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Abstract

I propose a novel inventory risk for option dealers (“gap risk”), which helps explain salient
features of the option risk premium. I define “gaps” as equity price changes over nights
or weekends, when reduced equity market liquidity impedes continuous delta-hedging, thus
leading to unhedgeable inventory risk. Gaps function like large jumps, even if prices move
continuously. Using comprehensive option trade data, I estimate intermediaries’ option in-
ventory and find substantial exposure to gap risk. This finding helps explain why the option
risk premium is heavily concentrated over nights and weekends. Supporting a causal impact
of intermediary gap risk on the option risk premium, I show that the emergence of overnight
equity trading around 2006 led to significantly less option risk premium over week-nights
relative to weekends, particularly in options that appear in intermediaries’ inventory.

Keywords: Asset Pricing, Derivatives, Intermediation, Inventory Risk, Liquidity

JEL Codes: G10, G12, G13, G14

∗This version: December 26, 2025, initial version: November 10, 2024. I thank Svetlana Bryzgalova; Pierre Collin-
Dufresne; Ian Dew-Becker; William Diamond; Itamar Drechsler; Paul Fontanier; Stefano Giglio; Paul Huebner; Kris Jacobs;
Theis Ingerslev Jensen; Petri Jylhae; Ron Kaniel; Joren Koeter; Tim Kroencke; Lars Christian Larsen; Anton Lines; Dmitriy
Muravyev; Chayawat Ornthanalai; Lasse Heje Pedersen; Markus Pelger; Tobias Sichert; Alessandro Spina; Johannes Stroebel;
Stephen Szaura; Anders Bjerre Trolle; Marliese Uhrig-Homburg; and Paul Whelan for helpful comments and suggestions.
I thank seminar participants at the 2025 FMA Derivatives and Volatility Conference; the University of Michigan; the
University of Wisconsin–Madison; Imperial College Business School; the Stockholm School of Economics; the University
of Warwick; the Rotman School of Management at the University of Toronto; the Wharton School of the University of
Pennsylvania; Frankfurt School of Finance; the 2024 Macro Finance Society Workshop (poster session); the 8th HEC Paris
Finance PhD Workshop; and the 2024 Nordic Finance Network PhD Workshop. I gratefully acknowledge financial support
from the Center for Financial Frictions (DNRF102) and the Center for Big Data in Finance (DNRF167). All remaining
errors are my own. E-mail: juter@umich.edu. Website: julianterstegge.com.



Does intermediary inventory risk help explain the option risk premium? Average delta-hedged

returns on S&P 500 options are about –0.5% per day, and compensation for intermediaries’ market-

making activities has been proposed as one potential source of these large returns. Assessing

whether inventory risk drives the option risk premium is challenging, however, because theory

predicts both negative (Garleanu, Pedersen, and Poteshman, 2009) and positive (Chen, Joslin, and

Ni, 2019) correlations between intermediary inventory and option prices. As a result, regressions

of option returns on intermediary inventory alone do not provide conclusive evidence. The issue is

important because option prices are widely used to infer investors’ expectations and risk premia

(Andersen, Fusari, and Todorov, 2015; Backus, Chernov, and Martin, 2011). Understanding whose

expectations and risk preferences are embedded in option prices—only those of end investors or

also those of constrained intermediaries—is therefore of broad interest.

To study the impact of intermediary inventory risk on the option risk premium, I exploit a

unique setting in the S&P 500 index options market. This setting combines (i) comprehensive trade

data on S&P 500 options, which reveal intermediaries’ option positions and inventory risk; and (ii)

a large and rapidly growing market that likely constitutes an important share of intermediaries’

overall inventories: between 2018 and 2023, open interest and trading volume in S&P 500 options

nearly quadrupled, reaching about $250 billion and $2 trillion per year, respectively. In addition,

the market for S&P 500 options offers high-frequency variation in hedging frictions along two

dimensions: (iii) day–night differences in equity liquidity induced by equity trading hours; and

(iv) the sharp increase in overnight equity trading around 2006, which relaxed a first-order hedging

constraint on weeknights relative to weekends.

The main channel in this paper are hedging frictions from equity illiquidity, which is most pro-

nounced overnight and on weekends. Option dealers hedge their inventories by dynamically trading

the underlying index (Ni, Pearson, Poteshman, and White, 2021), so limited overnight liquidity

imposes a first-order constraint on their ability to maintain delta-neutral positions. Even if dealers

are perfectly delta-hedged at the equity-market close, a large overnight change in the S&P 500

index requires substantial equity trading in order to remain delta-hedged and low overnight equity

liquidity prevents dealers from making these hedge adjustments, leading to inventory losses. As a

result, option sellers (dealers) carry unhedgeable equity market risk over nights and weekends. Op-

tion prices are high - and returns low - to compensate option sellers for this unhedgeable inventory

risk.
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To summarize, I present three main findings that support this channel. First, following the

rise in weeknight equity trading around 2006, the magnitude of the option risk premium between

Monday and Friday declines sharply relative to weekend (Friday–Monday) returns, with the effect

concentrated in options held in dealers’ inventories. Second, I introduce a new option risk measure,

“gap risk,” which captures the risk associated with price changes over nights and weekends, when

limited equity-market liquidity impedes the adjustment of delta hedges. Dealers are substantially

exposed to gap risk, and this exposure is missed by standard (gamma-based) risk measures. Third,

exploiting day–night variation in hedging frictions, I show that options’ exposure to gap risk

predicts option returns only overnight, when continuous delta-hedging is constrained, and that this

predictive power is stronger when dealers’ aggregate gap-risk exposure is high. Taken together, the

evidence supports a causal effect of equity-market liquidity on the option risk premium through

dealers’ inventory risk.

My results differ conceptually from the existing option-pricing paradigm. Since the early

studies on option returns in Coval and Shumway (2001) and Bakshi and Kapadia (2003), the

central building blocks for explaining the option risk premium have been stochastic-volatility risk

and jump risk. I show that a large share of the option risk premium is instead linked to unhedgeable

overnight equity price risk arising from equity illiquidity. This “gap-risk” channel implies that

a significant portion of the premium compensates constrained intermediaries for inventory risk,

rather than investors for exposure to continuous volatility and rare jumps. The concept of gap risk

naturally extends beyond S&P 500 options and provides a general framework for understanding

any derivatives market whose underlying is intermittently illiquid.

These results are also timely. Major U.S. equity exchanges have announced plans to extend

weekday trading toward a nearly 24-hour schedule. Because I show that increases in overnight

trading activity compress the option risk premium, the move toward deeper around-the-clock

equity markets implies a further decline in option risk premia if overnight liquidity improves

substantially.

The paper starts from the finding of Jones and Shemesh (2018) and Muravyev and Ni (2020),

that the risk premium in S&P 500 options is heavily concentrated over nights and weekends.

The liquidity of the underlying stocks and associated futures contracts is reduced by an order of

magnitude at nights relative to the day. Therefore, hedging frictions from reduced equity market

liquidity, constitute a possible explanation for the concentration of the option risk premium. How-
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ever, nights differ in other important ways from days, for example the information environment.

Thus, the first step of this paper addresses the question whether equity liquidity affects the option

risk premium and thus weather the concentration of the risk premium over nights and weekends

might be explained in this way.

Turning first to the role of equity-market liquidity in shaping the option risk premium, I ex-

ploit the sharp increase in overnight equity trading around 2006. Several market-design changes

in the mid-2000s—most notably the implementation of Regulation National Market System (Reg

NMS) and the acquisitions of major electronic communication networks by NYSE and Nas-

daq—substantially increased overnight trading volumes from Monday through Friday, while leav-

ing the weekend period largely non-tradable. If overnight equity illiquidity drives the option risk

premium, then intra-week option returns, for which hedging frictions were relaxed, should become

less negative relative to weekend returns, for which hedging frictions were not. This is exactly

what I find.

Figure 1 shows that option returns within the week (Monday to Friday) became significantly

less negative after the emergence of overnight trading, relative to Friday–Monday returns. The

effect is strongest for short-dated, out-of-the-money puts, precisely where intermediaries’ short

exposures and hedging constraints are most pronounced. These findings suggest that improvements

in overnight equity-market liquidity have a causal impact on option risk premia, operating through

intermediaries’ gap-risk exposure. The logic parallels Du, Tepper, and Verdelhan (2018), who show

that covered interest rate parity deviations spike in forward contracts that appear on quarter-end

bank balance sheets and interpret this pattern as evidence that post-crisis regulation causally

affects those deviations. The results also relate to Dew-Becker and Giglio (2023), who document a

decline in the option risk premium around the Great Financial Crisis; my decomposition of option

returns into night and weekend components points to the rise in overnight equity-market liquidity

as a natural explanation.

To explain the impact of equity liquidity on the option risk premium, I introduce a new option

risk measure, gap risk, which is the risk of equity price changes, or gaps, over nights or weekends,

when reduced equity market liquidity impedes continuous delta-hedging. Gaps function like large

jumps, even if equity prices moves continuously. Gap risk is frequently discussed by traders, but so

far largely absent from academic finance. For example the financial times mentions legal clauses in
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Figure 1: The Effect of Equity Liquidity on the Option Risk Premium
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Note: This figure shows cumulative log returns of S&P 500 put options. The dotted line cumulates returns from Monday to
Friday, the solid line cumulates returns from Friday to Monday. Returns are measured between trading daily market close
and delta-hedged at the beginning of the respective period. Puts are out-of-the-money, with at least two days to expiry. The
Monday to Friday return is the average over the four returns between Monday close and Friday close. Returns are in logs
and are scaled to the same 10% annualized volatility. The vertical line indicates the emergence of overnight equity trading
around 2006.

levered oil products “known as a severe overnight gap event”,1 and Bloomberg reports that “gap

risk — sudden moves with little trading in between — is growing”.2 Gap risk is largest at short

maturity and deep out of the money, as these options experience returns of often several hundred

percent, when the underlying moves by 10% over an illiquid window.

To estimate intermediaries’ exposure to gap risk, I use comprehensive trade data from the

CBOE. I estimate dealers’ aggregate position between 2011 and 2023. Intermediaries hold a per-

sistent net short in puts (about 19 million contracts) while call positions hover near zero. Given

this imbalance, a large overnight decline exposes dealers to losses unless hedges are rebalanced

in thin markets. Under a hypothetical -10% S&P 500 move, dealers loose a significant frac-

tion of their option inventory value absent re-hedging, and maintaining delta-neutrality requires

multi-billion-dollar equity sales. Typical overnight E-mini turnover is well below $1 billion per

1https://www.ft.com/content/2fd21b4e-e28c-4e56-8c95-a45e877df9c8?, accessed on November 22, 2025.
2https://www.bloomberg.com/news/articles/2019-05-03/stock-volatility-isn-t-dead-it-s-just-got-freakish-and-extreme?,

accessed on November 22, 2025.
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hour, versus more than $20 billion per hour intraday (plus roughly $27 billion per hour in un-

derlying stocks), making continuous re-hedging infeasible overnight and creating overnight equity

market risk.

