C yields 1.05, 0.99, and 1.1, indicating some common spanning between
tradable and nontradable factors driven mostly by equity factors.

Given the saliency of tradable factors for the SDF outlined above, with their share of the
squared Sharpe ratio of the SDF in the two thirds to four fifths ballpark, a natural question
is what types of risks do these factors capture. Using the method pioneered by Campbell and
Shiller (1988) and extended by Vuolteenaho (2002), we classify the tradable factors into those
that relate more to discount rate news and those for which instead cash-flow news are more
important.?® Section TA.3 of the Internet Appendix details the empirical (VAR) methodology
used for categorizing our 40 tradable stock and bond factors as (mostly) driven by either
discount rate news or cash-flow news. The estimated positioning of the individual factors on
the spectrum of discount rate and cash-flow news is summarized in Figure 5. Interestingly, the
two most likely tradable components of the SDF, the post-earnings announcement drift factors
in bonds and stocks, PEAD and PEADB, appear mostly driven by discount rate news.

Table 3 decomposes, for a range of prior values, the contribution to the SDF dimensionality
and Sharpe ratio of tradable factors mostly related to discount rate and cash-flow news. Panel

A reports results for the joint pricing of bonds and stocks with all factors, while Panels B

26See Koijen and Van Nieuwerburgh (2011) and more recent work by Zviadadze (2021).
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Figure 5: Tradable factor zoo decomposition — cash-flow and discount rate news.

The figure plots the ordered ratio of the variance of the discount rate news component to total variance of the
residuals, V(Ndr)/V(u), estimated using equation (IA.13) in Internet Appendix IA.3, for each bond and stock
tradable factor. The dashed horizontal line corresponds to the median value of the ratio (0.39). The first 20
factors are associated (in a relative manner) with discount rate news, the latter 20 factors are associated more
with cash-flow rate news. Bond factors are displayed in blue while stock factors are displayed in red on the
X-axis.

and C focus on the two asset classes and factor zoos separately. The left (right) panels per-
tain to discount rate (cash-flow) news. First, discount rate news factors marginally dominate
the composition of the co-pricing SDF in Panel A. The average factor implied Sharpe ratios,
E[SRy|datal, of the discount rate news driven factors are always higher than the cash-flow
driven counterparts. This translates into a much higher proportion of the total implied Sharpe
ratio being driven by DR-related factors. For a prior level equal to 80% of the ex post achievable
Sharpe ratio, DR driven factors comprise 75% of the total Sharpe ratio variance, compared to
56% for the CF driven factors. Second, in Panel B, when considering the corporate bond SDF,
the total Sharpe ratio is predominantly driven by bond factors relating to DR news. The factor
implied SR, E[SRy|data] and E[%Mam} for DR driven factors is close to double that of the
CF driven factors. Finally, in Panel C, when considering only stock factors, both discount and

cash-flow news seem to play an equally important role, providing very similar contributions to
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Table 3: Discount rate or cash-flow news?

Discount rate (DR) news Cash-flow (CF) news

Total prior SR Total prior SR,
20% 40% 60% 80% 20% 40% 60% 80%

Panel A: Co-pricing SDF, stock & bond tradable factors

Mean 9.81 9.62 9.27 8.18 9.66 9.25 8.58 7.31
5% 6 6 6 5 6 6 ) 4
95% 13 13 13 12 13 13 12 11

E[SRf|data] 0.65 1.19 1.70 2.10 0.60 1.06 1.46 1.77

2
E[oxf|data] 008 026 052 075 007 021 039 0.6
Panel B: Bond SDF, bond tradable factors
Mean 486 477 460 405 292 279 257 219
5% 2 2 2 2 110
95% 77T 1T 5 5 5 4

E[SR/|data] 049 086 1.19 142 026 049 0.67 0.80

2
E[sxf|data] 0.05 0.4 027 036 002 005 010 0.15
Panel C: Stock SDF, stock tradable factors
Mean 494 485 467 413 674 646 601 5.12
5% 2 2 2 2 43 3 2
95% 8 T T 7 0 10 9 8

E[SRy|data] 041 081 118 148 052 091 123 149
2
E[srf|data] 0.04 013 028 041  0.05 016 029 041

The table reports the posterior means of the number of factors (with 90% C.I.), implied Sharpe ratios,
E[SRy|data], and the ratio of SR? to the total SDF Sharpe ratio, E[SR}/SR?, |data], of a subset of fac-
tors. The subsets are split across factors which we classify as discount rate news (DR) driven or cash-flow (CF)
news driven. The CF and DR decomposition follows Vuolteenaho (2002) and is detailed in Section TA.3 of the
Internet Appendix. Panels A, B and C report results for the co-pricing, bond-only and stock-only BMA-SDFs,

respectively, using the corresponding factor zoos.

the Sharpe ratio of the SDF.

3.1.3 Cross-sectional asset pricing

We now turn to the asset pricing performance of the BMA-SDF based on the joint cross-section
and factor zoos, as well as based on bond and stock portfolios separately. In Table 4 we report
results for in-sample cross-sectional pricing using various performance measures, while out-of-
sample results are summarized in Table 5. The in-sample assets for the joint cross-section in
Panel A of Table 4 are the 83 portfolios of stocks and bonds (described in Section 1) plus 40
tradable factors (N = 123). Panels B and C focus instead on only bonds (50 portfolios and
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16 bond tradable factors, N = 66) and stocks (33 anomaly portfolios and 24 stock tradable
factors, N = 57), respectively. The out-of-sample test assets in Table 5 comprise of 77 bond
portfolios and 77 stock portfolios (described in Section 1) that are considered jointly in Panel A
and separately in Panels B and C, respectively.

When assessing the pricing performance, we compare our BMA-SDF for different levels of
prior Sharpe ratio with the performance of a number of benchmark models. In particular, we
consider the bond CAPM (CAPMB), the stock CAPM, the Fama and French (1993) five-factor
model (FF5), the intermediary asset pricing model of He, Kelly, and Manela (2017) (HKM), the
PCs-based SDF of Kozak, Nagel, and Santosh (2020) (KNS) and the risk premia PCA approach
of Lettau and Pelger (2020) (RPPCA).?" In addition, since most of the previous literature has
focused on selection, rather than aggregation, of pricing factors, we also include the respective
‘top factor’ models (Top) from our Bayesian analysis, that comprises only the factors with
posterior probabilities exceeding the prior one (for the joint cross-section for example, this is a
five-factor model with PEADB, IVOL, PEAD, CREDIT, and YSP). All the benchmark model
SDFs are estimated via a GLS version of GMM.2® Note that for the cross-sectional out-of-sample
pricing we do not refit the BMA-SDF or the other benchmark models to the new data. Instead,
we use the estimated parameters from the respective in-sample pricing exercises.

For the in-sample pricing in Table 4, a few observations are in order. First and foremost,
the BMA-SDF using moderate shrinkage (80% of the prior Sharpe ratio) outperforms virtually
all benchmark models on almost all dimensions considered, with the best alternative model
being KNS. Second, all low dimensional models do not perform well. This should not come
as a surprise given the discussion in Section 3.1.2 that implies that all low dimensional models
are both misspecified with very high probability and strongly rejected by the data. In fact,
the performance of both the bond and stock CAPM is rather underwhelming compared to
the BMA-SDF. Moreover, popular models such as FF5 and HKM do not perform particularly
well either. Third, the low dimensional Top factor model, albeit better performing than the
low dimensional models from the literature, delivers worse pricing than the BMA-SDF with
moderate shrinkage, once again pointing out that aggregation of factors, rather than selection,
is preferred by the data. Or in other words, highlighting that just the most likely factors are

not sufficient to provide an accurate characterization of the risks spanned by the true latent

2"The SDFs of both KNS and RPPCA are reestimated using our data and the methods proposed in the
original papers. Details of the construction of all benchmark models are reported in Appendix D.

Z8Gee, e.g., Cochrane (2005, pp. 256-258).
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SDF. Fourth, the results are fairly consistent moving through the three panels. Apart from the
BMA-SDF, KNS and (albeit to a lesser extent) RPPCA deliver consistently better in-sample
pricing than the low dimensional models.

The co-pricing BMA-SDF performs exceptionally well out-of-sample (see Panel A of Ta-
ble 5). While KNS is a close contender when it comes to the in-sample performance, the
BMA-SDF strongly dominates KNS out-of-sample. The superiority of the BMA-SDF is less
evident when separately considering the cross-sections of bonds and stocks, and SDFs based
only on their specific factor zoos (see Panels B and C, respectively), once again highlighting the
importance of both sets of factors for a complete characterisation of the SDF, but still performs
better OS than all benchmark models we consider.

Obviously, there is a legitimate concern that the strong OS performance of the co-pricing
BMA-SDF might be driven by the particular, yet rich, selection of test assets. To address
this concern, we also consider the separate pricing of all the possible combinations of the 14
different cross-sections comprising our OS test assets. Figure 6 visualises the performance of
the BMA-SDF vis-a-vis the best competitor, KNS, by depicting the distributions of different
measures of fit across 2'* = 16,384 OS cross-sections. For the cross-sectional R%; s, RMSE
and MAPE;, there is virtually no overlap in the distributions for the co-pricing BMA-SDF and
KNS, with the former clearly besting the latter, implying that the Bayesian approach delivers
strictly better OS pricing than its best competitor. There is only an overlap in the distribution
when considering R%; 4 as the measure of fit, yet the BMA-SDF outperforms KNS in 96.6% of
the OS cross-sections and its measure of fit concentrates on much higher values.

Given the findings in Tables 4 and 5 that bonds and stocks can be accurately priced sepa-
rately with BMA-SDFs constructed based only on their respective factor zoos, a natural question
is whether only bond or stock factors are enough to price jointly both asset classes. We answer
this question in Figure 7 where we compare the OS pricing performance of the co-pricing BMA-
SDF (in red, from Panel A of Table 4) to the one of BMA-SDFs constructed separately with
only bond (in blue, from Panel B of Table 4) and stock (in yellow, from Panel C of Table 4)
factors, respectively. As test assets we use once more the 16,384 combinations of our OS bond
and stock cross-sections. Throughout, the co-pricing BMA-SDF exhibits much lower pricing
errors and much higher R%s compared to the bond or stock only BMA-SDFs. That is, in order
to price the joint cross-section of bond and stock excess returns, we need information from both

factor zoos.
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Table 4: In-sample cross-sectional asset pricing performance.

BMA Prior Sharpe Ratio CAPM CAPMB FF5 HKM Top KNS RPPCA
20%  40% 60%  80%
Panel A: Co-pricing bonds and stocks

RMSE 0.214 0.203 0.186 0.168 | 0.260 0.278 0.258 0.259 0.230 0.166  0.201
MAPE 0.167 0.154 0.140 0.126 | 0.194 0.221 0.198 0.192 0.171 0.126  0.137
RY,¢ 0153 0.240 0.358 0.479 | -0.244  -0.426  -0.233 -0.238 0.023 0.489  0.251
R%;¢ 0106 0.169 0.232 0.286 | 0.078 0.083 0.087 0.078 0.263 0.176  0.186

Panel B: Pricing bonds

RMSE 0.178 0.146 0.121 0.103 | 0.209 0.213 0.202 0.206 0.159 0.195 0.189
MAPE 0.127 0.108 0.091 0.078 | 0.146 0.135 0.142 0.145 0.124 0.113  0.084
RY,¢ 0190 0454 0.628 0.731 | -0.107  -0.157  -0.038 -0.080 0.355 0.028  0.094
R%;s 0217 0.305 0.383 0.445 | 0.180 0.201 0.244 0.181 0.551 0.064 0.231

Panel C: Pricing stocks

RMSE 0230 0242 0237 0220 | 0292 0264 0275 0292 0.365 0162 0.230
MAPE 0.186 0.190 0.182 0.165 | 0.229 0211  0.221 0.226 0.306 0.133  0.173
R%,¢  0.020 -0.080 -0.035 0.109 | -0.570  -0.282 -0.392 -0.574 -1.451 0.515  0.022
RZ,, 0.145 0213 0.285 0.355| 0.120  0.118  0.130 0.121 0.301 0.311 0.315

In-sample asset pricing performance of the Co-pricing BMA-SDF (Panel A), the Bond BMA-SDF (Panel B)
and the Stock BMA-SDF (Panel C), notable factor models, and the top five factors with an average posterior
probability greater than 50%. In each panel, the models are estimated using the respective factor zoos. Bond
returns are computed in excess of the one-month risk-free rate of return. We use GMM-GLS to estimate factor
risk prices for CAPM, CAPMB, the and Fama and French (1992, 1993) model, which includes the MKTS, SMB,
HML, DEF and TERM factors, and the tradable two-factor He, Kelly, and Manela (2017) model, HKM. KNS
stands for the SDF estimation of Kozak, Nagel, and Santosh (2020), with tuning parameter and number of
factors chosen by twofold cross-validation. RPPCA is the Risk-Premia-PCA of Lettau and Pelger (2020), with
five-factors and k set to 20. In Panel A the models are estimated with the 83 bond and stock portfolios and
the 40 tradable bond and stock factors (N = 123), Panel B (bond only) uses the 50 bond portfolios and 16
bond factors (N = 66), and Panel C (stock only) uses the 33 stock portfolios and 24 stock factors (N = 57) as
described in Section 1. For the BMA-SDFs, we report results for a range of prior Sharpe ratio values that are set
as 20%, 40%, 60% and 80% of the ex-post maximum Sharpe ratio of the relevant portfolios and factors. All data
is standardized, that is, pricing errors are in Sharpe ratio units and span the sample period 1986:01-2022:12
(T = 444).

30



Table 5: Out-of-sample cross-sectional asset pricing performance.

BMA Prior Sharpe Ratio =~ CAPM CAPMB FF5 HKM Top KNS RPPCA
20%  40% 60%  80%
Panel A: Co-pricing bonds and stocks

RMSE 0.114 0.102 0.095 0.090 | 0.224 0.154 0.139 0.223 0.171 0.160 0.166
MAPE 0.081 0.075 0.070 0.066 | 0.192 0.129 0.102 0.190 0.135 0.143 0.146
R%, s 0.358 0.486 0.553 0.600 | -1.478 -0.161 0.063 -1.444 -0.442 -0.268 -0.360
R%, ¢ 0.038 0.070 0.098 0.125 | 0.028 0.034 0.036 0.028 0.090 0.065 0.041

Panel B: Pricing bonds

RMSE 0.123 0.116 0.110 0.105 | 0.130 0.128 0.139 0.133 0.102 0.112 0.085
MAPE 0.090 0.085 0.081 0.079 | 0.095 0.092 0.104 0.097 0.084 0.081 0.062
R%,s  0.050 0.156 0.235 0.305 | -0.062 -0.028  -0.221 -0.107 0.342 0.205 0.540
R%, ¢ 0.019 0.055 0.080 0.101 | -0.006 0.022  -0.032 -0.007 0.100 0.068 0.069

Panel C: Pricing stocks

RMSE 0.105 0.088 0.078 0.070 | 0.123 0.119 0.116 0.124 0.158 0.078 0.124
MAPE 0.078 0.067 0.062 0.057 | 0.089 0.085 0.082 0.091 0.123 0.060 0.096
R%,s  0.292 0.502 0.614 0.683 | 0.032 0.099 0.136 0.019 -0.606 0.613 0.014
R%, s 0.089 0.158 0.223 0.280 | 0.103 0.065 0.099 0.107 0.141 0.207 -0.011

Out-of-sample asset pricing performance of the co-pricing BMA-SDF (Panel A), the bond BMA-SDF (Panel B)
and the btock BMA-SDF (Panel C), notable factor models, and the top five factors with an average posterior
probability greater than 50%. Bond returns are computed in excess of the one-month risk-free rate of return.
We use GMM-GLS to estimate factor risk prices for CAPM, CAPMB, the and Fama and French (1992, 1993)
model, which includes the MKTS, SMB, HML, DEF and TERM factors, and the tradable two-factor He, Kelly,
and Manela (2017) model, HKM. KNS stands for the SDF estimation of Kozak, Nagel, and Santosh (2020), with
tuning parameter and number of factors chosen by twofold cross-validation. RPPCA is the Risk-Premia-PCA
of Lettau and Pelger (2020), with five-factors and & set to 20. In Panel A the models are estimated with the 83
bond and stock portfolios and the 40 tradable bond and stock factors (N = 123), Panel B (bond only) uses the
50 bond portfolios and 16 bond factors (N = 66), and Panel C (stock only) uses the 33 stock portfolios and 24
stock factors (N = 57). Out-of-sample (OS) test assets include 154 bond and stock portfolios (Panel A), and
77 bond (stock) portfolios in Panel B (C) as described in Section 1. The models are first estimated using the
baseline IS test assets and the resulting SDF is then used to price (with no additional parameter estimation)
each set of the OS assets. For the BMA-SDFs, we report results for a range of prior Sharpe ratio values that are
set as 20%, 40%, 60% and 80% of the ex post maximum Sharpe ratio relevant portfolios and factors. All data
is standardized, that is, pricing errors are in Sharpe ratio units and span the sample period 1986:01-2022:12
(T = 444).
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Figure 6: Pricing out-of-sample stocks and bonds with BMA-SDF and KNS.

