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Abstract

We analyze 18 quadrillion models for the joint pricing of corporate bond and stock returns.

Only a handful of factors, behavioural and nontradable, are robust sources of priced risk.

Yet, the true latent stochastic discount factor is dense in the space of observable factors.

A Bayesian Model Averaging Stochastic Discount Factor (BMA-SDF), combining the cor-

porate bond and stock factor zoos, explains risk premia better than all existing models,

both in- and out-of-sample. We show that multiple factors are noisy proxies for common

underlying sources of risk, and the BMA-SDF aggregates them optimally. The SDF, as

well as its conditional mean and volatility, are persistent, track the business cycle and

times of heightened economic uncertainty, and predict future asset returns. Finally, we

show that stock factors price the credit component of corporate bond excess returns well,

while the Treasury component is priced almost exclusively by the bond factors.
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Wherever there is risk, it must be compensated to the lender by a higher premium or interest.

� J. R. McCullough (1830, pp. 508�9)

In their seminal paper, Fama and French (1993) set themselves to �examine whether variables

that are important in bond returns help to explain stock returns, and vice versa.� Thirty years

later, the equity literature has produced its own, independent, `factor zoo,' as highlighted in

Cochrane (2011), while the corporate bond literature has e�ectively returned to square one

with Dickerson, Mueller, and Robotti (2023) showing that there is no satisfactory (observable)

factor model for that asset class.1 Hence, to date, a model for the joint pricing of corporate

bonds and stocks has escaped discovery�we �ll this gap.

We pick up the question asked in Fama and French (1993) and study which factors�bond,

stock or nontradable�contain relevant information to explain the cross-section of corporate

bond and stock returns. Leveraging recent advances in Bayesian econometrics, we compre-

hensively analyse all observable factors and models proposed to date in the bond and equity

literature. Our method allows us to not only study models or factors in isolation, but also con-

sider all of their possible combinations, resulting in over 18 quadrillion models stemming from

the joint zoo of corporate bond and stock factors. And we do so while relaxing the cornerstone

assumptions of previous studies: the existence of a unique, low-dimensional, correctly speci�ed

and well identi�ed factor model. Ultimately, this allows us to pinpoint the robust sources of

priced risk in both markets, and a novel benchmark Stochastic Discount Factor (SDF) that

prices both asset classes, in- and out-of-sample, signi�cantly better than all existing models.

First, we �nd that the `true' latent SDF of bonds and stocks is dense in the space of

observable bond and stock factors�literally dozens of factors, both tradable and nontradable,

are necessary to span the risks driving asset prices. Yet, the SDF-implied maximum Sharpe ratio

is not excessive, indicating that, as we con�rm in our analysis, multiple bond and stock factors

proxy for common sources of fundamental risk. Importantly, density of the SDF implies that

the sparse models considered in the previous literature are a�ected by severe misspeci�cation

and, as we show, rejected by the data and outperformed by the most likely SDF components

that we identify.

Second, a Bayesian Model Averaging Stochastic Discount Factor (BMA-SDF) over the space

1More precisely, they document that all low dimensional linear factor models in the previous literature add
little spanning to a simple bond version of the Capital Asset Pricing Model, the CAPMB. At the same time,
they show that the CAPMB is in itself an unsatisfactory pricing model.
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of all possible models (including bond, stock, and nontradable factors) explains (jointly and

separately) corporate bond and equity risk premia better than all existing models and most

likely factors, both in- and out-of-sample. Moreover, the BMA-SDFs conditional mean and

volatility�hence, the conditional Sharpe ratio achievable in the economy�have clear business

cycle patterns. In particular, the volatility of the SDF increases sharply at the onset of recessions

and at times of heightened economic uncertainty. That is, the estimated SDF behaves as one

would expect from the intertemporal marginal rate of substitution of an agent exposed to the

risks arising from general economic conditions and market turmoil.

Third, the predictability of the �rst and second moments of the SDF suggests time-varying

risk premia in the economy and predictability of asset returns with lagged SDF information. We

verify this by running predictive regressions of future asset returns on the conditional variance

of the BMA-SDF, alone and interacted with the conditional mean of the SDF, as implied by

the Hansen and Jagannathan (1991) representation of the conditional SDF. We not only �nd

that lagged SDF information is highly signi�cant in predicting future asset returns, but also

that the amount of explained time series variation in monthly and annual returns is much larger

than what is achievable with canonical predictors. This result is remarkable for two reasons.

First, the BMA-SDF is not by construction geared toward predicting future returns: it is

instead identi�ed only under the restriction that a valid SDF should explain the cross-section

of risk premia�not the time series of returns. Second, it o�ers an important validation of our

estimation of the SDF: if risk premia are time-varying, future returns should be predictable

with lagged SDF information, and that is exactly what our BMA-SDF delivers.

Fourth, we shed light on which factors, and which types of risk, are re�ected in the cross-

section of bond and equity risk premia. We �nd that only a handful of factors should be in

the SDF with high probability. In particular, two factors meant to capture the bond and stock

post-earnings announcement drift anomalies, PEADB and PEAD, respectively, are very likely

sources of priced risk in the joint cross-section of bond and stock returns.2 In addition to these

two behavioural sources of risk, the other most likely components of the SDF are all nontradable

in nature, and are a proxy for the slope of the Treasury yield curve (YSP), the AAA/BAA yield

spread (CREDIT), and the idiosyncratic equity volatility (IVOL). As we show, these factors

2The post-earnings announcement drift phenomenon is the observation, �rst documented in equity markets,
that �rms that experience positive earnings surprises subsequently earn higher returns than those with negative
earnings surprises. See, e.g., Hirshleifer and Teoh (2003), Della Vigna and Pollet (2009), Hirshleifer, Lim, and
Teoh (2011) and Nozawa, Qiu, and Xiong (2023) for the microfoundations of this phenomenon.

2



alone are enough to price the cross-section of bonds and stocks better than canonical observable

factor models. Nevertheless, the BMA-SDF outperforms these most likely factors, both in- and

(cross-sectionally) out-of-sample, as the true latent SDF is dense in the space of observable

factors and demands sizeable compensations for risks that are not fully spanned by the most

likely factors. Many nontradable, and both bond and stock tradable factors, are necessary�

jointly�for an accurate characterization of the SDF, because they represent multiple noisy

proxies for the same underlying sources of risk. Furthermore, we �nd that both discount rate

and cash-�ow news are sources of priced risk, and yield sizeable contributions (albeit larger for

the former) to the Sharpe ratio of the latent SDF.

Fifth, we demonstrate that a portion of corporate bond risk premia serves as compensation

for their implicit Treasury term structure risk. Once this component is removed, the factors

proposed in the tradable bond factor zoo have very little residual information content for

characterizing the SDF: in this case, a BMA-SDF constructed only with stock and nontradable

factors can explain the joint cross-section of bonds and stocks as well as our full BMA-SDF.

This �nding extends and explains the result in van Binsbergen, Nozawa, and Schwert (2024),

who show that once corporate bond returns are adjusted for duration risk, the equity CAPM

has higher explanatory power for bond risk premia than benchmark bond models. Furthermore,

we show that the empirical success of the bond factor zoo in the previous literature is largely

driven by its ability to price the Treasury term structure risk�a component of bond risk premia

that tradable stock factors do not capture.

Overall, our �ndings have �rst order implications for both theoretical and empirical analyses

that aim to explain the risk compensation demanded by investors in corporate bonds, stocks

and Treasury securities.

The remainder of the paper is organized as follows. Below we review the most closely related

literature and our contribution to it. Section 1 describes the data used in our analysis, while

Section 2 outlines the Bayesian SDF estimation method that we employ and its properties

for inference, selection, and model aggregation. Section 3 presents our empirical �ndings and

Section 4 concludes. Additional details and results are reported in the Appendix and the

Internet Appendix.

Closely related literature. Our research contributes to the active and growing body of

work that critically reevaluates existing �ndings in the empirical asset pricing literature using
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robust inference methods. Following Harvey, Liu, and Zhu (2016), a large literature has tried to

understand which existing factors (or their combinations) drive the cross-section of returns. In

particular, Gospodinov, Kan, and Robotti (2014) develop a general method for misspeci�cation-

robust inference, while Giglio and Xiu (2021) exploit the invariance principle of PCA and recover

the price of risk of a given factor from the projection on the span of latent factors driving a

cross-section of returns. Similarly, Dello Preite, Uppal, Za�aroni, and Zviadadze (2024) recover

latent factors from the residuals of an asset pricing model, e�ectively completing the span of the

SDF. Feng, Giglio, and Xiu (2020) combine cross-sectional asset pricing regressions with the

double-selection LASSO of Belloni, Chernozhukov, and Hansen (2014) to provide valid inference

on the selected sources of risk when the true SDF is sparse. Kozak, Nagel, and Santosh (2020)

use a ridge-based approach to approximate the SDF and compare sparse models based on

principal components of returns. Our approach instead identi�es a dominant pricing model�if

such a model exists�or a BMA across the space of all models, even if the true model is not

sparse in nature, hence cannot be proxied by a small number of factors. Furthermore, and

importantly, our work focuses on the co-pricing of corporate bond and stock returns, hence

shedding light on both the common, as well as the market speci�c, sources of risk.

As Harvey (2017) stresses in his American Finance Association presidential address, the

factor zoo naturally calls for a Bayesian solution�and we adopt one. In particular, we leverage

the Bayesian method for model estimation, selection, and averaging developed in Bryzgalova,

Huang, and Julliard (2023). Numerous strands of the literature rely on Bayesian tools for

asset allocation, model selection, and performance evaluation. Our approach is most closely

linked to Pástor and Stambaugh (2000) and Pástor (2000) in that we assign a prior distribution

to the vector of pricing errors, and this maps into a natural and transparent prior for the

maximal Sharpe ratio achievable in the economy. Barillas and Shanken (2018) also extend

the prior formulation of Pástor and Stambaugh (2000) and provide a closed-form solution for

the Bayes factors when all factors are tradable in nature. Chib, Zeng, and Zhao (2020) show

that the improper prior formulation of Barillas and Shanken (2018) is problematic, and provide

a new class of priors that leads to valid comparison for tradable factor models. As in these

papers, our model and factor selection is based on posterior probabilities, but our method is

designed to work with both tradable and nontradable factors�and as we show, the latter are

a �rst order source of priced risk in the joint space of corporate bonds and stock returns. Most

importantly, our approach can deal with a very large factor space, is not a�ected by the common
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identi�cation failures that invalidate inference in asset pricing, and provides an optimal method

for aggregating the pricing information stemming from the joint zoo of corporate and equity

factors.3

In the complete market benchmark, the pricing measure should be consistent across asset

classes, and equilibrium models normally yield nontradable state variables. Therefore, we focus

on the co-pricing of corporate bonds and stocks, and consider jointly a very broad collection of

potential sources of risk that goes well beyond the set of bond and stock tradable factors that

have been studied in isolation in the previous literature. Hence, our paper speaks to the large

literature on co-pricing, which started with the seminal work of Fama and French (1993), and

market segmentation of bonds and stocks (see, e.g., Chordia, Goyal, Nozawa, Subrahmanyam,

and Tong (2017), Choi and Kim (2018), or Sandulescu (2022)).

In particular, our paper is related to the body of work that explores whether equity market

risk proxies (see, e.g., Blume and Keim (1987) and Elton, Gruber, Agrawal, and Mann (2001)),

equity volatilities (see, e.g., Campbell and Taksler (2003) and Chung, Wang, and Wu (2019)),

and equity-based characteristics (see, e.g., Fisher (1959), Giesecke, Longsta�, Schaefer, and

Strebulaev (2011), and Gebhardt, Lee, and Swaminathan (2001)) are likely drivers of corporate

bond returns, and on the commonality of risks across markets (see, e.g., He, Kelly, and Manela

(2017), Lettau, Maggiori, and Weber (2014), and Chen, Roussanov, Wang, and Zou (2024)).

Overall, we �nd that factors in both the corporate bond and equity zoos are needed for the for

the joint pricing of both asset classes, and stock factors do carry relevant information to explain

bond returns. Yet, there is substantial overlap between the risks spanned by these two markets.

That is, multiple bond and stock factors are noisy proxies for common underlying sources of

risk. Nevertheless, as we show, corporate bond risk premia include an implicit compensation

for Treasury term structure risk�a risk that the bond factor zoo, and nontradable factors

proposed therein in particular, price very well, while equity factors do not. And once this term

structure risk component is removed, tradable bond factors become largely unnecessary for the

3BMA is an optimal aggregation procedure for a very wide set of optimality criteria (see, e.g., Raftery and
Zheng (2003) and Schervish (1995)). In particular, it is �optimal on average,� i.e., no alternative method can
outperform the BMA for all values of the true unknown parameters. Avramov, Cheng, Metzker, and Voigt
(2023) also propose a framework to integrate factor models via posterior probabilities in the presence of model
uncertainty, but their approach is only appropriate for tradable factors and is not designed to be robust to
the identi�cation and inference problems arising from weak factors�problems that, as shown in Bryzgalova,
Huang, and Julliard (2023), cannot be solved by simply projecting nontradable factors on the space of returns
and then performing inference using the resulting mimicking portfolios. Furthermore, as shown in Heyerdahl-
Larsen, Illeditsch, and Walden (2023), a BMA-SDF can be microfounded thanks to the equivalence between an
economy populated by agents with heterogeneous beliefs, and a Bayesian representative agent setting.
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joint pricing of bonds and stocks.

Several theoretical contributions stress that real economic activity and the business cycle

should be among the drivers of bond risk premia (see, e.g., Bhamra, Kuehn, and Strebulaev

(2010), Khan and Thomas (2013), Chen, Cui, He, and Milbradt (2018), and Favilukis, Lin, and

Zhao (2020)). Echoing both the general equilibrium model predictions of Gomes and Schmid

(2021) and the empirical �ndings of Elton, Gruber, and Blake (1995) and Elkamhi, Jo, and

Nozawa (2023), we show that the BMA-SDF conditional �rst and second moments have a

clear business cycle pattern and peak during recessions and at times of heightened economic

uncertainty, and that nontradable factors (especially proxies of the economic cycle such as the

slope of the yield curve), are salient components of the pricing measure.4 Furthermore, we

show that the business cycle properties of the BMA-SDF and its volatility are predictable, and

predict�as theory implies in this case�future asset returns, generating a substantial degree of

time variation in conditional risk premia.

Our work also relates to behavioural biases and market frictions in asset pricing. In particu-

lar, complementing the evidence of Daniel, Hirshleifer, and Sun (2020) and Bryzgalova, Huang,

and Julliard (2023) for the equity market, we show that the post earnings announcement drifts

of both bonds (see Nozawa, Qiu, and Xiong (2023)) and stocks are extremely likely drivers

of corporate bond and stock risk premia. Furthermore, we show that cash-�ow and discount

rate news (see, e.g., Vuolteenaho (2002), Cohen, Gompers, and Vuolteenaho (2002), Zviadadze

(2021), and De la O, Han, and Myers (2023)) are both important drivers of risk premia in the

joint cross-section of bonds and stocks, but the latter are responsible for a larger share of the

volatility of the co-pricing SDF.

1 Data

Our analysis relies on a combination of corporate bond and equity data which we present in

detail below.

4Elton, Gruber, and Blake (1995) show that adding fundamental macro-risk variables (such as GNP, in�ation
and term spread measures) signi�cantly improves pricing performance relative to equity and bond market index
models. Elkamhi, Jo, and Nozawa (2023) show that the long-run consumption risk measure of Parker and
Julliard (2003) yields a one-factor model with signi�cant explanatory power for corporate bonds, and such an
SDF, as documented in Parker and Julliard (2005), has a very strong business cycle pattern.
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Corporate bond data. We use the constituents of the corporate bond data set from the

Bank of America Merrill Lynch (BAML) High Yield (H0A0) and Investment Grade (C0A0)

indices made available via the Intercontinental Exchange (ICE), which starts in January 1997

and ends in December 2022 for the corporate bond-level data. For the period from January 1986

to December 1996 we rely on the Lehman Brothers Fixed Income Database (LHM). These data

are then merged with the Mergent Fixed Income Securities Database (FISD), which contains

additional bond characteristics. We follow van Binsbergen, Nozawa, and Schwert (2024) and

begin the LHM sample in 1986.5 After merging the two data sets and applying the standard

�lters, our bond-level data spans 37 years over the period January 1986 to December 2022 for

a total of 444 months. and comprises over 30,000 unique bonds. A detailed description of

the databases and associated cleaning procedures is available in Section IA.1 of the Internet

Appendix.

We apply the following standard �lters to the bond data: i) We remove bonds that are

not publicly traded in the U.S. market. These include bonds issued through private placement,

bonds issued under Rule 144A, bonds that are not traded in U.S. dollars, and bonds from issuers

not based in the U.S. ii) We remove bonds that are classi�ed as structured notes, mortgage-

or asset-backed, agency-backed, equity-linked or convertible. iii) We exclude bonds that have

a �oating coupon rate. iv) Finally, we exclude bonds that have less than one year remaining

until maturity.

Corporate bond returns. In the baseline analysis, we specify excess bond returns as the

total bond return minus the one-month risk-free rate of return.6 In addition, we follow van

Binsbergen, Nozawa, and Schwert (2024) and repeat our analysis with duration-adjusted re-

turns, where the bond excess return is computed as the total bond return minus the return on

a portfolio of duration-matched U.S. Treasury bonds. Details of the duration adjustment are

provided in Appendix C. We do not further winsorize, trim, or augment the underlying bond

return data in any way, avoiding the biases that such procedures normally induce (Duarte,

Jones, Mo, and Khorram (2024) and Dickerson, Robotti, and Rossetti (2024)).

5Prior to 1986, bonds in LHM are predominantly investment grade (91% of bonds) with 67% of all bonds
priced with matrix pricing (i.e., the prices are not actual dealer quotes).

6We source the one-month risk-free rate from Kenneth French's website.
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Equity data. We rely on the publicly available stock anomaly data from Chen and Zimmer-

mann (2022) and Jensen, Kelly, and Pedersen (2023). Full documentation and related data

construction methods are detailed on the aforementioned authors' websites.

The joint factor zoo. We use all factors in published papers for which a monthly time series

matching our sample is publicly available. Our bond-speci�c factor zoo includes 16 tradable

bond factors. From the equity literature, we include an additional 24 tradable factors. This

set is smaller than the tradable equity zoo in Bryzgalova, Huang, and Julliard (2023) as for

several of their 34 tradable factors an updated series is not publicly available, and we also

exclude factors for which authors did not provide su�cient information for exact replication.7

Our nontradable zoo comprises 14 factors, and many of the nontradable factors used to analyse

corporate bond returns have also been used to study stock returns. Overall, we consider a total

of 54 factors, of which 40 are tradable and 14 are nontradable. We provide an overview of the

factors in Table A.1 of Appendix B. All of the factors are publicly available from the authors'

personal websites, and public repositories, listed therein.8

Corporate bond and stock test asset portfolios. We construct a set of bond portfo-

lios that are sorted on various bond characteristics. To ensure a broad enough cross-section

for our in-sample (IS) estimation of the BMA, we use 50 bond portfolios. The �rst 25 port-

folios are double-sorted on credit spreads and bond size. The remaining 25 portfolios are

double-sorted on bond ratings and time-to-maturity. All portfolios are value-weighted by

the market capitalization of the bond issue, de�ned as the bond dollar value multiplied by

the number of outstanding units of the bond. These portfolios are publicly available at

openbondassetpricing.com/corporate-bond-factor-zoo. For equity, we rely on a set of 33 port-

folios and anomalies very similar to the one used in Kozak, Nagel, and Santosh (2020) and

Bryzgalova, Huang, and Julliard (2023) which are publicly available from openassetpricing.com

and jkpfactors.com.

The chosen characteristics yield a signi�cant dispersion of average in-sample stock and bond

portfolio returns. The inclusion of portfolios sorted on credit spreads is motivated by the work of

Nozawa (2017) who �nds that bond credit spreads are an important driver of the cross-sectional

7The twelve excluded factors are all among the least likely drivers of stock premia in Bryzgalova, Huang,
and Julliard (2023).

8We make our 16 traded bond factors available on the companion website: openbondassetpricing.com
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variation in excess corporate bond returns.9 Bond ratings are provided by Standard & Poors

(S&P) and are a fundamental characteristic of bonds. They underpin most tradable bond

factors, de�ne institutional investment guidelines, and capture default risk. Bond maturity has

been shown to be an important determinant of expected returns Gebhardt, Hvidkjaer, and

Swaminathan (2005) and bond mutual fund holdings in recent work by Bretscher, Schmid, and

Ye (2023). The chosen equity anomalies also capture a diverse array of possible risks and also

have a large degree of dispersion in their average returns.

Finally, we include the tradable factors as additional test assets since, as emphasized in

Barillas and Shanken (2016), factors included in a model should price any factor excluded from

the model. This, along with the use of a nonspherical pricing error formulation (i.e., GLS) also

imposes (asymptotically) the restriction of factors pricing themselves. For the estimation of

the co-pricing BMA-SDF, we naturally include both stock and bond tradable factors. For the

stock (bond) speci�c BMA-SDF, we only include the respective stock (bond) tradable factors.

Overall, the cross-section contains a broad array of 50 bond and 33 stock portfolios, sorted on

well-known bond or stock characteristics, and the underlying 40 tradable factors themselves.

Out-of-sample test assets. To test the out-of-sample (OS) asset pricing e�cacy of the

BMA-SDFs estimated on the IS test assets, we employ a broad cross-section of additional

corporate bond, stock and U.S. Treasury bond portfolios.

For bonds, we use decile-sorted portfolios on: bond historical 95% value-at-risk, duration,

bond value (Houweling and Van Zundert (2017)), bond book-to-market (Bartram, Grinblatt,

and Nozawa (2020)), long-term reversals (Bali, Subrahmanyam, and Wen (2021)), momentum

(Gebhardt, Hvidkjaer, and Swaminathan (2005)), as well as the bond version of the 17 Fama

French industry portfolios, for a total of 77 bond-based portfolios.10

For stocks, we include decile-sorted portfolios on: earnings-to-price, momentum, long-term

reversal, accruals, size (market capitalization), equity variance, and the equity version of the 17

Fama French industry portfolios (following Lewellen, Nagel, and Shanken (2010)), for a total

of 77 equity-based portfolios all accessed from Kenneth French's webpage.

For U.S. Treasury bonds, we download monthly annualized continuously-compounded zero-

coupon yields from Jing Cynthia Wu's webpage (Liu and Wu, 2021). We price U.S. Treasury

9We follow the credit spread portfolio formation method in Elkamhi, Jo, and Nozawa (2023) and construct
the portfolios based on the average bond credit spreads between months t− 12 and t− 1.

10All available at openbondassetpricing.com/corporate-bond-factor-zoo.
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bonds each month using the yield curve data and then compute monthly discrete excess returns

across the term structure as the total return in excess of the one-month Treasury Bill rate. Our

set of OS U.S. Treasury portfolios consists of 29 portfolios, spanning 2-year Treasury notes up

30-year Treasury bonds in increments of one year.

Overall, our OS test assets comprise 154 stock and bond portfolios (77 each) from the 14

distinct cross-sections discussed above. We use these both as a joint cross-section and also to

construct 214 = 16, 384 possible unique combinations of OS cross-sections.11

2 Econometric method

This section introduces the notation and summarises the methods employed in our empirical

analysis. We consider linear factor models for the Stochastic Discount Factor and focus on the

SDF representation since we aim to identify the factors that have pricing ability for the joint

cross-section of corporate bond and stock returns.12

The returns ofN test assets, which are long-short portfolios, are denoted byRt = (R1t . . . RNt)
⊤,

t = 1, . . . T . We consider K factors, ft = (f1t . . . fKt)
⊤, t = 1, . . . T , that can be either tradable

or nontradable. A linear SDF takes the form Mt = 1− (ft − E[ft])
⊤λf , where λf ∈ RK is the

vector containing the market prices of risk associated with the individual factors. Throughout

the paper, E[X] or µX denote the unconditional expectation of an arbitrary random variable

X.

In the absence of arbitrage opportunities, we have that E[MtRt] = 0N , hence expected

returns are given by µR ≡ E[Rt] = Cfλf , where Cf is the covariance matrix between Rt and

ft, and prices of risk, λf , are commonly estimated via the cross-sectional regression

µR = λc1N +Cfλf +α = Cλ+α, (1)

where C = (1N ,Cf ), λ
⊤ = (λc,λ

⊤
f ), λc is a scalar average mispricing (equal to zero under

the null of the model being correctly speci�ed), 1N is an N -dimensional vector of ones, and

α ∈ RN is the vector of pricing errors in excess of λc (also equal to zero under the null of the

model).

11Further details about factors and in- and out-of-sample test assets, as well as links to the data sources, can
be found in Internet Appendix IA.1.

12Recall that a factor might have a signi�cant risk premium even if it is not part of the SDF, just because it
has non-zero correlation with the true latent SDF. Hence, in order to identify the pricing measure, focusing on
the SDF representation is the natural choice.
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Such models are usually estimated via GMM, MLE or two-pass regression methods (see,

e.g., Hansen (1982), Cochrane (2005)). Nevertheless, as pointed out in a large literature, the

underlying assumptions for the validity of these methods (see, e.g., Newey and McFadden

(1994)), are often violated (see, e.g., Kleibergen and Zhan (2020) and Gospodinov and Robotti

(2021)), and identi�cation problems arise in the presence of a weak factor (i.e., a factor that

does not have enough comovement with any of the assets, or has very little cross-sectional

dispersion in this comovement, but is nonetheless considered a part of the SDF). These issues

in turn lead to wrong inference for both weak and strong factors, erroneous model selection,

and in�ate the canonical measures of model �t.13

Albeit robust frequentist inference methods have been suggested in the literature for spe-

ci�c settings, our task is complicated by the fact that we want to parse the entire zoo of bond

and stock factors, rather than estimate and test an individual model. Furthermore, we aim to

identify the best speci�cation�if a dominant model exist�or aggregate the information in the

factor zoo into a single SDF if no clear best model arises. Therefore, we rely on the Bayesian

method proposed in Bryzgalova, Huang, and Julliard (2023), since it is applicable to both trad-

able and nontradable factors, can handle the entire factor zoo, is valid under misspeci�cation,

and is robust to weak inference problems. This Bayesian approach is conceptually simple, since

it leverages the naturally hierarchical structure of cross-sectional asset pricing, and restores the

validity of inference using transparent and economically motivated priors.

Consider �rst the time-series layer of the estimation problem. Without loss of generality,

we order the K1 tradable factors �rst, f
(1)
t , followed by K2 nontradable factors, f

(2)
t , hence

ft ≡ (f
(1),⊤
t ,f

(2),⊤
t )⊤ andK1+K2 = K. Denote by Yt ≡ ft∪Rt the union of factors and returns,

where Yt is a p-dimensional vector.14 Modelling {Yt}Tt=1 as multivariate Gaussian with mean µY

and variance matrix ΣY , and adopting the conventional di�use prior π(µY ,ΣY ) ∝ |ΣY |−
p+1
2 ,

yields the canonical Normal-inverse-Wishart posterior for the time series parameters (µY ,ΣY )

in equations (A.4)-(A.5) of Appendix A.