Standard (gamma) risk measures miss this exposure. Aggregate dealer inventory gamma is

near zero or slightly positive, indicating that the dealer option portfolio experiences gains from

small equity price moves. However, re-calculating dealer inventory gamma for the scenario where

the S&P 500 has fallen by, for example, 10%, reveals a large negative aggregate dealer inventory

gamma. I refer to such scenario gamma as ”shadow gamma”. Shadow gamma captures dealers

exposure to large equity price moves over (night) periods, where the delta-hedge adjustments are

prohibitively expensive. Option dealer shadow gamma predicts option returns, particularly in

out-of-the-money puts, where shadow gamma is concentrated.

Although I develop gap risk in the context of S&P 500 index options, the concept applies more

broadly. Any derivative that is dynamically hedged in an underlying whose liquidity varies over the

calendar—across day and night, across time zones, or around holidays—exposes its intermediaries

to gap risk. Examples include equity index options in other markets, single-stock and small-cap

options where even intraday order books are thin, volatility derivatives such as VIX futures and

options, commodity and credit options hedged in illiquid OTC markets, and structured products

replicated with option portfolios. In all of these settings, a shadow-gamma–type measure provides

a general way to quantify and price the risk that hedge adjustments cannot be executed when

large moves occur, suggesting a wide scope for applying the framework beyond S&P 500 options.

Finally, I estimate the price of gap risk in the options market. I regress option returns over

days and nights onto their lagged gap risk and find significant predictive power only over night

periods. The predictive power of gap risk for options overnight returns is increasing in intermedi-

aries inventory gap risk exposure. showing that the price of gap risk is related to intermediaries

inventory.

I conclude that option prices and risk-premia reflect the risk-perceptions and risk-aversion of

constrained intermediaries as well as those of households. My result suggest that if equity markets

where perfectly liquid around the clock then the option risk premium would be substantially re-

duced, and possibly indistinguishable from zero. Failing to account for this will likely overestimate

the disaster risk aversion of the average household. How best to infer household risk perceptions

in a market where intermitted intermediary hedging constraints are crucial for the risk premium,

5



is a potentially promising direction for future research.

Contributions. This paper contributes to the literature on option returns. Black and Scholes

(1973) and Merton (1973) establish the risk-free rate as the benchmark for delta-hedged option

returns. Coval and Shumway (2001) and Bakshi and Kapadia (2003) show that delta-hedged

returns of equity index options are negative, especially for puts. Broadie, Chernov, and Johannes

(2009) show that delta-hedge option returns point towards a priced jump risk premium. Jones

and Shemesh (2018) and Muravyev (2016) show that option returns are especially negative over

weekends and nights, and provide explanations based on market mispricing. Bollen and Whaley

(2004), Garleanu, Pedersen, and Poteshman (2009), Fournier and Jacobs (2015), among others,

study the relation between intermediary inventory and the option risk premium. Closest to this

paper is Gruenthaler (2022), who introduces an option intermediary risk factor based on stress-

test scenario P&L of dealers’ option inventory and finds predictive power for option returns. In

contrast, I quantify dealers inventory risk from overnight equity illiquidity, and find predictive

power over (night) periods when hedging frictions are elevated.

This paper contributes to the literature on liquidity premia in options markets. Cao and Han

(2013) and Kanne, Korn, and Uhrig-Homburg (2023) show that stock option risk premia decrease

in the liquidity of the underlying stocks. Christoffersen, Feunou, Jeon, and Ornthanalai (2021)

estimate a model where the crash probability of the S&P 500 depends on its’ liquidity. To the

best of my knowledge, this is the first paper to provide evidence in support of a causal impact of

market liquidity on option risk premia.

Finally, this paper contributes to the literature on intermediary asset pricing. Haddad and

Muir (2021) and He, Kelly, and Manela (2017) show that intermediary constraints can explain

variation in returns across many asset classes. Du, Tepper, and Verdelhan (2018) show increased

cip deviations around quarter-ends, when banks face tighter capital requirements. Bates (2022)

notes that the role of intermediary constraints in shaping option returns remains unresolved. I

exploit high-frequency variation in hedging frictions to link the option risk premium to hedging

frictions and intermediary constraints.
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I. Markets and Data

This section outlines the market for S&P 500 options, and briefly comments on stocks, futures,

and ETFs as the most common delta-hedging instruments. The section states data sources, while

details on variable construction are in the respective sections.

S&P 500 Options. This paper studies S&P 500 equity index options (SPX options), that is, put-

and call options written on the S&P 500 equity index of U.S. large-cap stocks. SPX options are

exchange-traded exclusively on the Chicago Board Options Exchange (CBOE) and were initially

listed in 1983. While SPX option volumes were initially small, volumes have grown to about $2tn

a year in 2023 and open interest has grown to about $250bn. The SPX options market is the

worlds’ largest and most liquid equity options market. The high option liquidity enables a return

decomposition at high frequency and the large market size makes SPX options an economically

relevant market to study.

The original SPX options expired once a month on that months’ 3rd Friday. Recently, the

CBOE has successively added SPXW options with different expiry dates.3 I include both SPX

and SPXW options into the analysis of this paper and refer to both jointly as S&P 500 options.

SPX options are liquid across a broad range of strike prices, which occur every $5. Liquidity

is particularly high for out-of-the-money options, which are puts (calls) with strike prices below

(above) the current value of the underlying index. S&P 500 options are European, which can only

be exercises at expiry.

A major advantage of the S&P 500 index options market for the study of intermediary asset

pricing is the availability of comprehensive trade data. S&P 500 index options trade exclusively

on the Chicago Board Options Exchange (CBOE) and the CBOE makes datasets commercially

available that allow for the daily measurement of the options position of the intermediary sector.

Intermediaries’ options position provide information on their risk exposures and risk management.

S&P 500 Stocks, Futures and ETFs. The most important delta hedging instruments for

S&P 500 options are the underlying stocks, as well as associated Futures and ETFs. S&P 500

constituent stocks and SPY (the S&P 500 exchange-traded fund) trade on U.S. exchanges (NYSE,

Nasdaq). Regular exchange hours are 09:30–16:00 (E.T.); by the mid-2000s, exchanges expanded

3Specifically, the CBOE added weekly Friday expiries in 2011.09, Wednesday expiries in 2016.02, Monday expiries in
2016.08, Tuesday expiries in 2022.04, and Thursday expiries in 2022.05.
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extended hours to 04:00–20:00, yet there is little equity trading from 20:00 to 04:00. Pre-market

activity is thin (about 0.27% of S&P 500 stock volume) and post-market thinner still (about

0.12%), and intraday equity volumes follow a U-shape, with weekend trading closed entirely.

ETFs share the same venues and hours as their underlying stocks. S&P 500 exposure via futures

is provided by the CME’s E-mini contract on Globex, which trades nearly 24/5, from Sunday

18:00 to Friday 17:00 with a daily 17:00–18:00 maintenance break; E-mini trading supplanted the

standard pit-traded contract over time. Volumes differ starkly between day and night: average

intraday E-mini dollar volume (2011–2022) is about $164bn per day versus only about $7bn

overnight (a day to night ratio near 25:1), and at higher frequency, intraday futures turnover

runs roughly $8–$15bn per 30-minute window compared with about $250m per 30-minute window

overnight. Consistent with this, aggregate equity volumes rose from roughly $20bn per day in

the late 1990s to about $200bn per day after 2020, but remain small in the pre- and post-market

windows. The online appendix contains tables and figures on equity returns and volumes over day

and night periods.

Data Sources. From CBOE, I obtain S&P 500 option prices and quotes at 15-minute intervals.

Further, I obtain the daily “Open Close Volume” files that allow for the construction of inter-

mediary positions. From OptionMetrics, I obtain S&P 500 option prices and quotes at the daily

frequency. I obtain data on S&P 500 E-mini futures from Boyarchenko, Larsen, and Whelan

(2023), who sample tick-level data of CME traded futures contracts. I obtain data on risk-free

rates from the OptionMetrics IvyDB zero-curve file. Data on daily stock trading volume is from

CRSP. High-frequency stock volumes are from Reuters. From Eikon, I obtain tick level data on

S&P 500 E-mini futures traded on the CME, comprising best bid offers, trade prices, and volumes.

II. Gap Risk and Options’ Shadow Gamma

This section introduces the concept of “gap risk”. Gap risk is the risk of price changes over

periods where liquidity is low or absent. The risk of equity price changes over nights or weekends

are natural examples.

Subsequently, this section discusses the riskiness of options, due to equity price gap risk. Equity

price gap risk contributes to option risk, since delta hedges can be adjusted only imperfectly over

periods where the underlying is illiquid. Options’ gap risk is not well captured by the conventional
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option risk measure of gamma. Instead the new concept of ”shadow gamma” proves more useful.

This paper studies gap risk in the context of S&P 500 options and intermediaries’ unhedgeable

inventory risk. However, the potential applications of gap risk are more broad. Gap risk emerges

whenever an asset or its underlying experience sporadic drops in liquidity to a value close to zero.

Natural examples are exchange close times, holidays, volatility- or price limit trading halts, long

time zone gaps between derivative and underlying trading hours (for instance U.S. traded options

on Asian or European indices), and derivatives written on thin OTC underlyings such as corporate

bonds or CDS, where trading frequently drops to zero for extended periods.

II.A. Gap Risk

Gap risk, the risk of price changes over periods where liquidity is low, is frequently discussed

by traders. For example the financial times mentions legal clauses in levered oil products “known

as a severe overnight gap event”,4 and Bloomberg reports that “gap risk — sudden moves with

little trading in between — is growing”.5 The term “gap” in relation to derivatives hedging has

previously been used by Tankov (2008) when analyzing exotic equity derivatives (gap options). I

apply the concept of gap risk more generally to plain vanilla equity index options.

First, and most importantly, gaps differ from jumps in their magnitude. Jumps in the S&P 500

tend to be small, while equity returns over nights or weekends can amount to several percent. Table

A.6 shows S&P 500 returns over days, nights and weekends. For this paper, especially the left

return tail over nights and weekends is important. These exceed −7% and −12% since 1996.

Returns of these magnitudes are not well conceptualized as small jumps and, as I argue below,

options’ exposure to such gaps is not well approximated via gamma.

A second difference between gaps and jumps is that the timing of the former is typically pre-

dictable. Except around pre-scheduled economic announcements, jumps tend to occur at random

times and tend to be modeled with some probability of arrival (Merton, 1976; Duffie, Pan, and

Singleton, 2000) Since gaps tend to be anticipated, especially in case of nights, risk then lies in

the magnitude of the gap.

4https://www.ft.com/content/2fd21b4e-e28c-4e56-8c95-a45e877df9c8?, accessed on November 22, 2025.
5https://www.bloomberg.com/news/articles/2019-05-03/stock-volatility-isn-t-dead-it-s-just-got-freakish-and-extreme?,

accessed on November 22, 2025.
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II.B. Gamma and Shadow Gamma

Gamma, small jumps, and delta-hedged P&L. Options’ exposure to jumps is typically

approximated via gamma (Γ). Γ is the second-order derivative of the option price with respect

to the price of the underlying. As such, Γ captures the local curvature or convexity of the option

value function. While the slope of the option value function can be hedged against equity price

changes with a static equity position, the curvature cannot.

Consider an option with value V (t, S), delta ∆t = ∂SV (t, St), and gamma Γt = ∂2
SSV (t, St).

A dealer who delta-hedges holds the option and −∆t units of the underlying, so the value of the

hedged portfolio is

Πt = V (t, St)−∆tSt. (1)

Over a short interval [t, t + ∆t] the underlying may experience a price change ∆S = St+∆t − St.