This figure plots the distributions of R%, ¢, R% g, RMSE and MAPE in Panels A, B, C and D, respectively,
across 16,384 possible OS bond and stock cross-sections using the 14 sets of bond and stock test assets (24 =
16,384). KNS stands for the SDF estimation of Kozak, Nagel, and Santosh (2020), with tuning parameter and
number of factors chosen by twofold cross-validation. The models are first estimated using the baseline IS test
assets and the resulting SDF is then used to price (with no additional parameter estimation) each set of the
16,384 OS combinations of test assets. The BMA-SDF is computed with a prior Sharpe ratio value set to 80%
of the ex-post maximum Sharpe ratio of the IS test assets. All data is standardized, that is, pricing errors are
in Sharpe ratio units and span the sample period 1986:01-2022:12 (T = 444).
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Figure 7: Pricing out-of-sample stocks and bonds with different BMA-SDFs.

This figure plots the distributions of R%; ¢, R%; g, RMSE and MAPE in Panels A, B, C and D respectively across
16,384 possible bond and stock cross-sections using the 14 sets of stock and bond test assets (2'4 = 16,384)
priced using the respective BMA-SDF. The models are first estimated using the baseline set of IS test assets
and then used to price (with no additional parameter estimation) each set of the 16,384 OS combinations of
test assets. The red distributions corresponds to the pricing performance of the co-pricing BMA-SDF. The
blue (yellow) distributions corresponds to the pricing performance of the bond (stock) only BMA-SDF. The
BMA-SDFs are computed with a prior Sharpe ratio value set to 80% of the ex-post maximum Sharpe ratio of
the IS test assets. All data is standardized, that is, pricing errors are in Sharpe ratio units and span the sample
period 1986:01-2022:12 (T = 444).
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Figure 8: Separate out-of-sample pricing of bond and stock excess returns

gure plots the distributions of RZ; 4, R, g, RMSE and MAPE in Panels A, B, C and D respectively
128 possible bond cross-sections using the 7 sets of bond test assets (27 = 128) priced using the respective
BMA-SDF. The models are first estimated using the baseline set of IS test assets and then used to price (with
no additional parameter estimation) each set of the 128 OS combinations of test assets. The red distributions
corresponds to the pricing performance of the co-pricing BMA-SDF. The blue (yellow) distribution corresponds
to the pricing performance of the bond (stock) only BMA-SDF. The BMA-SDFs are computed with a prior
Sharpe ratio value set to 80% of the ex post maximum Sharpe ratio of the IS test assets. All data is standardized,

that is

, pricing errors are in Sharpe ratio units and span the sample period 1986:01-2022:12 (T = 444).
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But, can the co-pricing BMA-SDF also price well bonds and stocks separately? In Figure 8
we report OS R%; s and R, for the separate pricing of these two asset classes using the
27 = 128 possible combinations of our OS corporate bond portfolios in Panels A and B, and the
same number of combinations of OS stock portfolios in Panels C and D. Clearly, the co-pricing
BMA-SDF can individually price the respective bond and stock cross-sections well, implying
that the superior performance of the co-pricing BMA-SDF is not due to the fact that it prices
one cross-section better than the other. Nevertheless, the asset-class-specific BMA-SDEFs price
the respective cross-sections very well. That is, using only information from the bond market
factor zoo delivers a pricing performance for the cross-section of bond excess returns that is only
marginally worse than the one achievable with the co-pricing BMA-SDF. Similarly, the stock-
only BMA-SDF does price stock returns very well OS, confirming the findings in Bryzgalova
et al. (2023). Yet, clearly, the information in the bond factor zoo alone is insufficient to price
the cross-section of stock returns and, vice versa, information from the stock market is not

sufficient to price the cross-section of corporate bond excess returns.

3.2 The information content of the two factor zoos

As shown in Section 3.1.3 (see Figure 8 and Tables 4 and 5), albeit one can construct well
performing BMA-SDFs to price bonds and stocks separately only using the information in their
respective zoos, the joint pricing of these assets requires information from both sets of factors
(see Figure 7). In this section we show that this result arises from the fact that corporate bond
returns reflect not only a component related to credit risk compensation, but also a Treasury
term structure risk premium.

To illustrate this point, we now turn our focus to bond returns in excess of a duration-
matched portfolio of U.S. Treasuries. More precisely, for every bond ¢ we construct the following

duration-adjusted return

Treasury Treasury
Rbondi,t B Rd’W" bondit — Rbondi,t B Rf,t - (Rdur bondit Rfi) (3)
~ / N——
Duration-adjusted return Excess return ¥

Treasury component

where Rpyonqi is the return of bond ¢ at time ¢, Ry denotes the short term risk free rate, and

RTrezzsu'r'y

Jurbomd ¢ denotes the return on a portfolio of Treasury securities with the same duration as

bond i (constructed as in van Binsbergen, Nozawa, and Schwert (2024)). As is obvious from the

right hand side of equation (3), the duration adjustment removes the implicit Treasury compo-
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Figure 9: Pricing the joint cross-section of stock and duration-adjusted bond returns.

This figure plots the distributions of R%, ¢, R%; g, RMSE and MAPE in Panels A, B, C and D respectively across
16,384 possible bond and stock cross-sections using the 14 sets of stock and bond test assets (2'4 = 16, 384). All
bond test assets and factors are formed with duration-adjusted returns described in Appendix C. The BMA-
SDFs are first estimated using the baseline IS test assets and then used to price (with no additional parameter
estimation) each set of the 16,384 OS combinations of test assets. The red distributions corresponds to the
pricing performance of the co-pricing BMA-SDF. The blue (yellow) distributions corresponds to the pricing
performance of the bond (stock) only BMA-SDF. The BMA-SDFs computed with a prior Sharpe ratio value set
to 80% of the ex post maximum Sharpe ratio of the IS test assets. Data are standardized, i.e., pricing errors

are in Sharpe ratio units. Sample: 1986:01-2022:12 (T = 444).
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nent from the bond excess return, hence isolating the remaining sources of risk compensation
that investing on a given bond entails.

Figure 9 reports the distribution of OS measures of fit (R%, g, R%,5, RMSE and MAPE)
across 16,384 possible bond and stock cross-sections using the 14 sets of stock and bond test
assets for three different BMA-SDFs based on (i) bond factors only, (ii) stock factors only, and
(iii) both bond and stock factors. The contrast with Figure 7 is stark: once bond returns are
adjusted for duration, the BMA-SDF based only on equity information prices jointly bonds and
stocks as well as the co-pricing BMA-SDF that additionally includes bond factors. That is, the
information content of the bond factor zoo becomes largely irrelevant for co-pricing once the
Treasury component of bond returns is removed.

This last finding raises a natural question: why do we need the bond factors for co-pricing
assets in the absence of the duration adjustment? As we are about to show, bond factors price
the Treasury component of corporate bond returns.

Panel A of Figure 10 depicts the IS pricing of the Treasury component of corporate bond
returns using the BMA-SDF based only on the bond factor zoo. Remarkably, the pricing is
almost prefect with a cross-sectional (constrained) R%;q of about 97%. Similarly, Panel B
shows that the OS pricing of a cross-section of Treasury excess returns using the same BMA-
SDF is also almost perfect, with a (constrained) R3¢ of 92% and average excess returns and
SDF-implied risk premia lining up closely around the 45 degrees line. In contrast, Panels C and
D of Figure 10 report the same cross-sectional pricing exercises performed using a BMA-SDF
based only on stock factors. Clearly, those are not able to price the Treasury component of
corporate bond returns neither in- nor out-of-sample, yielding extremely low measures of fit
(6% to 14% R%,4) and slope coefficients very far from the theoretical value.

The above highlights that the bond factor zoo is necessary for co-pricing bonds and stocks
because the factors proposed in the corporate bond literature price extremely well the Treasury
component implicit in corporate bond returns—a component that stock factors fail to price.
But once this component is accounted for—as in the case of duration-adjusted bond returns—
co-pricing can effectively be achieved using only equity information.

Moreover, this Treasury component is economically important. The ex post (annualized)
maximum Sharpe ratio achievable with the excess returns on the duration-matched Treasury
portfolios in equation (3) is about 1.48. And, as shown in the bottom panel of Figure 11,
this is roughly the mode of the Sharpe ratio achievable with an SDF that prices this Treasury

37



Constrained R2: 92% .

Constrained R2: 97% o7

004

— 003 E
T o
o Moo 45 de
0.02
0.025 © .
Bl Fitted slope: 1.12 Fitted slope: 1.36
0.01 0.02 0.03 ooz 004 008
-cov(M.R) ~cov(M.R)
(A) In-sample with bond BMA-SDF (B) Out-of-sample with bond BMA-SDF
010
Constrained R2: 14% I 0125
0.100
Constrained R2: 6%
0.075
3 3
i} (1T SRR Jhas s G
0.050
0.00
’ ’ 0.025
g ’ Fitted slope: 24.93
e Fitted slope: 0.56
o0 -cnn;:/(M,R) 00s 008 000 0003 -COV(M?E;; 0005
(C) In-sample with stock BMA-SDF (D) Out-of-sample with stock BMA-SDF

Figure 10: Pricing the Treasury component of corporate bond returns.

Sample average (y-axis) vs. bond BMA-SDF-implied (z-axis) risk premia. Panel A: RdTJf‘;zZZyM — Ry, described
in Appendix C. Panel B: monthly returns in excess of the risk free rate for 29 U.S. Treasury portfolios (two-
to 30-year maturity in increments of 1-year). Constrained OLS R2s computed setting the slope coefficient to 1.
Sample: 1986:01-2022:12 (T = 444)
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Figure 11: Posterior factor dimensionality and SR of the SDF that prices the Treasury com-
ponent of corporate bond returns using only the bond factor zoo.

Posterior distributions of the number of factors to be included in the bond SDF (top panel) and of the SDF-
implied Sharpe ratio (bottom panel), computed using the 30 nontradable and tradable bond factors described
in Appendix B. The prior Sharpe ratio is set to 80% of the ex post maximum Sharpe ratio of the U.S. Treasury
returns component, in excess of the one-month risk-free rate, of the 50 corporate bond portfolios and 16 bond
tradable factors. Sample period: 1986:01 to 2022:12 (T = 444).

component with only the factors in the bond factor zoo. Note also that, as shown in the top
panel of the figure, even for pricing just this component, the required SDF is quite dense, with
a median number of factors equal to 14 and a posterior 95% C.I. ranging from 8 to 19 factors.
Furthermore, as shown in Table 6, pricing this component requires a dense SDF in the space
of both nontradable and tradable factors, with posterior mean numbers of factors being 7 and
8, respectively, across the prior range, and with roughly equal contribution to the Sharpe ratio
of the SDF from the two types of factors.

Mirroring the analysis in Section 3.1, we can assess which factors are more likely to price
this Treasury component individually. Figure 12 reports the posterior factor probabilities and
market prices of risk implied by the pricing of the Treasury component of corporate bond re-
turns using the corporate bond factor zoo (the prior Sharpe ratio is set to 80% of the ex post

maximum Sharpe ratio). Overwhelmingly, the most likely factors are nontradable: five out
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Table 6: SDF dimensionality, and SR decomposition by type of factor, for pricing the Trea-
suries component of corporate bond returns

Total prior SR Total prior SR
20% 40% 60% 80% 20% 40% 60% 80%
Nontradable factors Tradable factors
Mean 6.91 6.94 6.91 6.91 790 7.79 7.90 7.90
5% 4 4 4 4 5 5 5 5
95% 10 10 10 10 11 11 11 11

E[SR|data] 0.15 0.32 0.52 0.83 0.28 0.64 0.64 0.80

2
E[2rf|data] 0.02 0.09 024 054 008 036 036 0.51

Posterior means of: number of factors (with 90% C.I.), implied Sharpe ratios, E[SR|data], and ratio of SR?C
to the total SDF Sharpe ratio, E[SR?/SR?W\data], of a subset of factors. Subsets are split across tradable and
nontradable factors, and within tradable factors we further separate bond and stock factors. The results are
reported for the U.S. Treasury SDF which is estimated with the corporate bond factor zoo. The in-sample test
assets are the U.S. Treasury returns component, in excess of the one-month risk-free rate, of the 50 corporate
bond portfolios.

of the six factors with posterior probability higher than the prior value are nontradable, with
the only exception being PEADB—the most likely tradable factor in our co-pricing analysis.
Furthermore, largely, the factors are the same as those that appear most likely when co-pricing
bonds and stocks, with the top three being YSP, IVOL and CREDIT—exactly the three most
likely nontradable factors in our co-pricing BMA-SDF—followed by a term structure level fac-
tor, LVL, and a factor based on unexpected shocks to core inflation, INFLC. Moreover, these
nontradable factors command large mark market prices of risk and the probability of no non-
tradable factor being in the BMA-SDF that prices the Treasury component of corporate bond

returns is virtually zero (or 0.018%).

3.3 The economic properties of the co-pricing SDF

We now turn to assessing the economic properties of the co-pricing BMA-SDF. Figure 13
depicts the time series of the BMA-SDF posterior mean, along with its conditional time series
mean (estimated using an ARMA(3,1) model selected via BIC). The ARMA specification is
selected based on both the Akaike and Bayesian Information Criteria. Both the SDF and its
conditional mean exhibit a clear business cycle behaviour as they increase during expansions and
tend to peak right before recessions, being substantially reduced during economic contractions.

Moreover, as highlighted in Panel A of Figure 14, the BMA-SDF is highly predictable: virtually

40



0.6
= non-tradable faclors == - prior probability
e T L e OB~ — T

04
0.3
0.2
0.1 -
0.0

N 015 = nan-lradable faclors
= 0.

3

=

o

= bond factors
E 0.10
g i = . _mBE - - I

'E -0.05 I . I .

Posterior prob.

TERM
OuUR
DRF

noE

LB

e
MKTE
a
NFL
EPU
P
LTREVE
MKTED
CRF
i
MOMES
STREVE
DEF
Ry
UNG
il
uMC

Eh

NFLL
v
CREDIT

Figure 12: Posterior factor probabilities and market prices of risk — pricing the Treasury
component of corporate bond returns using the bond factor zoo.

Posterior factor probabilities (top panel), E[y;|data], and the corresponding posterior market prices of risk
(bottom panel), E[\;|data], of the 30 nontradable and tradable bond factors described in Appendix B. Test

assets are the U.S. Treasury returns component, in excess of the one-month risk-free rate, of the 50 corporate

bond portfolios. The prior distribution for the ;M factor inclusion is a Beta(1, 1), yielding a 0.5 prior expectation

for ;. The prior Sharpe ratio is set to 80% of the ex post maximum Sharpe ratio of the portfolios and tradable
factors. Sample period: 1986:01 to 2022:12 (T = 444).

all of its autocorrelation coefficients are statistically significant at the 1% level up to 20 months
ahead, and the p-value of the Ljung and Box (1978) test of joint significance is zero at this
horizon. Additionally, about one fifth of its time series variance is explained by its own lags
(23% for the best AR specification and 19% for the best ARMA specification according to the
BIC).

Note also that, as shown in Figure TA.6 of the Internet Appendix, none of the other cele-
brated SDF models come close to displaying such a level of business cycle variation and per-
sistency: the KNS SDF has about 11% of its time series variation being predictable by its
own history, while this number drops to 4% for RPPCA, and its only 2% to 3%, for FF5 and
CAPMB, and zero for HKM and CAPM. Remarkably, as shown in Panel A of Table TA.XT of
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the Internet Appendix, the SDFs with a higher degree of persistency, KNS and RPPCA, are
exactly the ones with the highest degree of correlation with the BMA-SDF (0.78 and 0.55, re-
spectively), and are the closest competitors for the BMA-SDF in the pricing exercises in Section
3.1. Instead, SDFs that perform significantly worse in cross-sectional pricing have both little
time series persistency and correlations with the BMA-SDF in the 0.16 to 0.29 range.

Obviously, the nontradable factors in the BMA-SDF play an important role in generating a
pronounced business cycle pattern and a high degree of predictability. Nevertheless, even when
removing the nontradable factors from the BMA-SDF, the resulting SDF remains predictable,
with 5% to 10% of its time series variation explained by its own lags, and a highly significant
Ljung and Box (1978) test statistic even up to 20 months ahead. Furthermore, note that the
five most likely factors in the SDF (PEAD, IVOL, PEADB, CREDIT, YSP) explain only about
47% of the time series variation of the BMA-SDF, further confirming the dense nature of the
pricing kernel. Individually, only PEADB and IVOL explain marginally more than 20% of the
time series variation of SDF, with the other factors accounting individually for 3% to 7%.

Recall that the variance of the SDF is equal to the squared Sharpe ratio achievable in the
economy. Hence, whether our filtered SDF implies time-varying compensation for risk can
be elicited by analyzing the predictability of its volatility. As pointed out in Engle (1982),
the presence of volatility clustering can be assessed, without taking a parametric stance on
the variance process, by simply analyzing the serial correlation of the squared one-step-ahead
forecast errors, since these are consistent (yet noisy) estimates of the latent conditional variance.
Note that, for instance, such a variance proxy has been used extensively in the macro-finance
literature (see, e.g., Bansal, Khatchatrian, and Yaron (2005), Bansal, Kiku, and Yaron (2012),
Beeler and Campbell (2012), and Chen (2017)), and squared forecast errors of returns are a
commonly used as proxy of the latent conditional variances.

Panel B of Figure 14 reports the empirical autocorrelation function of the squared forecast
errors of the BMA-SDF. Most of the autocorrelation coefficients are statistically significant at
the 1% level up to seven months ahead. Moreover, the Tjung and Box (1978) test strongly
rejects the joint null of zero autocorrelations up to 20 months into the future (the p-value of
the test is zero). That is, not only the first moment of our filtered SDF exhibits substantial
predictability, but so does its second moment, suggesting time-varying risk compensation in the
economy.

