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Abstract

The tokenization of real-world assets (RWAs) promises to improve accessibility and trad-
ability in traditionally illiquid markets. However, the question of whether digital asset markets
can achieve sustained liquidity and efficient price discovery remains unresolved. In this study,
we analyze three coexisting liquidity mechanisms—automated market makers (AMMSs), peer-
to-peer (P2P) marketplaces, and centralized buybacks—within a stylized framework that
addresses the cost-efficiency trade-offs faced by liquidity demanders across these three mech-
anisms. Building on a dataset of 444,535 secondary market transactions of tokenized RWAs
from 2019 to 2024, we document arbitrage-driven liquidity flows, market fragmentation, and
varying investor sophistication as well as a different arbitrage susceptibility of the mechanisms
during periods of instability. While AMMSs provide continuous liquidity, their deterministic
pricing enables arbitrage that systematically drains liquidity over time. P2P marketplaces
support efficient price discovery, and buybacks offer stable but inflexible exits. Recognizing
that each mechanism addresses distinct trading needs, our findings underscore the importance
of hybrid liquidity models that integrate centralized and decentralized elements. However,
without addressing current design limitations, RWA markets risk becoming fragmented digital
search markets rather than efficient trading environments.
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1. Introduction

The tokenization of real-world assets (RWAs) on the blockchain is transforming
finance by bridging traditional markets with the digital economy. Established struc-
tures like securitization have long enhanced public market efficiency by enabling frac-
tional ownership, investor accessibility, and improving liquidity, yet these benefits have
been largely limited to large, homogeneous assets within public markets. Tokenization
extends these advantages to private markets, unlocking trillions of dollars in RWAs,
including real estate, private equity, private debt, and other alternative investments.
These assets are often illiquid, characterized by limited tradability, valuation opacity,
high transaction and search costs, and barriers to accessibility. Tokenization has the
potential to fundamentally reshape tradability, transparency, and price formation in
these traditionally illiquid markets. The introduction of observable pricing mechanisms
on-chain can increase economic efficiency by enabling transparent valuations and more
frequent trading, thereby improving capital allocation. Similar market benefits have
long been acknowledged in equity and real asset markets (O’Hara, 2003; Case and
Shiller, 1989; Williams, 1995).

Theoretically, tokenization of RWAs increases market divisibility and lowers unit
prices, characteristics typically associated with greater liquidity (Muscarella and Vet-
suypens, 1996; Benedetti and Rodriguez-Garnica, 2023). On-chain liquidity further en-
ables functionalities such as collateralization, borrowing, and continuous trading in de-
centralized finance (DeFi) (Xin Li et al., 2024). However, adoption remains constrained
by challenges in secondary market design and price discovery. Existing research focuses
mainly on the rapidly growing primary issuance of tokens (Kreppmeier et al., 2023),
leaving trading dynamics and liquidity formation of these tokens insufficiently explored.
Yet, viable secondary markets are essential, as liquidity is a core promise of RWA to-
kenization. Theoretical models suggest that market fragmentation can both enhance
efficiency through competition and increase execution complexity when cross-platform
coordination is lacking (Chen, 2021), and empirical evidence from DeF1i indicates that

fragmentation in cryptocurrency markets creates arbitrage opportunities through price

!The total value of tokenized RWAs increased from $160.7 million in January 2022 to $11.1 billion
in April 2025, according to DefiLlama, an analytics platform for decentralized finance (https://
defillama.com/protocols/RWA).
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discrepancies across venues (Makarov and Schoar, 2020).

As the future projection of blockchain enthusiasts and the financial industry is to
own assets individually on the blockchain, the secondary market of heterogeneous (and
relatively small or illiquid) assets is hugely important.? But despite the widespread
optimism regarding RWA tokenization and its liquidity benefits, little empirical evi-
dence exists on the efficiency of secondary markets for these assets. To bridge the gap
between conceptual claims and practical realities, we analyze three different liquidity
mechanisms around one of the largest and earliest platforms for tokenized RWAs, Re-
alT. Based on the three coexisting market mechanisms observed, namely the centralized
buyback (Buyback), decentralized peer-to-peer (P2P) marketplaces, and decentralized
automated market makers (AMMs), we aim to develop a stylized framework that for-
malizes the cost-efficiency trade-offs faced by liquidity demanders across the three lig-
uidity mechanisms. Thereby, we focus on three key parameters in the framework: price
signal quality, transaction costs, and execution certainty, each shaped by the mecha-
nisms’ inherent design and liquidity constraints. We calibrate the framework with a
unique set of high-frequency data comprising 444,535 secondary market transactions of
RWASs over four and a half years. This allows us to understand how investors adapt
their selling behavior in response to the mechanism’s liquidity constraints, providing
a blueprint for how multi-market systems for RWAs in DeFi can function. Alongside
the framework, we analyze the data to empirically assess price discovery efficiency and
arbitrage interactions across the three different market mechanisms. To the best of
our knowledge, this is the first study to both formalize and empirically analyze the
microstructure of secondary markets for tokenized RWAs.

While our empirical data focuses on real estate tokens, we view this setting as a
fully transparent laboratory for studying thin, fragmented secondary markets. Many
RWA platforms implement at least one of the mechanisms, but to our knowledge, this
is the only setting where all three mechanisms coexist and are simultaneously observ-
able through publicly accessible on-chain data (see Table A.1 and Appendix A.1). This

special structure enables direct empirical comparisons across mechanism types and al-

2Larry Fink, CEO of BlackRock, stated in his 2025 Annual Chairman’s Letter to Investors that
"Every stock, every bond, every fund—every asset—can be tokenized. If they are, it will revo-
lutionize investing. (https://www.blackrock.com/corporate/investor-relations/larry-fink-
annual-chairmans-letter).
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lows the disentanglement of their structural interactions under consistent token design
and market conditions. A special and very rare empirical feature of our approach is
that we can directly observe arbitrage activities. The secondary market dynamics we
document—such as fragmentation, price discovery and arbitrage—may apply to other
appraisal-anchored assets traded on-chain, although generalizability remains an open
empirical question. In addition, our findings on market liquidity empirically comple-
ment the key literature on token market design, which often assumes fully liquid markets
(see, e.g., Cong et al., 2021; Cong et al., 2022).

Our findings indicate that while multiple market mechanisms coexist because they
fulfill distinct and complementary roles in liquidity provision, the secondary market
for RWAs remains fragmented in terms of arbitrage flows, price discovery, and overall
liquidity. In particular, we document that the current application of AMMs to RWAs,
although revolutionary due to continuous and automatic market making in cryptocur-
rency markets, remains limited to small transactions, due to the complexity of pricing
heterogeneous assets and the risk of inefficient pricing combined with increased arbi-
trage activity. Centralized buybacks contribute to price stability and support guaran-
teed but limited and costly liquidity, used in particular for larger transactions and as a
reliable exit option. We document that decentralized P2P marketplaces have emerged
as the dominant mechanism for RWAs, which we attribute to their enhanced price dis-
covery, low costs, and reduced exposure to liquidity-draining arbitrage activity, even
though their peer-specific offer structure can imply a lower execution certainty. Us-
ing a diff-in-diff research design around an exogenous DeFi market shock, we find that
AMM pricing structures are more susceptible to arbitrage exploitation during periods
of market instability than P2P marketplaces, highlighting a structural vulnerability in
fragmented decentralized markets.

Consequently, our study highlights the need for carefully structured hybrid liquid-
ity designs that integrate traditional price discovery with advancements of blockchain-
based DeFi. Such hybrid systems must accommodate both centralized and decentralized
trading venues to effectively manage heterogeneous assets. Understanding the dynam-
ics of these integrated markets is crucial for informing future developments in DeFi and
guiding regulatory frameworks that can foster innovation while ensuring market stabil-
ity. Our research contributes to the broader discourse on tokenization to enhance the

efficiency and accessibility of financial markets, laying the groundwork for future studies



on the integration of RWAs into the digital asset ecosystem. By positioning our findings
at the intersection of traditional finance and the DeFi ecosystem, we pave the way for a
more inclusive and accessible financial market driven by blockchain technology. If these
challenges remain unresolved, tokenization risks replicating traditional inefficiencies in

digital form—raising a critical question: Can RWAs be liquid in fragmented markets?

2. Related literature and theory development

2.1. Related literature and research gap

Distributed Ledger Technology (DLT) and blockchain technology enable a decentral-
ized and transparent infrastructure for asset representation, digital ownership transfer,
automated execution of contracts, and real-time settlement (Buterin, 2013; Cong and
He, 2019; Benedetti and Rodriguez-Garnica, 2023).3 These innovations underpin the ex-
pansion of DeFi (Schar, 2021), yet the effectiveness of blockchain-based trading venues
in fostering liquidity and price discovery remains uncertain. Centralized exchanges
(CEXs) aggregate liquidity through limit order books (Kyle, 1985; O’Hara, 2003)%,
while decentralized exchanges (DEXs) rely on algorithmic pricing via AMMs (Park,
2023). AMMs improve accessibility and continuous liquidity, although they introduce
inefficiencies such as deterministic pricing, susceptibility to arbitrage, and exposure to
sandwich attacks (Park, 2023; Barbon and Ranaldo, 2024). These inefficiencies are well-
documented in cryptocurrency markets, yet their impact on the liquidity and price dis-
covery of tokenized RWAs remains largely unexplored. The inherent characteristics of
RWAs further complicate liquidity formation. Unlike cryptocurrencies, which are native
to the blockchain, fungible and actively traded across global markets, RWAs are hetero-
geneous, exhibit lower turnover, and depend on the integration of off-chain data such
as valuations, legal records, and income flows, introducing additional frictions through
price oracles (Cong et al., 2025; Harvey and Rabetti, 2024). Theoretical models suggest
that decentralized trading venues could enhance liquidity of blockchain-based assets by

reducing intermediation costs and enabling broader market access (Malinova and Park,

3The terms DLT and blockchain are used interchangeably in this paper, although blockchain is a
specific type of DLT. For a comprehensive discussion, see Liu et al. (2020).

4While most centralized exchanges worldwide use a central limit order book (CLOB), also alterna-
tive trading methods such as request-for-quote (RFQ) systems or over-the-counter (OTC) trading are
employed, especially for less liquid markets, complex products, or large transactions.



2017). However, first empirical evidence from tokenized real estate markets indicates
that these markets struggle with thin trading volumes, but also show signs of increasing
maturation and integration of traditional real estate and modern financial market fea-
tures (Swinkels, 2023; Bergkamp et al., 2025). Although prior studies have examined
liquidity determinants in cryptocurrency markets—both on centralized (Brauneis et al.,
2022; Brauneis et al., 2021) and decentralized (Zhu et al., 2025) exchanges—little re-
search has explored liquidity mechanisms in RWA token markets, where price discovery
and execution certainty may be significantly impaired by market fragmentation. Be-
yond AMMSs, the coexistence of centralized and decentralized liquidity mechanisms adds
further complexity. While some research suggests that centralized and decentralized
markets can complement each other through liquidity spillovers (Aoyagi and Ito, 2024),
this remains untested in RWA markets. Unlike cryptocurrencies, which benefit from
deep global trading pools, RWAs are often traded across fragmented venues with varying
degrees of liquidity. Traditional financial market theory suggests that liquidity typically
concentrates in a dominant trading venue (Pagano, 1989), yet blockchain-based RWA
markets may not exhibit the same network effects. Instead, fragmented liquidity pools
may exacerbate price inefficiencies, increase search costs, and limit execution certainty
(Makarov and Schoar, 2020). These challenges also raise concerns about price discovery
across competing trading mechanisms. While price formation in traditional CEXs has
been extensively studied (Kyle, 1985; Hasbrouck, 1995; O’Hara, 2003), and emerging
research has examined AMM-driven price discovery (Capponi et al., 2024), tokenized
RWAs introduce additional complexities. Given their illiquid nature, valuation depen-
dencies on external appraisals, and potential exposure to cross-market liquidity frag-
mentation, it remains unclear whether AMMs, P2P networks, or centralized buybacks
provide the most efficient trading environment. Previous studies primarily focus on
primary issuance mechanisms, such as Security Token Offerings (STOs), and their role
in lowering investment barriers through fractional ownership (Kreppmeier et al., 2023).
However, these studies do not address secondary market inefficiencies, leaving critical
gaps in understanding liquidity formation, price efficiency, and execution dynamics.
As blockchain-based RWA trading expands, the need to analyze liquidity provision
across multiple market structures—centralized buybacks, decentralized P2P trading,
and AMMs—Dbecomes increasingly urgent. This study seeks to fill this empirical void

by systematically examining liquidity formation and price discovery in tokenized RWA



markets, contributing to the broader discourse on financial market microstructure and

the long-term viability of DeFi-based asset markets.

2.2. Liquidity mechanism and market design of RWA markets

While tokenization expands market access through fractional ownership, its ability
to enhance secondary market efficiency depends on how liquidity is structured. Each
mechanism—whether centralized or decentralized—introduces distinct trade-offs in ex-
ecution certainty, price efficiency, and transaction costs, ultimately shaping market
depth and stability. While traditional asset markets rely on centralized intermediaries
to facilitate liquidity, tokenized RWAs operate within a fragmented ecosystem where
liquidity can be sourced through multiple competing mechanisms. Understanding how
these mechanisms interact is essential for assessing whether tokenization enhances mar-
ket efficiency or simply replicates existing financial frictions in digital form. Generally,
RWA marketplaces contain some combination of the following liquidity mechanisms®,
often integrating multiple mechanisms simultaneously to accommodate different trading
preferences and conditions:

Buyback mechanism: The buyback mechanism (Figure 1) provides a central-
ized liquidity outlet, where investors sell tokens back to the issuer at a price fixed to
an appraisal-based valuation of the underlying asset rather than a quote-driven mar-
ket rate. Buybacks offer appraisal-based stable pricing but limit price discovery and
flexibility.

P2P mechanism: The P2P model (Figure 2) supports direct trading on decen-
tralized platforms like AirSwap, Swapcat, and YAM, each allowing different trade vol-
umes and trade sizes, offering flexibility in price-setting but lower execution certainty
compared to the buyback. The P2P structure mirrors over-the-counter (OTC) trad-
ing, linking buyers and sellers directly and enabling trades based on transparent asset
appraisals without intermediaries or order books. Bypassing fees and enabling real-
time pricing updates make P2P markets effective for trades prioritizing market price
alignment over execution speed. Transactions settle on-chain using smart contracts,
reducing intermediary costs to zero compared to traditional OTC models. For larger,

less time-sensitive trades, the P2P model is advantageous, allowing market participants

5For further details regarding RealT, see Appendix A.S.



to set prices based on market demand, creating efficient price signals. However, due
to lacking automated order matching, execution certainty can be limited, making P2P
less ideal for highly time-sensitive transactions.

AMM mechanism: Figure 3 illustrates AMMSs, effective for high-frequency trades
and suitable for traders prioritizing immediate execution over precise pricing. AMMs,
like Uniswap on Ethereum, eliminate continuous order matching by using liquidity pools
and algorithmic pricing formulas, optimizing costs and latency for blockchain-based
transactions. Originating in the cryptocurrency markets, AMMs can theoretically han-
dle high-volume trades efficiently by dynamically adjusting prices based on pooled asset
ratios through the Constant Product Market Making (CPMM) formula, which forces
the product of the quantities of both tokens (the RWA token and the currency token)
in the pool to be constant. For a more detailed conceptualization of CPMM, see Figure
A.10 in Appendix A.9. AMMSs present high execution certainty and comparably low
fees, particularly suitable for trades where immediacy is prioritized over price preci-
sion, while arbitrageurs continuously adjust pool prices to market levels (Angeris et al.,

2019).



Figure 1: Centralized Buyback Figure 2: Peer-to-Peer Market (P2P)
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Figure 3: Automated Market Maker (AMM)
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Each mechanism offers distinct (dis)advantages. However, it remains unclear how
the mechanisms perform in practice, particularly in fragmented secondary markets. To
understand the interplay between these liquidity mechanisms, we introduce a framework

in the next section that captures their key characteristics.

2.3. Stylized execution cost framework

In RWA markets, liquidity is simultaneously sourced from multiple competing mech-
anisms, each characterized by distinct trade-offs in execution certainty, price efficiency,

and transaction fees. As traders allocate their transactions across decentralized AMMs



and P2P marketplaces and centralized buyback mechanisms according to their specific
preferences and market conditions, an aggregate market-level allocation emerges. This
observed market allocation reflects a balance among the different liquidity characteris-
tics provided by each mechanism. To formally analyze this aggregate market allocation,
we introduce a stylized theoretical framework capturing various execution parameters,
including costs, speed, slippage, liquidity depth, and arbitrage-driven liquidity reallo-
cation dynamics across these competing venues. Our framework, rooted in traditional
market microstructure literature (Kyle, 1985; Glosten and Milgrom, 1985), thus en-
ables a deeper understanding of how trader preferences and liquidity constraints jointly
determine the overall liquidity structure in tokenized RWA markets.

The total execution cost is modeled as the sum of mechanism-specific execution
costs, each normalized by its corresponding execution efficiency. The model incorpo-
rates several key parameters. The total trade size, ¢, represents the total volume to
be traded and is allocated to the liquidity mechanisms: gayng for AMM, gpop for P2P,
and gp for the centralized company buyback (B). Liquidity constraints are critical, par-
ticularly for AMMs, where available liquidity (Lanm, measured in dollars) determines
slippage and execution costs.® In constant-product AMMs, the proportional liquidity
pool value (Lanm) perfectly reflects the market depth as as execution prices are directly
determined by the reserve size of the token being sold (Zhu et al., 2025). Transaction
fees, denoted as Fann, Fpop, and Fg, which represent the percentage values, vary across
platforms and significantly affect execution costs. Sensitivity to transaction fees is in-
corporated via 3. Price signal quality (n € [0, 1]) reflects how closely each platform’s
price matches the true market value, with 1 = 1 representing the perfect price signal.”
Sensitivity to execution time is incorporated via ~, which captures the trade-off be-
tween time-sensitive execution and other cost components, as execution time (t) varies
significantly across mechanisms.

The execution efficiency (F) reflects the combined impact of price signal quality,

and execution time (¢). The execution cost (Cexec) accounts for slippage and transaction

6Slippage occurs as trades shift the pool’s token ratio, causing a gap between expected and executed
prices. This mechanic—visualized as a movement along the token reserve curve—is illustrated in
Figure A.10.

"Buyback prices are fixed via appraisals rather than market signals, but we assign ng to reflect
their relative price informativeness and to ensure consistency across mechanisms.

10



fees specific to each market mechanism.
For AMMs, the efficiency is defined as:

1 v
Eanviv = navv - Lanim - (— ) ) (1)
taniM

where the liquidity pool reserves Ly reflect the market depth of the AMM. Execution
time for AMMs is technologically fixed and typically near-instant, implying tanmw &
1. Since execution costs in AMMs increase nonlinearly with trade size, we adopt a
quadratic slippage approximation inspired by Park (2023), resulting in a total execution

cost for AMMs: )
Cexee, AMM = [+ Fanmut - gavm + zAMM . (2)
AMM

For P2P marketplaces, the efficiency is given by:

1 Y
Epop = npap - Lipop - (—> ; 3

tpop (Mp2p) @)
where Lpop represents the available liquidity or market depth, measured as the contem-
porary dollar volume of active offers for the token, and tpop denotes execution time,
which varies and further depends on npgp.®

The execution cost for P2P is:

qg‘2P (4)

Cexec, P2p = B Fpap - gpap + Lo
P2P

where § € (1,2) ensures that execution costs increase nonlinearly with trade size rel-
ative to the offer volume (liquidity), reflecting the cost of consuming increasingly less
favorable offers.”

Execution time for P2P, denoted tpsp, varies depending on market conditions and

the speed of matching buyers and sellers.

8We model P2P execution time as inversely related to price informativeness: tpop = t";;%, with

thaseline based on empirical time on market (e.g. 25 days). This reflects the idea that better pricing
quality facilitates faster matching and shorter execution times.

