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Abstract

I find that intermediary inventory and equity il-liquidity can explain most of the risk premium
in S&P 500 options. I show that intermediaries’ option inventory exposes them to “gap
risk”, the risk of equity price changes over periods where low equity liquidity impedes an
adjustment of equity market (delta) hedges. Intermediaries’ gap risk can explain why negative
option returns are heavily concentrated over nights and weekends, where equity liquidity is
low. Contrary to common intuition, intermediaries’ inventory gamma does not capture this
inventory risk. Instead, I introduce the concept of “shadow gamma’, the expected option
gamma in case of large negative equity market returns. Intermediaries’ shadow gamma is
large and negative, capturing the expected inventory losses in case of negative equity market
returns, that result from intermediaries’ short position in put options. I argue that gamma
captures intraday risk, but shadow gamma captures overnight risk. Consistent with this
argument, options’ shadow gamma predicts options’ night-returns, but not options’ day-
returns. Finally, I exploit the increase of overnight equity trading around 2006: I find
significantly less negative option returns from Mondays to Fridays, relative to option returns
over weekends, after 2006. This change in the option risk premium is concentrated in options
where intermediaries are short, suggesting that intermediary inventory and equity liquidity
jointly drive the option risk premium.
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Average delta-hedged returns of S&P 500 options amount to about —0.5% a day, and these
returns materialize in an increasingly large market: Open interest and trade volume in S&P
500 options have almost quadrupled between 2018 and 2023, reaching $250bn and $2tn p.a.,
respectively.! The empirical findings in this paper suggest that negative option returns result
largely from the combination of intermediary inventory and overnight equity il-liquidity. The
economic consequences of overnight equity liquidity are particularly relevant in light of current
market changes. In late 2024 and early 2025, both the NYSE and Nasdaq equity exchanges
announced plans to offer close to 24-hour equity trading between Mondays and Fridays.? My
results suggest that higher overnight equity trade volume would help intermediaries manage their
inventory risk, potentially leading to a reduction in the magnitude of the option risk premium.

A common benchmark for option returns is the Black-Scholes-Merton model, where delta-
hedged returns equal the risk-free rate because a continuously adjusted stock position perfectly
hedges an option on that stock.®> To explain option returns, the literature has focused on two
risks that cannot be hedged with a stock positions: stochastic volatility risk, the risk of changes in
expected equity return volatility, and jump risk, the risk of a discontinuous change in the equity
price. However, Jones and Shemesh (2018) and Muravyev and Ni (2020) show that the negative
option returns are heavily concentrated over weekends and nights, and they conclude that neither
increased volatility risk nor increased jump risk can explain their findings.

In this paper, I test whether intermediary constraints can explain option returns. A concentra-
tion of option returns over nights and weekends could result from elevated intermediary inventory
risk over such periods, if intermediaries (i) are the marginal seller of options, (ii) are effectively
risk-averse, and (éi7) bear elevated inventory risk over nights. In such a model, intermediaries
would sell options at elevated prices before a night or weekend, in anticipation of the elevated
inventory risk that they will have to bear from the resulting short position. The crucial questions
in this argument is why inventory risk would be elevated over nights and weekends. I argue that
increased overnight inventory risk results from reduced equity liquidity over such periods. Equity

il-liquidity impedes intermediaries’ ability to engage in the delta-hedge adjustments. Without

'For early studies on option returns, see Coval and Shumway (2001) and Bakshi and Kapadia (2003).

*https://ir.theice.com /press/news-details/ 2024/ The-New- York-Stock-Exchange-Plans-to-Extend- Weekday-
Trading-on-its-NYSE-Arca-Equities-Exchange-to-22-Hours-a-Day/default.aspx, accessed on November 01, 2024.
https://www.reuters.com/markets/us/nasdaqg-plans-24-hour-trading-tap-into-growing-international-demand-2025-03-07/,
accessed on March 17, 2025.

3Black and Scholes (1973), Merton (1973).



delta-hedge adjustments, options quickly become exposed to equity market risk. Thus, interme-
diaries bear equity market risk over nights and weekends. I refer to overnight equity price risk
as “gap risk”. Gap risk results from options’ gamma, the curvature in the option value function,
which necessitates delta-hedge adjustments. Gamma is a well know risk measure in options pricing.
Crucially, I show that it is not intermediaries current inventory gamma that describes their expo-
sure to gap risk. Instead, intermediaries’ gap risk exposure is captured by their “shadow gamma”,
the expected intermediary inventory gamma in case of large negative equity market returns.