To tackle the question whether the SDF-implied time variation in risk compensation (i.e.,
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Figure 13: The co-pricing SDF and its conditional mean

Time series of the (posterior mean of) the co-pricing BMA-SDF and its conditional mean. The conditional
mean is obtained by fitting an ARMA(3,1) to the BMA-SDF. The order of the ARMA specification is selected
using the Bayesian Information Criterion. Shaded areas denote NBER recession periods. The sample period is
1986:01-2022:12 (T = 444).

the economy-wide conditional Sharpe ratio) that we uncover makes economic sense, we fit a
simple GARCH(1,1) (see Bollerslev (1986)) process to our BMA-SDF.?° Figure 15 presents the
estimated conditional volatility of the SDF, revealing striking results. The implied conditional
Sharpe ratio is not only highly countercyclical but also exhibits pronounced spikes during peri-
ods of market turbulence and heightened economic uncertainty. These include Black Monday,
the Asian financial crisis, the burst of the dot-com bubble, the 9/11 terrorist attacks, the Iraq
invasion, the great financial crisis, the Greek default and subsequent Eurozone debt crisis, the
COVID-19 pandemic, and the aftermath of Russia’s invasion of Ukraine. Note that the es-
timated GARCH coeflicients imply a highly persistent conditional volatility, with deviations

from the mean exhibiting a half-life of approximately 16.6 months.

29We estimate the process based on the posterior mean of the BMA-SDF. Ideally, one would estimate the
volatility process for each draw of the SDF and for each possible model, and then compute the posterior
average of these ‘draws’ for the volatility process. Nevertheless, since GARCH estimation requires numerical
optimisation, the ideal approach is unfeasible in our model space with quadrillions of models.

30Recall that the half-life of a GARCH(1,1) process is defined as 1+ ﬁf(gfﬁ)) where a and 3 denote, respectively,
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Figure 14: autocorrelation functions of co-pricing BMA-SDF and its squared forecast errors

Autocorrelation coefficients of co-pricing BMA-SDF, in Panel A, and its squared forecast errors, in Panel B.
ARMA(3,1) conditional mean process selected via BIC. Sample: 1986:01-2022:12 (T = 444).

As per Panel A in Table 2, nontradable factors account for about a quarter of the SDF
variance. Hence, a natural question is whether the SDF volatility pattern depicted in Fig-
ure 15 is simply due to tradable factors. We evaluate this conjecture by removing all tradable
factors from the BMA-SDF and re-estimating the volatility process of this nontradable-only
SDF. We find that the resulting volatility process remains very persistent (with a half-life of
12.3 months), with pronounced business cycle variation and reaction to periods of heightened
economic uncertainty (see Figure TA.8 of the Internet Appendix). Moreover, it has a correlation
with the volatility of the BMA-SDF in Figure 15 of about 62%. That is, both tradable and
nontradable components of the BMA-SDF are characterised by a very persistent volatility with
a clear business cycle pattern.

But is the strong countercyclical behaviour of the BMA-SDF volatility, and its sharp increase
during periods of economic uncertainty, just a mechanical byproduct of it loading on several
tradable factors? Figure 15 suggests that this is not the case. Focusing on the celebrated Fama-
French five factor model, and the bond CAPM (the best model for pricing corporate bonds in
Dickerson, Mueller, and Robotti (2023)), we apply the same procedure of estimating their SDF

the coeflicients on lagged squared error and variance.
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Figure 15: Volatility of the co-pricing BMA-SDF

Annualized volatility of the co-pricing BMA-SDF as well as CAPMB and FF5 SDFs. Shaded areas denote
NBER recession periods. The volatility of the BMA-SDF is obtained fitting a ARMA(3,1)-GARCH(1,1) to
the posterior mean of the co-pricing BMA-SDF (specification selected via BIC). The GARCH Quasi-maximum
likelihood coefficient estimates are:
07, =w+ ae] + fo}
w « 153
Estimate 0.01 0.15 0.81
Robust SE  0.00 0.04 0.06

The volatilities of the CAPMB and FF5 SDFs are also computed as GARCH(1,1) estimates after selecting an
ARMA mean process using the BIC. Sample: 1986:01-2022:12 (T' = 444).

coefficients and computing the implied conditional volatilities using a GARCH specification
(after fitting a mean model based on AIC). The estimated volatilities for these two SDF models
in Figure 15 make clear that the use of tradable factors in the SDF does not mechanically
deliver our findings for the BMA-SDF: both the cyclical pattern and the reaction to periods of
heightened economic uncertainty is much less pronounced for the FF5 model, and even more
so for the CAPMB. This is formally measured in Figure IA.7 of the Internet Appendix that
shows that the half-life of volatility shocks to the FF5 SDF model is only 4.21 months, and
for the CAPMB it is just 3 months. Finally, Figure TA.9 of the Internet Appendix depicts
the residual of the linear projection of the BMA-SDF estimated volatility on the estimated
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volatilities of the KNS, RPPCA, CAPM, CAPMB, HKM and FF5, with the residual showing
a strong business cycle pattern and being particularly large and positive during periods of high
economic uncertainty, suggesting that these alternative SDF models do not sufficiently capture
these states despite being based on tradable factors.

The observed business cycle variations and predictability in both the first and second mo-
ments of the SDF would imply, within a structural model, time-varying and predictable risk
premia for tradable assets. Therefore, we now turn to testing this time series prediction of our
BMA-SDF identified from cross-sectional pricing.

The precise functional form of the predictive relation between current SDF moments and
future asset returns does depend on the postulated model. Nevertheless, as shown in Bryzgalova,
Huang, and Julliard (2024), the Hansen and Jagannathan (1991) conditional SDF projections
on the space of returns imply a (log) linear SDF driven by two factors: the innovations to the
SDF and the product of the conditional mean of the SDF and the same innovations. Therefore,
assuming a contemporaneous linear relationship between asset returns and the SDF yields
a simple linear dependence of conditional risk premia on two variables: (i) the conditional
variance of the SDF and (ii) the product of this conditional variance with the conditional
mean of the SDF. Leveraging this insight, we run predictive regressions of asset (log) returns
between time ¢t — 1 and ¢, as well as cumulated (log) returns between ¢ — 1 and ¢ + 12, on SDF
information observed at time ¢t — 1: E; ;[M;] x E;_[0?] and E, ;[0?], where the conditional
mean is constructed by fitting an ARMA(3,1) process (the preferred specification according to
the BIC) of the BMA-SDF, and the conditional variance is obtained from the GARCH(L,1)
estimates depicted in Figure 15 (and also selected via BIC). As test assets to be predicted we
employ the bond and stock factors used in our cross-sectional analysis since these are generally
hard to predict and should, according to the previous literature, demand sizable risk premia.

Figure 16 summarizes the predictability results. In Panel A we report the R? values for the
one-month-ahead and in Panel B the same for the cumulative twelve-month-ahead predictive
regressions. We encode, via shading, the joint statistical significance of the regressors as implied
by an F-test of the regression coefficients. The results are striking. For the majority of test
assets, we find that information embedded in the lagged SDF significantly predicts future asset
returns. At the monthly horizon shown in Panel A, this predictability is statistically significant
in 75% of cases at the 10% confidence level and in 70% of cases at the 5% significance level.

Second, the amount of predictability is economically large, albeit not unrealistically so: for
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Figure 16: Predictability of tradable factors with lagged SDF information

RZ?s of the predictive regressions of factor returns on the previous month estimates of the co-pricing BMA-SDF
conditional variance and conditional variance interacted with the conditional mean of the BMA-SDF. Process
estimated as QMLE ARMA (3,1)-GARCH(1,1) and selected via BIC. Panel A: monthly log returns. Panel B:
twelve months log returns. To account for the overlapping nature of the observations in Panel B we construct
robust standard errors using a Bartlett kernel (Newey and West (1987)) kernel with 15 lags, b) a sandwich
estimate of the covariance matrix, and ¢) applying a degrees of freedom correction. The 40 predicted tradable
factors are described in Appendix B.

the statistically significant cases it ranges from 1.1% to 6% at the monthly horizon (Panel A).
As shown in Martin (2017), these R?s are extremely high relative to the predictive ability of
valuation ratios and even the SVIX, and such scale of predictability yields very high Sharpe
ratios when used to inform market timing strategies. At the twelve month horizon (Panel
B) the median R? is about 10%, with many factors having more than one fifth of their time

series variation being predictable. Moreover, even with an extremely conservative approach to
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constructing the covariance matrix, the F-test yields statistically significant results in 60% of

cases at the 10% level and 50% of cases at the 5% level.?!

4 Conclusion

We apply a Bayesian approach to the analysis of 18 quadrillion linear factor models for the
joint pricing of corporate bond and stock returns.

We find that the latent SDF is dense in the space of observable nontradable and tradable
bond and stock factors. This implies that all low dimensional observable factor models proposed
to date are affected by severe misspecification and rejected by the data.

Individually, only very few factors should be included in the SDF with a high probability.
Most notably, two behavioural factors capturing the post earnings announcement drift in bonds
and stocks exhibit posterior probabilities above 50%, along with nontradable factors such as
the slope of the Treasury yield curve, the AAA/BAA yield spread, and the idiosyncratic equity
volatility. But these factors capture only a fraction of the risks priced in the joint cross-section
of bonds and stocks, and literally dozens of other factors, both tradable and nontradable, are
necessary—jointly—to span the risks driving asset prices.

Nevertheless, the SDF-implied maximum Sharpe ratio is not extreme because the many
factors necessary for an accurate characterization of the SDF are multiple noisy proxies for
common underlying sources of risk.

A Bayesian Model Averaging over the space of all possible Stochastic Discount Factor models
aggregates this diffuse pricing information optimally and outperforms, in- and out-of-sample,
all existing models in explaining—jointly and individually—the cross-section of corporate bond
and stock returns.

The BMA-SDF has a distinctive business cycle behaviour, and persistent and cyclical first
and second moments. Furthermore, its volatility increases sharply during recessions and at
times of heightened economic uncertainty, suggesting time variation in conditional risk premia.
And indeed, we find that lagged BMA-SDF information is a strong and significant predictor of

future asset returns.

31'We construct conservative standard errors by a) using a Bartlett kernel (Newey and West (1987)) with
15 lags, b) constructing a sandwich estimate of the covariance matrix, and c¢) applying a degrees of freedom
correction to account for the relatively small sample of independent observations. For comparison, OLS standard
errors yield a statistically significant F-test, at the 5% level, in 92.5% of the cases, and similar results arise
using simple bootstrap.
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Decomposing bond excess returns into their credit and a Treasury components, we find
that nontradable and stock tradable factors are sufficient for the pricing of the former, while
nontradable and bond tradable factors are necessary for the pricing of the latter—a component
that stock tradable factors do not explain.

Overall, our results have first order implications for theoretical and empirical asset pricing
models that aim to explain jointly the cross-sections of corporate bond, stock, and Treasury

returns.
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Appendix

A Posterior sampling

The posterior of the time series parameters follows the canonical Normal-inverse-Wishart dis-

tribution (see, e.g., Bauwens et al. 1999) given by

by |Ey, Y ~ N (fry, Ty /T), (A.4)
T

Ey[Y ~ W (T —1, > (Ya—jy) (Y- ﬁY)T> 7 (A.5)
t=1

where fiy = %3] ¥;, W' is the inverse-Wishart distribution, Y = {¥;}7_,, and note that
the covariance matrix of factors and test assets, C¥, is contained within 3y-.

Define D as a diagonal matrix with elements ¢, (r(v1)¢1) ™", ..., (r(vx)¥x) . Hence, in
matrix notation, the prior for X in equation (2) is A|o?, v ~ N (0,02D~1). Tt then follows that,
given our prior formulations, the posterior distributions of the parameters in the cross-sectional
layer (A,~,w,o?), conditional on the draws of pugr, g, and C from the time series layer, are

(see Bryzgalova et al. 2023 for a formal derivation):

A|data, o2, v,w ~ N (X, 5%(N)), (A.6)
ply; = 1ldata, A w, 0% v—;)  w; phly =1,07) (A7)
p(y; = 0ldata, X\, w, 02, v—;) 1 —w;p(Ajly; =0,0%)’
wjldata, A, v, 0° ~ Beta (v; + a,, 1 — vy + b,), (A.8)
N+K+1 —C\) ' — CA)+2"DX
o*[data, w, A,y ~ IG < . (hr—CA) Xg (’;R )+ > (A9

where X = (CTEZC + D) 'CT X7 ug, 62(N) = 0*(CTEEC + D)~ and ZG denotes the
inverse-Gamma distribution.

Hence, posterior sampling is achieved with a Gibbs sampler that draws sequentially the time
series layer parameters (g, X, and C) from equations (A.4)-(A.5), and then, conditional on

these realizations, draws sequentially from equations (A.6)—(A.9).
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B The factor zoo

Traded and nontraded factors
in Table A.1 including a detailed description of their construction, associated reference, and

data source.

Table A.1: List of factors for cross-sectional asset pricing. This table presents the list of tradable
bond, equity and nontradable factors used in the main paper. For each of the factors, we present their identi-
fication index (Factor ID), a description of the factor construction, and the source of the data for downloading

and/or constructing the time series.

We present the 54 bond, equity and nontraded factors used

Factor ID  Factor name and description Reference Source
Panel A: Traded corporate bond factors

CRF Credit risk factor. Equally-weighted average return  Bai et al. (2019) Open Source
on two ‘credit portfolios’> CRFy ., and CRFREgy .- Bond Asset
CRFy R is the average return difference between the Pricing
lowest-rating (i.e., highest credit risk) portfolio and
the highest-rating (i.e., lowest credit risk) portfolio
across the VaR95 portfolios. CRFgrpy is the aver-
age return difference between the lowest-rating port-
folio and the highest-rating portfolio across quintiles
sorted on bond short-term reversal.

CRY Bond carry factor. Independent sort (5 X 5) to form  Houweling and Open Source
25 portfolios according to ratings and bond credit Van Zundert (2017) Bond Asset
spreads (CS). For each rating quintile, calculate the Pricing
weighted average return difference between the high-
est CS quintile and the lowest CS quintile. CRY is
computed as the average long-short portfolio return
across all rating quintiles.

DEF Bond default risk factor. The difference between the Fama_ ~ and  French  Amit Goyal web-
return on the market portfolio of long-term corpo-  (1992) site
rate bond returns (the Composite portfolio on the
corporate bond module of Ibbotson Associates) and
the long-term government bond return.

DRF Downside risk factor. Independent sort (5 x 5) to  Bai et al. (2019) Open Source
form 25 portfolios according to ratings and 95% Bond Asset
value-at-risk (VaR95). For each rating quintile, cal- Pricing
culate the weighted average return difference be-
tween the highest VaR5 quintile and the lowest VaR5
quintile. DRF is computed as the average long-short
portfolio return across all rating quintiles.

DUR Bond duration factor. Independent sort (5 x 5) to  Dang et al. (2023) Open Source
form 25 portfolios according to ratings and bond du- Bond Asset
ration (DURP). For each rating quintile, calculate Pricing
the weighted average return difference between the
highest DUR®Z quintile and the lowest DUR®E quin-
tile. DUR is computed as the average long-short
portfolio return across all rating quintiles.

HMLB Bond book-to-market factor. Independent sort (2 x  Bartram et al. (2020) Open Source
3) to form 6 portfolios according to bond size and g?ilé(iing Asset

bond book-to-market (BBM), defined as bond prin-
cipal value scaled by market value. For each size
portfolio, calculate the weighted average return dif-
ference between the lowest BBM tercile and the high-
est BBM tercile. HMLB is computed as the average
long-short portfolio return across the two size port-
folios.
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LTREVB

MKTB

MKTBD

MOMB

MOMBS

PEADB

STREVB

SZE

TERM

VAL

Bond long-term reversal factor. Dependent sort
(3 x 3 x3) to form 27 portfolios according to ratings,
maturity, and the 48-13 cumulative previous bond
return (LTREV ). For each rating quintile, the fac-
tor is computed as the average return differential be-
tween the portfolio with the lowest LTREVE and
the one with the highest LTREV S within the rat-
ing and maturity portfolios. LTREVB is computed
as the average long-short portfolio return across the
nine rating-maturity terciles.

Corporate Bond Market excess return. Constructed
using bond returns in excess of the one-month risk-
free rate of return.

Corporate Bond Market duration adjusted return.
Constructed using bond returns in excess of their
duration-matched U.S. Treasury bond rate of return.

Bond momentum factor formed with bond momen-
tum. Independent sort (5 x 5) to form 25 portfo-

lios according to ratings and the 12-2 cumulative
previous bond return (MOM). For each rating quin-
tile, calculate the weighted average return difference
between the highest MOM quintile and the lowest
MOM quintile. MOMB is computed as the average
long-short portfolio return across all rating quintiles.
Bond momentum factor formed with equity momen-
tum. Independent sort (5 X 5) to form 25 portfolios
according to ratings and the 6-1 cumulative previ-
ous equity return (MOMs). For each rating quin-
tile, calculate the weighted average return difference
between the highest MOMs quintile and the lowest
MODMs quintile. MOMBS is computed as the average
long-short portfolio return across all rating quintiles.
Bond earnings announcement drift factor. Indepen-
dent sort (2 x 3) to form 6 portfolios according to
market equity and earnings surprises (CAR), com-
puted according to Chan et al. (1996). For each firm
size portfolio, calculate the weighted average return
difference between the highest CAR terciles and the
lowest CAR tercile. PEADB is computed as the av-
erage long-short portfolio return across the two firm
size portfolios.