The cross-sectional layer of the inference problem allows for misspeci�cation of the factor

model via the average pricing errors α in equation (1). We model these pricing errors, as

in the previous literature (e.g., (Pástor and Stambaugh, 2000) and (Pástor, 2000)), as α ∼

13These problems are common to GMM (Kan and Zhang, 1999a), MLE (Gospodinov, Kan, and Robotti,
2019), Fama-MacBeth regressions (Kan and Zhang (1999b), Kleibergen (2009)), and even Bayesian approaches
with �at priors for risk prices (Bryzgalova, Huang, and Julliard, 2023).

14If one requires the tradable factors to price themselves, then Yt ≡ (R⊤
t ,f

(2),⊤
t )⊤ and p = N +K2.
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N (0N , σ
2ΣR), yielding the cross-sectional likelihood (conditional on the time series parameters)

p(data|λ, σ2) = (2πσ2)−
N
2 |ΣR|−

1
2 exp

{
− 1

2σ2
(µR −Cλ)⊤Σ−1

R (µR −Cλ)

}
,

where in the cross-sectional regression the `data' are the expected risk premia, µR, and the

factor loadings, C ≡ (1N ,Cf ). The above likelihood can then be combined with a prior for

risk prices (presented below) to obtain a posterior distribution and guide inference and model

selection.

To handle model and factor selection we introduce a vector of binary latent variables γ⊤ =

(γ0, γ1, . . . , γK), where γj ∈ {0, 1}. When γj = 1, the j-th factor (with associated loadings

Cj) should be included in the SDF, and should be excluded otherwise.15 In the presence of

potentially weak factors, and hence unidenti�ed prices of risk, the posterior probabilities of

models and factors are not well de�ned under �at priors. Hence, we introduce a (economically

motivated) prior that, albeit not informative, restores the validity of posterior inference (see

Bryzgalova, Huang, and Julliard (2023)). In particular, we model the uncertainty underlying

the estimation and model selection problem with a (continuous spike-and-slab) mixture prior,

π(λ, σ2,γ,ω) = π(λ | σ2,γ)π(σ2)π(γ | ω)π(ω), where

λj | γj, σ2 ∼ N
(
0, r(γj)ψjσ

2
)
.

Note the presence of three new elements, ψj, r(γj), and π(ω), in the prior formulation.16

First, r(γj) captures the `spike-and-slab' nature of the prior formulation. When the factor

should be included, we have r(γj = 1) = 1, and the prior, the `slab,' is just a di�use distribution

centred at zero. When instead the factor should not be in the model, r(γj = 0) = r ≪ 1, the

prior is extremely concentrated�a `spike' at zero. As r → 0, the prior spike is just a Dirac

distribution at zero, hence it removes the factor from the SDF.17

Second, we set

ψj = ψ × ρ̃j
⊤ρ̃j, (2)

where ρ̃j ≡ ρj −
(

1
N

∑N
i=1 ρj,i

)
× 1N , ρj is an N × 1 vector of correlation coe�cients between

15In the baseline analysis, we always include the common intercept in the cross-sectional layer, that is, γ0 = 1.
Nevertheless, we also consider γ0 = 0, i.e., no common intercept, in the robustness analysis.

16For the cross-sectional variance scale parameter σ2 we assume the customary di�use prior π(σ2) ∝ σ−2.
As per Proposition 1 of Chib, Zeng, and Zhao (2020), since the parameter σ is common across models and
has the same support in each model, the marginal likelihoods obtained under this improper prior are valid and
comparable.

17We set r = 0.001 in our empirical analysis.
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factor j and the test assets, and ψ ∈ R+ is a tuning parameter that controls the degree

of shrinkage across all factors. That is, factors that have vanishing correlation with asset

returns, or extremely low cross-sectional dispersion in their correlations (hence cannot help

in explaining cross-sectional di�erences in returns), have a low value of ψj and are therefore

endogenously shrunk toward zero. Instead, such prior has no e�ect on the estimation of strong

factors since these have large and disperse correlations with the test assets, yielding a large ψj

and consequently a di�use prior. Pure `level' factors�i.e., factors that have no explanatory

power for cross-sectional di�erences in asset returns, but help in capturing the average level

of risk premia across assets�can be accommodated removing the free intercept in the SDF

(since it would be collinear with a pure level factor), and use simple correlations (instead of

cross-sectionally demeaned ones) in equation (2), hence setting ψj = ψ × ρ⊤
j ρj. We consider

this particular case among our robustness exercises, and it leaves our main �ndings virtually

unchanged.

Third, the prior π(ω) not only gives us a way to sample from the space of potential models,

but also encodes belief about the sparsity of the true model using the prior distribution π(γj =

1|ωj) = ωj. Following the literature on predictors selection, we set

π(γj = 1|ωj) = ωj, ωj ∼ Beta (aω, bω) .

Di�erent hyperparameters aω and bω determine whether one a priori favors more parsimonious

models or not. The prior expected probability of selecting a factor is simply aω
aω+bω

. We set

aω = bω = 1 in the benchmark case, that is, we have a uniform (hence �at) prior for the model

dimensionality and each factor has an ex ante expected probability of being selected equal to

50%.18

Note that the only free `tuning' parameter in our setting, ψ in equation (2), has a straight-

forward economic interpretation, since the expected prior Sharpe ratio (SR) achievable with the

factors is just Eπ[SR
2
f | σ2] = 1

2
ψσ2

∑K
k=1 ρ̃

⊤
k ρ̃k as r → 0.19 That is, in our empirical analysis

we report results for various prior expectations of the Sharpe ratio achievable in the economy.20

The above hierarchical system yields a well de�ned posterior distribution from which all

18However, we could set for instance, aω = 1 and bω >> 1 to favor sparser models.
19Without a uniform prior for the SDF dimensionality the prior Sharpe ratio value becomes Eπ[SR

2
f | σ2] =

aω

aω+bω
ψσ2

∑K
k=1 ρ̃

⊤
k ρ̃k as r → 0. Hence, beliefs about the prior Sharpe ratio and model dimensionality fully pin

down our hyperparameters.
20More precisely, we report results for di�erent prior values of

√
Eπ[SR2

f | σ2].
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the unknown parameters and quantities of interest (e.g., R2, SDF-implied Sharpe ratio, and

model dimensionality), can be sampled to compute posterior means and credible intervals via

the Gibbs sampling algorithm in Appendix A. Most importantly, these posterior draws can be

used to compute posterior model and factor probabilities, and, hence, identify robust sources

of priced risk and�if such model exists�a dominant model for pricing assets.

Model and factor probabilities can also be used for aggregating optimally, rather than

selecting, the pricing information in the factor zoo. For each possible model γm that one

could construct with the universe of factors, we have the corresponding SDF: Mt,γm = 1 −
(ft,γm − E[ft,γm ])⊤ λγm . Therefore, we construct a BMA-SDF by averaging all possible SDFs

using as weights the posterior probability of each model:21

MBMA
t =

m̄∑
m=1

Mt,γm Pr (γm|data) ,

where m̄ is the total number of possible models.

The BMA aggregates information about the true latent SDF over the space of all possible

models, rather than conditioning on a particular model. At the same time, if a dominant model

exists (a model for which Pr (γm|data) ≈ 1), the BMA will use that model alone. Impor-

tantly, pricing with the BMA-SDF is robust to the problems arising from collinear loadings of

assets on the factors, since any convex linear combination of factors with collinear loadings has

exactly the same pricing implications. Moreover, the BMA-SDF can be microfounded, as in

Heyerdahl-Larsen, Illeditsch, and Walden (2023), thanks to the equivalence of a log utilities and

heterogenous beliefs economy with a representative agent using the Bayes rule. Furthermore,

BMA aggregation is optimal under a wide range of criteria, but in particular, it is optimal on

average: no alternative estimator can outperform it for all possible values of the true unknown

parameters.22 Finally, since its predictive distribution minimizes the Kullback-Leibler informa-

tion divergence relative to the true unknown data-generating process, the BMA aggregation

delivers the most likely SDF given the data, and the estimated density is as close as possible

to the true unknown one, even if all of the models considered are misspeci�ed.

21See, e.g., Raftery, Madigan, and Hoeting (1997) and Hoeting, Madigan, Raftery, and Volinsky (1999).
22See, e.g., Raftery and Zheng (2003) and Schervish (1995).
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3 Estimation results

In this section, we apply the hierarchical Bayesian method to a large set of factors proposed in

the previous bond and equity literature. Overall, we consider 40 tradable and 14 nontradable

factors, yielding 254 ≈ 18 quadrillion possible models for the combined bond and stock factor

zoo. In Sections 3.1 and 3.3 we only consider returns for the bond portfolios in excess of the

short term risk free rate (calculated as outlined in Section 1). In Section 3.2, we also use

duration-adjusted excess returns, as well as U.S. Treasury portfolios, to disentangle the credit

and Treasury term structure components of corporate bond returns.

3.1 Co-pricing bonds and stocks

We now consider the pricing power of the 54 factors to gauge to what extent the cross-section

of corporate bond and stock returns is priced by the joint factor zoo. The IS test assets include

the 50 bond and 33 stock portfolios described in Section 1 in addition to the 40 tradable factor

portfolios (N = 123). Throughout, we use the continuous spike-and-slab approach described in

Section 2. To report the results, we refer to the priors as a fraction of the ex post maximum

Sharpe ratio in the data, which is equal to 5.4 annualized for the joint cross-section of portfolios,

from a very strong degree of shrinkage (20%, i.e., a prior annualized Sharpe ratio of 1.0), to

a very moderate one (80% or a prior annualized Sharpe ratio of 4.2). Given that the results

demonstrate considerable stability across a wide range of prior Sharpe ratio values, we present

selected �ndings for a prior set at 80% of the ex post maximum Sharpe ratio, as this choice

tends to yield the best out-of-sample performance.23

3.1.1 The co-pricing SDF

We start by asking which factors are likely components of the latent Stochastic Discount Factor

in the economy. Figure 1 reports the posterior probabilities (given the data) of each factor (i.e.,

E[γj|data],∀j) for di�erent values of the prior Sharpe ratio achievable with the linear SDF

(expressed as a percentage of the ex post maximum Sharpe ratio). In Figure 2 we list all 54

factors in increasing order of posterior probabilities (top panel), for a prior Sharpe ratio of 80%

of the maximum ex post Sharpe ratio, along with the corresponding annualised posterior means

23Additional results for di�erent values of the prior Sharpe ratio are reported in Table A.2 of the Appendix.
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Figure 1: Posterior factor probabilities: co-pricing factor zoo.

Posterior probabilities, E[γj |data], of the 54 bond and stock factors described in Appendix B. The labels are
ordered by each factor's average posterior probability across the four levels of shrinkage (high to low). Test
assets include the 83 bond and stock portfolios and the 40 tradable bond and stock factors (N = 123). The
prior distribution for the jth factor inclusion is a Beta(1, 1), yielding a 0.5 prior expectation for γj . Posterior

probabilities for di�erent values of the prior Sharpe ratio,
√
Eπ[SR2

f | σ2], set to 20%, 40%, 60% and 80% of

the ex post maximum Sharpe ratio of the 83 bond and stock portfolios and tradable factors. Sample period:
1986:01 to 2022:12 (T = 444).

of the price of risk of the factors (i.e., E[λj|data],∀j, bottom panel).24

Recall that we have a uniform (hence �at) prior for the model dimensionality and each

factor has an ex ante expected probability of being selected equal to 50% (dashed horizontal

lines in Figure 1 and top panel of Figure 2). Figure 1 illustrates that�with some notable

exceptions�most factors proposed in the corporate bond and equity literatures have (individ-

ually) a posterior probability of being part of the SDF that is below its prior value of 50%.

Several observations are in order. First, given their posterior probabilities across the range

of prior Sharpe ratios considered, there is strong evidence for including PEADB and PEAD

(i.e., respectively, the bond and equity post-earnings announcement drift factors) as a source of

24Posterior probabilities and market prices of risk for di�erent priors are tabulated in Table A.2 of the
Appendix. See Table A.1 in Appendix B for a detailed description of the factors.
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Figure 2: Posterior factor probabilities and market prices of risk � joint bond and stock factor
zoo (excess bond returns).

Posterior factor probabilities (top panel), E[γj |data], and the corresponding posterior market prices of risk
(bottom panel), E[λj |data], of the 54 bond and stock factors described in Appendix B. Test assets include the
83 bond and stock portfolios and the 40 tradable bond and stock factors (N = 123). The prior distribution for
the jth factor inclusion is a Beta(1, 1), yielding a 0.5 prior expectation for γj . The prior Sharpe ratio is set to
80% of the ex post maximum Sharpe ratio of the 83 stock and bond portfolios and tradable factors. Sample
period: 1986:01 to 2022:12 (T = 444).

priced risk in the SDF. Partially, this is a rather surprising result, as PEADB has not speci�cally

been proposed as a priced risk factor in the previous literature. Nozawa, Qiu, and Xiong (2023)

are the �rst to document a post-earnings announcement drift in corporate bond prices, and they

rationalise their �nding with a stylised model of disagreement. They also show that a strategy

that purchases bonds issued by �rms with high earnings surprises and sells bonds of �rms with

low earnings surprises generates sizeable Sharpe ratios and large risk-adjusted returns. On the

other hand, Bryzgalova, Huang, and Julliard (2023) and Avramov, Cheng, Metzker, and Voigt
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(2023) �nd strong evidence that the stock market post-earnings announcement drift (PEAD)

factor of Daniel, Hirshleifer, and Sun (2020) exhibits a particularly strong posterior probability

of being part of the SDF for equity returns. In fact, PEAD is the only other tradable factor with

a posterior probability of being part of the SDF that prices the joint cross-section of corporate

bond and stock returns that is above 50%. That is, the only two tradable factors with high

posterior probabilities are the bond and stock versions of the post-earnings announcement drift.

Note that, in equilibrium models in which rational agents with limited risk bearing capacity

face behavioural asset demand, the drivers of the latter become part of the pricing measure�

exactly as we �nd (see, e.g., De Long, Shleifer, Summers, and Waldman (1990)). Note also that,

as shown in Tables IA.II and IA.III of the Internet Appendix, these are the tradable factors

with the highest Sharpe ratio in our full sample. Moreover, PEADB has the highest Sharpe

ratio among bond factors also in the �rst and second halves of the sample (1986:01 to 1999:12

and 2000:01 to 2022:12, respectively), while PEAD has the highest Sharpe ratio among equity

factors in the �rst half, and one of the highest in the second half.

Second, the stock as well as the bond market factors (MKTS and MKTB, respectively) both

exhibit posterior probabilities below 50% for the full range of prior Sharpe ratios for the joint

cross-section of returns. Nevertheless, when separately pricing the cross-sections of bond and

stock returns with only the factors in their respective zoo, both market indices become likely

components of the SDF: for all prior levels in the MKTS case, and when sparse models are

ex ante considered more likely in the MKTB case (see, respectively, Tables IA.IV and IA.V

of the Internet Appendix). This con�rms the �ndings that the equity market index contains

valuable information for pricing stocks in an unconstrained SDF based on stock factors (as in

(Bryzgalova, Huang, and Julliard, 2023)) and that the bond market index is a valuable factor

when focusing on low dimensional bond models for pricing corporate bonds (as in (Dickerson,

Mueller, and Robotti, 2023)). However, when the space of potential factors is expanded to

include both bond and stock factors, without dimensionality restrictions on the SDF as we do

in our baseline co-pricing exercise, models with MKTS and MKTB overall perform worse than

denser models containing factors from both zoos. That is, the information in the two market

indices appears to be spanned by the other factors in the zoos. Note that this �nding is unlikely

to be driven by the market indices acting as `level' or `weak' factors since asset returns display

large and well dispersed loadings on these factors, the market prices of risk they command are

substantial when included in the SDF (see bottom panel of Figure 2), and similar results hold
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when omitting the common intercept from the SDF models considered (see Table IA.VI of the

Internet Appendix).

Third, in Figure 1 there is a small number of nontradable factors that have posterior prob-

abilities of being part of the SDF above 50% percent for all values of the prior Sharpe ratio:

the slope of the Treasury yield curve (YSP, (Koijen, Lustig, and Van Nieuwerburgh, 2017)),

the AAA/BAA yield spread (CREDIT, (Fama and French, 1993)), and idiosyncratic equity

volatility (IVOL, (Campbell and Taksler, 2003)). Interestingly, the term premium and default

risk factors had originally been suggested in Fama and French (1993) exactly for the purpose

of co-pricing bonds and stocks.

Fourth, while there are a few factors for which the posterior probability is roughly equal

to the prior (implying that at least some of these factors are likely to be weakly identi�ed at

best), there are a large set of factors that are unlikely to be individually part of the SDF pricing

the joint cross-section of bond and stock returns. Speci�cally, besides PEADB and PEAD, the

tradable bond and stock market factors are overall unlikely to be individually included in the

SDF. For instance, with a prior Sharpe ratio set to 80% of the ex post maximum, the posterior

probabilities of 29 of the 40 tradable bond and stock factors are below 40% (see top panel of

Figure 2). Nevertheless, as shown and discussed extensively below, this does not imply that

these factors, jointly, do not carry relevant information to characterise the true latent SDF.

Finally, as shown in Figure IA.2 and Tables IA.VI�IA.VIII of the Internet Appendix, re-

moving the free intercept, and the consequent prior penalization of pure level factors, leaves all

of the above results virtually unnchaged.

The bottom panel of Figure 2 reports the posterior (annualized) market prices of risk of the

factors (that are also tabulated, for di�erent values of the prior Sharpe ratio, in Table A.2 of

the Appendix). All �ve factors with posterior probabilities higher than their prior values (i.e.,

PEADB, IVOL, PEAD, CREDIT and YSP) command substantial market prices of risk. Out of

the next �fteen factors with highest (individual) posterior probabilities, ten are also nontradable

in nature. That said, the risk prices of many of these nontradable factors are small and in some

cases e�ectively shrunk toward zero. This is due to the fact that these are likely weak factors in

the joint cross-section of corporate bond and stock returns.25 The occurrence of weak factors,

which, in fact, is most common among the nontradable ones, causes identi�cation failure and

25That is, their correlations with the test assets are small and have little cross-sectional dispersion. See, e.g.,
Gospodinov, Kan, and Robotti (2019), Kleibergen (2009), and Bryzgalova, Huang, and Julliard (2023) for a
formal de�nition of weak and level factors.
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Figure 3: Posterior SDF dimensionality and Sharpe ratios � co-pricing factor zoo.

Posterior distributions of the number of factors to be included in the co-pricing SDF (top panel) and of the
SDF-implied Sharpe ratio (bottom panel), computed using the 54 bond and stock factors described in Appendix
B. The labels are ordered by each factor's average posterior probability across the four levels of shrinkage (high
to low). The prior distribution for the jth factor inclusion is a Beta(1, 1), yielding a 0.5 prior expectation for
γj . The prior Sharpe ratio is set to 80% of the ex post maximum Sharpe ratio of the bond and stock portfolios
and tradable factors. Sample period: 1986:01 to 2022:12 (T = 444).

invalidates canonical estimation approaches (e.g., GMM, MLE, and two-pass regressions). This

is not an issue for our Bayesian method, which restores inference, by design, by regularizing

the marginal likelihood.

The above �ndings raise the question of whether the handful of most likely factors that we

have identi�ed are enough to characterise the true, latent, SDF that jointly prices bonds and

stocks. Moreover, are the less likely to be included factors really devoid of useful pricing infor-

mation? Since our method does not ex ante impose the existence of a unique, low dimensional,

and correctly speci�ed model (all assumptions that are needed with conventional frequentist

asset pricing methods), we can formally answer these questions.

The top panel of Figure 3 reports the posterior dimensionality of the SDF in terms of

observable factors to be included in it, and the bottom panel shows the posterior distribution

of the Sharpe ratios achievable with such an SDF. It is evident that the low dimensional models
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suggested in the previous corporate bond and equity literature have very weak support in the

data, and are misspeci�ed with very high probability as a substantial number of factors is

needed to construct a likely SDF: the posterior median number of factor is 23 with a centered

95% coverage of 16 to 30 factors. In fact, the posterior probability of a model with less than

10 factors is virtually zero, indicating that the quest for a sparse, unique, SDF model among

the observable factors in the joint bond and stock factor zoo is misguided at best.

The bottom panel of Figure 3 highlights that the ex post achievable Sharpe ratio given the

SDF is not unrealistically large (recall that the ex post maximum Sharpe ratio in the data is

5.4), suggesting that many factors are likely to cover a lot of common risk. Furthermore, Table 1

shows that albeit the most likely (top �ve) factors to be included in the SDF are responsible

for a substantial Sharpe ratio (E[SRf |data], about 0.79 to 1.23 for a 60% to 80% prior in Panel

A), the share of the SDF squared Sharpe ratio generated by these factors (E
[ SR2

f

SR2
m
|data

]
) is

quite limited, highlighting that the less likely factors are needed, jointly, to provide an accurate

characterisation of the risks priced by the true latent SDF. This feature of the data arises not

only when jointly pricing bonds and stocks (Panel A), but also when separately focusing on the

pricing of the two asset classes using their respective factor zoos (Panels B and C).

In Figure 4 we plot the cumulative SDF implied Sharpe ratio when subsequently adding

factors ordered on their (individual) posterior probability. While the Sharpe ratio is monotoni-

cally increasing in the number of factors, some factors seem to add more to the implied Sharpe

ratio than others. For example the factors ranked 8 to 11 (INFLC, LVL, UNCr, INFLV) do

not seem to add much individually, while the Sharpe ratio increases distinctly once factor 12

(CRY) is added. This is due to the fact that many factors are potentially noisy proxies for the

same fundamental sources of risk that are important for the SDF. All factors that are noisy

proxies for a particular fundamental source of risk will display nonzero posterior probabilities

and market prices of risk. However, the Sharpe ratio only jumps once the �rst of the factors

spanning (at least partially) a common risk is included in the analysis. Instead, subsequent

factors spanning the same risk generate a much smaller increase in the Sharpe ratio, due to the

improved signal extraction of the common risk. Further examining the four factors in spots 8 to

11, these are all nontradable in nature and related to in�ation, interest rates and uncertainty.

Similarly, factors in spots 17 to 20 are all related to di�erent measures of macroeconomic un-

certainty. While it is important to include all of these factors in the SDF to increase the signal

to noise ratio, their individual marginal contribution to the Sharpe ratio may be minimal as
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Table 1: Most likely (top �ve) factor contribution to the SDF

Total prior Sharpe ratio
20% 40% 60% 80%

Panel A: Co-pricing SDF

E[SRf |data] 0.16 0.42 0.79 1.23

E
[ SR2

f

SR2
m
|data

]
0.01 0.04 0.13 0.28

Panel B: Bond SDF

E[SRf |data] 0.22 0.64 1.09 1.44

E
[ SR2

f

SR2
m
|data

]
0.02 0.16 0.44 0.68

Panel C: Stock SDF

E[SRf |data] 0.17 0.41 0.72 1.12

E
[ SR2

f

SR2
m
|data

]
0.01 0.07 0.20 0.43

Posterior mean of the implied Sharpe ratios, E[SRf |data], and share of the SDF squared Sharpe ratio,

E
[
SR2

f/SR
2
m|data

]
, of the top �ve factors. The subsets are split across the �ve most likely factors to be

included in the BMA-SDF versus the remaining factors. The top �ve co-pricing factors are PEADB, IVOL,

PEAD, CREDIT and YSP. The top �ve bond factors are PEADB, CREDIT, MOMBS, IVOL and YSP. The

top �ve stock factors are PEAD, MKTS, IVOL, CMAs and EPUT. Panels A, B and C report results for the

co-pricing, bond-only and stock-only BMA-SDFs, respectively, using the corresponding factor zoos.

they have common spanning of the underlying priced risk.

3.1.2 Which risks?

Next, we further decompose the posterior dimensionality of the SDF, and its implied Sharpe

ratio, to better understand which types of risk are likely to be part of the true latent pricing

measure, and to what extent di�erent factors capture common information.

Table 2 presents the decomposition of the posterior SDF dimensionality and Sharpe ra-

tio split between nontradable and tradable bond and stock factors, for di�erent prior values.

Panel A reports results for the pricing of the joint cross-section of stock and corporate bond

returns using factors from both zoos to construct the SDF. Instead, Panels B and C focus,

respectively, on the separate pricing of corporate bonds and stocks using only factors from their

respective zoos. Several salient patterns are evident.

First, Panel A shows that an accurate characterisation of the pricing measure requires an

SDF that is dense not only in the overall space of observable factors (as per top Panel of Figure
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Figure 4: Cumulative co-pricing SDF implied Sharpe ratio.

We incrementally compute the implied Sharpe ratio of the SDF by including sequentially each of the 54 factors
(including all factors up to that point) ordered by their posterior probability of inclusion (see top Panel of
Figure 2). We estimate the factor implied Sharpe ratio as the annualized standard deviation of the SDF. The
vertical red dashed line denotes the posterior median number of factors that should be included in the SDF.
The light blue squares (red triangles) represent tradable bond (stock) factors. The dark blue circles represent
nontradable factors. The light blue dashed lines and shaded area denote the centred 90% con�dence interval.
The 54 factors that comprise the co-pricing factor zoo are described in Appendix B. The prior Sharpe ratio
is set to 80% of the ex post maximum Sharpe ratio of the 83 bond and stock portfolios and tradable factors.
Sample period: 1986:01 to 2022:12 (T = 444).

3), but also over the individual subspaces of nontradable as well as bond and stock tradable

factors: the posterior mean number of factors is about 7 for notradable factors, 6 to 8 for bond,

and 9 to 12 for stock tradable factors. Furthermore, this density of the SDF is not driven by

the co-pricing task: even pricing only bonds (Panel B) or stocks (Panel C), requires about 7

nontradable factors, 6 to 8 for bond, and 10 to 12 stock tradable factors.

Second, each of the three categories of factors is economically important. Focusing on the

moderate prior shrinkage case (i.e., 80% of the ex post achievable Sharpe ratio) in Panel A,

the posterior mean of the (annualised) Sharpe ratio ascribable to the various types of factors

(E[SRf |data]) is 1.12 for the notradable ones, and 1.58 and 1.78, respectively, for the bond and

stock tradable ones.