9This follows standard microstructure models, where execution costs rise nonlinearly with trade
size due to limited depth (e.g., Kyle, 1985; Almgren and Chriss, 2001). We assume 1 < § < 2 to ensure
convexity while capturing the more moderate price impact in P2P markets compared to the quadratic
curve in AMMs.
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For centralized buybacks, the efficiency is:

te(q

Ey = Tn- (#)) 5)

where Lg is a fixed buyback limit per trade per token, imposed by the centralized
buyback mechanism and reset periodically (e.g. weekly) and tg(gg) is a decreasing
function of trade size ¢g.!°

The execution cost is:

Cexec,B:ﬁ'FB'QB' (6)
The total execution cost aggregates the efficiency-adjusted execution costs of each
mechanism:
C o C’exec, AMM Cexec, P2P + Cexec, B (7)
total = .
o Eanm Epop Ey

Note that this amount depends on market conditions as well as the preference
parameters § and . In our framework, it is the representative investor’s decision
quantity.

The total trade size is distributed across mechanisms, so that we have

q = gamm + gp2p + gB. (8)

As the allocation to each market mechanism is constrained by its respective liquidity,
we impose

gavm < Lawig,  qeop < Lpop,  qs < Lg. 9)

0While platforms often state a maximum payout period (e.g., 10 business days), on-chain data
suggest that execution timing depends on both a fixed schedule and the volume of pending buyback
requests. Larger trades may accelerate batch execution, shortening actual payout times. We model

K
this with: tg(¢B) = tmin + (fmax — tmin) - ( — %—‘;) , where t,;, and t,.« are lower and upper bounds

(e.g., 7 and 10 days), and x > 1 controls the slope.

12



The optimization problem to be solved minimizes the total execution cost:

C1exec AMM
Ctotal = —

min
gAMM; qP2P, 4B EAMM
C’exec, P2p
+ P .
Epop
Cexec, B (1 O)
Eg

subject to the market clearing condition (8) and liquidity constraints (9).

The optimal allocation (g Gpops ¢5) is obtained as the solution to the con-
strained optimization problem (10), subject to the market clearing condition (8) and
the liquidity constraints (9).

The solution is given by the first-order condition (12), which equates the marginal
execution cost per unit of efficiency across all mechanisms. This condition allows us to
determine how trade volume is optimally distributed among the three available mech-
anisms, given trader preferences and prevailing market conditions. Since the objective
function in (10) is additively separable and each component depends only on its respec-
tive allocation variable, the optimization problem decomposes into marginal compar-
isons across mechanisms.

In cases where none of the liquidity constraints in (9) are binding, and the necessary

conditions for an interior solution hold, that is,

G < Lant,  Gpop < Lpop,  ¢f < La, (11)

the solution is an interior optimum and satisfies the condition that marginal execution

cost per efficiency unit is equalized across all mechanisms:
0 (C’exec7 AMM )
dganm Eavm
_ 0 (Cexec, P2P>
Jgpap Epaop

a Cexec B)
_ 9 : 12
dqs ( Eg (12)

By numerically solving the constrained optimization problem across varying pref-

13



erence parameters, liquidity constraints, and mechanism-specific execution character-
istics, we assess how optimal trade allocations adjust in response to changing market
environments and investor behavior, as detailed in Section 4.1.

This framework allows us to analyze how each mechanism contributes to liquidity
provision in the current RWA market, how they interact, and what structural chal-
lenges emerge in such fragmented environments. It further illustrates how investors
adapt their behavior in response to evolving frictions and preferences within the DeFi
landscape. Although our empirical focus lies on one platform, both the theoretical
framework and the simulation components capture general structural features of de-
centralized markets. Importantly, the framework captures the core trade-off logic be-
tween execution cost and execution efficiency, shaped by the distinct characteristics
of each liquidity mechanism, which is broadly representative in fragmented tokenized
asset markets. Next, we examine how the market allocates liquidity across mechanisms
given the trade-offs in execution certainty, price informativeness, and transaction costs.
We then analyze how arbitrage flows and trader sophistication shape and respond to

these allocations, testing the empirical relevance of the model’s structure.

3. Data and methodology

3.1. Transaction data

The specific RWA tokenization platform that we analyze is RealT, which started in
2019. It is one of the earliest and largest tokenization platforms in terms of tokenized
value. As of April 2025, the platform’s total tokenized value stands at $140 million,
with new tokenized properties added on a weekly to monthly basis.!' Built on public
blockchain and smart contract infrastructure, it enables full transparency of data and
represents one of the most advanced implementations of a tokenized market for RWAs
currently observable in DeFi. To conduct our analysis, we analyze the secondary market
transactions of 511 unique and active RWAs representing heterogeneous assets in the

form of tokenized properties traded on the secondary market.!?

1 According to DefiLlama, an analytics platform for decentralized finance (https://defillama.
com/protocol/realt-tokens)
2For more details on the the real estate tokens used in our sample, refer to Appendix A.6.
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We collected all blockchain transactions associated with wallets linked to these to-
kenized properties from the Ethereum and Gnosis blockchains during the period from
September 3, 2019, to May 31, 2024, amounting to a total of 2,409,303 transactions.
Our analysis of investor and trading behavior is conducted at the wallet level; however,
we acknowledge the possibility of wash trading, as multiple wallets could belong to the
same individual, potentially inflating trade volume and transaction frequency (Cong
et al., 2023). The data was retrieved using freely accessible APIs from blockchain
explorers, namely Blockscout and Etherscan.

To refine the data and ensure valid and relevant secondary market transactions, in
the first step we exclude all non-secondary market transactions, which included pri-
mary market activities such as token mints, STOs, liquidity pool interactions (e.g.,
adding or withdrawing liquidity), internal transfers (e.g., cross-chain transfers between
the Ethereum and Gnosis blockchains for technical or operational purposes), and non-
value transfers (e.g., administrative token movements) by checking the method of the
blockchain transactions. This step reduced the dataset by 978,018 transactions. Next,
we removed 203,503 transactions involving non-relevant tokens, such as RealT gover-
nance token.!® Since each secondary market transaction involves both a real estate
token and at least one payment token, we consolidated the associated transactions,
reducing the dataset by approximately 60% or 781,184 entries.!* Furthermore, we ex-
cluded transactions of inactive or removed tokens. Finally, we retain a high-frequency
dataset of 444,535 unique secondary market transactions spanning a 4.5-year period.

Figure 4 shows all transaction prices analyzed, segmented by market mechanism.

3.2. Metadata

To account for the distinct market mechanisms, we enrich the transaction data with
additional blockchain data (offer details for P2P markets, liquidity pool information for
AMMSs) and non-blockchain data (appraisal values for Buybacks).

Offer data (P2P): We analyze P2P marketplaces (Airswap, Swapcat, YAM) by
retrieving offer creation timestamps and fulfillment details using marketplace-specific

methods. Offer creation data are recorded on-chain for Swapcat and YAM; Airswap

13For a full overview of the payment tokens and their distribution, please refer to Appendix A.7.
In AMMs, multihop swaps, which exchange assets through intermediate tokens, can generate mul-
tiple transactions requiring consolidation.
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Figure 4: All transaction prices by market mechanism
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Note: This figure shows all transaction prices segmented by market mechanisms (N = 444,535).

processes offers off-chain, but its minimal transaction volume makes its exclusion neg-
ligible. Time on Market is calculated as the interval between offer creation and ful-
fillment. Prices are fixed by offer creators, thus we exclusively use final transaction
prices.

Liquidity pool data (AMM): We extract liquidity pool reserves and token ex-
change amounts before and after each swap from Uniswap v1/v2 (Ethereum) and Levin-
swap (Gnosis). Real estate tokens each have distinct liquidity pools, typically paired
with payment tokens (e.g., USDC, ETH). Reserve data are retrieved using blockchain-
specific APIs, and token prices are calculated using the constant product formula P = £,
where = and y represent the quantities of RWA and payment tokens in the pool, re-
spectively.

Slippage, defined as the difference between the execution price and the pre-swap

price, is calculated as:

P xecution P T
Slippage _ Executio Befo e7 (13)
PBefore

where Pgyecution 1S the actual price at which the swap is executed, and Ppgegore 1S the
price based on the pool reserves before the swap. Detailed methodological descriptions

of the metadata can be found in Appendix A.11.

3.8. Price Signals

Each mechanism generates distinct publicly available price signals essential for

traders and price discovery (Section 4.3). While transaction prices reflect executed
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trades, price signals indicate market prices at any time, even without transactions.
These signals vary by mechanism and guide trading decisions. Our dataset comprises
1,301,828 price signals across all tokens, visualized in aggregate in Figure A.12 and
described in greater detail in Appendix A.10. Below, we briefly outline how each type
of price signal is derived.

Buyback price signals: The Buyback price signals are continuously set by the
centralized token issuer based on external property appraisals commissioned by the
company. All historical buyback prices are available on the issuer’s website (RealT).

P2P price signals: The Time on Market, described in Section 3.2, reflects how
long an offer remains active and serves as a publicly available price signal, with each offer
specifying a fixed price and quantity. Since multiple offers from different participants
often exist simultaneously, the P2P price signal for token ¢ at time ¢ is defined as the
quantity-weighted average of all active offer prices, computed by summing the product
of each offer’s price and its corresponding quantity, and dividing by the total quantity
across all active offers for that token and time.

AMM price signals: The AMM continuously generates price signals based on

liquidity pool reserves and the constant product market-making mechanism.

3.4. Descriptive statistics

Table 1 presents descriptive statistics on real estate token trades at both the intra-
day (transaction-level) and daily intervals, as used in our regression analyses in Section
4. Our dataset covers 511 unique tokens.'> Intraday, the average token amount per
trade is 0.79 (SD = 4.63), with a median of 0.05 and a maximum of 965.03 tokens,
reflecting substantial trade size variability. AMMSs account for 76% of intraday trades,
mainly in smaller transactions, while P2P and Buyback mechanisms account for 21%
and 3%, respectively. The majority (76%) of secondary market activity involves the sale
of real estate tokens, with the remaining 24% comprising token purchases. Mechanism
usage percentages at the daily interval are computed by aggregating all intraday trades
per token by mechanism and calculating each mechanism’s share of the total daily
traded volume in dollars for that token. This volume-based weighting approach accu-

rately captures the relative economic significance of each mechanism at the token level.

5The descriptive variables for the real estate tokens are presented in Table A.6 in the Appendix.
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While the average and median price signals are similar across mechanisms, the Buyback
mechanism consistently shows the lowest price signals, whereas P2P mechanisms dis-
play the highest. AMM shows the highest variability in price signals.'® Notably, only
1% of all transactions (8% of all transaction volume) occur on the Ethereum blockchain,
which has been largely replaced by the more cost-efficient Gnosis chain, an Ethereum
sidechain. Daily, the average volume traded per token is $180.22 (SD = 765.50), with
a median of $26.67 and a maximum of $54,498. The average trade count per token per
day is 4.11 (median = 2), suggesting generally low trading frequency but with spikes
up to 576 trades. Slippage is only defined on days with at least one AMM transaction.
Because imputing zeros would bias the interpretation of this control variable, we re-
strict the sample accordingly in the regression analysis, which reduces the number of
usable token-day observations for AMM relative to P2P and Buyback. In summary, the
daily data further reveals substantial heterogeneity in trading activity, liquidity, and
mechanism choice, with a generally clear preference for P2P and AMM mechanisms.

Arbitrage opportunities emerge from structural price differences both within and
across decentralized liquidity mechanisms. To empirically identify such behavior, we
analyze transaction-level blockchain data using wallet-level identifiers (wallet addresses)
alongside transaction directionality—specifically, the recipient (to) and sender (from)
addresses. We classify as arbitrage any sequence in which the same wallet buys and
sells (or sells and buys) the same token within a predefined time window—1 hour in the
baseline analysis and 5 minutes in robustness checks (see Section 5.1). While these pat-
terns resemble classical arbitrage, they are more accurately described as quasi-arbitrage
due to real-world execution constraints in decentralized environments. Imperfect price
discovery, liquidity fragmentation, and timing delays introduce risk and frictions that
prevent arbitrage from being truly simultaneous or risk-free. Nevertheless, our iden-
tification strategy offers a consistent proxy for detecting arbitrage-like behavior. We
identify 111,686 arbitrage transactions, representing approximately 25% of all observed
trades.

To classify arbitrage into within-mechanism and into-mechanism categories, we focus

on the mechanism used in the sell leg of each arbitrage sequence—where tokens are

16The extremely high maximum price signal ($7,134) in AMMs stems from a de facto empty liquidity
pool, causing a significant distortion in the reserve ratios.
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offloaded and liquidity is demanded. Since each arbitrage trade consists of two legs, this
sell-side classification avoids double-counting and more accurately captures where price
pressure and liquidity usage occur. For example, if a wallet acquires tokens through a
P2P trade and subsequently sells them into an AMM pool within the predefined time
window, the volume is labeled Arbitrage into AMM, with AMM identified as the exit
venue. We analyze the daily, per-token volume of arbitrage both within and into each
liquidity mechanism, allowing us to assess arbitrage activity and mechanism usage.
Naturally, given the fragmented structure of these markets—particularly in the early
stages of secondary trading—and the strict wallet-, address-, and time-based criteria
for identification, certain token-day combinations show no detectable arbitrage activity.

Additionally, we classify traders according to their market sophistication using trans-
action frequency and volume on both the buy (to) and sell (from) sides. Our classifica-
tion is based on wallets engaged in trading a given token on a given day. Wallets con-
sistently engaging in high-frequency and high-volume transactions (90th percentile) on
the sell side (high frequency/volume sellers) are classified as sophisticated sellers (high
frequency seller x high volume seller), whereas wallets with low-frequency and low-
volume transactions (10th percentile) on the sell side are classified as unsophisticated
sellers (low frequency seller x low volume seller). We specifically define arbitrageurs as
wallets exhibiting exceptionally high-frequency and high-volume transaction patterns
simultaneously on both the buy and sell sides (high frequency/volume buyer x high
frequency/volume seller), indicative of short-term profit-seeking behavior rather than
long-term investment motives. Such short-term buying-and-selling patterns would typ-
ically not be economically rational for regular investors. This combined classification
facilitates a detailed empirical assessment of how different trader types and arbitrage

" To examine the interplay between trading behavior

behaviors influence liquidity.*
and liquidity across market mechanisms, we compute liquidity measures for each to-
ken at a daily level. Given the absence of conventional bid-ask spreads, we rely on
transaction-based proxies derived from price data (open, high, low, close), transaction
counts, and dollar volumes. We include Amihud illiquidity (Amihud, 2002), high-low

spread, the Corwin and Schultz Estimator (Corwin and Schultz, 2012), and turnover

17Since DeFi trade volume does not clearly indicate trade direction, we infer behavior at the wallet
level. Consequently, deviations from exact 90th or 10th percentile thresholds arise at the daily level
due to our volume-based classification.
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ratio—using token-level market valuation. Complete variable definitions, formulas, and
further details are provided in Table A.2 and A.3.

Table 1: Descriptive statistics

Variable N Mean St. Dev. Min 25% Median 75% Max
Intraday Perspective
Realtoken Amount 444,535 0.79 4.63 0.00 0.01 0.05 0.18 965.03
Dollar Amount 444,535 43.87 252.17 0.00 0.57 2.61 9.94 54,495
Transaction Price USD 444,535 55.90 15.91 5.56 50.51 53.44 57.64 535.93
Total Transaction Fee USD 444,535 0.29 2.60 0.00 0.002 0.003 0.015 133.54
Realtoken Sell 444,535 0.76 0.43 0.00 1.00 1.00 1.00 1.00
Realtoken Buy 444,535 0.24 0.43 0.00 0.00 0.00 0.00 1.00
AMM Mechanism 444,535 0.76 0.43 0.00 1.00 1.00 1.00 1.00
P2P Mechanism 444,535 0.21 0.41 0.00 0.00 0.00 0.00 1.00
Buyback Mechanism 444,535 0.03 0.16 0.00 0.00 0.00 0.00 1.00
Price Signal AMM USD 443,956 56.22 32.46 2.14 50.51 53.55 58.02 7,134
Price Signal P2P USD 413,337 58.84 13.92 10.00 52.88 56.00 60.99 299.00
Price Signal Buyback USD 444,535 52.87 12.06 41.50 50.23 50.85 52.08 185.80
Gnosis Blockchain 444,535 0.99 0.12 0.00 1.00 1.00 1.00 1.00
Ethereum Blockchain 444,535 0.01 0.11 0.00 0.00 0.00 0.00 1.00
Dependent Variables (Intraday Perspective)
Arbitrage 444,535 0.251 0.434 0 0 0 1 1
Arbitrage Volume 111,686 10.589 88.777 0.000 0.517 0.998 4.987 9,245.768
Dependent Variables (Daily Perspective)
AMM Usage (in %) 108,217 0.51 0.48 0.00 0.00 0.51 1.00 1.00
P2P Usage (in %) 108,217 0.40 0.47 0.00 0.00 0.00 1.00 1.00
Buyback Usage (in %) 108,217 0.09 0.28 0.00 0.00 0.00 0.00 1.00
Turnover Ratio Token M’Cap 108,217 0.000884 0.002962 0.00 0.000038 0.000158 0.000711 0.14
Volume per Token USD 108,217 180.22 765.50 0.00 5.53 26.67 106.00 54,498.48
Number of Trades per Token 108,217 4.11 9.41 1.00 1.00 2.00 4.00 576.00
Amihud 59,772 0.003248 0.02 0.00 0.000076 0.000742 0.001745 0.92
CS Estimator 59,321 0.007082 0.03 0.00 0.00 0.00 0.001748 1.32
High Low 59,820 0.06 0.11 0.00 0.008659 0.03 0.06 1.73
Control Variables (Daily Perspective)
Arbitrage into AMM 108,217 0.98 14.30 0.00 0.00 0.00 0.00 1,574
Arbitrage within AMM 108,217 5.25 149.80 0.00 0.00 0.00 0.00 24,812
Slippage 67,045 —0.001 0.027 —0.574 —0.008 —0.003 0.007 2.537
Liquidity Pool Value (USD) 107,726 2,098.898 5,559.669 0.000 646.478 1,704.525 2,354.962 190,297.600
Arbitrage into P2P 108,217 0.77 65.95 0.00 0.00 0.00 0.00 17,921
Arbitrage within P2P 108,217 1.44 94.44 0.00 0.00 0.00 0.00 22,990
Arbitrage into Buyback 108,217 0.02 4.04 0.00 0.000 0.00 0.00 1,164
Transaction Price/Buyback A 108,217 0.071 0.151 —0.828 0.000 0.039 0.108 7.183
High Volume Buyer 108,217 0.850 0.327 0.000 1.000 1.000 1.000 1.000
High Frequency Buyer 108,217 0.007 0.073 0.000 0.000 0.000 0.000 1.000
High Volume Seller 108,217 0.007 0.078 0.000 0.000 0.000 0.000 1.000
High Frequency Seller 108,217 0.803 0.366 0.000 0.833 1.000 1.000 1.000
Low Frequency Seller 108,217 0.006 0.069 0.000 0.000 0.000 0.000 1.000
Low Volume Seller 108,217 0.007 0.078 0.000 0.000 0.000 0.000 1.000
Blockchain Transaction Fee USD 108,217 0.19 1.83 0.000027 0.000415 0.000595 0.001044 114.36
Volatility 7 Days 104,711 0.070 0.073 0.000 0.032 0.051 0.081 1.367
Market to Appraisal Ratio 108,217 1.27 0.27 0.18 1.15 1.22 1.33 9.70
Cumulative Return ETH (One Week before) 108,217 0.009149 0.11 -0.51 -0.05 0.002699 0.07 0.68
Average Ethereum Fee USD 108,217 11.46 12.95 0.07 3.71 6.22 13.93 200.06
One Month Treasury A 108,217 0.004667 0.15 -1.39 -0.001800 0.00 0.001803 1.79
Ten Year Treasury A 108,217 0.001076 0.02 -0.32 -0.006734 0.00 0.01 0.34
ADS Index A 108,217 -0.002247 0.34 -2.69 -0.05 0.002455 0.05 6.17
S&P Case Shiller Index A 108,217 0.006692 0.009617 -0.01 -0.002628 0.008109 0.01 0.03
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Note: This table reports the number of observations, mean, standard deviation, minimum, 25" per-
centile, median, 75" percentile, and maximum for the data on the transaction level (intradaily) and
aggregated to daily intervals for the relevant dependent and control variables. Mechanism usage (%) is
calculated as a weighted average, with weights based on transaction volume (Volume per Token USD).
For the full table of intradaily transactions, see Table A.4 in the Appendix.