Bond short-term reversal factor. Independent sort
(5 x 5) to form 25 portfolios according to ratings
and the prior month’s bond return (REV). For each
rating quintile, calculate the weighted average return
difference between the lowest REV quintile and the
highest REV quintile. STREVB is computed as the
average long-short portfolio return across all rating
quintiles.

Bond size factor. Dependent sort (3 x 3) to form
3 portfolios according to ratings and then with
each rating tercile another 3 portfolios on bond size
(SIZE). Bond size is defined as bond price multiplied
by issue size (amount outstanding). For each rating
tercile, calculate the weighted average return differ-
ence between the lowest SIZE tercile and the highest
SIZE tercile. SZE is computed as the average long-
short portfolio return across all rating terciles.
Bond term structure risk factor. The difference be-
tween the monthly long-term government bond re-
turn and the one-month T-Bill rate of return.

Bond value factor. Independent sort (2 x 3) to form
6 portfolios according to bond size and bond value
(VALB). VALP is computed via cross-sectional re-
gressions of credit spreads on ratings, maturity, and
the 3-month change in credit spread. The percentage
difference between the actual credit spread and the
fitted (*fair’) credit spread for each bond is the VALB
characteristic. For each size portfolio, calculate the
weighted average return difference between the high-
est VALP tercile and the lowest VAL® tercile. VAL
is computed as the average long-short portfolio re-
turn across the two size portfolios.
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CPTL Intermediary capital nontraded risk factor. Con- He et al. (2017) Zhiguo He web-
structed using AR(1) innovations to the market- site
based capital ratio of primary dealers, scaled by the
lagged capital ratio.
CREDIT Bond credit risk factor. Difference between the yields Fama_ ~ and  French  Zhiguo He web-
of BAA and AAA indices. (1993) site
EPU Economic Policy Uncertainty. First difference in the Dang et al. (2023) FRED
economic policy uncertainty index.
EPUT Economic Tax Policy Uncertainty. First difference in  Dang et al. (2023) FRED
the economic tax policy uncertainty index.
INFLC Shocks to core inflation. Unexpected core infla- Fang et al. (2022) FRED
tion component captured by an ARMA(1,1) model.
Monthly core inflation is calculated as the percentage
change in the seasonally adjusted Consumer Price In-
dex for All Urban Consumers: All Items Less Food
and Energy which is lagged by one-month to account
for the inflation data release lag.
INFLV Inflation volatility. = Computed as the 6-month Kang and Pflueger FRED
volatility of the unexpected inflation component cap-  (2015) and Ceballos
tured by an ARMA(1,1) model. Monthly inflation is (2023)
calculated as the percentage change in the season-
ally adjusted Consumer Price Index for All Urban
Consumers (CPI) which is lagged by one-month to
account for the inflation data release lag.
IVOL Idiosyncratic equity volatility factor. Cross-sectional Campbell and Taksler ~CRSP
volatility of all firms in the CRSP database in each ~ (2003)
month ¢.
LVL Level term structure factor, Constructed as the Koijen et al. (2017) CRSP Indices
first principal component of the one- through 30-
year CRSP Fixed Term Indices U.S. Treasury Bond
yields.
LIQNT Liquidity factor, computed as the average of Pastor and Stambaugh Robert Stam-
individual-stock measures estimated with daily data  (2003) baugh website
(residual predictability, controlling for the market
factor)
UNC First difference in the Macroeconomic uncertainty in-  Koijen et al. (2017) Sydney Ludvig-
dex, which is lagged by one-month to align the fore- son website
cast to the returns observed in month t.
UNCf First difference in the Financial economic uncer- Koijen et al. (2017) Sydney Ludvig-
tainty index, which is lagged by one-month to align son website
the forecast to the returns observed in month ¢.
UNCr First difference in the Real economic uncertainty in-  Koijen et al. (2017) Sydney Ludvig-
dex, which is lagged by one-month to align the fore- son website
cast to the returns observed in month t.
VIX First difference in the CBOE VIX. Chung et al. (2019 FRED
YSP Slope term structure factor. Constructed as the dif- Koijen et al. (2017 CRSP Indices
ference in the five and one-year U.S. Treasury Bond
yields.
Panel C: Traded equity factors
BAB Betting-against-beta factor, constructed as a portfo- Frazzini and Pedersen AQR data
lio that holds low-beta assets, leveraged to a beta of ~ (2014) library
1, and that shorts high-beta assets, de-leveraged to
a beta of 1
CMA Investment factor, constructed as a long-short port- Fama_  and  French  Ken French web-
folio of stocks sorted by their investment activity (2015) site
CMAs CMA with a hedged unpriced component Daniel et al. (2020) Ke}?t't Daniel
website
CPTLT The value-weighted equity return for the New York  He et al. (2017) Zhiguo He web-
Fed’s primary dealer sector not including new equity site
issuance
FIN Long-term behavioral factor, predominantly captur-  Daniel et al. (2020) Kent, Daniel
ing the impact of share issuance and correction website
HML Value factor, constructed as a long-short portfolio of Fama_  and  French  Ken French web-
stocks sorted by their book-to-market ratio (1992) site
HML DEV A version of the HML factor that relies on the current ~ Asness and Frazzini AQR data
- price level to sort the stocks into long and short legs  (2013) library
HMLs HML with a hedged unpriced component Daniel et al. (2020) Ke}r)lt.t Daniel
website
LIQ Liquidity factor, constructed as a long-short portfolio  Pastor and Stambaugh  Robert Stam-
of stocks sorted by their exposure to LIQ NT 2003) baugh website
LTREV Long-term reversal factor, constructed as a long- egadeesh and Titman  Ken French web-
short portfolio of stocks sorted by their cumulative  (2001) site
return accrued in the previous 60-13 months
MGMT Management performance mispricing factor Stambaugh and Yuan Global factor
(2017) data website
MKTS Market excess return Sharpe (1964) and Ken French web-
Lintner (1965 site
MKTSs Market factor with a hedged unpriced component Daniel et al. (2020) Ke{)lt't Daniel
website
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MOMS Momentum factor, constructed as a long-short port-  Carhart (1997), Je- Ken French web-
folio of stocks sorted by their 12-2 cumulative previ- gadeesh and Titman site
ous return (1993)

PEAD Short-term behavioral factor, reflecting post- Daniel et al. (2020) Kent, Daniel
earnings announcement drift website

PERF Firm performance mispricing factor Stambaugh and Yuan Global  factor

(2017) data website

QMJ Quality-minus-junk factor, constructed as a long-  Asness et al. (2019) AQR data
short portfolio of stocks sorted by the combination library
of their safety, profitability, growth, and the quality
of management practices

RMW Profitability factor, constructed as a long-short port- Fama  and French  Ken French web-
folio of stocks sorted by their profitability (2015) site

RMWs RMW with a hedged unpriced component Daniel et al. (2020) Kegt.t Daniel

website

R _IA Investment factor, constructed as a long-short port- Hou et al. (2015) Lu Zhang web-
folio of stocks sorted by their investment-to-capital site

R ROE Profitability factor, constructed as a long-short port-  Hou et al. (2015) Lu Zhang web-
folio of stocks sorted by their return on equity site

SMB Size factor, constructed as a long-short portfolio of Fama  and French Ken French web-
stocks sorted by their market cap (1992) site

SMBs SMB with a hedged unpriced component Daniel et al. (2020) Kegt.t Daniel

website
STREV Short-term reversal factor, constructed as a long- Jegadeesh and Titman Ken French web-

short portfolio of stocks sorted by their previous

(1993)

site

month return

C Duration-adjusted bond returns

Duration-adjusted returns are computed for each bond 7 at each time t such that the resultant
bond return is in ‘excess’ of a portfolio of duration-matched U.S. Treasury Bond returns (van
Binsbergen, Nozawa, and Schwert (2024), Andreani, Palhares, and Richardson (2023)). The

total return for corporate bond ¢ in month ¢ is,

B;i + Al + Coupon, j,

R =
! B+ Al

_1’

where Bj;; is the clean price of bond 7 in month ¢, Al;; is the accrued interest, and Coupon;; is
the coupon payment, if any.

The bond credit excess return (‘duration adjusted return’) is the total bond return minus a
hedging portfolio of U.S Treasury Bonds that have the same duration as the bond in month ¢.
The duration-adjusted return isolates the portion of a bonds performance that is attributed to
the credit risk of each bond (or other non-interest rate related risks). The duration-adjusted

Treasury

i T
return is defined as R;; — Ry <oonr¥  where R, “7o

durbond i 15 @ portfolio of treasury securities that

matches the duration of the cash-flows of of bond 7. We use the duration-adjusted return to

re-compute the traded bond factor returns and underlying bond portfolios (basis assets).
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D Benchmark asset pricing models

We benchmark the performance of the BMA-SDF against several frequentist asset pricing mod-

els as well as other latent factor models:

CAPM and CAPMB: The single-factor equity CAPM and the bond-equivalent CAPMB.
The CAPM is the value-weighted equity market factor from Kenneth French’s webpage. The
bond CAPM (CAPMB) is the value-weighted corporate bond market factor.

FF5: The original five-factor model of Fama and French (1993) that includes the MKTS,
SMB and HML factors from Fama and French (1992) and the default (DEF) and term structure
(TERM) factors introduced in Fama and French (1993).

HKM: The intermediary capital two-factor asset pricing model of He et al. (2017). Includes
the MKTS factor from Fama and French (1992) and the value-weighted (traded version) of the
intermediary capital factor, CPTLT.

KNS The latent factor model approach of Kozak et al. (2020). For each in-sample bond,
stock or co-pricing cross-section, we select the optimal shrinkage level and number of factors
chosen by twofold cross-validation. Given our data has a time-series length of T' = 444, the

first sample is simply 1986:01 to 2004:06 and the second sample is 2004:07 to 2022:12.

RP-PCA: The risk premia-principal components methodology of Lettau and Pelger (2020).
In our main results, we set v = 20. Changing this parameter to 10, or a lower value does not

quantitatively affect pricing performance. We use 5 principal components.

E Additional table
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Table A.2: Posterior factor probabilities and risk prices for the co-pricing factor zoo

Factor prob., E[vy;|data]

Price of risk, E[A;|data]

Total prior Sharpe ratio

Total prior Sharpe ratio

Factors: 20% 40% 60%  80% 20%  40%  60%  80%
PEADB 0.539 0.627 0.706 0.707 0.053 0.214 0.444 0.642
PEAD 0.506 0.555 0.601 0.591 0.034 0.136 0.287 0.429
IVOL 0.506 0.541 0.576 0.624 0.011 0.044 0.112 0.270
CREDIT 0.507 0.514 0.542 0.574 0.008 0.033 0.084 0.195
YSP 0.501 0.508 0.516 0.542 0.003 0.014 0.036 0.094
MOMBS 0.504 0.536 0.535 0.480 0.060 0.208 0.361 0.433
LIQNT 0.514 0.508 0.496 0.498 -0.003 -0.015 -0.041 -0.101
MKTS 0.512 0.524 0.500 0.473 0.056 0.177 0.292 0.407
LVL 0.503 0.497 0.495 0.490 0.001  0.003 0.008 0.021
CMAs 0.485 0.491 0.512 0.495 0.015 0.060 0.136 0.223
UNCr 0.491 0.498 0.495 0.487 0.001 0.004 0.012 0.032
CRY 0.491 0.488 0.509 0.483 0.052 0.166 0.339 0.509
INFLC 0.493 0.491 0.489 0.492 -0.001 -0.004 -0.011 -0.027
INFLV 0.486 0.498 0.494 0.485 0.002 0.007 0.014 0.022
QMJ 0.498 0.510 0.506 0.448 0.073 0.197 0.338 0.434
EPUT 0.498 0.498 0.488 0.473 0.002 0.008 0.014 0.018
EPU 0.507 0.500 0.480 0.444 0.001  0.003 0.005 0.007
UNCf 0.496 0.481 0.475 0.437 -0.003 -0.002 0.016 0.061
SZE 0.495 0.472 0477 0.425 0.006 0.026 0.064 0.106
VIX 0.478 0.475 0.467 0.448 0.000 0.003 0.006 0.011
UNC 0.468 0.476 0473 0.446 -0.001 -0.001 0.003 0.013
RMWs 0.482 0.473 0.467 0.412 0.024 0.073 0.137 0.195
LIQ 0.495 0.488 0.450 0.394 0.006 0.026  0.057 0.085
MKTSs 0.502 0.466 0.452 0.404 0.014 0.035 0.063 0.102
MOMS 0.501 0.476 0.443 0.392 0.021  0.060 0.099 0.149
CPTLT 0.471 0.463 0.464 0.401 0.024 0.072 0.133 0.187
CPTL 0.479 0.470 0.439 0.400 0.015 0.042 0.066 0.068
STREVB 0.501 0.482 0.434 0.362 0.003  0.007 0.010 0.007
HMLs 0.492 0.465 0.443 0.364 0.004 0.014 0.023 0.025
SMBs 0.497 0.468 0.434 0.362 0.004 0.016 0.028 0.033
LTREVB 0.490 0.484 0.423 0.358 0.016 0.052 0.078 0.090
BAB 0.485 0.467 0.430 0.373 0.021 0.052 0.075 0.094
MKTB 0.498 0.467 0.428 0.348 0.087 0.181 0.236  0.250
R_IA 0.484 0.454 0421 0.376 0.034 0.081 0.119 0.147
R_ROE 0.482 0.476 0.429 0.346 0.050 0.106 0.141 0.154
CMA 0.497 0.455 0.420 0.348 0.029 0.061 0.074 0.055
VAL 0472 0.454 0.418 0.369 0.017 0.058 0.099 0.126
MGMT 0.483 0.462 0.418 0.348 0.058 0.124 0.161 0.175
LTREV 0.481 0.458 0.420 0.350 0.008 0.028 0.049 0.052
HML_DEV 0476 0.450 0.417 0.360 0.001  0.003 0.019 0.042
SMB 0.483 0.456 0.415 0.342 0.010 0.047 0.082 0.089
PERF 0.485 0.467 0.413 0.332 0.047 0.104 0.112 0.089
CRF 0.495 0.450 0.411 0.340 0.015 0.052 0.091 0.116
STREV 0.469 0.445 0.417 0.365 0.009 0.030 0.066 0.099
MOMB 0470 0.453 0413 0.351 -0.003 -0.007 -0.007 -0.003
TERM 0.480 0.453 0.405 0.342 0.027 0.060 0.087 0.109
HML 0.482 0.453 0.406 0.329 0.003 -0.017 -0.040 -0.040
DRF 0.475 0.447 0.399 0.349 0.040 0.071 0.072  0.040
FIN 0.482 0.452 0.405 0.319 0.036  0.040 0.016 -0.004
DEF 0.466 0.444 0.404 0.335 0.000 -0.007 -0.020 -0.027
HMLB 0.469 0.445 0.411 0.323 0.040 0.102 0.141 0.121
DUR 0.486 0.416 0.401 0.334 0.012 -0.017 -0.075 -0.125
RMW 0.459 0.432 0.397 0.329 0.027  0.021 -0.022 -0.054
MKTBD 0.452 0.437 0.394 0.331 0.013 0.028 0.025 0.007

Posterior probabilities, E[v;|data], and posterior mean of (annualized) risk prices, E[);|data], of the 54 bond and

equity factors described in Appendix B. The factors are ordered (high to low) by each factors average posterior

probability across the four levels of shrinkage. The prior for each factor inclusion is a Beta(1, 1), yielding a prior
expectation for v; of 50%. Test assets include the 83 bond and stock portfolios and the 40 traded bond and
stock factors (N = 123). Results are tabulated for different values of the prior Sharpe ratio, |/E[SR} | 2],
with values set to 20%, 40%, 60% and 80% of the ex post maximum Sharpe ratio of the test assets. Sample
period: 1986:01 to 2022:12 (T = 444).
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Internet Appendix for:
The Co-Pricing Factor Zoo

Abstract

This Internet Appendix provides additional tables, figures, information and results supporting

the main text.



IA.1 Detailed data and variables construction

The following sections describe the various databases that we use in the paper. Across all
databases, we filter out bonds which have a time-to-maturity of less than 1-year. Furthermore,
for consistency, across all databases, we define bond ratings as those provided by Standard &
Poors (S&P). We include the full spectrum of ratings (AAA to D), but exclude bonds which
are unrated. For each database that we consider, we (the authors) do not winsorize or trim

bond returns in any way.

IA.1.1 Corporate bond databases

IA.1.1.1 Mergent Fixed Income Securities Database (FISD) database

Mergent Fixed Income Securities Database (FISD) for academia is a comprehensive database of
publicly offered U.S. bonds, research market trends, deal structures, issuer capital structures,
and other areas of fixed income debt research. We apply to the FISD data the standard filters

used in the previous literature:

1. Only keep bonds that are issued by firms domiciled in the United States of America,

COUNTRY_DOMICILE == ‘USA’.
2. Remove bonds that are private placements, PRIVATE_PLACEMENT == ‘N’.
3. Only keep bonds that are traded in U.S. Dollars, FOREIGN_CURRENCY == ‘N’.
4. Bonds that trade under the 144A Rule are discarded, RULE_144A == ‘N’.
5. Remove all asset-backed bonds, ASSET_BACKED == ‘N’.
6. Remove convertible bonds, CONVERTIBLE == ‘N’.