Third, there is substantial common priced information across the categories of factors, as
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Table 2: SDF dimensionality and SR decomposition by type of factor

Total prior SR Total prior SR
20% 40% 60% 80% 20% 40% 60% 80%

Panel A: Co-pricing SDF

Nontradable factors Tradable factors

Mean 6.93 6.96 6.93 6.84 19.47 18.86 17.85 15.48
5% 4 4 4 4 14 14 13 10
95% 10 10 10 10 25 24 23 21
E[SRf |data] 0.21 0.43 0.70 1.12 0.86 1.44 1.91 2.26

E
[ SR2

f

SR2
m
|data

]
0.01 0.04 0.10 0.23 0.13 0.36 0.63 0.84

Bond tradable Stock tradable factors

Mean 7.78 7.56 7.17 6.23 11.69 11.31 10.68 9.25
5% 5 4 4 3 8 7 7 5
95% 11 11 10 10 16 15 15 13
E[SRf |data] 0.56 0.96 1.28 1.51 0.66 1.14 1.50 1.78

E
[ SR2

f

SR2
m
|data

]
0.06 0.17 0.30 0.39 0.08 0.23 0.40 0.53

Panel B: Bond SDF

Nontradable factors Tradable factors

Mean 6.96 6.98 7.08 7.09 7.88 7.78 7.35 6.32
5% 4 4 4 4 5 5 4 3
95% 10 10 10 10 11 11 11 10
E[SRf |data] 0.18 0.38 0.62 0.99 0.53 0.92 1.25 1.43

E
[ SR2

f

SR2
m
|data

]
0.01 0.05 0.14 0.34 0.10 0.30 0.53 0.65

Panel C: Stock SDF

Nontradable factors Tradable factors

Mean 6.97 7.00 7.03 6.98 11.75 11.45 10.91 9.84
5% 4 4 4 4 8 7 7 6
95% 10 10 10 10 16 15 15 14
E[SRf |data] 0.14 0.29 0.48 0.78 0.60 1.03 1.38 1.69

E
[ SR2

f

SR2
m
|data

]
0.01 0.03 0.09 0.23 0.12 0.35 0.62 0.87

Posterior means of: number of factors (with 90% C.I.), implied Sharpe ratios, E[SRf |data], and ratio of SR2
f

to the total SDF Sharpe ratio, E
[
SR2

f/SR
2
m|data

]
, of a subset of factors. Subsets are split across tradable and

nontradable factors, and within tradable factors we further separate bond and stock factors. Panels A, B and

C report results for the co-pricing, bond-only and stock-only BMA-SDFs, respectively, using the corresponding

factor zoos.
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the sum of the Sharpe ratios generated by the three sets of factors (1.12+1.51+1.78 = 4.41 in

Panel A) is much larger than the average posterior SDF implied Sharpe ratio (which is around

2.5 in the bottom panel of Figure 3). This overlap in risks captured by di�erent types of factors

is particularly strong among the tradable ones, where the sum of the Sharpe ratios of bond and

stock factors in the SDF is 1.51 + 1.78 = 3.29, while the posterior mean Sharpe ratio for all

tradable factors jointly is about 2.26.

The degree of common spanning of priced risks can be formally assessed focusing on the

estimated share of the squared Sharpe ratio of the SDF generated by the di�erent types of

factors, E
[ SR2

f

SR2
m
|data

]
. Summing the shares in Panel A ascribable to, respectively, nontradable

(0.23) and tradable bond (0.39) and stock (0.53) factors yields a total of 1.15, i.e., more than

100%, indicating substantial commonality among the fundamental risks spanned by the di�erent

types of factors. Furthermore, the sum of the shares for bond and stock factors (0.39 + 0.53 =

0.92) is much larger than the share due to all tradable factors jointly (0.84). That is, tradable

bond and stock factors capture, at least partially, the same underlying sources of priced risk.

Similarly, summing the shares of squared Sharpe ratios ascribable to nontradable and tradable

factors in Panels A to C yields 1.05, 0.99, and 1.1, indicating some common spanning between

tradable and nontradable factors driven mostly by equity factors.

Given the saliency of tradable factors for the SDF outlined above, with their share of the

squared Sharpe ratio of the SDF in the two thirds to four �fths ballpark, a natural question

is what types of risks do these factors capture. Using the method pioneered by Campbell and

Shiller (1988) and extended by Vuolteenaho (2002), we classify the tradable factors into those

that relate more to discount rate news and those for which instead cash-�ow news are more

important.26 Section IA.3 of the Internet Appendix details the empirical (VAR) methodology

used for categorizing our 40 tradable stock and bond factors as (mostly) driven by either

discount rate news or cash-�ow news. The estimated positioning of the individual factors on

the spectrum of discount rate and cash-�ow news is summarized in Figure 5. Interestingly, the

two most likely tradable components of the SDF, the post-earnings announcement drift factors

in bonds and stocks, PEAD and PEADB, appear mostly driven by discount rate news.

Table 3 decomposes, for a range of prior values, the contribution to the SDF dimensionality

and Sharpe ratio of tradable factors mostly related to discount rate and cash-�ow news. Panel

A reports results for the joint pricing of bonds and stocks with all factors, while Panels B

26See Koijen and Van Nieuwerburgh (2011) and more recent work by Zviadadze (2021).
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Figure 5: Tradable factor zoo decomposition � cash-�ow and discount rate news.

The �gure plots the ordered ratio of the variance of the discount rate news component to total variance of the
residuals, V(Ndr)/V(u), estimated using equation (IA.13) in Internet Appendix IA.3, for each bond and stock
tradable factor. The dashed horizontal line corresponds to the median value of the ratio (0.39). The �rst 20
factors are associated (in a relative manner) with discount rate news, the latter 20 factors are associated more
with cash-�ow rate news. Bond factors are displayed in blue while stock factors are displayed in red on the
x-axis.

and C focus on the two asset classes and factor zoos separately. The left (right) panels per-

tain to discount rate (cash-�ow) news. First, discount rate news factors marginally dominate

the composition of the co-pricing SDF in Panel A. The average factor implied Sharpe ratios,

E[SRf |data], of the discount rate news driven factors are always higher than the cash-�ow

driven counterparts. This translates into a much higher proportion of the total implied Sharpe

ratio being driven by DR-related factors. For a prior level equal to 80% of the ex post achievable

Sharpe ratio, DR driven factors comprise 75% of the total Sharpe ratio variance, compared to

56% for the CF driven factors. Second, in Panel B, when considering the corporate bond SDF,

the total Sharpe ratio is predominantly driven by bond factors relating to DR news. The factor

implied SR, E[SRf |data] and E
[ SR2

f

SR2
m
|data

]
for DR driven factors is close to double that of the

CF driven factors. Finally, in Panel C, when considering only stock factors, both discount and

cash-�ow news seem to play an equally important role, providing very similar contributions to
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Table 3: Discount rate or cash-�ow news?

Discount rate (DR) news Cash-�ow (CF) news

Total prior SR Total prior SR
20% 40% 60% 80% 20% 40% 60% 80%

Panel A: Co-pricing SDF, stock & bond tradable factors

Mean 9.81 9.62 9.27 8.18 9.66 9.25 8.58 7.31
5% 6 6 6 5 6 6 5 4
95% 13 13 13 12 13 13 12 11
E[SRf |data] 0.65 1.19 1.70 2.10 0.60 1.06 1.46 1.77

E
[ SR2

f

SR2
m
|data

]
0.08 0.26 0.52 0.75 0.07 0.21 0.39 0.56

Panel B: Bond SDF, bond tradable factors

Mean 4.86 4.77 4.60 4.05 2.92 2.79 2.57 2.19
5% 2 2 2 2 1 1 1 0
95% 7 7 7 7 5 5 5 4
E[SRf |data] 0.49 0.86 1.19 1.42 0.26 0.49 0.67 0.80

E
[ SR2

f

SR2
m
|data

]
0.05 0.14 0.27 0.36 0.02 0.05 0.10 0.15

Panel C: Stock SDF, stock tradable factors

Mean 4.94 4.85 4.67 4.13 6.74 6.46 6.01 5.12
5% 2 2 2 2 4 3 3 2
95% 8 7 7 7 10 10 9 8
E[SRf |data] 0.41 0.81 1.18 1.48 0.52 0.91 1.23 1.49

E
[ SR2

f

SR2
m
|data

]
0.04 0.13 0.28 0.41 0.05 0.16 0.29 0.41

The table reports the posterior means of the number of factors (with 90% C.I.), implied Sharpe ratios,

E[SRf |data], and the ratio of SR2
f to the total SDF Sharpe ratio, E

[
SR2

f/SR
2
m|data

]
, of a subset of fac-

tors. The subsets are split across factors which we classify as discount rate news (DR) driven or cash-�ow (CF)

news driven. The CF and DR decomposition follows Vuolteenaho (2002) and is detailed in Section IA.3 of the

Internet Appendix. Panels A, B and C report results for the co-pricing, bond-only and stock-only BMA-SDFs,

respectively, using the corresponding factor zoos.

the Sharpe ratio of the SDF.

3.1.3 Cross-sectional asset pricing

We now turn to the asset pricing performance of the BMA-SDF based on the joint cross-section

and factor zoos, as well as based on bond and stock portfolios separately. In Table 4 we report

results for in-sample cross-sectional pricing using various performance measures, while out-of-

sample results are summarized in Table 5. The in-sample assets for the joint cross-section in

Panel A of Table 4 are the 83 portfolios of stocks and bonds (described in Section 1) plus 40

tradable factors (N = 123). Panels B and C focus instead on only bonds (50 portfolios and
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16 bond tradable factors, N = 66) and stocks (33 anomaly portfolios and 24 stock tradable

factors, N = 57), respectively. The out-of-sample test assets in Table 5 comprise of 77 bond

portfolios and 77 stock portfolios (described in Section 1) that are considered jointly in Panel A

and separately in Panels B and C, respectively.

When assessing the pricing performance, we compare our BMA-SDF for di�erent levels of

prior Sharpe ratio with the performance of a number of benchmark models. In particular, we

consider the bond CAPM (CAPMB), the stock CAPM, the Fama and French (1993) �ve-factor

model (FF5), the intermediary asset pricing model of He, Kelly, and Manela (2017) (HKM), the

PCs-based SDF of Kozak, Nagel, and Santosh (2020) (KNS) and the risk premia PCA approach

of Lettau and Pelger (2020) (RPPCA).27 In addition, since most of the previous literature has

focused on selection, rather than aggregation, of pricing factors, we also include the respective

`top factor' models (Top) from our Bayesian analysis, that comprises only the factors with

posterior probabilities exceeding the prior one (for the joint cross-section for example, this is a

�ve-factor model with PEADB, IVOL, PEAD, CREDIT, and YSP). All the benchmark model

SDFs are estimated via a GLS version of GMM.28 Note that for the cross-sectional out-of-sample

pricing we do not re�t the BMA-SDF or the other benchmark models to the new data. Instead,

we use the estimated parameters from the respective in-sample pricing exercises.

For the in-sample pricing in Table 4, a few observations are in order. First and foremost,

the BMA-SDF using moderate shrinkage (80% of the prior Sharpe ratio) outperforms virtually

all benchmark models on almost all dimensions considered, with the best alternative model

being KNS. Second, all low dimensional models do not perform well. This should not come

as a surprise given the discussion in Section 3.1.2 that implies that all low dimensional models

are both misspeci�ed with very high probability and strongly rejected by the data. In fact,

the performance of both the bond and stock CAPM is rather underwhelming compared to

the BMA-SDF. Moreover, popular models such as FF5 and HKM do not perform particularly

well either. Third, the low dimensional Top factor model, albeit better performing than the

low dimensional models from the literature, delivers worse pricing than the BMA-SDF with

moderate shrinkage, once again pointing out that aggregation of factors, rather than selection,

is preferred by the data. Or in other words, highlighting that just the most likely factors are

not su�cient to provide an accurate characterization of the risks spanned by the true latent

27The SDFs of both KNS and RPPCA are reestimated using our data and the methods proposed in the
original papers. Details of the construction of all benchmark models are reported in Appendix D.

28See, e.g., Cochrane (2005, pp. 256�258).
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SDF. Fourth, the results are fairly consistent moving through the three panels. Apart from the

BMA-SDF, KNS and (albeit to a lesser extent) RPPCA deliver consistently better in-sample

pricing than the low dimensional models.

The co-pricing BMA-SDF performs exceptionally well out-of-sample (see Panel A of Ta-

ble 5). While KNS is a close contender when it comes to the in-sample performance, the

BMA-SDF strongly dominates KNS out-of-sample. The superiority of the BMA-SDF is less

evident when separately considering the cross-sections of bonds and stocks, and SDFs based

only on their speci�c factor zoos (see Panels B and C, respectively), once again highlighting the

importance of both sets of factors for a complete characterisation of the SDF, but still performs

better OS than all benchmark models we consider.

Obviously, there is a legitimate concern that the strong OS performance of the co-pricing

BMA-SDF might be driven by the particular, yet rich, selection of test assets. To address

this concern, we also consider the separate pricing of all the possible combinations of the 14

di�erent cross-sections comprising our OS test assets. Figure 6 visualises the performance of

the BMA-SDF vis-à-vis the best competitor, KNS, by depicting the distributions of di�erent

measures of �t across 214 = 16, 384 OS cross-sections. For the cross-sectional R2
OLS, RMSE

and MAPE, there is virtually no overlap in the distributions for the co-pricing BMA-SDF and

KNS, with the former clearly besting the latter, implying that the Bayesian approach delivers

strictly better OS pricing than its best competitor. There is only an overlap in the distribution

when considering R2
GLS as the measure of �t, yet the BMA-SDF outperforms KNS in 96.6% of

the OS cross-sections and its measure of �t concentrates on much higher values.

Given the �ndings in Tables 4 and 5 that bonds and stocks can be accurately priced sepa-

rately with BMA-SDFs constructed based only on their respective factor zoos, a natural question

is whether only bond or stock factors are enough to price jointly both asset classes. We answer

this question in Figure 7 where we compare the OS pricing performance of the co-pricing BMA-

SDF (in red, from Panel A of Table 4) to the one of BMA-SDFs constructed separately with

only bond (in blue, from Panel B of Table 4) and stock (in yellow, from Panel C of Table 4)

factors, respectively. As test assets we use once more the 16,384 combinations of our OS bond

and stock cross-sections. Throughout, the co-pricing BMA-SDF exhibits much lower pricing

errors and much higher R2s compared to the bond or stock only BMA-SDFs. That is, in order

to price the joint cross-section of bond and stock excess returns, we need information from both

factor zoos.
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Table 4: In-sample cross-sectional asset pricing performance.

BMA Prior Sharpe Ratio CAPM CAPMB FF5 HKM Top KNS RPPCA

20% 40% 60% 80%

Panel A: Co-pricing bonds and stocks

RMSE 0.214 0.203 0.186 0.168 0.260 0.278 0.258 0.259 0.230 0.166 0.201
MAPE 0.167 0.154 0.140 0.126 0.194 0.221 0.198 0.192 0.171 0.126 0.137
R2

OLS 0.153 0.240 0.358 0.479 -0.244 -0.426 -0.233 -0.238 0.023 0.489 0.251
R2

GLS 0.106 0.169 0.232 0.286 0.078 0.083 0.087 0.078 0.263 0.176 0.186

Panel B: Pricing bonds

RMSE 0.178 0.146 0.121 0.103 0.209 0.213 0.202 0.206 0.159 0.195 0.189
MAPE 0.127 0.108 0.091 0.078 0.146 0.135 0.142 0.145 0.124 0.113 0.084
R2

OLS 0.190 0.454 0.628 0.731 -0.107 -0.157 -0.038 -0.080 0.355 0.028 0.094
R2

GLS 0.217 0.305 0.383 0.445 0.180 0.201 0.244 0.181 0.551 0.064 0.231

Panel C: Pricing stocks

RMSE 0.230 0.242 0.237 0.220 0.292 0.264 0.275 0.292 0.365 0.162 0.230
MAPE 0.186 0.190 0.182 0.165 0.229 0.211 0.221 0.226 0.306 0.133 0.173
R2

OLS 0.020 -0.080 -0.035 0.109 -0.570 -0.282 -0.392 -0.574 -1.451 0.515 0.022
R2

GLS 0.145 0.213 0.285 0.355 0.120 0.118 0.130 0.121 0.301 0.311 0.315

In-sample asset pricing performance of the Co-pricing BMA-SDF (Panel A), the Bond BMA-SDF (Panel B)

and the Stock BMA-SDF (Panel C), notable factor models, and the top �ve factors with an average posterior

probability greater than 50%. In each panel, the models are estimated using the respective factor zoos. Bond

returns are computed in excess of the one-month risk-free rate of return. We use GMM-GLS to estimate factor

risk prices for CAPM, CAPMB, the and Fama and French (1992, 1993) model, which includes the MKTS, SMB,

HML, DEF and TERM factors, and the tradable two-factor He, Kelly, and Manela (2017) model, HKM. KNS

stands for the SDF estimation of Kozak, Nagel, and Santosh (2020), with tuning parameter and number of

factors chosen by twofold cross-validation. RPPCA is the Risk-Premia-PCA of Lettau and Pelger (2020), with

�ve-factors and κ set to 20. In Panel A the models are estimated with the 83 bond and stock portfolios and

the 40 tradable bond and stock factors (N = 123), Panel B (bond only) uses the 50 bond portfolios and 16

bond factors (N = 66), and Panel C (stock only) uses the 33 stock portfolios and 24 stock factors (N = 57) as

described in Section 1. For the BMA-SDFs, we report results for a range of prior Sharpe ratio values that are set

as 20%, 40%, 60% and 80% of the ex-post maximum Sharpe ratio of the relevant portfolios and factors. All data

is standardized, that is, pricing errors are in Sharpe ratio units and span the sample period 1986:01�2022:12

(T = 444).
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Table 5: Out-of-sample cross-sectional asset pricing performance.

BMA Prior Sharpe Ratio CAPM CAPMB FF5 HKM Top KNS RPPCA

20% 40% 60% 80%

Panel A: Co-pricing bonds and stocks

RMSE 0.114 0.102 0.095 0.090 0.224 0.154 0.139 0.223 0.171 0.160 0.166
MAPE 0.081 0.075 0.070 0.066 0.192 0.129 0.102 0.190 0.135 0.143 0.146
R2

OLS 0.358 0.486 0.553 0.600 -1.478 -0.161 0.053 -1.444 -0.442 -0.268 -0.360
R2

GLS 0.038 0.070 0.098 0.125 0.028 0.034 0.036 0.028 0.090 0.065 0.041

Panel B: Pricing bonds

RMSE 0.123 0.116 0.110 0.105 0.130 0.128 0.139 0.133 0.102 0.112 0.085
MAPE 0.090 0.085 0.081 0.079 0.095 0.092 0.104 0.097 0.084 0.081 0.062
R2

OLS 0.050 0.156 0.235 0.305 -0.062 -0.028 -0.221 -0.107 0.342 0.205 0.540
R2

GLS 0.019 0.055 0.080 0.101 -0.006 0.022 -0.032 -0.007 0.100 0.068 0.069

Panel C: Pricing stocks

RMSE 0.105 0.088 0.078 0.070 0.123 0.119 0.116 0.124 0.158 0.078 0.124
MAPE 0.078 0.067 0.062 0.057 0.089 0.085 0.082 0.091 0.123 0.060 0.096
R2

OLS 0.292 0.502 0.614 0.683 0.032 0.099 0.136 0.019 -0.606 0.613 0.014
R2

GLS 0.089 0.158 0.223 0.280 0.103 0.065 0.099 0.107 0.141 0.207 -0.011

Out-of-sample asset pricing performance of the co-pricing BMA-SDF (Panel A), the bond BMA-SDF (Panel B)

and the btock BMA-SDF (Panel C), notable factor models, and the top �ve factors with an average posterior

probability greater than 50%. Bond returns are computed in excess of the one-month risk-free rate of return.

We use GMM-GLS to estimate factor risk prices for CAPM, CAPMB, the and Fama and French (1992, 1993)

model, which includes the MKTS, SMB, HML, DEF and TERM factors, and the tradable two-factor He, Kelly,

and Manela (2017) model, HKM. KNS stands for the SDF estimation of Kozak, Nagel, and Santosh (2020), with

tuning parameter and number of factors chosen by twofold cross-validation. RPPCA is the Risk-Premia-PCA

of Lettau and Pelger (2020), with �ve-factors and κ set to 20. In Panel A the models are estimated with the 83

bond and stock portfolios and the 40 tradable bond and stock factors (N = 123), Panel B (bond only) uses the

50 bond portfolios and 16 bond factors (N = 66), and Panel C (stock only) uses the 33 stock portfolios and 24

stock factors (N = 57). Out-of-sample (OS) test assets include 154 bond and stock portfolios (Panel A), and

77 bond (stock) portfolios in Panel B (C) as described in Section 1. The models are �rst estimated using the

baseline IS test assets and the resulting SDF is then used to price (with no additional parameter estimation)

each set of the OS assets. For the BMA-SDFs, we report results for a range of prior Sharpe ratio values that are

set as 20%, 40%, 60% and 80% of the ex post maximum Sharpe ratio relevant portfolios and factors. All data

is standardized, that is, pricing errors are in Sharpe ratio units and span the sample period 1986:01�2022:12

(T = 444).
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Figure 6: Pricing out-of-sample stocks and bonds with BMA-SDF and KNS.

This �gure plots the distributions of R2
GLS , R

2
OLS , RMSE and MAPE in Panels A, B, C and D, respectively,

across 16,384 possible OS bond and stock cross-sections using the 14 sets of bond and stock test assets (214 =
16, 384). KNS stands for the SDF estimation of Kozak, Nagel, and Santosh (2020), with tuning parameter and
number of factors chosen by twofold cross-validation. The models are �rst estimated using the baseline IS test
assets and the resulting SDF is then used to price (with no additional parameter estimation) each set of the
16,384 OS combinations of test assets. The BMA-SDF is computed with a prior Sharpe ratio value set to 80%
of the ex-post maximum Sharpe ratio of the IS test assets. All data is standardized, that is, pricing errors are
in Sharpe ratio units and span the sample period 1986:01�2022:12 (T = 444).
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Figure 7: Pricing out-of-sample stocks and bonds with di�erent BMA-SDFs.

This �gure plots the distributions of R2
GLS , R

2
OLS , RMSE and MAPE in Panels A, B, C and D respectively across

16,384 possible bond and stock cross-sections using the 14 sets of stock and bond test assets (214 = 16, 384)
priced using the respective BMA-SDF. The models are �rst estimated using the baseline set of IS test assets
and then used to price (with no additional parameter estimation) each set of the 16,384 OS combinations of
test assets. The red distributions corresponds to the pricing performance of the co-pricing BMA-SDF. The
blue (yellow) distributions corresponds to the pricing performance of the bond (stock) only BMA-SDF. The
BMA-SDFs are computed with a prior Sharpe ratio value set to 80% of the ex-post maximum Sharpe ratio of
the IS test assets. All data is standardized, that is, pricing errors are in Sharpe ratio units and span the sample
period 1986:01�2022:12 (T = 444).
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Figure 8: Separate out-of-sample pricing of bond and stock excess returns

This �gure plots the distributions of R2
GLS , R

2
OLS , RMSE and MAPE in Panels A, B, C and D respectively

across 128 possible bond cross-sections using the 7 sets of bond test assets (27 = 128) priced using the respective
BMA-SDF. The models are �rst estimated using the baseline set of IS test assets and then used to price (with
no additional parameter estimation) each set of the 128 OS combinations of test assets. The red distributions
corresponds to the pricing performance of the co-pricing BMA-SDF. The blue (yellow) distribution corresponds
to the pricing performance of the bond (stock) only BMA-SDF. The BMA-SDFs are computed with a prior
Sharpe ratio value set to 80% of the ex post maximum Sharpe ratio of the IS test assets. All data is standardized,
that is, pricing errors are in Sharpe ratio units and span the sample period 1986:01�2022:12 (T = 444).
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But, can the co-pricing BMA-SDF also price well bonds and stocks separately? In Figure 8

we report OS R2
GLS and R2

OLS for the separate pricing of these two asset classes using the

27 = 128 possible combinations of our OS corporate bond portfolios in Panels A and B, and the

same number of combinations of OS stock portfolios in Panels C and D. Clearly, the co-pricing

BMA-SDF can individually price the respective bond and stock cross-sections well, implying

that the superior performance of the co-pricing BMA-SDF is not due to the fact that it prices

one cross-section better than the other. Nevertheless, the asset-class-speci�c BMA-SDFs price

the respective cross-sections very well. That is, using only information from the bond market

factor zoo delivers a pricing performance for the cross-section of bond excess returns that is only

marginally worse than the one achievable with the co-pricing BMA-SDF. Similarly, the stock-

only BMA-SDF does price stock returns very well OS, con�rming the �ndings in Bryzgalova

et al. (2023). Yet, clearly, the information in the bond factor zoo alone is insu�cient to price

the cross-section of stock returns and, vice versa, information from the stock market is not

su�cient to price the cross-section of corporate bond excess returns.

3.2 The information content of the two factor zoos

As shown in Section 3.1.3 (see Figure 8 and Tables 4 and 5), albeit one can construct well

performing BMA-SDFs to price bonds and stocks separately only using the information in their

respective zoos, the joint pricing of these assets requires information from both sets of factors

(see Figure 7). In this section we show that this result arises from the fact that corporate bond

returns re�ect not only a component related to credit risk compensation, but also a Treasury

term structure risk premium.

To illustrate this point, we now turn our focus to bond returns in excess of a duration-

matched portfolio of U.S. Treasuries. More precisely, for every bond i we construct the following

duration-adjusted return

Rbond i,t −RTreasury
dur bond i,t︸ ︷︷ ︸

Duration-adjusted return

= Rbond i,t −Rf,t︸ ︷︷ ︸
Excess return

−
(
RTreasury

dur bond i,t −Rf,t

)
︸ ︷︷ ︸

Treasury component

(3)

where Rbond i,t is the return of bond i at time t, Rf,t denotes the short term risk free rate, and

RTreasury
dur bond i,t denotes the return on a portfolio of Treasury securities with the same duration as

bond i (constructed as in van Binsbergen, Nozawa, and Schwert (2024)). As is obvious from the

right hand side of equation (3), the duration adjustment removes the implicit Treasury compo-
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Figure 9: Pricing the joint cross-section of stock and duration-adjusted bond returns.

This �gure plots the distributions of R2
GLS , R

2
OLS , RMSE and MAPE in Panels A, B, C and D respectively across

16,384 possible bond and stock cross-sections using the 14 sets of stock and bond test assets (214 = 16, 384). All
bond test assets and factors are formed with duration-adjusted returns described in Appendix C. The BMA-
SDFs are �rst estimated using the baseline IS test assets and then used to price (with no additional parameter
estimation) each set of the 16,384 OS combinations of test assets. The red distributions corresponds to the
pricing performance of the co-pricing BMA-SDF. The blue (yellow) distributions corresponds to the pricing
performance of the bond (stock) only BMA-SDF. The BMA-SDFs computed with a prior Sharpe ratio value set
to 80% of the ex post maximum Sharpe ratio of the IS test assets. Data are standardized, i.e., pricing errors
are in Sharpe ratio units. Sample: 1986:01�2022:12 (T = 444).
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nent from the bond excess return, hence isolating the remaining sources of risk compensation

that investing on a given bond entails.

