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Abstract

I propose a tractable model of “complexity aversion”. The key ingredient is “first or-

der complexity aversion”: when people know they’re making a mistake (because the

situation is complex) they experience some dread, which is a utility loss proportional

to the absolute value of the expected error. I show how complexity aversion leads to

optimally simple mechanisms. I illustrate this in five examples complexity aversion

makes a large di!erence. (i) If complexity aversion is high enough, the price of a good

will be constant over time, even though the marginal cost might be variable, to avoid

annoying the consumer with a complex price system. (ii) In the theory of optimal

taxation, if complexity aversion is high enough, the optimal tax system is “simple”,

e.g. just features a uniform tax rate rather than a di!erent tax rate for each good, as

recommended by the traditional Ramsey model. (iii) Whereas the traditional model

predicts that contracts should be indexed aggregate factors (e.g. on inflation, GDP,

or the stock market), with enough complexity aversion, contracts are non-indexed,

“simple”. (iv) Complexity aversion leads to a model of a non-traditional (first order)

cost of inflation, which in calibration is quite important: as di!erent sources of income

do not react equally to inflation, higher inflation leads to a more complex planning

process. (v) This in turn changes optimal monetary policy, which will de facto target

a zero inflation (or, more generally, zero deviation from the inflation target), to the

exclusion of other goals, except in rare extreme circumstances such as an extreme reces-

sion. I finally discuss how using this model of complexity aversion will lead to a useful

“behavioral mechanism design” theory, and more realistic—simpler—mechanisms.
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1 Introduction

I propose a tractable notion of “complexity aversion”, and explore its implication for “simple

mechanisms”, in several settings: simple price systems, simple taxes, simple contracts (that

are not indexed), and the cost of inflation as increasing choice complexity, and the resultant

optimal monetary policy.

Prices systems are typically much “simpler” than a frictionless rational model would

predict. For instance, prices for Whole Foods delivery are the same for all hours and days

of the week, even though they “should” vary in the frictionless world.1 Likewise, the barber

typically has prices that don’t depend on the time of day, even though the 5pm slot is much

more popular than the 2pm slot, so that (generically at least) their prices should di!er.

I show how complexity aversion leads to optimally simple mechanisms. For instance,

when complexity is high enough, the price of a good (e.g. Whole Foods deliveries) will be

constant across time-periods, even though the marginal cost might be variable. Intuitively,

this is to avoid annoying the consumer with a very complex price system.

A price system is optimally simpler when complexity aversion is higher, when the com-

plexity of thinking about the price is higher, when the marginal cost is less variable, and

when the price elasticity is lower (which often means that competition is lower). So Whole

Foods deliveries will have a constant price (low elasticity of demand), while the price of

strawberries will be more variable (as the marginal cost is more variable, and the price

elasticity is higher).

This result of a fully simple price system may seem intuitive, but it does require some

care in the modeling of complexity aversion. Two key properties yields full simplicity.

First, the consumer experiences a complexity “dread”, the sense that she is making a

mistake, which directly lowers her utility (above the traditional cost from lowering one’s

utility because of a mistake). Unlike say cognition or information cost, this “dread” cost is

paid even when attention is 0 (whereas with zero attention, no cognition cost is paid). Hence,

even for a very behavioral consumer who pays zero thinking costs, lower complexity (and

the scope for mistake) will be useful to lower his dread. This is a sense in which cognitive

costs, and complexity dread are distinct, though they interact with each other: cognitive

costs generate mistakes, which in terms generate complexity aversion.

Second, this complexity aversion cost is (in the main specification) first order in the size

of the mistake rather than second order: if the expected size of the mistake is e (in absolute

value), the dread cost is proportional to e, rather than e2. This “first order complexity

aversion” is a close cousin to the “first order risk aversion” found necessary to explain the

behavior under risk (Kahneman and Tversky (1979), Rabin (2000)). Traditional model

1In the spring 2024, this was $9.99 for 2-hour slots, e.g. 6-8am, 8-10am, etc. There are also 1-hour slots
(6-7am, 7-8am etc.), that all cost $14.99.
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ambiguity aversion would generate something akin to second order complexity aversion. But

to robustly generate simplicity at the optimum, we need first order complexity aversion.

Why? This is because making mechanism more “rationally e”cient” by a small factor b

will create extra allocative gains proportional to b, typically. With first order complexity

aversion, the dread costs will also be proportional to b, and so they might overcome the

“rational benefits” of order b. However, if the complexity aversion is proportional to b2, then

it will be much lower than the the first order rational allocative gains (of order b); so at the

optimum, we shall want to have b away from 0: the mechanism will be a complex, as b is

not 0. So second order complexity aversion does not (most of the time) generate fully simple

mechanism. The logic is actually more rich, as the size of the mistakes, hence the dread,

depends on attention which is endogenous, but this is the essence of the reasoning.

Complexity aversion creates “aversion to deciding”. If an “active decision” (e.g., rebal-

ance one’s portfolio) entails complexity aversion, while a “passive course” (e.g. do nothing),

when complexity aversion is high enough, and the decision is hard enough, people will stay

passive.2

As a second example of “simple mechanisms”, this paper revisits the (Ramsey) theory

of optimal goods taxation, with now complexity-averse agents. In the traditional Ramsey

model, the optimal tax on each good is (generically) di!erent for each good (as it is inversely

proportional to the elasticity of demand for the good). This appears ridiculously complex—

with ten thousand di!erent goods, rational theory wants ten thousand di!erent tax rates.

This is probably one of the reasons why those strict recommendations of optimal taxation

theory are scarcely followed in practice. With complexity-averse agents, things are much

more sensible. Indeed, if complexity aversion is high enough, the optimal tax system is

“simple”, e.g. just features a uniform tax rate.

A third application is aversion to indexation. In the basic economic theory, most contracts

should be indexed in aggregate risks, such as inflation, GDP, or the stock market (see e.g.

Holmström (1979)), as that reduces the risk faced by consumers. For instance, debt contracts

ought to be indexed on inflation, and GDP; mortgage contracts “ought” to be indexed on

inflation, or on GDP. But that’s typically not the case in practice. Intuitively, this is because

“this would be too complicated”. The model formalizes that, and, sensibly, delivers that

contracts will generally not be indexed, except if the risk-reduction e!ects are large enough.

A fourth application is to the cost of inflation. One often mentioned cost is that inflation

makes things complicated, as people need to juggle between prices that follow inflation (such

as the price of most goods), and other streams that do follow it only infrequently (e.g. the

wage, being adjusted to inflation only once a year, or a fixed-interest rate mortgage, that is

2Years ago, I describe this to Robert Lucas. He told me that this what he did—he had never rebalanced
his retirement portfolio, and just let it drift.
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not indexed). The theory leads to first order losses of inflation |ω|, rather than, as in the

traditional model (Woodford (2003)), second order losses ω2. In calibration, this is much

bigger, and indeed much more in line with people’s intuition.

The fifth application is to monetary policy. We just saw that complexity aversion leads

to “first order” rather than “second order” losses from inflation, and, under some conditions,

of the output gap. Hence, the central bank’s objective function has terms in |ωt| rather than
ω2
t . This implies that exactly zero inflation is optimal in a large range of circumstances, even

when this is at the cost of an output gap (this is in the spirit of the Lasso).

I view these results as potentially useful since they give the hope that one can explain

existing institutions (and their degree of “simplicity”). The underlying model yields a prin-

cipled way to do “behavioral mechanism design”, i.e. design optimal institutions (i.e. price

or tax systems) that aim both at high allocative e”ciency and not too high complexity. This

will augment the power of mechanism design, which is often hampered by the fact that it

generates too complex recommendations to be used in practice.

The reader might be a bit bewildered by all those examples. Are they really needed? I

found it useful to have several examples, for two reasons. First, to verify that the theory is

expressive enough, and simple enough, that it can be used in a number of situations. Second,

for a given situation, there could be a number of explanations: for instance, the rigidity of

prices might come from fairness (Eyster et al. (2020)). But fairness, presumably, cannot

explain why consumers do not wish to index contracts. So it is useful to analyze simplicity

across a domain of situations.

Related literature There is relatively little work on explaining why contracts are simple.

One paper is Tirole (2009). Another literature, on the lack of indexation, emphasizes asym-

metric information: the person who proposes to index the contract may have more informa-

tion than the one would has to accept or reject the indexation (Spier (1992), Hartman-Glaser

and Hébert (2020)). The present mechanism is very di!erent, and centered on complexity,

rather than asymmetric information: the model presented here predicts that even without

asymmetric information, there will still be a lack of indexation. Carroll (2015) proposes

conditions under which optimal contracts are linear, using robustness under the worse-case

behavior, which is a form of infinite risk aversion. In contrast, this paper uses “smoother”

preferences, and emphasizes complexity aversion.

On the theoretical side, this work relates to a number of attacks of complexity. Some

are conceptual interesting, but sadly not very tractable, e.g. using discrete automata (Ru-

binstein, 1998), or sequences of discrete decisions (Gabaix et al., 2006). This paper is closer

to the literature on limited attention, and crucially it adds a new, “complexity aversion”

cost to the psychological description of the economic agent. I draw on earlier work (Gabaix
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(2014)), whose emphasis on “sparsity” I share — but the technology in that paper does not

generally generate simple contracts. This sort of model is meant to be reasonable compro-

mise between naive bounded rationality and fully Bayesian information processing. A very

behavioral approach, where attention is insensitive to cost-benefit analysis, is developed in

a series of papers by Bordalo et al. (2013). At the opposite end, a fully Bayesian processing

approach is developed in a series of papers by Sims (2003), Matějka and McKay (2015),

Caplin et al. (2020), Woodford (2020), Khaw et al. (2021). The analysis we propose here

could be applied to those styles of models. A cumulative body of papers show inattention (in

particular in its behavioral flavor) is a good candidate for one unifying force in behavioral

economics (see Gabaix (2019) for a manifesto, and Enke et al. (2024) for new systematic

evidence).

There is a recent line of work on complexity, which is largely empirical. A growing body

of work measures how “intuitively complex” setups lead to more “mistakes”, or more pre-

cisely, deviations from a baseline simple economic model (Abeler and Jäger (2015), Mart́ınez-

Marquina et al. (2019), Oprea (2020), Dean and Neligh (2023), Enke et al. (2023)). Huck

and Weizsäcker (1999), Sonsino et al. (2002), Fudenberg and Puri (2023), Enke and Shubatt

(2023), Puri (2024) find lotteries are less tempting when they have more outcomes (so are

more “complex”). Oprea (2024b) finds that this behavior may be linked to complexity rather

risk per se. Those papers however do not trace this phenomenon to some “mistake aversion”.

It would be interesting to revisit them with that angle, especially as “complexity aversion”

and mistake aversion might be (in part) a way to generate risk aversion.

It is clear intuitively a high complexity is a key determinants in mistakes, and this has

been directly or indirectly shown in a number of papers, in all parts of economics. For

instance, in macro, losses from lack of consumption planning can be very high (Augenblick

et al. (2024)), and where the non-indexation of debt contract amplify financial crises (Gertler

and Karadi (2011)).3 In law and economics, contracts tend to be “simple”, standardized and

sticky (Hart (1995), Bar-Gill (2012), Gulati and Scott (2012), Dari-Mattiacci and Marotta-

Wurgler (2022)). In finance, firms and analysts often use simple, quite rigid rules of thumb

to assess cost of capital, and valuations (Graham (2022); Gormsen and Huber (orth); Ben-

David and Chinco (2024)). This paper could be useful in those parts of economics, as a way

model the taste for simplicity, and its equilibrium consequences.