7. Only keep bonds with a fixed or zero coupon payment structure, i.e., remove bonds with

a floating (variable) coupon, COUPON_TYPE != ‘V’.

8. Remove bonds that are equity linked, agency-backed, U.S. Government, and mortgage-

backed, based on their BOND_TYPE.



9. Remove bonds that have a “non-standard” interest payment structure or bonds not caught
by the variable coupon filter (COUPON_TYPE). We remove bonds that have an INTEREST_FREQUENCY
equal to —1 (N/A), 13 (Variable Coupon), 14 (Bi-Monthly), and 15 and 16 (undocumented
by FISD). Additional information on INTEREST_FREQUENCY is available on page 60 to 67
of the FISD Data Dictionary 2012 document.

TA.1.1.2 Bank of America Merrill Lynch (BAML) database

The BAML data is made available by the Intercontinental Exchange (ICE) and provides daily
bond price quotes, accrued interest, and a host of pre-computed corporate bond characteris-
tics such as the bond option-adjusted credit spread (OAS), the asset swap spread, duration,
convexity, and bond returns in excess of a portfolio of duration-matched Treasuries. The ICE
sample spans the time period 1997:01 to 2021:09 and includes constituent bonds from the ICE
Bank of America High Yield (HOAO) and Investment Grade (COAQ) Corporate Bond Indices.

ICE bond filters. We follow van Binsbergen et al. (2024) and take the last quote of each
month to form the bond-month panel. We then merge the ICE data to the filtered Mergent
FISD database. The following ICE-specific filters are then applied:

1. Only include corporate bonds, Ind_Lvl_1 == ‘corporate’
2. Only include bonds issued by U.S. firms, Country == ‘US’

3. Only include corporate bonds denominated in U.S. Dollars, Currency == ‘USD’

BAML/ICE bond returns. Total bond returns are computed in a standard manner in ICE,
and no assumptions about the timing of the last trading day of the month are made because
the data is quote based, i.e., there is always a valid quote at month-end to compute a bond
return. This means that each bond return is computed using a price quote at exactly the
end of the month, each and every month. This introduces homogeneity into the bond returns
because prices are sampled at exactly the same time each month. ICE only provides bid-side
pricing, meaning bid-ask bias is inherently not present in the monthly sampled prices, returns
and credit spreads. The monthly ICE return variable is (as denoted in the original database)

trr_mtd_loc, which is the month-to-date return on the last business day of month t.



IA.1.1.3 Lehman Brothers (LHM) database

The Lehman Brothers Bond database holds monthly price data for corporate (and other) bonds
from January 1973 to December 1997. The database categorizes the prices as either quote or
matrix prices and identifies whether the bonds are callable or not. However, as per the findings
of Chordia, Goyal, Nozawa, Subrahmanyam, and Tong (2017), the difference between quote
and matrix prices or callable and non-callable bonds does not have a material impact on cross-
sectional return predictability. Hence, we include both types of observations. In addition, the
Lehman Brothers data provides key bond details such as the amount outstanding, credit rating,
offering date, and maturity date. For the main results, we use the LHM data from 1986:01 to
1996:12.

LHM filters. As for the other databases, we merge the LHM data to the pre-filtered Mergent
database and then apply the following LHM-specific filters following Elkamhi, Jo, and Nozawa
(2023):

1. Only include corporate bonds classified as ‘industrial’, ‘telephone utility’, ‘electric utility’,
‘utility (other)’, and ‘finance’, as per the LHM industry classification system, icode ==

{31451 6] 7}

2. Remove the following dates for which there are no observations or valid return data, date

== {1975-08 | 1975-09 | 1984-12 | 1985-01}.

LHM returns. The LHM bond database includes corporate bond returns that have been
pre-computed. The accuracy of the LHM return computation has been verified empirically by

Elkamhi et al. (2023).

LHM additional filters. We follow Bessembinder et al. (2008) and Chordia et al. (2017)
and apply the following filters to the LHM data to account for potential data errors:

1. Remove observations with large return reversals, defined as a 20% or greater return fol-

lowed by a 20% or greater return of the opposite sign.

2. Remove observations if the prices appear to bounce back in an extreme fashion relative
to preceding days. Denote R; as the month ¢ return, we exclude an observation at month

tif Ry x Rej < —0.02for k=1,...,12.



3. Remove observations if prices do not change for more than three months, i.e., Pf’j?) —11=

0, where P is the quoted or matrix price.

IA.1.2 Combined data

For our main results, we rely on the data set that combines the LHM, and ICE data sets over

the sample period 1986:01-2022:12. The data is spliced together as follows:
1. From 1986:01-1996:12 we use the LHM data.

2. From 1997:01-2022:12 we use the ICE data.

IA.1.3 In-sample and out-of-sample test assets

Corporate bond, stock and U.S. Treasury bond data We present descriptions of the
in-sample and out-of-sample portfolio and anomaly data we use to estimate and test the BMA-

SDFs and other asset pricing models we consider along with the associated reference and source.

Table TA.I: List of corporate bond, stock and U.S. Treasury bond test assets.  This table
presents the list of in-and-out-of-sample test assets used in the main results of the paper. For each test asset,
we present their identification (Asset ID), a description of their construction, and the source of the data for
downloading and/or constructing the time series. Panel A describes the IS corporate bond portfolios. Panel
B describes the IS stock anomalies/portfolios. Panel C describes the OS corporate bond portfolios. Panel D
describes the OS stock portfolios. Panel E describes the OS U.S. Treasury portfolios.

Asset ID Name and description Reference Source

Panel A: In-sample bond portfolios/anomalies

25 spread/size 5 Bond credit spread X 5 bond market capi- Nozawa (2017) and Open Source

bond portfolios talization double sorted portfolios. Elkamhi et al. (2023) go.nd Asset
ricing

25 rating/maturity 5 Bond rating x 5 bond time to maturity dou-  Gebhardt et al. (2005) Open Source

bond portfolios ble sorted portfolios. and others go.nd Asset
ricing

Panel B: In-sample stock portfolios/anomalies

cash at CashAssets. Cash and Short Term Invest- Palazo (2012) Global  Factor
- ments scaled by Assets. Data

ope be FCFBook. Operating Profit to Equity scaled  Thesmar (2019) Global  Factor
- by BE. Data

ocf me CFPrice. Operating Cash Flow scaled by ME.  Desai et al. (2004) ]()}l(%bal Factor
ata

at_turnover Asset Turnover. Sales scaled by average of to- Haugen and Baker Global Factor
tal assets. (1996) Data

capx_ gr2 Caplntens. CAPX 2 year growth. Anderson and Garcia- Global  Factor
- Feijoo (2006 Data

divi2m me DP tr. Dividend to Price - 12 Months. Litzenberger and Ra- Global  Factor
maswamy (1979) Data

ppeinv_grla PPE delta. Change in Property, Plant and Lyandres et al. (2008) Global  Factor
Equipment Less Inventories scaled by lagged Data

Assets.

sale me SalesPrice Barbee et al. (1996) ]()}l(%bal Factor
ata

ret 12 7 IntermMom. Momentum 7-12 Months. Novy-Marx (2012) ]()}lobal Factor
ata


https://openbondassetpricing.com/
https://openbondassetpricing.com/
https://openbondassetpricing.com/
https://openbondassetpricing.com/
https://openbondassetpricing.com/
https://openbondassetpricing.com/
https://jkpfactors.com/
https://jkpfactors.com/
https://jkpfactors.com/
https://jkpfactors.com/
https://jkpfactors.com/
https://jkpfactors.com/
https://jkpfactors.com/
https://jkpfactors.com/
https://jkpfactors.com/
https://jkpfactors.com/
https://jkpfactors.com/
https://jkpfactors.com/
https://jkpfactors.com/
https://jkpfactors.com/
https://jkpfactors.com/
https://jkpfactors.com/
https://jkpfactors.com/
https://jkpfactors.com/

prc_highprc 252d  YearHigh. Current price to high price over last  George and Hwang Global  Factor
- - year. (2004) Data
ni_me PE tr. Net Income scaled by ME. Basu (1983) ]()}l(%bal Factor
ata
bidaskhl 21d BidAsk. 21 Day Bid-Ask High-Low. High- Corwin and Schultz Global Factor
- low bid ask estimator created using code from (2012) Data
Corwin and Schultz (2012).
dolvol 126d Volume. Dollar trading volume. Brennan et al. (1998) Sl({bal Factor
ata
dsale dsga SGASales. Change Sales minus Change Abarbanell and Bushee Global Factor
- SG&A. (1998) Data
cop_atll Cash Based Operating Profitability scaled by  Ball et al. (2016) Global Factor
lagged Assets. Data
ivol capm_252d iVoICAPM. Idiosyncratic volatility from the  Ali et al. (2003) Global  Factor
CAPM (252 days). Data
ivol ff3 21d iVolFF3. Idiosyncratic volatility from the Ang et al. (2006) Global  Factor
T Fama-French 3-factor model. Data
rvol _21d Max Return to Volatility. Ang et al. (2006) ]C:)}l(%bal Factor
ata
ebit _sale ProfMargin. Operating Profit Margin after  Soliman (2008) Global  Factor
Depreciation. Data
ocf at PriceCostMargin. Operating Cash Flow scaled  Bouchard et al. (2019)  Global  Factor
by Assets. Data
opex_ at OperLev. Operating Leverage. Novy-Marx (2011) Sl(%bal Factor
ata
Inoa_grla NetSalesNetOA. Change in Long-Term NOA  Fairfield et al. (2003) Global  Factor
scaled by average Assets. Data
oaccruals at Operating Accruals. Sloan (1996) Sl({bal Factor
ata
at_grl Asset growth. Asset Growth lyr. Cooper et al. (2008) Slobal Factor
ata
eqnpo 12m Net Equity Payout - 12 Month. Daniel and Titman  Global Factor
- (2006) Data
gp_at Gross Profit scaled by Assets. Novy-Marx (2013) %l(%bal Factor
ata
capex abn Abnormal Corporate Investment. Titman et al. (2004) ]()}l(%bal Factor
ata
noa_at NetOA. Net Operating Asset to Total Assets.  Hirshleifer et al. (2004) %lobal Factor
ata
0_score Ohlson O-score. Dichev (1998) %lobal Factor
ata
niq at ROA. Quarterly return on assets. Balakrishnan et al. Global Factor
- 2010 Data
chcsho 12m Net stock issues. ontiff and Woodgate Global  Factor
2008) Data
LRreversal Long-run reversal. e Bondt and Thaler Open Asset Pric-
Lev Market leverage. Bhandari (1988) Open Asset Pric-
ing
Panel C: Out-of-sample bond portfolios
10x VaR portfolios  Decile sorted bond portfolios sorted on 24-  Bai et al. (2019) Open Source
month rolling 95% historical value-at-risk Bond Asset
(VaR) defined as the second lowest return Pricing
value in the rolling period.
10x duration port-  Decile sorted bond portfolios sorted on bond  Gebhardt et al. (2005) Open Source
folios duration. Bond Asset
Pricing
10x bond value Decile sorted bond portfolios sorted on bond Houweling and Van Open Source
portfolios market capitilization defined as bond price  Zundert (2017) Bond Asset
multiplied by bond amount outstanding. Pricing
10x bond BTM Decile sorted bond portfolios sorted on bond Bartram et al. (2020) Open Source
portfolios book-to-market (BTM) defined as the market Bond Asset
value of the bond scaled by the par value. Pricing
10x bond LTREV  Decile sorted bond portfolios sorted on bond  Bali et al. (2021) Open Source
portfolios long-term reversal defined as the sum of the Bond Asset
bond returns from t-12 to t-48. Pricing
10x bond MOM  Decile sorted bond portfolios sorted on bond  Gebhardt et al. (2005)  Open Source
portfolios momentum defined as the sum of the bond re- Bond Asset
turns from t-6 to t-1. Pricing
17x bond FF17 17 Fama-French industry portfolios computed Kelly et al. (2023) Open Source
portfolios with bond returns. Bond Asset
Pricing
Panel D: Out-of-sample stock portfolios/anomalies
10x E/P portfolios Decile sorted stock portfolios sorted on the Fama & French Kenneth
earning-to-price ratio (E/P). ggegréch’s web-
10x MOM portfo-  Decile sorted stock portfolios sorted on equity = Fama & French Kenneth
lios momentum. French’s web-
page
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https://jkpfactors.com/
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https://jkpfactors.com/
https://jkpfactors.com/
https://jkpfactors.com/
https://jkpfactors.com/
https://jkpfactors.com/
https://jkpfactors.com/
https://jkpfactors.com/
https://jkpfactors.com/
https://jkpfactors.com/
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https://jkpfactors.com/
https://jkpfactors.com/
https://jkpfactors.com/
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https://jkpfactors.com/
https://www.openassetpricing.com/data/
https://www.openassetpricing.com/data/
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https://openbondassetpricing.com/
https://openbondassetpricing.com/
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https://openbondassetpricing.com/
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https://openbondassetpricing.com/
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https://openbondassetpricing.com/
https://openbondassetpricing.com/
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https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html

10x LTREV port-
folios

Decile sorted stock portfolios sorted on stock
long-term reversals.

Fama & French

Kenneth
French’s web-

page
10x accruals port-  Decile sorted stock portfolios sorted on equity  Fama & French Kenneth
folios accruals. ggegréch’s web-
10x size portfolios Decile sorted stock portfolios sorted on firm  Fama & French Kennegh
size (market capitalization). gg*é%dl S web-
10x variance port-  Decile sorted stock portfolios sorted on the Fama & French Kenne‘gh
folios earning-to-price ratio (E\/P). ggegré(?h s web-
17x stock FF17 17 Fama-French industry portfolios computed Fama & French Kenneth
portfolios with stock returns. French’s web-
page
Panel E: Out-of-sample Treasury portfolios
29x Treasury port- Monthly excess U.S. Treasury bond returns Liu and Wu (2021) Jing Cynthia

folios computed across the term structure us- ‘Wu’s webpage
ing annualized continuously-compounded zero
coupon yields computed as in Liu and Wu
(2021). We price the U.S. Treasury Bonds
each month using the yield-curve data and
then compute monthly discrete excess returns

across the term structure as the total return
in excess of the one-month Treasury Bill rate.

The portfolios span from the 2-year T Bond
up until the 30-year T-Bond in increments of
1-year.

IA.2 CAPMB: Two-pass regression risk premium vs. SDF-
based market price of risk

In this section we report two-pass regression estimates of the risk premium attached to MKTB
as sole factor as well as linear SDF estimates of the market price of risk in the CAPMB model
used to price our baseline cross-section of corporate bonds and bond tradable factors.

To understand why the two types of estimations can lead to very different outcomes, let’s
consider a simple example with two (demeaned) tradable risk factors only, i.e. fi = [fi., f27t]T7

and suppose for simplicity that their covariance matrix is

Suppose further that only the first factor is part of the SDF, and has a market price of risk
equal to k. That is

My=1—fAp=1—=[fr, for] | | =1 = frun
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Figure IA.1: CAPMB: two pass-regression risk premium, and market price of risk

posterior 95% CI
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(A) Two-pass regression risk premium (B) SDF-based market price of risk

The figure plots the posterior distributions of the two-pass regression ex post risk premium, left panel, and
SDF-based market price of risk, right panel, of a model with MKTB as the only risk factor, i.e. CAPMB. Test
assets include the baseline cross-section of corporate bond returns, and the corporate bond tradable factors,
described in Section 1. The prior Sharpe ratio does not impose any shrinkage, being set to the ex post Sharpe
ratio of the MKTB factor. Sample period: 1986:01 to 2022:12 (T = 444).

Denoting with prp = [,uRp,l,uRp’z]T the vector of risk premia of the factors, applying the

fundamental asset pricing equation to the returns generated by the factors we have

1 pl |k K
HUrp = XA = =
p 1110 pK
That is, the second factor, that is not part of the SDF, commands nevertheless a non-zero risk
premium (equal to pk) as long as the factor has non-zero correlation (i.e., as long as p # 0)
with the true risk factor—the one that is part of the SDF. This also implies that a two-pass
regression method that uses the second factor as the sole driver of a cross-section of asset returns
will estimate its ex post risk premium as being non-zero — in fact, the estimated risk premium
for the second factor will be inflated relative to its true value. This is due to the fact that the
estimated betas of fy will be, in population, smaller than the ones of f; by a factor equal to p.
Hence, in population, the two pass regression will yield an estimated risk premium for f5 equal
to p~ 'k (where |p| < 1).
To estimate the SDF of the CAPMB model we rely on the Bayesian-SDF estimator in
Definition 1 of Bryzgalova et al. (2023). This is equivalent to the method presented in Section
2 under the null that MKTB is the only factor in the SDF with probability 1 and that the

model is true. To put the comparison of MRP and ex post risk premia estimates on the same



footing, we estimate the two pass regression using the Bayesian implementation of the Fama
and MacBeth (1973) method in Bryzgalova et al. (2022). Posterior distributions of the two-pass
regression ex post risk premium and SDF-based market price of risk are plotted, respectively, in
panels (a) and (b) of Figure IA.1. The estimates suggests that, albeit MKTB carries a sizable
and significant risk premium, it is very unlikely that the data are generated by a “true” latent
SDF with MKTB as the only factor—the (Bayesian) p-value of its market price of risk being
equal to zero is about 52.34%.