The change in the value of the hedged portfolio due to this move is

∆Π(∆S) = V (t+∆t, St +∆S)− V (t, St)−∆t ∆S. (2)

For a small move ∆S use a second-order Taylor expansion around (t, St):

V (t+∆t, St +∆S) ≈ V (t, St) + ∂tV (t, St)∆t+∆t ∆S + 1
2
Γt(∆S)2. (3)

Plugging this into (2) and canceling the first–order term in ∆S yields

∆Π ≈ ∂tV ∆t+ 1
2
Γt (∆S)2. (4)

Ignoring the smooth time-decay term ∂tV ∆t, the jump-induced P&L of the delta-hedged position

is

∆Π(∆S) ≈ 1
2
Γt(∆S)2. (5)

Equation (5) shows why gamma is the standard measure of option exposure to small jumps: once
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delta risk has been hedged out, the remaining exposure to small price moves is proportional to Γt

and scales with the square of the jump size. An options portfolio with a positive gamma gains in

value from ∆S when hedges remain unadjusted.

Shadow gamma and large gaps. For larger “gaps” ∆S the local approximation in (3) becomes

inaccurate, because the curvature (Γ) of V changes along the move. The delta-hedged P&L for

any finite jump can be written as

∆Π(∆S) = V (t, St +∆S)− V (t, St)−∆t ∆S. (6)

This can be expressed in “gamma form”

∆Π(∆S) = 1
2
Γsh
t (∆S) (∆S)2, (7)

by defining the shadow gamma for price move size ∆S as

Γsh
t (∆S) ≡ 2

(∆S)2

[
V (t, St +∆S)− V (t, St)−∆t∆S

]
. (8)

By construction, (7) is an identity for any ∆S.

By integrating the option’s gamma along the price path from St to St +∆S, Γsh
t (∆S) can be

written exactly as

Γsh
t (∆S) = 2

∫ 1

0

(1− u) Γ
(
t, St + u∆S

)
du. (9)

That is, shadow gamma is a weighted average of the option’s future curvature along the path from

St to St+∆S and shadow gamma captures the exact change in the value of a delta-hedged options

portfolio for large changes in the price of the underlying.

Note that, lim∆S→0 Γ
sh
t (∆S) = Γt so that shadow gamma coincides with local gamma for small

changes in S, but for large S changes Γsh
t (∆S) loads on the curvature of V (·) in the post-jump

state.

For deep out-of-the-money puts, Γt can be close to zero, even though a large downward move

would take the option close to or into the money, where curvature is large. Local gamma therefore

understates the overnight risk of such positions, whereas Γsh
t (∆S) remains large in magnitude
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because it incorporates the future curvature after a sizeable move.

Equation (9) defines the exact shadow gamma Γsh
t (∆S) as a weighted average of local gammas

along the entire price path from St to St +∆S. In the empirical analysis I use a tractable proxy,

Γ̃sh
t (∆S) ≡ Γ

(
t, St +∆S

)
, (10)

and in particular

Γ̃sh
t (−10%) = Γ

(
t, 0.9St

)
, (11)

For the short-dated, deep out-of-the-money puts that dominate dealers’ inventories, Γ(t, S) is

negligible at St and along most of the path, and spikes only once the index has fallen close to the

strike, so the integral in (9) is numerically dominated by the neighborhood of St+∆S. Evaluating

gamma at the shocked underlying therefore provides a simple and economically meaningful proxy

for the theoretical shadow gamma. In what follows, I refer to Γ̃sh
t simply as shadow gamma.

Interpreting the magnitude of Γ̃sh
t (−10%) is straightforward. Γ̃sh

t (−10%) is the curvature of the

option value function (both hedged and un-hedged) in the scenario of a −10% underlying return.

An option portfolios shadow gamma is the sum-product of the option positions (in no. of options)

and the respective options’ individual shadow gamma. Thus, an option with a shadow gamma

of 0.05 adds 0.05 units of curvature to a portfolio. The price of shadow gamma, as estimated in

subsequent sections, quantifies how much investors are willing to pay in terms of risk premium for

an additional unit of curvature in their portfolio value function.

Table I shows the average Γ̃sh
t (−10%) across option portfolios, that I estimate for options over

my sample. The properties of gamma naturally translate to the properties of Γ̃sh
t (−10%), such

as strict positivity for options. Shadow gamma is heavily concentrated in short-maturity deep

out-of-the-money puts , with a a value of 1.2076 against, a value of 0.0023 for short-maturity in-

the-money puts. A value of 1.2 indicates that buying one short-maturity deep out-of-the-money

put on average added a curvature of 1.2 units at −10% to an investors portfolio value function.

Subsequent section find that inventors pay a substantial premium for this curvature, at least

partially due to intermediaries’ inventory risk.
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Table I: Options’ Shadow Gamma at −10% (scaled by 1000)

Days to Expiry
Puts 2-70 71- All

0.00 ≤ |∆| ≤ 0.25 Deep Out of the Money 1,207.6 176.0 1,464.7
0.25 < |∆| ≤ 0.50 Out of the Money 132.5 109.9 245.0
0.50 < |∆| ≤ 0.75 In the Money 23.0 21.8 45.4
0.75 < |∆| ≤ 1.00 Deep In the Money 2.2 1.6 3.9
All 1,365.4 310.3 1,762.8

Calls

0.00 ≤ |∆| ≤ 0.25 Deep Out of the Money 5.4 9.6 15.2
0.25 < |∆| ≤ 0.50 Out of the Money 28.4 41.6 70.8
0.50 < |∆| ≤ 0.75 In the Money 73.7 52.8 128.0
0.75 < |∆| ≤ 1.00 Deep In the Money 130.8 17.5 155.8
All 252.6 121.6 392.5

Note: The table shows options’ shadow gamma. Shadow gamma is the expected option gamma, conditional on a hypothetical
return in the underlying asset (here: −10%). Shadow gamma is multiplied by 1000 for readability. Days to expiry are calendar
days. The sample period is 2011 to 2023.

Numerical example. A simple numerical example highlights the three key points of this paper:

(i) the option portfolio has a positive gamma, indicating gains from small movements in S, but

negative shadow gamma, indicating losses from large movements in S. (ii) Simulations confirm

large negative returns on the options portfolio from large movements in S. (iii) Delta-hedge ad-

justments would require relatively large trade volume in stocks. The next subsection shows that

dealers actual inventory is similar to this stylized example.

Consider the following portfolio of options: A long position in one put option with strike

K = 5200 and a short positions in five puts with strike 4800. Assume the underlying is the

S&P 500 equity index with a current value S = 5200, the risk free rate is 0, time to expiry is 7

calendar days and the expected equity return volatility is 30%. Under BSM assumptions the initial

portfolio value is $75, with a positive gamma of 4.6bps, while shadow gamma is negative at −85bps.

Delta-hedging this position would involve a long position in the S&P 500 of $1888. Assume now

that the S&P 500 crashes by 10% over a weekend to S = 4680. The delta-hedged option portfolio

experiences a return of −772%. Adjusting the initial delta-hedge and thus avoiding these losses

would require selling $14129 worth of S&P 500 stocks.
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III. The Effect of Equity Liquidity on the Option Risk Premium

First, this section confirms the findings of Jones and Shemesh (2018) and Muravyev and Ni (2020),

that the option risk premium materializes mostly over weekends and nights. Subsequently, I

provide evidence that links the option risk premium to equity illiquidity, thus presenting a possible

explanation for overnight concentration of the option risk premium.

To that end, I exploit the sharp increase in overnight equity trading around 2006. Substan-

tial weeknight trading activity emerged only after Nasdaq and NYSE acquired major electronic

communication networks, marking a structural shift in market design. This institutional change

provides a natural experiment for a difference-in-differences estimation: option returns realized

within the week (Monday to Friday) serve as the treated group, and weekend returns (Friday to

Monday) as the control.

I find a substantial reduction in the treatment group risk premium relative to the control group

risk premium, especially in (out of the money put) options where market makers’ inventory risk is

concentrated. These results suggest a causal link between equity market liquidity and the option

risk premium, operating through intermediaries’ ability to manage inventory risk.

III.A. The Option Risk Premium is Concentrated at Night

Option Returns and Delta-Hedging. Throughout the paper, I calculate delta-hedged option

returns as:

Ri
t =

P i
t − P i

t−1 − ∆i
t−1 × (SP500t − SP500t−1)

P i
t−1

, (12)

where P i
t is the option mid-quote at the end of period t, SP500 is the S&P 500 level and ∆i

t−1

is the lagged option delta. This return removes first-order exposure to the equity risk premium

and follows the standard approach in option-pricing studies (for example, Bakshi and Kapadia

(2003); Jones and Shemesh (2018)). The implicit assumption that trading the underlying requires

no capital is reasonable given the depth of S&P 500 futures during regular hours. Delta-hedging

neutralizes small moves in the underlying but not larger ones: as prices change, deltas change,

forcing continuous hedge rebalancing.
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Data: High-Frequency Option Returns. I use high-frequency data on S&P 500 index options

from the Chicago Board Options Exchange (CBOE). The dataset aggregates observations at 15-

minute intervals, beginning at 09:45 E.T. (fifteen minutes after the regular market open) and

ending at 16:15, the official market close. For each interval, it reports bid and ask quotes, as well

as first, last, high, and low trade prices. The data further include option volume, open interest,

and pre-computed risk measures such as delta and gamma.6

To mitigate concerns about liquidity and data quality, I apply a series of standard filters. I

exclude options with zero trading volume on any of the previous three days or with zero volume

at the start of the return period. Accordingly, to be included in the night (day) portfolio, an

option must have traded for three consecutive days and have a valid trade between 16:00–16:15

(09:30–09:45) prior to the return interval. I remove observations with negative lagged bid–ask

spreads, zero bids, or lagged mid-quotes below $0.05. I also exclude extreme reversal returns,

exceeding 1,000% in one period and –90% in the next. Finally, I discard all violations of no-

arbitrage bounds. Merging the resulting dataset with intermediary position data yields the main

sample period of 2011–2023. All filters are based solely on lagged information and thus avoid

look-ahead bias. These procedures closely follow Jones and Shemesh (2018) and Muravyev and

Ni (2020).

I measure night returns from 16:15 to 09:45 (E.T.) and day returns from 09:45 to 16:15. Open

prices are recorded at 09:45 because the dataset aggregates quotes into 15-minute intervals; this

timing also mitigates concerns about illiquid opening quotes. Throughout the analysis, I use mid-

quotes as prices. Option returns are delta-hedged with S&P 500 E-Mini futures at the start of

each period: the night-time hedge is established at 16:15 and held constant until the next morning.

Option deltas are estimated from the Black–Scholes–Merton model, setting the volatility of the

underlying equal to the option’s lagged implied volatility. Implied volatility is lagged to avoid bias

from the negative correlation between volatility and market returns. Option returns are reported

in excess of the risk-free rate, which is negligible over intraday or overnight horizons and thus does

not affect the results.