Figure 9 reports the distribution of OS measures of �t (R2
GLS, R

2
OLS, RMSE and MAPE)

across 16,384 possible bond and stock cross-sections using the 14 sets of stock and bond test

assets for three di�erent BMA-SDFs based on (i) bond factors only, (ii) stock factors only, and

(iii) both bond and stock factors. The contrast with Figure 7 is stark: once bond returns are

adjusted for duration, the BMA-SDF based only on equity information prices jointly bonds and

stocks as well as the co-pricing BMA-SDF that additionally includes bond factors. That is, the

information content of the bond factor zoo becomes largely irrelevant for co-pricing once the

Treasury component of bond returns is removed.

This last �nding raises a natural question: why do we need the bond factors for co-pricing

assets in the absence of the duration adjustment? As we are about to show, bond factors price

the Treasury component of corporate bond returns.

Panel A of Figure 10 depicts the IS pricing of the Treasury component of corporate bond

returns using the BMA-SDF based only on the bond factor zoo. Remarkably, the pricing is

almost prefect with a cross-sectional (constrained) R2
OLS of about 97%. Similarly, Panel B

shows that the OS pricing of a cross-section of Treasury excess returns using the same BMA-

SDF is also almost perfect, with a (constrained) R2
OLS of 92% and average excess returns and

SDF-implied risk premia lining up closely around the 45 degrees line. In contrast, Panels C and

D of Figure 10 report the same cross-sectional pricing exercises performed using a BMA-SDF

based only on stock factors. Clearly, those are not able to price the Treasury component of

corporate bond returns neither in- nor out-of-sample, yielding extremely low measures of �t

(6% to 14% R2
OLS) and slope coe�cients very far from the theoretical value.

The above highlights that the bond factor zoo is necessary for co-pricing bonds and stocks

because the factors proposed in the corporate bond literature price extremely well the Treasury

component implicit in corporate bond returns�a component that stock factors fail to price.

But once this component is accounted for�as in the case of duration-adjusted bond returns�

co-pricing can e�ectively be achieved using only equity information.

Moreover, this Treasury component is economically important. The ex post (annualized)

maximum Sharpe ratio achievable with the excess returns on the duration-matched Treasury

portfolios in equation (3) is about 1.48. And, as shown in the bottom panel of Figure 11,

this is roughly the mode of the Sharpe ratio achievable with an SDF that prices this Treasury
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(A) In-sample with bond BMA-SDF (B) Out-of-sample with bond BMA-SDF

(C) In-sample with stock BMA-SDF (D) Out-of-sample with stock BMA-SDF

Figure 10: Pricing the Treasury component of corporate bond returns.

Sample average (y-axis) vs. bond BMA-SDF-implied (x-axis) risk premia. Panel A: RTreasury
dur bond i,t−Rf,t described

in Appendix C. Panel B: monthly returns in excess of the risk free rate for 29 U.S. Treasury portfolios (two-
to 30-year maturity in increments of 1-year). Constrained OLS R2s computed setting the slope coe�cient to 1.
Sample: 1986:01�2022:12 (T = 444)
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Figure 11: Posterior factor dimensionality and SR of the SDF that prices the Treasury com-
ponent of corporate bond returns using only the bond factor zoo.

Posterior distributions of the number of factors to be included in the bond SDF (top panel) and of the SDF-
implied Sharpe ratio (bottom panel), computed using the 30 nontradable and tradable bond factors described
in Appendix B. The prior Sharpe ratio is set to 80% of the ex post maximum Sharpe ratio of the U.S. Treasury
returns component, in excess of the one-month risk-free rate, of the 50 corporate bond portfolios and 16 bond
tradable factors. Sample period: 1986:01 to 2022:12 (T = 444).

component with only the factors in the bond factor zoo. Note also that, as shown in the top

panel of the �gure, even for pricing just this component, the required SDF is quite dense, with

a median number of factors equal to 14 and a posterior 95% C.I. ranging from 8 to 19 factors.

Furthermore, as shown in Table 6, pricing this component requires a dense SDF in the space

of both nontradable and tradable factors, with posterior mean numbers of factors being 7 and

8, respectively, across the prior range, and with roughly equal contribution to the Sharpe ratio

of the SDF from the two types of factors.

Mirroring the analysis in Section 3.1, we can assess which factors are more likely to price

this Treasury component individually. Figure 12 reports the posterior factor probabilities and

market prices of risk implied by the pricing of the Treasury component of corporate bond re-

turns using the corporate bond factor zoo (the prior Sharpe ratio is set to 80% of the ex post

maximum Sharpe ratio). Overwhelmingly, the most likely factors are nontradable: �ve out

39



Table 6: SDF dimensionality, and SR decomposition by type of factor, for pricing the Trea-
suries component of corporate bond returns

Total prior SR Total prior SR
20% 40% 60% 80% 20% 40% 60% 80%

Nontradable factors Tradable factors

Mean 6.91 6.94 6.91 6.91 7.90 7.79 7.90 7.90
5% 4 4 4 4 5 5 5 5
95% 10 10 10 10 11 11 11 11
E[SRf |data] 0.15 0.32 0.52 0.83 0.28 0.64 0.64 0.80

E
[ SR2

f

SR2
m
|data

]
0.02 0.09 0.24 0.54 0.08 0.36 0.36 0.51

Posterior means of: number of factors (with 90% C.I.), implied Sharpe ratios, E[SRf |data], and ratio of SR2
f

to the total SDF Sharpe ratio, E
[
SR2

f/SR
2
m|data

]
, of a subset of factors. Subsets are split across tradable and

nontradable factors, and within tradable factors we further separate bond and stock factors. The results are

reported for the U.S. Treasury SDF which is estimated with the corporate bond factor zoo. The in-sample test

assets are the U.S. Treasury returns component, in excess of the one-month risk-free rate, of the 50 corporate

bond portfolios.

of the six factors with posterior probability higher than the prior value are nontradable, with

the only exception being PEADB�the most likely tradable factor in our co-pricing analysis.

Furthermore, largely, the factors are the same as those that appear most likely when co-pricing

bonds and stocks, with the top three being YSP, IVOL and CREDIT�exactly the three most

likely nontradable factors in our co-pricing BMA-SDF�followed by a term structure level fac-

tor, LVL, and a factor based on unexpected shocks to core in�ation, INFLC. Moreover, these

nontradable factors command large mark market prices of risk and the probability of no non-

tradable factor being in the BMA-SDF that prices the Treasury component of corporate bond

returns is virtually zero (or 0.018%).

3.3 The economic properties of the co-pricing SDF

We now turn to assessing the economic properties of the co-pricing BMA-SDF. Figure 13

depicts the time series of the BMA-SDF posterior mean, along with its conditional time series

mean (estimated using an ARMA(3,1) model selected via BIC). The ARMA speci�cation is

selected based on both the Akaike and Bayesian Information Criteria. Both the SDF and its

conditional mean exhibit a clear business cycle behaviour as they increase during expansions and

tend to peak right before recessions, being substantially reduced during economic contractions.

Moreover, as highlighted in Panel A of Figure 14, the BMA-SDF is highly predictable: virtually
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Figure 12: Posterior factor probabilities and market prices of risk � pricing the Treasury
component of corporate bond returns using the bond factor zoo.

Posterior factor probabilities (top panel), E[γj |data], and the corresponding posterior market prices of risk
(bottom panel), E[λj |data], of the 30 nontradable and tradable bond factors described in Appendix B. Test
assets are the U.S. Treasury returns component, in excess of the one-month risk-free rate, of the 50 corporate
bond portfolios. The prior distribution for the jth factor inclusion is a Beta(1, 1), yielding a 0.5 prior expectation
for γj . The prior Sharpe ratio is set to 80% of the ex post maximum Sharpe ratio of the portfolios and tradable
factors. Sample period: 1986:01 to 2022:12 (T = 444).

all of its autocorrelation coe�cients are statistically signi�cant at the 1% level up to 20 months

ahead, and the p-value of the Ljung and Box (1978) test of joint signi�cance is zero at this

horizon. Additionally, about one �fth of its time series variance is explained by its own lags

(23% for the best AR speci�cation and 19% for the best ARMA speci�cation according to the

BIC).

Note also that, as shown in Figure IA.6 of the Internet Appendix, none of the other cele-

brated SDF models come close to displaying such a level of business cycle variation and per-

sistency: the KNS SDF has about 11% of its time series variation being predictable by its

own history, while this number drops to 4% for RPPCA, and its only 2% to 3%, for FF5 and

CAPMB, and zero for HKM and CAPM. Remarkably, as shown in Panel A of Table IA.XI of
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the Internet Appendix, the SDFs with a higher degree of persistency, KNS and RPPCA, are

exactly the ones with the highest degree of correlation with the BMA-SDF (0.78 and 0.55, re-

spectively), and are the closest competitors for the BMA-SDF in the pricing exercises in Section

3.1. Instead, SDFs that perform signi�cantly worse in cross-sectional pricing have both little

time series persistency and correlations with the BMA-SDF in the 0.16 to 0.29 range.

Obviously, the nontradable factors in the BMA-SDF play an important role in generating a

pronounced business cycle pattern and a high degree of predictability. Nevertheless, even when

removing the nontradable factors from the BMA-SDF, the resulting SDF remains predictable,

with 5% to 10% of its time series variation explained by its own lags, and a highly signi�cant

Ljung and Box (1978) test statistic even up to 20 months ahead. Furthermore, note that the

�ve most likely factors in the SDF (PEAD, IVOL, PEADB, CREDIT, YSP) explain only about

47% of the time series variation of the BMA-SDF, further con�rming the dense nature of the

pricing kernel. Individually, only PEADB and IVOL explain marginally more than 20% of the

time series variation of SDF, with the other factors accounting individually for 3% to 7%.

Recall that the variance of the SDF is equal to the squared Sharpe ratio achievable in the

economy. Hence, whether our �ltered SDF implies time-varying compensation for risk can

be elicited by analyzing the predictability of its volatility. As pointed out in Engle (1982),

the presence of volatility clustering can be assessed, without taking a parametric stance on

the variance process, by simply analyzing the serial correlation of the squared one-step-ahead

forecast errors, since these are consistent (yet noisy) estimates of the latent conditional variance.

Note that, for instance, such a variance proxy has been used extensively in the macro-�nance

literature (see, e.g., Bansal, Khatchatrian, and Yaron (2005), Bansal, Kiku, and Yaron (2012),

Beeler and Campbell (2012), and Chen (2017)), and squared forecast errors of returns are a

commonly used as proxy of the latent conditional variances.

Panel B of Figure 14 reports the empirical autocorrelation function of the squared forecast

errors of the BMA-SDF. Most of the autocorrelation coe�cients are statistically signi�cant at

the 1% level up to seven months ahead. Moreover, the Ljung and Box (1978) test strongly

rejects the joint null of zero autocorrelations up to 20 months into the future (the p-value of

the test is zero). That is, not only the �rst moment of our �ltered SDF exhibits substantial

predictability, but so does its second moment, suggesting time-varying risk compensation in the

economy.

To tackle the question whether the SDF-implied time variation in risk compensation (i.e.,
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Figure 13: The co-pricing SDF and its conditional mean

Time series of the (posterior mean of) the co-pricing BMA-SDF and its conditional mean. The conditional
mean is obtained by �tting an ARMA(3,1) to the BMA-SDF. The order of the ARMA speci�cation is selected
using the Bayesian Information Criterion. Shaded areas denote NBER recession periods. The sample period is
1986:01�2022:12 (T = 444).

the economy-wide conditional Sharpe ratio) that we uncover makes economic sense, we �t a

simple GARCH(1,1) (see Bollerslev (1986)) process to our BMA-SDF.29 Figure 15 presents the

estimated conditional volatility of the SDF, revealing striking results. The implied conditional

Sharpe ratio is not only highly countercyclical but also exhibits pronounced spikes during peri-

ods of market turbulence and heightened economic uncertainty. These include Black Monday,

the Asian �nancial crisis, the burst of the dot-com bubble, the 9/11 terrorist attacks, the Iraq

invasion, the great �nancial crisis, the Greek default and subsequent Eurozone debt crisis, the

COVID-19 pandemic, and the aftermath of Russia's invasion of Ukraine. Note that the es-

timated GARCH coe�cients imply a highly persistent conditional volatility, with deviations

from the mean exhibiting a half-life of approximately 16.6 months.30

29We estimate the process based on the posterior mean of the BMA-SDF. Ideally, one would estimate the
volatility process for each draw of the SDF and for each possible model, and then compute the posterior
average of these `draws' for the volatility process. Nevertheless, since GARCH estimation requires numerical
optimisation, the ideal approach is unfeasible in our model space with quadrillions of models.

30Recall that the half-life of a GARCH(1,1) process is de�ned as 1+ ln(1/2)
ln(α+β) where α and β denote, respectively,
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(A) Co-pricing BMA-SDF predictability (B) Squared forecast errors of BMA-SDF

Figure 14: autocorrelation functions of co-pricing BMA-SDF and its squared forecast errors

Autocorrelation coe�cients of co-pricing BMA-SDF, in Panel A, and its squared forecast errors, in Panel B.
ARMA(3,1) conditional mean process selected via BIC. Sample: 1986:01�2022:12 (T = 444).

As per Panel A in Table 2, nontradable factors account for about a quarter of the SDF

variance. Hence, a natural question is whether the SDF volatility pattern depicted in Fig-

ure 15 is simply due to tradable factors. We evaluate this conjecture by removing all tradable

factors from the BMA-SDF and re-estimating the volatility process of this nontradable-only

SDF. We �nd that the resulting volatility process remains very persistent (with a half-life of

12.3 months), with pronounced business cycle variation and reaction to periods of heightened

economic uncertainty (see Figure IA.8 of the Internet Appendix). Moreover, it has a correlation

with the volatility of the BMA-SDF in Figure 15 of about 62%. That is, both tradable and

nontradable components of the BMA-SDF are characterised by a very persistent volatility with

a clear business cycle pattern.

But is the strong countercyclical behaviour of the BMA-SDF volatility, and its sharp increase

during periods of economic uncertainty, just a mechanical byproduct of it loading on several

tradable factors? Figure 15 suggests that this is not the case. Focusing on the celebrated Fama-

French �ve factor model, and the bond CAPM (the best model for pricing corporate bonds in

Dickerson, Mueller, and Robotti (2023)), we apply the same procedure of estimating their SDF

the coe�cients on lagged squared error and variance.
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Figure 15: Volatility of the co-pricing BMA-SDF

Annualized volatility of the co-pricing BMA-SDF as well as CAPMB and FF5 SDFs. Shaded areas denote
NBER recession periods. The volatility of the BMA-SDF is obtained �tting a ARMA(3,1)-GARCH(1,1) to
the posterior mean of the co-pricing BMA-SDF (speci�cation selected via BIC). The GARCH Quasi-maximum
likelihood coe�cient estimates are:

σ2
t+1 = ω + αϵ2t + βσ2

t

ω α β
Estimate 0.01 0.15 0.81
Robust SE 0.00 0.04 0.06

The volatilities of the CAPMB and FF5 SDFs are also computed as GARCH(1,1) estimates after selecting an
ARMA mean process using the BIC. Sample: 1986:01�2022:12 (T = 444).

coe�cients and computing the implied conditional volatilities using a GARCH speci�cation

(after �tting a mean model based on AIC). The estimated volatilities for these two SDF models

in Figure 15 make clear that the use of tradable factors in the SDF does not mechanically

deliver our �ndings for the BMA-SDF: both the cyclical pattern and the reaction to periods of

heightened economic uncertainty is much less pronounced for the FF5 model, and even more

so for the CAPMB. This is formally measured in Figure IA.7 of the Internet Appendix that

shows that the half-life of volatility shocks to the FF5 SDF model is only 4.21 months, and

for the CAPMB it is just 3 months. Finally, Figure IA.9 of the Internet Appendix depicts

the residual of the linear projection of the BMA-SDF estimated volatility on the estimated
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volatilities of the KNS, RPPCA, CAPM, CAPMB, HKM and FF5, with the residual showing

a strong business cycle pattern and being particularly large and positive during periods of high

economic uncertainty, suggesting that these alternative SDF models do not su�ciently capture

these states despite being based on tradable factors.

The observed business cycle variations and predictability in both the �rst and second mo-

ments of the SDF would imply, within a structural model, time-varying and predictable risk

premia for tradable assets. Therefore, we now turn to testing this time series prediction of our

BMA-SDF identi�ed from cross-sectional pricing.

The precise functional form of the predictive relation between current SDF moments and

future asset returns does depend on the postulated model. Nevertheless, as shown in Bryzgalova,

Huang, and Julliard (2024), the Hansen and Jagannathan (1991) conditional SDF projections

on the space of returns imply a (log) linear SDF driven by two factors: the innovations to the

SDF and the product of the conditional mean of the SDF and the same innovations. Therefore,

assuming a contemporaneous linear relationship between asset returns and the SDF yields

a simple linear dependence of conditional risk premia on two variables: (i) the conditional

variance of the SDF and (ii) the product of this conditional variance with the conditional

mean of the SDF. Leveraging this insight, we run predictive regressions of asset (log) returns

between time t− 1 and t, as well as cumulated (log) returns between t− 1 and t+ 12, on SDF

information observed at time t − 1: Et−1[Mt] × Et−1[σ
2
t ] and Et−1[σ

2
t ], where the conditional

mean is constructed by �tting an ARMA(3,1) process (the preferred speci�cation according to

the BIC) of the BMA-SDF, and the conditional variance is obtained from the GARCH(1,1)

estimates depicted in Figure 15 (and also selected via BIC). As test assets to be predicted we

employ the bond and stock factors used in our cross-sectional analysis since these are generally

hard to predict and should, according to the previous literature, demand sizable risk premia.

Figure 16 summarizes the predictability results. In Panel A we report the R2 values for the

one-month-ahead and in Panel B the same for the cumulative twelve-month-ahead predictive

regressions. We encode, via shading, the joint statistical signi�cance of the regressors as implied

by an F -test of the regression coe�cients. The results are striking. For the majority of test

assets, we �nd that information embedded in the lagged SDF signi�cantly predicts future asset

returns. At the monthly horizon shown in Panel A, this predictability is statistically signi�cant

in 75% of cases at the 10% con�dence level and in 70% of cases at the 5% signi�cance level.

Second, the amount of predictability is economically large, albeit not unrealistically so: for
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(A) Predictability of monthly log returns

(B) Predictability of twelve months cumulative log returns

Figure 16: Predictability of tradable factors with lagged SDF information

R2s of the predictive regressions of factor returns on the previous month estimates of the co-pricing BMA-SDF
conditional variance and conditional variance interacted with the conditional mean of the BMA-SDF. Process
estimated as QMLE ARMA(3,1)-GARCH(1,1) and selected via BIC. Panel A: monthly log returns. Panel B:
twelve months log returns. To account for the overlapping nature of the observations in Panel B we construct
robust standard errors using a Bartlett kernel (Newey and West (1987)) kernel with 15 lags, b) a sandwich
estimate of the covariance matrix, and c) applying a degrees of freedom correction. The 40 predicted tradable
factors are described in Appendix B.

the statistically signi�cant cases it ranges from 1.1% to 6% at the monthly horizon (Panel A).

As shown in Martin (2017), these R2s are extremely high relative to the predictive ability of

valuation ratios and even the SVIX, and such scale of predictability yields very high Sharpe

ratios when used to inform market timing strategies. At the twelve month horizon (Panel

B) the median R2 is about 10%, with many factors having more than one �fth of their time

series variation being predictable. Moreover, even with an extremely conservative approach to
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constructing the covariance matrix, the F -test yields statistically signi�cant results in 60% of

cases at the 10% level and 50% of cases at the 5% level.31

4 Conclusion

We apply a Bayesian approach to the analysis of 18 quadrillion linear factor models for the

joint pricing of corporate bond and stock returns.

We �nd that the latent SDF is dense in the space of observable nontradable and tradable

bond and stock factors. This implies that all low dimensional observable factor models proposed

to date are a�ected by severe misspeci�cation and rejected by the data.

Individually, only very few factors should be included in the SDF with a high probability.

Most notably, two behavioural factors capturing the post earnings announcement drift in bonds

and stocks exhibit posterior probabilities above 50%, along with nontradable factors such as

the slope of the Treasury yield curve, the AAA/BAA yield spread, and the idiosyncratic equity

volatility. But these factors capture only a fraction of the risks priced in the joint cross-section

of bonds and stocks, and literally dozens of other factors, both tradable and nontradable, are

necessary�jointly�to span the risks driving asset prices.

Nevertheless, the SDF-implied maximum Sharpe ratio is not extreme because the many

factors necessary for an accurate characterization of the SDF are multiple noisy proxies for

common underlying sources of risk.

A Bayesian Model Averaging over the space of all possible Stochastic Discount Factor models

aggregates this di�use pricing information optimally and outperforms, in- and out-of-sample,

all existing models in explaining�jointly and individually�the cross-section of corporate bond

and stock returns.

The BMA-SDF has a distinctive business cycle behaviour, and persistent and cyclical �rst

and second moments. Furthermore, its volatility increases sharply during recessions and at

times of heightened economic uncertainty, suggesting time variation in conditional risk premia.

And indeed, we �nd that lagged BMA-SDF information is a strong and signi�cant predictor of

future asset returns.

31We construct conservative standard errors by a) using a Bartlett kernel (Newey and West (1987)) with
15 lags, b) constructing a sandwich estimate of the covariance matrix, and c) applying a degrees of freedom
correction to account for the relatively small sample of independent observations. For comparison, OLS standard
errors yield a statistically signi�cant F -test, at the 5% level, in 92.5% of the cases, and similar results arise
using simple bootstrap.
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Decomposing bond excess returns into their credit and a Treasury components, we �nd

that nontradable and stock tradable factors are su�cient for the pricing of the former, while

nontradable and bond tradable factors are necessary for the pricing of the latter�a component

that stock tradable factors do not explain.

Overall, our results have �rst order implications for theoretical and empirical asset pricing

models that aim to explain jointly the cross-sections of corporate bond, stock, and Treasury

returns.

References

Andreani, M., D. Palhares, and S. Richardson (2023). Computing corporate bond returns: A word (or two) of
caution. Review of Accounting Studies.

Asness, C. and A. Frazzini (2013). The devil in hml's details. Journal of Portfolio Management 39 (4), 49�68.

Asness, C. S., A. Frazzini, and L. H. Pedersen (2019). Quality minus junk. Review of Accounting Studies 24 (1),
34�112.

Avramov, D., S. Cheng, L. Metzker, and S. Voigt (2023). Integrating factor models. The Journal of Fi-
nance 78 (3), 1593�1646.

Bai, J., T. G. Bali, and Q. Wen (2019). Common risk factors in the cross-section of corporate bond returns.
Journal of Financial Economics 131 (3), 619�642.

Bali, T. G., A. Subrahmanyam, and Q. Wen (2021). Long-term reversals in the corporate bond market. Journal
of Financial Economics 139 (2), 656�677.

Bansal, R., V. Khatchatrian, and A. Yaron (2005). Interpretable asset markets? European Economic Re-
view 49 (3), 531�560.

Bansal, R., D. Kiku, and A. Yaron (2012). An empirical evaluation of the long-run risks model for asset prices.
Critical Finance Review 1, 183�221.

Barillas, F. and J. Shanken (2016). Which alpha? The Review of Financial Studies 30 (4), 1316�1338.

Barillas, F. and J. Shanken (2018). Comparing asset pricing models. The Journal of Finance 73 (2), 715�754.

Bartram, S. M., M. Grinblatt, and Y. Nozawa (2020). Book-to-market, mispricing, and the cross-section of
corporate bond returns. Technical report, National Bureau of Economic Research.

Bauwens, L., M. Lubrano, and J.-F. Richard (1999). Bayesian Inference in Dynamic Econometric Models.
Oxford: Oxofrd University Press.

Beeler, J. and J. Y. Campbell (2012). The long-run risks model and aggregate asset prices: An empirical
assessment. Critical Finance Review 1, 141�182.

Belloni, A., V. Chernozhukov, and C. Hansen (2014). Inference on treatment e�ects after selection among
high-dimensional controls. Review of Economic Studies 81, 608�650.

Bessembinder, H., K. M. Kahle, W. F. Maxwell, and D. Xu (2008). Measuring abnormal bond performance.
The Review of Financial Studies 22 (10), 4219�4258.

Bhamra, H. S., L.-A. Kuehn, and I. A. Strebulaev (2010). The levered equity risk premium and credit spreads:
A uni�ed framework. The Review of Financial Studies 23 (2), 645�703.

Blume, M. E. and D. B. Keim (1987). Lower-grade bonds: Their risks and returns. Financial Analysts Jour-
nal 43 (4), 26�66.

49



Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 31,
307�327.

Bretscher, L., L. Schmid, and T. Ye (2023). Passive demand and active supply: Evidence from maturity-
mandated corporate bond funds. Working Paper, HEC Lausanne.

Bryzgalova, S., J. Huang, and C. Julliard (2022). Bayesian Fama-MacBeth. Working Paper, London School of
Economics.

Bryzgalova, S., J. Huang, and C. Julliard (2023). Bayesian solutions for the factor zoo: We just ran two
quadrillion models. The Journal of Finance 78 (1), 487�557.

Bryzgalova, S., J. Huang, and C. Julliard (2024). Macro strikes back: Term structure of risk premia and market
segmentation. Working Paper, London School of Economics.

Campbell, J. Y. and R. J. Shiller (1988). The dividend-price ratio and expectations of future dividends and
discount factors. The Review of Financial Studies 1 (3), 195�228.

Campbell, J. Y. and G. B. Taksler (2003). Equity volatility and corporate bond yields. The Journal of
Finance 58, 2321�2349.

Carhart, M. M. (1997). On persistence in mutual fund performance. The Journal of Finance 52, 57�82.

Ceballos, L. (2023). In�ation volatility risk and the cross-section of corporate bond returns. Working Paper,
University of San Diego.

Chan, L. K., N. Jegadeesh, and J. Lakonishok (1996). Momentum strategies. The Journal of Finance 51 (5),
1681�1713.

Chen, A. Y. (2017, 05). External Habit in a Production Economy: A Model of Asset Prices and Consumption
Volatility Risk. The Review of Financial Studies 30 (8), 2890�2932.

Chen, A. Y. and T. Zimmermann (2022). Open source cross-sectional asset pricing. Critical Finance Re-
view 27 (2), 207�264.

Chen, H., R. Cui, Z. He, and K. Milbradt (2018). Quantifying Liquidity and Default Risks of Corporate Bonds
over the Business Cycle. The Review of Financial Studies 31 (3), 852�897.

Chen, Z., N. L. Roussanov, X. Wang, and D. Zou (2024). Common risk factors in the returns on stocks, bonds
(and options), redux. Working Paper.