IA.3 Cash-flow and discount rate news decomposition

IA.3.1 Tradable factor return decomposition

Vuolteenaho (2002), Cohen et al. (2002), and others decompose unexpected asset returns into

an expected-return (discount) component and a cash-flow component:
o0 o)
Tev1 — By = AF Z petii; — DB Z P Tes 1445 (1A.10)
=0 j=1

where AF;,; denotes the change in expectations from ¢ to t + 1 (i.e., Ei1(:) — Ey(+)), €111
the aggregate return on equity (ROE), and r;,; the log asset return. p is determined by the
data, and in our setting is equal to 0.979, although any value between 0.95 and 1.00 makes an
immaterial difference to the results. We define the two return components as cash-flow news

(Ncs) and discount rate news (N, ):
Nepiy1 = AE Z Pl e, Nyyy1 = AE Z P T4 (IA.11)
=0 j=1

As argued by Vuolteenaho (2002), using ROE as the measure of firm cash-flows is more ap-
propriate in our case since we are dealing with both debt and equity-based traded factors and

many firms do not pay cash-based dividends.

IA.3.2 Implementation using the VAR methodology

To empirically estimate equation TA.10, we implement a parsimonious vector autoregression

(VAR). The behaviour of the traded factors is captured by a vector, z;; of state variables. The



first variable is always the traded stock or bond factor, whilst the remaining variables could be
any set of predictors that are associated with future stock or bond returns. In this respect, we
use predictors that are standard in the literature. We define the vector, z, = [ry, roe;, bmy, gz,
where r; is the traded factor return, roe; is the log of aggregate return on equity (ROE), bm,
is the log of the aggregate book-to-market ratio, and gz; is the first difference of the log of the
Gilchrist and Zakrajsek (2012) aggregate credit spread. Aggregate ROE is the equally-weighted
averaged of firm-level net income (NI) scaled by one-quarter lagged book equity. Aggregate
book-to-market is from Amit Goyal’s data repository available here. The GZ credit spread is
computed as in Gilchrist and Zakrajsek (2012).

The vector of state variables, z; is assumed to follow a first order VAR,
Zip1 = Az + upg

From the VAR, we estimate DR news as,

Ndrt+1 = (Et+1 — Et) ijrt+1+j = 6/1 Z ijjUt+1 (IA12)
j=1 j=1
= ey pA(I — pA) tupy = Nugyq, (IA.13)

where N = e|pA(I — pA)~! and el is a vector whose first element is equal to 1 and zero
otherwise. The CF news component is computed as the residual of the total unexpected factor

return and DR news,

Nefin =11 — By + Ndr = (€] + N ugy . (TA.14)

IA.3.3 Factor decomposition

We now implement the VAR and decompose each traded factor into the component related to
discount rate news (DR) and cash-flow news (CF). Following Vuolteenaho (2002) and Cohen

et al. (2002) we compute the variance of the discount rate news component, V(Ndr) and the

V(Ndr)
SO T

pin down a relative classification of the factors into a DR or CF-based category, we use the

ratio of the discount rate news variance to total unexpected factor return variance

'We thank Yoshio Nozawa for making this data available to us.
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https://sites.google.com/view/agoyal145

V(Ndr)
V(u)

median level of as a break-point. Factors above the break-point, are classified (relatively)
as more likely to capture discount-rate news as opposed to cash-flow rate news.

We present the results of the decomposition in Figure 5. The y-axis of the figure shows the
proportion of residual variance of each factor estimated from the VAR model that represents
discount rate news. Overall, 10 of the 16 bond factors (62%) are driven relatively more by
discount rate news as opposed to cash-flow news shocks. In contrast, slightly more equity
factors (14/26=53%) are driven by cash-flow shocks

The two most likely factors that ought to be included in the co-pricing BMA-SDF (both
PEAD and PEADB) are driven relatively more by discount rate news as opposed to cash-flow
news. Most other behavioural-linked factors such as MOMBS (bond factor formed with equity
momentum), PERF and MGMT (equity and management performance factor of Stambaugh

and Yuan (2017)), are also classified as relatively more discount rate news based.
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IA.4 Additional tables
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Table TA.II: Traded factor performance statistics — full sample

SR IR 1 t-stat. « t-stat.
Panel A: Corporate Bond Factors
CRF 0.04 0.04 0.08 [0.75] 0.08 [0.69]
CRY 0.13  0.02 0.23 [2.21] 0.03 [0.41]
DEF 0.02 —0.03 0.03 [0.39] —0.05 [—0.56]
DRF 0.12 —-0.09 0.27 [2.35] —0.09 [—1.88]
DUR 0.08 —0.15 0.14 [1.66] —0.14 [—2.51]
HMLB 0.14  0.06 0.21 [2.44] 0.09 [1.19]
LTREVB 0.11 0.12 0.09 [2.09] 0.11 [1.97]
MKTB 0.19 - 0.30 [3-55] - -
MKTBD 0.06 —0.01 0.08 [1.05] —0.02 [-0.20]
MOMB —0.00 0.03 —0.01 [-0.10] 0.04 [0.53]
MOMBS 0.19 0.26 0.18 [3.69] 0.23 [4.36]
PEADB 0.36  0.40 0.13 [7.17] 0.14 [6.88]
STREVB 0.04  0.00 0.07 [0.95] 0.00 [-0.07]
SZE 0.09 0.11 0.07 [1.78] 0.08 [2.30]
TERM 0.12 0.01 0.36 [2.50] 0.03 [0.23]
VAL 0.06  0.06 0.07 [1.16] 0.07 [0.94]
Panel B: Stock Factors

BAB 0.20 0.23 0.74 [3-52] 0.84 [3-55]
CMA 0.14  0.20 0.29 [2.55] 0.40 [3.45]
CMAs 0.16  0.19 0.20 [3-24] 0.24 [3.77]
CPTLT 0.11 —-0.02 0.75 [2.21] —0.08 [-0.42]
FIN 0.14 0.23 0.59 [2.78] 0.86 [4.25]
HML 0.06  0.08 0.18 [1.02] 0.25 [1.26]
HML DEV 0.04 0.04 0.16 [0.81] 0.14 [0.68]
HMLs 0.06 0.07 0.10 [1.01] 0.12 [1.19]
LIQ 008 006 029 [1.52] 024 [1.24]
LTREV 0.06  0.05 0.17 [1.16] 0.14 [0.86]
MGMT 0.18 0.26 0.52 [3.37] 0.70 [4.33]
MKTS 0.15 - 0.69 [3.22] - -
MKTSs 0.17  0.12 0.56 [3.39] 0.34 [2.27]
MOMS 0.11 0.15 0.51 [2-3] 0.66 [3.36]
PEAD 0.26  0.28 0.53 [5.4] 0.56 [5.98]
PERF 0.17 024  0.52 [3-4] 0.66 [4.93]
QMJ 0.19  0.32 0.47 [3.45] 0.69 [6.44]
RMW 0.15 0.20 0.38 [2.95] 0.48 [3.81]
RMWs 0.21 0.20 0.31 [4.67] 0.31 [4.46]
R_TA 0.14  0.20 0.31 [2.72] 0.42 [3.55]
R_ROE 0.18 024 049 [3.58] 0.62 [5.35]
SMB 0.02 -0.01 0.06 [0.45]  —0.03 [-0.25]
SMBs 0.03 0.04 0.06 [0.58] 0.08 [0.72]
STREV 0.07  0.02 0.24 [1.69] 0.06 [0.45]

Corporate bond and stock traded factor performance statistics. SR is the Sharpe ratio, IR is the Information
ratio, p is the average return, and « is the single-factor MKTB (MKTS) alpha. The sample is from 1986:01 to
2022:12. All statistics are reported monthly. p and « are reported in percent. t-statistics are reported in square

brackets with Newey-West standard errors computed with four lags.
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Table IA.III: Traded factor performance statistics — subsamples

1986:01-1999:12 2000:01-2022:12
SR IR i t-stat. o  t-stat. SR IR © t-stat. o t-stat.
Panel A: Corporate Bond Factors
CRF 0.10 0.22 0.08 [1.26] 0.16 [2.3]] 0.03 0.02 0.08 [0.47] 0.05 [0.29
CRY 0.25 0.24 0.18 [2.94] 0.18 [2.63] 0.12 -0.02 0.26 [1.59] -0.02 [-0.26]
DEF -0.05 0.06 -0.05 [-0.73] 0.05 [0.89] 0.04 -0.04 0.08 [0.70] -0.07 [-0.62]
DRF 0.12 -0.24 0.17 [1.48] -0.11 [-3.05] 0.13 -0.06 0.33 [1.93] -0.07 [-0.94]
DUR 0.09 -0.24 0.12 [1.12] -0.13 [-2.81] 0.07 -0.13 0.15 [1.28] -0.14 [-1.68]
HMLB 0.22 0.11 0.18 [2.48] 0.07 [1.32] 0.13 0.06 0.23 [1.74] 0.10 [0.89]
LTREVB 0.12 0.33 0.07 [1.37] 0.15 [3.37] 0.11 0.10 0.11 [1.66] 0.09 [1.27]
MKTB 0.21 - 0.29 [2.43] - - 0.18 - 0.31  [2.67] - -
MKTBD 0.06 0.12 0.05 [0.72] 0.09 [1.53] 0.06 -0.04 0.11 [0.88] -0.06 [-0.47]
MOMB -0.08 -0.13 -0.09 [-1.04] -0.14 [-1.60] 0.02 0.08 0.04 ]0.38] 0.14 [1.23]
MOMBS 0.33 0.36 0.11 [3.79] 0.12 [3.77] 0.19 027 021 [2.89] 0.29 [3.64]
PEADB 0.41 0.41 0.08 [4.89] 0.08 [5.09] 0.38 042 0.17 [6.07] 0.18 [5.8
STREVB -0.04 -0.03 -0.05 [-0.50] -0.04 [-0.43] 0.07 0.02 0.13 [1.40] 0.03 [0.36]
SZE 0.08 0.13 0.03 [0.91] 0.05 [1.55] 0.10 0.11 0.09 [1.56] 0.10 [1.92]
TERM 0.14 -0.12 037 [1.73] -0.14 [-1.58] 0.11 0.03 0.35 [1.84] 0.10 [0.49]
VAL -0.01 024 -0.01 [-0.12] 0.14 [2.44] 0.10 0.04 0.12 [1.39] 0.05 [0.57]
Panel B: Stock Factors

BAB 0.18 0.18 0.60 [1.72] 0.60 [1.67] 0.21 025 0.82 [3.40] 0.93 [3.33]
CMA 0.09 0.26 0.18 [1.12] 0.42 [3.07] 0.16 0.19 0.36 [2.25] 0.41 [2.5]]
CMAs 0.22 031 0.27 [2.78] 0.36 [3.72] 0.13 0.14 0.16 [2.06] 0.18 [2.25]
CPTLT 0.16 -0.05 1.08 [2.10] -0.20 [-0.75] 0.08 -0.01 0.55 [1.21] -0.04 [-0.15]
FIN 0.16 0.32 0.53 [1.93] 0.90 [3.65] 0.14 020 0.62 [2.15] 0.83 [3.00]
HML 0.03 0.15 0.07 [0.30] 0.33 [1.47] 0.07 0.07 0.25 [1.03] 0.26 [0.95]
HML DEV -0.04 0.06 -0.13 [-0.48] 0.16 [0.67] 0.08 0.06 0.34 [1.25] 0.23 [0.85]
HMLs 0.11 0.19 0.17 [1.25] 0.28 [2.04] 0.03 0.03 0.05 [0.40] 0.05 [0.37]
LIQ 0.05 0.07 0.17 [0.62] 0.22 [0.86] 0.09 0.07 0.36 [1.42] 0.29 [1.15]
LTREV 0.11 0.11 0.26 [1.26] 0.26 [1.17] 0.04 0.03 0.12 ]0.60] 0.09 [0.39]
MGMT 0.18 0.36 0.41 [2.21] 0.68 [4.2§] 0.18 0.23 0.58 [2.70] 0.71 [3.1§]
MKTS 0.23 - 1.00  [3.04] - - 0.11 - 0.50 [1.74] - -
MKTSs 0.24 0.14 0.74 [2.72] 0.37 [1.46] 0.14 0.10 045 [2.30] 0.30 [1.79]
MOMS 0.32  0.28 0.99 [3.59] 0.86 [3.08] 0.04 0.09 0.22 [0.73] 0.43 [1.73]
PEAD 0.57 0.55 0.92 [8.06] 0.87 [7.68] 0.13 0.16 0.29 [2.29] 0.35 [2.79]
PERF 0.19 0.17 042 [2.32] 0.37 [1.86] 0.17 0.26 0.57 [2.64] 0.75 [4.54]
QMJ 0.27 0.38 0.45 [2.90] 0.60 [3.95] 0.17 0.30 0.49 [2.46] 0.68 [5.11]
RMW 0.16 0.18 0.25 [1.71] 0.28 [2.05] 0.16 0.20 0.46 [2.62] 0.57 [3.48]
RMWs 0.21 0.20 0.28 [2.80] 0.27 [2.6§] 0.21 021 0.34 [3.88] 0.33 [3.70]
R TIA 0.17  0.35 0.31 [2.04 0.54 [4.28] 0.13 0.16 0.31 [1.94] 0.37 [2.20]
R ROE 0.38  0.36 0.73 [4.99] 0.68 [4.66] 0.11 019 0.34 [1.76] 0.51 [3.42]
SMB -0.09 -0.13 -0.26 [-1.11] -0.35 [-1.44] 0.08 0.06 0.26 [1.53] 0.17 [1.02]
SMBs -0.07 -0.07 -0.14 [-0.95] -0.13 [-0.81] 0.08 0.09 0.18 [1.31] 0.19 [1.39]
STREV 0.09 0.03 0.21 [1.07] 0.07 [0.41] 0.07 0.03 0.25 [1.34] 0.10 [0.5]]

Corporate bond and stock traded factor performance statistics. SR is the Sharpe ratio, IR is the Information
ratio, p is the average return, and « is the single-factor MKTB (MKTS) alpha. The sample is split into two
subperiods following van Binsbergen et al. (2024). The first sample is from 1986:01 to 1999:12, and the second
sample is from 2000:01 to 2022:12. All statistics are reported monthly. u and « are reported in percent.

t-statistics are reported in square brackets with Newey-West standard errors computed with four lags.

14



Table IA.IV: Posterior factor probabilities and risk prices for the corporate bond factor zoo

Factor prob., E[v;|data]

Price of risk, E[)\;|data]

Total prior Sharpe ratio

Total prior Sharpe ratio

Factors: 20% 40% 60%  80% 20%  40%  60% 80%
PEADB  0.588 0.767 0.827 0.822 0.089 0.357 0.632 0.802
MOMBS 0.542 0.616 0.621 0.582 0.078 0.279 0.469 0.563
CREDIT 0.501 0.538 0.617 0.674 0.008 0.034 0.095 0.243
IVOL 0.515 0.536 0.551 0.573 0.005 0.019 0.048 0.119
YSP 0.492 0.513 0.532 0.564 0.003 0.014 0.036 0.100
INFLV 0.493 0.498 0.508 0.518 0.004 0.018 0.040 0.081
UNCft 0.516 0.502 0.508 0.478 -0.009 -0.028 -0.054 -0.084
INFLC 0.500 0.490 0.489 0.511 0.000 -0.001 -0.003 -0.008
CRY 0.488 0.492 0.516 0.485 0.037 0.125 0.274 0.417
EPU 0.498 0.497 0.492 0.485 0.003 0.008 0.014 0.022
UNC 0.504 0.508 0.496 0.465 -0.005 -0.014 -0.019 -0.022
LIQNT 0.494 0.494 0.484 0.489 -0.002 -0.006 -0.014 -0.030
EPUT 0.486 0.490 0.496 0.485 0.004 0.013 0.028 0.058
LVL 0.492 0.480 0.489 0.494 0.000  0.000 0.000 0.003
MKTB 0.504 0.510 0.488 0.433 0.066 0.173 0.271  0.347
VIX 0.490 0.486 0.483 0.455 0.000 -0.001 -0.006 -0.017
UNCr 0.478 0.477 0.466 0.462 0.000 0.001 0.005 0.012
CPTL 0.501 0.477 0.465 0.435 0.003 0.012 0.035 0.072
SZE 0.497 0.486 0.432 0.376 0.012 0.048 0.084 0.104
HMLB 0.509 0.485 0.437 0.344 0.036 0.096 0.133 0.119
DRF 0.496 0.461 0.430 0.372 0.027 0.054 0.059 0.026
STREVB 0.486 0.458 0.421 0.335 0.001  0.004 0.008 0.004
MKTBD 0.466 0.449 0.407 0.347 0.017 0.041 0.051 0.050
DEF 0.473 0.445 0.404 0.332 -0.007 -0.023 -0.051 -0.075
DUR 0.467 0.425 0.403 0.356 0.009 -0.018 -0.083 -0.158
VAL 0.465 0.436 0.410 0.337 0.018 0.064 0.111 0.117
MOMB 0.477 0.455 0.401 0.307 -0.005 -0.010 -0.005 0.007
LTREVB 0.485 0.455 0.402 0.299 0.025 0.061 0.073 0.055
TERM 0.466 0.419 0.380 0.305 0.039 0.064 0.070 0.062
CRF 0.469 0.419 0.370 0.291 0.011  0.047 0.079 0.089