Outline The paper first lays out the basic model, then explores successively simple prices,

the fact that people avoid deciding at all, simple tax systems, aversion to indexation, the

complexity costs of inflation, and optimal monetary policy. Most proofs are in the appendix.

3If debt contracts were indexed on aggregate economic activity, typically contracts would automatically
channel funds to financial firms in crises, as in contingent convertible bonds—but we scarcely see that in
practice, arguably because investors want simple, standard bonds.
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2 How complexity aversion leads to simple mechanisms

2.1 Motivation: many institutions are “simple”

Many institutions look “simple”, compared to a frictionless benchmark. For instance, prices

for Whole Foods delivery are the same for all hours and days of the week, even though they

“should” vary in the frictionless world, as the marginal cost to Whole Foods must be di!erent

across the slots. Why does Whole Foods adopt this very simple pricing scheme? Most likely,

this is because of some form of complexity aversion by the consumer.4 This sort of situation

is extremely prevalent: for instance, restaurant typically (not always) charge the same price

for meals are di!erent hours of the evening; bars do not implement “congestion pricing”.

I show how this model of complexity does generate “complexity aversion”, which leads

to “simple mechanisms” – for instance rigid prices.

2.2 Model

I first review an existing model of thinking cost, then add the key new ingredient: complexity

aversion.

2.2.1 A model of thinking cost: Background material

I first review model laid out in Gabaix (2014) and Gabaix and Graeber (2024), that does

not feature complexity aversion yet. The task is to maximize over a continuous action a

an objective function u (a, x), where u is smooth (three times continuously di!erentiable)

and concave in a. The vector of disturbances x is drawn from a distribution with mean

normalized to 0, and its component are perceived by the agent to be uncorrelated. Action a

is just a scalar for now, but it is easy to extend to a multidimensional a. I call default action

ad the optimal action “at the default”, i.e. when all x are equal to 0, ad = argmaxa u (a, 0),

and I normalize it to 0; axi is the partial derivative at a default point. The rational answer

is thus (after linearization, so up to second order terms in xi, assuming that the deviations

xi are “small”)

ar =
∑

i

axixi =
∑

i

yi, yi := axixi (1)

The agent’s objective is to cognitively construct those yi := axixi, which indicates by how

much dimension i of the problem should change the rational action.

4This could also logically be a form of complexity aversion by the producer – i.e. some employee at
Whole Foods – who does not know all the marginal costs. The modelling would be similar as the one
we proposed here, and might apply to the situations documented in DellaVigna and Gentzkow (2019). It
couldn’t plausibly be a monetary “menu cost” for Whole Foods – their sales are so enormous that any cost
of changing the web site should be comparatively trivial.
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People receive noisy signals ysi about yi:5

ysi = miyi + (1→mi) y
d
i +

√
mi (1→mi)εi (2)

where mi ↑ [0, 1] is the precision of the signal, ydi is a default value, equal to 0 when the

mean of xi is 0, and εi a mean-zero noise with variance ϑ2
ωi = ϑ2

yi . If all the shocks are

jointly Gaussian, with the prior of yi equal to ydi , we have E [yi|ysi ] = ysi . The rational case

corresponds to mi = 1, and the extremely inattentive case, to mi = 0.6 Accordingly, I posit

that if the decision maker sees ysi , she takes the decision

a =
∑

i

ysi .

The traditional utility losses from an imperfect decision are then:

E [u (as, x)]→ E [u (ar, x)] =
1

2

∣∣u→→ (ad
)∣∣
∑

i

ϑ2
yi (1→mi) (3)

Production function of thought

Typically, in calculations, we will assume a production function of thought (or precision) as

follows: an e!ort Li leads to a precision

mi (Li) = min

((
Li

ci

)1↑ε

, 1

)
, ϖ ↑ (0, 1) (4)

where ϖ ↑ (0, 1) and ci parametrizes the basic “cost” of thinking, and is taken here as a

primitive (it can be endogenized, as in Gabaix and Graeber (2024)). The cognitive cost

Ci (mi) is then wLi, where Li is the e!ort needed to reach precision mi according to (4), and

w is a cost of e!ort, which can be taken as a constant in applications, so is

Ci (mi) = wcim
1

1→ω

i , 0 < ϖ < 1 (5)

We could also have the production function of thought with ϖ > 1:

mi (Li) = max

(
1→

(
Li

ci
+ 1

)1↑ε

, 0

)
, ϖ > 1 (6)

5The noisiness is not central — the fact that signals are imperfect is.
6I do not assume that agents are Bayesian (as traditional information economics) – instead, I simply use

that benchmark as an inspiration for the model (as e.g in Gabaix (2014), Woodford (2020)). For instance,
when y1 and y2 are correlated, a Bayesian agent would use E [y1|ys1, ys2] to infer y1, but instead we model the
agent as being a “limited Bayesian”, who simply performs E [y1|ys1].
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This model induces sparsity, i.e. when benefits are small enough, the optimal e!ort and

attention are exactly 0. Then, the cost is

Ci (mi) = wci
(
(1→mi)

1
1→ω → 1

)
, ϖ > 1 (7)

Yet another tractable format is a linear-quadratic cost of cognition.

The cost C (m) is convex in m, C (0) = 0, and we normalize w = 1.

2.2.2 Complexity aversion: The innovation in this paper

The consumer’s full utility, given attention policy m, is:

V (m) = E [u (as, x)]→ C (m)→ CCA (m) (8)

where as = ar (xs (x,m)) is the action given the perceived x (with ar (x) the rational action

given x) and where C (m) is a cognitive cost function, which is the e!ort needed to achieve

precision m (which comes from (4)).

The key new term in this paper is the “complexity aversion” term CCA (m). The leading

version is first order complexity aversion:

CCA,1 = ϱ
∑

i

E
[∣∣ϑauaaa

r
xi
xi

∣∣2
]1/2

(1→mi) (9)

where ϱ ↓ 0 is a “complexity aversion” parameter, which is unitless, ϑa is the natural scale of

a, explained below. The first order penalty is proportional to ϑxi rather than ϑ2
xi
. This is in

the spirit of first order risk aversion (where the risk penalty is proportional to the standard

deviation), which has been found many times to describe people better than rational model’s

prediction of second order risk aversion (where the risk penalty is proportional to the squared

standard deviation), see Kahneman and Tversky (1979), Rabin (2000).

The crucial part in (9) is that, when m = 0 (when the agent doesn’t think), the CA term

is strictly positive (even though the cognition cost is C (0) = 0). To build intuition, consider

a very boundedly rational agent that has m = 0. Then, the cognition cost is 0, but the dread

cost is strictly positive, as the agent is conscious enough that he is making a mistake (as in

Enke and Graeber (2023)). Hence, there is an incentive for the planner to create a “simple

scheme”, that will not create too much “dread”, i.e. complexity aversion.

On the other hand, when the consumer understands fully the situation (so mi = 1), there

is no room mistake, and the dread cost becomes 0 in (9).

A variant that study in the appendix (and then ultimately discard) is “second order com-

8



plexity aversion”, which which is proportional to the expected loss from mis-optimization:

CCA,2 = ϱE [u (ar, x)→ u (as, x)] = ϱ
∑

i

E
[
→1

2
uaa

(
arxi

xi

)2
]
(1→mi) (10)

It is in the tradition of regret, e.g. Loomes and Sugden (1982), Sarver (2008). It is more

natural given the tradition, but ultimately I will discard, as it typically does not generate

full simplicity, e.g. rigid prices, or no indexation.

The key di!erence between “complexity aversion” (proposed here) and “regret aversion”

(from the tradition) are:

1. CA is first order (the loss is proportional to the error e, not e2: otherwise, second order

losses will not robustly lead to full simplicity (e.g. no indexation)

2. CA applies to the mistakes made by the agents in their reasoning, not to the ex post

regret because of nature’s stochasticity. Hence, it does not change the utility of a

rational agent, only of one that makes mistakes.

3. CA applies features by feature: if there are several features (e.g. the decision entails

looking at a tax rate, and an expected return, and a price), each of them is subject

to CA, so the loss is ϱ


i wi (1→mi) for some weight wi, rather than in a “unified

manner”. To see why this matters, consider the alternative, e.g. having e.g. CA→ =

ϱ


b2iϑ
2
xi
(1→mi) . Then, the partial impact of each bi in b2i ,not |bi|: so de facto we

have second order complexity aversion at the feature level, and we will not get full

simplicity.

Multidimensional actions The following is advanced material, and best skipped at a

first reading. If ã represents the randomness of the action across situations, the complexity

aversion is:

CCA,1 = ϱ
∑

i

(
E |ãuaaaxixi|2

)1/2
(1→mi) (11)

If there are several dates, and utility is separable, it may be useful to sum separately across

periods:

CCA,1 = ϱ
∑

i,t

(
E

|ãtuatatat,xixi|2

)1/2
(1→mi) . (12)

3 A simple example: rigid pricing schemes

I present in detail the application of the above general model to a simple situation: the

pricing of one good. This is a very simple context, that will provide many of the key

economic lessons, valid in later applications.

9



3.1 Setup and basic analysis

A competitive firm (maximizing social welfare) sells to a behavioral consumer, who can buy

a continuous quantity of its good.7 The marginal cost is an exogenous c (x) = 1 + x where

x is a random variable with mean 0 and variance ϑ2
x. The endogenous price per unit is is

p (x) = 1+ bx, where b is chosen by the benevolent firm, i.e. the planner. If consumers were

rational, the e”cient value would be to have the price equal marginal cost, i.e. b = 1, but

with behavioral consumers the firm might choose another b. For instance, if b = 0, the price

is constant over time, which “simplifies” the consumer’s choice.

The consumer chooses to consume a quantity C = 1 + a, where a will be a deviation of

consumption from a value of 1, and will have a mean 0. Her total utility, net of the cost of

good, is:

u (a, x) = U (1 + a)→ p (x) (1 + a) (13)

where the gross utility from consuming a quantity 1 + a of the good is:

U (1 + a) = 1 + a→ 1

2ς
a2 (14)

where ς > 0 is the elasticity of demand (when the price is centered at 1). The rational

action is ar = argmaxa u (a, x) i.e.

ar = →ςbx (15)

3.1.1 The behavioral consumer’s utility

Imperfect cognition The consumer perceives the price as ps = 1 + bxs with

xs = mx+
√
m (1→m)ε (16)

with ϑω = ϑx and m ↑ [0, 1] is the precision of the perception (exo- or endogenous). She

takes the action a = →ςbxs, see (15). The utility gains from taking the right action (i.e.

ar = →ςbx) is:

φ = →1

2
uaaE


(arxx)

2 = 1

2
ςϑ2

xb
2 (17)

7Here, I take the benchmark of firms forced to maximize social welfare by competitive forces, hence to
be “benevolent”. Section A.1 gives a microfoundation. This is the opposite tack of the literature where
firms exploit the naive consumers’ bounded rationality (Gabaix and Laibson (2006), Heidhues and Kőszegi
(2018a)), because there is a “shrouded attribute” (e.g. the spare part to be bought later) in addition to a
“visible base good” (the car). Considering that those issues are now well-understood, I focus complexity
with a benevolent firms. Of course, complexity aversion with an exploiting firm would be an interesting next
step.
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Traditional consumption utility is:8

U cons = E [u (a, x)] = φm

so is increasing in attention.9

Complexity aversion With first order complexity aversion (9), we have the dread cost,

of complexity aversion cost:

CCA,1 = ϱE [(ϑauaaa
r
xx)]

1/2 (1→m) = ϱϑa
1

ς
ς |b| ϑx (1→m)

hence

CCA,1 = ϱϑaϑx |b| (1→m) (18)

The crucial part is that, when m = 0 (when the agent doesn’t think), the dread term

CCA,1 is strictly positive (even though cognition cost is zero, C (0) = 0). Specifically, it

is proportional to the expected absolute mistake from not thinking.10 Also, in (18), if the

consumer makes no mistake, m = 1, the dread term is 0: there is no cognitive dread when

all is well-understood.

