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Valuations depend on how people categorize, perceive, or otherwise represent economic
objects. This paper develops a measure of how the market represents firms, and uses
this measure to study stock valuations. I train an algorithm to structure language
from financial news into embeddings—vectors that quantify the economic features and
themes in each firm’s news coverage. I show that a firm’s vector representation is
informative of how the market perceives its business model. Representations explain
cross-sectional variation in stock valuations, cash flow forecasts, and return correlations.
Changes in representation help to explain changes in stock prices. Some changes in
representations and prices are forecastable, and indicate that some of the explained
variation in stock valuations stems from misperception. I find that misperception and
misvaluation can intensify when a firm’s news coverage includes attention-drawing
features—Ilike “internet” in the late 1990s or “Al” in the early 2020s.
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Valuations are challenging to explain. Empirical research cannot fully account for
variation in stock valuations (Roll, 1988; Campbell et al., 2001, 2022), or valuations of
startups, collectibles, and homes (Case and Shiller, 1989; Gompers and Lerner, 2001;
Ashenfelter and Graddy, 2003).

To make progress on this explanatory challenge, it could help to measure how
people perceive, categorize, associate—or otherwise represent—the objects of valuation.
However, while economic theories often highlight the role of perception (Simon, 1956;
Tversky and Kahneman, 1981; Mullainathan, 2002), it can be difficult to quantify
perception using traditional structured data (Black, 1986; Shiller, 2019).

Language can be informative of perception. An investor who evaluates an electric
car company, for example, might describe it as an “internet-of-cars company” or “just an
automaker.” Similarly, a homebuyer might describe a neighborhood as “up-and-coming”
or “run down,” and a consumer might describe a purchase as an “essential” or a “luxury.”
To measure this information, we must impose economically meaningful structure on
language data.

This paper uses language data to measure how the market represents firms. I train
an algorithm to transform financial news articles into embeddings—vectors that organize
the language in each firm’s news coverage. In this vector space, geometric proximity
encodes linguistic similarity between firms. I use each firm’s vector representation to
proxy for how the market perceives its business model.

In my first set of empirical results, I show that representations help to explain
valuations. Representations explain variation in stock prices, cash flow forecasts, return
correlations, and analyst coverage. In addition, representations improve the explanatory
power of cross-sectional asset pricing tests that use traditional stock characteristics and
industry information. Changes in representation further explain variation in returns,
which indicates that changes in a firm’s perceived business model can contribute to
changes in its valuation.

In my second set of empirical results, I show that some changes in representation are
non-fundamental—the market misperceives some firms’ business models. When a firm’s
representation deviates from a historical benchmark, the firm has predictable reversals
in representation and predictable returns. Some of this misperception appears to stem
from attention-drawing features of firms, relates to communication by managers, and
accompanies technological transformations.

For this empirical procedure, I trained a series of language models using histori-
cal, time-indexed language data. This training strategy prevents lookahead bias from



pretraining, which is an issue with off-the-shelf language models that are trained on
contemporary data. I have released these language models to the research community.

Measuring representations from language. Language from the financial news is
detailed and dynamic. Variation in this language can reflect variation in how the market
perceives firms. Consider news coverage of the electric vehicle maker Tesla from 2021
to 2023. In 2021, Tesla was called “an internet-of-cars company,” and a firm that had
“grown up as [a] software and tech company first, and automaker second.” In 2023, Tesla
was called “just an automaker ... with automaker problems and automaker cyclicality,”
as well as “a metal bender like everybody else.” Over this period, mentions of “software”
in Tesla’s Wall Street Journal coverage declined by 24%.! These changes in language
suggest a change in how the market perceived Tesla.

To analyze these kinds of language patterns across many firms, I use data from the
Dow Jones Newswires. This financial news archive aggregates content from sources
like the Wall Street Journal, Barron’s, and MarketWatch. I develop an algorithm to
transform each firm’s coverage in each year into an embedding—a vector that structures
information in language data (Jurafsky and Martin, 2024). To develop this algorithm, I
train language models on millions of historical newspaper articles,? and fine-tune these
models on financial news language.® Each embedding is a vector representation that

quantifies the economic features and themes in a firm’s news coverage.

Measured representations relate to market representations. To validate the rep-
resentations measure, I show that it relates to how the market perceives firms. Linear
projections in the representation vector space relate to features of firms like “platform
economy,” “upmarket,” and “direct-to-consumer.” In addition, higher representation
similarity between a pair of firms is associated with higher shared analyst coverage and
higher pairwise return correlation.

I further validate the measure by showing it helps to explain valuations. Representa-

tions help to explain 15-33% of the variation in valuation ratios and cash flow forecasts.

1 Appendix A.1 includes links to these articles and further describes Tesla’s news coverage.

2These historical language datasets were created through the excellent data curation and data trans-
formation work by Dell et al. (2024, American Stories) and Silcock et al. (2024, Headlines). Researchers
often analyze language using general-purpose foundation models, which can produce lookahead bias
from pretraining (Glasserman and Lin, 2024; Sarkar and Vafa, 2024) and can generate results that do not
replicate (Chen et al., 2023). I train new foundation models to avoid these issues in my analysis.

3] target the models to financial news language using contrastive learning. Contrastive learning is a
procedure that can extract information from unstructured data, including information that general-purpose
machine learning models may miss (Dell, 2024).



The measure adds incremental explanatory power over traditional stock characteristics
and industry labels, which explain 11-26% of this variation. As these R? statistics are
computed on a separate sample, explanatory power does not mechanically increase with
the number of parameters—R? gains reflect additional information in the measure.

These validation results indicate that a firm’s embedding representation is informative
of its market representation. The market representation—how the market reasons about
the firm’s business—is not directly observable. The embedding representation—how the
press writes about the firm’s business—is quantifiable. Embedding representations could
help to study how the market forms valuations.

Changes in representation help to explain changes in prices. In my first set of main
results, I show that representations help to explain changes in stock prices. I characterize
economic mechanisms that can explain these changes.

[ first evaluate how well representations explain cross-sectional variation in annual
returns. To benchmark these results, I also use characteristics traditionally studied in
asset pricing, like industry, dividends, and profitability. Representations combined with
traditional characteristics explain 19% of the variation in annual returns. On their own,
representations explain 13% of the variation in returns, and traditional characteristics
explain 11% of the variation in returns.

What are the economic mechanisms that could drive these returns? I decompose
the estimated return on a stock into two components. The first component is from the
change in an aggregate valuation function that maps representations into prices. The
second component is from the change in the representation itself. Of the total variation
in returns explained by representations, I estimate that two-thirds relates to changes in
valuation functions, and one-third relates to changes in representations.

The aggregate valuation function can change if investors change how they value
business models. Changes in valuation functions can drive changes in prices: For
example, the stock prices of oil companies can change as commodity prices change, or
as expectations about climate policy change. Accounting for this component increases
explanatory power by a factor of 1.8 relative to traditional characteristics. These results
indicate that the representations measure contains additional information about the
perceived business model.

The representation of a firm can change if investors change how they perceive the
firm’s business model. Changes in representation can also drive changes in prices: For
example, the stock price of an automaker can change if investors perceive it as a car



firm in one year, a software firm in the next, and a battery firm in the year after. I find
that using changes in industry labels to proxy for changes in perception poorly explains
returns. Unlike infrequent changes in industry labels, changes in representation can be
measured at high frequency, and have additional explanatory power over returns. These
results indicate that changes in perceived business models are also important drivers
of changes in stock prices. If how Tesla is perceived changes from an “Internet-of-cars

company” to a “metal bender like everybody else,” its valuation may change as well.

Predictable changes in representations and prices indicate misperception. In
my second set of main results, I show that some changes in representation are non-
fundamental—the market sometimes misperceives firms’ business models. I find that
non-fundamental changes in representation can generate misvaluation.

I first show that when a firm’s representation deviates from the historical mean, its
representation predictably reverts. I construct a trading strategy that goes long firms
whose deviation implies a lower price and goes short firms whose deviation implies a
higher price. This strategy forecasts returns (¢t = 3.4), which indicates that price changes
associated with deviations in representation predictably revert.

Why do these deviations in representation predictably revert? If a firm’s representa-
tion changes because its true business model has changed, the representation is unlikely
to revert unless true business models revert at short horizons. However, if the market is
aware of such true reversion, the forward-looking stock price is unlikely to respond to
such a transitory change in the business. Instead, predictable reversion in representations
and prices suggest that the market predictably misperceives some firms’ business models.

The market may misperceive a firm’s business if some of the firm’s features dispro-
portionately draw attention and lead investors to neglect fundamentals. For example,
although “Internet” drew attention in the late 1990s, and “AI” has drawn attention in the
early 2020s, many firms’ operations are not as related to these features as investors may
believe (Cooper et al., 2001; Narayanan and Kapoor, 2024).

I measure whether a firm’s representation incorporates features associated with
trending news coverage, extreme profitability, or extreme returns. Betting against firms
whose representations incorporate these features leads to additional return predictability
over the raw deviation in representation. These results are consistent with a kind of
“financial revisionism” (Hong et al., 2007)—investors predictably revert to old ways of
thinking about a firm. Although Tesla was once an “internet-of-cars company,” some of
its shift to a “metal bender like everybody else” may have been predictable.



These results on representation and price predictability could be a consequence
of valuation by analogy. Investors commonly use analogical reasoning in comparable
companies analysis (Graham and Dodd, 1934; Bhojraj and Lee, 2002; Damodaran, 2012).
Popular descriptions of firms often draw on analogies—the transportation firm Blade has
been called “Uber for the air,” while the food producer Beyond Meat has been called the
“Tesla of meat.” Analogical reasoning can help people adapt to changing environments,
but it can also lead to predictable mistakes when the features that draw attention relate
to “surface” similarities (Holyoak and Koh, 1987). When an analogy is extreme or
loads heavily on attention-drawing features, investors may not fully appreciate a firm’s

fundamentals.

The role of communication by firms. To explore one potential influence on repre-
sentations, I analyze communication by firms. I find that managerial communication
sometimes adopts economic features that may attract the market’s attention—including
“Al” “virtual reality,” and “internet-of-things.” Across many features, these mentions in
managerial communication eventually decrease. Beyond these individual features, I
also find reversion in the overall content of managerial communication—deviations in
embeddings of managers’ speeches predictably revert to the historical mean. In addition,
I find that changes in managerial communication are associated with changes in the
representations measure. This evidence suggests that managerial communication may
influence perceptions of firms. Managers may supply the market with analogies or other
models of thinking about firms. These models may be consistent across the kinds of
features that draw attention, but may not fully reflect firms’ fundamentals.

Related literature. This paper contributes to literatures on characteristics-based empir-
ical modeling, asset pricing, behavioral economics, and machine learning.

First, by developing vector representations of firms from language, this paper con-
tributes to the literature on characteristics-based and feature-based empirical modeling.
Empirical research often uses these models to explain valuations and other outcomes
(Lancaster, 1966; Berry et al., 1995; Daniel and Titman, 1997; Koijen and Yogo, 2019).
Many potentially relevant features can be challenging to measure. This paper uses con-
trastive learning to measure representations of firms, and finds that these representations

help to explain outcomes.*

4Bajari et al. (2023), Magnolfi et al. (2024), Compiani et al. (2024), and Han et al. (2024) compute
embedding representations of products, and study elasticities, prices, and product differentiation.
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Second, by showing that representations help to explain valuation ratios and cash
flow forecasts, this paper contributes to the asset pricing literature on explaining valu-
ations.” Present value decompositions relate valuation ratios to future cash flows and
returns (Campbell and Shiller, 1988; Cohen et al., 2003).° This paper shows that the
contemporaneous information in representations can help to explain valuation ratios.

Third, by quantifying the price effects of changes in representation and changes in
how representations are valued, this paper studies economic mechanisms for movements
in stock prices. Empirical research cannot fully explain changes in the prices of indi-
vidual stocks (e.g. Roll, 1988; Campbell et al., 2001, 2022).” This paper shows that
representations computed from language data help to explain returns.® Representations
add to the explanatory power of cross-sectional asset pricing tests that use traditional
characteristics, and changes in representation further explain returns.

Fourth, by finding evidence of misrepresentation in observational data, this paper con-
tributes to the literature in behavioral economics and finance on cognitive representation
and misrepresentation. While many theories make predictions about misrepresenta-
tion (e.g., Mullainathan et al., 2008; Bordalo et al., 2024),? it has been difficult to
test the full extent of these predictions in the field since it is challenging to measure

°In his presidential address, Cochrane (2011) writes that valuation ratios “should be our left-hand
variable, the thing we’re trying to explain.”

6yan Binsbergen et al. (2023) and Cho and Polk (2024) use future realizations of cash flows and returns
to characterize variation in market prices. Rhodes—Kropf et al. (2005) and Golubov and Konstantinidi
(2019) estimate contemporaneous components of valuation ratios to study mergers and returns.

7While many papers have focused on explaining the returns of aggregate portfolios of stocks (e.g.,
Fama and French, 1992; Jagannathan and Wang, 1996), it is more difficult to explain the returns of
individual stocks (Lewellen et al., 2010). The unexplained component contributes to a large share of
the variation in individual stock returns (Campbell et al., 2001, 2022). Changes in expectations help to
explain some of the movements in portfolio returns and individual stock returns (Bordalo et al., 2025).
Recently, asset pricing research has shown that language can help to characterize economic mechanisms
behind price changes. Bybee et al. (2024) find that aggregate news topics help to explain returns on the
market portfolio, and Bybee et al. (2023) find that return correlations with aggregate news topics help to
explain returns on stock portfolios. This paper uses language to measure changes in the representations of
individual stocks.

8The finance literature has developed methods to include rich conditioning information in asset pricing
tests (e.g. Kelly et al., 2019; Freyberger et al., 2020; Kozak and Nagel, 2023; Bryzgalova et al., 2023;
Didisheim et al., 2023). This paper shows that embeddings of financial language are effective sources of
conditioning information.

9These theories include categorization (Mullainathan, 2002; Barberis and Shleifer, 2003; Fryer and
Jackson, 2008), framing (Tversky and Kahneman, 1981), limited attention (Peng and Xiong, 2006;
Hirshleifer et al., 2011; Készegi and Szeidl, 2013; Gabaix, 2014; Schwartzstein, 2014; Bordalo et al., 2023;
Bohren et al., 2024), model selection (Hong et al., 2007; Ortoleva, 2012; Schwartzstein and Sunderam,
2021; Yang, 2023), analogy (Jehiel, 2005), and attenuation (Gabaix, 2019; Woodford, 2020; Enke, 2024),
and relate to work in psychology on categorization (Rosch, 1973; Ashby and Maddox, 2005), attention
(Treisman and Gelade, 1980; Nosofsky, 1986; Kahana, 2012) and analogy (Ross, 1987; Gentner, 2003).
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very rich representations of firms. Therefore, empirical research in behavioral finance
has often focused on changes in the valuation of individual business models, and has

£.10

focused less on changes in the perceived business model itself."” This paper develops a

measure of the perceived business model, and finds mispricing that is consistent with
misrepresentation.!!