Posterior probabilities, E[v;|data], and posterior mean of (annualized) risk prices, E[A;|data], of the 16 traded

bond and 14 nontraded factors described in Appendix B. The factors are ordered (high to low) by each factors

average posterior probability across the four levels of shrinkage. The prior for each factor inclusion is a Beta(1,

1), yielding a prior expectation for -y; of 50%. Test assets include the 50 bond portfolios and the 16 traded
bond factors (N = 66). Results are tabulated for different values of the prior Sharpe ratio, ,/EW[SR% | 2],
with values set to 20%, 40%, 60% and 80% of the ex post maximum Sharpe ratio of the test assets. Sample
period: 1986:01 to 2022:12 (T = 444).
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Table TA.V: Posterior factor probabilities and risk prices for the stock factor zoo

Factor prob., E[y;|data] Price of risk, E[\;|data]
Total prior Sharpe ratio Total prior Sharpe ratio
Factors: 20%  40% 60%  80% 20%  40%  60%  80%
PEAD 0.530 0.601 0.672 0.725 0.034 0.145 0.332 0.570
MKTS 0.503 0.546 0.554 0.568 0.039 0.155 0.298 0.468
CMAs 0.508 0.520 0.531 0.520 0.021 0.078 0.175 0.289
LVL 0.522 0.521 0.508 0.498 0.000 0.002 0.005 0.014
IVOL 0.497 0.496 0.501 0.549 0.004 0.016 0.043 0.123
EPUT 0.508 0.501 0.516 0.510 0.001 0.005 0.014 0.036
INFLV 0.514 0.514 0.510 0.497 0.000 -0.001 -0.002 -0.004
LIQNT 0.505 0.505 0.516 0.507 0.000 -0.002 -0.009 -0.036
VIX 0.503 0.509 0.505 0.496 -0.001 -0.002 -0.006 -0.016
YSP 0.499 0.493 0.512 0.507 0.001  0.003 0.009 0.026
CREDIT 0.505 0.509 0.498 0.491 0.000 -0.001 -0.001 -0.001
RMWs 0.500 0.503 0.503 0.489 0.032 0.099 0.186 0.274
UNCr 0.493 0.503 0.498 0.495 0.001 0.004 0.010 0.028
UNC 0.494 0.499 0.494 0.496 0.000 0.002 0.007 0.018
INFLC 0.489 0.497 0.500 0.485 0.000 0.001 0.001 0.002
UNCft 0.488 0.484 0.491 0.498 0.001  0.003 0.011 0.038
QMJ 0.484 0.487 0.486 0.477 0.048 0.129 0.239 0.387
EPU 0.473 0478 0.494 0.484 -0.001 -0.005 -0.012 -0.030
CPTL 0.481 0.491 0.484 0.465 0.017 0.058 0.107 0.155
CPTLT 0.496 0.481 0.469 0.436 0.018 0.061 0.106 0.136
MKTSs 0.489 0.508 0.465 0.404 0.016 0.049 0.071 0.081
BAB 0.499 0.498 0.464 0.397 0.027 0.077 0.121 0.156
LIQ 0.492 0.479 0.458 0.404 0.006 0.022 0.049 0.072
STREV 0.492 0.465 0.455 0.413 0.008 0.030 0.072 0.123
MGMT 0.498 0.473 0.441 0.395 0.056 0.127 0.194 0.246
PERF 0.505 0.473 0.442 0.381 0.039 0.092 0.129 0.134
R_ROE 0.495 0475 0.426 0.347 0.040 0.083 0.098 0.091
R_IA 0.482 0.457 0.428 0.372 0.028 0.065 0.101 0.126
MOMS 0.478 0.463 0.429 0.367 0.014 0.037 0.051 0.056
SMBs 0.475 0.459 0.425 0.368 0.004 0.020 0.039 0.056
LTREV 0.494 0.464 0.416 0.344 0.007 0.022 0.032 0.033
CMA 0.485 0.451 0.418 0.361 0.027 0.055 0.072  0.069
HMLs 0.480 0.448 0.420 0.349 0.005 0.014 0.017 0.011
HML DEV 0475 0.435 0.407 0.368 0.005 0.019 0.056 0.123
SMB 0.472 0.447 0.407 0.346 0.011  0.050 0.088 0.109
HML 0.468 0.441 0.405 0.354 0.002 -0.031 -0.082 -0.134
FIN 0.481 0.443 0.399 0.324 0.032 0.035 0.014 -0.004
RMW 0.470 0.434 0.389 0.330 0.033 0.042 0.018 -0.021

Posterior probabilities, E[,|data], and posterior mean of (annualized) risk prices, E[A;|data], of the 24 traded

stock and 14 nontraded factors described in Appendix B. The factors are ordered (high to low) by each factors

average posterior probability across the four levels of shrinkage. The prior for each factor inclusion is a Beta(1,

1), yielding a prior expectation for +; of 50%. Test assets include the 33 stock portfolios and the 24 traded
stock factors (N = 57). Results are tabulated for different values of the prior Sharpe ratio, ,/IE,F[SR% | 02,
with values set to 20%, 40%, 60% and 80% of the ex post maximum Sharpe ratio of the test assets. Sample
period: 1986:01 to 2022:12 (T = 444).
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Table IA.VI: Posterior factor probabilities and risk prices for the co-pricing factor zoo —

excluding the intercept

Factor prob., E[y;|data] Price of risk, E[)\;|data]
Total prior Sharpe ratio Total prior Sharpe ratio
Factors: 20%  40% 60%  80% 20%  40%  60%  80%
PEADB 0.546 0.646 0.708 0.698 0.060 0.238 0.471 0.653
IVOL 0.516 0.579 0.628 0.729 0.021 0.091 0.222 0.510
PEAD 0.540 0.589 0.619 0.617 0.045 0.171 0.336 0.479
CREDIT 0.492 0.523 0.544 0.562 0.010 0.042 0.103 0.214
MOMBS 0.497 0.538 0.558 0.484 0.071 0.242 0.424 0470
QMJ 0.508 0.533 0.522 0.485 0.084 0.235 0.390 0.517
YSP 0.498 0.497 0.501 0.532 0.004 0.017 0.043 0.110
CMAs 0.506 0.507 0.527 0.485 0.017 0.065 0.146 0.222
MKTS 0.487 0.505 0.516 0.470 0.061 0.189 0.328 0.437
INFLC 0.488 0.490 0.498 0.490 -0.001 -0.004 -0.011 -0.028
LVL 0.479 0.492 0.496 0.498 0.001 0.005 0.014 0.038
UNCr 0.490 0.485 0.490 0.491 0.001 0.004 0.012 0.032
LIQNT 0.481 0.482 0.491 0.485 -0.004 -0.015 -0.045 -0.105
INFLV 0.490 0.489 0.491 0.466 0.002 0.006 0.011 0.008
EPUT 0.498 0.481 0.481 0.454 0.002 0.007 0.014 0.017
UNCTF 0.508 0.489 0.468 0.438 -0.010 -0.021 -0.013  0.020
VIX 0.483 0479 0.482 0.456 -0.003 -0.008 -0.017 -0.035
CRY 0.469 0.474 0.487 0.460 0.062 0.193 0.379 0.531
LIQ 0.501 0.494 0.465 0.408 0.008 0.032 0.068 0.102
EPU 0.478 0473 0.462 0.444 0.001  0.002 0.004 0.005
CPTLT 0.478 0.482 0.472 0.422 0.030 0.087 0.150 0.211
UNC 0.486 0.477 0.459 0.429 -0.003 -0.008 -0.009 -0.011
SZE 0.484 0.475 0.466 0.419 0.007 0.028 0.066 0.099
MOMS 0.497 0.472 0.458 0.408 0.025 0.070 0.125 0.182
CPTL 0.481 0.470 0.463 0.409 0.020 0.054 0.076 0.064
RMWs 0.482 0.468 0.457 0.414 0.027 0.078 0.143 0.201
MKTSs 0.507 0.472 0.440 0.385 0.022 0.052 0.083 0.129
SMBs 0.506 0.480 0.444 0.367 0.006 0.023 0.035 0.038
LTREVB 0.484 0.486 0.441 0.372 0.017 0.057 0.086 0.095
LTREV 0.509 0.471 0.438 0.357 0.011 0.036 0.055 0.052
STREV 0.495 0.461 0.428 0.366 0.012 0.044 0.084 0.118
HML_DEV 0.487 0.451 0.420 0.379 0.005 0.010 0.040 0.080
R_ROE 0.489 0.464 0.432 0.343 0.054 0.115 0.157 0.168
VAL 0.466 0.450 0.440 0.369 0.018 0.063 0.118 0.140
HMLs 0.481 0.457 0.420 0.359 0.007 0.019 0.031 0.037
R_IA 0479 0.456 0.417 0.358 0.037 0.087 0.127 0.149
CRF 0.478 0.456 0.423 0.354 0.018 0.063 0.106 0.139
BAB 0.484 0.455 0.417 0.350 0.029 0.062 0.081 0.093
CMA 0.492 0.455 0.412 0.345 0.034 0.070 0.080 0.062
SMB 0.499 0.459 0.407 0.335 0.016 0.061 0.097 0.101
STREVB 0.489 0.456 0.411 0.342 0.005 0.014 0.023 0.024
PERF 0.473 0476 0.420 0.329 0.051 0.117 0.126  0.095
HMLB 0.499 0.468 0.416 0.315 0.055 0.128 0.163 0.124
MGMT 0.474 0.461 0.405 0.339 0.062 0.129 0.163 0.171
DEF 0479 0.444 0.397 0.340 0.003  0.000 -0.009 -0.015
MOMB 0.462 0.443 0.406 0.341 0.001 0.004 0.009 0.016
FIN 0.488 0.436 0.390 0.317 0.041 0.040 0.012 -0.013
MKTBD 0.474 0.423 0.403 0.325 0.018 0.032 0.031 0.007
TERM 0.474 0.427 0.393 0.325 0.039 0.082 0.126 0.156
MKTB 0.475 0.445 0.393 0.302 0.115 0.207 0.238 0.205
HML 0471 0430 0.390 0.311 0.005 -0.013 -0.036 -0.038
RMW 0.461 0.427 0.391 0.313 0.033 0.023 -0.024 -0.073
DRF 0471 0.427 0.380 0.312 0.053 0.077 0.068 0.029
DUR 0.455 0.413 0.364 0.293 0.014 -0.025 -0.079 -0.095

Posterior probabilities, E[y;|data], and posterior mean of (annualized) risk prices, E[\;|data], of the 54 bond

and equity factors described in Appendix B. All models are estimated without an intercept. The factors are

ordered (high to low) by each factors average posterior probability across the four levels of shrinkage. The prior

for each factor inclusion is a Beta(1, 1), yielding a prior expectation for -y; of 50%. Test assets include the
83 bond and stock portfolios and the 40 traded bond and stock factors (N = 123). Results are tabulated for
Er[SR} | ¢%), with values set to 20%, 40%, 60% and 80% of the ex
post maximum Sharpe ratio of the test assets. Sample period: 1986:01 to 2022:12 (T' = 444).

different values of the prior Sharpe ratio,



Table IA.VII: Posterior factor probabilities and risk prices for the corporate bond factor zoo

— excluding the intercept

Factor prob., E[y;|data]

Price of risk, E[)\;|data]

Total prior Sharpe ratio

Total prior Sharpe ratio

Factors: 20% 40% 60%  80% 20%  40%  60% 80%
PEADB  0.613 0.766 0.797 0.754 0.125 0.431 0.664 0.759
MOMBS 0.587 0.701 0.741 0.600 0.174 0.549 0.827 0.735
CREDIT 0.526 0.575 0.664 0.703 0.029 0.111 0.264 0.506
IVOL 0.518 0.580 0.599 0.656 0.024 0.095 0.208 0.456
YSP 0.502 0.516 0.523 0.554 0.006 0.023 0.055 0.139
INFLC 0.512 0.515 0.507 0.505 -0.002 -0.008 -0.018 -0.046
VIX 0.504 0.497 0.509 0.488 -0.007 -0.030 -0.073 -0.135
INFLV 0.485 0.506 0.494 0.494 0.005 0.017 0.026 0.019
LVL 0.491 0.490 0.482 0.503 0.001 0.003 0.012 0.041
UNCt 0.510 0.503 0.500 0.446 -0.033 -0.098 -0.168 -0.224
EPUT 0.497 0.497 0.480 0.480 0.003 0.011  0.022 0.055
UNCr 0.498 0.489 0.479 0.478 0.000 0.001 0.003 0.011
CRY 0.494 0.496 0.519 0.427 0.089 0.274 0.497 0.492
EPU 0.490 0.487 0.476 0.464 0.002  0.002 -0.002 -0.006
LIQNT 0.473 0.484 0.468 0.460 -0.003 -0.013 -0.027 -0.053
UNC 0.495 0.477 0.464 0.435 -0.010 -0.025 -0.036 -0.054
SZE 0.491 0.469 0.437 0.351 0.016 0.054 0.085 0.079
CPTL 0.476 0.461 0.424 0.348 -0.007 -0.016 -0.017 -0.010
LTREVB 0.507 0.462 0.411 0.310 0.033 0.074 0.084 0.062
VAL 0.461 0.461 0.431 0.335 0.032 0.109 0.172 0.157
HMLB 0.486 0.460 0.388 0.277 0.083 0.171 0.185 0.124
MOMB 0.494 0.437 0.375 0.303 0.006 0.023 0.040 0.057
MKTB 0.509 0.446 0.384 0.269 0.200 0.310 0.328 0.234
STREVB 0.488 0.441 0.384 0.288 0.006 0.022 0.036 0.029
CRF 0.461 0.438 0.387 0.313 0.026 0.085 0.129 0.147
TERM 0.476 0.441 0.386 0.287 0.071 0.129 0.176 0.169
DEF 0.477 0.435 0.384 0.286 -0.004 -0.016 -0.035 -0.043
MKTBD 0.469 0.432 0.385 0.291 0.020 0.049 0.059 0.041
DRF 0.446 0.392 0.338 0.247 0.051 0.049 0.020 -0.006
DUR 0.437 0.387 0.343 0.235 -0.007 -0.092 -0.149 -0.079

Posterior probabilities, E[,|data], and posterior mean of (annualized) risk prices, E[A;|data], of the 16 traded

bond and 14 nontraded factors described in Appendix B. All models are estimated without an intercept. The

factors are ordered (high to low) by each factors average posterior probability across the four levels of shrinkage.

The prior for each factor inclusion is a Beta(1, 1), yielding a prior expectation for ; of 50%. Test assets include
the 50 bond portfolios and the 16 traded bond factors (N = 66). Results are tabulated for different values of
the prior Sharpe ratio, /E [SR% | o2], with values set to 20%, 40%, 60% and 80% of the ex post maximum
Sharpe ratio of the test assets. Sample period: 1986:01 to 2022:12 (T = 444).
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Table TA.VIII: Posterior factor probabilities and risk prices for the stock factor zoo — excluding

the intercept

Factor prob., E[vy;|data] Price of risk, E[\;|data]
Total prior Sharpe ratio Total prior Sharpe ratio
Factors: 20%  40%  60%  80% 20%  40%  60%  80%
PEAD 0.527 0.607 0.675 0.725 0.037 0.159 0.359 0.607
MKTS 0.501 0.550 0.585 0.562 0.051 0.191 0.365 0.517
IVOL 0.498 0.524 0.538 0.594 0.005 0.024 0.064 0.181
QMJ 0.505 0.517 0.524 0.517 0.064 0.173 0.328 0.504
YSP 0.515 0.513 0.513 0.500 0.001  0.003 0.010 0.027
CMAs 0.486 0.495 0.509 0.523 0.022 0.085 0.186 0.318
UNC 0.510 0.508 0.496 0.485 0.000 0.001 0.003 0.009
INFLC 0.501 0.500 0.498 0.498 0.000 0.001 0.002 0.003
CPTL 0.498 0.506 0.508 0.486 0.020 0.070 0.127 0.189
CREDIT 0.496 0.504 0.501 0.495 0.000 -0.001 -0.002 -0.004
LVL 0.491 0.490 0.495 0.513 0.001 0.004 0.010 0.028
LIQNT 0.494 0.505 0.499 0.490 0.000 -0.002 -0.012 -0.044
EPUT 0.499 0.483 0.507 0.498 0.002 0.006 0.019 0.049
INFLV 0.500 0.496 0.503 0.486 0.000 -0.001 -0.002 -0.003
UNCr 0.495 0.497 0.487 0.495 0.001  0.003 0.010 0.028
RMWs 0.486 0.490 0.497 0.468 0.038 0.115 0.208 0.284
EPU 0.485 0.490 0.487 0.478 -0.001 -0.005 -0.011 -0.023
VIX 0.489 0.479 0.481 0.483 -0.001 -0.003 -0.007 -0.019
UNCft 0.483 0.489 0.476 0.473 0.000 0.000 0.004 0.022
CPTLT 0.484 0.472 0.489 0.446 0.023 0.073 0.128 0.160
STREV 0.497 0.480 0.465 0.429 0.010 0.041 0.087 0.148
MKTSs 0.500 0.494 0.461 0.403 0.019 0.054 0.077 0.090
LIQ 0.478 0.487 0.452 0.410 0.007  0.029 0.060 0.090
BAB 0.507 0.484 0.438 0.372 0.040 0.097 0.138 0.161
MOMS 0.499 0.475 0.444 0.380 0.018 0.046 0.068 0.083
SMBs 0.494 0.468 0.447 0.351 0.008 0.029 0.057 0.072
HML_DEV 0.467 0.453 0.431 0.386 0.009 0.031 0.086 0.175
SMB 0.494 0.458 0.428 0.347 0.018 0.071 0.119 0.132
MGMT 0.486 0.455 0.421 0.355 0.072 0.147 0.213  0.240
PERF 0.477 0.467 0.418 0.354 0.044 0.106 0.141 0.145
CMA 0.487 0.468 0.411 0.346 0.035 0.070 0.081 0.074
HMLs 0.479 0.455 0.417 0.347 0.007 0.019 0.029 0.015
R_IA 0.473 0.456 0.415 0.353 0.039 0.083 0.118 0.140
R_ROE 0.492 0.462 0.410 0.332 0.051 0.096 0.109 0.102
LTREV 0.482 0.457 0.411 0.346 0.011 0.029 0.039 0.039
HML 0.481 0.430 0.406 0.349 0.003 -0.035 -0.095 -0.146
FIN 0.477 0.416 0.382 0.305 0.040 0.035 0.009 -0.013
RMW 0.470 0.419 0.379 0.306 0.044 0.046 0.014 -0.026

Posterior probabilities, E[y;|data], and posterior mean of (annualized) risk prices, E[\;|data], of the 24 traded

stock and 14 nontraded factors described in Appendix B. All models are estimated without an intercept. The

factors are ordered (high to low) by each factors average posterior probability across the four levels of shrinkage.