With second order CA, the CA penalty (10) is the expected loss from mis-optimization,

times the coe”cient of complexity aversion ϱ:

CCA,2 = ϱ
1

2
ςϑ2

xb
2 (1→m) (19)

The interpretation is similar to that of the first order CA (18, but with a term proportional

to b2 rather than |b|.
The consumer’s full utility is, from (8):

V cons (m) = φm→ C (m)→ CCA (m) . (20)

8The derivation is:

U cons = E [u (a, x)] = E [u (ar, x)] +
1

2
uaaE

[
(arxx)

2
]
(1→m) = ω→ ω (1→m) = ωm

9It may be surprising at first that a more volatile price makes the consumer better o!, even though
the consumer is risk-averse (U cons increases with ε2

xb
2). This is always true with quasi-linear utility

u (c0, . . . , cn) = c0 + U (c1, . . . , cn), with U concave, which is the case here. This is not true for general

non-quasi linear utilities, as can be seen for the one-good case: the indirect utility is u
(

w
p

)
, which shows

the tension between the convex 1
p and the concave u.

10To anticipate why this is important, consider a very cognitively limited consumer that exerts no cognition
in equilibrium (m = 0): the dread terms increases the deadweight loss from the mechanism, as it makes the
agent “feel anxious”, in addition to making him lose utils from poor decision-making.
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In the case of endogenous attention, I posit that the consumer optimizes cognition, i.e.

does

max
m

V cons (m) . (21)

3.1.2 Social welfare

Social welfare is:

W = V cons (m) + E [(p (x)→ c (x)) (1 + a (xs))]

i,.e. the consumer’s full utility (including dread and cognition cost), plus profits from con-

sumption 1 + a (xs), which also reflects that the social cost of the good is c, not p:

So, the social planner’s (or benevolent firm’s) wants to maximize total social surplus,

while taking into account that the variability of prices (indexed by b) a!ects the endogenous

attention m. Mathematically:

max
b

W (m, b) subject to m ↑ argmax
m

V cons (m, b) (22)

where V cons (m, b) is (20). We next calculate that social welfare.

Lemma 1. Social welfare is

W (m, b) =

(
b→ b2

2

)
ςϑ2

xm→ CCA → C (m) (23)

We verify that when there is no cognition cost nor complexity aversion (m = 1, ϱ = 0),

social welfare is W =
(
b→ b2

2

)
ςϑ2

x, so is maximized when b = 1, i.e. when the consumer

pays the marginal cost.

3.2 When is the optimal price system “simple”?

We now arrive at the meat of the analysis. We can derive the optimum price complexity,

particularly focusing on when the price is “perfectly simple” and constant (b = 0).

First order complexity aversion reliably generates simplicity Let us start with a

transparent case, with exogenous attention m.

Proposition 1. (Optimal price simplicity, first order complexity aversion) Suppose that

consumers have first order complexity aversion. Then, the optimal sensitivity of price to

marginal cost is:

b = max

(
1→

ϱϑaϑx (1→m)→Wm
dm
db

ςϑ2
xm

, 0

)
(24)
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So, with exogenous attention (dmdb = 0), the optimum entails rigid prices if and only if:

ϱϑaϑx (1→m) ↓ ςϑ2
xm (25)

i.e. if marginal complexity aversion cost, ϱϑaϑx (1→m), exceeds that the marginal increase

in allocative benefits, ςϑ2
xm.

Proof. With first order CA,

W =

(
b→ 1

2
b2
)
ςϑ2

xm→ ϱϑaϑx |b| (1→m)→ C (m)

So,
d

db
W = (1→ b)ςϑ2

xm→ ϱϑaϑxsign (b) (1→m) +Wm
dm

db

Solving for b gives the announced expression (24).

Proposition 1, especially (25) also shows that contracts are more likely to be “simple”

(b = 0) when (i) complexity aversion ϱ is high; (ii) when the elasticity of demand ς is

low – hence, if competition is low (in many models, higher competition leads to a higher

elasticity of demand ς, see e.g. Atkeson and Burstein (2008), Gabaix et al. (2016)); when

(iii) volatility of the demand would be low (ςϑx low) even under a frictionless model; (iv)

when the degree of understanding is low (low m).

The important point is that we get a simple price system if the cost of cognition is large

enough. We see why Whole Foods has a uniform pricing system for delivery, but variable

prices between goods: the demand for delivery is reasonably inelastic, while the demand for

an individual goods is much more elastic (e.g. raspberries vs blueberries, or raspberries at

Whole Foods vs another store), and the marginal cost of perishable goods is very variable,

depending on crops for instance. Likewise, in very competitive markets (e.g. airlines), the

elasticity of demand is very high, and as a result the schemes are “complex”.

The role of complexity aversion cost The next proposition shows that the CA is

essential to obtain simple mechanism. Without CA, we do not get outright simplicity (b = 0),

and instead we get b = 1 as the optimum.

Proposition 2. (We need complexity aversion to explain full simplicity) Suppose that there

is no complexity aversion (ϱ = 0), and there is either exogenous or endogenous attention.

Then social welfare is optimized for b = 1, so that prices are not rigid at the optimum.

We conclude that, with first order CA, a high CA parameter ϱ generates simplicity, b = 0.

Let us next verify that this works with endogenous attention.

13



Deepening the role of the thinking cost with endogenous attention The following

gives su”cient conditions for full simplicity.

Proposition 3. (Optimal price simplicity, first order complexity aversion, endogenous at-

tention) Suppose first order complexity aversion, and endogenous attention m. A perfectly

simple contract (b = 0) is locally optimal (i.e. the social welfare W (b) has a local optimum

at 0) if and only if (25) holds. For a perfectly simple contract to be globally optimal, the

following are su!cient conditions: C (1) > ςϑ2
x (reaching full precision is very costly), and

the complexity aversion cost ϱ is large enough: ϱ ↓ ϱ↓, with:

ϱ↓ := max
m

ςϑ2
x → C (m)

ϑaϑx (1→m)
(26)

The intuition is the following: if it’s mentally costly enough to fully understand the

situation, people will have a limited understanding of it, so m < 1. But then, if b > 0 and

the complexity aversion ϱ is high enough, the “dread” term (18) is high enough to wipe out

the allocative benefits, 1
2ςϑ

2
x.

The cuto! ϱ↓ is higher when cognition is cheaper (C is lower), and when the traditional

benefits from a rational allocation (12ςϑ
2
x) are higher (when the rational elasticity of demand

ς and the volatility of prices ϑx are higher).

To complete the picture, let us consider a case where we need not have perfect simplicity:

intuitively, this is the case when the marginal cost of thinking are low enough, compared to

the social surplus gains of having a complex contract.

Proposition 4. (When full rationality is easy enough, contracts shouldn’t be maximally

simple) Suppose that C → (1) < 1
2ςϑ

2
x. Then, perfect simplicity (b = 0), is non-optimal (and

indeed, less desirable than b = 1, the optimum slope with traditional agents), even with a

high complexity aversion parameter ϱ.

The economic interpretation of the condition is that the (marginal) cost of thinking C → (1)

is less than the surplus generated at the optimum, which is 1
2ςϑ

2
x. Hence, some complexity is

important if the task is “easy” (C → (1) is low, which implies that C (1) is low, as by convexity

C (1) ↔ C → (1)), or a “very important” (it yields a high social surplus 1
2ςϑ

2
x). Hence, we have

simplicity when the cost of getting it exactly right is not too large.

This concludes the analysis of first order complexity aversion. We see that when it is

large enough (ϱ large enough), it generates full simplicity, at least if it is hard enough for

the agents to completely understand the situation (Propositions 1 and 3). At the same time,

complexity aversion is necessary to account for full simplicity (Proposition 2).

The appendix A.2 analyzes second order complexity aversion, and finds that it can some-

times generates simplicity, but in a non-robust way.
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4 When people prefer not to decide

Very often, people prefer not to decide, at all. This typically is linked to hyperbolic discount-

ing (Laibson (1997)), as the thinking cost is paid now and the benefits are received later.

Another reason, is that the act of choosing is itself aversive (see in particular the evidence in

Bernheim et al. (2024)), or that it is about loss aversion (Kőszegi and Rabin (2009), Andries

and Haddad (2020)), as choice involves looking up information, which can lead to bad news.

Complexity aversion o!ers another a natural hypothesis for this: thinking is aversive.

Suppose that the active decision is the traditional utility:

Uactive = E [u (as (xs) , x)]→ Ccognition (m)→ CCA (m) (27)

where as is the noisy decision given the imperfect perception xs. But there is a “passive”

decision ad, evaluated as:11

Upassive = E

u
(
ad, x

)
(28)

Hence, we can hypothesize that people will stay passive, and do nothing, when Upassive ↓
Uactive. The main psychological di!erence is that the passive decision does not bear any

complexity aversion.

To complete this simple psychology, we can add “motivated cognition”, e.g. “ostrich

e!ect” (Karlsson et al. (2009); Sicherman et al. (2016)), with12

Ũactive = Uactive + µ
∑

i

uxix
s
i

where µ > 0 is weight on motivated attention. This means that reacting to “bad news”

(news xi that lower utility if uxix
s
i < 0) is penalized.

To see the e!ects, take the model Ũ (a, x) = →1
2 (a→ x)2+vx, so that the passive decision

at default action a is Upassive = →1
2

[(
ad
)2

+ ϑ2
x

]
. Take the case C (m) = ↼m for simplicity.

Proposition 5. (When the agent fails to act, and passively follows the default) The agent

takes passive course of action (Ũpassive ↓ maxm Uactive (m)) if and only if:

min

(
ϱϑaϑx,↼→ ϑ2

x

2
→ µvx

)
↓ 1

2

(
ad
)2

(29)

Condition (29) means that people are more likely to be passive if: complexity aversion ϱ

is high, cognition cost ↼ is high, the news is “bad news” (vx < 0 high), and if the passive

allocation isn’t too far o! the optimum (
∣∣ad

∣∣ small). If there is no complexity aversion, the

11An interesting variant would be: Upassive = E

u
(
ad, xd

)
, which gives an even higher utility.