Chib, S., X. Zeng, and L. Zhao (2020). On comparing asset pricing models. The Journal of Finance 75 (1),
551�577.

Choi, J. and Y. Kim (2018). Anomalies and market (dis)integration. Journal of Monetary Economics 100,
16�34.

Chordia, T., A. Goyal, Y. Nozawa, A. Subrahmanyam, and Q. Tong (2017). Are capital market anomalies
common to equity and corporate bond markets? An empirical investigation. Journal of Financial and
Quantitative Analysis 52 (4), 1301�1342.

Chung, K. H., J. Wang, and C. Wu (2019). Volatility and the cross-section of corporate bond returns. Journal
of Financial Economics 133 (2), 397�417.

Cochrane, J. H. (2005). Asset Pricing, Volume 1. Princeton University Press Princeton, NJ.

Cochrane, J. H. (2011). Presidential address: Discount rate. The Journal of Finance 66, 1047�1108.

Cohen, R. B., P. A. Gompers, and T. Vuolteenaho (2002). Who underreacts to cash-�ow news? Evidence from
trading between individuals and institutions. Journal of Financial Economics 66 (2-3), 409�462.

Dang, T. D., F. Hollstein, and M. Prokopczuk (2023). Which factors for corporate bond returns? The Review
of Asset Pricing Studies 13, 615�652.

Daniel, K., D. Hirshleifer, and L. Sun (2020). Short- and long-horizon behavioral factors. The Review of
Financial Studies 33, 1673�1736.

Daniel, K., L. Mota, S. Rottke, and T. Santos (2020). The cross-section of risk and returns. The Review of
Financial Studies 33 (5), 1927�1979.

50



De la O, R., X. Han, and S. Myers (2023). The return of return dominance: Decomposing the cross-section of
prices. Working Paper, USC Marshall.

De Long, B., A. Shleifer, L. C. Summers, and R. Waldman (1990). Noise trader risk in �nancial markets.
Journal of Political Economy 98, 703�738.

Della Vigna, S. and J. M. Pollet (2009). Investor inattention and Friday earnings announcements. The Journal
of Finance 64 (2), 709�749.

Dello Preite, M., R. Uppal, P. Za�aroni, and I. Zviadadze (2024). Cross-sectional asset pricing with unsystematic
risk. Working Paper, EDHEC Business School.

Dickerson, A., P. Mueller, and C. Robotti (2023). Priced risk in corporate bonds. Journal of Financial Eco-
nomics 150 (2), 103707.

Dickerson, A., C. Robotti, and G. Rossetti (2024). Common pitfalls in the evaluation of corporate bond
strategies. Working Paper, Warwick Business School.

Duarte, J., C. S. Jones, H. Mo, and M. Khorram (2024). Too good to be true: Look-ahead bias in empirical
option research. Working Paper, USC Marshall.

Elkamhi, R., C. Jo, and Y. Nozawa (2023). A one-factor model of corporate bond premia. Management
Science 70 (3), 1875�1900.

Elton, E. J., M. J. Gruber, D. Agrawal, and C. Mann (2001). Explaining the rate spread on corporate bonds.
The Journal of Finance 56, 247�277.

Elton, E. J., M. J. Gruber, and C. R. Blake (1995). Fundamental economic variables, expected returns, and
bond fund performance. The Journal of Finance 50 (4), 1229�1256.

Engle, R. F. (1982). Autoregressive conditional heteroskedasticity with estimates of the variance of united
kingdom in�ation. Econometrica 50, 987�1007.

Fama, E. F. and K. R. French (1992). The cross-section of expected stock returns. The Journal of Finance 47 (2),
427�465.

Fama, E. F. and K. R. French (1993). Common risk factors in the returns on stocks and bonds. Journal of
Financial Economics 33, 3�56.

Fama, E. F. and K. R. French (2015). A �ve-factor asset pricing model. Journal of Financial Economics 116 (1),
1�22.

Fama, E. F. and J. MacBeth (1973). Risk, return, and equilibrium: Empirical tests. Journal of Political
Economy 81, 607�636.

Fang, X., Y. Liu, and N. Roussanov (2022). Getting to the core: In�ation risks within and across asset classes.
Technical report, National Bureau of Economic Research.

Favilukis, J., X. Lin, and X. Zhao (2020). The elephant in the room: The impact of labor obligations on credit
markets. American Economic Review 110 (6), 1673�1712.

Feng, G., S. Giglio, and D. Xiu (2020). Taming the factor zoo: A test of new factors. The Journal of Fi-
nance 75 (3), 1327�1370.

Fisher, L. (1959). Determinants of risk premiums on corporate bonds. Journal of Political Economy 67 (3),
217�237.

Frazzini, A. and L. H. Pedersen (2014). Betting against beta. Journal of Financial Economics 111 (1), 1�25.

Gebhardt, W. R., S. Hvidkjaer, and B. Swaminathan (2005). Stock and bond market interaction: Does mo-
mentum spill over? Journal of Financial Economics 75 (3), 651�690.

Gebhardt, W. R., C. M. C. Lee, and B. Swaminathan (2001). Toward an implied cost of capital. Journal of
Accounting Research 39, 135�176.

Giesecke, K., F. A. Longsta�, S. Schaefer, and I. Strebulaev (2011). Corporate bond default risk: A 150-year
perspective. Journal of Financial Economics 102 (2), 233�250.

Giglio, S. and D. Xiu (2021). Asset pricing with omitted factors. Journal of Political Economy 129 (7), 1947�

51



1990.

Gilchrist, S. and E. Zakraj²ek (2012). Credit spreads and business cycle �uctuations. American Economic
Review 102 (4), 1692�1720.

Gomes, J. F. and L. Schmid (2021). Equilibrium asset pricing with leverage and default. The Journal of
Finance 76 (2), 977�1018.

Gospodinov, N., R. Kan, and C. Robotti (2014). Misspeci�cation-robust inference in linear asset-pricing models
with irrelevant risk factors. The Review of Financial Studies 27 (7), 2139�2170.

Gospodinov, N., R. Kan, and C. Robotti (2019). Too good to be true? fallacies in evaluating risk factor models.
Journal of Financial Economics 132 (2), 451�471.

Gospodinov, N. and C. Robotti (2021). Common pricing across asset classes: Empirical evidence revisited.
Journal of Financial Economics 140, 292�324.

Hansen, L. and R. Jagannathan (1991). Implications of security market data for models of dynamic economies.
Journal of Political Economy 99, 225�262.

Hansen, L. P. (1982, July). Large sample properties of method of moments estimators. Econometrica 50,
1029�1054.

Harvey, C. R. (2017). Presidential address: The scienti�c outlook in �nancial economics. The Journal of
Finance 72 (4), 1399�1440.

Harvey, C. R., Y. Liu, and H. Zhu (2016). ...and the cross-section of expected returns. The Review of Financial
Studies 29 (1), 5�68.

He, Z., B. Kelly, and A. Manela (2017). Intermediary asset pricing: New evidence from many asset classes.
Journal of Financial Economics 126 (1), 1�35.

Heyerdahl-Larsen, C., P. K. Illeditsch, and J. Walden (2023). Model selection by market selection. SSRN
Working Paper No 4401170.

Hirshleifer, D., S. S. Lim, and S. H. Teoh (2011). Limited investor attention and stock market misreactions to
accounting information. Review of Asset Pricing Studies 1 (1), 35�73.

Hirshleifer, D. and S. H. Teoh (2003). Limited attention, information disclosure, and �nancial reporting. Journal
of Accounting and Economics 36 (1-3), 337�386.

Hoeting, J. A., D. Madigan, A. E. Raftery, and C. T. Volinsky (1999). Bayesian model averaging: A tutorial.
Statistical Science 14 (4), 382�401.

Hou, K., C. Xue, and L. Zhang (2015). Digesting anomalies: An investment approach. The Review of Financial
Studies 28 (3), 650�705.

Houweling, P. and J. Van Zundert (2017). Factor investing in the corporate bond market. Financial Analysts
Journal 73 (2), 100�115.

Jegadeesh, N. and S. Titman (1993). Returns to buying winners and selling losers: Implications for stock market
e�ciency. The Journal of Finance 48 (1), 65�91.

Jegadeesh, N. and S. Titman (2001). Pro�tability of momentum strategies: An evaluation of alternative expla-
nations. The Journal of Finance 56 (2), 699�720.

Jensen, T. I., B. Kelly, and L. H. Pedersen (2023). Is there a replication crisis in �nance? The Journal of
Finance 78 (5), 2465�2518.

Kan, R. and C. Zhang (1999a). GMM tests of stochastic discount factor models with useless factors. Journal
of Financial Economics 54 (1), 103�127.

Kan, R. and C. Zhang (1999b). Two-pass tests of asset pricing models with useless factors. The Journal of
Finance 54 (1), 203�235.

Kang, J. and C. E. P�ueger (2015). In�ation risk in corporate bonds. The Journal of Finance 70 (1), 115�162.

Khan, A. and J. K. Thomas (2013). Credit shocks and aggregate �uctuations in an economy with production
heterogeneity. Journal of Political Economy 121 (6), 1055�1107.

52



Kleibergen, F. (2009). Tests of risk premia in linear factor models. Journal of Econometrics 149 (2), 149�173.

Kleibergen, F. and Z. Zhan (2020). Robust inference for consumption-based asset pricing. The Journal of
Finance 75 (1), 507�550.

Koijen, R. S., H. Lustig, and S. Van Nieuwerburgh (2017). The cross-section and time series of stock and bond
returns. Journal of Monetary Economics 88, 50�69.

Koijen, R. S. and S. Van Nieuwerburgh (2011). Predictability of returns and cash �ows. Annual Review of
Financial Economics 3 (1), 467�491.

Kozak, S., S. Nagel, and S. Santosh (2020). Shrinking the cross-section. Journal of Financial Economics 135,
271�292.

Lettau, M., M. Maggiori, and M. Weber (2014). Conditional risk premia in currency markets and other asset
classes. Journal of Financial Economics 114, 197�225.

Lettau, M. and M. Pelger (2020). Estimating latent asset-pricing factors. Journal of Econometrics 218 (1),
1�31.

Lewellen, J., S. Nagel, and J. Shanken (2010). A skeptical appraisal of asset pricing tests. Journal of Financial
Economics 96, 175�194.

Lintner, J. (1965). Security prices, risk, and maximal gains from diversi�cation. The Journal of Finance 20 (4),
587�615.

Liu, Y. and J. C. Wu (2021). Reconstructing the yield curve. Journal of Financial Economics 142 (3), 1395�1425.

Ljung, G. M. and G. E. P. Box (1978). On a measure of lack of �t in time series models. Biometrika 65 (2),
297�303.

Martin, I. (2017). What is the expected return on the market? Quarterly Journal of Economics 132, 367�433.

McCullough, J. R. (1830). The Principles of Political Economy: With a Sketch of the Rise and Progress of the
Science (2nd ed.). Edinburgh, London, and Dublin.

Newey, W. K. and D. McFadden (1994). Large sample estimation and hypothesis testing. In R. F. Engle and
D. McFadden (Eds.), Handbook of Econometrics, Volume 4. Elsevier Press.

Newey, W. K. and K. D. West (1987). A simple, positive semi-de�nite, heteroskedasticity and autocorrelation
consistent covariance matrix. Econometrica 55 (3), 703�708.

Nozawa, Y. (2017). What drives the cross-section of credit spreads?: A variance decomposition approach. The
Journal of Finance 72 (5), 2045�2072.

Nozawa, Y., Y. Qiu, and Y. Xiong (2023). Disagreement and price drifts in the corporate bond market. Working
Paper, University of Toronto.

Parker, J. A. and C. Julliard (2003). Consumption risk and cross-sectional returns. Working Paper 9538,
National Bureau of Economic Research.

Parker, J. A. and C. Julliard (2005). Consumption risk and the cross section of expected returns. Journal of
Political Economy 113 (1), 185�222.

Pástor, L. (2000). Portfolio selection and asset pricing models. The Journal of Finance 55 (1), 179�223.

Pástor, L. and R. F. Stambaugh (2000). Comparing asset pricing models: An investment perspective. Journal
of Financial Economics 56 (3), 335�381.

Pástor, L. and R. F. Stambaugh (2003). Liquidity risk and expected stock returns. Journal of Political Econ-
omy 111, 642�685.

Raftery, A. E., D. Madigan, and J. A. Hoeting (1997). Bayesian model averaging for linear regression models.
Journal of the American Statistical Association 92 (437), 179�191.

Raftery, A. E. and Y. Zheng (2003). Discussion: Performance of Bayesian model averaging. Journal of the
American Statistical Association 98, 931�938.

Sandulescu, M. (2022). How integrated are corporate bond and stock markets? Working Paper, UNC.

53



Schervish, M. J. (1995). Theory of Statistics. Springer Series in Statistics. Springer-Verlag.

Sharpe, W. F. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk. The
Journal of Finance 19 (3), 425�442.

Stambaugh, R. F. and Y. Yuan (2017). Mispricing factors. The Review of Financial Studies 30 (4), 1270�1315.

van Binsbergen, J. H., Y. Nozawa, and M. Schwert (2024). Duration-based valuation of corporate bonds. The
Review of Financial Studies, hhae054.

Vuolteenaho, T. (2002). What drives �rm-level stock returns? The Journal of Finance 57 (1), 233�264.

Zviadadze, I. (2021). Term structure of risk in expected returns. The Review of Financial Studies 34, 6032�6086.

54



Appendix

A Posterior sampling

The posterior of the time series parameters follows the canonical Normal-inverse-Wishart dis-

tribution (see, e.g., Bauwens et al. 1999) given by

µY |ΣY ,Y ∼ N (µ̂Y , ΣY /T ) , (A.4)

ΣY |Y ∼ W−1

(
T − 1,

T∑
t=1

(Yt − µ̂Y ) (Yt − µ̂Y )
⊤

)
, (A.5)

where µ̂Y ≡ 1
T

∑T
t=1 Yt, W−1 is the inverse-Wishart distribution, Y ≡ {Yt}Tt=1, and note that

the covariance matrix of factors and test assets, Cf , is contained within ΣY .

De�ne D as a diagonal matrix with elements c, (r(γ1)ψ1)
−1 , . . . , (r(γK)ψK)

−1. Hence, in

matrix notation, the prior for λ in equation (2) is λ|σ2,γ ∼ N (0, σ2D−1). It then follows that,

given our prior formulations, the posterior distributions of the parameters in the cross-sectional

layer (λ,γ,ω, σ2), conditional on the draws of µR, ΣR, and C from the time series layer, are

(see Bryzgalova et al. 2023 for a formal derivation):

λ|data, σ2,γ,ω ∼ N
(
λ̂, σ̂2(λ̂)

)
, (A.6)

p(γj = 1|data,λ,ω, σ2,γ−j)

p(γj = 0|data,λ,ω, σ2,γ−j)
=

ωj

1− ωj

p(λj|γj = 1, σ2)

p(λj|γj = 0, σ2)
, (A.7)

ωj|data,λ,γ, σ2 ∼ Beta (γj + aω, 1− γj + bω) , (A.8)

σ2|data,ω,λ,γ ∼ IG
(
N +K + 1

2
,
(µR −Cλ)⊤Σ−1

R (µR −Cλ) + λ⊤Dλ

2

)
, (A.9)

where λ̂ = (C⊤Σ−1
R C + D)−1C⊤Σ−1

R µR, σ̂
2(λ̂) = σ2(C⊤Σ−1

R C + D)−1 and IG denotes the

inverse-Gamma distribution.

Hence, posterior sampling is achieved with a Gibbs sampler that draws sequentially the time

series layer parameters (µR, ΣR, and C) from equations (A.4)-(A.5), and then, conditional on

these realizations, draws sequentially from equations (A.6)�(A.9).
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B The factor zoo

Traded and nontraded factors We present the 54 bond, equity and nontraded factors used

in Table A.1 including a detailed description of their construction, associated reference, and

data source.

Table A.1: List of factors for cross-sectional asset pricing. This table presents the list of tradable
bond, equity and nontradable factors used in the main paper. For each of the factors, we present their identi-
�cation index (Factor ID), a description of the factor construction, and the source of the data for downloading
and/or constructing the time series.

Factor ID Factor name and description Reference Source

Panel A: Traded corporate bond factors

CRF Credit risk factor. Equally-weighted average return
on two `credit portfolios': CRFV aR, and CRFREV .
CRFV aR is the average return di�erence between the
lowest-rating (i.e., highest credit risk) portfolio and
the highest-rating (i.e., lowest credit risk) portfolio
across the VaR95 portfolios. CRFREV is the aver-
age return di�erence between the lowest-rating port-
folio and the highest-rating portfolio across quintiles
sorted on bond short-term reversal.

Bai et al. (2019) Open Source
Bond Asset
Pricing

CRY Bond carry factor. Independent sort (5× 5) to form
25 portfolios according to ratings and bond credit
spreads (CS). For each rating quintile, calculate the
weighted average return di�erence between the high-
est CS quintile and the lowest CS quintile. CRY is
computed as the average long-short portfolio return
across all rating quintiles.

Houweling and
Van Zundert (2017)

Open Source
Bond Asset
Pricing

DEF Bond default risk factor. The di�erence between the
return on the market portfolio of long-term corpo-
rate bond returns (the Composite portfolio on the
corporate bond module of Ibbotson Associates) and
the long-term government bond return.

Fama and French
(1992)

Amit Goyal web-
site

DRF Downside risk factor. Independent sort (5 × 5) to
form 25 portfolios according to ratings and 95%
value-at-risk (VaR95). For each rating quintile, cal-
culate the weighted average return di�erence be-
tween the highest VaR5 quintile and the lowest VaR5
quintile. DRF is computed as the average long-short
portfolio return across all rating quintiles.

Bai et al. (2019) Open Source
Bond Asset
Pricing

DUR Bond duration factor. Independent sort (5 × 5) to
form 25 portfolios according to ratings and bond du-
ration (DURB). For each rating quintile, calculate
the weighted average return di�erence between the
highest DURB quintile and the lowest DURB quin-
tile. DUR is computed as the average long-short
portfolio return across all rating quintiles.

Dang et al. (2023) Open Source
Bond Asset
Pricing

HMLB Bond book-to-market factor. Independent sort (2 ×
3) to form 6 portfolios according to bond size and
bond book-to-market (BBM), de�ned as bond prin-
cipal value scaled by market value. For each size
portfolio, calculate the weighted average return dif-
ference between the lowest BBM tercile and the high-
est BBM tercile. HMLB is computed as the average
long-short portfolio return across the two size port-
folios.

Bartram et al. (2020) Open Source
Bond Asset
Pricing
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LTREVB Bond long-term reversal factor. Dependent sort
(3×3×3) to form 27 portfolios according to ratings,
maturity, and the 48-13 cumulative previous bond
return (LTREVB). For each rating quintile, the fac-
tor is computed as the average return di�erential be-
tween the portfolio with the lowest LTREVB and
the one with the highest LTREVB within the rat-
ing and maturity portfolios. LTREVB is computed
as the average long-short portfolio return across the
nine rating-maturity terciles.

Bali et al. (2021) Open Source
Bond Asset
Pricing

MKTB Corporate Bond Market excess return. Constructed
using bond returns in excess of the one-month risk-
free rate of return.

Dickerson et al. (2023) Open Source
Bond Asset
Pricing

MKTBD Corporate Bond Market duration adjusted return.
Constructed using bond returns in excess of their
duration-matched U.S. Treasury bond rate of return.

van Binsbergen et al.
(2024)

Open Source
Bond Asset
Pricing

MOMB Bond momentum factor formed with bond momen-
tum. Independent sort (5 × 5) to form 25 portfo-
lios according to ratings and the 12-2 cumulative
previous bond return (MOM). For each rating quin-
tile, calculate the weighted average return di�erence
between the highest MOM quintile and the lowest
MOM quintile. MOMB is computed as the average
long-short portfolio return across all rating quintiles.

Gebhardt et al. (2005) Open Source
Bond Asset
Pricing

MOMBS Bond momentum factor formed with equity momen-
tum. Independent sort (5× 5) to form 25 portfolios
according to ratings and the 6-1 cumulative previ-
ous equity return (MOMs). For each rating quin-
tile, calculate the weighted average return di�erence
between the highest MOMs quintile and the lowest
MOMs quintile. MOMBS is computed as the average
long-short portfolio return across all rating quintiles.

Dang et al. (2023) Open Source
Bond Asset
Pricing

PEADB Bond earnings announcement drift factor. Indepen-
dent sort (2 × 3) to form 6 portfolios according to
market equity and earnings surprises (CAR), com-
puted according to Chan et al. (1996). For each �rm
size portfolio, calculate the weighted average return
di�erence between the highest CAR terciles and the
lowest CAR tercile. PEADB is computed as the av-
erage long-short portfolio return across the two �rm
size portfolios.

Nozawa et al. (2023) Open Source
Bond Asset
Pricing

STREVB Bond short-term reversal factor. Independent sort
(5 × 5) to form 25 portfolios according to ratings
and the prior month's bond return (REV). For each
rating quintile, calculate the weighted average return
di�erence between the lowest REV quintile and the
highest REV quintile. STREVB is computed as the
average long-short portfolio return across all rating
quintiles.

Bali et al. (2021) Open Source
Bond Asset
Pricing

SZE Bond size factor. Dependent sort (3 × 3) to form
3 portfolios according to ratings and then with
each rating tercile another 3 portfolios on bond size
(SIZE). Bond size is de�ned as bond price multiplied
by issue size (amount outstanding). For each rating
tercile, calculate the weighted average return di�er-
ence between the lowest SIZE tercile and the highest
SIZE tercile. SZE is computed as the average long-
short portfolio return across all rating terciles.

Houweling and
Van Zundert (2017)

Open Source
Bond Asset
Pricing

TERM Bond term structure risk factor. The di�erence be-
tween the monthly long-term government bond re-
turn and the one-month T-Bill rate of return.

Fama and French
(1992)

Amit Goyal web-
site

VAL Bond value factor. Independent sort (2× 3) to form
6 portfolios according to bond size and bond value
(VALB). VALB is computed via cross-sectional re-
gressions of credit spreads on ratings, maturity, and
the 3-month change in credit spread. The percentage
di�erence between the actual credit spread and the
�tted ('fair') credit spread for each bond is the VALB

characteristic. For each size portfolio, calculate the
weighted average return di�erence between the high-
est VALB tercile and the lowest VALB tercile. VAL
is computed as the average long-short portfolio re-
turn across the two size portfolios.

Houweling and
Van Zundert (2017)

Open Source
Bond Asset
Pricing

Panel B: Nontraded corporate bond and equity factors
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CPTL Intermediary capital nontraded risk factor. Con-
structed using AR(1) innovations to the market-
based capital ratio of primary dealers, scaled by the
lagged capital ratio.

He et al. (2017) Zhiguo He web-
site

CREDIT Bond credit risk factor. Di�erence between the yields
of BAA and AAA indices.

Fama and French
(1993)

Zhiguo He web-
site

EPU Economic Policy Uncertainty. First di�erence in the
economic policy uncertainty index.

Dang et al. (2023) FRED

EPUT Economic Tax Policy Uncertainty. First di�erence in
the economic tax policy uncertainty index.

Dang et al. (2023) FRED

INFLC Shocks to core in�ation. Unexpected core in�a-
tion component captured by an ARMA(1,1) model.
Monthly core in�ation is calculated as the percentage
change in the seasonally adjusted Consumer Price In-
dex for All Urban Consumers: All Items Less Food
and Energy which is lagged by one-month to account
for the in�ation data release lag.

Fang et al. (2022) FRED

INFLV In�ation volatility. Computed as the 6-month
volatility of the unexpected in�ation component cap-
tured by an ARMA(1,1) model. Monthly in�ation is
calculated as the percentage change in the season-
ally adjusted Consumer Price Index for All Urban
Consumers (CPI) which is lagged by one-month to
account for the in�ation data release lag.

Kang and P�ueger
(2015) and Ceballos
(2023)

FRED

IVOL Idiosyncratic equity volatility factor. Cross-sectional
volatility of all �rms in the CRSP database in each
month t.

Campbell and Taksler
(2003)

CRSP

LVL Level term structure factor. Constructed as the
�rst principal component of the one- through 30-
year CRSP Fixed Term Indices U.S. Treasury Bond
yields.

Koijen et al. (2017) CRSP Indices

LIQNT Liquidity factor, computed as the average of
individual-stock measures estimated with daily data
(residual predictability, controlling for the market
factor)

Pástor and Stambaugh
(2003)

Robert Stam-
baugh website

UNC First di�erence in the Macroeconomic uncertainty in-
dex, which is lagged by one-month to align the fore-
cast to the returns observed in month t.

Koijen et al. (2017) Sydney Ludvig-
son website

UNCf First di�erence in the Financial economic uncer-
tainty index, which is lagged by one-month to align
the forecast to the returns observed in month t.

Koijen et al. (2017) Sydney Ludvig-
son website

UNCr First di�erence in the Real economic uncertainty in-
dex, which is lagged by one-month to align the fore-
cast to the returns observed in month t.

Koijen et al. (2017) Sydney Ludvig-
son website

VIX First di�erence in the CBOE VIX. Chung et al. (2019) FRED
YSP Slope term structure factor. Constructed as the dif-

ference in the �ve and one-year U.S. Treasury Bond
yields.