Figure 2 shows summary statistics for delta-hedged option returns. The two left bars contain

out-of-the-money put options, the two right bars show out-of-the-money calls. Over 2011 t0 2023,

6A detailed description of U.S. high-frequency option data and its construction is provided in Andersen, Archakov, Grund,
Hautsch, Li, Nasekin, Nolte, Pham, Taylor, and Todorov (2021).
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Figure 2: Option Risk Premia During the Day and Overnight
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Note: This figure plots average delta-hedged returns of out-of-the-money S&P 500 put and call options. Bars show mean
returns with 95% confidence intervals. Day returns are measured between 09:45 and 16:15 (E.T.), and night returns between
16:15 and 09:45. Returns are delta-hedged at the start of each period and expressed in percent. The sample period is 2011
to 2023.

S&P 500 put option experienced an average night return of −2.49%.7 The associated Newey-West

t-statistic exceeds 10. Put option intraday returns average only 0.39%. The difference between

night and day returns is highly significant. In contrast, S&P 500 call options experienced an

average night return of 0.32% and an equal average day return. Neither the night return, the day

return or the difference between the two is significantly different from zero for call options. Thus,

negative option risk premia are concentrated in puts and arise almost entirely overnight.

The strong concentration of option risk premia overnight suggests that returns are linked

to periods when intermediaries face the greatest difficulty adjusting their hedges. To test this

mechanism directly, I next relate overnight option returns to measures of option level risk and

intermediary inventory risk.

III.B. The Emergence of Overnight Equity Trading

The institutional foundations of overnight equity trading developed gradually, but the key

structural changes can be traced to the mid-2000s. In the early 1990s, the New York Stock

Exchange (NYSE) began limited off-hours trading sessions, and by the late 1990s, regulatory and

technological innovations accelerated the transition toward electronic markets. Regulation ATS

(Alternative Trading Systems) of 1998 formally distinguished ATSs from registered exchanges

and heightened transparency requirements, prompting several electronic communication networks

(ECNs) to consolidate and register as full exchanges.

A sequence of mergers and technological upgrades followed. In 2001, Archipelago ECN merged

7Average returns are not annualized. Option risk premia are very large relative to most other traded assets.
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Figure 3: The Emergence of Overnight Equity Trading
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(a) S&P 500 Futures
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(b) S&P 500 ETF

Note: This figure shows the rise of overnight equity trading activity in S&P 500 instruments. Panel (a) reports the monthly
average dollar volume transacted overnight in the most actively traded S&P 500 E-mini futures contract, while Panel (b)
shows the corresponding series for the SPY ETF. Overnight trading is defined as transactions between 16:00 and 09:30
(E.T.). Volumes are expressed in billions of dollars.

with the Pacific Exchange to form ArcaEx, the first fully electronic stock exchange. In 2005, the

NYSE launched its Hybrid Market, combining electronic order matching with traditional floor

trading, and one year later, after becoming a public company, it acquired Archipelago and phased

out the open-outcry system. Around the same time, Nasdaq sought to regain competitiveness

by acquiring Instinet and, following its 2005 IPO, expanded trading hours from 08:00–18:30 to

04:00–20:00. These reforms were completed by 2006 and established the extended stock trading

hours that define modern U.S. equity markets.

Consistent with these market changes, meaningful overnight equity trading activity emerged

only around 2006. Although S&P 500 E-mini futures had traded nearly around the clock be-

tween Mondays and Fridays since their 1996 launch, overnight volumes remained negligible for

almost a decade. Figure 3 documents the subsequent take-off in trading activity. Panel (a) plots

the monthly average overnight dollar volume in the most actively traded S&P 500 E-mini fu-

tures contract, while Panel (b) shows the corresponding series for the SPY ETF. Both series rise

sharply beginning around 2006. While overnight ETF volumes are smaller in absolute terms, their

emergence indicates that meaningful stock trading had become possible outside regular exchange

hours.
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III.C. Risk Premia Around the Emergence of Overnight Equity Trading

The sharp increase in week-night trading, contrasted with persistently closed weekend markets,

provides a natural setting to study how equity liquidity affects the option risk premium.8 Intra-

week option returns, which include nights when equity markets are tradable after 2006, serve

as the treated group, while weekend returns, which span periods of more than forty-eight hours

without equity or futures trading, serve as the control. If higher equity liquidity relaxes dealers’

hedging frictions, option returns within the week should become less negative relative to those

over weekends following the onset of overnight trading. Because reliable high-frequency option

quotes are not vailable before the late 2000s, I implement the test using daily close-to-close data,

which allows for consistent measurement of option returns over the full 1996–2023 sample, while

avoiding biases from sparse intraday observations.

Data: Daily Option Returns. OptionMetrics aggregates option trades at the daily frequency,

such that all available observations are at 16:00. I obtain option’s bid quote, ask quote, and delta.

While OptionMetrics applies a proprietary method for calculating options’ deltas, their deltas are

typically close to Black-Scholes deltas where sigma is set equal to the options implied volatility.

To alleviate concerns of liquidity and data errors, I apply several filters to the data. I exclude

options which fulfill any of the following conditions: zero trade volume on any of the previous

three days, less than two days to expiry, the mid-quote violates no-arbitrage bounds, lagged mid

quotes below $0.05, lagged bids of 0, non-positive lagged bid-ask spreads, lagged spreads above

$10, lagged spreads above the mid-quote, lagged spreads above twice the bid, a large hedged or

un-hedged returns above 1000% immediately followed by −90%, or vice versa.

To examine how the option risk premium changes with the emergence of overnight equity

trading, I estimate the following difference-in-differences specification:

Ri
t = β1 Intra-weekt + β2 Postt + β3 Intra-weekt × Postt + ϵit, (13)

where Ri
t denotes the delta-hedged return of portfolio i of out-of-the-money S&P 500 put options.

IntraWeekt is an indicator for returns that fall within the week (i.e., any close-to-close return

8A potential concern is that the start of overnight equity trading might have changed the equity return distribution in
significant ways and thus affected the option risk premium. In unreported robustness tests, I do not find a significant change
in equity return volatility or equity return skewness over nights relative to weekends from before 2006 to after 2006.
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Table II: The Effect of Equity Liquidity on Put Option Returns: DiD

(1) Baseline (2) Winsorized (3) Excl. Crashes

Intra-week 86.7 95.0∗∗ 86.7
(1.42) (2.08) (1.42)

Post -264.5∗∗∗ -292.5∗∗∗ -358.0∗∗∗

(-3.16) (-5.75) (-5.11)

Intra-week × Post 355.8∗∗∗ 304.2∗∗∗ 429.4∗∗∗

(4.05) (5.33) (5.41)

Constant -231.4∗∗∗ -278.8∗∗∗ -231.4∗∗∗

(-4.05) (-6.89) (-4.05)

Observations 6,958 6,958 6,812
R2-adjusted 0.01 0.02 0.01

Note: The table shows regression estimates of Equation (13), where option returns are regressed on indicators for treated
periods (intra-week returns), and the post event period. Option returns are for the portfolio of out-of-the-money S&P 500
puts. Intra-week returns comprise of all daily close-to-close returns, except Friday to Monday. Column (1) presents the
baseline regression, column (2) contains option returns winsorized at percentiles 5 and 95, column (3) excludes the crisis
months of 2018.02 and 2020.02 to 2020.04. Returns are in basis points and are delta-hedged. Standard errors are clustered
within every month. The sample period is 1996 to 2023.

that is not Friday-to-Monday), and Postt indicates observations after January 2006. Standard

errors are clustered by month.

Table II reports estimates from Equation 13. Column (1) presents the baseline results. The

constant (−231.4 bps) shows that before 2006, average weekend option returns were substan-

tially negative. The coefficient on Post (−264.5 bps) implies that weekend returns became

even more negative after the emergence of overnight equity trading, consistent with a general

increase in option risk premia during the post-period. In contrast, intra-week returns were mod-

erately less negative before 2006 (−144.7 bps = −231.4 + 86.7) and turned nearly flat afterward

(−53.4bps = −231.4+86.7− 264.5+355.8). The interaction term Intra-week × Post (355.8 bps, t

= 4.05) provides the key difference-in-differences estimate: option returns within the week became

significantly less negative relative to weekend returns once overnight equity trading emerged.

Columns (2) and (3) show that this result is robust to winsorizing returns at the 5th and

95th percentiles and to excluding major crisis months (2018.02 and 2020.02–2020.04). Across

specifications, intra-week returns remain consistently higher than weekend returns after 2006.

These findings indicate that greater overnight equity liquidity mitigated the negative option risk

premium, consistent with the interpretation that improved liquidity relaxes dealers’ hedging fric-

tions. When equity trading is limited, intermediaries face higher inventory risk because they
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cannot continuously adjust their delta-hedges; the increase in overnight liquidity alleviates this

constraint.

The increase in the weekend risk premium over the post-period, visible in the second row of

Table II, possibly reflects the timing of the 2008 Global Financial Crisis, which followed shortly

after the onset of overnight equity trading. Risk premia across many asset classes were unusually

compressed in the years preceding the crisis and increased sharply thereafter. The more negative

weekend returns observed after 2008 therefore may capture a broader repricing of macroeconomic

risk and heightened investor demand for crash protection.

III.D. Enhancing Identification: A Triple-Difference Test

To further isolate the liquidity channel and assess where the effect is most pronounced, I

extend the analysis to a triple-difference specification that interacts the treatment with cross-

sectional variation in option type. Specifically, I compare out-of-the-money puts, where dealer

inventory risk is concentrated, to other option portfolios. This approach sharpens identification

and reveals whether the liquidity effect operates primarily through the options that contribute

most to intermediaries inventory risk.

Table III extends the baseline difference-in-differences framework of Table (II) by adding a third

dimension of variation across option types. To that end, the table contains option returns for eight

out-of-the-money portfolios (four puts and four calls) with breakpoints defined in Table A.1. While

the regression in Table II compares Intra-week and weekend option returns before and after the

emergence of overnight equity trading, the triple-difference specification exploits cross-sectional

heterogeneity between out-of-the-money puts and other option portfolios. This additional layer of

identification isolates the liquidity effect from broader time-series shifts in option risk premia by

comparing treated and untreated options within the same periods. In doing so, the specification

tests whether the impact of overnight equity liquidity is strongest precisely where hedging frictions

are expected to bind most tightly and helps rule out confounding explanations driven by aggregate

shocks or changes in overall market volatility.

Column (1) shows that the key triple-interaction term, Intra − weekPostOTMputs, is large

and statistically significant (470.9 bps, t = 2.93). This coefficient indicates that the post-2006
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Table III: Equity Liquidity and Option Returns: Triple-Difference Estimates

(1) Baseline (2) Winsorized (3) Excl. Crashes

Intra-week × Post × OTM Puts 470.9∗∗∗ 421.3∗∗∗ 561.0∗∗∗

(2.93) (4.38) (3.97)

Intra-week × Post 121.9∗∗∗ 92.9∗∗∗ 174.2∗∗∗

(2.60) (2.74) (3.87)

Intra-week × OTM Puts 61.7 55.9 61.7
(0.56) (0.73) (0.56)

Post × OTM Puts -305.6∗∗ -348.1∗∗∗ -409.7∗∗∗

(-1.97) (-4.13) (-3.24)

Lower Order Terms Y Y Y
Observations 54,842 54,842 53,675
R2-adjusted 0.00 0.01 0.01

Note: This table reports estimates from a triple-difference specification based on Equation (13), in which option returns
are regressed on indicators for treated options (OTM puts), treated periods (Intra-week), and the post-event period. Option
returns are computed for eight out-of-the-money portfolios (four puts and four calls) with breakpoints defined in Table A.1.
OTM Puts indicates the portfolio of deep out of the money puts, with less than 70 days to expiry. Intra-week returns
include all close-to-close observations, except Friday to Monday. Column (1) presents the baseline regression; Column (2)
uses returns winsorized at the 5th and 95th percentiles; Column (3) excludes the crisis months 2018.02 and 2020.02–2020.04.
Returns are expressed in basis points and are delta-hedged. Standard errors are clustered by month × portfolio ID. The
sample period is 1996 to 2023.

improvement in intra-week option returns documented in Table II is concentrated in out-of-the-

money puts—the contracts that dominate dealers’ short inventory positions and thus carry the

highest hedging frictions. The positive estimate implies that overnight equity liquidity reduced

the magnitude of negative returns specifically for those options most exposed to dealers’ inventory

risk. In contrast, the lower-order interactions (Intra−week×Post,Post×OTM puts) are smaller

in magnitude, confirming that the observed effect is not a broad repricing across all options but

rather a targeted easing of the liquidity constraint faced by intermediaries holding downside risk.