Finally, by developing new tools for the research community, this paper contributes
to research on machine learning for social science and credibility in machine learning.
Finance research has computed embeddings of assets using language, returns, and
holdings data (e.g., Chen and Sarkar, 2020; Dolphin et al., 2022; Chen et al., 2024;
Gabaix et al., 2024).1? This paper learns embeddings from language data, as news
language is informative of how people reason about firms.'® To avoid credibility issues
with language models in empirical analysis, I train a series of foundation models for

social science research.*

10Existing empirical studies of variation in perceived business models or asset categories often relate to
individual dimensions like maturity (Shue et al., 2024), share price (Green and Hwang, 2009; Shue and
Townsend, 2021), news coverage (e.g. Barber and Odean, 2008), index membership (e.g., Harris and Gurel,
1986; Shleifer, 1986; Barberis et al., 2005; Boyer, 2011), or other asset styles (Baker et al., 2022; Liu,
2022). In a multi-dimensional study, Chen et al. (2016) show that industry classifications of conglomerates
can influence investor behavior, and find that firms may take advantage of this investor heuristic. This
paper develops a detailed measure of changes in perceived business models using representations.

By studying the relationship between managerial communication and representations, this paper
builds on the literature on financial persuasion and managerial influence (e.g. Baker and Wurgler, 2004;
Mullainathan and Shleifer, 2005b; Bergstresser and Philippon, 2006; Solomon, 2012; Schwartzstein and
Sunderam, 2021). Managerial communication may relate to economic narratives (Shiller, 2019; Flynn and
Sastry, 2022). For example, Cooper et al. (2001) finds that firms that adopted internet-related language
during the dotcom boom experienced large stock price increases, regardless of the relevance of the
internet to their operations. This paper finds that managerial communication highlights attention-drawing
economic features, and that changes in communication are associated with changes in representations.

12Chen et al. (2024) use embeddings of financial news language to forecast stock returns. Dolphin et al.
(2022) use embeddings of returns to learn sector classifications. Gabaix et al. (2024) use embeddings
of stock holdings to fit valuations, comovement, and investor holdings. The studied horizon differs
between this paper and Chen et al. (2024)—the authors compute embeddings of individual news articles
to construct short-horizon trading strategies, while I compute mean embeddings of firms across longer
horizons to measure economic representations. The main data source differs between this paper and
Gabaix et al. (2024)—the authors focus primarily on investor holdings while I focus primarily on financial
news language. This paper also has a strong focus on how changes in embeddings can help to quantify
economic mechanisms behind price changes and mispricing, which is not a focus of the other papers.

13Given this empirical strategy, this paper also builds on the literature that uses language to study
financial behavior, which includes Tetlock (2007, 2014), Tetlock et al. (2008), Li (2008), Hoberg and
Phillips (2010, 2016), Loughran and McDonald (2011), Da et al. (2011), Jegadeesh and Wu (2013),
Hassan et al. (2019), Ke et al. (2020), Fedyk and Hodson (2023), Flynn and Sastry (2022), Bybee et al.
(2024), and van Binsbergen et al. (2024).

14The results on lookahead bias (Glasserman and Lin, 2024; Sarkar and Vafa, 2024) and non-replicability
(Chen et al., 2023) relate to a larger literature on credibility in machine learning (e.g., Kapoor and
Narayanan, 2022; Zhang et al., 2024). Using job sequence data, Vafa et al. (2024) also train a foundation
model for social science research.



1. Organizing Framework

To motivate this paper’s empirical analysis, I present an organizing framework to model
valuation formation. I assume that a firm’s stock price depends on its representation and
an aggregate valuation function. The representation is a vector of loadings on features,
and the valuation function maps feature loadings into prices. Prices can change if the
valuation function changes and if the representation changes. If investors misrepresent a
firm, changes in its representation may be predictable.

Appendix B includes full derivations of the equations presented in this framework.

1.1. Representations, Valuation Functions, and Prices

I assume the stock price of firm s at time ¢ depends on its representation x;; € RX, an
aggregate valuation function v; € RX, and an idiosyncratic component st ~ N(O, 0'%).
The stock price can change if the aggregate valuation function changes, and if the
representation of firm s changes.

Representations and prices. The stock price of firm s at time ¢ is
Psp = v x5 + st @Y

The representation x;; formalizes how the market reasons about the business model
of firm s. It is a vector of intensities across economic features of firms, like “software”
or “cars.” A firm’s representation can be influenced by how the market categorizes the
firm (e.g. Mullainathan, 2002), and which of the firm’s features the market pays greater
attention to (e.g. Bordalo et al., 2024). As there are many features of firms, and the
set of relevant features in the economy can evolve, I will not pre-impose features in my
empirical analysis. Instead, I will learn the representation vector from language data.

The valuation function v; formalizes how the market values a given business model.
It maps representations to prices, and depends on cash flow and return expectations
across features of firms. The market may value an “internet-of-cars company” differently
from how it values a “metal bender like everybody else.”

The idiosyncratic component 7, ; corresponds to other drivers of the stock price that
are independent of the representation and valuation function. For example, a firm’s
stock price could be affected by idiosyncratic demand shifters, like trading flows from
rebalancing.



Appendix B.1 presents a simple microfoundation for this equation. Investors represent
each firm using a collection of features. Prices depend on the representation, the
distribution of payoffs from features of the representation, and investor preferences.
The derivation in Appendix B.1 shows how representations can influence cash flow
expectations and return expectations, which then influence prices.

Changes in prices. The change in stock price of firm s from time ¢ to f + 1 is

valuation function change  representation change
NS

(2)

—_—— ~
APsp1 = Avpy1 - x5t + Vi1 Amgp s

where Aviyy = v — v and Az = x5441 — o5 are changes in the valuation

function and representation.'®

Valuation function change component. The stock price of firm s can change if the
aggregate valuation function changes. For example, if there are changes in consumer
demand for cars, or changes in productivity of airbag manufacturers, the stock prices of
automakers can change. Moreover, if there are changes in commodity prices or changes
in expectations about climate policy, the stock prices of oil drillers can change.

This component can be interpreted as the return on a vector of characteristics or
factor loadings. Returns explained by this component correspond to changes in expected
cash flows or discount rates from the features x;;. The change in valuation function
Awv;, 1 can be interpreted as the time-varying compensation for these features.

Representation change component. The stock price of firm s can also change if
its representation changes. A firm may be represented like a car company in one
period, an software company in another, and an Al company in the next. Changes in
representation can be fundamental—the market may update its representation one-

15The price change decomposition follows from

Pspy1 — Pop = 0p1 - Ts 1 + s p41 — Ot Tt — st
= Vi1 Tspp1 F o1+ (Vpgp1 - Tsp — Vet - Ts ) — V- Tsp — st
= (Vg1 — V1) X5t T V1 (Ts i1 — Tst) + (i1 — Vs t)
= Avpy - Tsp + V1 DT 1+ Es

This is a stock-level decomposition with similar structure to the Laspeyres and Paasche aggregate price
level decompositions, and the Kitagawa—Oaxaca-Blinder group wage difference decomposition. Following
the typical characteristics model specification in asset pricing, year f is used as the base year for the
representation.



for-one as the business of firm s changes. Changes in representation can also be non-
fundamental—the market may grow to misunderstand the business of firm s, or to correct
its misunderstanding, which lead to changes in representation that are not one-for-one
with changes in the true business.

This component can be interpreted as the return that coincides with changes in
characteristics or factor loadings. As a firm’s characterization changes, the market’s
expectations about the firm—and the firm’s ensuing valuation—may also change. This
component reflects an economic mechanism that further explains the change in price;
it includes the time t 4 1 information in Az, ;.. To forecast the representation change
Ax ;.1 using information available at time ¢, we must use additional conditioning
information z; to construct the expected change in representation [E;[Ax 11 | z¢].

1.2. Misrepresentation and Predictable Changes in Representation

Suppose the true business model of firm s corresponds to a vector of fundamental

*
st

fundamental features x},. For example, a firm is misrepresented if investors represent

features x},. Firm s is misrepresented when its representation x,; differs from its
it more intensely across the “software” feature than its fundamentals would imply. A
firm that becomes misrepresented can become mispriced. As this misrepresentation is
corrected, predictable changes in representation could coincide with predictable stock
returns.

Misrepresentation and predictable reversion. If the market misrepresents a firm, the
deviation of its representation from the historical mean can forecast the future change in
its representation.

I assume that when the representation x; deviates from the historical mean i’;,t =
% ZZZI xs i, the expected future change in representation is

deviation

h h
IEt[Aws,t—l—l | Ls,t — fs,t] =-—B0O (ws,t - Es,t) (3)

where © is the element-wise product, and a fixed vector 3 > 0 describes the magnitude
of the reversion.

Appendix B.2 presents a simple microfoundation for this expression. If fundamen-
tal features z7, follow a random walk, and misrepresentation is corrected over time,
representation changes are predictable according to Equation (3). The optimal history

10



Figure 1: Summary of empirical procedures.
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prevents lookahead bias from vector representations to evaluates estimates on unseen

pretraining language about firms data

Notes: This figure summarizes the empirical procedures in this paper. First, I train language
models on historical newspaper data—this avoids lookahead bias, which can be an issue with
off-the-shelf language models. Second, I develop an algorithm to transform financial news
language into vector representations for each firm in each year. Third, I estimate functions that
relate representations to a series of outcome variables using a split-sample estimation strategy.

horizon h* trades off the variance reduction in misrepresentation against the variance
increase in fundamentals as the history horizon increases.

Appendix B.3 discusses the connections between misrepresentation and theories of
economic behavior that make predictions about representations, including categorization,
selective attention, and analogy. Appendix B.4 contrasts the predictions of theories of
misrepresentation with the predictions from Bayesian learning theories. To empirically
evaluate the predictions in this section, I compute representations of firms and study the
relationships between representations and valuations.

2. Measuring Representations from Language

I structure the language in each firm’s news coverage into an embedding vector. I use
this vector representation to estimate a series of outcome variables.

First, I train a series of foundation models for social science research. A foundation
model is a machine learning model trained on a large, general-purpose dataset, which can
then be fine-tuned on data in a specialized domain. Training these foundation models
allows me to avoid two issues with many off-the-shelf foundation models currently
applied in social science research: Lookahead bias from pretraining, and non-replicability
from model updates. I have released these models to the research community.

11



Second, I fine-tune the foundation models on financial news language using con-
trastive representation learning. Contrastive learning is a training procedure that can
produce embedding vectors targeted to a specialized domain (Dell, 2024). I adapt a
contrastive training objective to develop an embedding algorithm for firms. Using this
embedding algorithm, I compute an embedding representation for each firm in each
year.

Third, I estimate functions that relate representations to a series of outcome variables.
I use a split-sample approach: I estimate parameters on one subset of firms, and apply
each estimated function to a disjoint subset of firms. Because of this split-sample strategy,
estimation using a high-dimensional embedding vector does not mechanically lead to

higher explanatory power.'°

2.1. Foundation Models for Social Science

Using historical news data, I train a series of general-purpose language models and a
representation model. This subsection contains a high-level summary of the training
procedures, and Appendix C.2 includes more details.

Training time-stamped language models to avoid lookahead bias. Many applica-
tions of off-the-shelf language models to empirical analysis can be subject to a form of
lookahead bias (Glasserman and Lin, 2024; Sarkar and Vafa, 2024). This bias occurs
when the language model’s pretraining data and the analysis period overlap, and can
lead information about the future to leak into analysis that should only use data from the
past. It is crucial to avoid lookahead bias in this paper as my empirical analysis includes
forecasting.

In addition, many providers of language models continually update these models.
This can lead to replicability issues. For example, Chen et al. (2023) find that ChatGPT’s
performance on machine learning benchmarks changed from one month to the next.
The structure of this change was not consistent—ChatGPT performed better on a visual
reasoning benchmark but worse on a math benchmark. These results suggest that
using continually-updated models like ChatGPT for research may not produce replicable

161n the cross section, sample splitting does not generate independent holdout samples. This is because
returns and other outcome variables are correlated within each cross section. The goal of this estimation
strategy is not to evaluate explanatory power on a holdout sample, but to evaluate how well these outcome
variables can be explained using information in embeddings. With sample splitting, more parameters in
the explanatory variable do not mechanically generate a higher R?. The explanatory analyses in Section 3
and Section 4 are split-sample tests, and the forecasting analyses in Section 5 are out of sample tests.
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results.

To avoid these issues, I train a new foundation model family for social science
(StoriesLM). I train the family of models sequentially using masked language modeling
(Devlin et al., 2019) on the American Stories dataset (Dell et al., 2024). Because I
save a snapshot of the model in each year of the training data, the model has a “time
subscript”—researchers can choose a snapshot of the model trained on data up to the
time period of interest.

The StoriesLM model is a foundation language model that can be applied to English-
language computational tasks. Because of each model snapshot’s time subscript, any
forecasting analysis that considers events after the snapshot’s training data avoids
lookahead bias from pretraining. In addition, because each model snapshot’s weights
are fixed, the model can be applied to produce replicable results.

I include more details on training in Appendix C.2.

Training a language model to produce embedding vectors. I further train the
StoriesLM model so that it produces vector representations that encode English semantics.
I train this model (RepresentLM) using contrastive learning (e.g., Wang and Isola, 2022;
Reimers and Gurevych, 2019), which targets the embeddings to a semantic similarity
objective.

I train the model on the Headlines dataset (Silcock et al., 2024), using language
from 1920-1979. Over this period, local newspapers would source the content of many
of their articles from newswires like the Associated Press, but would produce their
own headlines for each article. The Headlines dataset contains multiple headlines that
are matched to the same underlying article. As each matched pair of headlines refers
to the same article, the headline pair can be used as a positive example for training
a semantic similarity model. Given the dataset’s structure, I train the model using a
multiple negatives ranking loss function (Henderson et al., 2017) in which each matched
headline pair is a positive example. The RepresentLM model produces embeddings that
apply quantitative structure to language data.

I include more details on training in Appendix C.2. I have released both these models
to the research community (Sarkar, 2024a,b).

2.2. Computing Vector Representations of Firms

The language used to discuss a firm can reflect how the market reasons about the firm. An

article from 2021 that reads “Tesla is not a car company—it’s an Internet-of-cars company”
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conveys a different view of the firm from an article from 2023 that reads “[Tesla is] a
metal bender like everyone else.” To systematically measure patterns in language that
discusses firms, I compute vector representations for each firm in each year using the
Dow Jones Newswires, an archive of financial news that includes sources like the Wall
Street Journal, Barron’s, and MarketWatch.