Koijen et al. (2017) CRSP Indices

Panel C: Traded equity factors

BAB Betting-against-beta factor, constructed as a portfo-
lio that holds low-beta assets, leveraged to a beta of
1, and that shorts high-beta assets, de-leveraged to
a beta of 1

Frazzini and Pedersen
(2014)

AQR data
library

CMA Investment factor, constructed as a long-short port-
folio of stocks sorted by their investment activity

Fama and French
(2015)

Ken French web-
site

CMAs CMA with a hedged unpriced component Daniel et al. (2020) Kent Daniel
website

CPTLT The value-weighted equity return for the New York
Fed's primary dealer sector not including new equity
issuance

He et al. (2017) Zhiguo He web-
site

FIN Long-term behavioral factor, predominantly captur-
ing the impact of share issuance and correction

Daniel et al. (2020) Kent Daniel
website

HML Value factor, constructed as a long-short portfolio of
stocks sorted by their book-to-market ratio

Fama and French
(1992)

Ken French web-
site

HML_DEV A version of the HML factor that relies on the current
price level to sort the stocks into long and short legs

Asness and Frazzini
(2013)

AQR data
library

HMLs HML with a hedged unpriced component Daniel et al. (2020) Kent Daniel
website

LIQ Liquidity factor, constructed as a long-short portfolio
of stocks sorted by their exposure to LIQ_NT

Pástor and Stambaugh
(2003)

Robert Stam-
baugh website

LTREV Long-term reversal factor, constructed as a long-
short portfolio of stocks sorted by their cumulative
return accrued in the previous 60-13 months

Jegadeesh and Titman
(2001)

Ken French web-
site

MGMT Management performance mispricing factor Stambaugh and Yuan
(2017)

Global factor
data website

MKTS Market excess return Sharpe (1964) and
Lintner (1965)

Ken French web-
site

MKTSs Market factor with a hedged unpriced component Daniel et al. (2020) Kent Daniel
website
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MOMS Momentum factor, constructed as a long-short port-
folio of stocks sorted by their 12-2 cumulative previ-
ous return

Carhart (1997), Je-
gadeesh and Titman
(1993)

Ken French web-
site

PEAD Short-term behavioral factor, re�ecting post-
earnings announcement drift

Daniel et al. (2020) Kent Daniel
website

PERF Firm performance mispricing factor Stambaugh and Yuan
(2017)

Global factor
data website

QMJ Quality-minus-junk factor, constructed as a long-
short portfolio of stocks sorted by the combination
of their safety, pro�tability, growth, and the quality
of management practices

Asness et al. (2019) AQR data
library

RMW Pro�tability factor, constructed as a long-short port-
folio of stocks sorted by their pro�tability

Fama and French
(2015)

Ken French web-
site

RMWs RMW with a hedged unpriced component Daniel et al. (2020) Kent Daniel
website

R_IA Investment factor, constructed as a long-short port-
folio of stocks sorted by their investment-to-capital

Hou et al. (2015) Lu Zhang web-
site

R_ROE Pro�tability factor, constructed as a long-short port-
folio of stocks sorted by their return on equity

Hou et al. (2015) Lu Zhang web-
site

SMB Size factor, constructed as a long-short portfolio of
stocks sorted by their market cap

Fama and French
(1992)

Ken French web-
site

SMBs SMB with a hedged unpriced component Daniel et al. (2020) Kent Daniel
website

STREV Short-term reversal factor, constructed as a long-
short portfolio of stocks sorted by their previous
month return

Jegadeesh and Titman
(1993)

Ken French web-
site

C Duration-adjusted bond returns

Duration-adjusted returns are computed for each bond i at each time t such that the resultant

bond return is in `excess' of a portfolio of duration-matched U.S. Treasury Bond returns (van

Binsbergen, Nozawa, and Schwert (2024), Andreani, Palhares, and Richardson (2023)). The

total return for corporate bond i in month t is,

Ri t =
Bi t + AIi t + Couponi j t

Bi t−1 + AIi t−1

− 1,

where Bi t is the clean price of bond i in month t, AIi t is the accrued interest, and Couponi t is

the coupon payment, if any.

The bond credit excess return (`duration adjusted return') is the total bond return minus a

hedging portfolio of U.S Treasury Bonds that have the same duration as the bond in month t.

The duration-adjusted return isolates the portion of a bonds performance that is attributed to

the credit risk of each bond (or other non-interest rate related risks). The duration-adjusted

return is de�ned as Ri t − RTreasury
dur bond i,t, where R

Treasury
dur bond i,t is a portfolio of treasury securities that

matches the duration of the cash-�ows of of bond i. We use the duration-adjusted return to

re-compute the traded bond factor returns and underlying bond portfolios (basis assets).
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D Benchmark asset pricing models

We benchmark the performance of the BMA-SDF against several frequentist asset pricing mod-

els as well as other latent factor models:

CAPM and CAPMB : The single-factor equity CAPM and the bond-equivalent CAPMB.

The CAPM is the value-weighted equity market factor from Kenneth French's webpage. The

bond CAPM (CAPMB) is the value-weighted corporate bond market factor.

FF5: The original �ve-factor model of Fama and French (1993) that includes the MKTS,

SMB and HML factors from Fama and French (1992) and the default (DEF) and term structure

(TERM) factors introduced in Fama and French (1993).

HKM : The intermediary capital two-factor asset pricing model of He et al. (2017). Includes

the MKTS factor from Fama and French (1992) and the value-weighted (traded version) of the

intermediary capital factor, CPTLT.

KNS : The latent factor model approach of Kozak et al. (2020). For each in-sample bond,

stock or co-pricing cross-section, we select the optimal shrinkage level and number of factors

chosen by twofold cross-validation. Given our data has a time-series length of T = 444, the

�rst sample is simply 1986:01 to 2004:06 and the second sample is 2004:07 to 2022:12.

RP-PCA: The risk premia-principal components methodology of Lettau and Pelger (2020).

In our main results, we set γ = 20. Changing this parameter to 10, or a lower value does not

quantitatively a�ect pricing performance. We use 5 principal components.

E Additional table
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Table A.2: Posterior factor probabilities and risk prices for the co-pricing factor zoo

Factor prob., E[γj|data] Price of risk, E[λj|data]
Total prior Sharpe ratio Total prior Sharpe ratio

Factors: 20% 40% 60% 80% 20% 40% 60% 80%

PEADB 0.539 0.627 0.706 0.707 0.053 0.214 0.444 0.642
PEAD 0.506 0.555 0.601 0.591 0.034 0.136 0.287 0.429
IVOL 0.506 0.541 0.576 0.624 0.011 0.044 0.112 0.270
CREDIT 0.507 0.514 0.542 0.574 0.008 0.033 0.084 0.195
YSP 0.501 0.508 0.516 0.542 0.003 0.014 0.036 0.094
MOMBS 0.504 0.536 0.535 0.480 0.060 0.208 0.361 0.433
LIQNT 0.514 0.508 0.496 0.498 -0.003 -0.015 -0.041 -0.101
MKTS 0.512 0.524 0.500 0.473 0.056 0.177 0.292 0.407
LVL 0.503 0.497 0.495 0.490 0.001 0.003 0.008 0.021
CMAs 0.485 0.491 0.512 0.495 0.015 0.060 0.136 0.223
UNCr 0.491 0.498 0.495 0.487 0.001 0.004 0.012 0.032
CRY 0.491 0.488 0.509 0.483 0.052 0.166 0.339 0.509
INFLC 0.493 0.491 0.489 0.492 -0.001 -0.004 -0.011 -0.027
INFLV 0.486 0.498 0.494 0.485 0.002 0.007 0.014 0.022
QMJ 0.498 0.510 0.506 0.448 0.073 0.197 0.338 0.434
EPUT 0.498 0.498 0.488 0.473 0.002 0.008 0.014 0.018
EPU 0.507 0.500 0.480 0.444 0.001 0.003 0.005 0.007
UNCf 0.496 0.481 0.475 0.437 -0.003 -0.002 0.016 0.061
SZE 0.495 0.472 0.477 0.425 0.006 0.026 0.064 0.106
VIX 0.478 0.475 0.467 0.448 0.000 0.003 0.006 0.011
UNC 0.468 0.476 0.473 0.446 -0.001 -0.001 0.003 0.013
RMWs 0.482 0.473 0.467 0.412 0.024 0.073 0.137 0.195
LIQ 0.495 0.488 0.450 0.394 0.006 0.026 0.057 0.085
MKTSs 0.502 0.466 0.452 0.404 0.014 0.035 0.063 0.102
MOMS 0.501 0.476 0.443 0.392 0.021 0.060 0.099 0.149
CPTLT 0.471 0.463 0.464 0.401 0.024 0.072 0.133 0.187
CPTL 0.479 0.470 0.439 0.400 0.015 0.042 0.066 0.068
STREVB 0.501 0.482 0.434 0.362 0.003 0.007 0.010 0.007
HMLs 0.492 0.465 0.443 0.364 0.004 0.014 0.023 0.025
SMBs 0.497 0.468 0.434 0.362 0.004 0.016 0.028 0.033
LTREVB 0.490 0.484 0.423 0.358 0.016 0.052 0.078 0.090
BAB 0.485 0.467 0.430 0.373 0.021 0.052 0.075 0.094
MKTB 0.498 0.467 0.428 0.348 0.087 0.181 0.236 0.250
R_IA 0.484 0.454 0.421 0.376 0.034 0.081 0.119 0.147
R_ROE 0.482 0.476 0.429 0.346 0.050 0.106 0.141 0.154
CMA 0.497 0.455 0.420 0.348 0.029 0.061 0.074 0.055
VAL 0.472 0.454 0.418 0.369 0.017 0.058 0.099 0.126
MGMT 0.483 0.462 0.418 0.348 0.058 0.124 0.161 0.175
LTREV 0.481 0.458 0.420 0.350 0.008 0.028 0.049 0.052
HML_DEV 0.476 0.450 0.417 0.360 0.001 0.003 0.019 0.042
SMB 0.483 0.456 0.415 0.342 0.010 0.047 0.082 0.089
PERF 0.485 0.467 0.413 0.332 0.047 0.104 0.112 0.089
CRF 0.495 0.450 0.411 0.340 0.015 0.052 0.091 0.116
STREV 0.469 0.445 0.417 0.365 0.009 0.030 0.066 0.099
MOMB 0.470 0.453 0.413 0.351 -0.003 -0.007 -0.007 -0.003
TERM 0.480 0.453 0.405 0.342 0.027 0.060 0.087 0.109
HML 0.482 0.453 0.406 0.329 0.003 -0.017 -0.040 -0.040
DRF 0.475 0.447 0.399 0.349 0.040 0.071 0.072 0.040
FIN 0.482 0.452 0.405 0.319 0.036 0.040 0.016 -0.004
DEF 0.466 0.444 0.404 0.335 0.000 -0.007 -0.020 -0.027
HMLB 0.469 0.445 0.411 0.323 0.040 0.102 0.141 0.121
DUR 0.486 0.416 0.401 0.334 0.012 -0.017 -0.075 -0.125
RMW 0.459 0.432 0.397 0.329 0.027 0.021 -0.022 -0.054
MKTBD 0.452 0.437 0.394 0.331 0.013 0.028 0.025 0.007

Posterior probabilities, E[γj |data], and posterior mean of (annualized) risk prices, E[λj |data], of the 54 bond and
equity factors described in Appendix B. The factors are ordered (high to low) by each factors average posterior

probability across the four levels of shrinkage. The prior for each factor inclusion is a Beta(1, 1), yielding a prior

expectation for γj of 50%. Test assets include the 83 bond and stock portfolios and the 40 traded bond and

stock factors (N = 123). Results are tabulated for di�erent values of the prior Sharpe ratio,
√
Eπ[SR2

f | σ2],

with values set to 20%, 40%, 60% and 80% of the ex post maximum Sharpe ratio of the test assets. Sample

period: 1986:01 to 2022:12 (T = 444).
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Internet Appendix for:

The Co-Pricing Factor Zoo

Abstract

This Internet Appendix provides additional tables, �gures, information and results supporting

the main text.
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IA.1 Detailed data and variables construction

The following sections describe the various databases that we use in the paper. Across all

databases, we �lter out bonds which have a time-to-maturity of less than 1-year. Furthermore,

for consistency, across all databases, we de�ne bond ratings as those provided by Standard &

Poors (S&P). We include the full spectrum of ratings (AAA to D), but exclude bonds which

are unrated. For each database that we consider, we (the authors) do not winsorize or trim

bond returns in any way.

IA.1.1 Corporate bond databases

IA.1.1.1 Mergent Fixed Income Securities Database (FISD) database

Mergent Fixed Income Securities Database (FISD) for academia is a comprehensive database of

publicly o�ered U.S. bonds, research market trends, deal structures, issuer capital structures,

and other areas of �xed income debt research. We apply to the FISD data the standard �lters

used in the previous literature:

1. Only keep bonds that are issued by �rms domiciled in the United States of America,

COUNTRY_DOMICILE == `USA'.

2. Remove bonds that are private placements, PRIVATE_PLACEMENT == `N'.

3. Only keep bonds that are traded in U.S. Dollars, FOREIGN_CURRENCY == `N'.

4. Bonds that trade under the 144A Rule are discarded, RULE_144A == `N'.

5. Remove all asset-backed bonds, ASSET_BACKED == `N'.

6. Remove convertible bonds, CONVERTIBLE == `N'.

7. Only keep bonds with a �xed or zero coupon payment structure, i.e., remove bonds with

a �oating (variable) coupon, COUPON_TYPE != `V'.

8. Remove bonds that are equity linked, agency-backed, U.S. Government, and mortgage-

backed, based on their BOND_TYPE.
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9. Remove bonds that have a �non-standard� interest payment structure or bonds not caught

by the variable coupon �lter (COUPON_TYPE). We remove bonds that have an INTEREST_FREQUENCY

equal to−1 (N/A), 13 (Variable Coupon), 14 (Bi-Monthly), and 15 and 16 (undocumented

by FISD). Additional information on INTEREST_FREQUENCY is available on page 60 to 67

of the FISD Data Dictionary 2012 document.

IA.1.1.2 Bank of America Merrill Lynch (BAML) database

The BAML data is made available by the Intercontinental Exchange (ICE) and provides daily

bond price quotes, accrued interest, and a host of pre-computed corporate bond characteris-

tics such as the bond option-adjusted credit spread (OAS), the asset swap spread, duration,

convexity, and bond returns in excess of a portfolio of duration-matched Treasuries. The ICE

sample spans the time period 1997:01 to 2021:09 and includes constituent bonds from the ICE

Bank of America High Yield (H0A0) and Investment Grade (C0A0) Corporate Bond Indices.

ICE bond �lters. We follow van Binsbergen et al. (2024) and take the last quote of each

month to form the bond-month panel. We then merge the ICE data to the �ltered Mergent

FISD database. The following ICE-speci�c �lters are then applied:

1. Only include corporate bonds, Ind_Lvl_1 == `corporate'

2. Only include bonds issued by U.S. �rms, Country == `US'

3. Only include corporate bonds denominated in U.S. Dollars, Currency == `USD'

BAML/ICE bond returns. Total bond returns are computed in a standard manner in ICE,

and no assumptions about the timing of the last trading day of the month are made because

the data is quote based, i.e., there is always a valid quote at month-end to compute a bond

return. This means that each bond return is computed using a price quote at exactly the

end of the month, each and every month. This introduces homogeneity into the bond returns

because prices are sampled at exactly the same time each month. ICE only provides bid-side

pricing, meaning bid-ask bias is inherently not present in the monthly sampled prices, returns

and credit spreads. The monthly ICE return variable is (as denoted in the original database)

trr_mtd_loc, which is the month-to-date return on the last business day of month t.
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IA.1.1.3 Lehman Brothers (LHM) database

The Lehman Brothers Bond database holds monthly price data for corporate (and other) bonds

from January 1973 to December 1997. The database categorizes the prices as either quote or

matrix prices and identi�es whether the bonds are callable or not. However, as per the �ndings

of Chordia, Goyal, Nozawa, Subrahmanyam, and Tong (2017), the di�erence between quote

and matrix prices or callable and non-callable bonds does not have a material impact on cross-

sectional return predictability. Hence, we include both types of observations. In addition, the

Lehman Brothers data provides key bond details such as the amount outstanding, credit rating,

o�ering date, and maturity date. For the main results, we use the LHM data from 1986:01 to

1996:12.

LHM �lters. As for the other databases, we merge the LHM data to the pre-�ltered Mergent

database and then apply the following LHM-speci�c �lters following Elkamhi, Jo, and Nozawa

(2023):

1. Only include corporate bonds classi�ed as `industrial', `telephone utility', `electric utility',

`utility (other)', and `�nance', as per the LHM industry classi�cation system, icode ==

{3 | 4 | 5 | 6 | 7}.

2. Remove the following dates for which there are no observations or valid return data, date

== {1975-08 | 1975-09 | 1984-12 | 1985-01}.

LHM returns. The LHM bond database includes corporate bond returns that have been

pre-computed. The accuracy of the LHM return computation has been veri�ed empirically by

Elkamhi et al. (2023).

LHM additional �lters. We follow Bessembinder et al. (2008) and Chordia et al. (2017)

and apply the following �lters to the LHM data to account for potential data errors:

1. Remove observations with large return reversals, de�ned as a 20% or greater return fol-

lowed by a 20% or greater return of the opposite sign.

2. Remove observations if the prices appear to bounce back in an extreme fashion relative

to preceding days. Denote Rt as the month t return, we exclude an observation at month

t if Rt ×Rt−k < −0.02 for k = 1, . . . , 12.
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3. Remove observations if prices do not change for more than three months, i.e., Pt

Pt−3
− 1 !=

0, where P is the quoted or matrix price.

IA.1.2 Combined data

For our main results, we rely on the data set that combines the LHM, and ICE data sets over

the sample period 1986:01�2022:12. The data is spliced together as follows:

1. From 1986:01�1996:12 we use the LHM data.

2. From 1997:01�2022:12 we use the ICE data.

IA.1.3 In-sample and out-of-sample test assets

Corporate bond, stock and U.S. Treasury bond data We present descriptions of the

in-sample and out-of-sample portfolio and anomaly data we use to estimate and test the BMA-

SDFs and other asset pricing models we consider along with the associated reference and source.

Table IA.I: List of corporate bond, stock and U.S. Treasury bond test assets. This table
presents the list of in-and-out-of-sample test assets used in the main results of the paper. For each test asset,
we present their identi�cation (Asset ID), a description of their construction, and the source of the data for
downloading and/or constructing the time series. Panel A describes the IS corporate bond portfolios. Panel
B describes the IS stock anomalies/portfolios. Panel C describes the OS corporate bond portfolios. Panel D
describes the OS stock portfolios. Panel E describes the OS U.S. Treasury portfolios.

Asset ID Name and description Reference Source

Panel A: In-sample bond portfolios/anomalies

25 spread/size
bond portfolios

5 Bond credit spread × 5 bond market capi-
talization double sorted portfolios.

Nozawa (2017) and
Elkamhi et al. (2023)

Open Source
Bond Asset
Pricing

25 rating/maturity
bond portfolios

5 Bond rating × 5 bond time to maturity dou-
ble sorted portfolios.

Gebhardt et al. (2005)
and others

Open Source
Bond Asset
Pricing

Panel B: In-sample stock portfolios/anomalies

cash_at CashAssets. Cash and Short Term Invest-
ments scaled by Assets.

Palazo (2012) Global Factor
Data

ope_be FCFBook. Operating Pro�t to Equity scaled
by BE.

Thesmar (2019) Global Factor
Data

ocf_me CFPrice. Operating Cash Flow scaled by ME. Desai et al. (2004) Global Factor
Data

at_turnover Asset Turnover. Sales scaled by average of to-
tal assets.

Haugen and Baker
(1996)

Global Factor
Data

capx_gr2 CapIntens. CAPX 2 year growth. Anderson and Garcia-
Feijoo (2006)

Global Factor
Data

div12m_me DP tr. Dividend to Price - 12 Months. Litzenberger and Ra-
maswamy (1979)

Global Factor
Data

ppeinv_gr1a PPE delta. Change in Property, Plant and
Equipment Less Inventories scaled by lagged
Assets.

Lyandres et al. (2008) Global Factor
Data

sale_me SalesPrice Barbee et al. (1996) Global Factor
Data

ret_12_7 IntermMom. Momentum 7-12 Months. Novy-Marx (2012) Global Factor
Data
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prc_highprc_252d YearHigh. Current price to high price over last
year.

George and Hwang
(2004)

Global Factor
Data

ni_me PE tr. Net Income scaled by ME. Basu (1983) Global Factor
Data

bidaskhl_21d BidAsk. 21 Day Bid-Ask High-Low. High-
low bid ask estimator created using code from
Corwin and Schultz (2012).

Corwin and Schultz
(2012)

Global Factor
Data

dolvol_126d Volume. Dollar trading volume. Brennan et al. (1998) Global Factor
Data

dsale_dsga SGASales. Change Sales minus Change
SG&A.

Abarbanell and Bushee
(1998)

Global Factor
Data

cop_atl1 Cash Based Operating Pro�tability scaled by
lagged Assets.

Ball et al. (2016) Global Factor
Data

ivol_capm_252d iVolCAPM. Idiosyncratic volatility from the
CAPM (252 days).

Ali et al. (2003) Global Factor
Data

ivol_�3_21d iVolFF3. Idiosyncratic volatility from the
Fama-French 3-factor model.

Ang et al. (2006) Global Factor
Data

rvol_21d Max Return to Volatility. Ang et al. (2006) Global Factor
Data

ebit_sale ProfMargin. Operating Pro�t Margin after
Depreciation.

Soliman (2008) Global Factor
Data

ocf_at PriceCostMargin. Operating Cash Flow scaled
by Assets.

Bouchard et al. (2019) Global Factor
Data

opex_at OperLev. Operating Leverage. Novy-Marx (2011) Global Factor
Data

lnoa_gr1a NetSalesNetOA. Change in Long-Term NOA
scaled by average Assets.

Fair�eld et al. (2003) Global Factor
Data

oaccruals_at Operating Accruals. Sloan (1996) Global Factor
Data

at_gr1 Asset growth. Asset Growth 1yr. Cooper et al. (2008) Global Factor
Data

eqnpo_12m Net Equity Payout - 12 Month. Daniel and Titman
(2006)

Global Factor
Data

gp_at Gross Pro�t scaled by Assets. Novy-Marx (2013) Global Factor
Data

capex_abn Abnormal Corporate Investment. Titman et al. (2004) Global Factor
Data

noa_at NetOA. Net Operating Asset to Total Assets. Hirshleifer et al. (2004) Global Factor
Data

o_score Ohlson O-score. Dichev (1998) Global Factor
Data

niq_at ROA. Quarterly return on assets. Balakrishnan et al.
(2010)

Global Factor
Data

chcsho_12m Net stock issues. Ponti� and Woodgate
(2008)

Global Factor
Data

LRreversal Long-run reversal. De Bondt and Thaler
(1985)

Open Asset Pric-
ing

Lev Market leverage. Bhandari (1988) Open Asset Pric-
ing

Panel C: Out-of-sample bond portfolios

10× VaR portfolios Decile sorted bond portfolios sorted on 24-
month rolling 95% historical value-at-risk
(VaR) de�ned as the second lowest return
value in the rolling period.

Bai et al. (2019) Open Source
Bond Asset
Pricing

10× duration port-
folios

Decile sorted bond portfolios sorted on bond
duration.

Gebhardt et al. (2005) Open Source
Bond Asset
Pricing

10× bond value
portfolios

Decile sorted bond portfolios sorted on bond
market capitilization de�ned as bond price
multiplied by bond amount outstanding.

Houweling and Van
Zundert (2017)

Open Source
Bond Asset
Pricing

10× bond BTM
portfolios

Decile sorted bond portfolios sorted on bond
book-to-market (BTM) de�ned as the market
value of the bond scaled by the par value.

Bartram et al. (2020) Open Source
Bond Asset
Pricing

10× bond LTREV
portfolios

Decile sorted bond portfolios sorted on bond
long-term reversal de�ned as the sum of the
bond returns from t-12 to t-48.

Bali et al. (2021) Open Source
Bond Asset
Pricing

10× bond MOM
portfolios

Decile sorted bond portfolios sorted on bond
momentum de�ned as the sum of the bond re-
turns from t-6 to t-1.

Gebhardt et al. (2005) Open Source
Bond Asset
Pricing

17× bond FF17
portfolios

17 Fama-French industry portfolios computed
with bond returns.

Kelly et al. (2023) Open Source
Bond Asset
Pricing

Panel D: Out-of-sample stock portfolios/anomalies

10× E/P portfolios Decile sorted stock portfolios sorted on the
earning-to-price ratio (E/P).

Fama & French Kenneth
French's web-
page

10× MOM portfo-
lios

Decile sorted stock portfolios sorted on equity
momentum.

Fama & French Kenneth
French's web-
page
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10× LTREV port-
folios

Decile sorted stock portfolios sorted on stock
long-term reversals.

Fama & French Kenneth
French's web-
page

10× accruals port-
folios

Decile sorted stock portfolios sorted on equity
accruals.

Fama & French Kenneth
French's web-
page

10× size portfolios Decile sorted stock portfolios sorted on �rm
size (market capitalization).

Fama & French Kenneth
French's web-
page

10× variance port-
folios

Decile sorted stock portfolios sorted on the
earning-to-price ratio (E\/P).

Fama & French Kenneth
French's web-
page

17× stock FF17
portfolios

17 Fama-French industry portfolios computed
with stock returns.

Fama & French Kenneth
French's web-
page

Panel E: Out-of-sample Treasury portfolios

29× Treasury port-
folios

Monthly excess U.S. Treasury bond returns
computed across the term structure us-
ing annualized continuously-compounded zero
coupon yields computed as in Liu and Wu
(2021). We price the U.S. Treasury Bonds
each month using the yield-curve data and
then compute monthly discrete excess returns
across the term structure as the total return
in excess of the one-month Treasury Bill rate.
The portfolios span from the 2-year T Bond
up until the 30-year T-Bond in increments of
1-year.

Liu and Wu (2021) Jing Cynthia
Wu's webpage

IA.2 CAPMB: Two-pass regression risk premium vs. SDF-

based market price of risk

In this section we report two-pass regression estimates of the risk premium attached to MKTB

as sole factor as well as linear SDF estimates of the market price of risk in the CAPMB model

used to price our baseline cross-section of corporate bonds and bond tradable factors.

To understand why the two types of estimations can lead to very di�erent outcomes, let's

consider a simple example with two (demeaned) tradable risk factors only, i.e. ft = [f1,t, f2,t]
⊤,

and suppose for simplicity that their covariance matrix is

Σ =

1 ρ

ρ 1


Suppose further that only the �rst factor is part of the SDF, and has a market price of risk

equal to κ. That is

Mt = 1− f⊤
t λf = 1− [f1,t, f2,t]

⊤

κ
0

 = 1− f1,tκ

7

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
https://sites.google.com/view/jingcynthiawu/yield-data?authuser=0
https://sites.google.com/view/jingcynthiawu/yield-data?authuser=0


Figure IA.1: CAPMB: two pass-regression risk premium, and market price of risk

(A) Two-pass regression risk premium (B) SDF-based market price of risk

The �gure plots the posterior distributions of the two-pass regression ex post risk premium, left panel, and
SDF-based market price of risk, right panel, of a model with MKTB as the only risk factor, i.e. CAPMB. Test
assets include the baseline cross-section of corporate bond returns, and the corporate bond tradable factors,
described in Section 1. The prior Sharpe ratio does not impose any shrinkage, being set to the ex post Sharpe
ratio of the MKTB factor. Sample period: 1986:01 to 2022:12 (T = 444).

Denoting with µRP = [µRP,1, µRP,2]
⊤ the vector of risk premia of the factors, applying the

fundamental asset pricing equation to the returns generated by the factors we have

µRP = Σλf =

1 ρ

ρ 1

κ
0

 =

 κ
ρκ

 .
That is, the second factor, that is not part of the SDF, commands nevertheless a non-zero risk

premium (equal to ρκ) as long as the factor has non-zero correlation (i.e., as long as ρ ̸= 0)

with the true risk factor�the one that is part of the SDF. This also implies that a two-pass

regression method that uses the second factor as the sole driver of a cross-section of asset returns

will estimate its ex post risk premium as being non-zero � in fact, the estimated risk premium

for the second factor will be in�ated relative to its true value. This is due to the fact that the

estimated betas of f2 will be, in population, smaller than the ones of f1 by a factor equal to ρ.