The prior for each factor inclusion is a Beta(1, 1), yielding a prior expectation for v; of 50%. Test assets include
the 33 stock portfolios and the 24 traded stock factors (N = 57). Results are tabulated for different values of
the prior Sharpe ratio, 4/E, [SR?E | 02], with values set to 20%, 40%, 60% and 80% of the ex post maximum
Sharpe ratio of the test assets. Sample period: 1986:01 to 2022:12 (T" = 444).
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Table TA.IX: In-sample cross-sectional asset pricing performance — BMA-SDFs estimated
without the intercept.

BMA Prior Sharpe Ratio CAPM CAPMB FF5 HKM Top KNS RPP¢A
20%  40%  60%  80%
Panel A: Co-pricing bonds and stocks

RMSE 0.209 0.201 0.184 0.165| 0.260 0.278 0.258 0.259 0.233 0.166 0.201
MAPE 0.158 0.149 0.135 0.120 | 0.194 0.221 0.198 0.192 0.176 0.126 0.137
R%, 4 0.193 0.254 0.376 0.499 | -0.244  -0.426 -0.233 -0.238 0.001 0.489 0.251
R%, o 0.051 0.129 0.205 0.266 | 0.078 0.083 0.087 0.078 0.244 0.176 0.186

Panel B: Pricing bonds

RMSE 0.171 0.130 0.104 0.090 | 0.209 0.213 0.202 0.206 0.162 0.195 0.189
MAPE 0.116 0.093 0.078 0.068 | 0.146 0.135 0.142 0.145 0.128 0.113 0.084
R%, ¢ 0.278 0.578 0.733 0.798 | -0.107  -0.157 -0.038 -0.080 0.347 0.028 0.094
R%, ¢ 0.096 0.239 0.338 0.393 | 0.180 0.201 0.244 0.181 0.549 0.064 0.231

Panel C: Pricing stocks

RMSE 0.240 0.258 0.250 0.231 | 0.292 0.264 0.275 0.292 0.194 0.162 0.230
MAPE 0.192 0.202 0.190 0.172| 0.229 0.211 0.221 0.226 0.154 0.133 0.173
R%, ¢ -0.063 -0.229 -0.155 0.018 | -0.570 -0.282  -0.392 -0.574 0.306 0.515 0.022
R%, ¢ 0.059 0.146 0.234 0.317| 0.120 0.118 0.130 0.121 0424 0.311 0.315

In-sample asset pricing performance of the Co-pricing BMA-SDF (Panel A), the Bond BMA-SDF (Panel B)
and the Stock BMA-SDF (Panel C), notable factor models, and the top five factors with an average posterior
probability greater than 50%. The BMA-SDFs are estimated without an intercept. In each panel, the model
is estimated with bonds and stocks (A), bonds only (B) and stocks only (C). Bond returns are computed in
excess of the one-month risk-free rate of return. We use GMM-GLS to estimate factor risk prices for CAPM,
CAPMB, the and Fama and French (1992, 1993) model, which includes the MKTS, SMB, HML, DEF and
TERM factors, and the traded two-factor He et al. (2017), HKM. KNS stands for the SDF estimation of Kozak
et al. (2020), with tuning parameter and number of factors chosen by twofold cross-validation. RPP¢4 is the
Risk-Premia-PCA of Lettau and Pelger (2020), with five-factors and « set to 20. In Panel A the models are
estimated with the 83 bond and stock portfolios and the 40 traded bond and stock factors (N = 123), Panel
B (bond only) uses the 50 bond portfolios and 16 bond factors (N = 66), and Panel C (stock only) uses the
33 stock portfolios and 24 stock factors (N = 57). For the BMA-SDFs, we report results for a range of prior
Sharpe ratio values that are set as 20%, 40%, 60% and 80% of the ex-post maximum Sharpe ratio of the relevant
portfolios and factors. All data is standardized, that is, pricing errors are in Sharpe ratio units and span the
sample period 1986:01-2022:12 (T = 444).

20



Table TA.X: Out-of-sample cross-sectional asset pricing performance — BMA-SDFs estimated
without the intercept.

BMA Prior Sharpe Ratio CAPM CAPMB FF5 HKM Top KNS RPFPCA
20%  40% 60% 80%
Panel A: Co-pricing bonds and stocks

RMSE 0.111 0.101 0.093 0.088 | 0.224 0.154 0.139 0.223 0.158 0.160 0.166
MAPE 0.080 0.075 0.069 0.064 | 0.192 0.129 0.102 0.190 0.130 0.143  0.146
R%,s  0.390 0.500 0.572 0.617 | -1.478 -0.161 0.053 -1.444 -0.226 -0.268 -0.360
R%;¢  0.031 0.070 0.103 0.134 | 0.028 0.034 0.036  0.028 0.100 0.065  0.041

Panel B: Pricing bonds

RMSE 0.120 0.110 0.105 0.101 | 0.130 0.128 0.139 0.133 0.102 0.112  0.085
MAPE 0.087 0.080 0.077 0.076 | 0.095 0.092 0.104 0.097 0.084 0.081  0.062
R%, ¢ 0.090 0.238 0.302 0.363 | -0.062 -0.028  -0.221 -0.107 0.342 0.205  0.540
R%; s 0.056 0.107 0.134 0.158 | -0.006 0.022  -0.032 -0.007 0.101 0.068 0.069

Panel C: Pricing stocks

RMSE 0.102 0.087 0.078 0.072 | 0.123 0.119 0.116 0.124 0.064 0.078 0.124
MAPE 0.077 0.068 0.063 0.059 | 0.089 0.085 0.082 0.091 0.051 0.060 0.096
R%,¢ 0330 0.511 0.608 0.666 | 0.032 0.099 0.136  0.019 0.734¢ 0.613 0.014
R%;, ¢ 0.053 0.132 0.205 0.262 | 0.103 0.065 0.099 0.107 0.246 0.207 -0.011

Out-of-sample asset pricing performance of the Co-pricing BMA-SDF (Panel A), the Bond BMA-SDF (Panel
B) and the Stock BMA-SDF (Panel C), notable factor models, and the top five factors with an average posterior
probability greater than 50%. The BMA-SDFs are estimated without an intercept. Bond returns are computed
in excess of the one-month risk-free rate of return. We use GMM-GLS to estimate factor risk prices for CAPM,
CAPMB, the and Fama and French (1992, 1993) model, which includes the MKTS, SMB, HML, DEF and
TERM factors, and the traded two-factor He et al. (2017), HKM. KNS stands for the SDF estimation of Kozak
et al. (2020), with tuning parameter and number of factors chosen by twofold cross-validation. RPP¢A is the
Risk-Premia-PCA of Lettau and Pelger (2020), with five-factors and x set to 20. In Panel A the models are
estimated with the 83 bond and stock portfolios and the 40 traded bond and stock factors (N = 123), Panel
B (bond only) uses the 50 bond portfolios and 16 bond factors (N = 66), and Panel C (stock only) uses the
33 stock portfolios and 24 stock factors (N = 57). Out-of-sample (OS) test assets include 154 bond and stock
portfolios (Panel A), and 77 bond (stock) portfolios in Panel B (C). All defined in Section 1. The models are
first estimated using the baseline IS test assets and then used to price (with no additional parameter estimation)
each set of the OS assets. For the BMA-SDFs, we report results for a range of prior Sharpe ratio values that are
set as 20%, 40%, 60% and 80% of the ex post maximum Sharpe ratio relevant portfolios and factors. All data
is standardized, that is, pricing errors are in Sharpe ratio units and span the sample period 1986:01-2022:12
(T = 444).
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Table IA.XI: Correlation of SDF levels and volatilities

KNS RPPCA CAPM CAPMB FF5 HKM
Panel A: SDF levels
BMA 0.78 0.55 0.16 0.28 0.29 0.16

KNS 0.85 0.11 0.46 0.32 0.13
RPPCA 0.09 0.35 0.18 0.11
CAPM 0.42 0.70  0.98
CAPMB 0.70 041
FF5 0.66

Panel B: SDF estimated volatilities
BMA 0.76 0.70 0.74 0.52 0.56 0.74

KNS 0.71 0.64 0.55 0.55 0.65
RPPCA 0.54 0.18 0.24 0.56
CAPM 0.57 0.61 0.98
CAPMB 0.75  0.57
FES 0.58

Correlation of the SDFs (Panel A) and their filtered volatilities (Panel B) estimated in Panel A of Table 4 with
the 83 bond and stock portfolios and the 40 traded bond and stock factors (N = 123). BMA-SDF obtained with
80% prior Sharpe ratio. Bond returns are computed in excess of the one-month risk-free rate of return. The
ARMA mean process for each model is selected using the BIC. Volatilities are estimated using a GARCH(1,1).
The Ljung and Box (1978) p-value tests the null of squared autocorrelations being equal to zero. We use GMM-
GLS to estimate factor risk prices for CAPM, CAPMB, the and Fama and French (1992, 1993) model, which
includes the MKTS, SMB, HML, DEF and TERM factors, and the traded two-factor He et al. (2017), HKM.
KNS stands for the SDF estimation of Kozak et al. (2020), with tuning parameter and number of factors chosen
by twofold cross-validation. RPP“A is the Risk-Premia-PCA of Lettau and Pelger (2020), with five-factors and
k set to 20. Sample period 1986:01-2022:12 (T = 444).
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IA.5 Additional figures
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Figure TA.2: Posterior factor probabilities — co-pricing factor zoo — excluding the intercept.

Posterior probabilities, E[y;|data], of the 54 stock and bond factors described in Appendix B. All models are
estimated without an intercept. The legend factor labels are ordered (high to low) by each factors average
posterior probability across the four levels of shrinkage. Test assets include the 83 bond and stock portfolios
and the 40 traded bond and stock factors (N = 123). The prior distribution for the ;" factor inclusion is a
Beta(1, 1), yielding a 0.5 prior expectation for ;. Posterior probabilities for different values of the prior Sharpe

ratio, | /E, [SR; | 2], set to 20%, 40%, 60% and 80% of the ex post maximum Sharpe ratio of the 83 stock and
bond portfolios and traded factors. Sample period: 1986:01 to 2022:12 (T = 444).
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Figure IA.3: Pricing out-of-sample stocks and bonds with different BMA-SDFs and KNS-
SDF.

This figure plots the empirical CDFs of RZ; o, R%; s, RMSE and MAPE in Panels A, B, C and D respectively
across 16,384 possible bond and stock cross-sections using the 14 sets of stock and bond test assets (214 = 16, 384)
priced using the respective BMA-SDF and the co-pricing KNS-SDF respectively. The models are first estimated
using the baseline set of IS test assets and then used to price (with no additional parameter estimation) each set
of the 16,384 OS combinations of test assets. The red distributions corresponds to the pricing performance of
the co-pricing BMA-SDF. The blue (yellow) distributions corresponds to the pricing performance of the bond
(stock) only BMA-SDF. The green distributions correspond to the pricing performance of the co-pricing KNS-
SDF. The BMA-SDF (BMA) is computed with a prior Sharpe ratio value set to 80% of the ex-post maximum
Sharpe ratio of the IS test assets. All data is standard§Z£d, that is, pricing errors are in Sharpe ratio units and
span the sample period 1986:01-2022:12 (T = 444).
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Figure IA.4: How (dis)integrated are equity and corporate bond markets?

This figure plots the amount of variation explained by the principal components of the in-sample bond and stock
portfolios and their generalized (canonical) correlations. Panels (a) and (b) reports the percentage variation
explained by the first five PCs of the corporate bond and stock test assets. Panel (c) reports the gener-
alized correlations. Define ¢ and 97 as the top five PCs of the corporate bond and stock in-sample test
assets. The generalized correlations between 9 and 97 are defined as the squared root of the eigenvalues of
cov(dB,97) Teov(0f ) ~Leov (0, 07 )cov(67) 1. The stock test assets comprise 33 portfolios and the 24 traded
factors (N = 57), the bond test assets comprise the 50 portfolios and 16 traded factors (N = 66). The sample
spans the period 1986:01-2022:12 (T = 444).
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Figure IA.5: How (dis)integrated are equity and corporate bond markets? Duration-adjusted
bond returns.

This figure plots the amount of variation explained by the principal components of the in-sample bond (duration-
adjusted) portfolio returns and their generalized (canonical) correlations with the stock portfolio returns. Bond
returns are duration-adjusted as described in Section C of the Appendix. Panels (a) reports the percentage
variation explained by the first five PCs of the corporate bond test assets. Panel (b) reports the general-
ized correlations. Define 7 and ﬁts as the top five PCs of the corporate bond and stock in-sample test as-
sets. The generalized correlations between 97 and o7 are defined as the squared root of the eigenvalues of
cov(dB,97) Teov (9P ) ~Leov (98, 07 )cov(6) 7L, The stock test assets comprise 33 portfolios and the 24 traded
factors (N = 57), the bond test assets comprise the 50 portfolios and 16 traded factors (N = 66). The sample
spans the period 1986:01-2022:12 (T = 444).
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Figure IA.6: Autocorrelations of SDF levels

Autocorrelation of the notable SDF estimated in Panel A of Table 4 with the 83 bond and stock portfolios
and the 40 traded bond and stock factors (N = 123). Bond returns are computed in excess of the one-month
risk-free rate of return. The ARMA mean process for each model is selected using the BIC. The Ljung and Box
(1978) p-value tests the null of squared autocorrelations being equal to zero. We use GMM-GLS to estimate
factor risk prices for CAPM, CAPMB, the and Fama and French (1992, 1993) model, which includes the MKTS,
SMB, HML, DEF and TERM factors, and the traded two-factor He et al. (2017), HKM. KNS stands for the
SDF estimation of Kozak et al. (2020), with tuning parameter and number of factors chosen by twofold cross-
validation. RPPC4 is the Risk-Premia-PCA of Lettau and Pelger (2020), with five-factors and & set to 20.
Sample period 1986:01-2022:12 (T = 444).
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Figure IA.7: Autocorrelations of SDF squared residuals

Autocorrelation of the squared residuals of notable SDF estimated in Panel A of Table 4 with the 83 bond and
stock portfolios and the 40 traded bond and stock factors (N = 123). Bond returns are computed in excess
of the one-month risk-free rate of return. The ARMA mean process for each model is selected using the BIC
and reported in Table TA.6. The Ljung and Box (1978) p-value tests the null of squared autocorrelations being
equal to zero. We use GMM-GLS to estimate factor risk prices for CAPM, CAPMB, the and Fama and French
(1992, 1993) model, which includes the MKTS, SMB, HML, DEF and TERM factors, and the traded two-factor
He et al. (2017), HKM. KNS stands for the SDF estimation of Kozak et al. (2020), with tuning parameter and
number of factors chosen by twofold cross-validation. RPFC4 is the Risk-Premia-PCA of Lettau and Pelger
(2020), with five-factors and k set to 20. Sample period 1986:01-2022:12 (T = 444).
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Figure I A.8: Volatility of the co-pricing BMA-SDF with only nontradable factors

Annualized volatility of the co-pricing BMA-SDF with only non-trdable factors. Shaded areas denote NBER
recession periods. Volatility is obtained fitting a ARMA(3,1)-GARCH(1,1) to the posterior mean of the co-
pricing BMA-SDF (specification selected via BIC). The GARCH Quasi-maximum likelihood coeflicient estimates
are:
07,1 =w+ ae] + fo}
w Q 8
Estimate 0.000202 0.142293 0.798533
Robust SE  0.000090 0.052041 0.047567

Sample: 1986:01-2022:12 (T' = 444).
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Figure IA.9: Residual volatility of the co-pricing BMA-SDF

Residuals of the linear projection of the BMA-SDF estimated volatility on the volatilities of CAPM, CAPMB,
KNS, RPPCA, FF5 and HKM SDFs. Sample: 1986:01-2022:12 (T = 444).
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