A key assumption in this paper is that representations measured from financial news
language can help to understand how the market represents firms. Should we expect
how the news represents a firm to relate to how investors represent the firm? Since
both journalists and investors follow the market, we may expect them to represent firms
in common ways (Tetlock, 2015). In addition, the press has incentives to match how
its readers think (Mullainathan and Shleifer, 2005a; Gentzkow and Shapiro, 2010). If
investors represent Tesla similarly to how they represent technology firms, they may
demand the press covers Tesla more like a technology firm. Moreover, the content of the
Newswires is widely followed.!” Many of its publications are written to be consumed by
investors and may be an important source of information for these investors.

I develop an embedding algorithm targeted to language about firms. General-purpose
language models may miss features of language in specific economic domains (Dell,

7

2024). For example, “platform,” “sharing,” and “two-sided” are more similar in financial

7«

language than they are in general English. Analogously, “return,” “recur,” and “recover”
are more similar in general English than they are in financial language. To compute
representations of firms, I use contrastive learning to fine-tune the RepresentLM on

financial news language.

Financial news dataset. To train the representation model and compute embeddings, I
use Newswires data from June 1979 to May 2022. For multiple articles that are “chained”
to one news event, I use the first article in the chain. I filter out articles that contain
mainly tabular data and firm filings. I use articles the Newswires codes as being about
one stock, and match these articles to US common stocks and stock characteristics using
the Jensen et al. (2023) dataset. I restrict the news dataset to articles from firms with
non-missing market equity, book equity, 60-month market beta, asset growth, gross
profits to assets, and dividends-to-assets in December of year ¢, and at least 10 articles in
year t. The news dataset contains 4,504,121 articles covering 11,287 firms.

17For example, the Wall Street Journal reported 3.4 million digital subscribers in 2023. Link to filing.
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Training a representation algorithm for firms. The RepresentLM model has been
trained to produce semantic representations of English language sequences. The joint
distribution of financial news language, however, is different from the joint distribution
of general English. Some features may be important for distinguishing between English
phrases, but are not key for distinguishing between firms. Other features may be
particularly important for distinguishing between firms—for example a firm’s focus on
technological innovation—but not especially common in general English. To compute
embedding vectors that are more targeted to features of firms, I develop an algorithm to
learn representations of firms.'®

In each year f, I learn an embedding algorithm e(-; 6;) that maps word sequences to
vectors, parameterized by 6;. The goal of the training procedure is to embed more similar
economic language more closely in the representation space. Consequently, I adapt the
multiple negatives contrastive training objective (Henderson et al., 2017) to treat each
firm as a semantic object. I set the objective to generate embeddings that are more
similar for a random pair of articles about the same firm than a random pair of articles
about different firms. A firm is an economic unit—the market should on average find
two sources of language about the same firm more similar than two sources of language
about a random pair of firms.

Each input into the training procedure is the headline and body of an article about a
firm.' Each training batch in year t takes as input a set of article pairs {(a;, b;) }'_; from
that year. For every firm 7, a; and b; are a “positive pair” of articles that refer to the same
firm. For every j # i, a; and b; is a “negative pair” of articles that refer to different firms.
The output of the procedure is an embedding algorithm e(-; 6;) for each year ¢.

In each year ¢ in each training batch, the objective is

in—1y exp {y (e(a;;0),e(b;;0)) / T}
o n ;log Y1 exp {y (e(a;0),e(bj;0)) /T}

which optimizes a neural network e(+; 0), and depends on the cosine similarity function

P(xy,x2) = m and a scaling parameter 7. Following Reimers and Gurevych

(2019), I use T = 20. Given GPU memory limits, training proceeds in batches of size

18This procedure can also be applied to learn representations of other economic objects with appropriate
matched language data.

191 separate the headline and body with two newline characters. To fit the context window of the model,
I truncate each input to 512 tokens during the training process. A token is a unit of text input processed
by the model—the model’s tokenizer vocabulary splits text input into word, subword, and punctuation
tokens.
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n = 16, for one full pass across the firms in each year. The embedding dimension is
K = 768, which the standard dimension for BERT (Devlin et al., 2019) models. I train
an embedding algorithm for every year from 1979-2022.

Computing firm-level representations. The embedding algorithm is trained to pro-
duce article-level embeddings. For the analysis in this paper, I aggregate these article-level
embeddings to compute a firm level representation x;, for firm s in year t. For every
analysis indexed by t, I lag the embedding algorithm by year. This means that for every
analysis indexed by time f, the representations {@s;_5,...,@s¢—1, st Tspy1} are all
computed using the year t — 1 embedding algorithm. This way, year t information from
the training procedure is not used to make predictions about firms in year ¢.

I construct the firm-level representation using the following procedure. For each
article about each firm, I first compute an article-level embedding, where an article is
defined as the concatenation of the headline, two newline characters, and the body.
If an article is longer than 512 input tokens, I compute embeddings across sequential
512-token chunks of the article and then compute the average embedding of the article.
To construct firm-level embeddings, I aggregate article-level embeddings by averaging
the article representations for each firm in each month. Averaging embeddings can
aggregate multiple language sources about the same entity while preserving entity-
specific information (Coleman, 2020). For the analysis in the main text, [ then average the
monthly embeddings for each firm in each year to produce a firm-by-year representation.

2.3. Estimating Outcomes Using Vector Representations

Throughout this paper, I use representations to estimate a series of outcome variables. I
use a split-sample approach.

Sample construction. For the analysis dataset, I match news articles to data on stock
returns and firm characteristics for US common stocks. I use the same filters on article
chaining and article content—as well as the same non-missing stock characteristics—as
the dataset used to train the embedding models and compute representations. As in
the Jensen et al. (2023) dataset, the most recent accounting data is incorporated with
a four month lag. To keep the sample uniform across analysis that conditions on past
embeddings and prices, I further restrict the analysis dataset to firms with at least 10
articles and non-missing book-to-market information over years t — 5 to t — 1. I match to
return data from CRSP. For some results, I additionally use the historical SIC code from
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the Jensen et al. (2023) dataset, earnings as computed by De La O et al. (2024), and the
median long-term growth forecast from IBES. I winsorize the long-term growth forecast
at the 1% level at both tails. I use the codebook on Ken French’s website to map SIC
codes into FF12 industries and FF48 sub-industries.

The matched analysis dataset is a firm-by-year panel from 1984-2021 with 89,145
observations. In the return variance analysis in Section 4, I condition on survivorship,
available news articles in year ¢ 4+ 1, and non-missing December characteristics in year
t + 1, which reduces the number of observations to 81,708. I do not enforce this
additional condition in the forecasting analysis in Section 5 so that each forecasting

regression reflects an implementable trading strategy.

Explanatory variables. I evaluate fits using representations, industry information,

characteristics, and combinations of these variables. The representation x;; is computed

FF

<1 are a collection of indicator variables for whether

from Section 2.2. Industry vectors x
a firm belongs to a Fama—French 12 industry or a Fama—-French 48 sub-industry. Char-
acteristics vectors wgf;ar correspond to 60-month CAPM beta, log book equity, one-year
asset growth, gross profits to assets, and dividends to assets. In each year, I winsorize
the first four characteristics at the 1% level at both tails, and winsorize dividends to
assets at 1% at the upper tail. For all analysis that involves estimated functions, I use
xs,+ to refer to the representation concatenated with a constant, and Ax;; to refer to the
change in representation concatenated with a constant. The same convention holds for
industry and characteristics vectors. In some analyses, I form explanatory variables by

concatenating multiple vectors.

Split-sample procedure for estimating outcome variables. I use the representation
@, for firm s in year ¢ to estimate outcome variables Y;;. I form these estimates using a
split-sample estimation strategy. This approach ensures that direct information about
firm s is not used to fit the parameters or tune the hyperparameters that are used to
estimate ?S,t. I use the same strategy for every set of vectors, but will refer to the
explanatory variable as x;; in this description for brevity.

I form estimates using five-fold cross validation. I construct the five folds by randomly
sampling folds at the firm (permco) level—i.e. when a firm enters the dataset, it is “born
into” a fold. I denote the set of firms in fold k as K, and the set of firms in the fold that
contains firm s as Ks.

In each year t and for each firm s, I form an estimate ?S,t = ff;{’ -z of the outcome
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variable by applying a estimated linear function ff‘lg to its representation x;. I fit the
function using cross-sectional cross-validation—I estimate a function ff}{’ for each year t
and each fold k. For each target fold, I estimate parameters and optimize hyperparameters
on the other four folds, and then estimate the outcome on the target fold. I parameterize
each function using ridge regression.?° Throughout this paper, I will use functions ff}{’
estimated using the cross validation procedure. To economize on notation, I will omit
the “cv” superscript and fold subscript—I will refer to each function as f;.

Split-sample evaluation procedure. Given estimates }?S,t, I evaluate average goodness-
of-fit across the sample splits and years.
In each fold k in each year ¢, I compute

 Yee, (Yo — Yop)?
Zselck(ys,t - ?s,t)z

2
Rk,t — 1

To compute a summary R statistic, I take the average of these R? statistics across folds
and years

R? = R?
5T Zt:; kit

This split-sample test is not a holdout sample test. Because returns and other
outcome variables are correlated within a cross section, sample splitting does not generate
independent splits of the data. The purpose of sample splitting is to avoid mechanical
increases in explanatory power from higher dimensional explanatory variables. The
explanatory results evaluate how much of the variation in outcome variables can be
attributed to the representations measure. The explanatory analyses in Section 3 and
Section 4 are split-sample tests, and the forecasting analyses in Section 5 are out of
sample tests.

3. Representations Help to Explain Valuation Formation

I validate the representations measure by showing it contains information about how the
market represents firms. I first show that representations embed features of firms and

20For each target fold in each year, I tune the regularization hyperparameter on the four training folds
in the year. I use the group ridge penalty from Ignatiadis and Lolas (2021), which I describe further
in Appendix C.3. Because the hyperparameter is selected on the training sample in each iteration of
cross-validation, there is no leakage from hyperparameter tuning into the estimates.
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similarity between firms. I then show that representations explain variation in stock prices
and cash flow forecasts. Embedding representations relate to market representations,
and could help to explain how the market forms valuations.

3.1. Representations Relate to Economic Features and Similarity

I find patterns in the geometry of representations that correspond to relationships
between firms. Directions in representation space relate to features of firms, and
geometric proximity in representation space relates to similarity between firms.

Properties of embeddings. I briefly summarize results in computer science and lin-
guistics on properties of embeddings, and discuss how these properties can apply to
representations of firms.

In language, a feature is an element of meaning (Fromkin et al., 1998, Chapter 4).
Under the linear representation hypothesis (Park et al., 2023), some features correspond
to directions in embedding space.?! Mikolov et al. (2013b) analyze a word embedding
algorithm e(-) and show it has the property e(king) — e(queen) ~ ¢(man) — e(woman).
This example indicates that the features of “gender” (which distinguishes king from
queen, and man from woman) and “royalty” (which distinguishes king from man, and
queen from woman) relate to directions in this word embedding space.??

In the economy, features organize how the market represents firms. Firms’ operations
can be categorized and associated across several such features, including “software,”

2 éc

“platform economy,” “upmarket.” A firm could be represented faithfully across many of
these features—the representation could reflect fundamental information about the firm’s
business model. A firm could also be misrepresented along some features—for example,
a firm could be represented more strongly the “software” feature than its fundamentals
would imply.

Semantic similarity corresponds to similarity in meaning (Jurafsky and Martin, 2024).
Semantic similarity is typically computed using geometric proximity in representation
space. Bhatia (2017) shows that similarities in representation correspond to associative

judgements across a series of scenarios studied in cognitive science research.

21The authors of Park et al. (2023) refer to features as concepts. Features can also be represented as
polytopes (Park et al., 2024) or circles (Engels et al., 2024) in embedding space.

22Levy and Goldberg (2014), Arora et al. (2016) and Allen and Hospedales (2019) formally describe how
the objective functions used for training word representation algorithms can lead semantic features to be
encoded as directions in representation space. Park et al. (2023) discuss how transformer representations
can linearly represent semantic features, and Bricken et al. (2023) and Yun et al. (2023) discuss how
transformer representations combine information from different kinds of linguistic features.
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The market’s perceived similarity between firms corresponds to how similarly the
market represents their business models. Market participants may believe that more
similar firms have similar operations, and are exposed to similar kinds of economic
shocks.

Examples of economic features. As is true for the individual elements of vectors
learned from principal components analysis, the individual elements of vectors learned
from the contrastive learning procedure cannot be interpreted as basic features of the
embedded objects. However, under the linear representation hypothesis (Park et al.,
2023), some features of the embedded objects can relate to linear projections in the
representation space. It is not necessary for every economic feature of firms to be
embedded linearly for the representation to be useful for studying valuations. However,
exploring whether some features of firms correspond to directions in representation
space could help to understand some of the structure of the representations measure.
Figure 2 shows examples of economic features of firms that relate to linear projections
in representation space. I use the embedding algorithm trained in 2020 to embed several
sets of four firms’ news coverage in 2021. I project each set of four unit-normed
representations onto its first two principal components, and transform these projections
so that two target firms span the horizontal axis. Firms that operate in different sectors
or industries may still be represented similarly across some features. Some features
in this figure, like “food,” “cars,” “lodging,” and “clothing,” are often used to structure
how the market perceives firms. Other features in this figure, like “platform economy,”

7 &
S

“upmarket,” “sustainable,” and “direct-to-consumer,” are not traditionally studied drivers

of valuation.

Representation similarity relates to market similarity. If two firms are represented
similarly, market participants may believe the firms are exposed to similar types of
shocks. Investors may therefore be more likely to make similar trading decisions across
these firms. Sell-side analysts may also be more likely to cover pairs of firms that are
represented similarly. To test these hypotheses, I estimate how representation similarity
relates to shared analyst coverage and stock return correlations.

I compute the representation similarity between each pair of firms s and s’ in each
year using the cosine similarity ¢ of their representations.

Representation Similarity, o ; = (s, s ;) 4
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Figure 2: Representations encode relations between firms.
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Notes: This figure presents four examples of how representations can encode relations between
firms. In each example, I project four representations onto two orthogonal axes. Each axis
corresponds to a relation in the language of financial news coverage. For each axis, I use
quotation marks to annotate relations between economic features. These annotated features are
not part of the representations measure, but describe some of the economic relations between
the firms. Some of the features in these annotations, like “platform economy,” “upmarket,”
“sustainable,” and “direct-to-consumer,” are not traditionally studied drivers of valuations. The
market’s perceptions of firms along these kinds of features could influence valuations.
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Figure 3: Representations encode similarity between firms.
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Notes: This figure plots the relationship between representation similarity and standard measures
of market similarity. The horizontal axis in each subplot corresponds to the decile of pairwise
representation similarity between firms. The vertical axis corresponds to the pairwise daily return
correlation or frequency of firms with shared analyst coverage.

To measure pairwise return correlations, I compute the correlation in daily returns of
each pair of stocks in year t. To measure shared analyst coverage, I compute an indicator
for whether each pair of firms has at least one analyst in common across IBES forecasts
in year t.

Figure 3 reports the relationship between representation similarity and the measures
of market similarity. Higher representation similarity corresponds to higher pairwise
return correlation and higher probability of shared analyst coverage.