Hence, in population, the two pass regression will yield an estimated risk premium for f2 equal

to ρ−1κ (where |ρ| ≤ 1).

To estimate the SDF of the CAPMB model we rely on the Bayesian-SDF estimator in

De�nition 1 of Bryzgalova et al. (2023). This is equivalent to the method presented in Section

2 under the null that MKTB is the only factor in the SDF with probability 1 and that the

model is true. To put the comparison of MRP and ex post risk premia estimates on the same
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footing, we estimate the two pass regression using the Bayesian implementation of the Fama

and MacBeth (1973) method in Bryzgalova et al. (2022). Posterior distributions of the two-pass

regression ex post risk premium and SDF-based market price of risk are plotted, respectively, in

panels (a) and (b) of Figure IA.1. The estimates suggests that, albeit MKTB carries a sizable

and signi�cant risk premium, it is very unlikely that the data are generated by a �true� latent

SDF with MKTB as the only factor�the (Bayesian) p-value of its market price of risk being

equal to zero is about 52.34%.

IA.3 Cash-�ow and discount rate news decomposition

IA.3.1 Tradable factor return decomposition

Vuolteenaho (2002), Cohen et al. (2002), and others decompose unexpected asset returns into

an expected-return (discount) component and a cash-�ow component:

rt+1 − Etrt+1 = ∆Et+1

∞∑
j=0

ρjet+1+j −∆Et+1

∞∑
j=1

ρjrt+1+j, (IA.10)

where ∆Et+1 denotes the change in expectations from t to t+ 1 (i.e., Et+1(·)− Et(·)), et+1

the aggregate return on equity (ROE), and rt+1 the log asset return. ρ is determined by the

data, and in our setting is equal to 0.979, although any value between 0.95 and 1.00 makes an

immaterial di�erence to the results. We de�ne the two return components as cash-�ow news

(Ncf ) and discount rate news (Nr):

Ncf,t+1 = ∆Et+1

∞∑
j=0

ρjet+1+j, Nr,t+1 = ∆Et+1

∞∑
j=1

ρjrt+1+j. (IA.11)

As argued by Vuolteenaho (2002), using ROE as the measure of �rm cash-�ows is more ap-

propriate in our case since we are dealing with both debt and equity-based traded factors and

many �rms do not pay cash-based dividends.

IA.3.2 Implementation using the VAR methodology

To empirically estimate equation IA.10, we implement a parsimonious vector autoregression

(VAR). The behaviour of the traded factors is captured by a vector, zi,t of state variables. The
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�rst variable is always the traded stock or bond factor, whilst the remaining variables could be

any set of predictors that are associated with future stock or bond returns. In this respect, we

use predictors that are standard in the literature. We de�ne the vector, zt = [rt, roet, bmt, gzt],

where rt is the traded factor return, roet is the log of aggregate return on equity (ROE), bmt

is the log of the aggregate book-to-market ratio, and gzt is the �rst di�erence of the log of the

Gilchrist and Zakraj²ek (2012) aggregate credit spread. Aggregate ROE is the equally-weighted

averaged of �rm-level net income (NI) scaled by one-quarter lagged book equity. Aggregate

book-to-market is from Amit Goyal's data repository available here. The GZ credit spread is

computed as in Gilchrist and Zakraj²ek (2012).1

The vector of state variables, zt is assumed to follow a �rst order VAR,

zt+1 = Azt + ut+1

From the VAR, we estimate DR news as,

Ndrt+1 = (Et+1 − Et)
∞∑
j=1

ρjrt+1+j = e′1

∞∑
j=1

ρjAjut+1 (IA.12)

= e′1ρA(I − ρA)−1ut+1 = λ′ut+1, (IA.13)

where λ′ = e′1ρA(I − ρA)−1 and e1 is a vector whose �rst element is equal to 1 and zero

otherwise. The CF news component is computed as the residual of the total unexpected factor

return and DR news,

Ncft+1 = rt+1 − Etrt+1 +Ndr = (e′1 + λ′)ut+1. (IA.14)

IA.3.3 Factor decomposition

We now implement the VAR and decompose each traded factor into the component related to

discount rate news (DR) and cash-�ow news (CF). Following Vuolteenaho (2002) and Cohen

et al. (2002) we compute the variance of the discount rate news component, V(Ndr) and the

ratio of the discount rate news variance to total unexpected factor return variance V(Ndr)
V(u) . To

pin down a relative classi�cation of the factors into a DR or CF-based category, we use the

1We thank Yoshio Nozawa for making this data available to us.
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median level of V(Ndr)
V(u) as a break-point. Factors above the break-point, are classi�ed (relatively)

as more likely to capture discount-rate news as opposed to cash-�ow rate news.

We present the results of the decomposition in Figure 5. The y-axis of the �gure shows the

proportion of residual variance of each factor estimated from the VAR model that represents

discount rate news. Overall, 10 of the 16 bond factors (62%) are driven relatively more by

discount rate news as opposed to cash-�ow news shocks. In contrast, slightly more equity

factors (14/26=53%) are driven by cash-�ow shocks

The two most likely factors that ought to be included in the co-pricing BMA-SDF (both

PEAD and PEADB) are driven relatively more by discount rate news as opposed to cash-�ow

news. Most other behavioural-linked factors such as MOMBS (bond factor formed with equity

momentum), PERF and MGMT (equity and management performance factor of Stambaugh

and Yuan (2017)), are also classi�ed as relatively more discount rate news based.
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IA.4 Additional tables
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Table IA.II: Traded factor performance statistics � full sample

SR IR µ t-stat. α t-stat.

Panel A: Corporate Bond Factors

CRF 0.04 0.04 0.08 [0.75] 0.08 [0.69]
CRY 0.13 0.02 0.23 [2.21] 0.03 [0.41]
DEF 0.02 −0.03 0.03 [0.39] −0.05 [−0.56]
DRF 0.12 −0.09 0.27 [2.35] −0.09 [−1.88]
DUR 0.08 −0.15 0.14 [1.66] −0.14 [−2.51]
HMLB 0.14 0.06 0.21 [2.44] 0.09 [1.19]
LTREVB 0.11 0.12 0.09 [2.09] 0.11 [1.97]
MKTB 0.19 - 0.30 [3.55] - -
MKTBD 0.06 −0.01 0.08 [1.05] −0.02 [−0.20]
MOMB −0.00 0.03 −0.01 [−0.10] 0.04 [0.53]
MOMBS 0.19 0.26 0.18 [3.69] 0.23 [4.36]
PEADB 0.36 0.40 0.13 [7.17] 0.14 [6.88]
STREVB 0.04 0.00 0.07 [0.95] 0.00 [−0.07]
SZE 0.09 0.11 0.07 [1.78] 0.08 [2.30]
TERM 0.12 0.01 0.36 [2.50] 0.03 [0.23]
VAL 0.06 0.06 0.07 [1.16] 0.07 [0.94]

Panel B: Stock Factors

BAB 0.20 0.23 0.74 [3.52] 0.84 [3.55]
CMA 0.14 0.20 0.29 [2.55] 0.40 [3.45]
CMAs 0.16 0.19 0.20 [3.24] 0.24 [3.77]
CPTLT 0.11 −0.02 0.75 [2.21] −0.08 [-0.42]
FIN 0.14 0.23 0.59 [2.78] 0.86 [4.25]
HML 0.06 0.08 0.18 [1.02] 0.25 [1.26]
HML_DEV 0.04 0.04 0.16 [0.81] 0.14 [0.68]
HMLs 0.06 0.07 0.10 [1.01] 0.12 [1.19]
LIQ 0.08 0.06 0.29 [1.52] 0.24 [1.24]
LTREV 0.06 0.05 0.17 [1.16] 0.14 [0.86]
MGMT 0.18 0.26 0.52 [3.37] 0.70 [4.33]
MKTS 0.15 - 0.69 [3.22] - -
MKTSs 0.17 0.12 0.56 [3.39] 0.34 [2.27]
MOMS 0.11 0.15 0.51 [2.3] 0.66 [3.36]
PEAD 0.26 0.28 0.53 [5.4] 0.56 [5.98]
PERF 0.17 0.24 0.52 [3.4] 0.66 [4.93]
QMJ 0.19 0.32 0.47 [3.45] 0.69 [6.44]
RMW 0.15 0.20 0.38 [2.95] 0.48 [3.81]
RMWs 0.21 0.20 0.31 [4.67] 0.31 [4.46]
R_IA 0.14 0.20 0.31 [2.72] 0.42 [3.55]
R_ROE 0.18 0.24 0.49 [3.58] 0.62 [5.35]
SMB 0.02 −0.01 0.06 [0.45] −0.03 [-0.25]
SMBs 0.03 0.04 0.06 [0.58] 0.08 [0.72]
STREV 0.07 0.02 0.24 [1.69] 0.06 [0.45]

Corporate bond and stock traded factor performance statistics. SR is the Sharpe ratio, IR is the Information

ratio, µ is the average return, and α is the single-factor MKTB (MKTS) alpha. The sample is from 1986:01 to

2022:12. All statistics are reported monthly. µ and α are reported in percent. t-statistics are reported in square

brackets with Newey-West standard errors computed with four lags.
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Table IA.III: Traded factor performance statistics � subsamples

1986:01�1999:12 2000:01�2022:12
SR IR µ t-stat. α t-stat. SR IR µ t-stat. α t-stat.

Panel A: Corporate Bond Factors

CRF 0.10 0.22 0.08 [1.26] 0.16 [2.31] 0.03 0.02 0.08 [0.47] 0.05 [0.29]
CRY 0.25 0.24 0.18 [2.94] 0.18 [2.63] 0.12 -0.02 0.26 [1.59] -0.02 [-0.26]
DEF -0.05 0.06 -0.05 [-0.73] 0.05 [0.89] 0.04 -0.04 0.08 [0.70] -0.07 [-0.62]
DRF 0.12 -0.24 0.17 [1.48] -0.11 [-3.05] 0.13 -0.06 0.33 [1.93] -0.07 [-0.94]
DUR 0.09 -0.24 0.12 [1.12] -0.13 [-2.81] 0.07 -0.13 0.15 [1.28] -0.14 [-1.68]
HMLB 0.22 0.11 0.18 [2.48] 0.07 [1.32] 0.13 0.06 0.23 [1.74] 0.10 [0.89]
LTREVB 0.12 0.33 0.07 [1.37] 0.15 [3.37] 0.11 0.10 0.11 [1.66] 0.09 [1.27]
MKTB 0.21 - 0.29 [2.43] - - 0.18 - 0.31 [2.67] - -
MKTBD 0.06 0.12 0.05 [0.72] 0.09 [1.53] 0.06 -0.04 0.11 [0.88] -0.06 [-0.47]
MOMB -0.08 -0.13 -0.09 [-1.04] -0.14 [-1.60] 0.02 0.08 0.04 [0.38] 0.14 [1.23]
MOMBS 0.33 0.36 0.11 [3.79] 0.12 [3.77] 0.19 0.27 0.21 [2.89] 0.29 [3.64]
PEADB 0.41 0.41 0.08 [4.89] 0.08 [5.09] 0.38 0.42 0.17 [6.07] 0.18 [5.85]
STREVB -0.04 -0.03 -0.05 [-0.50] -0.04 [-0.43] 0.07 0.02 0.13 [1.40] 0.03 [0.36]
SZE 0.08 0.13 0.03 [0.91] 0.05 [1.55] 0.10 0.11 0.09 [1.56] 0.10 [1.92]
TERM 0.14 -0.12 0.37 [1.73] -0.14 [-1.58] 0.11 0.03 0.35 [1.84] 0.10 [0.49]
VAL -0.01 0.24 -0.01 [-0.12] 0.14 [2.44] 0.10 0.04 0.12 [1.39] 0.05 [0.57]

Panel B: Stock Factors

BAB 0.18 0.18 0.60 [1.72] 0.60 [1.67] 0.21 0.25 0.82 [3.40] 0.93 [3.33]
CMA 0.09 0.26 0.18 [1.12] 0.42 [3.07] 0.16 0.19 0.36 [2.25] 0.41 [2.51]
CMAs 0.22 0.31 0.27 [2.78] 0.36 [3.72] 0.13 0.14 0.16 [2.06] 0.18 [2.25]
CPTLT 0.16 -0.05 1.08 [2.10] -0.20 [-0.75] 0.08 -0.01 0.55 [1.21] -0.04 [-0.15]
FIN 0.16 0.32 0.53 [1.93] 0.90 [3.65] 0.14 0.20 0.62 [2.15] 0.83 [3.06]
HML 0.03 0.15 0.07 [0.30] 0.33 [1.47] 0.07 0.07 0.25 [1.03] 0.26 [0.95]
HML_DEV -0.04 0.06 -0.13 [-0.48] 0.16 [0.67] 0.08 0.06 0.34 [1.25] 0.23 [0.85]
HMLs 0.11 0.19 0.17 [1.25] 0.28 [2.04] 0.03 0.03 0.05 [0.40] 0.05 [0.37]
LIQ 0.05 0.07 0.17 [0.62] 0.22 [0.86] 0.09 0.07 0.36 [1.42] 0.29 [1.15]
LTREV 0.11 0.11 0.26 [1.26] 0.26 [1.17] 0.04 0.03 0.12 [0.60] 0.09 [0.39]
MGMT 0.18 0.36 0.41 [2.21] 0.68 [4.28] 0.18 0.23 0.58 [2.70] 0.71 [3.18]
MKTS 0.23 - 1.00 [3.04] - - 0.11 - 0.50 [1.74] - -
MKTSs 0.24 0.14 0.74 [2.72] 0.37 [1.46] 0.14 0.10 0.45 [2.30] 0.30 [1.79]
MOMS 0.32 0.28 0.99 [3.59] 0.86 [3.08] 0.04 0.09 0.22 [0.73] 0.43 [1.73]
PEAD 0.57 0.55 0.92 [8.06] 0.87 [7.68] 0.13 0.16 0.29 [2.29] 0.35 [2.79]
PERF 0.19 0.17 0.42 [2.32] 0.37 [1.86] 0.17 0.26 0.57 [2.64] 0.75 [4.54]
QMJ 0.27 0.38 0.45 [2.90] 0.60 [3.95] 0.17 0.30 0.49 [2.46] 0.68 [5.11]
RMW 0.16 0.18 0.25 [1.71] 0.28 [2.05] 0.16 0.20 0.46 [2.62] 0.57 [3.48]
RMWs 0.21 0.20 0.28 [2.80] 0.27 [2.68] 0.21 0.21 0.34 [3.88] 0.33 [3.70]
R_IA 0.17 0.35 0.31 [2.04] 0.54 [4.28] 0.13 0.16 0.31 [1.94] 0.37 [2.20]
R_ROE 0.38 0.36 0.73 [4.99] 0.68 [4.66] 0.11 0.19 0.34 [1.76] 0.51 [3.42]
SMB -0.09 -0.13 -0.26 [-1.11] -0.35 [-1.44] 0.08 0.06 0.26 [1.53] 0.17 [1.02]
SMBs -0.07 -0.07 -0.14 [-0.95] -0.13 [-0.81] 0.08 0.09 0.18 [1.31] 0.19 [1.39]
STREV 0.09 0.03 0.21 [1.07] 0.07 [0.41] 0.07 0.03 0.25 [1.34] 0.10 [0.51]

Corporate bond and stock traded factor performance statistics. SR is the Sharpe ratio, IR is the Information

ratio, µ is the average return, and α is the single-factor MKTB (MKTS) alpha. The sample is split into two

subperiods following van Binsbergen et al. (2024). The �rst sample is from 1986:01 to 1999:12, and the second

sample is from 2000:01 to 2022:12. All statistics are reported monthly. µ and α are reported in percent.

t-statistics are reported in square brackets with Newey-West standard errors computed with four lags.
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Table IA.IV: Posterior factor probabilities and risk prices for the corporate bond factor zoo

Factor prob., E[γj|data] Price of risk, E[λj|data]
Total prior Sharpe ratio Total prior Sharpe ratio

Factors: 20% 40% 60% 80% 20% 40% 60% 80%

PEADB 0.588 0.767 0.827 0.822 0.089 0.357 0.632 0.802
MOMBS 0.542 0.616 0.621 0.582 0.078 0.279 0.469 0.563
CREDIT 0.501 0.538 0.617 0.674 0.008 0.034 0.095 0.243
IVOL 0.515 0.536 0.551 0.573 0.005 0.019 0.048 0.119
YSP 0.492 0.513 0.532 0.564 0.003 0.014 0.036 0.100
INFLV 0.493 0.498 0.508 0.518 0.004 0.018 0.040 0.081
UNCf 0.516 0.502 0.508 0.478 -0.009 -0.028 -0.054 -0.084
INFLC 0.500 0.490 0.489 0.511 0.000 -0.001 -0.003 -0.008
CRY 0.488 0.492 0.516 0.485 0.037 0.125 0.274 0.417
EPU 0.498 0.497 0.492 0.485 0.003 0.008 0.014 0.022
UNC 0.504 0.508 0.496 0.465 -0.005 -0.014 -0.019 -0.022
LIQNT 0.494 0.494 0.484 0.489 -0.002 -0.006 -0.014 -0.030
EPUT 0.486 0.490 0.496 0.485 0.004 0.013 0.028 0.058
LVL 0.492 0.480 0.489 0.494 0.000 0.000 0.000 0.003
MKTB 0.504 0.510 0.488 0.433 0.066 0.173 0.271 0.347
VIX 0.490 0.486 0.483 0.455 0.000 -0.001 -0.006 -0.017
UNCr 0.478 0.477 0.466 0.462 0.000 0.001 0.005 0.012
CPTL 0.501 0.477 0.465 0.435 0.003 0.012 0.035 0.072
SZE 0.497 0.486 0.432 0.376 0.012 0.048 0.084 0.104
HMLB 0.509 0.485 0.437 0.344 0.036 0.096 0.133 0.119
DRF 0.496 0.461 0.430 0.372 0.027 0.054 0.059 0.026
STREVB 0.486 0.458 0.421 0.335 0.001 0.004 0.008 0.004
MKTBD 0.466 0.449 0.407 0.347 0.017 0.041 0.051 0.050
DEF 0.473 0.445 0.404 0.332 -0.007 -0.023 -0.051 -0.075
DUR 0.467 0.425 0.403 0.356 0.009 -0.018 -0.083 -0.158
VAL 0.465 0.436 0.410 0.337 0.018 0.064 0.111 0.117
MOMB 0.477 0.455 0.401 0.307 -0.005 -0.010 -0.005 0.007
LTREVB 0.485 0.455 0.402 0.299 0.025 0.061 0.073 0.055
TERM 0.466 0.419 0.380 0.305 0.039 0.064 0.070 0.062
CRF 0.469 0.419 0.370 0.291 0.011 0.047 0.079 0.089

Posterior probabilities, E[γj |data], and posterior mean of (annualized) risk prices, E[λj |data], of the 16 traded

bond and 14 nontraded factors described in Appendix B. The factors are ordered (high to low) by each factors

average posterior probability across the four levels of shrinkage. The prior for each factor inclusion is a Beta(1,

1), yielding a prior expectation for γj of 50%. Test assets include the 50 bond portfolios and the 16 traded

bond factors (N = 66). Results are tabulated for di�erent values of the prior Sharpe ratio,
√
Eπ[SR2

f | σ2],

with values set to 20%, 40%, 60% and 80% of the ex post maximum Sharpe ratio of the test assets. Sample

period: 1986:01 to 2022:12 (T = 444).
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Table IA.V: Posterior factor probabilities and risk prices for the stock factor zoo

Factor prob., E[γj|data] Price of risk, E[λj|data]
Total prior Sharpe ratio Total prior Sharpe ratio

Factors: 20% 40% 60% 80% 20% 40% 60% 80%

PEAD 0.530 0.601 0.672 0.725 0.034 0.145 0.332 0.570
MKTS 0.503 0.546 0.554 0.568 0.039 0.155 0.298 0.468
CMAs 0.508 0.520 0.531 0.520 0.021 0.078 0.175 0.289
LVL 0.522 0.521 0.508 0.498 0.000 0.002 0.005 0.014
IVOL 0.497 0.496 0.501 0.549 0.004 0.016 0.043 0.123
EPUT 0.508 0.501 0.516 0.510 0.001 0.005 0.014 0.036
INFLV 0.514 0.514 0.510 0.497 0.000 -0.001 -0.002 -0.004
LIQNT 0.505 0.505 0.516 0.507 0.000 -0.002 -0.009 -0.036
VIX 0.503 0.509 0.505 0.496 -0.001 -0.002 -0.006 -0.016
YSP 0.499 0.493 0.512 0.507 0.001 0.003 0.009 0.026
CREDIT 0.505 0.509 0.498 0.491 0.000 -0.001 -0.001 -0.001
RMWs 0.500 0.503 0.503 0.489 0.032 0.099 0.186 0.274
UNCr 0.493 0.503 0.498 0.495 0.001 0.004 0.010 0.028
UNC 0.494 0.499 0.494 0.496 0.000 0.002 0.007 0.018
INFLC 0.489 0.497 0.500 0.485 0.000 0.001 0.001 0.002
UNCf 0.488 0.484 0.491 0.498 0.001 0.003 0.011 0.038
QMJ 0.484 0.487 0.486 0.477 0.048 0.129 0.239 0.387
EPU 0.473 0.478 0.494 0.484 -0.001 -0.005 -0.012 -0.030
CPTL 0.481 0.491 0.484 0.465 0.017 0.058 0.107 0.155
CPTLT 0.496 0.481 0.469 0.436 0.018 0.061 0.106 0.136
MKTSs 0.489 0.508 0.465 0.404 0.016 0.049 0.071 0.081
BAB 0.499 0.498 0.464 0.397 0.027 0.077 0.121 0.156
LIQ 0.492 0.479 0.458 0.404 0.006 0.022 0.049 0.072
STREV 0.492 0.465 0.455 0.413 0.008 0.030 0.072 0.123
MGMT 0.498 0.473 0.441 0.395 0.056 0.127 0.194 0.246
PERF 0.505 0.473 0.442 0.381 0.039 0.092 0.129 0.134
R_ROE 0.495 0.475 0.426 0.347 0.040 0.083 0.098 0.091
R_IA 0.482 0.457 0.428 0.372 0.028 0.065 0.101 0.126
MOMS 0.478 0.463 0.429 0.367 0.014 0.037 0.051 0.056
SMBs 0.475 0.459 0.425 0.368 0.004 0.020 0.039 0.056
LTREV 0.494 0.464 0.416 0.344 0.007 0.022 0.032 0.033
CMA 0.485 0.451 0.418 0.361 0.027 0.055 0.072 0.069
HMLs 0.480 0.448 0.420 0.349 0.005 0.014 0.017 0.011
HML_DEV 0.475 0.435 0.407 0.368 0.005 0.019 0.056 0.123
SMB 0.472 0.447 0.407 0.346 0.011 0.050 0.088 0.109
HML 0.468 0.441 0.405 0.354 0.002 -0.031 -0.082 -0.134
FIN 0.481 0.443 0.399 0.324 0.032 0.035 0.014 -0.004
RMW 0.470 0.434 0.389 0.330 0.033 0.042 0.018 -0.021

Posterior probabilities, E[γj |data], and posterior mean of (annualized) risk prices, E[λj |data], of the 24 traded

stock and 14 nontraded factors described in Appendix B. The factors are ordered (high to low) by each factors

average posterior probability across the four levels of shrinkage. The prior for each factor inclusion is a Beta(1,

1), yielding a prior expectation for γj of 50%. Test assets include the 33 stock portfolios and the 24 traded

stock factors (N = 57). Results are tabulated for di�erent values of the prior Sharpe ratio,
√
Eπ[SR2

f | σ2],

with values set to 20%, 40%, 60% and 80% of the ex post maximum Sharpe ratio of the test assets. Sample

period: 1986:01 to 2022:12 (T = 444).
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Table IA.VI: Posterior factor probabilities and risk prices for the co-pricing factor zoo �
excluding the intercept

Factor prob., E[γj|data] Price of risk, E[λj|data]
Total prior Sharpe ratio Total prior Sharpe ratio

Factors: 20% 40% 60% 80% 20% 40% 60% 80%

PEADB 0.546 0.646 0.708 0.698 0.060 0.238 0.471 0.653
IVOL 0.516 0.579 0.628 0.729 0.021 0.091 0.222 0.510
PEAD 0.540 0.589 0.619 0.617 0.045 0.171 0.336 0.479
CREDIT 0.492 0.523 0.544 0.562 0.010 0.042 0.103 0.214
MOMBS 0.497 0.538 0.558 0.484 0.071 0.242 0.424 0.470
QMJ 0.508 0.533 0.522 0.485 0.084 0.235 0.390 0.517
YSP 0.498 0.497 0.501 0.532 0.004 0.017 0.043 0.110
CMAs 0.506 0.507 0.527 0.485 0.017 0.065 0.146 0.222
MKTS 0.487 0.505 0.516 0.470 0.061 0.189 0.328 0.437
INFLC 0.488 0.490 0.498 0.490 -0.001 -0.004 -0.011 -0.028
LVL 0.479 0.492 0.496 0.498 0.001 0.005 0.014 0.038
UNCr 0.490 0.485 0.490 0.491 0.001 0.004 0.012 0.032
LIQNT 0.481 0.482 0.491 0.485 -0.004 -0.015 -0.045 -0.105
INFLV 0.490 0.489 0.491 0.466 0.002 0.006 0.011 0.008
EPUT 0.498 0.481 0.481 0.454 0.002 0.007 0.014 0.017
UNCf 0.508 0.489 0.468 0.438 -0.010 -0.021 -0.013 0.020
VIX 0.483 0.479 0.482 0.456 -0.003 -0.008 -0.017 -0.035
CRY 0.469 0.474 0.487 0.460 0.062 0.193 0.379 0.531
LIQ 0.501 0.494 0.465 0.408 0.008 0.032 0.068 0.102
EPU 0.478 0.473 0.462 0.444 0.001 0.002 0.004 0.005
CPTLT 0.478 0.482 0.472 0.422 0.030 0.087 0.150 0.211
UNC 0.486 0.477 0.459 0.429 -0.003 -0.008 -0.009 -0.011
SZE 0.484 0.475 0.466 0.419 0.007 0.028 0.066 0.099
MOMS 0.497 0.472 0.458 0.408 0.025 0.070 0.125 0.182
CPTL 0.481 0.470 0.463 0.409 0.020 0.054 0.076 0.064
RMWs 0.482 0.468 0.457 0.414 0.027 0.078 0.143 0.201
MKTSs 0.507 0.472 0.440 0.385 0.022 0.052 0.083 0.129
SMBs 0.506 0.480 0.444 0.367 0.006 0.023 0.035 0.038
LTREVB 0.484 0.486 0.441 0.372 0.017 0.057 0.086 0.095
LTREV 0.509 0.471 0.438 0.357 0.011 0.036 0.055 0.052
STREV 0.495 0.461 0.428 0.366 0.012 0.044 0.084 0.118
HML_DEV 0.487 0.451 0.420 0.379 0.005 0.010 0.040 0.080
R_ROE 0.489 0.464 0.432 0.343 0.054 0.115 0.157 0.168
VAL 0.466 0.450 0.440 0.369 0.018 0.063 0.118 0.140
HMLs 0.481 0.457 0.420 0.359 0.007 0.019 0.031 0.037
R_IA 0.479 0.456 0.417 0.358 0.037 0.087 0.127 0.149
CRF 0.478 0.456 0.423 0.354 0.018 0.063 0.106 0.139
BAB 0.484 0.455 0.417 0.350 0.029 0.062 0.081 0.093
CMA 0.492 0.455 0.412 0.345 0.034 0.070 0.080 0.062
SMB 0.499 0.459 0.407 0.335 0.016 0.061 0.097 0.101
STREVB 0.489 0.456 0.411 0.342 0.005 0.014 0.023 0.024
PERF 0.473 0.476 0.420 0.329 0.051 0.117 0.126 0.095
HMLB 0.499 0.468 0.416 0.315 0.055 0.128 0.163 0.124
MGMT 0.474 0.461 0.405 0.339 0.062 0.129 0.163 0.171
DEF 0.479 0.444 0.397 0.340 0.003 0.000 -0.009 -0.015
MOMB 0.462 0.443 0.406 0.341 0.001 0.004 0.009 0.016
FIN 0.488 0.436 0.390 0.317 0.041 0.040 0.012 -0.013
MKTBD 0.474 0.423 0.403 0.325 0.018 0.032 0.031 0.007
TERM 0.474 0.427 0.393 0.325 0.039 0.082 0.126 0.156
MKTB 0.475 0.445 0.393 0.302 0.115 0.207 0.238 0.205
HML 0.471 0.430 0.390 0.311 0.005 -0.013 -0.036 -0.038
RMW 0.461 0.427 0.391 0.313 0.033 0.023 -0.024 -0.073
DRF 0.471 0.427 0.380 0.312 0.053 0.077 0.068 0.029
DUR 0.455 0.413 0.364 0.293 0.014 -0.025 -0.079 -0.095