4. Main results

4.1. Simulation

To simulate optimal trade allocation outcomes in our fragmented market setting,
we solve the constrained optimization problem developed in Section 2.3 based on an-
alytically derived first-order conditions (see Appendix A.14), and compute the exact
solution numerically across a range of empirically grounded parameter combinations
(Table 3). This approach allows us to examine how trade volume is optimally allocated
under varying market and trading conditions.

For each scenario, we solve the cost minimization problem in Equation (10), subject
to the market clearing condition (8) and the liquidity constraints (9).'®

We use sequential quadratic programming, an iterative method for constrained non-
linear optimization!'?, and initialize the solver with an economically motivated starting
point that allocates more volume to mechanisms with lower execution cost per efficiency
unit.?® This initialization approximates the expected direction of the optimum, while
the final allocation is obtained by solving the full optimization problem.

We simulate optimal allocations over a grid of parameters, including mechanism-
specific liquidity, transaction fees, price signal quality, execution time, and trader sen-
sitivities to time and fees. The scenarios, summarized in Table 3, are based on an em-
pirically calibrated baseline and extended to explore alternative market environments

and mechanism configurations.

8While the model assumes interior solutions, the simulation enforces liquidity constraints. Corner
solutions may occur when the trade size exceeds available liquidity in a mechanism—especially by
design as trade size and available liquidity vary independently in the simulation setup—but are handled
numerically and do not affect comparative outcomes.

9We apply the Sequential Least Squares Programming (SLSQP) algorithm from the
scipy.optimize.minimize package in Python.

20For details on the initial allocation, see Appendix A.14.
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To define the key varying parameters—trade size and available liquidity—we use
the 10th and 90th percentiles within each mechanism to define range boundaries, and
median values for fixed parameters, based on empirical observations (Table A.5). Buy-
back liquidity is held constant, as determined by the issuing company. Transaction fees
and execution times reflect observed mechanism characteristics. P2P execution time
is based on the average time on market to better capture long waiting periods, while
Buyback execution specifications reflect batch processing and company-reported time-
lines. AMM execution is near-instant due to its technical design and is approximated
as 1. Relative price signal quality is defined on a 0-1 scale, reflecting the structural
design of each pricing mechanism.?!

For each parameter combination, we compute the optimal trade allocation across
mechanisms by solving the optimization problem. The results are visualized as a three-
dimensional allocation landscape in Figure 5. These simulated allocation patterns serve
as a comparative statics tool, illustrating how investors adapt their selling behavior in
response to market frictions, liquidity constraints, and varying trade sizes. Additional
variations, particularly those involving non-neutral trader sensitivity parameters, are

presented in Appendix A.14.

21Collective P2P pricing is most precise (0.9), AMMs exhibit some inefficiencies due to deterministic
pricing rules (0.8), and Buyback relies on externally appraised values, making them less responsive to
market information (0.7). These rankings align with the information share analysis (Figure 8) and are
supported by findings on the lower price informativeness of AMM prices (Angeris et al., 2019).
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Table 3: Parameter combinations for trade allocation analysis under different market conditions

Parameter Empirical Early Market / Improved P2P
Baseline (1) Improved AMM (2) Buyback (3) Fees (4)

Trade Size q $0.5-$1,100 $0.5-$1,100 $0.5-$1,100 $0.5-$1,100
Available Liquidity Lanviv $955 $18,685 1 $955 $955
(Market Depth) Lpop $61-$12,130 $61-$12,130 $61-$12,130 $61-$12,130

Ly $2,000 $2,000 $2,000 $2,000
Transaction Fees Fanvm 0.3% 0.3% 0.3% 0.3%

szp ~0 ~0 ~0 0.5% T

g 3% 3% 1% | 3%
Execution Time tAMM ~ = ~1 ~1

tpap 25 25 25 25

EB, min 7 7 2 J/ 7

iB, max 10 10 4 J, 10
Price Signal Quality navwMm 0.8 0.8 0.8 0.8

1P2P 0.9 0.9 0.9 0.9

7B 0.7 0.7 0.75 1 0.7
Sensitivity ~ (Time) 1 1 1 1

B (Fees) 1 1 1 1

Note: The table presents various parameter combinations inserted into the optimization framework in Section 2.3 to
solve for the optimal trade allocation across AMM, P2P, and Buyback. Arrows (7, |) denote directional changes from
the Empirical Baseline (1). Ranges indicate the varying parameters on the axes in Figure 5. To ensure nonlinear P2P
execution costs relative to liquidity, we set § = 1.2, with 1 < § < 2, allowing for a strictly convex but flatter cost curve
than the AMM’s quadratic specification. Increasing ¢ amplifies the cost of large P2P trades, thereby shifting allocations
accordingly. Ly refers to the dollar value of the counter-reserve (i.e., the token received), which effectively determines
market depth and slippage in a constant-product pool. k, controlling how execution time responds to buyback size, is
fixed at 1 to avoid over-parameterization.

The resulting Empirical Baseline (1) scenario in Figure 5 highlights the overall dom-
inating trade volume allocation on P2P, as also illustrated in the empirical breakdown
of monthly trading volume in the next section (Figure 6). Yet, particularly when P2P
liquidity is low, very small trades tend to shift toward AMMs due to instant settlement
and minimal slippage, while larger trades increasingly move to Buybacks once they
exceed what AMMs can efficiently absorb. In the Early Market / Improved AMM (2)
scenario, we statically increase the AMM liquidity pool to $18,685, reflecting the median
payment token pool reserve during the early market phase up to March 17, 2021, the
point at which the cost-efficient Gnosis sidechain emerged, overall transaction activity
and P2P trading increased (Figure 6 and 7). The higher AMM liquidity, effectively
representing an improved AMM, leads to greater AMM allocation due to reduced slip-
page. This is particularly evident at very low levels of P2P liquidity, mirroring the
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early market period when P2P trading volume were barely present (Figure 6). Dur-
ing this time of market evolution, cross-mechanism arbitrage was virtually nonexistent
(Figure 8). As a result, AMM pools remained stable and largely unexploited, leading
to heavier AMM usage. However, when we increase P2P liquidity and trade size along
the axis, once again AMM loses allocation due to slippage disadvantages. The Improved
Buyback (3) scenario shifts trade across all sizes away from P2P and, to some extent,
AMM toward Buybacks, as lower fees (1%), faster execution (maximum 4 days), and
improved price signal quality (0.75) make Buybacks more competitive. The introduc-
tion of a modest 0.5% transaction fee on P2P, for instance as part of potential protocol
monetization, in the P2P Fee (/) scenario meaningfully reduces P2P allocation, shift-
ing smaller trades toward AMMSs and larger trades toward Buybacks. This highlights
how sensitive the competitive balance is to fee structures in a multi-mechanism setting.
The next section traces the marketplace’s evolution over time and empirically validates

these framework-derived patterns.
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Figure 5: Optimal trade allocation

Empirical Baseline (1) Improved AMM / Early Market (2)
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Note: This figure shows the resulting optimal trading allocations when solved the optimization problem in Section 2.3
using the parameters from Table 3.

4.2. Liquidity trends and market evolution

In alignment with the simulated optimal trade allocation outcomes, we observe a
clear reallocation of trading activity across liquidity mechanisms. From 2019 to early
2024, tokenized RWA markets shifted from AMM dominance to P2P trading, consis-
tent with our theoretical predictions. AMMs initially dominated due to their instant
execution, relatively low-fees, continuous liquidity—and perhaps most crucially—the
absence of a developed P2P market. However, increased opportunities for exploitable
arbitrage between AMMs and P2P, enabled by lower transaction costs on the Gnosis
blockchain, the maturation of P2P platforms, and the collapse of the Levin token in late
2021, triggered a major withdrawal of AMM liquidity. This marked a turning point
and led to a sharp and sustained decline in AMM usage (see Figures 6, 7, and 11).

Beginning in late 2021, P2P marketplaces gained traction and became the dominant
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trading mechanism by early 2022. Their flexibility in pricing and accommodation of
irregular trade patterns made them better suited to the heterogeneity of RWA tokens,
despite higher search costs and lower execution certainty. Centralized buybacks, while
infrequent, consistently handled large transactions, acting as a stable but limited lig-
uidity outlet. These dynamics confirm our framework’s prediction: traders adjust their
venue choice based on execution constraints, liquidity depth, and pricing flexibility. In
the following sections, we explore the underlying economic drivers of this evolution in

greater depth.

Figure 6: Transaction volume by market Figure 7: Number of transactions by market
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Note: This figure presents the monthly transaction Note: This figure presents the monthly number of
volume in USD categorized by market mechanisms. transactions categorized by market mechanisms.

4.3. Price discovery and arbitrage within fragmented markets

Building on the fragmented liquidity structures documented above, we now exam-
ine how different mechanisms contribute to price discovery—and whether fragmentation
creates persistent inefficiencies that arbitrageurs exploit. The different mechanisms gen-
erate distinct and often conflicting price signals, complicating valuation and execution.
The key question is whether these signals converge to form a consistent market price
or instead reflect structural dislocations that facilitate arbitrage across venues.

To quantify each mechanism’s role in price formation, we apply the information
share metric proposed by Hasbrouck (Hasbrouck, 1991a,b, 1995), a standard approach
in market microstructure. This method decomposes the variance of residuals from a
cointegrated price system to estimate the relative contribution of each venue to the
common efficient price. A higher information share indicates a stronger influence on

price discovery, while a lower share suggests limited informational relevance. Although
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traditional applications adjust for correlated innovations across venues, this adjustment

is less informative in our setting due to structural misalignment between Buyback prices

and actual trading prices.??

Figure 8: Information share analysis and arbitrage volume across market mechanisms
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Note: This figure presents the information share analysis (left) and arbitrage volume (right) across market mechanisms.
The left panel shows the distribution of information shares across mechanisms for all transactions over monthly intervals,
illustrating the evolving contributions of AMM, P2P, and Buyback designs to price discovery. The right panel reports
arbitrage volumes over the same period, highlighting liquidity flows and the relative importance of different arbitrage
types. For methodological details on information share computation, see Appendix A.4.

The fragmented structure of liquidity mechanisms gives rise to interdependent dy-
namics between price discovery and arbitrage. Figure 8 illustrates this interaction. The
left panel shows the evolution of the information share, capturing each mechanism’s
contribution to price discovery based on deviations from executed transaction prices.
As P2P infrastructure matures, it surpasses AMMs by mid-2022, indicating a shift in
where market participants anchor their pricing. By 2023, AMM and P2P contributions
converge, suggesting a more competitive price discovery environment. The right panel
plots arbitrage volumes, revealing how diverging price signals are exploited. While ar-
bitrage helps align prices, it also exploits persistent inefficiencies across them. Taken
together, the two panels highlight how evolving price leadership across mechanisms
shapes both arbitrage behavior and liquidity allocation.

To formally evaluate how arbitrage activity influences the perceived efficiency of

each mechanism, we estimate the following panel regression model:

22For details on the computation and interpretation of information share, see Appendix A.4.
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Usage]; = 51 - ArbInto;’; + B, - ArbWithin;";, 4 B3 - Controls; ; + X;t'y +a;+ 0+ (14)

where the dependent variable Usage;’; denotes the daily usage share (in %) of mechanism
m € {AMM, P2P, Buyback} for token 7 on day ¢. The variable ArbInto;; captures arbi-
trage volume into mechanism m, defined as arbitrage trades that exit via mechanism m.
ArbWithin}", measures arbitrage volume occurring entirely within mechanism m, where
both legs of the trade are executed in the same venue. Controls include Slippage;,
(AMM-only), and a vector X;; comprising transaction fees, short-term volatility, valu-
ation spreads, ETH returns, and macroeconomic indicators such as Treasury yields, the
ADS Index, the Case-Shiller Index, and gas fees. Token-level fixed effects are captured
by o, while §; denotes year-month fixed effects. The error term ¢;, is clustered at the

token level.
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Table 4: Arbitrage flow and mechanism efficiency

Dependent variable:
AMM Usage (in %) P2P Usage (in %) Buyback Usage (in %)

&) (2 (3)
Arbitrage into mechanism m —0.0003*** 0.0001*** 0.0001
(0.0001) (0.00002) (0.0002)
Arbitrage within mechanism m 0.00002*** —0.00001 /
(0.00000) (0.00001)
Slippage 0.273*** / /
(0.081)
Blockchain Transaction Fee USD 1.210%** —4.737*** 4.897***
(0.254) (0.332) (0.718)
Volatility 7 Days 0.042** —0.191*** 0.173%**
(0.019) (0.032) (0.022)
Market to Appraisal Ratio —0.050*** 0.276*** —0.232%**
(0.019) (0.087) (0.059)
Cumulative Return ETH (One Week) —0.111%** 0.067*** 0.043***
(0.010) (0.018) (0.013)
Average Ethereum Fee USD 0.0001** —0.001*** —0.0001**
(0.0001) (0.0001) (0.0001)
One Month Treasury A —0.005** 0.010*** 0.002
(0.002) (0.003) (0.003)
Ten Year Treasury A —0.0001 —0.085** 0.095***
(0.024) (0.037) (0.029)
ADS Index A —0.001 —0.003 —0.007***
(0.002) (0.003) (0.002)
S&P Case Shiller Index A —0.249 —1.886*** 1.543***
(0.481) (0.689) (0.360)
Individual Fixed Effects Yes Yes Yes
Year-Month Fixed Effects Yes Yes Yes
Observations 65,140 104,711 104,711
R2 0.153 0.297 0.068
Adjusted R? 0.146 0.293 0.063

Note: The table presents results for the panel regression of mechanism usage (in %) on a daily basis with respect to
arbitrage within and into the mechanism. All models include year-month-fixed effects and token-level individual-fixed

effects. Robust standard errors clustered at the token level are shown in parentheses. The symbols *, ** and *** denote

significance at the 10%, 5%, and 1% levels, respectively. All variables are defined in the Appendix.

Table 4 shows first correlative evidence for the relationship between arbitrage ac-
tivity and mechanism usage. We interpret daily usage shares as proxies for perceived
mechanism efficiency and assess whether arbitrage flows increase or reduce a venue’s
attractiveness. Arbitrage into AMMs significantly reduces their overall usage (coef-
ficient: —0.0003, p < 0.01). Since usage is measured in decimal format, where 0.01
equals 1%, this implies that each additional dollar in arbitrage flow into AMMs reduces
usage by approximately 0.03%. This negative relationship suggests that arbitrageurs
primarily extract rather than contribute liquidity. Their activity depletes pool depth,

increases execution costs, and amplifies adverse selection risks (Capponi and Jia, 2021;
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Park, 2023). In contrast, arbitrage within AMMs has a small but statistically signif-
icant positive effect (coefficient: 0.00002, p < 0.01), indicating that each additional
dollar in internal arbitrage increases usage by 0.002%, reflecting marginal improve-
ments in pricing stability without materially boosting perceived efficiency. Slippage is
positively associated with AMM usage (coefficient: 0.273, p < 0.01), which may reflect
traders’ continued reliance on AMMs for guaranteed execution—even at deteriorating
prices. Usage also rises with blockchain transaction fees (coefficient: 1.210, p < 0.01),
consistent with AMMs being the preferred venue under high-friction conditions due
to their immediate liquidity. Arbitrage into P2P mechanisms increases usage slightly
(coefficient: 0.0001, p < 0.01), corresponding to a 0.01% increase in usage per addi-
tional dollar of arbitrage. Arbitrage within P2P has no significant effect (coefficient:
—0.00001), implying limited impact of internal flow on user behavior. P2P usage de-
clines with volatility (—0.191, p < 0.01) and is highly sensitive to transaction fees
(—4.737, p < 0.01), consistent with search frictions and delayed execution under un-
certainty. Buybacks act as a stabilizing fallback. Arbitrage into buybacks increases
usage marginally, although the effect is not statistically significant. Because contem-
poraneous regressions may suffer from endogeneity, we re-estimate the specification
using future usage (at t 4+ 1) as the dependent variable and exclude arbitrage within
a mechanism to avoid mechanically inflating usage, see Table A.10 in the Appendix.
The results remain consistent, albeit with lower explanatory power. We additionally
estimate log-ratio regressions to account for the compositional nature of mechanism
usage shares, which sum to one; the results in Tables A.11 and A.12 confirm that our
main findings remain consistent.

These results highlight the dual role of arbitrage in fragmented markets: it can
improve pricing within mechanisms but also erode liquidity across venues—particularly
in AMMs. Despite deterministic pricing, AMMs continue to serve as a default for
instant execution, while P2P mechanisms grow in importance when search costs are low
and volatility is manageable. Buybacks offer predictable exit routes but are structurally
disconnected from real-time price signals. While the regression results reveal strong
correlations between arbitrage activity and mechanism usage, they leave open whether
these patterns reflect causal effects or are driven by trader self-selection into venues
with favorable conditions. To address this identification challenge, we next implement

a difference-in-differences design around the collapse of the TerraUSD (UST / Terra
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Luna) stablecoin—an exogenous shock to market conditions—to assess whether AMMs

are systematically more exposed to arbitrage exploitation during periods of stress.

4.4. Difference-in-differences analysis: The UST collapse
The collapse of the TerraUSD (UST) stablecoin on May 7, 2022 constitutes a highly

suitable exogenous shock for analyzing the causal impact of systemic stress on arbi-
trage behavior in fragmented decentralized markets.?®> Importantly, none of the lig-
uidity pools or tokens in our dataset are directly paired with UST or its sister token
Luna, which insulates our sample from mechanical price contagion through direct as-
set linkages or reserve rebalancing. Instead, the shock introduced broad-based mar-
ket uncertainty across the DeFi ecosystem—triggering volatility, fee spikes, liquidity
withdrawals, and, crucially, execution frictions. The depegging of UST and the re-
sulting loss of confidence spilled over into other stablecoins, many of which temporarily
traded at discounts or experienced lagged adjustments, thereby creating a wave of cross-
stablecoin arbitrage opportunities (Uhlig, 2022; Briola et al., 2023; Lee et al., 2023).
These second-order effects, while externally imposed and orthogonal to the fundamen-
tals of the tokenized real estate assets in our sample, altered arbitrage profitability
across trading venues in ways unrelated to token characteristics. As such, the UST
collapse provides a quasi-experimental setting that enables identification of the causal
relationship between market fragmentation and arbitrage behavior—particularly the
comparative vulnerability of different liquidity mechanisms to price inefficiencies.