12This modeling of motivating cognition is in Gabaix (2019), Section 4.3.2.
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whole e!ect disappears.13

Take the lack of rebalancing of one’s portfolio. The active decision involves thinking

about the correct determinants for portfolio choice, a complicated vector x, involving e.g.

the expected returns of US vs International stocks, or long vs short term bonds. Hence,

many people just choose not rebalance at all.14 They will do so only when the portfolio is

very o!, and when they have a no complexity aversion.

5 Simple tax systems: Ramsey problem with optimally

simple taxes

The Ramsey (1927) taxation problem is the most basic taxation problem, and still leads to

complex optimal taxes: generically, each good has its own specific tax, proportional to the

inverse elasticity of demand. This is even true when agents are behavioral, in the sense that

they misperceive the tax, but are not complexity averse (Mullainathan et al. (2012), Farhi

and Gabaix (2020), Rees-Jones and Taubinsky (2020)). Let us see how complexity aversion

lead to an optimal simple tax system.

5.1 Traditional, rational version

We start with the traditional framework for goods taxation. There are G+1 goods indexed

by g. The agent has utility U (c) =
G

g=1 u
g (cg) + c0 where ug (cg) = cg → 1

2ϑg
(cg → 1)2 and

c0 is the a residual good with price 1 (which is utility from residual income), untaxed. Hence

the rational demand is cg = 1→ ςg (pg → 1), so that ςg is a sensitivity of demand of good g

to its price.

Each good g is taxed at a rate of ↽g, so the price paid by the consumer is p̃g := pg (1 + ↽g).

The pre-tax price pg is independent of taxes, e.g. fixed by a linear production technology,

and it is normalized to be pg = 1.

The government has a social welfare function:

W = U (c) + (1 + ⇀)
∑

g

↽gcg (30)

where ⇀ > 0 is the excess marginal value of public funds, which are the collected taxes,


g ↽gcg.

13In this model with linear cost, if the agent is active, then m = 1, so that she fully optimizes. With costly
attention, then even under “active” decision, the attention wouldn’t be full.

14Calvet et al. (2009) finds some rebalancing at the level of individual securities. Gabaix et al. (2025) finds
very low rebalancing at the of aggregate risk-taking.
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Following the tradition, we take the limit of a small ⇀, so that taxes are small. Taking a

Taylor expansion up to second order terms, rational utility is

W = W 0 +
∑

g

(
→1

2
ςg↽

2
g + ⇀↽g

)

where W 0 is the utility with 0 taxes. With rational consumers, optimizing over ↽g gives the

traditional Ramsey (1927) rule

↽g =
⇀

ςg
(31)

Each good has a di!erent tax: the tax system is very “complex” in that sense.

5.2 Complexity averse agents

The tax is: ↽g = ↽̄ + ↽̂g, where ↽̄ is the average tax and ↽̂g is a deviation. I assume that the

consumer sees a tax

↽ sg = ↽̄ + ↽̂ sg

where the subjective perception ↽̂ sg is an inattentive version of the true ↽̂g: the consumer sees

average tax ↽̄ perfectly (the idea is that if the tax is on average 10%, consumers will know

it and take it into account), but sees the deviation ↽̂g only partially.

The limited capacity to react to taxes is intuitive. Chetty et al. (2009), Taubinsky and

Rees-Jones (2017) and Rees-Jones and Taubinsky (2020) provide compelling experimental

evidence that people do not react optimally to taxes, and indeed typically under-react to

them, consistent with limited attention or processing capacity. Glaeser and Shleifer (2001)

propose that quantities rather than prices are sometimes regulated (e.g., no alcohol should

be sold on Sundays), when quantities are easier to observe, a form of simplicity. Aghion et al.

(2024) find significant frictions to optimal reaction to taxes, consistent with complexity costs.

This model applies directly to the US, where it’s customary for firms to show the pre-

tax price pg, but not the price inclusive of the tax, p̃g := pg (1 + ↽g). However, it also

applies to other countries, where the price inclusive of taxes is shown: simply then, the

cognitive di”culty is on the side of firms. Indeed, consider a world where what is shown

is the price p̃g inclusive of the tax, as in European countries; and where, as in all sensible

systems, intermediary production is not distorted, so that firms do not pay the VAT on

intermediary inputs. Then, the model still applies, but the complexity is for firms, not

consumers. However, the economics are the same.15

15Suppose that firms see the price p̃g but the price they pay is p̃g

1+ωg
, as the VAT that a firm pays

is rebated to it. Then, a firm h’s problem is to maximize over the intermediary inputs Xh
g of good g,

maxX phFh
(
Xh

g

)
→


g

p̃h

1+ωg
Xh

g . So, it’s the firm that now faces the complexity cost of knowing each ϑg.

17



The consumer’s demand is:

cg = 1→ ςg↽
s
g (32)

Calling mg the attention to the special tax ↽̂g to good g, the (first order) complexity aversion

cost associated with good g is:

CCA
g = ϱϑg |↽̂g| (1→mg) (33)

where ϑg is the typical variation in the consumption of good g. This is derived as in (18).

Social welfare is:

W = E

∑

g

ug (cg)


→ CCA

g → Cg + (1 + ⇀)
∑

g

↽gcg (34)

i.e. the consumer’s utility (inclusive of the complexity aversion, and the cognition cost CCA
g ,

plus the government revenues (with a weight 1 + ⇀, where ⇀ ↓ 0).

Lemma 2. (Welfare in the Ramsey problem with CA agents: Taylor expansion) In the limit

of small taste for government funds ⇀, hence small taxes, social welfare is, up to higher order

terms:

W = W 0+
∑

g

[
→1

2
ςgE

[(
↽̄ + ↽̌ sg

)2]→ ϱϑcg |↽̌g| (1→mg)→ Cg + ⇀ (↽̄ + ↽̌g)

]
(35)

where W 0 social when all taxes are zero. Also,

E
[(
↽̄ + ↽̌ sg

)2]
= ↽̄ 2 +mg

(
2↽̄ ↽̌g + ↽̌ 2g

)

The government problem is to maximize social welfare W , subject to the average tax

being ↽ , i.e.


g ↽̂g = 0, so that ↽̄ is truly the average tax.

If all consumers are rational (ϱ = 0, ↽̌ sg = ↽̌g), optimizing social welfare (35), we obtain

↽g = ϖ
ϑg
, the traditional Ramsey inverse elasticity rule: the tax system is complex, as each

good has a di!erent price.

With complexity-averse consumers, we obtain the following very di!erent result (the

proof is in the Appendix).

Proposition 6. (Optimal tax simplicity, with a concave cost of cognition) Suppose first order

complexity aversion, and exogenous attention. Define the average elasticity ς̄ = 1
G


g ςg.

As decision-makers in firms are people, then if prices inclusive of taxes are shown, those people will pay the
complexity cost instead of the consumer.Their attention may be higher than for consumers, but (at least for
non-giant firms), likely to be imperfect.
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Figure 1: As the complexity aversion increases, the optimal number of di!erent tax rates
decreases. Notes. In this illustration there are N = 10 goods. When complexity aversion is
very small, there are 10 di!erent tax rates, as in Ramsey. However, when it is large enough,
there is just one uniform tax rate.

Suppose for all goods, the average attention to the tax is imperfect, mg < 1. Then if com-

plexity aversion ϱ > 0 is large enough, then the optimum entails a simple tax system: the

tax rate is the same for all goods, ↽g = ↽̄ = ϖ
ϑ̄
. More specifically, a necessary and su!cient

for this simple tax system is that ϱ is large enough to satisfy is:

max
g

⇀mg
ςg

ς̄
→ ϱϑg (1→mg) ↔ min

g
⇀mg

ςg

ς̄
+ ϱϑg (1→mg) (36)

When mg and ϑg are the same across goods, this necessary and su!cient condition becomes:

⇀
maxg ςg →ming ςg

ς̄
↔ 2ϱϑ

1→m

m
(37)

Condition (37) means that we have a simple tax system if complexity aversion ϱ is large

enough compared to the relative dispersion of elasticities (maxg ϑg↑ming ϑg

ϑ̄
), and if attention

m is low enough. Condition (36) has the same message, in a more general way.16

This makes intuitive sense: when cognition costs are very high, it’s best to have a uniform

tax. However, finding the conditions (namely, first order complexity aversion) for that is not

trivial.17

16There is a value ϖ→ ↓ 0 such that (36) holds if and only if ϖ ↓ ϖ→. Indeed, observe that the di!erence
between the right hand size of (36) and its left-hand size increases in ϖ, and goes to ϖ as ϖ ↗ ↘.

17We started Farhi and Gabaix (2020) hoping to obtain simple tax systems, but we didn’t. Optimal taxes
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Extending the proposition, one could imagine that as the complexity aversion cost ϱ > 0

becomes lower, a more and more complex tax system is warranted. Indeed, it is clear that

more generally, when complexity aversion ϱ increases, there are fewer tax buckets. The

situation will like Figure 1.

More generally, this approach yields a principled way to do “behavioral mechanism de-

sign”, i.e. design optimal institutions (i.e. price or tax systems) that aim both at high

allocative e”ciency and not too high complexity (see Gonczarowski et al. (2023) for ad-

vances in behavioral mechanism design). This is a fruitful research avenue.

6 Aversion to indexation

When a risk-averse agents deals with a risk-neutral firm, in basic rational economic theory,

contracts should be indexed, to remove some extraneous risk from the consumer: for instance,

debt or mortgage contracts should be indexed on inflation, or other macroeconomic variables

(e.g., Holmström (1979)). However, the stylized facts on indexation are the following. (i)

Most consumer contracts are not indexed, contradicting the rational prediction (ii) On the

other hand, in extreme cases, e.g. hyperinflations, contracts become indexed again.

Intuitively, the reason for the lack of indexation is that an indexed contract would be too

“complicated”, compared to the traditional gains (lower risks). I formalize that now.

There are three periods, t = 0, 1, 2. Consumption happens are time 1, 2, and utility is

V = v (c1) + v (c2) , v (c) = c→ #

2
c2

Income at time 2 is 2 (ȳ + ŷ), where ŷ is a mean 0 random variable, and there is no income

at times 0 and 1. The interest rate is 0.

At time 0, the consumer can choose to “index”, i.e. to enter into a contract adding →2⇁x

to his future time 2 income, where x is an variable, correlated with ŷ. So, time 2 income is,

inclusive of the indexation,

y2 = 2 (ȳ + ŷ → ⇁x) (38)

where ⇁ is the consumer’s choice of indexation.

I call a the time-1 consumption. So utility is u (a) = v (a) + v (y2 → a), i.e.

u (a, ⇁) = v (a) + v (2 (ȳ + ŷ → ⇁x)→ a)

in the Ramsey problem were modulated by attention, but where not simple. Inattention, and information
economics was not enough as an ingredient. But now new ingredient of complexity aversion allows to obtain
simple taxes.
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The rational decision at time 1 is

a = ȳ + ŷ → ⇁x (39)

The value of ŷ and x is announced at time 1. To minimize variance (i.e. maximize

utility E0 [u (a, ⇁)]), from the point of view of time 0, a rational consumer would choose

⇁↓ = argminb var (ŷ → ⇁x), i.e. ⇁↓ = cov(ŷ,x)
ϱ2
x

.