Posterior probabilities, E[γj |data], and posterior mean of (annualized) risk prices, E[λj |data], of the 54 bond

and equity factors described in Appendix B. All models are estimated without an intercept. The factors are

ordered (high to low) by each factors average posterior probability across the four levels of shrinkage. The prior

for each factor inclusion is a Beta(1, 1), yielding a prior expectation for γj of 50%. Test assets include the

83 bond and stock portfolios and the 40 traded bond and stock factors (N = 123). Results are tabulated for

di�erent values of the prior Sharpe ratio,
√

Eπ[SR2
f | σ2], with values set to 20%, 40%, 60% and 80% of the ex

post maximum Sharpe ratio of the test assets. Sample period: 1986:01 to 2022:12 (T = 444).
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Table IA.VII: Posterior factor probabilities and risk prices for the corporate bond factor zoo
� excluding the intercept

Factor prob., E[γj|data] Price of risk, E[λj|data]
Total prior Sharpe ratio Total prior Sharpe ratio

Factors: 20% 40% 60% 80% 20% 40% 60% 80%

PEADB 0.613 0.766 0.797 0.754 0.125 0.431 0.664 0.759
MOMBS 0.587 0.701 0.741 0.600 0.174 0.549 0.827 0.735
CREDIT 0.526 0.575 0.664 0.703 0.029 0.111 0.264 0.506
IVOL 0.518 0.580 0.599 0.656 0.024 0.095 0.208 0.456
YSP 0.502 0.516 0.523 0.554 0.006 0.023 0.055 0.139
INFLC 0.512 0.515 0.507 0.505 -0.002 -0.008 -0.018 -0.046
VIX 0.504 0.497 0.509 0.488 -0.007 -0.030 -0.073 -0.135
INFLV 0.485 0.506 0.494 0.494 0.005 0.017 0.026 0.019
LVL 0.491 0.490 0.482 0.503 0.001 0.003 0.012 0.041
UNCf 0.510 0.503 0.500 0.446 -0.033 -0.098 -0.168 -0.224
EPUT 0.497 0.497 0.480 0.480 0.003 0.011 0.022 0.055
UNCr 0.498 0.489 0.479 0.478 0.000 0.001 0.003 0.011
CRY 0.494 0.496 0.519 0.427 0.089 0.274 0.497 0.492
EPU 0.490 0.487 0.476 0.464 0.002 0.002 -0.002 -0.006
LIQNT 0.473 0.484 0.468 0.460 -0.003 -0.013 -0.027 -0.053
UNC 0.495 0.477 0.464 0.435 -0.010 -0.025 -0.036 -0.054
SZE 0.491 0.469 0.437 0.351 0.016 0.054 0.085 0.079
CPTL 0.476 0.461 0.424 0.348 -0.007 -0.016 -0.017 -0.010
LTREVB 0.507 0.462 0.411 0.310 0.033 0.074 0.084 0.062
VAL 0.461 0.461 0.431 0.335 0.032 0.109 0.172 0.157
HMLB 0.486 0.460 0.388 0.277 0.083 0.171 0.185 0.124
MOMB 0.494 0.437 0.375 0.303 0.006 0.023 0.040 0.057
MKTB 0.509 0.446 0.384 0.269 0.200 0.310 0.328 0.234
STREVB 0.488 0.441 0.384 0.288 0.006 0.022 0.036 0.029
CRF 0.461 0.438 0.387 0.313 0.026 0.085 0.129 0.147
TERM 0.476 0.441 0.386 0.287 0.071 0.129 0.176 0.169
DEF 0.477 0.435 0.384 0.286 -0.004 -0.016 -0.035 -0.043
MKTBD 0.469 0.432 0.385 0.291 0.020 0.049 0.059 0.041
DRF 0.446 0.392 0.338 0.247 0.051 0.049 0.020 -0.006
DUR 0.437 0.387 0.343 0.235 -0.007 -0.092 -0.149 -0.079

Posterior probabilities, E[γj |data], and posterior mean of (annualized) risk prices, E[λj |data], of the 16 traded

bond and 14 nontraded factors described in Appendix B. All models are estimated without an intercept. The

factors are ordered (high to low) by each factors average posterior probability across the four levels of shrinkage.

The prior for each factor inclusion is a Beta(1, 1), yielding a prior expectation for γj of 50%. Test assets include

the 50 bond portfolios and the 16 traded bond factors (N = 66). Results are tabulated for di�erent values of

the prior Sharpe ratio,
√
Eπ[SR2

f | σ2], with values set to 20%, 40%, 60% and 80% of the ex post maximum

Sharpe ratio of the test assets. Sample period: 1986:01 to 2022:12 (T = 444).
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Table IA.VIII: Posterior factor probabilities and risk prices for the stock factor zoo � excluding
the intercept

Factor prob., E[γj|data] Price of risk, E[λj|data]
Total prior Sharpe ratio Total prior Sharpe ratio

Factors: 20% 40% 60% 80% 20% 40% 60% 80%

PEAD 0.527 0.607 0.675 0.725 0.037 0.159 0.359 0.607
MKTS 0.501 0.550 0.585 0.562 0.051 0.191 0.365 0.517
IVOL 0.498 0.524 0.538 0.594 0.005 0.024 0.064 0.181
QMJ 0.505 0.517 0.524 0.517 0.064 0.173 0.328 0.504
YSP 0.515 0.513 0.513 0.500 0.001 0.003 0.010 0.027
CMAs 0.486 0.495 0.509 0.523 0.022 0.085 0.186 0.318
UNC 0.510 0.508 0.496 0.485 0.000 0.001 0.003 0.009
INFLC 0.501 0.500 0.498 0.498 0.000 0.001 0.002 0.003
CPTL 0.498 0.506 0.508 0.486 0.020 0.070 0.127 0.189
CREDIT 0.496 0.504 0.501 0.495 0.000 -0.001 -0.002 -0.004
LVL 0.491 0.490 0.495 0.513 0.001 0.004 0.010 0.028
LIQNT 0.494 0.505 0.499 0.490 0.000 -0.002 -0.012 -0.044
EPUT 0.499 0.483 0.507 0.498 0.002 0.006 0.019 0.049
INFLV 0.500 0.496 0.503 0.486 0.000 -0.001 -0.002 -0.003
UNCr 0.495 0.497 0.487 0.495 0.001 0.003 0.010 0.028
RMWs 0.486 0.490 0.497 0.468 0.038 0.115 0.208 0.284
EPU 0.485 0.490 0.487 0.478 -0.001 -0.005 -0.011 -0.023
VIX 0.489 0.479 0.481 0.483 -0.001 -0.003 -0.007 -0.019
UNCf 0.483 0.489 0.476 0.473 0.000 0.000 0.004 0.022
CPTLT 0.484 0.472 0.489 0.446 0.023 0.073 0.128 0.160
STREV 0.497 0.480 0.465 0.429 0.010 0.041 0.087 0.148
MKTSs 0.500 0.494 0.461 0.403 0.019 0.054 0.077 0.090
LIQ 0.478 0.487 0.452 0.410 0.007 0.029 0.060 0.090
BAB 0.507 0.484 0.438 0.372 0.040 0.097 0.138 0.161
MOMS 0.499 0.475 0.444 0.380 0.018 0.046 0.068 0.083
SMBs 0.494 0.468 0.447 0.351 0.008 0.029 0.057 0.072
HML_DEV 0.467 0.453 0.431 0.386 0.009 0.031 0.086 0.175
SMB 0.494 0.458 0.428 0.347 0.018 0.071 0.119 0.132
MGMT 0.486 0.455 0.421 0.355 0.072 0.147 0.213 0.240
PERF 0.477 0.467 0.418 0.354 0.044 0.106 0.141 0.145
CMA 0.487 0.468 0.411 0.346 0.035 0.070 0.081 0.074
HMLs 0.479 0.455 0.417 0.347 0.007 0.019 0.029 0.015
R_IA 0.473 0.456 0.415 0.353 0.039 0.083 0.118 0.140
R_ROE 0.492 0.462 0.410 0.332 0.051 0.096 0.109 0.102
LTREV 0.482 0.457 0.411 0.346 0.011 0.029 0.039 0.039
HML 0.481 0.430 0.406 0.349 0.003 -0.035 -0.095 -0.146
FIN 0.477 0.416 0.382 0.305 0.040 0.035 0.009 -0.013
RMW 0.470 0.419 0.379 0.306 0.044 0.046 0.014 -0.026

Posterior probabilities, E[γj |data], and posterior mean of (annualized) risk prices, E[λj |data], of the 24 traded

stock and 14 nontraded factors described in Appendix B. All models are estimated without an intercept. The

factors are ordered (high to low) by each factors average posterior probability across the four levels of shrinkage.

The prior for each factor inclusion is a Beta(1, 1), yielding a prior expectation for γj of 50%. Test assets include

the 33 stock portfolios and the 24 traded stock factors (N = 57). Results are tabulated for di�erent values of

the prior Sharpe ratio,
√
Eπ[SR2

f | σ2], with values set to 20%, 40%, 60% and 80% of the ex post maximum

Sharpe ratio of the test assets. Sample period: 1986:01 to 2022:12 (T = 444).
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Table IA.IX: In-sample cross-sectional asset pricing performance � BMA-SDFs estimated
without the intercept.

BMA Prior Sharpe Ratio CAPM CAPMB FF5 HKM Top KNS RPPCA

20% 40% 60% 80%

Panel A: Co-pricing bonds and stocks

RMSE 0.209 0.201 0.184 0.165 0.260 0.278 0.258 0.259 0.233 0.166 0.201
MAPE 0.158 0.149 0.135 0.120 0.194 0.221 0.198 0.192 0.176 0.126 0.137
R2

OLS 0.193 0.254 0.376 0.499 -0.244 -0.426 -0.233 -0.238 0.001 0.489 0.251
R2

GLS 0.051 0.129 0.205 0.266 0.078 0.083 0.087 0.078 0.244 0.176 0.186

Panel B: Pricing bonds

RMSE 0.171 0.130 0.104 0.090 0.209 0.213 0.202 0.206 0.162 0.195 0.189
MAPE 0.116 0.093 0.078 0.068 0.146 0.135 0.142 0.145 0.128 0.113 0.084
R2

OLS 0.278 0.578 0.733 0.798 -0.107 -0.157 -0.038 -0.080 0.347 0.028 0.094
R2

GLS 0.096 0.239 0.338 0.393 0.180 0.201 0.244 0.181 0.549 0.064 0.231

Panel C: Pricing stocks

RMSE 0.240 0.258 0.250 0.231 0.292 0.264 0.275 0.292 0.194 0.162 0.230
MAPE 0.192 0.202 0.190 0.172 0.229 0.211 0.221 0.226 0.154 0.133 0.173
R2

OLS -0.063 -0.229 -0.155 0.018 -0.570 -0.282 -0.392 -0.574 0.306 0.515 0.022
R2

GLS 0.059 0.146 0.234 0.317 0.120 0.118 0.130 0.121 0.424 0.311 0.315

In-sample asset pricing performance of the Co-pricing BMA-SDF (Panel A), the Bond BMA-SDF (Panel B)

and the Stock BMA-SDF (Panel C), notable factor models, and the top �ve factors with an average posterior

probability greater than 50%. The BMA-SDFs are estimated without an intercept. In each panel, the model

is estimated with bonds and stocks (A), bonds only (B) and stocks only (C). Bond returns are computed in

excess of the one-month risk-free rate of return. We use GMM-GLS to estimate factor risk prices for CAPM,

CAPMB, the and Fama and French (1992, 1993) model, which includes the MKTS, SMB, HML, DEF and

TERM factors, and the traded two-factor He et al. (2017), HKM. KNS stands for the SDF estimation of Kozak

et al. (2020), with tuning parameter and number of factors chosen by twofold cross-validation. RPPCA is the

Risk-Premia-PCA of Lettau and Pelger (2020), with �ve-factors and κ set to 20. In Panel A the models are

estimated with the 83 bond and stock portfolios and the 40 traded bond and stock factors (N = 123), Panel

B (bond only) uses the 50 bond portfolios and 16 bond factors (N = 66), and Panel C (stock only) uses the

33 stock portfolios and 24 stock factors (N = 57). For the BMA-SDFs, we report results for a range of prior

Sharpe ratio values that are set as 20%, 40%, 60% and 80% of the ex-post maximum Sharpe ratio of the relevant

portfolios and factors. All data is standardized, that is, pricing errors are in Sharpe ratio units and span the

sample period 1986:01�2022:12 (T = 444).

20



Table IA.X: Out-of-sample cross-sectional asset pricing performance � BMA-SDFs estimated
without the intercept.

BMA Prior Sharpe Ratio CAPM CAPMB FF5 HKM Top KNS RPPCA

20% 40% 60% 80%

Panel A: Co-pricing bonds and stocks

RMSE 0.111 0.101 0.093 0.088 0.224 0.154 0.139 0.223 0.158 0.160 0.166
MAPE 0.080 0.075 0.069 0.064 0.192 0.129 0.102 0.190 0.130 0.143 0.146
R2

OLS 0.390 0.500 0.572 0.617 -1.478 -0.161 0.053 -1.444 -0.226 -0.268 -0.360
R2

GLS 0.031 0.070 0.103 0.134 0.028 0.034 0.036 0.028 0.100 0.065 0.041

Panel B: Pricing bonds

RMSE 0.120 0.110 0.105 0.101 0.130 0.128 0.139 0.133 0.102 0.112 0.085
MAPE 0.087 0.080 0.077 0.076 0.095 0.092 0.104 0.097 0.084 0.081 0.062
R2

OLS 0.090 0.238 0.302 0.363 -0.062 -0.028 -0.221 -0.107 0.342 0.205 0.540
R2

GLS 0.056 0.107 0.134 0.158 -0.006 0.022 -0.032 -0.007 0.101 0.068 0.069

Panel C: Pricing stocks

RMSE 0.102 0.087 0.078 0.072 0.123 0.119 0.116 0.124 0.064 0.078 0.124
MAPE 0.077 0.068 0.063 0.059 0.089 0.085 0.082 0.091 0.051 0.060 0.096
R2

OLS 0.330 0.511 0.608 0.666 0.032 0.099 0.136 0.019 0.734 0.613 0.014
R2

GLS 0.053 0.132 0.205 0.262 0.103 0.065 0.099 0.107 0.246 0.207 -0.011

Out-of-sample asset pricing performance of the Co-pricing BMA-SDF (Panel A), the Bond BMA-SDF (Panel

B) and the Stock BMA-SDF (Panel C), notable factor models, and the top �ve factors with an average posterior

probability greater than 50%. The BMA-SDFs are estimated without an intercept. Bond returns are computed

in excess of the one-month risk-free rate of return. We use GMM-GLS to estimate factor risk prices for CAPM,

CAPMB, the and Fama and French (1992, 1993) model, which includes the MKTS, SMB, HML, DEF and

TERM factors, and the traded two-factor He et al. (2017), HKM. KNS stands for the SDF estimation of Kozak

et al. (2020), with tuning parameter and number of factors chosen by twofold cross-validation. RPPCA is the

Risk-Premia-PCA of Lettau and Pelger (2020), with �ve-factors and κ set to 20. In Panel A the models are

estimated with the 83 bond and stock portfolios and the 40 traded bond and stock factors (N = 123), Panel

B (bond only) uses the 50 bond portfolios and 16 bond factors (N = 66), and Panel C (stock only) uses the

33 stock portfolios and 24 stock factors (N = 57). Out-of-sample (OS) test assets include 154 bond and stock

portfolios (Panel A), and 77 bond (stock) portfolios in Panel B (C). All de�ned in Section 1. The models are

�rst estimated using the baseline IS test assets and then used to price (with no additional parameter estimation)

each set of the OS assets. For the BMA-SDFs, we report results for a range of prior Sharpe ratio values that are

set as 20%, 40%, 60% and 80% of the ex post maximum Sharpe ratio relevant portfolios and factors. All data

is standardized, that is, pricing errors are in Sharpe ratio units and span the sample period 1986:01�2022:12

(T = 444).
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Table IA.XI: Correlation of SDF levels and volatilities

KNS RPPCA CAPM CAPMB FF5 HKM
Panel A: SDF levels

BMA 0.78 0.55 0.16 0.28 0.29 0.16
KNS 0.85 0.11 0.46 0.32 0.13
RPPCA 0.09 0.35 0.18 0.11
CAPM 0.42 0.70 0.98
CAPMB 0.70 0.41
FF5 0.66

Panel B: SDF estimated volatilities
BMA 0.76 0.70 0.74 0.52 0.56 0.74
KNS 0.71 0.64 0.55 0.55 0.65
RPPCA 0.54 0.18 0.24 0.56
CAPM 0.57 0.61 0.98
CAPMB 0.75 0.57
FF5 0.58

Correlation of the SDFs (Panel A) and their �ltered volatilities (Panel B) estimated in Panel A of Table 4 with
the 83 bond and stock portfolios and the 40 traded bond and stock factors (N = 123). BMA-SDF obtained with
80% prior Sharpe ratio. Bond returns are computed in excess of the one-month risk-free rate of return. The
ARMA mean process for each model is selected using the BIC. Volatilities are estimated using a GARCH(1,1).
The Ljung and Box (1978) p-value tests the null of squared autocorrelations being equal to zero. We use GMM-
GLS to estimate factor risk prices for CAPM, CAPMB, the and Fama and French (1992, 1993) model, which
includes the MKTS, SMB, HML, DEF and TERM factors, and the traded two-factor He et al. (2017), HKM.
KNS stands for the SDF estimation of Kozak et al. (2020), with tuning parameter and number of factors chosen
by twofold cross-validation. RPPCA is the Risk-Premia-PCA of Lettau and Pelger (2020), with �ve-factors and
κ set to 20. Sample period 1986:01�2022:12 (T = 444).
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IA.5 Additional �gures
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Figure IA.2: Posterior factor probabilities � co-pricing factor zoo � excluding the intercept.

Posterior probabilities, E[γj |data], of the 54 stock and bond factors described in Appendix B. All models are
estimated without an intercept. The legend factor labels are ordered (high to low) by each factors average
posterior probability across the four levels of shrinkage. Test assets include the 83 bond and stock portfolios
and the 40 traded bond and stock factors (N = 123). The prior distribution for the jth factor inclusion is a
Beta(1, 1), yielding a 0.5 prior expectation for γj . Posterior probabilities for di�erent values of the prior Sharpe

ratio,
√

Eπ[SR2
f | σ2], set to 20%, 40%, 60% and 80% of the ex post maximum Sharpe ratio of the 83 stock and

bond portfolios and traded factors. Sample period: 1986:01 to 2022:12 (T = 444).
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(C) RMSE
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(D) MAPE

Figure IA.3: Pricing out-of-sample stocks and bonds with di�erent BMA-SDFs and KNS-
SDF.

This �gure plots the empirical CDFs of R2
GLS , R

2
OLS , RMSE and MAPE in Panels A, B, C and D respectively

across 16,384 possible bond and stock cross-sections using the 14 sets of stock and bond test assets (214 = 16, 384)
priced using the respective BMA-SDF and the co-pricing KNS-SDF respectively. The models are �rst estimated
using the baseline set of IS test assets and then used to price (with no additional parameter estimation) each set
of the 16,384 OS combinations of test assets. The red distributions corresponds to the pricing performance of
the co-pricing BMA-SDF. The blue (yellow) distributions corresponds to the pricing performance of the bond
(stock) only BMA-SDF. The green distributions correspond to the pricing performance of the co-pricing KNS-
SDF. The BMA-SDF (BMA) is computed with a prior Sharpe ratio value set to 80% of the ex-post maximum
Sharpe ratio of the IS test assets. All data is standardized, that is, pricing errors are in Sharpe ratio units and
span the sample period 1986:01�2022:12 (T = 444).
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(C) Corporate bond-stock correlation

Figure IA.4: How (dis)integrated are equity and corporate bond markets?

This �gure plots the amount of variation explained by the principal components of the in-sample bond and stock
portfolios and their generalized (canonical) correlations. Panels (a) and (b) reports the percentage variation
explained by the �rst �ve PCs of the corporate bond and stock test assets. Panel (c) reports the gener-
alized correlations. De�ne v̂Bt and v̂St as the top �ve PCs of the corporate bond and stock in-sample test
assets. The generalized correlations between v̂Bt and v̂St are de�ned as the squared root of the eigenvalues of
cov(v̂Bt , v̂

S
t )

⊤cov(v̂Bt )−1cov(v̂Bt , v̂
S
t )cov(v̂

S
t )

−1. The stock test assets comprise 33 portfolios and the 24 traded
factors (N = 57), the bond test assets comprise the 50 portfolios and 16 traded factors (N = 66). The sample
spans the period 1986:01�2022:12 (T = 444).
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(A) Bonds (duration-adjusted)

0.00

0.25

0.50

0.75

1.00

I II III IV V

G
en

er
al

iz
ed

 c
or

re
la

tio
n

(B) Bond (duration-adj.) - stock correlation

Figure IA.5: How (dis)integrated are equity and corporate bond markets? Duration-adjusted
bond returns.

This �gure plots the amount of variation explained by the principal components of the in-sample bond (duration-
adjusted) portfolio returns and their generalized (canonical) correlations with the stock portfolio returns. Bond
returns are duration-adjusted as described in Section C of the Appendix. Panels (a) reports the percentage
variation explained by the �rst �ve PCs of the corporate bond test assets. Panel (b) reports the general-
ized correlations. De�ne v̂Bt and v̂St as the top �ve PCs of the corporate bond and stock in-sample test as-
sets. The generalized correlations between v̂Bt and v̂St are de�ned as the squared root of the eigenvalues of
cov(v̂Bt , v̂

S
t )

⊤cov(v̂Bt )−1cov(v̂Bt , v̂
S
t )cov(v̂

S
t )

−1. The stock test assets comprise 33 portfolios and the 24 traded
factors (N = 57), the bond test assets comprise the 50 portfolios and 16 traded factors (N = 66). The sample
spans the period 1986:01�2022:12 (T = 444).
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Figure IA.6: Autocorrelations of SDF levels

Autocorrelation of the notable SDF estimated in Panel A of Table 4 with the 83 bond and stock portfolios

and the 40 traded bond and stock factors (N = 123). Bond returns are computed in excess of the one-month

risk-free rate of return. The ARMA mean process for each model is selected using the BIC. The Ljung and Box

(1978) p-value tests the null of squared autocorrelations being equal to zero. We use GMM-GLS to estimate

factor risk prices for CAPM, CAPMB, the and Fama and French (1992, 1993) model, which includes the MKTS,

SMB, HML, DEF and TERM factors, and the traded two-factor He et al. (2017), HKM. KNS stands for the

SDF estimation of Kozak et al. (2020), with tuning parameter and number of factors chosen by twofold cross-

validation. RPPCA is the Risk-Premia-PCA of Lettau and Pelger (2020), with �ve-factors and κ set to 20.

Sample period 1986:01�2022:12 (T = 444).
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Figure IA.7: Autocorrelations of SDF squared residuals

Autocorrelation of the squared residuals of notable SDF estimated in Panel A of Table 4 with the 83 bond and

stock portfolios and the 40 traded bond and stock factors (N = 123). Bond returns are computed in excess

of the one-month risk-free rate of return. The ARMA mean process for each model is selected using the BIC

and reported in Table IA.6. The Ljung and Box (1978) p-value tests the null of squared autocorrelations being

equal to zero. We use GMM-GLS to estimate factor risk prices for CAPM, CAPMB, the and Fama and French

(1992, 1993) model, which includes the MKTS, SMB, HML, DEF and TERM factors, and the traded two-factor

He et al. (2017), HKM. KNS stands for the SDF estimation of Kozak et al. (2020), with tuning parameter and

number of factors chosen by twofold cross-validation. RPPCA is the Risk-Premia-PCA of Lettau and Pelger

(2020), with �ve-factors and κ set to 20. Sample period 1986:01�2022:12 (T = 444).
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Figure IA.8: Volatility of the co-pricing BMA-SDF with only nontradable factors

Annualized volatility of the co-pricing BMA-SDF with only non-trdable factors. Shaded areas denote NBER
recession periods. Volatility is obtained �tting a ARMA(3,1)-GARCH(1,1) to the posterior mean of the co-
pricing BMA-SDF (speci�cation selected via BIC). The GARCH Quasi-maximum likelihood coe�cient estimates
are:

σ2
t+1 = ω + αϵ2t + βσ2

t

ω α β
Estimate 0.000202 0.142293 0.798533
Robust SE 0.000090 0.052041 0.047567

Sample: 1986:01�2022:12 (T = 444).
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Figure IA.9: Residual volatility of the co-pricing BMA-SDF

Residuals of the linear projection of the BMA-SDF estimated volatility on the volatilities of CAPM, CAPMB,
KNS, RPPCA, FF5 and HKM SDFs. Sample: 1986:01�2022:12 (T = 444).
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