To test whether AMMSs are more exposed to arbitrage exploitation in fragmented
markets than P2P marketplaces during periods of market instability, we implement a
transaction-level difference-in-differences (DiD) design that leverages the UST collapse
as an exogenous shock most similar to Makarov and Schoar (2020) or Brogaard et al.
(2025). We regress the binary dependent variable, Arbitrage,, which equals one if
the same wallet executes a profitable trade (buy-sell or sell-buy) in the same token
within a 60-minute window—regardless of the underlying trading mechanism—and zero
otherwise. The treatment group consists of trades executed through AMMs, while the

control group includes trades completed on decentralized P2P marketplaces. We define

23 At the time, UST was the third-largest stablecoin by market capitalization at $18 billion—after
USDT and USDC—and deeply embedded in the DeFi ecosystem. Its collapse triggered widespread
contagion across crypto markets (Briola et al., 2023).
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the post-event period as trades occurring on or after May 7, 2022, and restrict the
analysis to a narrow two-week window (May 1-14) to avoid contamination from longer-

term market adjustments. The regression model is specified as:

Arbitrage;, = o + PLAMM; + a2 Post, + B3(AMM; x Post,) + X5,y + as + e (15)

where AMM; is a dummy variable equal to one if the transaction occurred via an
AMM, and Post; equals one if the transaction occurred on or after May 7. The inter-
action term AMM; x Post, captures the differential increase in arbitrage probability for
AMM-based trades relative to P2P trades in the wake of the shock. The vector X
includes transaction-level controls: total transaction fees as a percentage of trade size,
the token’s market-to-appraisal ratio, and the dollar value of liquidity pool reserves
(for AMM trades). Fixed effects a, absorb all time-invariant token-level heterogeneity,
and standard errors are clustered at the token level. Across linear probability, logit,
and probit specifications, we find a significant post-shock increase in arbitrage proba-
bility for AMM transactions in comparison to P2P. These findings demonstrate that
deterministic, passive pricing structures—characteristic of AMMs—are more suscepti-
ble to arbitrage during periods of instability than their custom-priced P2P counterparts,

highlighting a core vulnerability of fragmented decentralized market designs.
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Table 5: Difference-in-differences of arbitrage

Dependent variable: Arbitrage

OLS Logit Probit
1) (2) (3)
AMM 0.073* 1.326*** 0.632***
(0.038) (0.368) (0.160)
Post Event 0.012 0.203 0.089
(0.039) (0.445) (0.194)
Total Fee (%) —4.079*** —24.690*** —12.570***
(0.521) (4.729) (2.387)
Market-to-Appraisal Ratio —0.735%** —0.497*** —0.248***
(0.147) (0.130) (0.067)
Liquidity Pool Value (USD) 0.00024** 0.000063*** 0.000041***
(0.00009) (0.00002) (0.00001)
AMM x Post Event 0.093** 0.773* 0.447**
(0.032) (0.453) (0.199)
Individual-Fixed Effects Yes No No
Clustered SE Yes No No
Observations 10,609 10,609 10,609
Adjusted R2 0.174 - -

Note: This table reports regression results for the binary outcome arbitrage across three specifications. Model (1) is
estimated using OLS with symbol fixed effects and standard errors clustered at the symbol level. Models (2) and (3)

are estimated using Logit and Probit specifications, respectively. Coefficient estimates are shown with standard errors

in parentheses. The symbols *, **| and *** denote significance at the 10%, 5%, and 1% levels, respectively.

The regression results in Table 5 provide strong empirical support for the hypothesis
that AMMSs are more vulnerable to arbitrage exploitation during periods of systemic
stress than their P2P counterparts. Across all three model specifications—OLS, Logit,
and Probit—the interaction term AMM x Post Event is positive and statistically sig-
nificant, indicating that the probability of arbitrage increases disproportionately for
AMM-based trades following the UST collapse. In the OLS specification, the post-
shock arbitrage probability is 9.3 percentage points higher for AMM trades relative
to P2P, holding all else constant. This finding is echoed in the non-linear models,
where the marginal effect remains significant, albeit with smaller coefficients due to
the scaling of logit and probit transformations. Importantly, the baseline AMM indi-
cator is also significant, suggesting that even prior to the shock, AMMs exhibited a
higher arbitrage propensity. Meanwhile, transaction-level controls behave as expected:
higher fees reduce arbitrage—an economically modest but statistically significant effect,
given that fees are expressed in decimal form (e.g., 0.005 = 0.5%), so a one percentage
point increase corresponds to only a 4.1 basis point decline in arbitrage probability.

Deeper AMM liquidity and more severe pricing deviations (as captured by market-to-
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appraisal ratios) influence arbitrage likelihood in predictable directions. To support
the parallel trends assumption required for causal interpretation of the DiD estimator,
Figure 9 plots the daily arbitrage probability separately for AMM and P2P transac-
tions over the two-week event window. The arbitrage rate is simply calculated as the
percentage of trades classified as arbitrage relative to the total number of trades of
one day per market mechanism. Prior to the UST collapse on May 7, arbitrage rates
for both mechanisms move in parallel and at low levels, indicating comparable base-
line trends. Immediately following the shock, we observe a pronounced and persistent
increase in AMM-based arbitrage, while P2P arbitrage remains low. The absence of
pre-treatment divergence and the clear post-treatment separation suggest that the DiD
interaction term captures a genuine mechanism-level shift in arbitrage behavior driven
by the shock, rather than underlying trends. In unreported analyses, we also include
alternative specifications controlling for daily return volatility, and our results remain
robust. Descriptive details and a robustness check using a 5-minute arbitrage window

are provided in Appendix A.13.

Figure 9: Parallel Trends
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Note: This figure plots the daily arbitrage probability for trades executed via AMMs and P2P marketplaces between
May 1 and May 14, 2022. The vertical dashed line marks the collapse of the UST stablecoin on May 7, used as the
exogenous shock in our difference-in-differences design. Both mechanisms exhibit parallel trends prior to the shock,
followed by a sharp divergence with AMM arbitrage increasing and P2P remaining low.

Collectively, the results underscore the fragility of deterministic pricing mechanisms
in fragmented markets under stress, highlighting the relative robustness of custom-

priced P2P marketplaces when facing systemic disruptions. To better understand how
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vulnerabilities emerge from fragmented market design, we now turn to the role of trader

behavior across mechanisms.

4.5. Investor sophistication and trading behavior

To analyze who exploits fragmented markets—similar to informed traders in tradi-
tional financial settings—we use wallet-level blockchain data to classify participants by
trading frequency, volume, and directional activity (i.e., from vs. to address behavior).
As in conventional markets, traders vary in sophistication, speed, and market access.
Understanding how these characteristics relate to mechanism usage and liquidity dy-
namics is central to our analysis. Specifically, we examine how trader sophistication
influences engagement with the mechanisms at the token-day level. We estimate the
following panel regression to examine how trader sophistication relates to daily usage

of different liquidity mechanisms:
Usage}, = 51~Arbitrageuri’t+ﬁ2-SophSelli7t+ﬁg'UnsophSellw+X;7t7+ai+5t+6i,t (16)

where Usage;’; denotes the percentage share of trades routed through mechanism m for
token i on day ¢. The variables Arbitrageur, ;,, SophSell, ;, and UnsophSell; , are dummy
variables indicating whether trading activity for token ¢ on day ¢ is dominated by wallets
classified as arbitrageurs, sophisticated sellers, or unsophisticated sellers, respectively.
The control vector X;; includes , and the model includes token-level fixed effects (o)

and year-month fixed effects (J;). Standard errors are clustered at the token level.
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Table 6: Trader sophistication and mechanism usage

Dependent variable:
AMM Usage (in %) P2P Usage (in %) Buyback Usage (in %)
1 (2 (3)

Arbitrageur 0.300*** —0.219*** /
(0.069) (0.073) /
Sophisticated seller —0.113* 0.125* 0.008
(0.064) (0.067) (0.037)
Unsophisticated seller —0.242%** 0.235%** 0.081***
(0.035) (0.036) (0.020)
Controls Yes Yes Yes
Individual-Fixed Effects Yes Yes Yes
Year-Month-Fixed Effects Yes Yes Yes
Observations 104,711 104,711 104,711
R2 0.405 0.327 0.407
Adjusted R2 0.402 0.324 0.404

Note: The table presents results for the panel regression of mechanism usage (in %) on daily basis as in the previous
section with dummy variables for trader classification of Arbitrageur (90% quantile in volume and transaction on the buy
/ to side), sophisticated seller (90% quantile in volume and transaction on the sell / from side) and unsophisticated trader
(10% quantile in volume and transaction on the sell / from side). All models include token-level individual-fixed effects,
year-month-fixed effects and the control variables Blockchain Transaction Fee (USD), Volatility (7 Days), Market to
Appraisal Ratio, Cumulative Return ETH (One Week), Average Ethereum Fee (USD), One Month Treasury A, Ten Year
Treasury A, ADS Index A, and SE&P Case Shiller Index A. The table includes coefficient estimates and corresponding
standard errors, presented in parentheses. The symbols *, **, and *** denote significance at the 10%, 5%, and 1% levels,
respectively. All variables are defined in Appendix A.2.

The results in Table 6 reveal a clear segmentation of trading behavior by trader
sophistication. Wallets classified as arbitrageurs increase AMM Usage by 30 percentage
points (coefficient: 0.300, p < 0.01) and reduce P2P Usage by 21.9 points (coeffi-
cient: -0.219, p < 0.01), suggesting a systematic strategy of sourcing tokens in P2P
markets and selling them into AMMs for immediate execution. While this arbitrage
aligns prices across venues, it drains AMM liquidity and increases slippage for other
users. Sophisticated sellers favor P2P trading, increasing P2P Usage by 12.5 points
and decreasing AMM Usage by 11.3 points (both p < 0.1), consistent with a preference
for execution quality and strategic counterpart matching. In contrast, unsophisticated
sellers shift away from AMMs (-24.2 points, p < 0.01) and toward both P2P (+23.5
points, p < 0.01) and Buybacks (+8.1 points, p < 0.01), indicating a reliance on more
transparent and predictable mechanisms. Taken together, these patterns highlight how
fragmentation interacts with trader heterogeneity: arbitrageurs concentrate in AMMs,
experienced traders gravitate toward P2P, and less experienced participants rely on
Buybacks.
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To complement the analysis of mechanism usage, we next examine how trader so-
phistication influences overall market liquidity. Specifically, we estimate a panel re-

gression linking wallet-level sophistication to token-level liquidity metrics:

Liquidity; , = 8, - Arbitrageur, , + (5 - SophSell, , + 5 - UnsophSell, , + X[ ;v +a; + 0y + 54

a7
where Liquidity,, denotes one of six daily token-level liquidity measures: Turnover,
Volume, Trades, Amihud, CS Estimator, or High-Low spread. Trader classification
follows the same volume- and frequency-based thresholds as before. All regressions
include the control variables from previous sections, as well as token fixed effects (o)

and year-month fixed effects (d;). Standard errors are clustered at the token level.

Table 7: Trader sophistication and liquidity

Dependent variable:

Turnover Volume Trades Amihud CS Estimator High Low
1) (2) (3) 4) (5) (6)
Arbitrageur 0.002*** 531.632*** 6.703*** —0.0004 0.020** 0.070**
(0.001) (154.400) (1.851) (0.006) (0.010) (0.032)
Sophisticated seller 0.002*** 81.202 1.632 —0.005 0.017* 0.128***
(0.001) (140.162) (1.680) (0.006) (0.009) (0.031)
Unsophisticated seller —0.001*** —502.189*** 0.318 —0.014 —0.007 —0.065
(0.0003) (76.527) (0.918) (0.009) (0.016) (0.050)
Controls Yes Yes Yes Yes Yes Yes
Individual-Fixed Effects Yes Yes Yes Yes Yes Yes
Year-Month-Fixed Effects Yes Yes Yes Yes Yes Yes
Observations 108,217 108,217 108,217 59,772 59,321 59,820
R2 0.043 0.010 0.060 0.053 0.017 0.056
Adjusted R2 0.038 0.005 0.055 0.044 0.008 0.047

Note: The table presents the panel regression results for the liquidity analysis on daily and as in the previous section with
dummy variables for trader classification of Arbitrageur (90% quantile in volume and transaction on the buy / to side),
sophisticated seller (90% quantile in volume and transaction on the sell / from side) and unsophisticated trader (10%
quantile in volume and transaction on the sell / from side). The dependent variables are Turnover Ratio, Dollar Volume,
Trades, Amihud, CS Estimator, and High Low on token-level as further explained in Appendix A.3. All models include
year-month-fixed effects and token-level individual-fixed effects and the control variables as in the previous regression.
* * %k

k)

The table includes coefficient estimates and corresponding standard errors, presented in parentheses. The symbols *,
and *** denote significance at the 10%, 5%, and 1% levels, respectively. All variables are defined in Appendix A.2.

The results, reported in Table 7, show that arbitrageurs increase turnover (0.002, p <
0.01), trading volume (531.6, p < 0.01), and number of trades (6.70, p < 0.01), but also
widen spreads (CS Estimator: 0.020, p < 0.05; High Low: 0.070, p < 0.05), indicating
liquidity extraction and fragmentation. Sophisticated sellers also raise turnover (0.002,

p < 0.01) and modestly increase spreads. In contrast, unsophisticated sellers reduce
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turnover (—0.001, p < 0.01) and volume (—502.2, p < 0.01), with limited effect on
spread-based measures, suggesting lower engagement in liquidity-relevant activity.

Overall, these findings show how trader sophistication shapes liquidity by reallocat-
ing volume across venues and altering trading costs. Arbitrage exploits price discrepan-
cies between P2P venues and AMMSs, draining P2P liquidity and increasing execution
costs for bilateral traders, while inflating slippage in AMMs through repeated exit pres-
sure. Although arbitrage contributes to price alignment, it does so at the expense of
aggregate liquidity and capital efficiency.

These dynamics highlight the importance of mechanism design in managing het-
erogeneous trader behavior. AMMs offer immediate execution but are structurally
exposed to liquidity depletion through arbitrage, which reduces incentives for liquidity
providers—especially under volatile conditions where impermanent loss risk increases
(see Figure A.7 in Appendix A.7). Adaptive designs such as dynamic pricing curves
and volatility-sensitive trading fees may help address these vulnerabilities (Cao et al.,
2025; Makarov and Schoar, 2020).

In contrast, P2P venues provide greater pricing flexibility but remain constrained
by fragmentation and low frequency. Enhancing P2P liquidity through incentives or
dynamic offer mechanisms could improve execution depth and market resilience. Cen-
tralized Buybacks, while limited in scalability, offer predictable execution for unsophis-
ticated traders and help stabilize markets during stress.

Designing effective tokenized markets thus requires balancing AMMs, P2P market-
places, and Buybacks to accommodate diverse trader needs while ensuring long-term

liquidity sustainability across mechanisms.

5. Robustness and broader perspective

5.1. Time for transactions

As outlined in Section 4, we reduce the time window between buy and sell trades
from 1 hour to 5 minutes to ensure robustness regarding the arbitrage-like nature of
the transactions. Table A.13 and Section A.13 in the Appendix report the results for
this adjustment. While the stricter time constraint leads to a reduction in the number

of observations, the findings of Section 4.3 and Section 4.4 remain consistent.
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5.2. Market development and liquidity pools

To contextualize and reinforce our main findings, we examine market capitaliza-
tion trends and the evolution of AMM liquidity pools. As shown in Figure 10, the
tokenized real estate market grew steadily, reaching a market cap of $119.4 million by
May 2024—36% above underlying appraisals—reflecting strong investor demand and
market maturity. Cumulative trading volume reached $19.5 million, or 20% of market
cap. A key shift in liquidity provisioning occurred following the 2021. As illustrated
in Figure 11, RealT and other providers withdrew 80% of AMM liquidity, exposing
structural limitations of AMMs in RWA markets characterized by low turnover, ap-
praisal anchoring, and irregular trading. Increased slippage and arbitrage drained pool
depth, reducing AMM relevance over time. While the mid-2022 transition to stablecoin
pairs helped limit impermanent loss, it also amplified arbitrage between AMMs and
P2P venues. By May 2024, AMMs held just $287,179 in reserves—still functioning but
significantly diminished. Together, these dynamics support our empirical evidence on
trading preferences and underscore the structural misalignment between AMMs and

tokenized RWAs, helping explain the rise of P2P marketplaces.
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Figure 10: Market cap, book value and trading Figure 11: Liquidity-pool value by payment-
volume token pair

Note: This figure illustrates the daily value of all real Note: This figure illustrates the daily total liquid-
estate tokens based on their last transaction prices ity pool value across all Automated Market Makers
(market capitalization), the current appraisal values as (AMMs) in USD categorized by the payment token
provided by an external appraisal company, and the involved in the liquidity pool pairs. REALTOKEN
cumulative transaction volume of the real estate to- serves as a placeholder for specific real estate token
kens on the secondary market. All values are in USD. pool pairs, with each token having its own dedicated

liquidity pool.
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6. Conclusion

This study provides an in-depth analysis of liquidity mechanisms for tokenized
RWASs using a highly transparent and exceptionally detailed dataset consisting of 444,535
secondary market transactions around Real T—the largest operational issuance platform
for tokenized real estate on public blockchain infrastructure. The unique transparency
and granularity of our wallet-level data facilitate deep insights into investor behavior,
arbitrage dynamics, and the comparative effectiveness of different liquidity provision
mechanisms: AMMs, P2P marketplaces, and centralized buybacks.

We develop a stylized framework to formalize the cost-efficiency trade-offs faced
by liquidity demanders across three coexisting liquidity mechanisms. This framework
guides our empirical analysis, which yields three key findings. First, despite their suc-
cess and widespread adoption in liquid cryptocurrency markets, AMMs exhibit critical
structural vulnerabilities when applied to heterogeneous, infrequently traded RWAs.
Their deterministic pricing models lead to persistent arbitrage opportunities, systemat-
ically draining liquidity and undermining the sustainability of AMMs in low-frequency
trading environments. This is specifically confirmed in our diff-in-diff analysis, which
utilizes the UST collapse in 2022 as an exogenous DeFi market shock. Second, central-
ized buyback mechanisms offer valuable liquidity guarantees, particularly attractive to
unsophisticated investors. However, they face constraints related to high transaction
costs, limited scalability, and static pricing disconnected from real-time market dynam-
ics. Third, our analysis robustly identifies P2P marketplaces as the dominant trading
mechanism, especially advantageous for RWAs due to their flexible and customized pric-
ing structures. P2P platforms facilitate accurate price discovery by directly reflecting
true asset values, thereby minimizing susceptibility to arbitrage.

The market phenomena documented—arbitrage-driven liquidity flows, fragmenta-
tion across trading venues, and varying investor sophistication—represent fundamental
dynamics extensively observed in liquid market contexts (Capponi and Jia, 2021; Park,
2023). Our findings importantly extend these insights to heterogeneous and illiquid
RWAs, using the unique setting of real estate tokens, which serve as an example for other
tokenized heterogeneous assets like private equity and debt instruments, fund shares,
commodities, art, and intellectual property . Although several RWA platforms adopt
individual liquidity mechanisms, RealT remains the only platform where all three coex-

ist and are fully transparent via public blockchain data (see Table A.1 in Appendix A.1).
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This unique observability provides a rare empirical lens into the structural interactions
and trade-offs between mechanism types in tokenized markets. Therefore, the systemic
and behavioral insights from our detailed empirical investigation serve as a robust base-
line for understanding broader secondary-market microstructures within decentralized
finance.

The practical implications of our results are significant, particularly for market de-
sign and policy frameworks. Our findings highlight the coexistence of complementary
yet fragmented liquidity mechanisms, underscoring the need for a hybrid market setting
that more effectively integrates both centralized and decentralized elements. In RWA
markets, AMMs alone do not serve as fully reliable decentralized price oracles (Fabi
and Prat, 2025), as we find that cross-mechanism arbitrage for price synchronization
is limited and price discovery across venues often remains fragmented. To mitigate
these inherent limitations of AMMs in RWA markets, a two-layer adaptive pricing
mechanism informed by market-driven feedback could be further investigated. Ini-
tially, AMM transaction fees should dynamically adjust based on deviations between
AMM prices and volume-weighted average prices (VWAP) derived from contemporane-
ous P2P transactions. Increasing fees during pronounced price divergences discourages
arbitrage-driven liquidity depletion and incentivizes liquidity provision. As a result,
pool inventory grows and trading costs decline—supporting greater trading volume
(Hasbrouck et al., 2022), potentially contributing to overall price stability. Further,
AMM baseline pricing should incorporate frequent, real-time P2P market signals or
updated centralized buyback valuations, aligning AMM prices more closely with real
market conditions. In broader terms, the implementation of robust oracle infrastruc-
tures is critical, as reliable and timely off-chain data integration not only informs AMM
design but serves as the foundational link between on-chain tokens and the value and
legitimacy of the underlying RWAs.