But intuitively, a behavioral consumer will dislike the additional complexity of having

to think through ⇁x at time 1 (the values of r, x are realized at time 1). To model this,

let’s say that only x is hard to see. Then, the perceived value is xs = mx + (1→m) ε. The

consumer sees a = ȳ + ŷ → ⇁xs. So, the objective utility is

V = V ↓ → 1

2
#⇁2ϑ2

x (1→m)→ ϱ#ϑaϑx |⇁| (1→m)

So, if ϱ is large enough, it is best to choose ⇁ = 0.

Proposition 7. (How complexity dampens or annuls the incentive to index) Suppose first

order complexity aversion. Normalize cov (ŷ, x) ↓ 0 (otherwise, replace x by →x). Suppose

exogenous attention m. The optimal indexation level is

⇁ = max (cov (ŷ, x)→ ϱϑaϑx (1→m) , 0)
1

ϑ2
x

(40)

In particular, if the marginal benefit of indexation (cov (ŷ, x)) is less than marginal complexity

cost of indexation (ϱϑx) (i.e., if cov (ŷ, x) < ϱϑaϑx (1→m)), then the optimal indexation for

the consumer is 0.

Proposition 7 is qualitatively consistent with the main facts. When stakes are small,

there is no indexation. However, when stakes increase (e.g. inflation is higher), then there

is some indexation. This may explain why most contracts (e.g. debt contracts) are not

indexed.18

This example made the point that complexity-averse will not want to index, under a wide

range of parameters. More generally, they will not want to contract on some observables,

which might be a way to generate incomplete contracts, in the spirit of Hart (1995), but

with a more explicit cognitive structure, which would lend itself to measurement. I defer

this exploration to a future iteration of this project.

18Proposition 18 in the online appendix shows that with second-order complexity aversion, there is always
a bit of indexation.
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7 The complexity costs of inflation, its implications for

monetary policy

7.1 The complexity cost of inflation are first order, so much larger

than the usual second order costs

There is a large literature on the welfare cost of inflation, which includes many traditional

determinants. But typically, they are very small. For instance, a prominent cost (Woodford

(2003)) is the fact that inflation adds dispersion between firm prices: for instance, if Coca-

Cola last reset its nominal price ↽ period before Pepsi, and inflation is ω, the relative price

between Coca-Cola and Pepsi is o! by ω↽ ; that distortion yields a welfare loss (Harberger

triangle) order (ω↽)2. This is typically very small (less than 0.1% per year).

However, one very plausible cost of inflation is that it adds “complexity” for the decision

makers (Binetti et al. (2024)). Let us model it precisely.

Time t is continuous. The log price level is pt = lnPt. I write t = n + h with n an

integer represents is “year” and continuous variable h ↑ [0, 1) is the “calendar date within

the year). The log price increase continuously within the year, as pn+h = pn + ωn+1h, where

inflation in year n is ωn+1. The agent gets a raise at the beginning of the year. Income is

paid continuously as

y$n+h = pn +
1

2
ωn+1 (41)

as 1
2ωn+1 compensates for the lack of raise within the year (t ↑ [n, n + 1)). Inflation has

expected value ω̄.

For starkness, let us assume that inflation is can known in advance: for instance, it is

constant at ωn = ω̄. Here, a rational agent would face no cost of inflation.19

Figure 2 plots prices (for a constant inflation), and income. The infrequent adjustment

of income creates an extra complexity, as income and prices do not move in sync — inflation

makes real income less regular. This is also true even if inflation is constant. In that sense,

inflation adds extra complexity.

Optimal (rational) consumption is (in logs)

c$n+h = y$n+h →
(
1

2
→ h

)
ωn+1

Hence, to the problem is added an extra complication: the ωn+1 term. It captures the

following: early in the year (h ≃ 0), agent should save: as he just got a raise, his real wage

19It would be easy to make inflation uncertain – then in the income process (41) we’d replace ϱn by its
expectation.
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Figure 2: The price increase continuously, but the agents’s nominal income increases only
once a year (those quantities are in logs). That makes the planning process more complex,
as the theory develops.

is high; later in the year (h ≃ 1), agent should dis-save: his real wage has been eroded by

the inflation since the beginning of the year, so his real income is low.

The cost of inflation are the following. For simplicity, we suppose here that inflation is

constant, at ω.

Proposition 8. (Losses from inflation) Suppose that nominal wages are readjusted only

between periods of length ↽ . Call m the attention to inflation between wages increases, and

assume first order complexity aversion. Then, the utility losses (expressed as a fraction of

losses in permanent consumption) are:

,CA =
1

4
γϱ |↽ω| (1→m) (42)

while the “variance” costs are ,var = 1
24γ↽

2ω2 (1→m).

In particular, the complexity costs are higher than the variance costs i! ω < 6ς
φ =

6↔ 1
2

1yr =

300%/yr.

Because of first order complexity aversion, the loss is proportional to ω, not ω2 as in

the traditional model. So, for a moderately boundedly rational consumer (m = 1/2), then

the loss is quite high, about ϱ times ↽ω. With ϱ = 0.5 and γ = 4, and reset of wages
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every ↽ = 1 year, the looses are ,CA ≃ 1
2 |ω|.

20 If annual inflation is ω = 4%, the loss is

2% — something sizable, while at ω = 20%,the loss is a large 10%. This is qualitatively

consistent with empirical evidence that shows that people very averse to inflation even at

low inflation rates in surveys, (Shiller (1997), Stantcheva (2024), Georgarakos et al. (2025))

and in elections (Di Tella et al. (2001)). This loss is much larger than the quadratic loss ω2

of the New Keynesian model, with both rational agents (Woodford (2003)), and behavioral

but not complexity averse agents (Gabaix (2020)).

7.2 The sparsity of outcomes principle

With complexity costs, we have a first-order costs of having disturbances. We next present

a simple result on their optimization.

Proposition 9. (Sparsity in outcomes principle) Suppose that we minimize, over action a,

the function:

L = w1 |x1|+ w2 |x2| (43)

with wi > 0, and xi = bia + ϱi, for some bi, and ϱi. Suppose that x1 have higher “social

welfare impact” than x2, |w1b1| > |w2b2|. Then, at the optimum, x1 = 0, while, generically,

x2 ⇐= 0.

This means that the planner wishes to set one of the objective variables to 0. We call

this the “sparsity of outcomes” principle: the optimal policy makes one of the two outcomes

sparse.21 This result is mathematically extremely simple, coming from simple algebra and

in the spirit of the Lasso (Tibshirani (1996)). Nonetheless, it is useful to keep in mind when

thinking about optimal policy.

Let us see how that a!ects optimal monetary policy.

7.3 Complexity-aware welfare in the New Keynesian model

7.3.1 Economic environment

We take a simple New Keynesian model. Intuitively, given Proposition 9, the planner will

wish to always set either inflation or the output gap to 0: this helps the consumer, this way.

This is in contrast with the “quadratic loss” case, where generically both are non-zero.

20Georgarakos et al. (2025) reports that people are on average willing for forgo 5% per year in annual
consumption to eliminate inflation, which they perceive to be around 5%. This can be matched with a more
aggressively behavioral calibration, say with m = 0, ϖ = 1 and ϱ = 5%, which is the inflation often perceived
by survey respondents. Then, the loss is ςCA = 5%.

21The principle generalizes to high-dimensional settings. With V variables and J policy instruments (so

a loss L =
V

i=1 wi |xi|, and an action vector a of dimension J), it will be often (i.e., in an open set of
parameters) the case that J of the variables are exactly equal to 0.
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Let us see this in some detail. We take the model in Gabaix (2020), which generalizes

Woodford (2003) and Gaĺı (2015), to allow for partially myopic agents, which is relevant

for monetary policy. It microfounds the following the behavior of the output gap xt and

inflation ωt:

xt = MEt [xt+1]→ ϑ (it → Etωt+1 → rnt ) (IS curve), (44)

ωt = ⇁M fEt [ωt+1] + ↼xt + ▷t (Phillips curve), (45)

where M,M f ↑ [0, 1] are the aggregate-level behavioral “cognitive discounting” parameters

of consumers and firms, respectively. The rational case corresponds to M = M f = 1.

Aggregate production is Yt = e↼tNt, where TFP level ◁t, follows an AR(1), and Nt is labor

supply. Equation (45) also allows for a “cost-push” shock ▷t, which could be microfounded

as a markup shock (Gaĺı (2015), Section 5.2), or an expectational error.

7.3.2 Welfare with complexity costs

In the traditional models (Woodford (2003)), the welfare function is:

W trad = →KtradE0

↗∑

t=0

1

2
⇁t

(
ω2
t + 0trad (xt → x↓)

2)+W↑, (46)

for positive coe”cients Ktrad, 0trad.22 The term x↓ is zero is there are no distortions at

the natural rate of interest (i.e., when removing monetary frictions). The losses come from

misallocation costs, due to inflation ωt (the relative price of firms is o!), and output gap xt

(people don’t work exactly the correct amount). In contrast, complexity aversion adds one

more term.

Proposition 10. In the New Keynesian model with complexity aversion costs, welfare is

W tot = →
∑

t

⇁tCCA
t +W trad

where the complexity aversion costs at time t is:

CCA
t = w↽ |ωt| . (47)

for positive coe!cients w, and W trad is the traditional welfare loss (46), with quadratic loses

in inflation and output.

22Here φtrad = ε̄
ϑ , K

trad = ucc (↼ + ↽) ϑ
ε̄ , and W↑ is a constant, ⇀̄ is the Phillips curve coe”cient with

rational firms, and ⇁ is the elasticity of demand.
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But for small inflations and output gap, first order costs dwarf second-order costs. Hence,

the welfare is, to the leading order, only made of first order costs,


t ⇁
tCCA

t .23

The planner wants to maximize


t ⇁
tWt, where the loss at time t is

Wt = K (→ |ωt|+ g (xt)) , g (xt) = γxt →
1

2
1x2

t (48)

where the first order costs come from complexity aversion, and 1 = ⇀trad

wε
> 0 is the relative

weight on output gaps, and γ = →x↓0trad. Empirically, almost everyone “feels” that booms

are better than recessions, so γ > 0 seems the empirically relevant case.24

So now we have a someone di!erent problem: optimal policy with a absolute value penalty

on inflation, rather than a quadratic one. This apparently minor and technocratic di!erence

leads to quite deep changes in the optimal monetary policy, as we next see.

7.4 Optimal monetary policy with complexity costs

We can now analyze policy – here with commitment, which is arguably the relevant case

(the appendix deals with the no-commitment case). When there are no cost-push shocks,

the optimal monetary policy is very simple, and the same as the traditional New Keynesian

model: ensure zero output gap and zero inflation, by adjusting the nominal rate to be the

natural rate (it = rnt in (44), so that xt = 0 and ωt = 0 are solutions).25

However, when there is cost-push shock, the ▷t ⇐= 0 in (45), one cannot get the first best:

xt = ωt = 0 is not consistent with (45). In the traditional model, a positive cost-push shocks

is best handles by a bit of recession and a bit of inflation. With complexity aversion, things

change.