Appendix Table A.2 displays lower order terms.

Columns (2) and (3) show that the triple-difference results are robust to outliers. Column (2)

winsorizes option returns at the 5th and 95th percentiles, while Column (3) excludes the crisis

months of 2018.02 and 2020.02–2020.04. Across both specifications, the coefficient on Intra −

week × Post,Post × OTM puts remains positive, large, and statistically significant, confirming

that the attenuation of the negative option risk premium is not driven by outliers or by periods of

exceptional market stress. The persistence of the effect across samples reinforces the interpretation

that improved overnight equity liquidity eases dealers’ hedging constraints and thereby reduces
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the compensation investors pay for bearing downside option risk.

Tables II and III report results based on portfolios of options rather than individual contracts.

Aggregating options into portfolios mitigates measurement error arising from idiosyncratic pricing

noise, thin trading, and bid–ask bounce that affect individual option quotes. Portfolio-level returns

smooth out microstructure frictions and ensure that each observation represents a well-diversified

position within a given moneyness–maturity bin, which improves comparability across periods and

reduces the influence of outliers. This approach follows standard practice in the options literature

(e.g., Coval and Shumway (2001); Bakshi, Charles, and Chen (1997)), where portfolios serve as

more reliable estimators of systematic return patterns than individual option-level regressions.

A potential concern for identification is that neither “weekend” nor “overnight” periods are

completely non-tradable. Pre-market equity trading begins at 04:00 on Monday mornings, and

E-mini S&P 500 futures reopen as early as Sunday 18:00. Hence, the weekend control group is

only partially untreated. I address this concern in several ways. First, the expansion of equity

trading hours around 2006 was far more pronounced for weeknights than for weekends. A typical

weeknight spans 17.5 hours (16:00 – 09:30). The introduction of post-market (until 18:00) and pre-

market (from 04:00) trading reduced its non-tradable share by roughly 30 percent. By contrast,

a weekend period spans about 65.5 hours (17.5 plus 48), for which the same extension lowers

non-tradable hours by less than 10 percent. Consistent with this difference, Figure A.4 shows

that weeknight trading volumes in futures and ETFs increased much more sharply than weekend

volumes. Finally, Table A.4 presents estimates from a continuous-treatment specification that

uses measured overnight liquidity instead of the 2006 breakpoint. The results confirm that greater

overnight equity liquidity significantly compresses the option risk premium, particularly for deep

out-of-the-money puts.

The appendix provides several additional robustness analyses. Figure A.1 shows no evidence

of pre-event trends in the weekend or intra-week returns of out-of-the-money puts, supporting

the parallel-trend assumption underlying the difference-in-differences design. Table A.3 reports a

decline in option bid–ask spreads for intra-week relative to Friday-close observations around 2006,

consistent with the notion that market makers’ required compensation for providing liquidity fell

once overnight equity trading improved. Table A.5 documents a similar pattern in VIX futures:

intra-week returns become less negative relative to weekend returns after 2006. The evidence from

VIX futures reinforces the main result in a liquid, transparent, and easily replicable return series,
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underscoring that the effects of improved overnight liquidity extend beyond the option market

itself.

IV. Intermediaries’ Exposure to Gap Risk

This section documents intermediaries’ exposure to gap risk. I estimate option dealers option

inventory and estimate that, given their inventory, large negative equity market returns would

lead to significant inventory losses, if these negative equity market returns occur overnight, when

reduced equity liquidity impedes the adjustment of delta-hedges.

Supporting this interpretation, I quantify dealers’ liquidity demand for delta-hedge adjust-

ments, and find that this measure exceeds typical overnight stock or futures trade volumes. In

addition, I show that dealers inventory gamma is on average positive over my sample, but their

shadow gamma is large and negative, highlighting that conventional measures do not capture in-

termediaries exposure to gap risk. Finally, I provide evidence that intermediaries actively manage

their option positions in response to changing equity market volatility, consistent with behavior

aimed at mitigating this equity market risk.

IV.A. Intermediaries’ Option Inventory and Short Put Exposure

In addition to the papers already mentioned, Stoikov and Sağlam (2009) show in a theoretical

inventory-risk model that option market makers must be compensated for residual gamma and vega

risk when they cannot hedge continuously. I complement their analysis by empirically quantifying

gap risk in dealers’ aggregate S&P 500 option positions and linking this gap risk to the empirical

option risk premium. Fournier and Jacobs (2015) develop a structural dynamic model of an index

option market maker with limited capital and estimates the model on index options plus inventory

data. Hitzemann, Hofmann, Uhrig-Homburg, and Wagner (2023) provide evidence that the option

risk premium is related to the capital constraints of option dealers. This paper, proposes a new

type of inventory risk, which helps explain key moments of the option risk premium.

Data: Option Trade Volume by Trader Type. I use the CBOE Open–Close Volume files,

which report daily option volumes by contract (put or call, strike, and maturity), trader group

(market maker, broker-dealer, firm, customer, and professional customer), and trade direction

(buy versus sell). Throughout the paper, I use the terms market makers and intermediaries
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interchangeably. The analysis focuses on the period 2011–2023, during which the data explicitly

identify market-maker trades. Before 2011, market makers are not separately classified and must

be inferred as the counterparty to firms and customers; restricting attention to the post-2011

sample also benefits from markedly higher option liquidity, yielding more reliable estimates of

intermediaries’ trading patterns at high frequency.

S&P 500 index options have a contract multiplier of 100, that is, one contract represents 100

units of the underlying index. To facilitate interpretation, I therefore express all option volumes

and positions in underlying-equivalent units by multiplying by 100.

Examining market-maker trading activity, I find that intermediaries buy an average of 29.1 mil-

lion S&P 500 put options per day and sell roughly 30.3 million, implying net purchases of −1.2 mil-

lion puts daily. Net buys are defined as:

Net Buysit = Buysit − Sellsit, (14)

where i indexes the option contract and t the trading day. In contrast, buy and sell volumes in

call options are nearly identical at about 17.5 million contracts per day, resulting in net purchases

close to zero. These patterns reveal that the intermediary sector persistently supplies put options

to end-users while maintaining balanced positions in calls, foreshadowing the short-put exposure

documented below.

I construct intermediaries’ cumulative option position by aggregating their daily net buys over

the life of each contract:

Net Positioni
t =


∑t

k=1Net Buys
i
k if t ≤ Expiry

0 if t > Expiry

(15)

Here, k indexes trading days from the start of the sample through day t. Thus, NetPositioni
t

measures the number of contracts of option i that intermediaries are long minus the number they

are short at the end of day t. Because options are continuously listed and expire on a rolling

basis, this cumulation produces a time series of intermediaries’ outstanding inventory after a burn

in period. The frequent expiration of derivative contracts is a major advantage when studying

intermediary inventory risk. In contrast to equities, where precise measurement of the initial
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Table IV: Intermediaries’ Net Position in S&P 500 Options

Days to Expiry
Puts 2-70 71- All

0.00 ≤ |∆| ≤ 0.25 Deep Out of the Money -13.54 -3.32 -16.86
0.25 < |∆| ≤ 0.50 Out of the Money -0.47 -1.47 -1.94
0.50 < |∆| ≤ 0.75 In the Money 0.38 -0.07 0.32
0.75 < |∆| ≤ 1.00 Deep In the Money 0.47 0.17 0.63
All -13.15 -4.70 -17.85

Calls

0.00 ≤ |∆| ≤ 0.25 Deep Out of the Money -0.84 -0.50 -1.33
0.25 < |∆| ≤ 0.50 Out of the Money 1.55 0.87 2.42
0.50 < |∆| ≤ 0.75 In the Money 1.40 0.47 1.87
0.75 < |∆| ≤ 1.00 Deep In the Money 0.61 -0.01 0.59
All 2.72 0.83 3.55

Note: This table reports the average net positions of S&P 500 option market makers, sorted by moneyness and days to
expiry. The net position is the number of contracts that intermediaries are long minus the number they are short. Negative
values indicate that intermediaries are, on average, net short in the respective option category. Positions are expressed in
millions of contracts. Days to expiry are calendar days. The sample period spans 2011 to 2023.

position is crucial and often unobservable, options naturally reset at expiry, eliminating concerns

about initial conditions or position drift. I adopt a six-month burn-in period, resulting in a main

sample that spans July 2011 to August 2023. Positions are reset to zero at contract expiry.

Table IV reports intermediaries’ average net positions in S&P 500 options across portfolios

sorted by moneyness and days to expiry. Options are assigned to portfolios at the daily market

close and reclassified at the next close. The intermediary sector holds an aggregate short position of

approximately –17.9 million put contracts, concentrated in short-maturity, deep out-of-the-money

puts, where the net position reaches –13.5 million. Negative values indicate that intermediaries

are, on average, net short in the respective option category. In contrast, market makers’ net

positions in call options are slightly positive and display no consistent pattern across portfolios.

This asymmetry is consistent with persistent end-user demand for deep out-of-the-money puts as

crash protection, leaving intermediaries as the residual sellers of such options. The next subsection

examines how this short put exposure translates into equity market risk for intermediaries.

The literature attributes intermediaries’ persistent short positions in S&P 500 put options

largely to the hedging demands of sophisticated investors. Lemmon and Ni (2014) link index

option trading to institutional hedging motives, noting that trading in single-stock options is

more often driven by retail investors. Bollen and Whaley (2004) show that institutional investors
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hold long positions in index puts as portfolio insurance, and Chen, Joslin, and Ni (2019) interpret

customer demand for puts as evidence of investors’ aversion to economic crash risk. Similarly,

Goyenko and Zhang (2019) document net buying pressure in S&P 500 put options but net selling

pressure in calls. Taken together, this evidence indicates that institutional investors are the

primary buyers of index puts, motivated by hedging or insurance considerations, and that there is

no natural counterparty to supply these contracts. Intermediaries therefore fill this role, resulting

in a persistent short position in out-of-the-money puts.