Moreover, a regulatory framework which combines centralized oversight with decen-
tralized innovation, such as Regulated Decentralized Finance (RegDeF1i), is essential to
ensure investor protection, market stability, and continued technological advancement.
Enhancing governance through decentralized autonomous organizations (DAOs) also
offers a promising pathway for resolving trust and centralization concerns within tok-
enized asset markets.

Future research could build on our empirical foundation by estimating structural
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liquidity costs across trading mechanisms and analyzing governance and incentive struc-
tures within DAOs managing tokenized assets. It could also examine operational and
theoretical oracle implementations for RWA platforms and compare market evolution
under diverse regulatory environments. Investigating these complex issues will be cru-
cial for ensuring tokenization realizes its transformative potential—reshaping rather
than merely digitizing existing market structures.

However, the successful realization of the benefits of tokenization depends critically
on the resolution of ongoing economic, structural, and regulatory challenges through
strategic market design as well as incremental implementation. If left unresolved, these
challenges threaten to digitally replicate existing inefficiencies—resulting in fragmented,
illiquid markets burdened by significant search costs and persistent price distortions.
Rather than fostering a more accessible, efficient, and inclusive financial ecosystem,
unaddressed structural frictions could amplify risk premia, exacerbate liquidity con-
straints, and ultimately reinforce the very inefficiencies that tokenization seeks to elim-
inate. As a cautious answer to the question raised at the outset, RWAs can be liquid
in fragmented markets—but only if fragmentation is counterbalanced by thoughtful

mechanism and pricing design, which currently remains incomplete.
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Appendix
A.1. RWA marketplaces and liquidity mechanisms

This section positions RealT within the broader landscape of tokenized RWA plat-
forms. While no single platform can capture the full diversity of market designs, RealT’s
rare combination of AMM, P2P, and centralized buyback mechanisms—alongside one
of the earliest and fully transparent, on-chain data—offers a uniquely comprehensive
environment to study the structural trade-offs in secondary market liquidity. This
makes it particularly well-suited to the stylized modeling and empirical objectives of
our analysis. Table A.1 summarizes a selection of active platforms in the tokenized
RWA space, spanning real estate, private credit, private equity, art, and securities. All
listed platforms implement at least one of the liquidity mechanisms analyzed in this
study: AMMs, P2P marketplaces, or centralized buybacks or matching. Centralized
trading infrastructures and P2P liquidity provisioning are common design choices across
asset classes, yet AMMs are increasingly being explored for offering continuous on-chain
liquidity native to the DeFi ecosystem. However, to our knowledge, RealT is the only
platform for which all three mechanisms coexist and are observable via publicly avail-
able on-chain data. This unique structure enables a rare empirical opportunity to study
the trade-offs across mechanism types under uniform trading conditions and consistent
token design. As such, while our empirical application is based on a single platform,
its structure and frictions are broadly representative of the liquidity challenges across
the evolving RWA and DeFi ecosystem.
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Table A.1: Overview of tokenized RWA platforms and their liquidity mechanisms

Platform ‘Website Asset class Liquidity Description
mechanism

RealT https://realt.co Real Estate AMM (Uniswap, | Tokenized real estate platform us-
Levinswap), P2P | ing multiple DeFi-native liquidity
(Swapcat, YAM), Cen- | mechanisms. High transparency,
tralized Buyback core case study for this paper.

Lofty.ai https://wuw.lofty.ai | Real Estate Centralized =~ Market- | Tokenized real estate platform of-

place with P2P Listing | fering appraisal-based pricing, in-
and Buyout Options vestor buyout options, and P2P
listings for secondary trades.

AssetBlock | https://www. Real Estate Centralized Matching Tokenizes commercial real estate;

assetblock.com uses centralized onboarding and
resale processes.

Maple https://maple. Private Credit Centralized Matching, | Institutional DeFi credit markets.

Finance finance DeFi Wrapper Secondary liquidity internal and
limited.

Centrifuge https://centrifuge. Private Credit P2P Lending Pools | Tokenizes real-world invoices and

io (DAL issuance) receivables for DeFi lending; de-
centralized credit pools.

Credix https://www.credix. Private Credit P2P Lending with In- | Connects DeFi capital with pri-

finance stitutional Access vate credit markets in emerging
economies.

Artfi https://artfi.world Art Centralized Buyback Fractionalized art investment plat-
form with token buyback and burn
features.

Artory https://www.artory. Art Secondary Trading via | Partners with tokenization infras-

com Tokeny Integration tructure providers to enable com-
pliant secondary trading.

IX Swap https://wuw.ixswap. Private Equity | AMM AMM-powered DEX for tokenized

io / Security To- private equity and security tokens.
kens

Aktionariat | https://www. Private Equity | On-chain Order Book | Swiss platform allowing direct

aktionariat.com / Company | + AMM Hybrid trading of tokenized company
Shares shares using blockchain infrastruc-
ture.

Swarm https://swarm.com/ U.S. Treasuries | AMM (Balancer) / | German regulated DeFi platform

Markets / Company | ’dOTC” (decentral- | enabling compliant trading via

Shares / Gold ized OTC) AMM-based DEX and on-chain
OTC service.
Securitize https://www. Private Equity | Centralized Matching | SEC-registered platform enabling
securitize.io / Funds / Secu- | / Secondary Market | tokenized securities and private eq-
rities (ATS) uity with secondary trading via
regulated Alternative Trading Sys-
tem.
Ondo https://ondo.finance | Bonds / ETFs | AMM / Centralized | Tokenization platform bringing
Finance / Company | Buyback traditional public securities on-

Shares

chain, with tokens that are usable
in DeFi.
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A.2. Variable definition

Table A.2: Definition of all variables

Variable Definition Calculation
Secondary market transactions analysis (Intraday Perspective)
Realtoken Amount Exact realtoken amount traded (for AMM trades it is the exact token amount swapped Own calculations
in the liquidity pool)
Dollar Amount Exact payment token amount in USD (for AMM trades it is the exact token amount Own calculations
swapped in the liquidity pool)
Transaction Price USD Exact transaction price (for AMM it is based on the exact liquidity pool reserves) Own calculations
Total Transaction Fee USD Sum of corresponding transaction fees converted to USD involved in the transaction, Own calculations
i.e. blockchain transaction fee, transaction fee by issuance and buyback platform (1.5%),
transaction fee by payment processor working for issuance and buyback platform (1.5%),
AMM trading fee for uniswap v1, uniswap v2 and levinswap it of 0.3% on the traded
value
Realtoken Sell A dummy variable that indicates initiated sell of realtoken Own calculations
Realtoken Buy A dummy variable that indicates initiated buy of realtoken Own calculations
AMM Mechanism A dummy variable that shows if the transaction occurred on AMM, 0 otherwise. Own calculations
P2P Mechanism A dummy variable that shows if the transaction occurred on P2P, 0 otherwise. Own calculations
Buyback A dummy variable that shows if the transaction occurred through buyback (RealT plat- Own calculations
form), O otherwise.
Price Signal AMM USD Liquidity pool price based on the liquidity pool reserves at the time of transaction for P2P Own calculations
or buyback transactions or right before the time of transaction for AMM transactions
Price Signal P2P USD Price signal of P2P is approximated for non-P2P transactions using the (average) price Own calculations

Price Signal Buyback USD

of active (concurrent) P2P offers (see Section3.3) or (if not existent) the most recent
historic P2P transaction. For P2P transactions itself, the transaction price of the offer
itself is the price signal of it.

Current buyback price at time of transaction

RealT website

Gnosis Blockchain A dummy variable that shows if the transaction occurred on the Gnosis blockchain, 0 Own calculations
otherwise.
Ethereum Blockchain A dummy variable that shows if the transaction occurred on the Ethereum blockchain, 0 Own calculations
otherwise.
Dependent Variables (Intraday Perspective)
Arbitrage A dummy variable that shows if the same wallet buys and sells (or sells and buys) the Own calculations
same token within a 1-hour window with profit, 0 otherwise. Captures quasi-arbitrage
behavior based on transaction sequencing and wallet-level matching.
Arbitrage Volume Dollar volume (in USD) of token trades identified as arbitrage sequences by the same Own calculations
wallet within a 1-hour window. Reflects intensity of arbitrage behavior.
Dependent Variables (Daily Perspective)
AMM Usage (in %) Share of a token’s total daily transaction volume (USD) occurring on AMM marketplaces. Own calculations
Calculated by aggregating all intraday trades per token by mechanism. This volume-based
weighting reflects the relative economic significance of each mechanism. If no trade occurs
in the mechanism on a given day, the value is set to 0.
P2P Usage (in %) Share of a token’s total daily transaction volume (USD) occurring on P2P marketplaces. Own calculations
Calculated by aggregating all intraday trades per token by mechanism. This volume-
based weighting reflects the relative economic significance of each mechanism. If no trade
occurs in the mechanism on a given day, the value is set to 0.
Buyback Usage (in %) Share of a token’s total daily transaction volume (USD) occurring on buyback market- Own calculations
places. Calculated by aggregating all intraday trades per token by mechanism. This
volume-based weighting reflects the relative economic significance of each mechanism. If
no trade occurs in the mechanism on a given day, the value is set to 0.
Turnover Ratio Token Mar- Ratio of Volume per Token USD relative to the token market cap based on the last Own calculations
ket Capitalization market price and adjusted by the free-floating percentage (95 percent, excluding 5 percent
retainment held by RealT)
Volume per Token USD Transaction volume per property token per period across all marketplaces in USD Own calculations
Number of Trades per To- Number of trades per property token per period across all marketplaces Own calculations
ken
Amihud Illiquidity Ratio per Amihud (2002) illiquidity ratio calculated as the absolute return (measured from the Own calculations
Property Token opening to the closing price within a given period) in relation to Volume per Token USD
across all marketplaces
CS Estimator Corwin and Schultz 2012 bid-ask spread estimator based on the daily high and low prices Own calculations
per token of two adjacent periods across all marketplaces. Negative values of the proxy
are set to zero (see e.g. Brauneis et al. (2021).
High Low High Low Estimator that estimates the bid-ask spread using the daily high and low price Own calculations
per token within a given period across all marketplaces
Control Variables (Daily Perspective)
Arbitrage into AMM Volume of trades (in USD or token units) classified as arbitrage sequences where the sell Own calculations
leg occurs via an AMM pool, aggregated at the token-day level
Arbitrage within AMM Volume of trades classified as arbitrage sequences where both the buy and sell legs occur Own calculations
within AMM pools, aggregated at the token-day level
Arbitrage into P2P Volume of trades classified as arbitrage sequences where the sell leg occurs via a P2P Own calculations
mechanism, aggregated at the token-day level
Arbitrage within P2P Volume of trades classified as arbitrage sequences where both legs occur within P2P Own calculations
mechanisms, aggregated at the token-day level
Arbitrage into Buyback Volume of trades classified as arbitrage sequences where the sell leg occurs via a protocol Own calculations

buyback mechanism, aggregated at the token-day level
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Slippage

A Buyback

High Frequency Buyer
High Volume Seller
High Frequency Seller
Low Frequency Seller
Low Volume Seller

Arbitrageur

Sophisticated Seller
Unsophisticated Seller

Volatility 7 Days
Market to Appraisal Ratio

Cumulative Return ETH

(One Week)

Average Ethereum Fee USD
One Month Treasury A
Ten Year Treasury A

ADS Index A

Sé&P Case-Shiller Index A

Calculated price slippage, which in AMMs refers to the difference between the expected
price of a token and the actual price at which the trade is executed using the CPMM. The
fee is already included as the blockchain data is already deducted by the trading fee of
0.3% implied as this fee reduces the amounts swapped in the pool charging the liquidity
demander for either realtoken or paymenttoken

Difference between the price paid by RealT on the current appraisal value and the last
transaction price independent of the mechanism

A dummy variable that shows if the wallet is in the 90th percentile of daily buy-side
transaction frequency for a given token, 0 otherwise.

A dummy variable that shows if the wallet is in the 90th percentile of daily sell-side
transaction volume for a given token, 0 otherwise.

A dummy variable that shows if the wallet is in the 90th percentile of daily sell-side
transaction frequency for a given token, 0 otherwise.

A dummy variable that shows if the wallet is in the 10th percentile of daily sell-side
transaction frequency for a given token, 0 otherwise.

A dummy variable that shows if the wallet is in the 10th percentile of daily sell-side
transaction volume for a given token, 0 otherwise.

Interaction term equal to 1 if the wallet is both a high frequency and high volume trader
on the buy and sell sides for a given token-day Captures short-term profit-seeking behavior
consistent with arbitrage

Interaction term equal to 1 if the wallet is both a high frequency seller and a high volume
seller

Interaction term equal to 1 if the wallet is both a low frequency seller and a low volume
seller

Rolling 7-day standard deviation of daily transaction price returns for a given token
Ratio of the last transaction price of given day independent of the mechanism divided by
the current appraisal value

Cumulative return of Ether over a period of one week before the observation period

Average transaction costs on the Ethereum blockchain within the observed period, con-
verted to USD

Daily log-change of the market yield on U.S. Treasury securities at 1-month constant
maturity, quoted on an investment basis.

Daily log-change of the market yield on U.S. Treasury securities at 10-year constant
maturity, quoted on an investment basis.

Daily log-change of the Aruoba-Diebold-Scotti (ADS) Business Condition Index, which
measures macroeconomic activity at a daily frequency (Aruoba et al., 2009).

Monthly log-change of the U.S. S&P Case-Shiller National Home Price Index lagged by
one month.

Own calculations

Own calculations
Own calculations
Own calculations
Own calculations
Own calculations
Own calculations

Own calculations

Own calculations
Own calculations

Own calculations
Own calculations

Coinmarketcap
Coinmarketcap

FRED, Federal
Reserve Bank of
St. Louis

FRED, Federal
Reserve Bank of
St. Louis

Federal Reserve
Bank of Philadel-
phia

S&P Dow Jones
Indices

Note: List and definitions of all variables and the corresponding sources. RealT as a source corresponds to information
obtained from RealToken’s website.
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A.3. Liquidity measures in detail

Table A.3: Measures of liquidity

Name

Formula

Detalils

Dollar Transaction Volume (Volume) Volume;; =3, Volume; ¢ ;

The dollar transaction volume is calcu-
lated for all intervals t and each token
j as the sum of the dollar transaction
volume in all subintervals ¢ belonging
to interval t.

Number of Transactions (Trades)

Tradesjs =, Trades; s ;

The number of transactions is calcu-
lated for all intervals ¢t and each token
7 as the sum of the number of transac-
tions in all subintervals 7 belonging to
interval t.

Turnover Ratio (Turnover)

Volume; ¢
TokenMarketCapj ¢

The turnover ratio is calculated as
the ratio between the dollar transac-
tion volume Volume;; and the dol-
lar market capitalization of the token
TokenMarketCap; ; for each interval
t and token j.

Amihud Illiquidity Ratio (Amihud) Amihud; ; = %ZZ

[Cj.t.i/O0j,t,i—1]
Volumej ¢ ;

The illiquidity ratio, following Ami-
hud (2002), is the absolute return di-
vided by the dollar transaction volume
within each subinterval i. It is av-
eraged across all subintervals I in ¢
for each token j. Conceptually, the
illiquidity ratio serves as a measure of
price impact (Amihud, 2002). How-
ever, it is frequently employed as a
proxy for overall liquidity in empiri-
cal studies (see e.g. Brauneis et al.,
2021; Brauneis et al., 2022; Wilkoff and
Yildiz, 2023).

CS Estimator (CS Estimator)

2(exp(a)—1
CSjiit1 = 7(f+z,((pga))

The Corwin and Schultz (2012) estima-
tor is computed from the high and low
prices of token j in two adjacent subin-
tervals ¢ and ¢ + 1. The estimator for
period t and token j is the unweighted
average across subintervals in ¢. Fur-

thermore, a = \/3?2—\/\%3 - 3_3\/57

o = [m()] + [m ()]

N [1H(M)]2 No adjust-
Jyi,i41

ment is made for trading halts, as the
blockchain operates continuously.

High-Low Spread Estimator (High Low) | High — Low;; =

HjitLy,i

2(Hj,i—Lj.)

The High-Low spread estimator uses
the highest and lowest transaction
prices within each subinterval to ap-
proximate the bid-ask spread. The
High — Lowj estimator is the un-
weighted average of all High-Low es-
timators across subintervals within ¢.

Note: This table presents the summary of liquidity and market metrics with formulas and details.
Although the blockchain operates 24/7, we use the UTC time scale, as adopted by Ethereum and

Gnosis blockchains, to define the time intervals for the liquidity measures.
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A.4. Hasbrouck Information Share calculation

Consider a financial asset traded simultaneously in N distinct markets. Denote the
price vector at time ¢ by p;, following a Vector Error Correction Model (VECM):

K

Ap, = Ip_1 + ZFkAptfk +e, € ~(0,9), (D.1)
k=1

where:
o Ap; is the N x 1 vector of price changes for N markets at time t.
e () is the covariance matrix of residuals ;.

The prices across markets share a common stochastic trend, implying cointegration
and the presence of one common efficient price factor. To quantify each market’s
relative contribution to the price discovery process, Hasbrouck (1995) introduces the
Information Share (IS) measure:

F)?
15,= B2 2

where:

1S, is the Information Share of market i.

¥ is the 1 X N vector of long-run impacts (obtained from the VECM), capturing
the long-run effect of shocks on the efficient price.

2 is the covariance matrix of residuals (N x N) from the VECM.

F' is obtained via the Cholesky decomposition of €:

Q=FF"'
where F' is lower-triangular.

(Y F); is the i component of the vector ¢ F, indicating the price innovation
attributable to market i.

The total variance of the common efficient price innovation is given by:

Total Variance = 1)Qu)’. (D.3)

Therefore, the IS measure reflects market ¢’s relative contribution to the overall
variance of the efficient price innovations.
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In practice, due to the sensitivity of the IS measure to the ordering of the Cholesky
decomposition, it is common to calculate upper and lower bounds for each market’s IS.
Specifically, one typically computes:

1spPrer [ Glewer (D.4)

by varying the order of markets in the decomposition.
Steps for Empirical Implementation:

1.

2.

Estimate a VECM model for the prices from multiple market mechanisms.
Obtain residual covariance matrix €.

Compute the long-run impact vector ¢ from cointegration relationships.

. Perform Cholesky decomposition on €2 to obtain F.

Calculate the Information Share (IS) for each market mechanism according to the
above equation.

Provide robustness by varying Cholesky decomposition ordering to obtain upper
and lower bounds.