3.2. Representations Help to Explain Prices and Cash Flow Forecasts

To further validate the representations measure, I show it helps to explain valuations.
I evaluate the split-sample R? of estimates of valuation ratios and cash flow forecasts
using representations. I find that representations explain a meaningful portion of the
cross-sectional variation in these outcome variables, and increase the fit over using only
industry information or firm characteristics.

I evaluate how well the estimated outcome ?S,t = ¥ - x5+ explains the realized
outcome Y;; by computing the R? of

Y51 =V @5t + €t (5)
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Table 1: Representations help to explain prices and forecasts.

R?: Estimates of price and forecast variables

Dependent variable — log(P/B) log(P/E) F[LTG]
Explanatory variables | (D (2) 3

Representation 26.0% 12.1% 19.7%
Industry (FF12) 9.2% 6.8% 12.8%
Sub-Industry (FF48) 11.7% 7.5% 13.6%
Characteristics 12.8% 6.9% 22.2%
Representation+All Others 32.9% 14.5% 30.1%
All Others 19.3% 10.7% 25.7%

Notes: This table reports the R? on a series of estimates of stock price and cash-flow forecast
variables across sets of explanatory variables. The estimates are from Equation (5): Y;; = v; -
xs; + € 1, following the split-sample approach of Section 2.3. Each row reports R? estimates across
a different set of explanatory variables—representations, industry codes, and characteristics, and
concatenations of these vectors. Each column reports R? estimates across a different price or
forecast variable. The set of firms used to fit each estimator does not include the firms used to
evaluate the estimates.

I estimate v; using the split-sample approach from Section 2.3. I compute the average R?
of each of the five folds across each year. As stock s is not in the data used to learn each

valuation function 9, the R? in Equation (5) corresponds to goodness-of-fit on unseen

char
st >

the representation will not mechanically produce a higher R? than the characteristics

data. If a representation x,; has more parameters than a characteristics vector «

vector. An increase in R? from representations versus characteristics reflects additional
information in the representation.

I evaluate the fit of analyses that use the explanatory variables from Section 2.3 to
explain the log price-to-book ratio log(P/B)s +, the log price-to-earnings ratio log(P/E)s ;.
and the median long-term growth forecast IF;[LTG;| made at the end of year ¢. Table 1
reports the R? of these estimates. Representations improve the ability to explain prices
and forecasts.

4. Representation Changes Help to Explain Stock Price Changes

In my first set of main results, I show that representations help to explain changes in
stock prices. I characterize economic mechanisms that could drive these changes. In
total, representations help to explain 19% of the cross-sectional variation in annual stock
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returns.

I decompose the estimated return into two components. The valuation function
change component reflects changes in how business models are valued. The representa-
tion change component reflects changes in the perceived business model of the firm. I
estimate that two-thirds of the explained variation in cross-sectional returns relates to
the valuation function change component, and one-third relates to the representation
change component.

I find that the valuation function component increases explanatory power for returns
compared to using just stock characteristics and industry information. This result
indicates that there is additional information in the representation that helps to explain
returns. Adding the representation change component further increases explanatory
power. This result indicates that another economic mechanism behind changes in stock
prices is the change in the perceived business model.

4.1. Estimating Components of Returns

I estimate the valuation function change and representation change components of the
annual return R, ;1. I use a split-sample strategy, so the estimates are not formed using
the firm’s own return.

Valuation function change component. Recall from Equation (2) that the valua-
tion function change component can be expressed as [Av]s; 11 = Aviqg - sy In this
expression, Awv;, 1 is the change in valuation function from ¢ to f + 1.

To estimate Awv;, 1, I use the split-sample procedure from Section 2.3 to estimate the
relationship between returns and representations. In each year ¢, I use the estimated
coefficient vector 8,1 from a ridge regression across stocks s’ ¢ K not in the fold of
stock s

Rs’,t—i—l = 6t+1 "Lyt €y

to estimate the valuation function change component

—

[Av]s,tﬂ = 3t+1 T t

Representation change component. Recall from Equation (2) that the representation
change component can be expressed as [Ax|s+1 = v¢+1 - Axsp41. In this expression,

Axg ;.1 is the change in representation from ¢ to ¢ + 1.
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To estimate v;, 1, I use the split-sample procedure from Section 2.3 to estimate the
relationship between returns and changes in representation. In each year ¢, I use the
estimated coefficient vector ;1 from a ridge regression across stocks s’ ¢ ks not in the
fold of stock s

Ry 441 = Vi1 - DTy p 1 + €y 141

to estimate the representation change component

—

[AX]g 111 = V1 - Dxs 11

Total estimated return. To efficiently estimate the total explained return [Av]s 1 +
[Ax]s 41, I apply the estimation procedure to both sets of independent variables jointly. I
concatenate the previous two independent variables into ¢; ;11 = [ws,t Aa:s,tﬂ} .

In each year ¢, I use the estimated coefficient vector {;,; from a ridge regression
across stocks s’ & K;

Ry 441 = Crt1 - Co p11 T € 111

to estimate the total estimated return

L —

[Total], ;1 = i1 511

4.2. Representations Help to Explain Returns

I find that estimated returns explain variation in realized returns. Representations add
explanatory power over industry information and characteristics. Accounting for the
change in representation adds further explanatory power.

Split-sample cross-sectional test. I compute the R? from the specification
Rs,t—l—l - Iﬁt[Rs,t—&—l ‘ Z] + Est+1 (6)
where each [E;[] corresponds to a different estimate of the realized return: [Z\v], [A/;], or

[Total]. To compute the R?, I first compute the average R? across the folds in each year,
and then compute the average of this statistic across all years.
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Table 2: Representations help to explain returns.

R2: Estimates of annual returns

Estimation strategy — [Av] [Ax] [Total]
Explanatory variables | (D (2) 3

Representation 9.4% 6.8% 13.4%
Industry (FF12) 3.5% <0% 3.5%
Sub-Industry (FF48) 4.1% <0% 4.1%
Characteristics 3.1% 4.4% 8.6%
Representation+All Others  11.5% 10.0% 18.7%
All Others 6.4% 4.4% 11.3%

Notes: This table reports split-sample R? statistics of using estimated returns to explain realized
cross-sectional returns, following Equation (6): Rs;+1 = IE[RSJH | z] 4+ €5 ++1. Each row reflects
a different set of explanatory variables: Representations, industry vectors, characteristics vectors,
and combinations of these vectors. Each column reflects a different estimation strategy.

To benchmark these results, I run analogous procedures using industry information
and characteristics, as computed in Section 2.3.

Column (1) shows the R? of the valuation function change component across these
explanatory variables. On their own, representations explain 9.4% of returns. When
combined with the traditional characteristics, representations help to explain 11.5% of
returns. This is 1.8 times the explanatory power of the traditional characteristics, which
explain 6.4% of returns.

Column (2) shows the R? of the representation change component across these
explanatory variables. Representation changes and characteristics changes explain
variation in returns, while industry and sub-industry changes do not. As industry codes
are updated only rarely, there is not enough information to explain returns on a separate
sample using changes in industry—the split-sample R? is negative when using industry
information. Representations can measure high-frequency changes in the perceived
business model that industry codes do not. The change in representation explains 6.8%
of returns on its own. When combined with changes in the other explanatory variables,
the change in representation helps to explain 10.0% of returns. This is 2.3 times the
explanatory power of changes in the traditional characteristics, which explain 4.4% of
returns.

Column (3) shows the R? of the estimated total return. Representations explain 13.4%
of returns, and 18.7% when combined with industry and characteristics information.
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This is 1.7 times the explanatory power of the traditional characteristics, which explain
11.3% of returns.

The valuation function change component [Av] helps to explain returns, and increases
explanatory power over traditional characteristics. This result indicates that the repre-
sentation is more informative of the features that drive stock returns. For example, while
changes in auto demand may affect valuations of all automakers, changes in regulatory
approval may more strongly affect automakers working on autonomous vehicle, and
changes in consumers’ discretionary spending may more strongly affect automakers that
produce luxury cars. The representation measure contains additional information about
the perceived business model.

The representation change component [Ax| further explains returns. The addi-
tional contribution of the component is (13.4 —9.4)/13.4 ~ 30%. This result indicates
that changes in a firm’s perceived business model contribute to changes in valuation.
For example, an automaker’s valuation may change as its perceived business model
changes from car manufacturer to technology developer to battery firm. While it may be
challenging to measure these kinds of changes using traditional data, the structure of
representations measure helps to estimate changes in perception in more detail.

Alternative explanations for variation explained by the [Ax] component. What
leads representation changes to explain variation in realized price changes? A natural
explanation is that as the market’s perception of a firm changes, the firm’s valuation
changes. An alternative explanation is that information about a firm’s valuation that is
unrelated to how the market perceives the firm influences the representations measure.
In other words, the embedding representation contains information about the price that
is not in the market’s representation, and the explanatory power of the [Ax| component
could be driven by this information.

A series of evidence indicates this alternative explanation does not match the data.
First, in Section 5.1, I show that time-t information in representations forecasts time-t + 1
returns. When a firm’s representation deviates from the historical mean, the firm’s future
returns are forecastable. This forecasting power exceeds the forecasting power of the
raw deviation in valuation at time ¢. This result demonstrates that there is information
in representations that is not driven by prices. Second, in Appendix D.2, I show that the
representation change component does not relate to return shocks that are orthogonal to
perceptions. I find that return variation attributable to commodity price shocks does not
relate to return variation attributable to representation changes. This result demonstrates
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that the representation change component does not correspond to returns driven by
shocks that are orthogonal to perceptions.

In addition to these two direct results, the alternative explanation would have to
account for the explanatory power of the [Av] component, and the measured relationship
between representation similarity and daily return correlations. In summary, these
results indicate that the natural explanation for the explanatory power of the [Ax]

component—when perceptions change, valuations change—better matches the data.

5. Predictable Changes in Representation Indicate Misperception

In my second set of main results, I find that some changes in representation appear
non-fundamental, in that they suggest investors have misperceived a firm’s business
model. I show that when a firm’s representation deviates from the historical mean, it
predictably reverts. This reversion is associated with predictable returns. I discuss how
these results are consistent with misperception of the firm’s business model.

To understand what may drive misperception, I measure whether a firm’s representa-
tion incorporates features that may draw investor attention. I show that after a firm’s
representation incorporates features associated with trending news coverage or recent
extreme performance, it has predictable returns. This evidence suggests that a firm can
be misperceived if investors focus on some of its attention-drawing features but neglect
its full set of fundamentals.

5.1. Reversion in Representation

I find that when a firm’s representation deviates from the historical mean, the represen-

tation predictably reverts.

Estimating the deviation in representation. I compute the firm’s deviation in repre-
sentation Am?lt =Tt — E’;t, which is the difference between the firm’s representation s ;
and its historical representation Egt. The historical representation 5?,;& = % 22:1 Tgp i 1S
the average of the firm’s representation over the previous & years.

The deviation in representation Az, reflects the deviation in features of firm s in
year t from their historical level. I use i = 5, so that the historical representation does
not include representations from several years prior. Equation (12) shows that using
too long a history can increase the variance of forecasts, as the firm’s fundamentals may

have changed over a longer horizon.
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Deviations in representation revert. To assess whether these deviations revert, I
compute how much the future change in representation Ax ;1 = ;41 — s relates
to the deviation in representation Az ,. Using cosine similarity ¢, I compute

Reversiong ;11 = —gb(Aa:s,tH,Aa:ﬁ’,t)

I find that the average reversion is 0.38. A reversion estimate of 1 would mean that
representations on average completely revert in the direction of deviation. A reversion
estimate of —1 would mean that representations on average continue to deviate in the
same direction. The estimate of 0.38 implies that deviations in representation on average

revert to the historical mean.

5.2. Reversion in Representation and Returns

I assign a price to the deviation in representation, and find that this priced deviation
predicts returns. When investors represent a firm’s business model very differently from
the past, this deviation appears on average too strong. I find that the unconditional
deviation in representation forecasts returns.

To evaluate another mechanism that may influence returns, I assign a price to the
deviation in valuation function. When the aggregate valuation function changes, it could
both change too much?? or change too little.?* I find that the unconditional deviation in

valuation function does not forecast returns.

Pricing the deviation in representation. I price the deviation in representation by

estimating
Representation Deviation (priced), ; = v - Aazé’,t (7

where Aa:é’t =x5;— E’;t is the deviation in representation, and v; is a function that maps

representations to the log price-to-book ratio pb. ,, estimated using the split-sample ridge

st
procedure from Section 2.3.

This measure reflects whether the deviation in representation is toward high-valued

23The valuation function could change too much if investors overreact to information about some busi-
ness models. This mechanism has been studied in conjunction with valuation changes during technology
booms (Shiller, 2000).

24The valuation function could change too little if investors underreact to information about some
business models. This mechanism has been studied in conjunction with the industry momentum effect
(Moskowitz and Grinblatt, 1999).
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stocks or low-valued stocks. For example, if Tesla’s representation deviates to become an
“internet-of-cars company,” and “internet” has a relatively high valuation, the representa-
tion deviation would have a high valuation. If “internet” continues to have a relatively
high valuation in the following year, but the representation of Tesla reverts to a “metal
bender like everybody else,” Tesla would have a lower valuation in the following year.

Pricing the deviation in valuation function. I price the deviation in valuation function
by estimating

Valuation Function Deviation (priced)slt = Avf -Eé‘,t (8)

where E’;t is the historical representation and Avf is a function that maps the historical

. _ .. . . . ——h .
representation mé’,t to the deviation in log price-to-book ratio pb, , — pb,,, estimated
using the split-sample ridge procedure from Section 2.3.

Evaluating return predictability. Table 3 reports the results of Fama-MacBeth return
forecasting regressions using these two components. The regressions forecast monthly
returns, following the Fama-MacBeth specification

Rs,m,t—H = Ay + ,B%Zs,t + €s,m 41 ©)

with respect to sorting variables Z; ;. Each sorting variable is re-computed at the end of
each year.

Table 3 shows that the priced deviation in representation negatively forecasts returns.
When a firm’s representation deviates toward high-priced stocks, it has lower returns;
when its representation deviates toward low-priced stocks, it has higher returns. This
return forecasting ability persists (t = 3.4) after conditioning on the valuation function
deviation. This result, paired with the result on reversion in representation, suggests the
market may misvalue firms if it misrepresents their business models.

In addition, Table 3 shows that the priced deviation in valuation function does not
forecast returns. Unconditionally, changes in the market’s valuation function do not
persist or revert at a one year horizon. However, this is not to say that every movement
in valuation functions is one-to-one with fundamentals—it is possible that additional
conditioning information could help to measure non-fundamental changes in valuation

functions.
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Table 3: Deviations in representation forecast returns.