IV.B. Intermediaries’ Inventory Exposure to Gap Risk

The short-put exposure documented above implies that intermediaries are exposed to large

declines in the underlying equity index. This subsection quantifies that exposure and illustrates

the mechanics through which limited overnight equity liquidity transforms intermediaries’ option

positions into equity market risk. When the underlying price falls sharply, delta-hedged positions

must be rebalanced through substantial equity sales; when trading is illiquid, such adjustments

are infeasible, leaving dealers exposed to losses. In the next step, I quantify this risk using

intermediaries’ actual option positions to estimate their aggregate profit-and-loss under different

hypothetical equity return scenarios.

I quantify intermediaries’ exposure to equity market risk by estimating the profit and loss

(P&L) of their aggregate option portfolio under hypothetical equity return scenarios. I estimate

dealers’ exposure to gap risk via their hypothetical P&L for different potential returns of the

S&P 500.

Specifically, I compute the Dealer P&L as:

Dealer P&Lt+1(∆S) =
I∑

i=1

Net Positioni
t ×[

P i
t+1(∆S)− P i

t − ∆i
t × (SP500t+1(∆S)− SP500t)

]
, (16)

where P&Lt+1(∆S) is the estimated P&L over period t+ 1; Net Positioni
t denotes intermediaries’

net position in option i at the end of day t; Pi
t+1(∆S) is the estimated option price under the

simulated market scenario, ∆i
t is the option’s delta, and SP500t+1(∆S) is the assumed value of
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the S&P 500.

This framework estimates the losses the intermediary sector would incur under different joint

realizations of option prices and underlying index levels. The method is flexible and can accommo-

date various dynamics for both P and SP500. To map future option prices to underlying values,

I adopt the Black–Scholes–Merton model for simplicity. The choice of pricing model is immaterial

for the analysis, as long as option values remain convex in the underlying price, such that large

underlying moves induce nonlinear changes in delta. I assume that intermediaries are initially

fully delta-hedged but subsequently hold their positions without adjustment, capturing their risk

exposure over nights and weekends when equity market liquidity is low.

To evaluate Scenario P&Lt+1 in Equation (16) for a hypothetical−10% return in the underlying

S&P 500, I compute the option value implied by the scenario (P i
t+1(∆S)) as the Black-Scholes-

Merton price of option i at the end of period t + 1, assuming that σi
t+1 = σi

t and the assumed

S&P 500 level under the scenario SP500t+1(∆S) = SP500t×0.9, where σ describes options’ implied

volatility relative to the Black-Scholes-Merton model. That is, I change the equity price, under the

Black-Scholes-Merton pricing framework, while holding implied volatilities constant. In practice,

equity returns and volatility are negatively correlated, and increases in volatility raise option prices.

Consequently, the losses reported here likely understate intermediaries’ true downside exposure,

as incorporating volatility spikes would make losses during market crashes even more pronounced.

The use of option dealer scenario P&L was pioneered by Gruenthaler (2022), who constructs

an option intermediary risk factor (OIR) from the slope of the scenario P&L around a −10%

crash, and then shows that OIR predicts the option risk premium. My approach differs in several

ways: For one, I keep option implied volatilities constant across scenarios, to focus specifically on

dealer risk from inability to adjust delta-hedges. Second, I focus on the curvature of the scenario

P&L, that is, I focus on the new concept of shadow gamma. Third, I show that shadow gamma

is priced at night, and especially so when dealers are constrained.

Figure 4 shows intermediaries’ exposure to gap risk. The figure shows the intermediary scenario

P&L for different hypothetical S&P 500 returns, in % of the upper bound on dealers’ option

portfolio value. The figure shows that a −10% return in the S&P 500 index would lead to

a portfolio return of about −2%. This number is highly significantly different from zero, but

represents a lower bound on dealers’ gap risk exposure, since the denominator is an upper abound

on dealers’ option portfolio value. I calculate dealers’ daily option portfolio value as the sum-
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Figure 4: Dealer P&L Across Hypothetical S&P 500 Returns
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Note: The figure shows estimated profits of market makers’ option inventory for different hypothetical returns of the
underlying S&P 500 equity index. Profits are in percent of the upper bound of the dollar value of dealers’ option inventory.
Option returns are initially delta-hedged, but the hedges are not adjusted as the underlying price changes. The shaded area
shows the 95% confidence interval around the mean estimate. The sample period is 2011 to 2023.

product of the absolute value of dealers’ net-position across options and the respective options’

mid-quote. Thus, I assume (i) netting of longs and shorts within the same option, (ii) no netting

of longs and shorts for very similar options, (iii) dealers’ margin requirement is the option value

for both their longs and shorts. These assumptions are very conservative, since dealers’ margin

requirements are significantly lower especially for high-price long-maturity in-the-money options

(Hitzemann, Hofmann, Uhrig-Homburg, and Wagner, 2023). As a result, the estimated percent

values are a lower bound on dealers’ gap risk exposure. The estimation does not account for the

empirically large option risk premium, and thus does not display the intermediary profits that

materialize when absolute equity returns are small.

IV.C. Intermediaries’ Liquidity Demand for Hedge Adjustments

Periods of limited equity liquidity expose intermediaries to equity market risk because they

constrain their ability to maintain delta-neutral portfolios. This subsection quantifies the volume

of equity trading required for intermediaries to remain delta-hedged when the underlying index

experiences large price movements. By estimating the liquidity demand implied by intermediaries’
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Figure 5: Dealers’ Liquidity Demand for Hedge Adjustments
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Note: This figure plots intermediaries’ estimated liquidity demand required to maintain delta-hedged positions under
hypothetical S&P 500 return scenarios, as defined in Equation (17). Liquidity demand is measured in billion dollars and
represents the trading volume needed to offset changes in portfolio delta. The shaded area shows the 95% confidence interval
around the mean estimate. The sample period is 2011 to 2023.

option inventory under different equity return scenarios, I show that the scale of these required

hedge adjustments far exceeds actual overnight trading volumes for most hours of the night,

highlighting the practical limits of continuous hedging.

I estimate intermediaries’ liquidity demand as:

Liquidity Demandt+1(∆S) =
I∑

i=1

NetPositioni
t ×

[
∆i

t+1 − ∆i
t(∆S)

]
× SP500t, (17)

where Liquidity Demandt+1(∆S) denotes the estimated dollar trading volume required for inter-

mediaries to maintain delta-neutral positions following a hypothetical change in the underlying.

NetPositioni
t is intermediaries’ net position in option i at the end of day t as defined earlier.

∆i
t(∆S) is options’ Black-Scholes-Merton delta, calculated using the option’s implied volatil-

ity σi
t. ∆i

t+1 is the estimated delta under the simulated market scenario, where σi
t+1 = σi

t and

SP500t+1 = SP500t × µ. The parameter µ takes values of [0.85, 0.9, ..., 1.15] to simulate S&P 500

returns of [−15%,−10%, ..., 15%].

Intermediaries’ liquidity demand for maintaining delta-hedges amounts to several billions of
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dollars. Figure 5 plots the estimated liquidity demand from Equation (17) across hypothetical

S&P 500 return scenarios. If the underlying index declines by 10%, intermediaries would need

to sell approximately $8 billion worth of equities to remain delta-hedged. This required trading

volume far exceeds typical overnight activity in equities and futures between 20:00 and 04:00,

when markets are thinly traded. Consequently, intermediaries face severe constraints on hedge

adjustments during these periods, exposing them to substantial inventory risk.

These estimates likely represent a lower bound. Investors’ strong demand for crash protection

implies that intermediaries hold short positions in options beyond the S&P 500 contracts examined

here. Moreover, option deltas rise with expected volatility, which typically spikes during large

negative equity market moves, further amplifying intermediaries’ liquidity needs precisely when

market depth is at its lowest.

IV.D. Intermediaries’ Shadow Gamma

Intermediaries’ inventory risk is driven by options’ shadow gamma—the state-contingent curva-

ture that emerges after large underlying moves—rather than by contemporaneous gamma. Gamma

captures the local curvature of option values and thus the extent to which delta hedges become

imperfect for small price changes. Over 2011–2023, however, intermediaries’ aggregate gamma

hovers around zero and, if anything, is slightly positive, implying gains from underlying price

changes, not losses. This measure misses the core exposure because dealers’ dominant position is

short deep out-of-the-money puts: these contracts suffer large losses in a crash yet contribute little

to current gamma, since deep-OTM gamma is near zero. Evaluated under large price moves, by

contrast, intermediaries’ inventories load on substantial negative shadow gamma. Positions that

are well balanced for small fluctuations become acutely exposed when the underlying moves by a

large amount, generating equity-market risk and inventory losses, especially overnight when hedge

adjustments are constrained.

I estimate intermediaries’ inventory gamma for different scenarios of underlying S&P 500 re-

turns as:

Dealer Shadow Gammat+1(∆S) =
I∑

i=1

Net Positioni,t × Γ̃sh
i,t(∆S), (18)
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where NetPositioni
t denotes intermediaries’ net holdings of option i at time t, and Γ̃sh

i,t(∆S) is the

option’s shadow gamma evaluated under a hypothetical equity-market return (∆S). I compute

shadow gamma across a grid of counterfactual S&P 500 returns from −15% to +15%, which

captures the curvature of intermediaries’ portfolio value under large price moves rather than

infinitesimal changes. This construction links measured portfolio risk directly to the nonlinear

exposure dealers face when equity liquidity constraints impede continuous re-hedging.

Figure 6 plots intermediaries’ inventory gamma across hypothetical S&P 500 returns. The

gamma at a return of zero corresponds to intermediaries’ current exposure and is slightly positive,

implying that small equity moves generate gains rather than losses. This measure therefore fails

to capture intermediaries’ inventory risk over nights and weekends, when large price changes are

most relevant. For both positive and negative equity moves, the estimated shadow gamma turns

negative, reflecting the expected losses on intermediaries’ short positions in deep out-of-the-money

puts following a market decline. Figure A.3 contains a binscatter of intermediary market risk

against intermediary shadow gamma and shows a strong positive relation between the two.

At-the-money gamma remains positive, indicating that dealers profit from small price fluc-

tuations while bearing risk from large ones. This pattern is consistent with Hu, Kirilova, and

Muravyev (2023), who find limited delta-hedging by option intermediaries in Korean markets. My

results suggest that intermediaries’ portfolios are locally well balanced against small underlying

moves but become increasingly exposed as price changes grow in magnitude.

Option dealers inventory gamma still matters. For example Soebhag (2023) and Baltussen,

Da, Lammers, and Martens (2021) conclude that option dealers inventory gamma captures their

need to trade for delta-hedges and create price pressure in the underlying equities.

My approach to measuring intermediaries’ exposure to equity market risk differs fundamentally

from existing work. Since Garleanu, Pedersen, and Poteshman (2009), the literature has typically

estimated intermediary risk using net gamma and net vega, which proxy for exposure to jump and

volatility risk, respectively. Net gamma, the sum product of intermediaries’ net option positions

and each contract’s gamma, captures how much dealers’ delta-hedges must adjust in response to

small price movements of the underlying. Gamma, the second derivative of the option value with

respect to the underlying price, thus measures the local curvature of intermediaries’ portfolio value

around current market conditions. This local measure is informative when jumps are small and

trading is continuous, since in such settings the underlying rarely departs far from its current level.
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Figure 6: Dealer Gamma Across Hypothetical S&P 500 Moves

S&P	500	Return	(scenario,	%)
-15 -10 -5 0 5 10 15

In
te
rm

ed
ia
ry
	In

ve
nt
or
y	
G
am

m
a	
(k
)

-40

-30

-20

-10

0

10

20

30

Note: This figure plots intermediaries’ aggregate inventory gamma for the actual and several hypothetical values of the
S&P 500 index. Inventory gamma is computed as the sum product of intermediaries’ net positions across option contracts
and the respective options’ gamma, defined as the second derivative of the option value with respect to the underlying price.
Negative gamma indicates expected inventory losses under large equity moves. The shaded area shows the 95% confidence
interval around the mean estimate. The sample period is 2011 to 2023.