For further details see Hasbrouck (1995).
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A.5. Further descriptive statistics - Transactions

Table A.4: Descriptive Variables - Intradaily Transactions (extended)

Statistic N Mean St. Dev. Min 10% 25% Median 75% 90% Max
Intradaily Perspective

Realtoken Amount 444,535 0.79 4.63 0.00 0.01 0.01 0.05 0.19 1.00 965.03
Dollar Amount 444,535 43.87 252.17 0.00 0.50 0.57 2.61 9.94 65.51 54,495
Transaction Price USD 444,535 55.90 15.91 5.56 48.00 50.51 53.44 57.64 63.00 535.93
Total Transaction Fee USD 444,535 0.29 2.60 0.00 0.00 0.00 0.00 0.02 0.03 133.54
Realtoken Sell 444,535 0.76 0.43 0.00 0.00 1.00 1.00 1.00 1.00 1.00
Realtoken Buy 444,535 0.24 0.43 0.00 0.00 0.00 0.00 0.00 1.00 1.00
AMM Mechanism 444,535 0.76 0.43 0.00 0.00 1.00 1.00 1.00 1.00 1.00
P2P Mechanism 444,535 0.21 0.41 0.00 0.00 0.00 0.00 0.00 1.00 1.00
Buyback Mechanism 444,535 0.03 0.16 0.00 0.00 0.00 0.00 0.00 0.00 1.00
Price Signal AMM USD 443,956 56.22 32.46 2.14 47.85 50.51 53.55 58.02 63.64 7,134
Price Signal P2P USD 413,337 58.84 13.92 10.00 50.72 52.88 56.00 60.99 66.00 299.00
Price Signal Buyback USD 444,535 52.87 12.06 41.50 49.44 50.23 50.85 52.08 54.49 185.80
Transaction Price/Buyback Price A 444,535 0.06 0.17 -0.89 -0.06 -0.00 0.04 0.11 0.18 9.05
Number of Active Offers 341,988 22.13 28.86 1.00 2.00 5.00 12.00 28.00 56.00 351.00
Realtoken Amount Active Offers 341,988 85.04 195.77 0.00 1.00 4.69 16.67 65.81 209.66 2,247
Dollar Amount Active Offers 341,988 4,636 10,380 0.00 64.90 275.20 973.35 3,749 11,520 112,787
Liquidity Pool Value USD 443,980 2,401 5,600 0.00 202.59 1,121 1,909 2,437 3,108 190,298
Private Deal 444,535 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 1.00
Public Deal 444,535 1.00 0.04 0.00 1.00 1.00 1.00 1.00 1.00 1.00
Gnosis Blockchain 444,535 0.99 0.12 0.00 1.00 1.00 1.00 1.00 1.00 1.00
Ethereum Blockchain 444,535 0.01 0.12 0.00 0.00 0.00 0.00 0.00 0.00 1.00
Blockchain Transaction Fee USD 444,535 0.06 1.01 0.00 0.00 0.00 0.00 0.00 0.00 129.61
Total Number of Trades per Trader 444,535 39,236 68,079 1.00 171.00 846.00 2,845 21,529 170,291 170,291
Total Volume per Trader USD 444,535 125,020 295,990 0.05 2,953 7,511 25,413 143,957 209,851 2,006,872
Average Volume per Trader USD 444,535 45.62 104.73 0.05 0.85 2.30 4.90 33.88 138.22 4,632
USD//C on xDai (USDC) 444,535 0.32 0.47 0.00 0.00 0.00 0.00 1.00 1.00 1.00
‘Wrapped Ether on xDai (WETH) 444,535 0.44 0.50 0.00 0.00 0.00 0.00 1.00 1.00 1.00
USD Coin (USDC) 444,535 0.01 0.07 0.00 0.00 0.00 0.00 0.00 0.00 1.00
Wrapped XDAI (WXDAI) 444,535 0.03 0.16 0.00 0.00 0.00 0.00 0.00 0.00 1.00
Tether USD (USDT) 444,535 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 1.00
Tether USD on xDai (USDT) 444,535 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 1.00
Dai Stablecoin (DAI) 444,535 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
Mai Stablecoin (MAI) 444,535 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 1.00
Wrapped Ether (WETH) 444,535 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
Monday 444,535 0.16 0.37 0.00 0.00 0.00 0.00 0.00 1.00 1.00
Tuesday 444,535 0.15 0.36 0.00 0.00 0.00 0.00 0.00 1.00 1.00
‘Wednesday 444,535 0.15 0.36 0.00 0.00 0.00 0.00 0.00 1.00 1.00
Thursday 444,535 0.14 0.35 0.00 0.00 0.00 0.00 0.00 1.00 1.00
Friday 444,535 0.15 0.36 0.00 0.00 0.00 0.00 0.00 1.00 1.00
Saturday 444,535 0.13 0.34 0.00 0.00 0.00 0.00 0.00 1.00 1.00
Sunday 444,535 0.11 0.31 0.00 0.00 0.00 0.00 0.00 1.00 1.00
Single Family 444,535 0.37 0.48 0.00 0.00 0.00 0.00 1.00 1.00 1.00
Duplex 444,535 0.12 0.33 0.00 0.00 0.00 0.00 0.00 1.00 1.00
Multi Family 444,535 0.50 0.50 0.00 0.00 0.00 1.00 1.00 1.00 1.00
Holding Token 444,535 0.02 0.13 0.00 0.00 0.00 0.00 0.00 0.00 1.00
Detroit 444,535 0.73 0.45 0.00 0.00 0.00 1.00 1.00 1.00 1.00

Note: This table is an extended version of Table 1 and reports the number of observations, mean,
standard deviation, minimum, 10" percentile, 25'" percentile, median, 75*" percentile, 90" percentile,

and maximum for the data on the transaction level (intradaily).
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Table A.5: Descriptive Variables - Intradaily Transactions by Mechanisms

Statistic N Mean St. Dev. Min 10% 25% Median 75% 90% Max

Intradaily Perspective

AMM
Realtoken Amount 337,255 0.11 0.52 0.00 0.01 0.02 0.10 0.15 0.15 50.00
Dollar Amount 337,255 7.16 43.55 0.00 0.49 0.51 0.99 5.00 8.84 3,807
Transaction Price USD 337,255 55.49 15.41 5.56 47.27 50.36 53.56 57.43 62.20 535.93
Price Signal AMM USD 337,255 55.67 15.92 2.14 47.05 50.34 53.71 57.81 62.73 721.94
Realtoken Sell 337,255 0.68 0.46 0.00 0.00 0.00 1.00 1.00 1.00 1.00
Realtoken Buy 337,255 0.32 0.46 0.00 0.00 0.00 0.00 1.00 1.00 1.00
Blockchain Transaction Fee USD 337,255 0.031210 0.736065 0.00 0.00 0.000471 0.000673 0.000968 0.001619 129.61
Transaction Fee AMM USD 337,255 0.021472 0.130661 0.00 0.001484 0.001551 0.002991 0.015011 0.026522 11.42
Total Transaction Fee USD 337,255 0.052682 0.818738 0.000245 0.002220 0.002522 0.004092 0.015657  0.029903 133.54
Time on Market (days) 337,255 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Price Slippage 337,255 -0.001609 0.036272 -0.829629 -0.013146 -0.005693 -0.003538 0.005462 0.011653 5.55
Liquidity Pool Value USD 337,255 2,591 6,263 5.16 307.45 1,287 1,902 2,420 3,162 190,298
Wrapped Ether on xDai Liq Pool 337,255 0.58 0.49 0.00 0.00 0.00 1.00 1.00 1.00 1.00
Levin Liquidity Pool 337,255 0.26 0.43 0.00 0.00 0.00 0.00 1.00 1.00 1.00
USDC on xDai Liquidity Pool 337,255 0.15 0.35 0.00 0.00 0.00 0.00 0.00 1.00 1.00
Ether Liquidity Pool 337,255 0.01 0.10 0.00 0.00 0.00 0.00 0.00 0.00 1.00
‘Wrapped Ether Liquidity Pool 337,255 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 1.00
Dollar Amount Active Offers 237,337 4,816 10,861 0.00 60.86 262.71 949.25 3,768 12,130 102,924
Ethereum Blockchain 337,255 0.01 0.10 0.00 0.00 0.00 0.00 0.00 0.00 1.00
Gnosis Blockchain 337,255 0.98 0.10 0.00 1.00 1.00 1.00 1.00 1.00 1.00
P2P
Realtoken Amount 95,213 2.66 9.25 0.00 0.04 0.15 1.00 2.00 5.50 965.03
Dollar Amount 95,213 146.91 501.47 0.00 2.00 8.39 50.90 107.90 309.60 54,495
Transaction Price USD 95,213 57.63 17.67 10.00 50.00 50.90 53.50 59.00 65.10 299.00
Price Signal P2P USD 95,213 57.63 17.67 10.00 50.00 50.90 53.50 59.00 65.10 299.00
Realtoken Sell 95,213 0.99 0.07 0.00 1.00 1.00 1.00 1.00 1.00 1.00
Realtoken Buy 95,213 0.01 0.07 0.00 0.00 0.00 0.00 0.00 0.00 1.00
Blockchain Transaction Fee USD 95,213 0.028032 0.491718 0.000026 0.000382 0.000427 0.000555 0.001058  0.002907 38.69
Total Transaction Fee USD 95,213 0.028032 0.491718 0.000026 0.000382 0.000427 0.000555 0.001058  0.002907 38.69
Time on Market (days) 95,191 25.43 54.45 0.00 0.01 0.22 3.24 21.82 80.31 812.23
Number of Active Offers 95,191 22.79 30.60 1.00 3.00 6.00 13.00 27.00 56.00 351.00
Realtoken Amount Active Offers 95,191 80.24 178.80 0.00 1.00 5.35 18.20 67.33 209.66 2,246
Dollar Amount Active Offers 95,191 4,353 9,378 0.000002 64.90 315.09 1,049 3,840 11,519 112,787
Liquidity Pool Value USD 95,109 1,737 1,336 0.000002 37.35 720.41 1,957 2,459 2,995 120,709
Private Deal 95,213 0.01 0.08 0.00 0.00 0.00 0.00 0.00 0.00 1.00
Public Deal 95,213 0.99 0.08 0.00 1.00 1.00 1.00 1.00 1.00 1.00
USD//C on xDai (USDC) 95,213 0.87 0.32 0.00 0.00 1.00 1.00 1.00 1.00 1.00
USD Coin (USDC) 95,213 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 1.00
Wrapped XDAI (WXDATI) 95,213 0.12 0.32 0.00 0.00 0.00 0.00 0.00 1.00 1.00
Tether USD (USDT) 95,213 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 1.00
Tether USD on xDai (USDT) 95,213 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 1.00
Dai Stablecoin (DAI) 95,213 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
Mai Stablecoin (MAI) 95,213 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 1.00
Ethereum Blockchain 95,213 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 1.00
Gnosis Blockchain 95,213 0.99 0.03 0.00 1.00 1.00 1.00 1.00 1.00 1.00
Buyback
Realtoken Amount 12,067 4.81 6.96 0.01 1.00 2.00 5.00 8.00 15.00 40.00
Dollar Amount 12,067 257.06 372.31 0.49 50.76 101.88 259.85 500.00 1,099 1,999
Transaction Price USD 12,067 53.67 13.94 44.19 50.25 50.84 52.13 53.50 54.95 185.80
Price Signal Buyback USD 12,067 53.68 13.94 44.19 50.25 50.84 52.16 53.50 54.95 185.80
Realtoken Sell 12,067 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Realtoken Buy 12,067 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Blockchain Transaction Fee USD 12,067 1.23 4.38 0.000087 0.000275 0.000366 0.002004 0.50 5.00 110.79
Platform Transaction Fee USD 12,067 7.71 11.17 0.014702 1.52 3.06 7.80 15.00 25.00 60.00
Total Transaction Fee USD 12,067 8.94 12.28 0.014977 1.53 3.40 11.01 17.00 28.00 117.78
Time on Market (days) 12,067 10.00 0.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00
Dollar Amount Active Offers 9,460 2,948 6,830 0.00 54.99 197.68 730.90 2,310 6,648 88,401
Liquidity Pool Value USD 11,616 2,327 6,353 0.00 34.69 708.39 1,798 2,450 3,033 159,086
USD Coin (USDC) 12,067 0.19 0.38 0.00 0.00 0.00 0.00 0.00 1.00 1.00
USD//C on xDai (USDC) 12,067 0.81 0.38 0.00 0.00 1.00 1.00 1.00 1.00 1.00
Ethereum Blockchain 12,067 0.19 0.38 0.00 0.00 0.00 0.00 0.00 1.00 1.00
Gnosis Blockchain 12,067 0.81 0.38 0.00 1.00 1.00 1.00 1.00 1.00 1.00

Note: This table reports the descriptive statistics (number of observations, mean, standard deviation,
minimum, 10*" percentile, 25'® percentile, median, 75" percentile, 90" percentile, and maximum) for
the transaction data segmented by the market mechanisms AMM, P2P and Buyback.
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A.6. Further descriptive statistics - Real estate tokens

Table A.7: Descriptive Variables - Real Estate Tokens

Statistic N Mean St. Dev. Min 25% Median 75% Max >
Volume USD 511 38,166.81 67,653.13 50.27 4,734.88 15,688.62 34,521.37 573,563 19,503,242
Volume Realtoken 511 685.48 1,171.00 1.00 94.01 290.24 621.64 9,553.64 350,278
Number of Trades 511 869.93 1,168.18 1.00 62.00 349.00 1,295.50 7,560.00 444,535
Total Turnover Ratio (Traded Token) 511 0.19 0.17 0.000566 0.06 0.16 0.28 1.47

Total Turnover Ratio (Traded Volume) 511 0.20 0.18 0.000573 0.06 0.16 0.29 1.50

Average Liq Pool Value USD 511 1,687 1,876 0.000002 512.76 1,750 2,183 24,136 862,328
Average Days on Market (P2P) 510 21.01 13.89 0.012847 11.46 19.07 27.93 99.63

STO Price 511 51.33 6.85 44.19 50.16 50.56 51.13 161.84

Token Valuation (Asset) 511 41.49 7.37 15.33 39.29 41.35 43.33 144.74

Token Revaluation (Asset) 161 55.68 15.22 44.74 51.54 53.00 55.42 185.66

Token Revaluation (Buyback Price) 161 56.51 15.15 41.50 52.58 53.87 56.12 185.80

Us 511 0.99 0.06 0.00 1.00 1.00 1.00 1.00 509
Panama 511 0.003914 0.06 0.00 0.00 0.00 0.00 1.00 2
Michigan (MI) 511 0.82 0.37 0.00 1.00 1.00 1.00 1.00 424
Florida (FL) 511 0.005871 0.07 0.00 0.00 0.00 0.00 1.00 3
Ohio (OH) 511 0.08 0.27 0.00 0.00 0.00 0.00 1.00 42
New York (NY) 511 0.001957 0.04 0.00 0.00 0.00 0.00 1.00 1
Illinois (IL) 511 0.03 0.17 0.00 0.00 0.00 0.00 1.00 17
Georgia (GA) 511 0.003914 0.06 0.00 0.00 0.00 0.00 1.00 2
Alabama (AL) 511 0.007828 0.08 0.00 0.00 0.00 0.00 1.00 4
Louisiana (LS) 511 0.001957 0.04 0.00 0.00 0.00 0.00 1.00 1
Missouri (MO) 511 0.03 0.17 0.00 0.00 0.00 0.00 1.00 16
Province of Chiriqui (CP) 511 0.001957 0.04 0.00 0.00 0.00 0.00 1.00 1
Detroit (MI) 511 0.80 0.39 0.00 1.00 1.00 1.00 1.00 413
Dearborn Heights (MI) 511 0.001957 0.04 0.00 0.00 0.00 0.00 1.00 1
Deerfield Beach (FL) 511 0.001957 0.04 0.00 0.00 0.00 0.00 1.00 1
Akron (OH) 511 0.001957 0.044 0.00 0.00 0.00 0.00 1.00 1
Cleveland (OH) 511 0.04 0.20 0.00 0.00 0.00 0.00 1.00 22
Rochester (NY) 511 0.001957 0.04 0.00 0.00 0.00 0.00 1.00 1
Chicago (IL) 511 0.03 0.17 0.00 0.00 0.00 0.00 1.00 17
Highland Park (MI) 511 0.01 0.10 0.00 0.00 0.00 0.00 1.00 6
Toledo (OH) 511 0.01 0.13 0.00 0.00 0.00 0.00 1.00 9
Kissimmee (FL) 511 0.003914 0.06 0.00 0.00 0.00 0.00 1.00 2
Jackson (MI) 511 0.003914 0.06 0.00 0.00 0.00 0.00 1.00 2
Birmingham (MI) 511 0.001957 0.04 0.00 0.00 0.00 0.00 1.00 1
East Cleveland (OH) 511 0.003914 0.06 0.00 0.00 0.00 0.00 1.00 2
Covington (GA) 511 0.001957 0.04 0.00 0.00 0.00 0.00 1.00 1
Montgomery (AL) 511 0.007828 0.08 0.00 0.00 0.00 0.00 1.00 4
Playa Venao (CP) 511 0.001957 0.04 0.00 0.00 0.00 0.00 1.00 1
Griffin 511 0.001957 0.04 0.00 0.00 0.00 0.00 1.00 1

St. Louis (MO) 511 0.02 0.16 0.00 0.00 0.00 0.00 1.00 14
Jennings (MO) 511 0.001957 0.04 0.00 0.00 0.00 0.00 1.00 1
Boquete (CP) 511 0.001957 0.04 0.00 0.00 0.00 0.00 1.00 1
Maple Heights (OH) 511 0.003914 0.06 0.00 0.00 0.00 0.00 1.00 2
Euclid (OH) 511 0.003914 0.06 0.00 0.00 0.00 0.00 1.00 2
Garfield Heights (OH) 511 0.007828 0.08 0.00 0.00 0.00 0.00 1.00 4
Saint Ann (MO) 511 0.001957 0.04 0.00 0.00 0.00 0.00 1.00 1
Ecorse (MI) 511 0.001957 0.04 0.00 0.00 0.00 0.00 1.00 1
Maintenance Amount 511 5,131 7,745 0.00 1,600 1,946 3,615 52,600 2,622,034
Renovation Amount 511 9,123 23,419 0.00 0.00 3,000 10,000 420,000 4,662,350
Issued Token 511 3,984 5,469 750.00 1,300 1,480 3,050 37,000 2,035,695
Initial Investment Amount 511 203,911 278,138 48,080 65,345 75,315 164,657 1,881,450 104,198,433
Initial Asset Valuation (Appraisal) 511 166,826 233,902 26,000 53,000 60,000 135,000 1,610,000 85,247,850
Current Investment Amount 511 205,655 278,098 50,250 67,269 76,146 168,937 1,881,450 105,089,833
Current Asset Valuation (Appraisal) 511 172,244 234,222 26,000 56,000 68,500 146,100 1,610,000 88,016,825
Average Token Market Cap USD 511 211,694 284,217 52,867 68,061 78,967 175,212 1,911,193 108,175,535
Asset Value Change (%) 511 0.07 0.12 -0.009324 0.00 0.00 0.18 1.10

Investment Value Change (%) 511 0.02 0.05 -0.29 0.00 0.00 0.04 0.87

Interior Size (SQM) 511 294.73 392.90 0.00 96.00 130.00 239.00 2,816 150,605
Lot Size (SQM) 511 691.53 835.89 0.00 385.50 445.00 579.00 7,870 353,372
Price/ SQM (Current Asset Valuation) 511 619.05 375.96 0.00 449.50 554.00 704.00 4,609

Door Price 511 63,951 64,798 13,529 49,000 55,000 65,000 915,000

Rented Units 511 3.39 5.36 0.00 1.00 1.00 2.00 36.00 1,734
Rented Units (%) 511 0.98 0.09 0.00 1.00 1.00 1.00 1.00

Annual Gross Rent 511 32,688 45,881 0.00 10,920 12,000 24,420 315,600 16,703,792
Annual Net Rent 511 20,717 28,065 0.00 6,858 8,106 17,338 193,698 10,586,382
Net Rent on Current Inv. Amount (%) 511 0.10 0.01 0.00 0.09 0.10 0.11 0.17

Building Age 511 79.14 25.66 3.00 73.00 83.00 97.00 137.00

Number of Units 511 3.50 5.49 1.00 1.00 1.00 2.00 36.00 1,786
Single Family 511 0.64 0.47 0.00 0.00 1.00 1.00 1.00 329.00
Duplex 511 0.12 0.32 0.00 0.00 0.00 0.00 1.00 63.00
Multi Family 511 0.23 0.42 0.00 0.00 0.00 0.00 1.00 119.00
Holding Token 511 0.05 0.22 0.00 0.00 0.00 0.00 1.00 28.00
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Note: This table reports the descriptive statistics (number of observations, mean, standard deviation,
minimum, 25" percentile, median, 75'" percentile, maximum, and sum) for the real estate token
in our transaction data sample. Note, that our initial dataset consisted of 548 real estate tokens.
However, 18 tokens were duplicates representing the same properties due to a transition from the
Ethereum to the Gnosis blockchain. Additionally, 19 properties were initially tokenized under both
Regulation D (for U.S.-accredited investors) and Regulation S (for non-U.S. investors); these have
since been consolidated into Regulation S tokens only and are no longer tradable. With the removal
of Regulation D tokens, U.S. investors can no longer invest in any RealT real estate token. Of the
511 unique tokens, 28 are classified as “holding tokens,” each representing multiple properties and
covering a total of 178 properties. These properties contain between 1 and 36 units, resulting in 661
unique tokenized properties. Tokens with 1 unit represent single-family properties, those with 2 units
represent duplexes, and tokens with 3 or more units represent multifamily properties. Holding tokens
represent either duplexes or multifamily properties, depending on the number of units they include.
Each property can contain one or more units, resulting in a total of 1,786 unique tokenized units.
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A.7. Further analysis on liquidity trends
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Figure A.1: Transaction volume by payment
token

Note: This figure presents the monthly transaction
volume in USD categorized by payment token clas-
sification.
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Figure A.3: Transaction volume by payment
token (detailed)

Note: This figure presents the monthly transaction
volume in USD categorized by payment token.
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Figure A.5: Transaction volume AMM by lig-
uidity pool pair token

Note: This figure presents the monthly transaction
volume within AMMSs in USD categorized by liquid-
ity pool pair token. REALTOKEN serves as a place-
holder for specific real estate token pool pairs, with
each token having its own dedicated liquidity pool.
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Figure A.2: Number of transactions by pay-
ment token

Note: This figure presents the monthly number of
transactions categorized by payment token classifica-
tion.