Dependent variable: Monthly return [%]
€Y (2) (3)

Representation deviation (priced) -0.45%** -0.47%**
(0.15) (0.14)
Valuation function deviation (priced) 0.07 0.09
(0.28) (0.28)
Forecasting R? 0.002  0.007  0.009
Months 456 456 456

Notes: This table reports results of Fama—MacBeth forecasting regressions of future returns on
priced deviation variables, following Equation (9): R ¢+1 = am + ,B%Zs,t + €5 m+1. Sorting
variables are computed at the end of each year, and each sorting variable is cross-sectionally
percentile ranked. Fama—MacBeth standard errors are reported in parentheses.

Additional specifications. To benchmark this predictability, I add conditioning vari-
ables to the forecasting regression, and conduct portfolio tests.

In a set of robustness regressions, I augment the forecasting regression specification
with additional controls. These controls consist of levels and changes in valuation ratios,
and past returns. Table E1 reports the results from these regressions. After accounting
for these controls, the priced deviation in representation continues to forecast returns.
This indicates that the return predictability is distinct from unconditional autocorrelation
in prices—the priced deviation in representation has additional forecasting power over
returns.

I also construct equal-weighted portfolios that go long the bottom quintile and go
short the top quintile of the priced representation deviation. Table E2 reports returns
from portfolios across the full sample, and Table E3 reports returns from portfolios
that exclude microcap stocks. The long—short portfolio has a monthly return of 0.40%
(t = 3.3) over the market portfolio, and a monthly return of 0.35% (t = 3.2) over the
market, SMB, and HML portfolios. The returns on the constructed portfolio correlate
with the returns on the HML portfolio. This correlation is natural. The long—short
portfolio bets against stocks whose deviation in representation implies a higher price.
If misrepresentation leads many stocks to have high prices, the lower returns of these
stocks will be correlated with the unconditional lower returns across all high-priced
stocks.

I also construct equal-weighted portfolios that go long the bottom quintile and go
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Figure 4: Motivating evidence of attention-drawing features: Firm-level word mentions.
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Notes: This figure plots the share of firms whose news coverage includes a given word in a given
year. The two panels report these statistics for the words “internet” and “Al.” Internet began to
have a large increase in attention in the late 1990s, and Al began to have a large increase in
attention in the late 2010s. During these periods of increases in attention, case study evidence
suggests that the market neglected fundamental features of these firms (Cooper et al., 2001;
Narayanan and Kapoor, 2024). Figure A2 also includes statistics for “virtual reality,” “blockchain,”
“green,” and “wearable.”

short the top quintile of the priced valuation function deviation. Returns from these
portfolios are also reported in Table E2 and Table E3. As is the case in the forecasting
regressions, the valuation function deviation portfolios do not have statistically significant
returns. While the unconditional deviation in representation forecasts returns, the
unconditional deviation in valuation function does not.

5.3. Motivating Evidence: Attention-Drawing Features, Neglected Fundamentals

What could lead firms to be misrepresented by the market? One reason is that some
features may disproportionately draw attention. Distorted attention may lead investors
to neglect fundamentals.

As a case study; I first focus on two features—“internet” and “AI”—that have attracted
the market’s attention. I measure patterns in news coverage associated with these
features. I find that many firms’ coverage rapidly incorporated these features. Evidence
from these episodes suggests that investors’ focus on these features led them to neglect

some firms’ fundamentals.
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Rapid increase in coverage. Figure 4 plots the share of firms from 1984-2021 whose
coverage included the words “internet” and “Al.”2> Both of these words experienced
large coverage increases across a concentrated period. These periods correspond to the
dotcom boom in the late 1990s, and the emergence of deep learning in the late 2010s.

Neglect of some firms’ fundamentals. Evidence from these episodes suggests that
attention to these features led investors to neglect some of these firms’ fundamentals.

During the dotcom run-up in the 1990s, Cooper et al. (2001) finds that firms that
adopted internet-related names experienced large stock price increases. The authors find
that these price increases were unrelated to the firms’ involvement with the Internet.
During the 2000 crash, these firms’ stock prices fell (Glynn and Marquis, 2004). This
evidence suggests that as the “internet” feature drew attention, investors neglected other
fundamental features of the firms that adopted the “internet” feature.

Over the past few years, many firms have been described as “Al” firms. Not all these
descriptions may reflect fundamentals. For example, the venture capital firm MMC
Ventures claimed in 2019 that Al was not part of the core business of 40% of European Al
startups (Schulze, 2019). Zhang et al. (2024) and Schaeffer et al. (2023) find that many
claimed successes from Al may be influenced by misspecified benchmarks. Narayanan
and Kapoor (2024) argue that many claims of Al adoption are overstated.

These pieces of evidence suggest that when a firm’s representation adopts a feature
that draws attention, investors may place too much weight on the feature and neglect
the firm’s fundamentals.

5.4. Attention-Drawing Features and Returns

I discuss how features associated with trending news coverage or extreme performance
may draw attention. I compute features associated with these types of events. I then
measure how strongly each firm’s representation incorporates these features. I find that
these measures of feature incorporation predict returns.

Features associated with trending news coverage. Features that are trending in the
news may draw investor attention. Experimental evidence suggests that examples that
easily come to mind influence how people make judgments (Tversky and Kahneman,
1973), and empirical evidence suggests that news coverage influences how investors

251 use a case-insensitive match for “internet” and a case-sensitive match for “Al”
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trade (Barber and Odean, 2008). When seemingly every news article is about Al, we may
find it easy to remember stories of how some Al firms have experienced rapid growth.

These stories may not always be the most useful stories for reasoning about the
average firm. Representing a customer service firm that adopts a language model like
the technology firm that developed the model may be too simple a view of the customer
service firm’s fundamentals. Consequently, a firm whose representation incorporates a
trending feature may be misrepresented and mispriced. If trending features on average
command higher prices, a firm whose representation incorporates a trend would on
average be overpriced.

I measure trending news coverage using changes in firm-level coverage in the
newswires data. I identify firms whose news coverage has increased the most over
five years. I take the difference in the log number of news articles between year ¢t
coverage and year t — 4 coverage for each firm s. I compute features associated with
trending news coverage, and then measure which firms incorporate these features.

Features associated with extreme performance. Both the features of extreme high
performers and the features of extreme low performers may draw the market’s attention.
Evidence from both the lab and the field suggests that extreme events are more likely to
come to investors’ minds (Tversky and Kahneman, 1973; Kwon and Tang, 2024). We
may find it easy to remember stories like Microsoft’s rapid growth from its cloud business,
or Lehman Brothers’ rapid demise from its high risk exposure.

While we may be more likely to remember these stories, they may not always be
the most useful stories for reasoning about the futures of other firms. Representing
another firm as the “next Microsoft” or the “next Lehman” may be too simple a view
of its fundamentals. Consequently, a firm whose representation incorporates features
of extreme high performers may be overpriced, while a firm whose representation
incorporates features of extreme low performers may be underpriced.

To to measure past profitability and performance, I use past five-year return on equity
and past five-year returns. I compute features associated with high past profitability and

performance. I then measure which firms incorporate these features.
Estimating attention-drawing features. I compute the direction in representation

space that is associated with a given attention-drawing characteristic—trending news
coverage, past profitability, and past stock returns.
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Table 4: Incorporation of attention-drawing features forecasts returns.

Dependent variable: Monthly return [%]

€)) (2) (3) 4) (5) (6)
Incorporate trending features -0.47** -0.29**
(0.15) (0.13)
Incorporate profitable features -0.50*** -0.33***
(0.16) (0.12)
Incorporate high-performing features -0.51*** -0.36**
(0.18) (0.15)
Representation deviation (priced) -0.42***  .0.37*** -0.31***
(0.13) (0.12) (0.11D)
Valuation function deviation (priced) 0.09 0.11 0.10
(0.28) 0.27) (0.27)
Forecasting R? 0.001 0.001 0.002 0.010 0.009 0.010
Months 456 456 456 456 456 456

Notes: This table reports results of Fama—MacBeth forecasting regressions of future returns on
feature incorporation variables, following Equation (9): R i+1 = am + ﬁ;ZS,t + €5 mi4+1. Sorting
variables are computed at the end of each year, and each sorting variable is cross-sectionally
percentile ranked. Fama—MacBeth standard errors are reported in parentheses.

In each year t — 1, I estimate

Yst-1 =1 Tsp—1+ &1

using the penalized estimation procedure from Section 2.3. I estimate the relationship
between the representation x;;_; and the attention-drawing characteristic Y; ;1. The
estimated coefficients a;_1 correspond to the direction in representation space associated

with the characteristic, with shrinkage applied. Higher a;_; implies more exposure to
the attention-drawing features.

Estimating feature incorporation. I estimate how much a firm’s representation incor-

porates these attention-drawing features. For each of the three measures of attention, I
estimate

; _ = h
Incorporationy ; = a; 1 - Az,

This measure estimates how much the deviation in representation loads on attention-
drawing features from the previous year.
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Feature incorporation forecasts returns. I find that incorporation of these features
forecasts returns. The more strongly a firm’s representation incorporates a trending,
profitable, or high-performing feature, the lower its future return.

Table 4 reports the results of Fama-MacBeth return forecasting regressions using the
feature incorporation variables. Each of the measures of feature incorporation forecasts
returns. Each measure also has additional forecasting power over the priced deviation

components from Section 5.2.

Additional specifications. In a set of robustness regressions, I augment the forecasting
regression specification with the additional controls from Section 5.2. These controls
relate to valuations and changes in prices. In addition, I run tests that simultaneously
condition on all three measures of feature incorporation. Table E4 reports the results
from these regressions. After accounting for these controls, the measures of feature
incorporation continue to forecast returns.

6. The Role of Communication

What influences how the market perceives firms? To explore one potential mechanism
of influence, I analyze communication by firms. I study changes in language used by
managers in earnings call speeches. I show that as attention to certain economic features
changes, managers’ mentions of these features also change. Beyond these individual
features, I find that deviations in the overall content of managerial speeches also pre-
dictably revert to the historical mean. Furthermore, priced deviations in managerial
communication are associated with priced deviations in representations. This evidence
suggests that communication by managers may influence how the market perceives
firms.

Managerial communication along economic features. I first examine managerial
communication across a set of economic features that have attracted attention over the
past two decades. I compute the time series of mentions of example economic features in
managers’ speeches. I use data on earnings calls from StreetEvents from 2003-2021, and
use the first call available for each firm in each calendar quarter. I focus on the initial
speech segment in each call, which reflects managers’ communication to the market
before the Q&A period with analysts. I calculate average quarterly mentions of the
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Figure 5: Communication across attention-drawing features.
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Notes: This figure plots the share of earnings call speeches by managers that include a given
phrase in a given quarter. Each of these phrases had a sharp increase in managerial mentions at
least once over the sample. For some of these phrases, sharp increases in managerial mentions
were followed by sharp decreases in managerial mentions.

7« 2 <«

phrases “Al,” “virtual reality,” “blockchain,” “green,” “wearable,” and “IoT.”2°

Figure 5 plots the average mentions of these phrases over the sample. Mentions of “AI”
increased sharply in the late 2010s during the emergence of deep learning. This increase
coincided with news about AlphaZero and AlphaFold and the release of TensorFlow. It is
likely that “AI” mentions have increased even further after 2021.

“Virtual Reality” had a sharp increase and decrease in the late 2010s, around the
release of mass-market VR headsets like the Oculus Rift and HTC Vive. “Blockchain”
had a sharp increase and decrease in the late 2010s, which coincided with booms in
bitcoin and ICOs in this period. “Green” had an increase and decrease in the mid 2000s,
around the release of An Inconvenient Truth and the clean tech boom. “Green” had
another increase during the rise of ESG investing in the late 2010s. “Wearable” had a
sharp increase and decrease in the mid-2010s, which coincided with the Fitbit IPO and
Apple Watch launch. Finally, “loT” had a sharp increase and modest decrease in the late
2010s. This period coincided with the spread of commercial internet-of-things devices

and consumer devices like the Amazon Echo.

26] use case-sensitive matches for “Al” and “IoT,” and case-insensitive matches for the other phrases.
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For many of these phrases, managerial communication exhibited sharp increases and
decreases in phrase frequency. Many of these reversions coincided with technological
transformations. These reversions in managerial communication align with the reversions
in news coverage in Figure 4 and Figure A2. This evidence suggests that many of these
features were not persistent components of these firms’ business models.

Deviations in managerial communication predictably revert. Beyond these indi-
vidual features, I study the overall evolution of managerial communication. Using the
RepresentLM model, I compute embeddings of manager speeches, and compute the
deviation in these embeddings from the historical mean. Appendix F includes additional
details on this procedure. I find that the reversion statistic for manager embeddings
is 0.31, which is comparable to the reversion statistic of 0.38 for the representations
measure. Like the representations measure, deviations in managerial communication on
average revert to the historical mean.

Managerial communication is associated with market representations. I find that
deviations in managerial communication are associated with deviations in representa-
tions. Using the empirical strategy in Section 5.2, I transform manager embeddings to
compute the priced deviation in managerial communication. Appendix F includes addi-
tional details on this procedure. Table F1 shows that the priced deviation in managerial
communication is associated with the priced deviation in market representations.

What drives the measured relationship between managerial communication and
representations? One explanation is that managers may influence the market’s per-
ceptions. Managers may supply investors with models for thinking about firms, which
influence how investors perceive and value firms. One alternative explanation is that
managers may respond to the market’s perceptions and change how they perceive or
portray their firms. An additional explanation is that managers and the market shift their
attention in tandem in response to the economic environment. Across all explanations,
the predictable short-run reversion in managerial communication and market repre-
sentations makes it unlikely that managerial communication is entirely about long-run
fundamentals of firms.

What could drive the observed variation in managerial communication? One source
could be persuasion and catering by firms. Managers who care about short-run valu-
ations may strategically communicate to the market. If the market does not perfectly
understand certain high-priced economic features, and is eager to invest in firms with
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those features, managerial communication might emphasize those features. For example,
if the market cannot distinguish between firms that develop Al and firms that mention
“Al,” communication along the “Al” feature could increase a firm’s short-run valuation.

Another source of variation could be overoptimism from firms. If managerial com-
munication relates to economic features the market does not perfectly understand,
overoptimism could lead to misperception by the market. For example, if firms and the
market neglect the effects of competition, they may be too optimistic about the expected
firm-level growth associated with some economic features. Competition neglect could
affect how the market values firms during technological transformations.

Discussion

People can reason about the same economic object in different ways. As their perceptions
change, their valuations may change as well. These perceptions can be challenging to
measure using traditional structured data.

Language data could reveal patterns in perception. However, without additional
transformation, the structure of raw language data does not lend itself to economic
analysis. This paper applies contrastive learning to structure language from financial
news into vector representations of firms. These measured representations embed
features of firms and similarity between firms, and help to explain stock valuations and
cash flow forecasts.

[ use representations to characterize mechanisms behind changes in valuations. I show
that stock returns relate to both changes in how representations are valued, and changes
in representations themselves. Representations help to explain stock returns, and contain
additional information beyond traditional characteristics. Changes in representation
further increase explanatory power, which suggests that changes in perceived business
models contribute to changes in valuations.