In what follows, the sign (ω) is meant to be the generalized derivative of the function |ω|.
So it is 1 if ω > 0, →1 if ω < 0, and some number between →1 and 1 if ω = 0.26

Proposition 11. (Optimal response to a cost-push shocks, with commitment: conditions

to have 0 inflation as a state by state target). With welfare (48), the optimal commitment

policy is characterized by

↼ sign (ωt) = g→ (xt)→M fg→ (xt↑1) 1t>0 (49)

23For simplicity, only consumers are complexity averse, not firms.
24In the traditional NK model, this is dues to the fact that there positive markups at the steady state,

which this microfoundation is not necessary
25I omit here the issue of the zero-lower bound, i.e. the constraint it ↓ 0. The first best solution is then

use fiscal policy.
26This could be made more rigorous with the machinery of subgradients, but that would make the analysis

less transparent for most readers.
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Call x↓
t :=

↑⇁t
κ the output gap that ensures zero inflation. Suppose that:

↼ ↓
∣∣γ

(
1→M f

)
→ 1

(
x↓
t →M fx↓

t↑1

)∣∣ (50)

then the optimal central bank policy under commitment is simply to keep inflation at 0 at all

dates,

ωt = 0 (51)

and adjust the output gap xt so that xt = x↓
t . In turn, the nominal interest rate it is set so

that (44) holds.

First, take the case 1 = 0, so that the welfare impact of recessions is simply linear (rather

than quadratic). Condition (50) is simply

↼ ↓
∣∣γ

(
1→M f

)∣∣ (52)

i.e. the slope ↼ of the Phillips curve must be high enough. Then, we have a starkly simple

policy: if welfare increases linearly with the output gap, you want to always target inflation,

and set is to 0. This is the “sparsity principle” at work: given the absolute value penalty in

→ |ωt|, in an open zone of parameters, one wants to have exactly zero inflation.

When 1 > 0, the intuition is similar: we set inflation to 0, if the recession is not too deep

(i.e. xt is not too negative), and the shocks ▷t do not mean-revert too fast: only long lasting

inflation shocks are worth purging via a shock to the business cycle.

The case where (50) is violated is more involved. Let us a consider a special, but illus-

trative case.

Proposition 12. (Optimal response to a large, persistent cost-push shocks, with commit-

ment) Suppose that we have a permanent cost-push shock ▷t = ▷. Define ▷↑ := 1
θ

(
γ → κ

1↑Mf

)
,

▷+ := 1
θ

(
γ + κ

1↑Mf

)
, and x± := →⇁±

κ . Then, the steady state commitment optimal policy is

the following. (i) For moderate cost-push shocks, ▷ ↑ [▷↑, v+], we set inflation at 0, ω = 0

and x = → ⇁
κ . (ii) For very inflationary pressures (▷ > ▷+), the central banks sets x = x↑

(there is a recession floor), and ω = ⇁↑⇁+
1↑▷Mf > 0: inflation is positive and increasing in

the cost-push shock. (iii) Similarly, if deflationary pressures are very high (▷ < ▷↑), the

central bank sets x = x+ (i.e. a maximum-allowed boom to fight deflation), and set have

ω = ⇁↑⇁→
1↑▷Mf < 0.

As in Proposition 11, moderate cost-push pressures call for exactly zero inflation. How-

ever, if there is a very high cost-push shock (▷ > ▷+), then there is a recession floor: x = x↑,

while inflation bears the brunt of the cost-push shocks, ω = ⇁↑⇁+
1↑▷Mf > 0.
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7.5 Extension: Non-zero inflation target, what what it should be

So far, the optimal inflation target was 0. I now study what happens with non-zero inflation

target ω̄. The traditional reason for that is that workers exhibit an aversion to nominal (not

just real) wage cuts, so a bit of inflation helps the “morale” in the labor market (Akerlof

et al. (1996); Bewley (1999)). Then, I derive the optimal target—providing a newish simple

model for this, that perhaps calibrates better given the new complexity costs of inflation.

Then, I derive optimal monetary policy. The earlier conclusions broadly remain the same,

replacing “inflation” by “inflation minus target”.

7.5.1 Modelling workers’ happiness from a higher nominal wage

So far, the optimal inflation target was zero. Now, the real world brings one more complica-

tion: workers have some nominal illusion, and in particular do not like nominal wage cuts.

So, if the neoclassical real wage was to fall, with zero inflation, firms would not cut wages,

and rather fire some workers. To avoid this, it is useful to have positive inflation.

To model this, let us say that workers morale a!ects raw log productivity ◁t, to change

it into e!ective log productivity:

◁e!t = ◁t + ft

where the new term ft captures the e”ciency wage idea that disgruntled work less well, and

indeed may sabotage a firm. We take the following formulation for their morale:

ft = f (wt → ◁t↑1 + ϖ↽ωt) (53)

for some increasing function f , so that workers compare the wage to the “fair” wage from

past productivity, but have a bit illusion, index by ϖ↽. This is in the spirit previous for-

mulations (e.g. Benigno and Antonio Ricci (2011); Schmitt-Grohé and Uribe (2016)), which

typically use a “hard” constraint such as a rule that the nominal wage can never fall. The

formulation here likely would yield rather similar conclusion as those earlier models, but is

more tractable.27

27A tempting formulation would be:

f0
t = f

(
w$

t → w$
t↑1

)
= f (wt → wt↑1 + ϱt) (54)

where wt (resp. w
$
t ) is the log real (resp. nominal) wage, for some function f that may be a sigmoid, that

saturates with a range ±5%. But this formulation makes the problem a little more complicated, because of
the backward looking term. The function ft we choose in (53) has similar properties to the “natural” one
f0
t : a bit of inflation increases total e”ciency; and that’s particularly true if the real wage is low, compared
to past wages.
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7.5.2 Optimal nonzero steady state inflation

Given we have inflation has both a first order cost (complexity) and a first order benefit

(worker morale linked to the nominal wage), we can discuss an optimal steady state inflation.

Total per period log consumption is

Ct = e↼t+ftLt

in this model, without complexity costs of inflation. With complexity costs, log utility

becomes:

Wt = →2↽ |ωt|+ ft

as in the steady state, there is no trend productivity growth, and we normalize average log

productivity to be 0. So optimal steady state inflation balances the complexity costs of

inflation with the e”ciency inflation benefits: max↽ W , with:

W = →2↽ |ω|+ f (ω)

To calibrate, let’s imagine ϖ↽ = 1, and take f (x) = a
(
ω → 1

2”ω
2
)
around 0, with a = 1yr (so

1% deflation would great a 1% productivity loss), where $ = 4% gives the order of magnitude

of the potential maximum e!ect. Those are taken here as psychological primitives, though

in turn they might be microfounded. Then, the optimal inflation ω satisfies maxa →2↽ |ω|+
aω → a

”ω
2, i.e. is

ω =
(
1→ 2↽

a

)+

$

This optimum inflation target balances the complexity costs. Given 2↽ = 1
2yr (from above),

a = 1yr, we get an optimal target of 2%. Of course, this is all quite a guesstimate, but at

least, we have roughly plausible order of magnitude, and a framework to do a more systematic

investigation.

7.5.3 Welfare and optimal policy with a non-zero inflation target

Call ω̄ the target inflation, and ω̂t = ωt → ω̄ the deviation from the target. I now use the

enriched model in Gabaix (2020, section V.6), that allows for non-zero target inflation: then,

the basic model (44)-(45) remains the same, replacing ωt by ω̂t in the Phillips curve (45).

Proposition 13. Suppose that we morale reasons to have positive steady inflation, which is

set optimally. Then, up to second order terms in inflation, welfare is:

Wt = W̄ → h (ω̂t) + g (xt) (55)
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with g as in (48), and

h (ω̂t) = 2↑
↽̂ |ω̂t|+ 2↽ω̂t = 2↑

↽̂ |ω̂t| 1↽̂t<0 + 2+
↽̂ |ω̂t| 1↽̂t>0 (56)

where 0 ↔ 2+
↽̂ ↔ 2↑

↽̂ (the values are in the proof) so that a temporary increase in inflation is

less harmful than a temporary decrease.

Hence, temporary inflation ω̂t hurts welfare, much like → |ω̂t|, but with a 2+
↽̂ weight for

positive temporary inflation, and a higher weight 2↑
↽̂ for negative temporary inflation. A

negative deviation of inflation is worse than a positive one, because the complexity cost are

the same in both directions, but the labor market gains are positive for positive inflation.

Intuitively, this implies the central bank policy is again to set ω̂t = 0, in a broad set of

circumstances, but with some asymmetry. We make this more precise.

Proposition 14. Make the same assumption as Proposition 13. The first order condition

for optimal monetary policy becomes

↼h→ (ω̂t) = g→ (xt)→M fg→ (xt↑1) (57)

So, it is “more acceptable” to have positive deviations (as |h→ (0+)| ↔ |h→ (0↑)|) than

negative deviations of temporary inflation, as negative ones are costlier. This may be a

reason why empirically inflation seems to overshoot its target more often than undershoot

it.

Otherwise, the earlier analysis goes through, with the caveat that the previous sign (ωt)

changes into h→ (ω̂t). For instance, the condition (50) to have always ω̂t = 0 becomes:

g→ (xt)→M fg→ (xt↑1) ↑

↼h→ (0↑

)
,↼h→ (0+

)
. (58)

We finished our tour of the complexity costs of inflation. It leads to much higher cost, a

di!erent monetary policy (targeting exactly zero inflation, or zero deviation from a target),

and indeed allows to think about the optimal steady state level of inflation.

8 Discussion

This section discusses some remaining high-level points.

Why is it hard to handle tasks requiring to juggle with numbers, and relatively

“easy” to drive – does the model see that? We conclude with a remark on complexity

across domains (linked to Moravec’s Paradox: what’s hard for computer is often easy for
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people and vice-versa). Why is it hard to handle tasks requiring to juggle with numbers, and

relatively “easy” to drive (at least, after two dozen hours of lessons) – does the model see

that? Intuitively, this is because processing actual numbers is hard, while processing visual

information is quite easier. In the model, this is because the cost of processing ci in (4) is

high when dealing with mathematical operations on numbers, and and low when processing

visual information: e.g., there’s a fork on the road, and I should turn right. Hence, inside

the model, when driving, the imprecision 1 → mi is very small, and the complexity dread

term (9) is very low. Under a heavy rain, so that seeing the road is harder, imprecision is

higher, and driving is harder.

Are people aware that they’re making a mistake? In this model, people are com-

pletely aware that they’re making a mistake. This is clearly just a benchmark, probably

right for more decisions. However, it is useful to keep in mind that there are some prob-

lems where a “tempting” answer seems “obvious”, and is actually wrong. One famous one

is the Monty Hall three door problems (which, amazingly, the great mathematician Erdős

got wrong initially, and was convinced only after several days, see Vazsonyi (1999)), and

behavioral economics has provided other (Frederick (2005); Enke and Zimmermann (2019)).

Those people are not “aware” of the mistake. This matters for economics: for instance, firms

can exploit consumers’ näıveté (Gabaix and Laibson (2006), Heidhues and Kőszegi (2018a)),

those consumers are not aware that they’re making a mistakes. It would be nice to extend

the model for that, with an “attention” to the mistake.

9 Conclusion

This paper proposed a tractable theory of complexity aversion. It explains fairly easily a

number of “obvious” features of the real world (that contracts and prices are “simple”, e.g.

not indexed) —- obvious to common sense, but puzzling to the traditional model with no

complexity costs.