35,000
USD Coin on xDai (USDC)
Wrapped Ether on xDai (WETH)
Ether (ETH)
Levin (LEVIN)
Wrapped XDAI (WXDAI)
25,000 USD Coin (USDC)
Tether USD (USDT)
Wrapped Ether (WETH)
20,000 Dai Stablecoin (DAI)

Mai Stablecoin (MAI)

30,000

15,000

| i
| II .
I " I
10,000 I “ II|i|
II=!|!!-|-IIII III

0 mm— -

Monthly Number of Transactions

1

H
I..Illi-
m,g P >
@0«&@ S

$° sﬁ@w& &&@&“@,ﬁ@ 5
P g

"/ "/ v v "
ST

Figure A.4: Number of transactions by pay-
ment token (detailed)

Note: This figure presents the monthly number of
transactions categorized by payment token.
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Figure A.6: Number of transactions AMM by
liquidity pool pair token

Note: This figure presents the monthly number of
transactions within AMMs in USD categorized by lig-
uidity pool pair token. REALTOKEN serves as a
placeholder for specific real estate token pool pairs,
with each token having its own dedicated liquidity
pool.



Figure A.7: Liquidity pool token prices
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Note: This figure presents liquidity pool pair token prices in USD on a logarithmic scale. WETH prices follow ETH,
while USDC is assumed to maintain a 1:1 USD peg. REALTOKEN prices are based on average transaction prices,
segmented into those issued below and above $100. The visualization highlights price stability across pool tokens in the
context of impermanent loss risk.

Figure A.8: Transaction prices on AMM by liquidity pool payment token
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Note: This figure presents the transaction prices on AMMs categorized by the liquidity pool payment token pair prices
in USD (N=337,255).

60



A.8. STO process and the secondary market

Our dataset consists of real estate tokens issued by RealToken LLC (RealT), a prominent platform
for tokenizing real estate assets in the USA. Based on the application of the Howey test, digital assets
such as these tokens are classified as investment contracts and therefore considered securities. As a
result, real estate tokens must comply with U.S. securities laws, and RealT operates its token
offerings under specific regulatory exemptions. These offerings are conducted as private placements
under Regulation D 506(c) for U.S.-accredited investors and Regulation S for non-U.S. investors, as
defined by the Securities Act. As of May 31, 2024, there have been 18 real estate token offerings
under Regulation D, which have since been inactivated and converted to Regulation S tokens. Since
then, U.S. investors can no longer invest in any RealT real estate token. The company has stated
that it is working on solutions to include U.S. investors.?* Figure A.9 illustrates the process of real
estate tokenization and security token offerings (STOs) in the case of RealT.?

Each tokenized property is owned by a RealToken Series LLC, created specifically for each property
by RealToken LLC, as real estate cannot be directly digitized. These special purpose vehicles (SPVs)
hold the property deed and function as standalone legal entities.? Once established, the SPVs are
tokenized using the Ethereum ERC-20 technical standard. The properties themselves are primarily
residential rental buildings, with property management outsourced to local professionals.

Investors acquire tokens during the STO, and upon completing payment and digitally signing the
offering memorandum, the tokens are automatically transferred to their wallets through a smart
contract. Transactions on the Ethereum blockchain incur an additional gas fee, which users must pay
to execute operations. Ownership of these tokens gives investors a stake in the associated RealToken
Series LLC. Net rental income, after deducting operating costs, insurance, and taxes, is distributed
weekly to token holders through a smart contract linked to the property, which automatically
transfers payments to the investors’ wallets.

The token’s value is derived from the assessed property value (after accounting for a reserve for
maintenance and repairs) divided by the total number of tokens issued. RealT charges a 10% fee for
this service, and in return, investors receive governance tokens from RealT, granting them certain
voting rights. While still in its early stages, RealT is exploring the integration of DAOs to enable
RealToken holders to participate in decision-making processes related to property management,
maintenance, and financial allocations through on-chain voting mechanisms.

After the STO, investors can trade on the secondary market. Importantly, those entering the
secondary market without prior participation in the STO must complete a free whitelisting process,
managed by the token issuance company RealT, to comply with KYC/AML regulations.
Whitelisting is available for up to fourteen properties per day. Investors have three primary options
to exit their token holdings on the secondary market:

o Selling tokens back to RealT through a company buyback program (Buyback).
o Trading peer-to-peer (P2P) with other investors.

o Utilizing automated market makers (AMMSs) on decentralized exchanges (DEXSs) as part of
the decentralized finance (DeFi) ecosystem.?”

24For more information, please see https://faq.realt.co/en/article/what-is-realt-who-
can-invest-how-do-i-invest-1yycbh5/.

Z5For further discussion on the ICO or STO processes, see Momtaz (2020) and Lambert et al. (2022).

26While Non-Fungible Tokens (NFTs) or Decentralized Autonomous Organizations (DAOs) are al-
ternative forms of digitizing ownership, these are more theoretical and less commonly applied to real
estate markets, and thus are outside the scope of this paper.

2TFor more detail, see Aspris et al. (2021).
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The value of tokens fluctuates annually based on property reappraisals, which may result in
appreciation or depreciation. In early 2021, due to rising transaction costs and longer execution times
on the Ethereum blockchain, RealT introduced the option to conduct transactions on the Gnosis
blockchain.?® This alternative is particularly beneficial for smaller transactions, such as the relatively
low weekly rental payments, as it significantly reduces transaction fees compared to Ethereum.

This detailed description of RealT’s real estate tokenization process, including primary and
secondary market mechanisms, sets the stage for our analysis of tokenized real estate and its liquidity
across these different trading venues.

Figure A.9: Process Map
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Note: This figure illustrates the process of from the Security Token Offering to the secondary market and the mechanisms
to choose from based on the illustration of Kreppmeier et al. (2023).

Marketplace specifics regarding liquidity mechanisms:

RealT offers capped liquidity to investors under set conditions, with the buyback price directly linked
to a periodically updated external appraisal, which is transparently published. RealT retains 5% of
tokens to ensure available liquidity and demonstrate risk retention, while appraisals by third-party
evaluators may be infrequent, leading buyback prices to sometimes reflect older valuations.
Eligibility for buybacks requires that 95% of tokens be sold to investors. The buyback process,

28Gnosis (formerly xDai) is a second-layer protocol designed to facilitate more cost-effective trans-
actions for digital assets on Ethereum.
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capped at $2,000 USD per week and including fractions of tokens, is suitable for trades seeking
execution certainty with minimal price fluctuations. However, trade execution is not immediate and
can take up to 10 business days. Transactions occur on-chain, using either Ethereum or Gnosis, and
are settled in USDC. Fees include a blockchain gas fee, a 1.5% RealT platform fee, and an additional
1.5% external processing fee based on the trading volume.

RealT incentivizes liquidity providers in AMMs through rental income distributions alongside trading
fees, contrasting with centralized market makers who directly profit from bid-ask spreads. Although
large trades in AMMs may incur slippage due to limited pool depth, AMMs facilitate lower overall
fees and instant execution without intermediary constraints.

Regulatory compliance requires KYC verification and address whitelisting for each asset and
investor, which RealT facilitates by offering free whitelisting for up to fourteen properties every day.
Furthermore, the DeFi ecosystem around RealT has enabled a broad range of community-run
applications, including on-chain analytic platforms and integrations with decentralized lending and
borrowing protocols, such as RealT’s RMM network.
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A.9. Token reserve curve - Constant product market making

Figure A.10: Token reserve curve in the case of a shift in the liquidity pool ratio
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Note: This figure illustrates the movement along the token reserve curve of an Automated Market Maker (AMM)
exchange using a Constant Product Market Making (CPMM) formula during an asset token sale. The effect of transaction

fees has been excluded in this illustration.
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A.10. Details on price signals

Figure A.11 shows the price signals and transaction prices of one RWA and therefore the result of
these different mechanisms in the data. Naturally, with a linked asset the market prices fluctuate
around the issuance price, but show distinct variances across the mechanisms (Kreppmeier et al.,
2023; Swinkels, 2023). Buyback transactions maintain stable, since the prices are fixed based on
appraisal values, offering predictability.2? AMMs show significant price dispersion due to
deterministic pricing. Unlike P2P markets, where prices adjust to bids and offers, AMMs rely on
liquidity pool ratios, making them prone to slippage and arbitrage exploitation. This results in lower
realized prices for sellers and liquidity depletion over time. In contrast, P2P transactions achieve
higher consecutive prices and narrower spreads, reflecting efficient, market-driven price discovery.
P2P platforms show growing activity indicated by transactions (red dots) overlapping the price
signals (black triangles), while AMM activity declines.

Figure A.11: Price signals and transaction prices for an exemplary RWA
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Note: This figure shows all concurrent price signals by mechanism and the transaction prices for all 7,560 transactions
of an exemplary real estate token (REALTOKEN-S-4852-4854-W.CORTEZ-ST-CHICAGO-IL). Note that the red dots
do not always overlap with the purple crosses for AMM, as the price signal deviates from the final transaction price due
to slippage.

AMM price signals

To construct AMM price signals, we retrieve liquidity pool reserves using smart contract functions
and blockchain logs. For Uniswap v2 and Levinswap pools, we use the getReserves () function at
the precise block.timestamp of each transaction, i.e. AMM, P2P, and Buyback transactions. For
Uniswap v1 pools, we apply the ethReserve and tokenReserve functions via the Alchemy RPC. In

29 Although the website claims all properties receive annual appraisals, our data shows much longer
intervals without reappraisal for most properties. This explains the lack of price signal variation for
years in Figure A.11.
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cases where post-swap reserve values are available, pre-swap reserves are inferred using the token
amounts exchanged. In rare instances where no AMM liquidity pool existed at the time of a
non-AMM transaction, price signals are missing. However, this only affects 579 out of 107,280
non-AMM transactions, as liquidity pools are typically created shortly after a token’s primary
issuance (STO).

P2P price signals

When no active P2P offer is available at the timestamp of a transaction, we use the most recent
historical P2P transaction for the respective token to approximate the price signal. This method is
applied to 71,349 of the 444,535 transactions in the dataset. Additionally, since P2P mechanisms were
only introduced in October 2020, no P2P price signals are available for 31,198 earlier transactions.

Buyback price signals

Buyback price signals are based on appraisals set by the centralized token issuer and are publicly
accessible through the RealT API at https://api.realtoken.community/. Using the full history of
buyback prices and their associated revaluation dates, we assign a corresponding buyback price
signal to every non-buyback transaction. As the buyback mechanism was the first form of secondary
trading available for these tokens, buyback price signals are available without gaps across the entire
non-buyback transaction dataset.

Figure A.12: All price signals by market mechanism
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Note: This figure shows all price signals segmented by market mechanisms (N=1,301,828).
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A.11. Details on metadata

To account for the distinct market mechanisms observed, we enrich the initial transaction data by
incorporating additional blockchain data, such as offer details for P2P markets and liquidity pool
information for AMMSs, associated with each transaction hash. Additionally, we add non-blockchain
data, such as appraisal values to enrich the Buyback mechanism data. Since the term “transaction”
is often used differently in the blockchain context compared to finance, we clarify that financial
transactions refer specifically to those involving the exchange of tokens tied to payments.

Offer data (P2P)

We analyze three P2P marketplaces: Airswap, Swapcat, and YAM.30 Each marketplace can be
explicitly identified by its smart contract address, which is involved in the financial transactions as
the interaction contract address. To calculate the Time on Market as the distance between offer
creation and offer fulfillment, we enrich the financial transaction data including the offer fulfillments
with the datetime of offer creation, retrieved using marketplace-specific methodologies. Swapcat and
YAM record offer creation on-chain. For Swapcat, we match the offerId from offer creation
transactions (makeoffer) with fulfillment transactions (buy). Since offerId is not publicly stored
on-chain, we rely on additional sources such as the Blockscout REST API and The Graph subgraphs
to retrieve indexing data.?! YAM simplifies this process by explicitly storing offerId in the logs for
both offer creation (0fferCreated) and fulfillment (0OfferAccepted). Airswap processes offers
off-chain, making the datetime of offer creation unavailable (Oved and Mosites, 2017). However, with
only 22 transactions observed on Airswap, its exclusion has minimal impact.

The enriched data from this process enables the classification of tokens as either real estate tokens or
payment tokens, allowing us to identify transactions as initiated sales or purchases of real estate
tokens.3? Furthermore, P2P marketplaces do not support bargaining or negotiation on offers, as
prices are fixed by the offer creator. While prices can be updated by the creator, our analysis focuses
exclusively on the final transaction prices to reduce complexity.??

Liquidity pool data (AMM)

To enhance our financial transaction data on AMMSs, we retrieve liquidity pool reserves and token
exchange amounts before and after each swap. Each real estate token (REALTOKEN) has a unique
liquidity pool, typically paired with payment or quote tokens such as USDC. The distribution of
these pools across the observed platforms is summarized in Table A.8.

To retrieve the reserve data from the observed AMMSs, we apply different logics based on their smart
contract design. For Levinswap and Uniswap v2, we use the Gnosis and Ethereum Blockscout REST
APT transaction logs to extract Sync and Swap events, which provide post-swap reserves (reserveO0,
reservel) and token amounts exchanged (amountOIn, amount1In, amountOOut, amounti0ut).

30nttps://www.airswap.xyz/, https://swap.cat/, https://yam.realtoken.network/

31The Graph enables the creation of community-driven, custom open APIs (subgraphs) that in-
dex and organize blockchain data for specific decentralized applications (dApps). We use the
following subgraphs for Swapcat: BC5uHuHf4YybNfQECjvHIJyZmEfLrPSUu8fLNMZsQ38jx for Gnosis
and4zYp9FYpdepxqggMCwDTawDvEiFbS9VsXmocyiSFLwEvi7 for Ethereum.

32 Additionally, 620 private deals, that are enabled on YAM and likely prearranged through Telegram
groups associated with RealT, can be identified by analyzing the buyer address in the offer creation
data. Private deals refer to offers directed at specific buyer wallet addresses, i.e. the buyer address of
the contract call is not a zero address (0x00. . .), making them unavailable to the general market.

330ur data review confirms that deviations between offer prices and transaction prices are negligible.
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Table A.8: Number of liquidity pools analyzed

Ethereum Gnosis
Token Pair Uniswap vl Uniswap v2  Levinswap
ETH-REALTOKEN 11
WETH-REALTOKEN 2
LEVIN-REALTOKEN 97
WETH-REALTOKEN 96
USDC-REALTOKEN 318

Note: The table summarizes the number of liquidity pools analyzed, including their token reserves
and swapped token amounts. Levinswap (Gnosis), is a fork of Uniswap v2 (Ethereum) and its
functionality and structure is identical. REALTOKEN serves as a placeholder for specific real estate
token pool pairs, with each token having its own dedicated liquidity pool. Additionally, the
Ethereum pools were later migrated to the Gnosis chain (formerly xDai), contributing to a total of
511 real estate token pools.

Pre-swap reserves are calculated by adjusting post-swap reserves with the token amounts exchanged.
Unlike v2-based AMMSs, Uniswap v1 reserves must be retrieved using the Ethereum Blockscout
REST API state changes endpoint and the quote token for Uniswap vl is always ETH.3

Finally, reserve amounts of quote tokens (e.g., Wrapped Ether on xDai, Wrapped Ether, and Ether)
are converted using pricing data from CoinMarketCap. The price trends are illustrated in Figure A.7
in Appendix A.7.3% Using the constant product formula (z -y = k), where z (y) is the number of
RWA (payment) tokens in the pool, we can calculate the token prices for every liquidity pool reserves
state as P = ¥. Furthermore, exact price slippage, which in AMMs refers to the difference between
the swap execution price and the price before the swap, caused by the swap impacting the pool’s
reserves and shifting the price, can be calculated as follows:

PExecution - PBefore

Slippage =
bbag PBefore

where Pgxecution 18 the actual price at which the swap is executed (swap price) and Pgefore is the
price based on the liquidity pool reserves before the swap occurs (pre-swap price).

34Where REST APIs fail, reserves are reconstructed via Alchemy RPC or manually looked up using
Gnosisscan.