However, this framework cannot account for the pronounced premia in out-of-the-money puts

relative to calls. Because puts and calls with identical contract specifications share the same

gamma, net-gamma–based measures would imply symmetric risk premia, contrary to the data.

Moreover, gamma is highest for at-the-money options, whereas observed risk premia are largest

for short-maturity, deep out-of-the-money puts. If conventional gamma captured intermediaries’

primary exposure, the most expensive contracts should be at-the-money, which the evidence re-

jects.

In contrast, I show that intermediaries’ risk arises from exposure to large, infrequent price

movements, rather than small price fluctuations. This risk emerges from the daily market close of

equity exchanges and the resulting overnight illiquidity, which prevents continuous delta-hedging.

Consequently, out-of-the-money puts are especially risky for intermediaries, and their elevated risk

premia reflect compensation for this shadow-gamma exposure.
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Figure 7: Intermediary Put Trading By Lagged Equity Return Volatility
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Note: This figure plots intermediaries’ net purchases of S&P 500 put options against lagged equity market volatility. Net
purchases are measured as daily buys minus sells, and are expressed in millions of contracts. Volatility is computed as the
standard deviation of close-to-close S&P 500 returns over a rolling 10-day window, lagged by one day. The downward slope
indicates that intermediaries sell more puts when recent volatility is low, consistent with active inventory risk management.
The sample period is 2011 to 2023.

IV.E. Intermediaries’ Inventory Adjustment and Risk Management

Intermediaries adjust their option inventories systematically in response to changing market

conditions. They sell more put options when equity market volatility is low, indicating that (i)

they actively manage exposures rather than passively absorb investor demand, and (ii) equity

market risk is a central component of their overall inventory risk. Gruenthaler (2022) documents

that option intermediaries manage their net-vega positions in anticipation of spikes in implied

volatility. I provide complementary evidence that intermediaries manage their exposure to equity

market risk. This behavior reinforces the interpretation that option risk premia arise primarily

overnight, when limited equity liquidity constrains delta-hedging and leaves intermediaries exposed

to unhedgeable inventory risk.

Intermediaries’ trading behavior provides evidence of active risk management in response to

changing equity market conditions. Figure 7 plots intermediaries’ daily net purchases of S&P 500

puts against lagged realized equity volatility. The relationship is strongly negative: when volatility

is low at around 5% intermediaries sell roughly 3.4 million puts per day; when volatility is high at

around 17% daily sales decline to about 1 million contracts. The pattern is nearly monotonic and
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appears concave, suggesting diminishing sensitivity at higher volatility levels. Although the figure

does not separately identify shifts in customer demand, it is more plausible that dealers scale back

put sales when volatility rises than that customers reduce demand when markets are calm. This

trading pattern supports the interpretation that intermediaries manage their short-put exposure

countercyclically, increasing risk-taking when equity market risk is low and retrenching when risk

is high. This behavior is consistent with inventory management motives rather than passive order

flow accommodation.

V. The Price of Gap Risk

This section examines whether gap risk is priced at night, especially when dealers are constrained.

I regress day and night option returns on lagged shadow gamma and find strong predictive power

only for overnight returns. This pattern is consistent with shadow gamma capturing the risk from

the inability to adjust delta hedges in illiquid night markets. I further show that the explanatory

power of shadow gamma is stronger when intermediaries are more constrained, in the sense that

they hold larger shadow-gamma inventories.

To test whether shadow gamma is priced in options, I estimate the following specification:

Ri
t = β0 1+ β1 Γ̃

sh
t−1(−10%) + β2 × Nightt + β3 Γ̃

sh
t−1(−10%)× Nightt + ϵit, (19)

where Ri,t denotes the delta-hedged return of option i, in basis points. Γ̃sh
t−1(−10%) is the lagged

shadow gamma of option i evaluated for hypothetical S&P 500 returns of -10%, andNight indicates

overnight returns, as opposed to intraday returns. Shadow Gamma is standardized to zero mean

and unit variance. Standard errors are double-clustered by trading day and option identifier.

Table V shows regression estimates of Equation (19). Column (1) displays the baseline spec-

ification. Most importantly, options’ shadow gamma predicts overnight option returns. A one

standard deviation increase in shadow gamma is associated with a relative reduction of overnight

option returns of 177.4bps. More shadow gamma indicates a higher curvature of the option value

function in the scenario of large negative equity returns, thus making an option more risky for

sellers, which tend to be intermediaries. Overnight option returns are large and negative (−266bps

on average). In contrast, intraday option returns are indistinguishable from zero, and are not pre-

dicted by options’ shadow gamma. Bali, Goyal, Moerke, and Weigert (2025) find momentum and
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Table V: The Price of Shadow Gamma

(1) Baseline (2) Winsorized (3) Excl. Crashes

Shadow Gamma 29.1 26.5 19.9
(1.26) (1.19) (1.06)

Night -266.1∗∗∗ -265.8∗∗∗ -233.2∗∗∗

(-4.71) (-4.93) (-4.89)

Shadow Gamma × Night -177.4∗∗∗ -180.4∗∗∗ -169.7∗∗∗

(-5.46) (-6.16) (-6.70)

Constant 43.7 34.9 -6.4
(0.92) (0.75) (-0.17)

Observations 3,259,955 3,259,955 3,125,142
R2-adjusted 0.00 0.00 0.00

Note: This table presents regression estimates of Equation (19) which regresses day and night delta-hedged option returns
on lagged option-level shadow gamma. Option shadow gamma is for the scenario of a −10% S&P 500 return. Option returns
are measured in basis points. Shadow gamma is standardized have zero mean and unit variance. Column (1) presents
the baseline regression; Column (2) uses returns winsorized at percentiles 5 and 95; Column (3) excludes the crisis months
2018.02 and 2020.02–2020.04. t−stats are in round brackets, and standard errors are double-clustered by trading day and
option identifier. The sample period is 2011 to 2023.

reversal in day-night option returns. Nonetheless, I find predictability only for night returns, with-

out a subsequent reversal prediction. Columns (2) and (3) provide show robustness of the findings

against outliers in option returns. These findings are consistent with an interpretation where the

option risk premium predominantly derives from unhedgeable risk due to equity illiquidity.

Finally, I turn to the role of intermediaries’ option inventory. Table V examines whether an

option’s own shadow gamma predicts its returns and allows the price of shadow gamma to differ

between day and night, but does not consider dealers’ aggregate position. Inventory-risk models

instead imply that the premium per unit of shadow gamma should be higher when intermediaries

are more exposed to gap risk. To test this prediction, I now focus on overnight returns and

relate them to the interaction between option-level shadow gamma and dealers’ aggregate shadow

gamma.

To test whether intermediary constraints impact the option risk premium, I estimate the

following specification:

Ri
t = β0 1+ β1 Γ̃

sh
t−1(−10%) + β2 ×Dealer Shadow Gammat(−10%) +

β3 Γ̃
sh
t−1(−10%)×Dealer Shadow Gammat(−10%) + ϵit, (20)
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Table VI: Dealer Inventory and the Price of Shadow Gamma

(1) Baseline (2) Winsorized (3) Excl. Crashes

Shadow Gamma -155.4∗∗∗ -155.5∗∗∗ -155.4∗∗∗

(-7.98) (-8.09) (-7.98)

Dealer Shadow Gamma 30.5 29.9 30.5
(0.86) (0.85) (0.86)

Shadow Gamma 35.8∗∗ 35.7∗∗ 35.8∗∗

× Dealer Shadow Gamma (2.44) (2.46) (2.44)

Constant -216.3∗∗∗ -217.1∗∗∗ -216.3∗∗∗

(-6.04) (-6.15) (-6.04)

Observations 958,387 958,387 958,387
R2-adjusted 0.00 0.00 0.00

Note: This table presents regression estimates of Equation (20), which regresses overnight, delta-hedged option returns on
lagged option-level shadow gamma and dealers’ aggregate shadow gamma. Option shadow gamma and dealer shadow gamma
are for the scenario of a −10% S&P 500 return. Option returns are measured in basis points and standardized explanatory
variables have zero mean and unit variance. Column (1) presents the baseline regression; Column (2) uses returns winsorized
at the 5th and 95th percentiles; Column (3) excludes the crisis months 2018.02 and 2020.02–2020.04. t−stats are in round
brackets, and standard errors are double-clustered by trading day and option identifier. The sample period is 2011 to 2023.

where Ri,t denotes the overnight delta-hedged return of option i, Γ̃sh
t−1(−10%) is the lagged shadow

gamma of option i evaluated for hypothetical S&P 500 returns of −10%. Dealer Shadow Gamma

measures intermediaries’ inventory shadow gamma at −10%. Shadow Gamma and Dealer Shadow

GAmma are standardized to zero mean and unit variance. Standard errors are double-clustered

by trading day and option identifier.

Table VI shows regression estimates of Equation (20). Column (1) contains the baseline esti-

mates. Most importantly, shadow gamma has more predictive power for overnight option returns

when intermediaries are more constrained. Specifically, an increase in dealer shadow gamma by

one standard deviation is associated with a shadow gamma predictive power that changes from

−155 to −129 bps per standard deviation. This is reasonable, since dealer shadow gamma is large

and negative, indicating their inventory risk. Higher dealer shadow gamma indicates less risk and

should reduce the predictive power of shadow gamma on its own.

Dealer shadow gamma by itself does not significantly predict overnight option returns. This

is not evidence against an inventory-risk channel. Dealer inventories are equilibrium objects that

respond both to shocks to end-user demand for crash insurance and to shocks to dealers’ funding

and risk-bearing capacity. A positive demand shock raises option prices and expands dealers’

short positions, whereas a tightening of funding conditions induces dealers to cut positions even
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as required risk premia rise. As a result, the unconditional time-series correlation between the

level of dealer shadow gamma and option returns is theoretically ambiguous, and the insignificant

coefficient on dealer shadow gamma in Equation (20) is entirely consistent with the model.

Instead of interpreting the level of dealer shadow gamma, I focus on how the price of gap risk

varies with dealers’ aggregate exposure. The interaction between option-level and dealer shadow

gamma in Equation (20) asks whether options that add more shadow gamma to dealers’ books earn

especially negative overnight returns precisely when dealers’ aggregate shadow-gamma exposure

is high. Because this test exploits cross-sectional differences in option shadow gamma at a given

point in time, it is much less sensitive to the endogeneity of inventory levels driven by aggregate

shocks that move all option prices together. Consistent with the inventory-risk interpretation, the

evidence in subsection IV shows that intermediaries actively reduce their positions when market

risk increases, so that high and low inventory states can be associated with both high and low

risk premia. Taken together, these results indicate that it is the state-dependent price of gap risk,

rather than the unconditional level of dealer inventory, that links intermediary constraints to the

option risk premium.