Some changes in representation are non-fundamental—investors may come to mis-
perceive some firms’ business models. This misperception can lead to misvaluation.
Features that draw the market’s attention appear to contribute to misperception, and

changes in perception are related to changes in managerial communication.
Technological transformations. Technological transformations often coincide with

large fluctuations in asset valuations. Influential explanations of these fluctuations often
consider a new technology as a whole—and attribute fluctuations in each technology’s
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overall valuation to variation in sentiment, uncertainty, or other factors (Shiller, 2000;
Pastor and Veronesi, 2009; Brunnermeier and Oehmke, 2013).

Another source of valuation fluctuations could be changes in the representations of
firms. During a period of technological transformation, the market may reconsider how
strongly each firm’s business model relates to a new technology. For example, investors
may initially believe that a customer service firm that uses a language model is an “AI”
firm, in the same sense they believe that the technology firm that developed the language
model is an Al firm. Changes in such a firm’s characterization could contribute to
changes in its valuation. Further analysis of these changes could help to explain patterns

in cross-sectional and aggregate valuations during technological transformations.

Valuation by analogy. A person who solves an unfamiliar problem looks for familiar
structure (Ross, 1987). Gentner (2003) argues that humans’ ability to identify structural
similarity is one reason “why we’re so smart.” Investors commonly use analogical
reasoning. For example, in comparables analysis, investors are trained to value a firm
based on what they believe to be its set of peers. Reasoning by analogy could help
investors learn about the structure of a dynamic environment like the stock market.

While analogical reasoning is a powerful tool, it can distort perceptions when features
that generate “surface” similarities are at the center of attention (Holyoak and Koh, 1987).
When an analogy is extreme (“Tesla is not a car company”) or loads on attention-drawing
features (“Tesla is an internet-of-cars company”), investors may not fully appreciate
a firm’s fundamentals. As new features enter the economy, the focus of investors’
reasoning may cycle between surface-level and structural relationships. Empirical studies
of analogical reasoning could help to understand how investors perceive and learn about
firms.

Representations, decisions, and demand. Many factors that influence decisions are
not recorded in traditional structured data. A borrower may consider a credit card’s
flexible rewards program and colorful card design, while a saver may consider a mutual
fund’s easy-to-read prospectus and trustworthy brand. A homebuyer may consider a
neighborhood’s well-maintained streets and friendly residents, while a consumer may
consider a cell phone’s compatible apps and easy-to-use operating system. A household’s
macroeconomic representation—how much it considers the high gas prices, rise in
automation, closed local shops, and so on—may influence many of its decisions.

The contrastive training procedure in this paper could be applied to learn represen-
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tations from language that discusses other kinds of economic objects. These measures
could help to further study valuations and decisions.
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A. News Article Examples and Statistics

I include examples of news coverage and report statistics on word usage in news data.

A.1. Examples

The main text references news coverage of the electric vehicle maker Tesla. Figure A1l
presents headlines of news articles about Tesla. I include links to the articles in the figure

notes.

Figure A1l: Example articles about Tesla.

2021 2023
= THE WAL STREET JOURNAL THE WALL STREET JOURNAL.
3,
How Elon Musk s. SO&war.e Focus What if Tesla Is...Just a Car Company?
Helped TeSla' Na“gate Chlp Shortage Tesla’s aura as an elite tech disrupter dims as EV competitors multiply and improve their offerings

Electric-vehicle maker is expected to manufacture roughly 80% more
vehicles this year than it did in 2020 \front of a store in Rockin, Calif. DAVID PAUL MORRIS/BLOOMBERG NEWS

By Rebecca Elliott (Foliow
Jan.13,2023at 1128 am ET

yahoo!finance . .
Tesla’s margins remind us that

Tesla is not a car company — it's an it’s an automaker, not atech
'internet-of-cars company:' Arteris CEO company

£ Pras Subramanian - Senior Reporter & (@
@ October 29,2021 3 min read

Notes: This figure shows headlines from four articles about the electric vehicle maker Tesla.
The left panel includes an article from the Wall Street Journal from December 30, 2021, and an
article from Yahoo Finance from October 29, 2021. The right panel includes an article from the
Wall Street Journal from January 13, 2023, and an article from TechCrunch from July 21, 2023.

The computation of the decline of “software” mentions in Tesla’s news coverage
proceeds as follows. I use Factiva to search for Wall Street Journal articles about Tesla in
2021 and 2023. I either run an unconditional search, or a free text search with the term
“software.” I exclude articles Factiva labels as duplicates.

I count the number of non-duplicate articles in each search. Tesla had 205 unique
articles in 2021. 39 of these articles included “software” in a free text search. Tesla
had 165 unique articles in 2023. 24 of these articles included “software” in a free text
search. The word “software” was included in 39/205 = 19.0% of articles in 2021, and
24/165 = 14.5% of articles in 2023. This reflects a (19.0 — 14.5)/19.0 ~ 24% decline in

relative mentions of “software” over this period.
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https://www.wsj.com/articles/tesla-stock-elon-musk-electric-vehicle-11673623093
https://techcrunch.com/2023/07/21/tesla-earnings-stock-price-down/

A.2. Statistics

In each year, I compute the share of firms whose coverage includes a given word or phrase.
I use case-sensitive matches for “Al,” and case-insensitive matches for the remaining

phrases.
Figure A2: Statistics on financial news coverage.
Share of Firms With News Coverage that Mentions
Internet Al Virtual Reality
0.75 015 0.04
0.50 0.10
0.02
0.25 0.05
0.00 . . 0.00 , . 0.00 . .
2000 2020 2000 2020 2000 2020
Blockchain Green Wearable
0.04
0.2 0.04
0.02 o1 0.02
0.00 : : , , 000 . .
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Notes: This figure plots the share of firms whose news coverage includes a given phrase in a
given year.
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B. Framework Derivations

I derive the equations in Section 1 using simple microfoundations.

B.1. Representations and Prices

I formalize a firm’s representation as a vector of intensities across features. Representa-
tions and feature-level payoff distributions influence prices.

Setting. A representative investor solves a portfolio choice problem across stocks
s € [N] and a risk-free asset. Each stock s has terminal payoff D;. The investor makes
trading decisions over times ¢t € [T| before payoffs are realized. The stocks are in fixed
supply, denoted by the vector Z, and the investor does not learn from prices. The
risk-free asset is in zero net supply—its price is normalized to 1 and its gross return is
normalized to 0. The investor has CARA utility with risk aversion A and initial wealth
Wp. I assume the investor’s utility is over terminal wealth, and there are no dynamic
trading motives. I denote subjective expectations as IE.

The vector x; is the investor’s representation of each stock s at time ¢, across K
features. The investor believes each stock’s payoff is a linear function of its features.
At time t, the investor’s subjective feature-level payoff distribution is d; ~ N (g, Q).
For stock s at time ¢, the investor’s subjective payoff distribution is Ds = d; - @5 + st
This expression combines the representation, feature-level payoff distribution, and an
idiosyncratic shifter #; ;. The idiosyncratic shifter is a known constant to the investor,
and is distributed N(0, (7,%) to the analyst. The N x K matrix X; stacks representations
at time ¢, the N x 1 vector n; stacks idiosyncratic shifters at time ¢, and the N x 1 vector
D stacks the payoffs across all stocks.

Representations and expectations. The investor’s expected payoff for stock s is
E4[Ds] = s - @sp + 175t

The investor’s expected payoff is a combination of the stock’s representation «; and
expected feature-level payoffs p;, as well as the stock-specific shifter #; ;.
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Representations and prices. In each period, the investor solves the portfolio choice
problem

max Ei[—exp{—AW+Q: - [D — P])}]

where Q; is a vector of portfolio positions and P; is a vector of prices. The first-order
condition implies the investor’s vector of positions for the stocks is

1 1,
Q: = sz 1(]Et[D] - Pf)
where 2; = X; (O X tT is the investor’s subjective covariance matrix between all stocks’
payoffs. Imposing market clearing Q; = Z and rearranging leads to P; = XtT e —
AZtZ + mne.
The price of stock s is therefore

Ps,t =Vt Xgtt+ st = (,U't - )\t) "Lt + st (10)

where v; is a valuation function that maps representations to prices. The valuation
function incorporates both the investor’s expected feature-level payoffs p; = IE;[d;] and
the risk adjustment A\; = AQtXtTZ.

B.2. Misrepresentation and Reversion in Representation

In a stylized dynamic framework, I discuss how changes in representation can revert
if investors misrepresent firms. Deviations between a stock’s representation and its
historical representation can predict future changes in its representation.

Dynamics of misrepresentation. The representation x;; of stock s at time ¢ is

fundamental features  misrepresentation

*
Lst = ws,t + mgt
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In this framework, fundamentals follow a random walk =7, = x7, | + us: with ug; ~

N(0,diag(o2)).?” In each period, misrepresentation follows ms; ~ N(0, diag(o?,)).%®

Predictable reversals in representation. Define the historical representation Z!, as

the mean representation over the past & periods

= -

—h
:Bs,t

h
Z Ls,t—k
k=1

Claim 1 (Reversion in representation). Along feature i, the expected change in representa-
tion is

E|[Axsl; | [Axl];] = —B; x [BxLy) (an

2
where B; = L > 0.
Pi= e G e

The more the stock’s representation changes [Ax?{t]i along feature i, the more its
representation will revert [Ax;1]; along feature i in the next period. The strength of
reversion B; depends on how much [¢?]; misrepresentation affects feature i, and how
much [¢2]; fundamentals tend to change along feature i. The higher the relative variation

[o7i

in misrepresentation +%‘ along feature i, the larger the reversion.

o]

Claim 2 (Variance-reducing horizon). The history horizon h* that minimizes the condi-
tional variance V[[Axs;11]; | [Ax%,];] of the representation change forecast across feature i
is

(12)

When the variance [¢7]; of misrepresentation is high, increasing the horizon reduces
the variance of the forecast, as the historical representation is a better estimate of
fundamentals. When the variance [¢2]; of fundamentals evolution is high, reducing the

27Fundamentals may not follow a random walk if a firm’s operations relate to the business cycle.
However, business cycle-related reversion in fundamentals may occur at a longer horizon than the horizons
studied in this paper.

28This formulation assumes that misrepresentation is corrected after one period. Some misrepresenta-
tion could be persistent—and may not be completely corrected until after many periods. If misrepresenta-
tion is persistent, using a longer history length could reduce the conditional variance of mean reversion
forecasts.
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horizon reduces the variance of the forecast, as the historical representation of the firm
may differ more from its current fundamentals. The minimum-variance horizon trades
off these two forces.

Derivation of Claim 1. Note that

Aws,H—l = Ugti] T+ Mg — Mgy

and

h h hoh
N 1 1
Az, = mgp — 7 Z Mgtk + Ust + Z Ust—k — 7 Z Z Us ik
k=1 k=1 k=1i=k
h

1 o —k
= Mgt — 7 Z Mgk + Ust + Z T X Ug
k=1 k=1

Along feature i, the covariance between the future change and the deviation is

Cov([Axssi1li, [Ax];) = o

m,i

and the variance of the deviation?® is

1 h 1 1
Var([Ax!y]i) = (1 + E)‘Tﬁz,z‘ + <§ t5t 6—h)‘7§,z‘

By normality, the expected change across dimension i is

o2

El[Axspali | [Bxgli] = =57~ X A5l
(1 + E)‘Tm,i + <§ T3t @)%,i

The more the representation deviates across the feature [Axé’,t]i, the more its repre-
sentation will revert across that feature [Ax,;.1]; in the next period. If some features
that are more likely to be affected by misrepresentation (high afnli relative to afu.) the
representation will revert even more along those features.

29The second term in the variance expression follows from

1+i(h—k)Z_Hhiljz:H(h—1)h(2h—1) ho1o1

L 12 on2 3 2 e
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Derivation of Claim 2. Note that the conditional variance is

VI[[Axs11]i | [Ax?,t]i] = V[[Axst11]i] — ‘712‘72_21‘721

2 \2
(Um,i)

1 h 1 1
<1 + E)Ui,i + (3 t3+ 671)‘75,1'

_ 2 2
=0y + 2(Tm,i o

The horizon h* that minimizes this conditional variance is

h* =
Note that
o 3
aarzn,z a \/ 20’3/1(6031,i +02)
o 3
ooy ULZM.\/ 207 (607, 4 0% )

B.3. Connection to Representation-Based Theories

Many theories of economic behavior make predictions about cognitive representations.
Some of the predictions from these theories could be applied to the types of vector
representations used in this paper’s framework.

Transformation theories (e.g. attention, anchoring, attenuation, and analogy): In
some theories, an investor may neglect or otherwise transform some features of a firm.
Feature transformation could be modeled as

xs=a®xi+(1—a)O,
The vector a encodes attention to features and x} is a “default.” For example, a could
result from attention optimization (e.g. Gabaix, 2014) or bottom-up attention (e.g.
Bordalo et al., 2023). The default representation x} could be an anchor (Tversky and
Kahneman, 1974) or an average (Ba et al., 2022; Enke and Graeber, 2023).

Clustering theories (e.g. categorization, prototyping, paradigm shifts): In some
theories, an investor may coarsen the representation to a set of discrete categories. This
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coarsening could be modeled as
xs = C(x], w;)

where C is a coarsening function that takes into account additional signals ws about stock
s. These additional signals could be news about an asset that is imperfectly incorporated
into the coarsened representations (e.g. Mullainathan, 2002; Hong et al., 2007), or
persuasion by a firm (e.g. Mullainathan et al., 2008).

Attention and categorization may be jointly driven by similarity (e.g. Bordalo et
al., 2024), which can then influence how the fundamental features x} map into the
representation x;.

B.4. Dynamics From Misrepresentation Versus Bayesian Learning

Assume that an investor learns about fundamentals from imperfect signals & ; = =7, +
es,t of the fundamental features process x};, = x}, | + ust, with ur ~ N(0, diag(c?2)).
The representation «x;; reflects the investor’s expectation of the fundamental features.
At time ¢ = 0, the investor’s prior belief is x; , ~ N(zs, diag(o?)). Future beliefs about
fundamentals respond to signals & ; = ¥, + e5; where e; ~ N(0,diag(c?)). Given this
setting, updating follows a Kalman filter. For small ¢, if the prior is biased (x50 # x;,),
representations are on average persistent. In this learning setup, if fundamental features
follow a random walk, persistence in representation is more likely than reversion in
representation.

B.5. Analogical Learning

In her work on analogy, Gentner (2003) argues that a core part of learning is the
transition from surface-level to structural similarity assessments.>? When some features
draw attention, investors may focus on surface-level similarities between firms across the
attention-drawing features, and neglect fundamental differences between firms across
other features. As time progresses, investors may come to better understand structural
relationships between existing features, and form more accurate representations of

30Gentner (2003) writes: “Although comparison is an inborn process, its manifestation—whether a sense
of sameness is perceived for a given pair of potential analogues—depends on how the situations are represented,
and this in turn depends on experience. ... Early in learning, comparisons are made only between situations
that match overwhelmingly. ... As similarity comparisons evolve from being perceptual and context bound
to becoming increasingly sensitive to common relational structure, children show an increasing capacity to
reason at the level of abstract commonalities and rules.”
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firms. However, as new features enter the economy, investors’ attention may again be
disproportionately drawn to those new features.