35For Levin, not constantly listed on centralized exchanges, its price is calculated manually using
reserves from the LEVIN-WXDALI pool. The stable peg of USDC to USD allows direct use of its value

without conversion.
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A.12. Robustness and time for transactions

Table A.9: Arbitrage flow and mechanism efficiency

Dependent variable:
P2P Usage (in %)

AMM Usage (in %) Buyback Usage (in %)

(1)

2)

C)

Arbitrage into AMM —0.0003***
(0.0001)
Arbitrage within AMM 0.00002***
(0.00000)
Slippage 0.273***
(0.081)
Arbitrage into P2P 0.0001***
(0.00002)
Arbitrage within P2P —0.00001
(0.00001)
Arbitrage into Buyback 0.0001
(0.0002)
Blockchain Transaction Fee USD 1.210%** —4.737*** 4.897***
(0.254) (0.332) (0.718)
Volatility 7 Days 0.042** —0.191*** 0.173***
(0.019) (0.032) (0.022)
Market to Appraisal Ratio —0.050*** 0.276*** —0.232%**
(0.019) (0.087) (0.059)
Cumulative Return ETH (One Week) —0.111%** 0.067*** 0.043***
(0.010) (0.018) (0.013)
Average Ethereum Fee USD 0.0001** —0.001*** —0.0001**
(0.0001) (0.0001) (0.0001)
One Month Treasury A —0.005** 0.010*** 0.002
(0.002) (0.003) (0.003)
Ten Year Treasury A —0.0001 —0.085** 0.095%**
(0.024) (0.037) (0.029)
ADS Index A —0.001 —0.003 —0.007***
(0.002) (0.003) (0.002)
S&P Case Shiller Index A —0.249 —1.886*** 1.543%**
(0.481) (0.689) (0.360)
Individual Fixed Effects Yes Yes Yes
Year-Month Fixed Effects Yes Yes Yes
Observations 65,140 104,711 104,711
R2 0.153 0.297 0.068
Adjusted R? 0.146 0.293 0.063

Note: The table presents results for the panel regression of mechanism usage (in %) on a daily basis with respect to
arbitrage within and into the mechanism. All models include year-month-fixed effects and token-level individual-fixed
effects. Robust standard errors clustered at the token level are shown in parentheses. The symbols *, ** and *** denote

significance at the 10%, 5%, and 1% levels, respectively. All variables are defined in Appendix A.2.
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Table A.10: Arbitrage flow and future mechanism efficiency

Dependent variable:

AMM Usage (in %) t+ 1

P2P Usage (in %) t + 1

Buyback Usage (in %) t + 1

€] (2 (3)
Arbitrage into AMM —0.0001*
(0.0001)
Slippage —0.126**
(0.054)
Arbitrage into P2P 0.00000
(0.00001)
Arbitrage into Buyback 0.00004
(0.0002)
Blockchain Transaction Fee USD —2.719*** —0.212 0.821***
(0.333) (0.207) (0.188)
Volatility 7 Days —0.004 —0.103*** 0.039**
(0.033) (0.031) (0.019)
Market to Appraisal Ratio —0.035* 0.010 0.003
(0.020) (0.016) (0.005)
Cumulative Return ETH (One Week) —0.032*** 0.032*** —0.005
(0.011) (0.011) (0.007)
Average Ethereum Fee USD 0.0001 —0.0002 —0.0001
(0.0002) (0.0001) (0.0001)
One Month Treasury A —0.007* 0.010*** —0.0003
(0.004) (0.003) (0.003)
Ten Year Treasury A 0.005 —0.021 —0.055**
(0.045) (0.041) (0.027)
ADS Index A —0.002 —0.002 0.004**
(0.003) (0.003) (0.002)
S&P Case Shiller Index A —0.489 0.247 —0.958**
(0.844) (0.679) (0.470)
Individual Fixed Effects Yes Yes Yes
Year-Month Fixed Effects Yes Yes Yes
Observations 65,075 104,224 104,224
R? 0.203 0.279 0.030
Adjusted R? 0.197 0.275 0.025

Note: The table presents results for the panel regression of mechanism usage (in %) on a daily basis on the following
day t + 1 with respect to arbitrage within and into the mechanism. All models include year-month-fixed effects and
token-level individual-fixed effects. Robust standard errors clustered at the token level are shown in parentheses. The
symbols *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively. All variables are defined in

Appendix A.2.
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To verify the consistency of our main findings, we estimate log-ratio regressions comparing
mechanism usage shares relative to a baseline venue. Specifically, Table A.11 presents results using
P2P usage as the reference category (log(AMM/P2P) and log(Buyback/P2P)), while Table A.12 uses
AMM usage as the reference (log(P2P/AMM) and log(Buyback/AMM)). Using log-ratios allows us
to express relative changes in usage shares symmetrically and interpret coefficients as elasticities,
facilitating clearer comparisons across mechanisms while preserving the proportional nature of the
data. Across both specifications, the results broadly confirm our baseline panel regressions (Table 4):
arbitrage into AMMSs reduces their relative usage, as indicated by a significantly negative coefficient
on arbitrage inflows in log(AMM/P2P). Conversely, arbitrage into P2P modestly increases its
relative usage, reflected by positive coefficients on arbitrage into and within P2P in log(P2P/AMM).
Arbitrage into Buybacks is consistently associated with higher Buyback usage relative to both P2P
and AMM, with positive and significant coefficients across both specifications. Slippage and
blockchain fees also exert strong directional effects: they increase AMM usage relative to P2P
(positive in log(AMM/P2P)) and decrease P2P usage relative to AMM (negative in
log(P2P/AMM)), consistent with the view that AMMs serve as a high-friction fallback under
execution pressure. Moreover, market-to-appraisal spreads and cumulative ETH returns load
negatively on AMM usage in both sets of regressions—appearing as negative coefficients in
log(AMM /P2P) and positive coefficients in log(P2P/AMM)—reinforcing the link between pricing
inefficiencies and exit behavior. These robustness checks validate the directional relationships found
in the main regression model and support the interpretation that arbitrage activity reallocates
liquidity across mechanisms in predictable, mechanism-dependent ways.
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Table A.11: Log-Ratio Regressions: AMM and Buyback Usage Relative to P2P

Dependent variable:
log(AMM / P2P) log(Buyback / P2P)
&) (2

Arbitrage into AMM —0.010**
(0.004)
Arbitrage within AMM —0.0001
(0.00005)
Arbitrage into Buyback 0.012***
(0.002)
Slippage 5.515%** 5.012%**
(1.796) (1.771)
Blockchain Transaction Fee USD 46.010*** 65.715***
(5.039) (6.246)
Volatility (7 Days) 1.451%** 1.660***
(0.505) (0.566)
Market-to-Appraisal Ratio —1.782** —2.168**
(0.722) (0.912)
Cumulative ETH Return (1W) —2.443%** —2.174***
(0.282) (0.300)
Ethereum Transaction Fee USD 0.002 0.002
(0.002) (0.002)
One-Month Treasury A —0.239*** —0.287***
(0.069) (0.083)
Ten-Year Treasury A 0.534 1.157
(0.593) (0.722)
ADS Index A —0.050 —0.116**
(0.047) (0.055)
S&P Case-Shiller Index A —2.403 1.515
(12.113) (12.578)
Individual Fixed Effects Yes Yes
Year-Month Fixed Effects Yes Yes
Observations 65,140 65,140
R? 0.132 0.104
Adjusted R2 0.125 0.097

Note: This table presents additive log-ratio regressions with P2P as the reference category. Coefficients reflect how
AMM and Buyback usage respond relative to P2P under varying arbitrage and market conditions. The table includes
* kk

coefficient estimates and corresponding standard errors, presented in parentheses. The symbols *, **, and *** denote
significance at the 10%, 5%, and 1% levels, respectively. All variables are defined in Appendix A.2.
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Table A.12: Log-Ratio Regressions: P2P and Buyback Usage Relative to AMM

Dependent variable:
log(P2P / AMM) log(Buyback / AMM)

1) 2)

Arbitrage into P2P 0.001***
(0.0003)
Arbitrage within P2P 0.001***
(0.0003)
Arbitrage into Buyback 0.014***
(0.002)
Slippage —5.730*** —0.731**
(1.836) (0.359)
Blockchain Transaction Fee USD —47.263*** 18.436***
(5.044) (4.596)
Volatility (7 Days) —1.398*** 0.253
(0.505) (0.193)
Market-to-Appraisal Ratio 1.806** —0.365*
(0.734) (0.198)
Cumulative ETH Return (1W) 2.542%** 0.375%**
(0.287) (0.092)
Ethereum Transaction Fee USD —0.002 0.001
(0.002) (0.001)
One-Month Treasury A 0.249*** —0.042
(0.070) (0.054)
Ten-Year Treasury A —0.447 0.671
(0.595) (0.463)
ADS Index A 0.047 —0.070**
(0.047) (0.028)
S&P Case-Shiller Index A 1.348 2.808
(12.129) (5.666)
Individual Fixed Effects Yes Yes
Year-Month Fixed Effects Yes Yes
Observations 65,140 65,140
R2? 0.127 0.010
Adjusted R? 0.120 0.002

Note: This table presents additive log-ratio regressions with AMM as the reference category. Coefficients reflect how
P2P and Buyback usage respond relative to AMM under varying arbitrage and market conditions. All models include
year-month-fixed effects and token-level individual-fixed effects. The table includes coefficient estimates and
corresponding standard errors, presented in parentheses. The symbols *, ** and *** denote significance at the 10%,

5%, and 1% levels, respectively. All variables are defined in Appendix A.2.
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Table A.13: Reduced time frame for the blockchain analysis

Dependent variable:
P2P Usage (in %)

AMM Usage (in %) Buyback Usage (in %)

(1 (2 3)
Arbitrage into AMM —0.001*** / /
(0.00004)
Arbitrage within AMM 0.00003*** / /
(0.00000)
Slippage 0.255%** / /
(0.027)
Arbitrage within P2P / 0.00005*** /
(0.00001)
Arbitrage into P2P / —0.00002 /
(0.00002)
Arbitrage into Buyback / 0.0004**
(0.0002)
Transaction Price/Buyback A / / —0.192***
(0.012)
Blockchain Transaction Fee USD 1.149*** —4.736*** 4.896%**
(0.155) (0.193) (0.131)
Volatility 7 Days 0.044*** —0.191*** 0.190***
(0.012) (0.017) (0.011)
Market to Appraisal Ratio —0.048*** 0.276%** —0.095%**
(0.005) (0.007) (0.009)
Cumulative Return ETH (One Week) —0.105*** 0.067*** 0.052***
(0.007) (0.011) (0.008)
Average Ethereum Fee USD 0.0001 —0.001*** —0.0002
(0.0001) (0.0001) (0.0001)
One Month Treasury A —0.005 0.010 0.002
(0.004) (0.007) (0.005)
Ten Year Treasury A 0.004 —0.086* 0.089***
(0.030) (0.050) (0.034)
ADS Index A —0.001 —0.003 —0.007***
(0.002) (0.003) (0.002)
S&P Case Shiller Index A —0.280 —1.886*** 1.475%**
(0.422) (0.647) (0.440)
Individual-Fixed Effects Yes Yes Yes
Year-Month-Fixed Effects Yes Yes Yes
Observations 65,140 104,711 104,711
R? 0.161 0.297 0.070
Adjusted R? 0.154 0.293 0.065

Note: The table presents results for the panel regression of mechanism usage (in %) on a daily basis with respect to
arbitrage within and into the mechanism and a significantly reduced time windows of 5 minutes. All models include year-
month-fixed effects and token-level individual-fixed effects. The table includes coefficient estimates and corresponding
standard errors, presented in parentheses. The symbols *, **, and *** denote significance at the 10%, 5%, and 1% levels,
respectively. All variables are defined in Appendix A.2.
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A.13. Details on difference-in-differences analysis

This appendix presents a robustness check using a stricter arbitrage definition based on a 5-minute
round-trip window. The findings remain consistent with the main analysis and support the
conclusion that AMMs are more susceptible to arbitrage during periods of market stress.

Table A.14: Descriptive Statistics: DiD Sample (60-Minute Window)

Variable N Mean St. Dev. Min 25% Median 75% Max
Arbitrage 10,609 0.200 0.400 0 0 0 0 1
AMM 10,609 0.934 0.249 0 1 1 1 1
Post Event 10,609 0.814 0.389 0 1 1 1 1
Total Fee (%) 10,609 0.005 0.007 0.000 0.003 0.003 0.004 0.053
Market-to-Appraisal Ratio 10,609 1.206 0.252 0.396 1.108 1.162 1.234 3.991

Liquidity Pool Value (USD) 10,609 1,782.827 1,215.098 8.210 1,629.301 1,897.569 2,164.522  14,045.740

Note: This table reports summary statistics for the sample used in the difference-in-differences analysis (60-minute
arbitrage window). The dependent variable Arbitrage indicates whether a trade was part of an arbitrage sequence.
AMM and Post Event are binary indicators for mechanism and post-shock status, respectively. Total Fee (%) denotes
total transaction fees as a percentage of trade value. Market-to-Appraisal Ratio is the ratio of the transaction price to
the appraised token value. Liquidity Pool Value refers to the dollar value of reserves in the AMM pool at the time of
trade.

Table A.15: Descriptive Statistics: Robustness Sample (5-Minute Window)

Variable N Mean St. Dev. Min 25% Median 75% Max
Arbitrage (5-Min) 10,609 0.054 0.226 0 0 0 0 1
AMM 10,609 0.934 0.249 0 1 1 1 1
Post Event 10,609 0.814 0.389 0 1 1 1 1
Total Fee (%) 10,609 0.005 0.007 0.000 0.003 0.003 0.004 0.053
Market-to-Appraisal Ratio 10,609 1.206 0.252 0.396 1.108 1.162 1.234 3.991

Liquidity Pool Value (USD) 10,609 1,782.827 1,215.098 8.210 1,629.301 1,897.569 2,164.522  14,045.740

Note: This table reports summary statistics for the sample used in the robustness check of the difference-in-differences
analysis based on a 5-minute arbitrage window. The dependent variable Arbitrage (5-Min) indicates whether a trade
was part of an arbitrage sequence completed within 5 minutes. AMM and Post Event are binary indicators for
mechanism type and post-shock status, respectively. Total Fee (%) denotes total transaction fees as a percentage of
trade value. Market-to-Appraisal Ratio is the ratio of the transaction price to the appraised token value. Liquidity Pool
Value reflects the dollar value of reserves in the AMM pool at the time of trade.
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Table A.16: Difference-in-differences of arbitrage (5-minute window)

Dependent variable: Arbitrage (5-Minute Window)

OLS
1)
AMM 0.0067
(0.0152)
Post Event —0.0161
(0.0150)
Total Fee (%) —1.730***
(0.5513)
Market-to-Appraisal Ratio —0.195%**
(0.0583)
Liquidity Pool Value (USD) 0.000042*
(0.000023)
AMM x Post Event 0.0501***
(0.0154)
Individual-Fixed Effects Yes
Clustered SE Yes
Observations 10,609
Adjusted R2 0.0885

Note: This table reports regression results for the binary outcome Arbitrage (5-Minute Window) using the same
transaction-level DiD model as in the main specification. The dependent variable equals one if a wallet executes a
profitable round-trip trade in the same token within 5 minutes. Model is estimated using OLS with symbol fixed effects
and standard errors clustered at the token level. The symbols *, ** and *** denote significance at the 10%, 5%, and
1% levels, respectively.

15%
10%

5%

Arbitrage Rate

0%

Mechanism = Automated Market Maker =— Peer—to-Peer Marketplace

Figure A.13: This figure plots the daily arbitrage probability based on a 5-minute window for trades
executed via AMMs and P2P marketplaces between May 1 and May 14, 2022 The vertical dashed
line marks the UST collapse on May 7. Trends are parallel pre-shock and diverge sharply post-shock,
supporting the identification strategy of the DiD model.

76



A.14. Details on optimization problem

Partial derivatives

In the interior solution case—where none of the liquidity constraints bind—the optimal allocation
(@Anins Gbap 45) satisfies the condition that the marginal execution cost per unit of efficiency is
equalized across all mechanisms. This corresponds to the first-order condition derived from the
Lagrangian of the cost minimization problem.

The total execution cost to minimize is:

CeXeC CeXeC CeXeC
Chota = —2ee AMM PP Zexeo, B (N.1)
Eavm Epop Ep

where each component is a function of the respective trade size g;, and all quantities are subject to
the market-clearing condition:

q = gamm + gp2P + ¢B- (N.2)

The partial derivatives for each mechanism express the marginal increase in total execution cost per
additional unit traded via mechanism 4, holding the others fixed:

For AMMs:
7
Cexec, AMM = B - Fanu - gamm + LAM7 (N.3)
AMM
1 Y
Eavm = naMm - Lamvu - ( ) , (N.4)
tAMM
0 (Oexec, AMM) _ 1 . aC’exec7 AMM (N 5)
Ogamm Eavm Eavm Oganmm .
aCeXeC 2
AMM g QAMM’ (N.6)
Oganvim Lanvim
2
0 (Oexec, AMM) _ ﬂ - Fanm + % (N 7)
= . )
aarmu Eanu namm - Lamw - (tAi4M>
For P2P marketplaces:
¢
Cexec, P2p = B - Fpap - gpop + ;721)7 (N.8)
P2P
1 Y
Epop = npap - Lpap - () ; (N.9)
tpop
0 <Cexec, P2P> _ 1 . acvexec, P2p (N 10)
Oqpaop Epop Epop Oqpap '
aC’exec P2P 6 ) ql(i;Fl’
OCexcc. P20 _ g o | 0 dpop N.11
Oqpaop P2 Lpap ( )
S.a8=1
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For Buybacks:

Cexec,B :ﬂFB - 4B, (N13)
tB(QB) = tmin + (tmax - tmin) : (1 - qB) B (N14)
Ly
_ 1 v
Eg=ng-Lg- | —F7—] - N.15
BB <tB(QB)) ( )

Since the efficiency function Eg depends on gg, we need to differentiate it as well. The marginal
execution cost per efficiency unit for buybacks is:

a Cexec B > 1 ac‘exec B Cexec B dEB
= Bl —. B _ B =B N.16
Oqs ( Eg Eg Jdqs E} dqs ( )
3Cexec B
2 — 3. F N.1
an B Fs, (N.17)
k—1
dtnlgs) _ ~(bmax — tmin) - — - (1 - qB) : (N.18)
dqs Ly Ly
dEg — ( 1 )”* )
= e pp-ILn-~y- | —— . N.19
dgn IR tn(gm) dgs (N-19)
0 <Cexec,B> o B ) FB
Aqn E B - 1 )"
qB B e - Lp - (tB(qB))

+ﬁ’FB'qB'7'(tmaX*tmin)'/€
—2
nB - Ly

Together, these marginal expressions provide the analytical foundation for comparing mechanisms at
the margin. The optimal allocation satisfies:

B (cexec,AMM>_ 9 (cexec,p2p>_ 9 (CB) (N.21)

dgamm Eavm ~ Ogpop Epop "~ Ogqp En

Starting allocation

To improve numerical stability and accelerate convergence in the numerical optimization routine
implemented in 4.1, we initialize the iterative solver with a heuristically meaningful starting
allocation, denoted as ¢. This initial guess reflects the core economic intuition of the framework that
traders allocate more volume to mechanisms that offer greater execution efficiency per unit of cost.
This logic can be implemented through an inverse-cost-per-efficiency weighting rule, assigning larger
volume shares to mechanisms with lower average execution cost per efficiency unit. The share
allocated to mechanism 7 is then given by:

1

@) = ek i e {AMM, P2P, B}, (N.22)
Zj Chotal, j
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with total cost per unit of execution efficiency defined as:

Cexec,i
E;

Ctotal,i = (N23)

This inverse-cost allocation rule approximates the marginal condition of the full optimization
problem, which equalizes execution cost per efficiency unit across mechanisms. In cases where none
of the liquidity constraints are binding (i.e., interior solutions), this heuristic allocation closely
mirrors the true optimizer, as the first-order condition of the Lagrangian yields a comparable
structure. This is because the marginal condition involves the derivative of the same ratio Cexec i/ Ei,
and for near-linear or mildly convex cost and efficiency functions, the average and marginal values of
this ratio are nearly identical. Furthermore, since the implemented execution cost and efficiency
functions are nearly linear or exhibit only mild curvature over the relevant trade size range, the
average cost per efficiency unit serves as a close proxy for the marginal cost in these cases. While the
full numerical solution is necessary to accommodate binding constraints and corner cases, the
starting guess captures the economically meaningful direction of the optimum and significantly
improves convergence stability. In additional robustness checks (unreported), we tested various solver
initializations (for example a neutral starting point with equal weights across mechanisms)
extensively. These checks consistently confirmed that trade allocations remain stable across all
economically relevant initializations.

Further simulations

The following simulations show additional optimal trade allocations under varying model parameters,
as described in the figure notes—particularly changes in trader preferences. These results
complement the model simulations presented in Section 4.1.
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Figure A.14: Time Sensitivity (v) and Trade
Size (q)

Note: Shows the optimal trade allocation using pa-
rameters from the Empirical Baseline (1) in Section
4.1, with Lpop = 973 (empirical median). Varying
the execution time sensitivity ~ highlights the prefer-
ence for the faster AMMs as 7 increases.
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Figure A.16: AMM and P2P Liquidity with
fixed Trade Size (¢ = $10)

Note: Tllustrates optimal trade allocation for a fixed
trade size of ¢ = $10, using parameters from the Em-
pirical Baseline (1) in Section 4.1. Liquidity levels
span the empirical 10t" and 90t quantiles: Lapsar €
[$37,81,600] and Lpop € [$61,812,130]. The results
highlight how small trades tend to reallocate based

on the relative liquidity of available execution mecha-
nisms.
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Figure A.15: Transaction Fee Sensitivity (3)
and Trade Size (q)

Note: Displays the optimal trade allocation from the
Empirical Baseline (1) in Section 4.1, with Lpsp =
973 (empirical median). As transaction fee sensitivity
[ increases, allocation shifts toward lower-fee venues
such as P2P and AMM.
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Figure A.17: AMM and P2P Liquidity with
fixed Trade Size (¢ = $50)

Note: Visualizes optimal trade allocation for a fixed
trade size of ¢ = $50, using parameters from the Em-
pirical Baseline (1) in Section 4.1. Liquidity levels
span the empirical 10t" and 90t quantiles: Laasar €
[337,81,600] and Lpop € [$61,312,130]. The trade
size approximates the average token price at STO,

serving as a representative benchmark for full-token
transactions.
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