Along the way, the model shed light on a number of issues of basic modelling. One,

cognition costs or information cost per se are not enough to generate complexity: one needs

to have a form of “complexity aversion” that is non-zero even when the agent pays no

cognition cost. Another, we saw that first order complexity aversion is the robust way to

generate simplicity, much more than second order complexity aversion (or regret from regret

theory)

Many interesting issues seem now within reach. In particular, designing optimal mecha-

nisms, taking into account the complexity costs by consumers, seem particularly useful from

a practical point of view. The present paper’s analysis of simple tax systems for a taxation
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of goods is a beginning, but clearly much more can be done.
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A Theory complements

A.1 A microfoundation for the fact that competitive firms want

maximize social surplus

Section 3 assumes that the firm is “benevolent” – wants maximize social surplus. Here is a

specific microfoundation. It is quite traditional: as in Adam Smith and Arrow-Debreu, com-

petitive firms, by their actions, maximize social surplus (at least, when consumers appreciate

enough their expected utility). Still, for completeness, it is useful to fill in the details.

There are at least 2 firms, and N consumers. On day t, the marginal costs is 1 + xt, the

same across firms (this is not essential). At time 0 (at the beginning of the year), each firm

f proposes a pricing scheme pf (xt) = p̄f + bfxt (where is chooses the average price p̄f and

the slope bf ) and also “membership fee” that the consumer has to pay, a lump-sum payment

Ff (this is not essential either, but makes the analysis more general, and simpler).28

At the beginning of the year, each consumer sees the menus o!ered by the firms, and

chooses which firm to sign up with—which firms to go to every day t = 1, . . . , T in that

year. For instance, the consumer chooses which bakery to go to every day, in a way that

maximizes her utility over the year. Formally, the firm gets an exclusive contract within the

year (but has committed to the pricing scheme above).29

The consumer is fully conscious her expected utility, including and cognition and com-

plexity aversion costs.30 She chooses a firm f that maximizes his expected utility surplus,

from this pricing scheme, i.e.

Vf = →Ff + TV cons
f (59)

The first part if the lump-sum payment. The second part is the expected utility of the

consumer, net of the cost. The consumption is chosen as in the main body of the paper, as

1 + af (xs) = argmax1+a U (1 + a)→ pf (xs) (1 + a), based on the perceived price pf (xs).

The firm’s profit is

$f = Nf (Ff + TE [(pf (x)→ c (x)) (1 + af (x
s))])

where Nf is the number of consumers choosing the firms, and the last term is the average

28I assume that the firm can commit to the scheme. This is obviously easy to do when the outcome is a
constant price p̄f .

29This is important, to prevent arbitrage: otherwise, take the case the outcome is a constant price equal
to 1. Then, on a day with a negative xt, a deviating firm could undercut its competitors (which o!er a
price of 1), by o!ering a price of 1 + 1

2xt < 1, explain to consumers that they save money by coming to this
deviating firm, and make a profit.

30This is where the paper deviates from the literature on shrouded attributes and firms exploiting naive
consumers (see footnote 7): in that benchmark, the consumer is not conscious of all the future elements of
the situations, for instance does not take into account “surprise” fees.

38



profit per consumer.

The timing is: each firm f propose simultaneously (Ff , p̄f , bf ), to maximize its expected

profit $f ; then the each consumer decides which firms to choose. Firms play Nash.

Lemma 3. In the competition game above, the only Nash equilibrium is: p̄f = 1, Ff = 0,

and bf as in the paper, maximizing total welfare. Firms’ profits are zero.

Proof. The reasoning is completely conventional. Because we allow for fixed payments

Ff , firms have zero profits, and o!er the maximum consumer’s surplus given zero profits –

hence, they maximize total social surplus. Given that, the average price right should be the

average marginal cost, so p̄f = 1. Then, the derivation of the optimal bf is the one that

maximizes social surplus (which is the consumer’s utility, as equilibrium profits are zero) as

in the main body of this paper.

A.2 Second order complexity aversion sometimes generates sim-

plicity, but in a non-robust way

This appendix probes second-order complexity aversion, and finds that it generally fails to

generate full simplicity, e.g. rigid prices or zero indexation.

A.2.1 The price scheme problem of Section 3

Proposition 15. (Optimal price simplicity, with second order complexity aversion) Suppose

second order complexity aversion. Suppose that attention m is exogenous. Then the optimum

slope is

b =
m

m+ (1 + ϱ) (1→m)
↑ [0, 1]

Hence, contracts are typically non-simple, as b > 0 whenever m > 0.

Proof. With second order CA, we use the analogue of (62)-(63), with ϱ̄ = 1 + ϱ

W =

(
b→ 1

2
b2
)
ςϑ2

xm→ ϱ̄
1

2
ςϑ2

xb
2 (1→m)→ C (m)

so

Wb = (1→ b)ςϑ2
xm→ ϱ̄ςϑ2

xb (1→m) +Wm
dm

db

First, with exogenous attention, so dm
db = 0. Then, the optimum is b = m

m+ς̄(1↑m)
. In general,

b =
m+ 1

ϑϖ2
x
Wm

dm
db

m+ς̄(1↑m)
.
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So, if there is a “default” level of attention that’s positive, the some positive slope b > 0

is optimum: contracts are not “perfectly simple”. They are not the optimum contract with

rational agents, which would be b = 1.

Let us next explore a di!erent variant, to probe the robustness of the second order com-

plexity aversion. I suppose that there is a non-zero fraction ε ↑ (0, 1) of rational consumers,

with zero cognition costs, and that the same contract must be o!ered to all consumers.

Proposition 16. (Optimal contract when there is a small fraction of rational consumers)

Suppose that there is a fraction ε ↑ (0, 1) of rational consumers. Then, with first order

complexity aversion: with either exogenous attention m < 1, or endogenous attention with

the conditions of Proposition 3, then if ϱ is large enough one still wants a simple contract

(b = 0). However, with second order complexity aversion, a simple contract is never optimal.

The moral is that first order complexity aversion is a much more robust way to get

simplicity than second order CA.

Now, let us turn to endogenous attention, which gives another way to appreciate the

same phenomenon.

Proposition 17. (Optimal price simplicity, with second order complexity aversion, endoge-

nous attention) Suppose second order complexity aversion, and endogenous attention. Then,

we have the following: with ϖ < 2
3 or ϖ > 1 (where ϖ parametrizes the curvature of the

production function of thought, (4)-(7)), then if complexity aversion ϱ > 0 is large enough,

then the optimum entails rigid prices (b = 0). However, if ϖ ↑
(
2
3 , 1

)
, then the optimum

entails flexible prices (b > 0).

We see that both first and second order complexity aversion generate simplicity. However,

the first order complexity works with fewer condition. Both tools achieve complexity, but

first order CA is very directly e!ective, like sword, whereas second order CA is more delicate,

like a scalpel. It is useful to have both tools in the economist’s kit, though the sword will be

more powerful most of the time.

A.2.2 The indexation problem of Section 6

First order complexity aversion predicted (in a range of parameters) no indexation (Propo-

sition 7). In contrast, the next proposition shows that second order complexity aversion will

fail to do so.

Proposition 18. (With second order complexity aversion, there is always some indexation)

In contrast to Proposition 7, with second order complexity aversion, there is always some

indexation.

40



Proof. Utility is:

V = →#

2

(
ϑ2
r → 2⇁ϑxr + ⇁2ϑ2

x

)
→ ϱ#⇁2ϑ2

x (1→m)→ C

so V▷ ⇐= 0 at ⇁ = 0, hence some ⇁ ⇐= 0 is optimal.

B Omitted proofs

Proof of Lemma 1 We have:

E [(p (x)→ c (x)) a (xs)] = E [(b→ 1) x (→ςbxs)] = (1→ b) bςE [xxs] =
(
b→ b2

)
ςϑ2

xm

and as E [(p (x)→ c (x))] = 0, the total producer surplus is:

E [(p (x)→ c (x)) (1 + a (xs))] =
(
b→ b2

)
ςϑ2

xm (60)

This implies:

W = V cons (m) + E [(p (x)→ c (x)) (1 + a (xs))]

=
1

2
ςϑ2

xb
2 → CCA → C (m) + ςϑ2

x

(
b→ b2

)
m

=

(
b→ b2

2

)
ςϑ2

xm→ CCA → C (m)

Proof of Proposition 2 Recall that with φ = 1
2ςϑ

2
x, social welfare is:

W = $+ V cons, $ = 2
(
b→ b2

)
mφ, V cons = b2mφ→ C (m)

where $ is the average profit (60), and V cons is the consumer’s expected utility. Hence,

Wb = $b + V cons
b + ($m + V cons

m )mb

As the consumer optimizes m to maximize V Cons, we have V Cons
m = 0, so

Wb = 2 (1→ b)mφ+ 2
(
b→ b2

)
mbφ (61)

For all b ↑ [0, 1), as mb ↓ 0, we have Wb ↓ 0 ; and whenever m > 0, we have Wb > 0. Hence,

b = 1 is the social optimum.

We next study when we have some m > 0. We observe that the first order condition for

m is C → (m) = b2φ.
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If C → (0) < φ, when b ↑ [0, 1] is such that b2φ > C → (0) we have m > 0, and b = 1 is a

strict global optimum.

If C → (0) ↔ φ, then naive consumers always give m = 0 (they “give up” on paying

attention), and any b ↑ [0, 1] gives the same social surplus. But with a minuscule fraction of

rational consumers (as in Proposition 16) shifts the social optimum to b = 1, strictly.

Proof of Proposition 3 Suppose now that we have endogenous attention. Then, as b = 0,

Wm = 0, so
d

db
W|b=0 = ςϑ2

xm
d → ϱϑaϑxsign (b)

(
1→md

)

so locally, d
dbW|b=0 ↔ 0 i! the same condition (25) holds. We note that a simple way to think

about this is that the allocative benefits are ⇑ bm, while CA costs are ϱb, so that around

b = 0, rigidity is better if ϱ is large enough.

The consumer’s attention is: maxm V cons (m). It useful to define with

V (m) := V cons (m)→ 1

2
ςϑ2

xb
2

where 1
2ςϑ

2
xb

2 is the surplus with a rational agent. Hence, V (m) ↔ 0 and it is easier to

reason with it. We have

V (m) := V cons (m)→ 1

2
ςϑ2

xb
2 =

1

2
ςϑ2

xb
2m→ ϱϑa |b| ϑx (1→m)→ C (m)→ 1

2
ςϑ2

xb
2

hence

V (m) = →B (1→m)→ C (m) , B :=
1

2
ςϑ2

xb
2 + ϱϑa |b| ϑx, (62)

which givesm↓ = argmaxm V (m). . By (60) social welfare is: W = V cons (m)+(b→ b2)ςϑ2
xm,

i.e.

W = V (m) +

(
b→ b2

2

)
ςϑ2

xm (63)

Suppose that C (1) > ςϑ2
x and ϱ is large enough. Let us show that with endogenous

attention, a perfectly simple contract is optimal.

When b = 0, welfare W is 0. So, a su”cient condition is: for all b ↑ (0, 1] (later we’ll say

“all b”), W ↔ 0, i.e.