Along these new features, some analogies may be less appropriate than others—for
example, a customer service firm that uses a language model may be fundamentally less
of an Al firm than the technology firm that builds the language model. If investors focus
on the fact that both firms’ operations relate to language models, they may consider
both to be “Al” firms. In other words, investors may initially draw too strong an analogy
between the customer service firm and the broader set of Al firms. Transitions from

surface-level to structural assessments could lead to reversions in representation.

B.6. Representations and Present Value Logic

In an alternative derivation, I discuss how the modeled relationship between representa-
tions and prices can be expressed in terms of present value logic.

Investors form expectations IE; over cash flows and returns. Following Campbell
(2017), the log price ps; of stock s at time f is

CF DR
Psit “Psi
7\ 7\

~

psp = Er 20 0/ (1 = p)ds 14 — B X2 /7 g1 +C
Assume that these expectations linearly relate to a representation vector x ;

Pst =V "Tspt+wsy and  —pgy =vp o Tsp+ Ksp

Then the price can be expressed as

CF DR
Psi = (vf" —vr ) - X5 + st

Pst = UVt Tt + st

The valuation function encodes feature-level expectations of cash flows and returns.
Rearranging like in Section 1.1, the change in price can be expressed as

valuation function change  representation change
———
Apsit1 = Avigq - s + v Axgppq tEsp
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C. Model Training and Outcome Estimation

I provide background on language embeddings, further details on model training, and
further details on outcome estimation.

C.1. Background on Language Embeddings

Computer science and linguistics research has developed and evaluated several algo-
rithms for embedding language, and have demonstrated that language embeddings are
a class of semantic representation.’ Two commonly-explored properties of semantic
representations are features and similarity. Both these properties could help representa-
tions to explain economic decisions. This subsection briefly describes the structure of
language embeddings, the design of embedding algorithms, and the geometric properties
of representation spaces. For the interested reader, I have included references with more

detail on these topics.

Computational and structural advantages of language embeddings. Language em-
beddings are vectors that represent word sequences. For a language with vocabulary
W, an embedding algorithm ¢ : W* — RX maps a sequence of words from the vocabu-
lary to a K-dimensional vector. Compared to an encoding of the full discrete sequence
of words, an embedding reduces dimensionality and allows for structured similarity
measurement between sequences.For example, the sequences z; = “the firm launched
another app” and z, = “the firm released another service” are more semantically similar
to one another than they are to the sequence z3 = “the firm fired another CEO.” Under
some discrete encoding schemes, these three language sequences may be represented
as equally similar. Using the edit distance H(:,-) over words—the number of word
substitutions required to transform one sequence into another—these similarities are
the same, H(z1,z2) = H(z1,z3) = 2. In a embedding space that measures similarity
through an inner product, the embedding similarity between z; and z; could be higher
than the embedding similarity between z; and zs.

The set of potential word sequences in a language is very large, which means inference
on full word sequences requires a very large number of parameters. In a language

31Jurafsky and Martin (2024) and Park et al. (2023) discuss the structure of semantic representations
in more detail. It is worth noting that language embedding algorithms produce vector representations
of word sequences that—in addition to semantic information—incorporate information about other
linguistic features like syntax and morphology. While I refer to these vector representations as semantic
representations, semantic information is a subset of the information they contain.
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with vocabulary W, there are |W|' possible sequences of length L. In a language
with vocabulary size 500,000, for example, there are 500,000 ~ 8.9 x 10%* possible
sequences of 10 words.?>?> Embeddings allow for inference on word sequences with a
smaller number of free parameters. Neural network approaches to learning embeddings
build on the idea of a distributed representation (Hinton, 1984)—a representation of
an entity through a collection of computing elements. Bengio et al. (2000) introduced
a neural probabilistic language model that represented words using vectors. Further
developments in word-level embeddings include Mikolov et al. (2013a, word2vec),
who developed models to predict words from context, and Pennington et al. (2014,
GloVe), who developed models that consider word co-occurence patterns. Reimers
and Gurevych (2019, SentenceTransformers) introduced an architecture that efficiently
learns language sequence embeddings for semantic similarity tasks. Training these
models using contrastive loss functions can produce embeddings which group language
sequences with similar features more closely together (Wang and Liu, 2021; Wang and
Isola, 2022; Chen et al., 2021; Gao et al., 2022).

C.2. Details on Training Procedures

I include further detail on how the StoriesLM and RepresentLM models were trained.

StoriesLM training. StoriesLM is a family of language models with sequentially-
expanding pretraining windows. The pretraining data for the model family comes
from the American Stories dataset (Dell et al., 2024). This dataset is a collection of lan-
guage from historical American news articles. The first language model in the StoriesLM
family is pretrained on language data from 1900. In this paper, I use the StoriesLM-v1
family, which uses a BERT architecture (Devlin et al., 2019) initialized from scratch, using
the default architecture configuration. Each subsequent language model is initialized
with the previous year’s model checkpoint and trained on the following year’s language
data. The final model in the family uses language data ending in 1963.

Each model in the StoriesLM family was trained using the HuggingFace Transformers
library (Wolf et al., 2020). All models were trained for one epoch using masked language
modeling with masking probability 0.15. Each training run was conducted on an Nvidia
Tesla V100 GPU. Each document in the pretraining data was tokenized using the “bert-
base-uncased” tokenizer, with truncation and padding to a uniform sequence length of
512 tokens.

32The Oxford English Dictionary contains more than 500,000 words. Link.
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Figure C1: Time-stamped language models avoid information leakage.
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Notes: This figure shows how time-stamped language models can avoid information leakage
from pretraining. Using the StoriesLM-v1-1933 and StoriesLM-v1-1963 models, I generate fill-
mask softmax scores for the sequence “Dwight D. [MASK].” The 1933 model does not generate
the sequence “eisenhower”—this should be expected since “Dwight D. Eisenhower” was not a
common language sequence in training data that ends in 1933. The 1933 model instead finishes
the sequence with “morrow”—Dwight Morrow was an American politician and diplomat who
had held public office in the early 1900s. By 1963, Dwight D. Eisenhower had spent time as
a general and president, and was well known. The 1963 model finishes the sequence with
“eisenhower.” Time-stamped language models can prevent information from the future from
leaking into language analysis that should only use data from the past.

RepresentLM training. RepresentLM is a language model that produces embeddings.
The model’s pretraining data comes from the Headlines dataset (Silcock et al., 2024).
This dataset is a collection of matched headlines that refer to the same article. As a
pair of matched headlines is semantically related, each matched pair can be used as
a positive example for a semantic similarity algorithm. I initialized training using the
StoriesLM-v1-1963 model.

The RepresentLM model was trained using the SentenceTransformers library (Reimers
and Gurevych, 2019). I filtered the Headlines data to observations from 1920-1979. 1
restricted to articles with at least five matched headlines. To avoid dominating training
with many examples from widely-printed articles, I restricted to at most eight randomly
selected pairs from the same article. The model was trained for one epoch on an Nvidia
Tesla V100 GPU using a multiple negatives ranking loss function (Henderson et al., 2017)

using the default SentenceTransformers parameterization.
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C.3. Hyperparameter Tuning for Outcome Estimation

For each fold in each year, I fit parameters and tune hyperparameters on the other four
folds in the year. In each iteration of fitting, I standardize the industry and characteristics
vectors, and their changes, using the mean and standard deviation on the four training
folds in each year. I do not standardize the embeddings or embedding changes to
preserve the geometry of the embedding space. To handle these different scalings across
variable types, I use the group ridge procedure from Ignatiadis and Lolas (2021).

This procedure sets a groupwise ridge objective

n

. e y A
v = ¥(A) € argmin Y (Vi — ;- v)* + : ||’UGgH%
v 2n i=1 g=1 2

where the regularization hyperparameter A, can vary for each group g of coefficients.
The optimization procedure proceeds across a common hyperparameter ¢ that generates
the vector of regularization parameters across groups. I use a separate group for each
explanatory variable vector type {embedding, characteristics, industry} and each ex-
planatory variable vector timing {level, change}. As in Ignatiadis and Lolas (2021), I use
the accelerated leave-one-out objective to speed up computation of the hyperparameter
search.
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D. Additional Results

I include additional results on validating the representations measure, and on explaining
returns using the measure.
D.1. Additional Validation Results

Similarity. Ievaluate the relationship between representation similarity and established
measures of similarity using Fama—MacBeth regressions.

Table D1: Representation similarity relates to established measures of similarity.

Return Correlation Shared Analyst Coverage

(1) (2)
Representation Similarity 0.057*** 0.079***
(0.006) (0.004)
Intercept 0.127*** 0.016**
(0.013) (0.008)
Years 38 38
R? 0.020 0.008

Notes: This table reports the results of Fama—MacBeth regressions of pairwise daily return
correlation and shared analyst coverage on representation similarity. The dependent variable is
percentile ranked in each year. Fama—MacBeth standard errors are reported in parentheses.
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Valuation ratios and cash flow forecasts. The main analysis dataset matches language
to non-missing market equity and positive book equity, as these are the key variables
throughout the analysis. I do not match to positive earnings and non-missing long term
growth forecasts in the main analysis dataset because these variables are not used outside
of Section 3.2. The statistics in columns (2) and (3) of Table 1 restrict to observations
with the defined and non-missing observations of the relevant outcome variables, which
means that these columns correspond to statistics on fewer observations than the full
dataframe used for column (1). In this table, I report statistics for the 37,267-observation
subsample that is fully matched across the three outcome variables.

Table D2: Representations help to explain prices and forecasts.

R?: Estimates of price and forecast variables

Dependent variable — log(P/B) log(P/E) F[LTG]
Explanatory variables | (D (2) 3

Representation 29.6% 12.7% 19.8%
Industry (FF12) 9.9% 7.0% 14.7%
Sub-Industry (FF48) 11.1% 7.4% 15.0%
Characteristics 19.4% 8.6% 24.2%
Representation+All Others 35.9% 15.2% 31.6%
All Others 25.6% 11.5% 26.8%

Notes: This table reports the R? on a series of estimates of stock price and cash-flow forecast
variables across sets of explanatory variables. The estimates are from Equation (5): Y;; = v; -
xs,; + € 1, following the split-sample approach of Section 2.3. Each row reports R? estimates across
a different set of explanatory variables—representations, industry codes, and characteristics, and
concatenations of these vectors. Each column reports R? estimates across a different price or
forecast variable. The set of firms used to fit each estimator does not include the firms used to
evaluate the estimates.
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D.2. Additional Return Explanation Results

First, I re-estimate results from Section 4.2 with alternative linguistic transformations,
a random vector placebo, and alternative language sources. Second, I assess whether
perception-orthogonal shocks relate to the [Ax] component. Third, I re-estimate results
from Section 4.2 with log returns.

Alternative linguistic transformations. I construct alternative linguistic measures 2.
I construct both word count-based measures and alternative transformer embeddings. I
use these measures to evaluate split-sample explanatory power over returns, following
Equation (6).

I compute word counts and transformer embeddings across the coverage of firm s in
year t. For word count-based measures, I concatenate all articles for each firm in each
year. In each year, I use a token count vectorizer to compute token occurrences in the
concatenated string of news coverage. To match the dimensionality of the representations
measure, I use 768 features. For vectorization, I use either hashed count vectorizers or
TE-IDF vectorizers. I use the default scikit-learn implementation (Pedregosa et al., 2018),
and I exclude the default list of English stopwords.?® For transformer embeddings, I use
both the StoriesLM-v1-1963 model and the RepresentLM-v1 model. The StoriesLM-v1
model was trained using masked language modeling (MLM), and I use the model’s [CLS]
embedding for each input chunk. The RepresentLM-v1 model was trained using semantic
textual similarity (STS), and I use the model’s embedding of each input chunk. For
both embedding types, I pool across 512-token chunks in each article, and compute the
average embedding across each firm in each year.

I replicate the analysis in Table 2 using these alternative linguistic measures. Table D3
reports the results of this additional analysis.

33The English stopword dictionary includes common function words like “the,” “this,” or “that.”
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Table D3: Alternative linguistic transformations and returns.

R2: Estimates of annual returns

Estimation strategy — [Av] [Ax] [Total]
Explanatory variables | (D (2) 3)

Word Counts 4.6% 2.4% 5.7%
TF-IDF 5.7% 3.1% 7.3%
Untargeted Embedding (MLM) 5.1% 3.6% 7.2%
Baseline Embedding (STS) 7.9% 5.6% 11.0%

Main Representation (STS+FT) 9.4% 6.8% 13.4%

Notes: This table reports split-sample R? statistics of using estimated returns to explain realized
cross-sectional returns, following Equation (6): Rgs+1 = lﬁt[Rs,tH | z] + €5¢+1. Each row reflects
a different set of explanatory variables computed using an alternative linguistic transformation.
Each column reflects a different estimation strategy.

This table reports goodness-of-fit across the alternative linguistic measures. The
STS embedding outperforms both word count-based measures. The MLM embedding
outperforms raw word counts, but does not outperform TF-IDF in the [Av] component.
As Reimers and Gurevych (2019) discuss, models trained using MLM are not targeted
to semantic tasks, and may not produce optimal embeddings of language sequences.
The additional semantic training in the STS step generates a meaningful increase in
explanatory power over the raw MLM embedding.

The main embedding measure in this paper, which is generated through additional
contrastive training on financial language, has even further explanatory power over
returns. The representation measure increases total explanatory power from 11.0% to
13.4% over the STS embedding. This result indicates that targeting embeddings to the
relevant economic context helps to better explain economic outcomes.
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Random vector placebo. The analysis in Section 4.2 uses a split-sample approach, so
that more parameters do not mechanically lead to better goodness-of-fit. To be clear,
this analysis is not a holdout sample test, as returns are correlated within ¢ + 1. The
goal of the estimation procedure is to explain common variation in returns R ;41 using
information in representations x ¢, and to avoid mechanical increases in goodness-of-fit
from more parameters.

I evaluate the fit of the split-sample strategy on uninformative vectors with equal
dimension as the main representations measure. I generate random 768-dimensional
vectors ;cgf;“dom from independent standard multivariate normal draws. I then evaluate
the relationship between these vectors and the realized return using the split-sample
approach in Section 4.2. I find that the R? from this approach is —0.003. With the split
sample approach, this uninformative vector measure—with equal number of parameters
as the representations measure—does not mechanically generate explanatory power over
returns.
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Regulatory filings. Regulatory filings are another rich source of language about firms.
Hoberg and Phillips (2016) use language in 10-K filings to study product similarity
between firms.