VI. Conclusion

This paper shows that intermediary inventory risk affects the option risk premium. I exploit the

emergence of overnight equity trading around 2006 to show that the overnight concentration of the

option risk premium is potentially explained by reduced equity liquidity. Equity il-liquidity raises

the magnitude of the option risk premium because option sellers require liquid equity markets

to adjust their delta-hedges in case or large underlying returns. A new derivatives risk measure

”shadow gamma” captures this risk. Shadow gamma predicts overnight option returns, especially

when dealers are constrained.

The results have two broader implications. First, from a market-design perspective, the evi-

dence suggests that increasing around-the-clock equity trading can lower hedging costs and com-

press derivative risk premia by improving intermediaries’ ability to manage inventory risk. Second,

from an asset-pricing perspective, the findings highlight that liquidity frictions and intermediary

constraints jointly determine the price of risk. Derivative markets therefore provide a clean setting

in which to observe how institutional frictions give rise to persistent and economically large risk
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premia.

A natural direction for future research is to develop methods that explicitly control for interme-

diary inventory and market frictions when extracting information from option prices, for example

for tests of macro models as in Backus, Chernov, and Martin (2011).
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A.1. Appendix Figures

Figure A.1: Mean Option Returns by 2-year Period

Mean	returns	with	95%	confidence	intervals

Two-year	window	(t	and	t-1)
199
6
199
8
200
0
200
2
200
4
200
6
200
8
201
0
201
2
201
4
201
6
201
8
202
0
202
2

M
ea
n	
re
tu
rn
	(b
ps
)

-1200

-1000

-800

-600

-400

-200

0

200

400

600

800

	

Weekend
Week	Days

Note: This figure shows average week-night and weekend option returns over 2 year periods. The left bars show mean
returns over weekends. The right bars show mean returns over week days. The error bars show the 95% confidence interval.
The vertical line indicates the emergence of overnight equity trading around 2006.01. Returns are for the portfolio of out-
of-the-money puts, are delta-hedged and are in basis points.
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Figure A.2: Equity Trade Volume Around the Clock
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Note: The figure shows average trade volumes for each 30-minute interval of the day. Panel (a) contains the most liquid
S&P 500 E-mini futures contract, panel (b) contains Apple Inc. stocks, to provide an idea of overnight trade volumes in
stocks themselves. The sample period is 2011 to 2023.
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Figure A.3: Market Makers’ Equity Market Risk and Inventory Shadow Gamma
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Note: This figure shows dealers’ inventory shadow gamma by level of market maker scenario P&L. Shadow gamma and
scenario P&L are measured at −15%. The sample period is 2011 to 2023.
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Figure A.4: The Emergence of Overnight Equity Trading Relative To Weekends
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(b) S&P 500 ETF

Note: This figure shows the rise of overnight equity trading activity in S&P 500 instruments over week-nights, relative
to weekends. Panel (a) reports the monthly sum dollar volume transacted overnight in the most actively traded S&P 500
E-mini futures contract over weeknights minus weekends. Weekends are measured from Friday 18:00 to Monday 09:30.
Week-nights are all other nights. Panel (b) shows the corresponding series for the SPY ETF. Weekends trading is defined
as transactions between Friday 16:00 and Monday 09:30 (E.T.). Week-nights are all other nights. Volumes are expressed in
billions of dollars.
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A.2. Appendix Tables

Table A.1: The Cross-Section of Night Returns

Days to Expiry
Puts 2-70 71- All

0.00 ≤ |∆| ≤ 0.25 Deep Out of the Money -390.1 -17.6 -307.1
0.25 < |∆| ≤ 0.50 Out of the Money -87.8 -24.3 -71.7
0.50 < |∆| ≤ 0.75 In the Money -59.7 -21.6 -47.6
0.75 < |∆| ≤ 1.00 Deep In the Money -69.0 -63.8 -63.4
All -297.8 -22.2 -233.3

Calls

0.00 ≤ |∆| ≤ 0.25 Deep Out of the Money 71.3 34.8 65.5
0.25 < |∆| ≤ 0.50 Out of the Money -8.0 -19.8 -7.1
0.50 < |∆| ≤ 0.75 In the Money -24.0 -12.9 -21.9
0.75 < |∆| ≤ 1.00 Deep In the Money -19.8 -7.7 -16.7
All 21.0 -1.2 14.9

Note: The table shows average S&P 500 option returns for eight portfolios, sorted by days to expiry and moneyness.
Returns are measured from option market close at 16:15 to the subsequent market open at 09:45. Returns are in basis points
and are delta-hedged at the beginning of the respective period. Days to expiry are calendar days. Newey-West t-statistics
are in brackets. The sample period is 2011 to 2023.
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Table A.2: Equity Liquidity and Option Returns: Triple-Differences

(1) Baseline (2) Winsorized (3) Excl. Crashes

IntraWeek 85.7∗∗ 115.1∗∗∗ 85.7∗∗

(2.40) (4.41) (2.40)

Post -84.4∗∗ -98.6∗∗∗ -154.7∗∗∗

(-1.98) (-3.27) (-3.89)

IntraWeek x Post 121.9∗∗∗ 92.9∗∗∗ 174.2∗∗∗

(2.60) (2.74) (3.87)

OtmPuts -307.3∗∗∗ -350.7∗∗∗ -307.3∗∗∗

(-2.94) (-5.27) (-2.94)

IntraWeek x OtmPuts 61.7 55.9 61.7
(0.56) (0.73) (0.56)

Post x OtmPuts -305.6∗∗ -348.1∗∗∗ -409.7∗∗∗

(-1.97) (-4.13) (-3.24)

IntraWeek x Post x OtmPuts 470.9∗∗∗ 421.3∗∗∗ 561.0∗∗∗

(2.93) (4.38) (3.97)

Constant -134.7∗∗∗ -184.5∗∗∗ -134.7∗∗∗

(-4.21) (-7.92) (-4.21)

Observations 54,842 54,842 53,675
R2-adjusted 0.00 0.01 0.01

Note: This table reports regression estimates from a triple-difference specification based on Equation (13). I regress option
returns on indicators for treated options (OTM puts), treated periods (Intra-week), and the post-event period. Option returns
are computed for eight out-of-the-money portfolios (four puts and four calls) with breakpoints defined in Table A.1. Intra-
week returns include all close-to-close observations except Friday-to-Monday intervals. Column (1) presents the baseline
regression; Column (2) uses returns winsorized at the 5th and 95th percentiles; Column (3) excludes the crisis months
2018.02 and 2020.02–2020.04. Returns are expressed in basis points and are delta-hedged. Standard errors are clustered by
month× portfolio ID. The sample period is 1996 to 2023.
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Table A.3: The Impact of Stock Trading on Option Spreads: Diff-in-Diff

Absolute Spread (cents) Relative Spread (bps)

(1) (2) (3) (4) (5) (6)
Baseline Winsorized Excl. Crashes Baseline Winsorized Excl. Crashes

Intra-week 4.3∗∗∗ 3.7∗∗∗ 4.3∗∗∗ 1.6∗∗∗ 1.6∗∗∗ 1.6∗∗∗

(3.75) (3.67) (3.75) (3.12) (4.47) (3.12)

Post 14.9∗∗∗ 8.8∗∗ 10.6∗∗ -26.2∗∗∗ -23.8∗∗∗ -26.4∗∗∗

(2.88) (2.28) (2.37) (-14.69) (-20.54) (-14.91)

Intra-week x Post -7.1∗∗∗ -5.8∗∗∗ -6.5∗∗∗ -1.4∗∗ -1.2∗∗∗ -1.2∗∗

(-3.87) (-4.32) (-3.93) (-2.39) (-3.12) (-2.25)

Constant 97.6∗∗∗ 97.4∗∗∗ 97.6∗∗∗ 38.7∗∗∗ 36.0∗∗∗ 38.7∗∗∗

(34.43) (36.95) (34.43) (23.42) (37.11) (23.42)

Observations 6,958 6,958 6,812 6,955 6,955 6,809
R2-adjusted 0.01 0.00 0.00 0.44 0.52 0.44

Note: This table reports estimates from a difference in differences specification that includes indicators for treated periods
(IntraWeek), and the post-event period. Intra-week spreads are daily option spreads at close, except Friday. Post indicates
the period after 2006.01 when overnight stock trading emerged. Spreads are measured for the portfolio of out-of-the-money
S&P 500 puts. Columns 1 to 3 show absolute spreads in cents, columns 4 to 6 show relative spreads in basis points. Columns
(2) and (5) winsorize option spreads at percentiles 5 and 95. Columns (3) and (6) exclude the crash months of 2018.02 and
2020.02 to 2020.04. Standard errors are clustered within every month. The sample period is 1996 to 2023.
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Table A.4: Overnight Equity Liquidity and Option Returns: Continuous-Treatment Estimates

(1) (2) (3)

Liquidity x OTM puts 293.3∗∗∗ 153.5∗∗∗ 347.4∗∗∗

(4.77) (5.18) (5.72)

Day Yes Yes Yes

ID x Month Yes Yes Yes

Observations 51,696 51,696 50,529
R2-adjusted 0.36 0.29 0.34

Notes: This table reports panel regressions of portfolio-level, delta-hedged option returns on an equity-liquidity measure and
its interaction with an indicator for deep out-of-the-money (OTM) puts. Returns are daily close-to-close returns, computed
for eight OTM portfolios (four puts and four calls) with breakpoints defined in Table A.1. Liquidity is the trading volume
of the front-month E-mini S&P 500 futures contract measured over the night period of the corresponding return window,
scaled by the number of hours in that night window and standardized to zero mean and unit variance. Thus, I adjust for
the longer periods over for example weekends. The specification includes fixed effects for the return-window date and for
option-portfolio×month; main effects of liquidity and the OTM-put indicator are therefore absorbed. Column (1) reports
the baseline estimates; column (2) winsorizes returns at the 5th and 95th percentiles; column (3) excludes February 2018
and February–April 2020. Returns are in basis points. Standard errors are two-way clustered by option portfolio identifier
and month. The sample period is 1996 to 2023.
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Table A.5: The Impact of Stock Trading on VIX Futures Returns: Diff-in-Diff

Intra-week Post Intra-week × Post

Coefficients 65.4 -63.4 51.2
t-stats 3.4 -2.9 1.5

Note: This table reports estimates from regressing daily VIX futures returns on an indicator for intra-week returns and
an indicator for the period post 2006.01, when overnight equity trading emerges. Returns are daily close-to-close, so the
intra-week indicator marks returns between Monday close and Friday close. Returns are measured from VIX futures mid
quotes and are in basis points. t− statistics are Newey-West with 10 lags. The sample period is 2004.04 to 2007.12.

Table A.6: S&P 500 Equity Returns

Mean Std Min P1 P50 P99 Max

Day 1.4 98.9 -926.2 -274.1 4.3 277.8 817.8
Night 2.1 67.7 -749.4 -210.3 4.0 182.2 585.8
Weekend -1.2 84.4 -1,235.7 -227.0 3.3 223.6 494.0

Note: This table displays summary statistics for S&P 500 equity returns. Returns are measured from S&P 500 stock trade
prices. Day returns are from 09:30 to 16:00, Night returns are from 16:00 to 09:30 and Weekend returns are from Friday
16:00 to Monday 09:30. P1 indicates the first percentile. The sample period is 1996 to 2023.
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