→V (m↓) ↓
(
b→ b2

2

)
ςϑ2

xm
↓

A su”cient condition for that is: for all b

→V (m↓) ↓ bςϑ2
x
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i.e.

min
m

(
1

2
ςϑ2

xb
2 + ϱϑabϑx

)
(1→m) + C (m) ↓ bςϑ2

x

i.e. (after division by b), for all b,

min
m

(
1

2
ςϑ2

xb+ ϱϑaϑx

)
(1→m) +

C (m)

b
↓ ςϑ2

x

A su”cient condition for that is that

ϱϑaϑx (1→m) + C (m) ↓ ςϑ2
x, ⇓m ↑ [0, 1]

i.e. ϱ ↓ ϱ↓ := maxm
ϑϱ2

x↑C(m)
ϱaϱx(1↑m) .

Proof of Proposition 4 If b = 0, social welfare is W (0) = 0. Now suppose that the

firm sets b = 1. Then, optimal attention allocation follows maxm Bm → C (m) with B =
1
2ςϑ

2
x+ϱϑaϑx. So, by the proposition’s assumption, we have C → (1) < 1

2ςϑ
2
x ↔ B, so consumer

attention is m = 1. Hence, welfare is W (1) = 1
2ςϑ

2
x→C (1). As C (1) ↔ C → (1) by convexity,

we have C (1) < 1
2ςϑ

2
x and W (1) > 0 = W (0). Choosing b = 1 yields greater social welfare

better than b = 0.

Proof of Proposition 5. For this utility Ũ (a) = →1
2 (a→ x)2 + vx, we have

Ũactive (m) = →B (1→m)→ C (m) , B =
1

2
ϑ2
x + ϱϑaϑx (64)

while the passive decision is Upassive = →1
2

[(
ad
)2

+ ϑ2
x

]
. We have

Ũactive = →B (1→m)→ C (m) + µvx = →B (1→m)→ C (m)→ µvx (1→m) + µvx

= →B̃ (1→m)→ C (m) + µvx

with B̃ = B + µvx. We observe that

min
m↘[0,1]

B̃ (1→m) + ↼m = min
(
B̃,↼

)
(65)

as indeed the optimum attention is m = 1B̃≃κ . So, optimizing on attention m, with C (m) =

↼m, we get:

Ũactive = →min
(
B̃,↼

)
+ µvx = →min

(
B̃ → µvx,↼→ µvx

)
= →min (B,↼→ µvx)
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Hence,

Ũactive = →min (B,↼→ µvx)

Hence, we have an passive decision i! Ũactive ↔ Upassive, i.e. i!

min (B,↼→ µvx) ↓ 1

2

[(
ad
)2

+ ϑ2
x

]

i.e.

min

(
ϱϑaϑx,↼→ ϑ2

x

2
→ µvx

)
↓ 1

2

(
ad
)2

Proof of Proposition 7. Calling V r the utility of a fully rational consumer, utility is V

where, calling ϱ̄ = ϱϑaϑx (1→m)

V → V r = →#

2
E

(ŷ → ⇁x)2


→ #ϱ̄ |⇁|→ C

= →#

2

(
ϑ2
ŷ → 2⇁ϑŷx + ⇁2ϑ2

x + ϱ̄ |⇁|
)
→ C

We see that V is a concave function of ⇁. At the optimum, we have:

0 =
V▷

#
= ϑŷx → ⇁ϑ2

x → ϱ̄sign (⇁)

If the optimal ⇁ is non-zero, then must be positive, and ⇁ = ϱŷx↑ς̄
ϱ2
x

= ϱŷx↑ςϱaϱx(1↑m)
ϱ2
x

. The

optimal ⇁ is 0 if ϑŷx → ϱϑaϑx (1→m) ↔ 0.

Proof of Proposition 8 The complexity costs are, in general:

CCA = ϱ
∑

i,t

E |ãtuatatat,xixi| (1→mi) (66)

In our context, this gives:

CCA/ϱ =
∑

t

E
∣∣∣∣γ⇁

tc1↑◁
t

3 ln ct
3xi

ϑxi

∣∣∣∣ (1→mi)
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In the limit r↽ ↗ 0,

CCA,1/ϱ = γc1↑◁
0 (1→m)

 ↗

0

e↑rt

∣∣∣∣
3 ln ct
3xi

ϑxi

∣∣∣∣ dt

= γc1↑◁
0 (1→m) ϑxi

∑

n⇐0

e↑rn

 1

0

∣∣∣∣
1

2
→ h

∣∣∣∣ dt

= γc1↑◁
0 (1→m) ϑxi

∑

n⇐0

e↑rn1

4

=
1

r
c1↑◁
0

1

4
ϱγ (1→m) ϑxi

Next, the variance term is

V =
1

2
γc1↑◁

0 (1→m)

 ↗

0

e↑rt

∣∣∣∣
3 ln ct
3xi

ϑxi

∣∣∣∣
2

dt

By the same reasoning, we have
 1

h=0

(
0 ln ct+h

0↽t

)2

dh =
 1

h=0

(
1
2 → h

)2
dh =

[
→1

3

(
1
2 → h

)3]1
0
=

1
12

In the end,

L =
∑

t

⇁t

(
1

4
γϱ |ωt| ↽ +

1

24
γω2

t ↽
2

)
(1→m)

Proof of Proposition 9 This is very simple. Write L =
2

i=1 wi |bia+ ϱi|, so

La =
2∑

i=1

wibisign (xi) .

If none of the xi is 0, then La =


i ±wibi is non-zero, as |w1b1| > |w2b2|. Hence, one of

them is 0. Suppose that it’s x2 that is 0. Then, La = ±w1b1 + s2w2b2, where s2 ↑ [→1, 1] is

the “generalized sign”. So, we must have La ⇐= 0, as |w1b1| > |w2b2|. Hence, we have x1 = 0.

Indeed, we verify that La = s1w1b1 ± w2b2 can be equal to 0, with |s1| = |w2b2|
|w1b1| .

Proof of Proposition 11 Let us call g (x) = γx→ 1
21x

2 the welfare impact of output

gap x. The lagrangian is:

L = E0

↗∑

t=0

⇁t

→ |ωt|+ g (xt)→ %t

(
→ωt + ⇁M fωt+1 + ↼xt + ▷t

)
, (67)
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where %t are Lagrange multipliers. The first order conditions are: Lxt = 0 and L↽t = 0, i.e.:

g→ (xt) = %t↼ (68)

sign (ωt) = %t →M f%t↑11t>0 (69)

hence

sign (ωt) = g→ (xt)→M fg→ (xt↑1) 1t>0 (70)

which gives (49).

We have solution with ωt = 0 at all dates i! (i) ↼xt + ▷t = 0 from the Phillips curve, so

xt = x↓
t :=

↑⇁t
κ and (ii) (49) holds with |sign (ωt)| ↔ 1, i.e.

↼ ↓
∣∣g→ (xt)→M fg→ (xt↑1)

∣∣ =
∣∣γ

(
1→M f

)
→ 1

(
x↓
t →M fx↓

t↑1

)∣∣

which is the announced expression (50).

If this inequality is violated, then the optimum is remains by (49).

Proof of Proposition 12 From the Phillips curve, the steady state values ω, x satisfy

ω =
↼x+ ▷

1→ ⇁M f
(71)

and the optimality condition (49) gives: ↼ sign (ω) =
(
1→M f

)
g→ (x) i.e.

↼ sign (ω) =
(
1→M f

)
(γ → 1x) (72)

We have ω = 0 i! x = ↑⇁
κ and (72) holds, i.e. ↼ ↓

∣∣(1→M f
)
(γ → 1x)

∣∣. Hence, the

boundary condition is ±↼ =
(
1→M f

)
(γ → 1x), i.e. x = ◁

θ → ±κ
θ(1↑Mf)

, as announced. The

corresponding value of ▷ is ▷± := →↼x±.

When ▷ > ▷+, (so inflationary pressures are very large), we have ω > 0, so ↼ =(
1→M f

)
(γ → 1x), and x = x+. Then, (71) gives ω = ⇁↑⇁+

1↑▷Mf Likewise, when ▷ < ▷↑,

we have ω < 0 and x = x↑.

Proof of Proposition 13 Welfare is:

Wt = →2↽̄ |ω̄|→ 2↽̂ |ω̂t|+ g (xt) + ft

where ft is the “e”ciency” from term. As temporarily inflation is less well perceived than

steady state one, we have 2↽̂ ↓ 2↽̄ ↓ 0. Around the steady state, ft = f (ω̄ + ω̂t). Taking
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the Taylor expansion around ω̂t = 0, we get:

ft → f (ω̄) = f → (ω̄) ω̂t = 2↽̄ω̂t

so Wt = W̄ → 2↽̂ |ω̂t|+ 2↽̄ω̂t + g (xt) i.e.

Wt = W̄ → h (ω̂t) + g (xt) (73)

with

h (ω̂t) = 2↽̂ |ω̂t|→ 2↽̄ω̂t = 2↑
↽̂ |ω̂t| 1↽̂t<0 + 2+

↽̂ |ω̂t| 1↽̂t>0

with 2+
↽̂ := 2↽̂ → 2↽̄,2

↑
↽̂ := 2↽̂ + 2↽̄. so, we get an asymmetric kink in ω̂t.

Proof of Proposition 16 With a fraction ε of rational consumers, the welfare function

has now a term:

W = W 0 (1→ ε) + ε
1

2
ςϑ2

x

(
b→ b2

2

)

where W 0 is the social welfare with behavioral aversion, and 1
2ςϑ

2
x

(
b→ b2

2

)
is the social

surplus linked to rational consumers.

With first order CA, we had (??). Now, this gives:

W ↔ W (b) := → (1→ ε)min
(
kd1↑◁, d

)
+ b.

So, the exact same reasoning as in the proof of Proof of Proposition 14 shows that, if ϱ is

large enough, W (b) < 0 for b > 0. So, b = 0 is preferable.

With second order CA, (74) implies that W 0 ↓ →Eb2 for a positive constant E. So, we

have

W ↓ → (1→ ε)Eb2 + εb

hence social surplus W is strictly positive for a small b. As a result, some b > 0 is preferable

to b = 0.

Proof of Proposition 17 I build on the proof of Proposition 15. I use the attention

function in (4). Let us analyze the incentive to go from b = 0 to a small b > 0. First, we

have φ = 1
2ςϑ

2
xb

2, m =
(
ϱ̄ 1
wc

) 1
ω↑1

= k̄b
2
ω↑2, for a positive constant k̄ independent of b, and

one can show that the cost is: C = (1→ ϖ)mϱ̄φ = O (b2)m, so that, using (23), in the
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neighborhood of b = 0, we have

W =

(
b→ 1

2
b2
)
ςϑ2

xm+mϱ̄
1

2
ςϑ2

xb
2 → C (m)→ ϱ̄

1

2
ςϑ2

xb
2

= mb (D + o (1))→ Eb2, where D,E are positive constants

W = k̄b
2
ω↑1 (D + o (1))→ Eb2 (74)

Hence, if ϖ ↑
(
2
3 , 1

)
we have 2

ε → 1 < 2, so W (b) > 0 for b in a neighborhood of 0: locally

b = 0 is worse than b > 0.

If ϖ < 2
3 , then the reverse is true then, W (b) < 0 for small b’s, and b = 0 is a local

optimum. One can also show that, if ϱ is large enough, this is a global optimum, as in the

proof of Proposition 3.
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