10-K filings are written for regulatory compliance. Therefore, they may contain
information about firms that is different from the information in news language. As the
focus of this paper is not on how firms report business models, but on how the market
perceives business models, it is feasible that the detailed and dynamic information
in news language is a better proxy for perception and could better explain returns.
In addition, 10-Ks are filed annually, which may lead filings data to have less total
information than news data over the period. I benchmark explained variation from the
representations measure against explained variation from 10-K filings.

I use 10-K filings from 1994-2021, sourced from the data repository of Loughran and
McDonald (2016). I use regular expressions to filter to the business description section in
the first 10-K filing in each calendar year. I embed each firm’s business description section
in each year using the RepresentLM-v1 model, pooling over 512 token chunks. I merge
this embedding with the main analysis dataframe, which results in 49,304 observations.
I then replicate the analysis in Section 4.2 using this measure.

Table D4: 10-K filing language and returns (matched sample).

R2: Estimates of annual returns

Estimation strategy — [Av] [Ax]
Explanatory variables | @D) 2

Representation 9.3% 7.1%
10-K Filing 3.3% 0.4%

Notes: This table reports split-sample R? statistics of using estimated returns to explain realized
cross-sectional returns, following Equation (6): Rys11 = ]/Et[RS,t+1 | z] + €5,++1. Each row reflects
a different set of explanatory variables: The representation and the filings embedding. Each
column reflects a different estimation strategy.

Representations explain more variation in returns than the filing embedding. Explana-
tory power from the 10-K filing embedding is particularly low for the [Ax] component.
This is intuitive: Language in 10-K filings changes less frequently than language in the
news, and market participants may not always pay attention to changes in 10-K filings
(Cohen et al., 2020). This result indicates that news language has additional information
that could be useful for measuring the market’s perceived business model.
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Earnings calls speeches. Earnings call speeches are another rich source of language
about firms. However, as earnings calls are held quarterly, this data source may have
less total information than the total content of news data. In addition, as with reg-
ulatory filings, the market’s perceived business model may differ from an executive’s
characterization of the firm in a speech.

I use earnings call speeches from 2003-2021, using the same 31,698 firm-year sample
as in Section 6. As in that section, I use the average speech embedding for each firm in
each calendar year from the RepresentLM-v1 model, pooling over 512 token chunks in
each speech. I then replicate the analysis in Section 4.2 using this measure.

Table D5: Earnings speech language and returns (matched sample).

R2: Estimates of annual returns

Estimation strategy — [Av] [Ax]
Explanatory variables | (D 2

Representation 7.1% 5.8%
Earnings Call 2.1% 0.8%

Notes: This table reports split-sample R? statistics of using estimated returns to explain realized
cross-sectional returns, following Equation (6): Rs;+1 = I/E\:t[Rs,t+1 | z] 4+ €5 ¢+1. Each row reflects
a different set of explanatory variables: The representation and the earnings call embedding.
Each column reflects a different estimation strategy.

Representations explain more variation in returns than the earnings call embedding.
This result indicates that news language has additional information that could be useful
for measuring the market’s perceived business model.
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Interpretation of the [Ax| component. I assess whether the [Ax] component relates
to perception-orthogonal shocks to returns. I show that commodity price shocks in year
t + 1 more strongly affect year t + 1 returns of firms in industries more related to the
commodities. However, such commodity price shock-driven return variation does not
relate to variation in the [Ax| component.

I obtain monthly data on commodity prices from the World Bank. To construct the
commodity price shock in year ¢t + 1, I divide the difference between the December
commodity prices at t + 1 and t by the December commodity price at t. I correlate the
average crude oil price with the return on energy stocks, the iron ore CFR spot price with
the return on manufacturing stocks, and the natural gas index price with the return on
utility stocks. I identify each industry using the Fama-French 12 industry classification.

I use the two-stage least squares specification

[Ax]st11 = B X Returng 1 + app1 + &y + s 11

Returng ;1 = y x 1(Exposed Industry),; x Shockyq + a1 + & + s 141

where 1(Exposed Industry)s ; indicates whether stock s is a member of the target industry
in year t, Shock;, 1 is the change in price of the target commodity in year ¢t + 1, a; is an
industry fixed effect, and a;, 1 is a time fixed effect. The identification condition is that
membership in the exposed industry of firm s in year ¢t is orthogonal to the commodity
price shock in year ¢ + 1.

Table D6 and Table D7 report the results of these regressions. In each table, Column
(1) shows that commodity price shocks differentially explain the returns of exposed indus-
tries. Column (2) shows that commodity price shocks do not explain the [Ax] component.
Finally, Column (3) shows that returns instrumented using commodity price shocks do
not explain the [Ax] component. These results demonstrate that perception-orthogonal
shocks to returns do not relate to returns explained by changes in representation.
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Table D6: Returns attributed to oil price shocks do not explain returns attributed to
changes in representation.

Return [Ax] [Ax]
@) (2) (3)
Oil price shock x Energy firm  0.36"** 0.01
(0.05) (0.01)
Return 0.02
(0.02)
F-test (first stage, projected) 104.2
Projected R? 0.001 0.000
Observations 81,708 81,708 81,708
Year fixed effects v v v
Industry fixed effects v v v
Regression type First Stage Reduced Form 1\Y

Notes: This table reports the results of regressions that relate returns attributed to the [Ax]
component to oil price shocks. Standard errors clustered by year and industry are reported in
parentheses.
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Table D7: Returns attributed to iron price shocks do not explain returns attributed to
changes in representation.

Return [Ax] [Ax]
(1) (2) (3)
Iron price shock x Manufacturing firm  0.11*** 0.01
(0.02) (0.01)
Return 0.06
(0.06)
F-test (first stage, projected) 31.4
Projected R? 0.000 0.000
Observations 81,708 81,708 81,708
Year fixed effects v v v
Industry fixed effects v v v
Regression type First Stage Reduced Form I\Y

Notes: This table reports the results of regressions that relate returns attributed to the [Ax]
component to iron price shocks. Standard errors clustered by year and industry are reported in
parentheses.
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Table D8: Returns attributed to natural gas price shocks do not explain returns
attributed to changes in representation.

Return [Ax] [Ax]
@) (2) (3)
Natural gas price shock x Utility firm  0.10*** 0.00
(0.02) (0.00)
Return 0.02
(0.04)
F-test (first stage, projected) 17.8
Projected R? 0.000 0.000
Observations 81,708 81,708 81,708
Year fixed effects v v v
Industry fixed effects v v v
Regression type First Stage Reduced Form 1\Y

Notes: This table reports the results of regressions that relate returns attributed to the [Ax]
component to natural gas price shocks. Standard errors clustered by year and industry are
reported in parentheses.
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Log returns. I re-estimate the results from Section 4.2 using log annual returns as the
outcome variable.

Table D9: Representations help to explain returns.

R?: Estimates of log annual returns

Estimation strategy — [Av] [Ax] [Total]
Explanatory variables | (D 2 3
Representation 11.7% 9.0% 16.2%
Industry (FF12) 4.6% <0% 4.6%
Sub-Industry (FF48) 5.4% <0% 5.4%
Characteristics 5.6% 5.1% 12.1%
Representation+All Others  14.4% 11.6% 20.9%
All Others 9.2% 5.1% 14.8%

Notes: This table reports split-sample R? statistics of using estimated returns to explain realized
cross-sectional log returns, following Equation (6): 7511 = ]Et[rs,tﬂ | z] + €s4+1. Each row
reflects a different set of explanatory variables: Representations, industry vectors, characteristics
vectors, and combinations of these vectors. Each column reflects a different estimation strategy.
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E. Additional Return Forecasting Results

I include additional results on return forecasting. I report additional controls for the
baseline specification, portfolio results, and additional controls for the attention-drawing
features specification.

Additional controls. I augment the baseline return forecasting specification with a
series of control variables. I control for the deviation in the log price-to-book ratio over the
same horizon as I compute the priced deviation, i.e. log(P/B)s; — £ Y7_;1og(P/B)s .
I also control for past 12-month and 36-month returns, excluding the most recent month.
Finally, I control for the log price-to-book ratio.

Table E1: Additional controls: Deviations in representation forecast returns.

Dependent variable: Monthly return [%]
(1) (2) 3) 4) (5)

Representation Deviation (priced) -0.45***  -0.46*** -0.28** -0.30** -0.27***

(0.16) (0.19) (0.100 (0.13) (0.10)

Valuation Function Deviation (priced) 0.06 0.18 0.24 0.18 0.26
(0.24) (0.19) (0.19)  (0.21) (0.16)

Deviation in log(P/B) 0.08 -0.14
(0.24) (0.19)

Returnj; ; 0.04 0.37
(0.31) (0.24)

Returnsg -0.52 -0.46
(0.40) (0.36)

log(P/B) -0.52 -0.35
(0.32) (0.27)

Forecasting R? 0.013 0.016 0.017 0.015 0.028

Months 456 456 456 456 456

Notes: This table reports results of Fama—MacBeth forecasting regressions of future returns on
priced deviation variables and controls, following Equation (9): R t+1 = &m + BhZst + €smii1-
Sorting variables are computed at end of each year, and each sorting variable is cross-sectionally
percentile ranked. Fama—MacBeth standard errors are reported in parentheses.
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Portfolio sorts.

I report results from portfolio sorts of the priced deviation variables.

These results correspond to returns from equal-weighted portfolios that go long the
bottom quintile of priced deviation and go short the top quintile of priced deviation.

Table E2: Portfolio sorts.

Representation Deviation

Valuation Function Deviation

(1) 2) B3 | @ (5) (6)

Alpha [%] 0.41*** 0.40*** 0.35*** | -0.06 -0.18 -0.24
(0.12) (0.12) (0.11) | (0.22) (0.23)  (0.23)

MKT 0.02  0.01 0.16*  0.21**
(0.04)  (0.03) (0.08)  (0.08)

SMB 0.23* -0.12
(0.07) (0.23)

HML 0.28"* 0.22*
(0.06) (0.13)

Months 456 456 456 | 456 456 456

Notes: This table reports the monthly returns of long—short portfolios that bet against the

priced representation deviation and priced valuation function deviation, following R

o+ ,BT fm + €. Robust standard errors are reported in parentheses.
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Portfolio sorts, excluding microcaps. I report results from portfolio sorts of the priced

deviation variables, excluding stocks smaller than the 20th percentile of NYSE stocks.

Table E3: Portfolio sorts (excluding microcaps).

Representation Deviation = Valuation Function Deviation

(1) 2) @3 | @ (5) (6)

Alpha [%] 0.43*** 0.42*** 0.36*** | -0.07 -0.19 -0.26
(0.13) (0.13) (0.12) | (0.24) (0.25)  (0.25)

MKT 0.02  0.02 0.16™  0.22%*
(0.04) (0.03) (0.08)  (0.08)

SMB 0.20%** -0.19
(0.06) (0.23)

HML 0.28%** 0.21
(0.06) (0.13)

Months 456 456 456 | 456 456 456

Notes: This table reports the monthly returns of long—short portfolios that bet against the

priced representation deviation and priced valuation function deviation, following R

a + BT f + &, Robust standard errors are reported in parentheses.
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Additional controls. I augment the attention-drawing features return forecasting
specification with a series of control variables. I control for the deviation in the log
price-to-book ratio over the same horizon as I compute the priced deviation variables,
i.e. log(P/B)s; — £ Y7_;log(P/B)s; . I also control for past 12-month and 36-month
returns, excluding the most recent month. I also control for the log price-to-book ratio.
Finally, I control for the priced deviation variables.

Table E4: Additional controls: Incorporation of attention-drawing features.

Dependent variable: Monthly return [%]

(€3] 2 €)] 4 ) (6)

Incorporate trending features -0.24** -0.27*  -0.15 -0.15
(0.11) (0.14) (0.12) (0.11)
Incorporate profitable features -0.34*** -0.23*  -0.29**  -0.29**
(0.10) (0.14) (0.12) (0.11)

Incorporate high-performing features -0.27%*  -0.32*  -0.12 -0.07
(0.10) (0.19) (0.13) (0.12)

Deviation in log(P/B) -0.06 -0.07 -0.05 -0.07 -0.16
(0.19)  (0.19) (0.19) (0.19) (0.17)

Returnjp; 0.37 0.37 0.34 0.37 0.38
0.27) (0.28) (0.27) (0.27) (0.26)

Returnse 1 -0.46 -0.42 -0.42 -0.40 -0.40
(0.39)  (0.39) (0.38) (0.38) (0.37)

log(P/B) -0.30 -0.34 -0.31 -0.31 -0.35
(0.32) (0.32) (0.32) (0.32) (0.28)
Representation deviation (priced) -0.17**
(0.09)

Valuation function deviation (priced) 0.28
(0.19)

Forecasting R? 0.024 0.024 0.024 0.004 0.025 0.029

Months 456 456 456 456 456 456

Notes: This table reports results of Fama-MacBeth forecasting regressions of future returns
on feature incorporation variables, following Equation (9): Rsuit1 = am + BLZs: + €5, m,t+1-
Sorting variables are computed at end of each year, and each sorting variable is cross-sectionally
percentile ranked. Fama—MacBeth standard errors are reported in parentheses.
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F. Additional Communication Results

I show that deviations in manager communication correspond to deviations in market
representations. I use the RepresentLM-v1 model to embed each firm’s earnings call
speech in each quarter. If a speech exceeds 512 tokens, I take the mean embedding
across 512-token chunks of the speech. I compute the average of the speech embeddings
for each firm in each year to construct a firm-by-year manager embedding es; across
2003-2021.

I then compute the deviation in manager embedding Aeiﬁ’,t =e5r — % Z’,zzl €si—k- As
with the representations measure learned from news language, I use i = 5. In addition,
I compute the deviation in manager embedding using any available previous years of
manager embeddings—for example, if a firm only has one previous year of earnings
call data, the deviation in manager embedding is es; — e;;—1. I merge the manager
embedding dataframe with the main analysis dataset, which results in 31,698 firm-year
observations.

Using cosine similarity ¢, I compute
Managerial Communication Reversion,; , ; = —tp(AeS,tH,Aeé’,t)

I find that the average reversion is 0.31.

I price the deviation in managerial communication by estimating
Managerial Communication Deviation (priced) st = Uy - Aeé‘,t (13)

where v; is a function that maps manager embeddings to the log price-to-book ratio pb_,,
estimated using the split-sample ridge procedure from Section 2.3.
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Table F1: Deviations in managerial communication relate to deviations in
representations.

Representation Deviation (priced)

1)
Managerial Communication Deviation (priced) 0.146"**
(0.048)
Intercept 0.427***
(0.024)
Years 18
R? 0.061

Notes: This table reports the results of a Fama—MacBeth regression of the priced deviation in
representation on the priced deviation in managerial communication. Both the variables are
percentile ranked in each year. Fama—MacBeth standard errors are reported in parentheses.

Table F1 reports the results of a Fama-MacBeth regression of the priced deviation
in market representation on the priced deviation in managerial communication. If the
deviation in managerial communication implies a higher price, the deviation in market
representation also implies a higher price. This result shows that communication by
managers is associated with the market’s perceptions.
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