This paper makes four contributions, using data on S&P 500 options. I show that: (i) In-
termediaries’ option inventory exposes them to gap risk. I estimate that, in case of an equity
price crash, the intermediary sector would need to sell about $15bn of stocks in order to remain
delta-hedged. For comparison, the trade volume in the most liquid U.S. equity futures contract
(the S&P 500 E-Mini) does not exceed $300m an hour for most parts of the night. As a result,
overnight equity trade volumes are not sufficient for intermediaries to dynamically adjust their
delta-hedges and thus hedge their equity market risk. (i¢) Intermediaries’ gap risk results from
options’ shadow gamma. Intermediaries’ inventory gamma is weakly positive, indicating inventory
profits from equity price changes. In contrast, intermediaries inventory shadow gamma is large
and negative, capturing the expected inventory losses in case of negative equity market returns,
that result from intermediaries’ short position in put options. (i7i) Options’ shadow gamma pre-
dicts option returns over nights (close to open) but not over days (open to close). (iv) Increasing
overnight equity trade volume leads to less negative option returns. I find that the growth of
overnight equity trading around 2006 led to less negative option returns from Mondays to Fri-
days, relative to option returns over weekends. Weekends function as the control group, since
weekends contain more than 48 hours where equity and equity futures exchanges are closed, and
trade volumes remained unchanged. I conclude that negative option returns are largely driven by
equity il-liquidity, because equity il-liquidity exposes intermediaries to inventory gap risk, and the

prospect of unhedgeable inventory risk leads intermediaries to sell options at elevated prices.

Intermediaries’ option inventory exposes them to gap risk. I find that, over the period
of 2011 to 2023, the intermediary sector holds a persistently negative net-position in puts, while
the net-position in calls oscillates around zero. A net-position expresses the number of options

intermediaries are long minus the number of options intermediaries are short. Intermediaries’ net



put position amounts to about —19m contracts, indicating substantially more short positions than
long positions in puts.

Due to their short position in puts, intermediaries bear gap risk. I estimate intermediaries’
exposure to gap risk as the profit-and-loss from their options portfolio in case of a hypothetical
—10% S&P 500 return. I assume that intermediaries initially delta-hedge their options portfolio,
but subsequently cannot adjust these hedges. I estimate an average profit of —$1.5bn in such
states. Wether I assume intermediaries to be initially delta-hedged has little impact on their gap
risk. The intuition for this finding is that intermediaries’ option inventory is balanced against
small equity returns. Exposure to equity market risk, and the need to continuously delta hedge,
emerges only in case of large (negative) equity market returns. Importantly, my approach explicitly
estimates the risk of a large equity price move, rather than the standard approach of relying on
marginal analysis based on option greeks, such as gamma. I show that gamma does not capture
intermediaries’ exposure to gap risk.*

Next, I estimate intermediaries’ liquidity demand for the adjustment of delta-hedges, and find
that in case of a —10% return in the S&P 500, intermediaries need to sell about $15bn worth
of equities in order to remain fully delta-hedged. For comparison, the average overnight volume
of S&P 500 E-Mini futures amounts to less than $300m an hour for most parts of the night.
In contrast, the intraday futures trade volume exceeds $20bn an hour, with an additional $27bn
hourly trade volume in the underlying S&P 500 constituent stocks themselves. I conclude that
overnight equity market il-liquidity impedes intermediaries’ delta-hedging, while intermediaries

face few such obstacles during regular equity trading hours.

Intermediaries’ gap risk results from shadow gamma. I show that intermediaries’ gap
risk results from options’ shadow gamma, not options current gamma, which is the common risk
measure in the literature. Gamma, measures the curvature in the option value function, and, as
such, measures the degree to which delta-hedges become imperfect when the price of the underlying
changes. However, over my main sample from 2011 to 2023, the total gamma in intermediaries
inventory oscillates around zero and is - if anything - positive. A positive inventory gamma suggests

profits from equity price changes, not losses. The reason why gamma fails as a risk measure for

4For intuition, consider being short 10 deep-out-of-the-money puts and long one at-the-money call. This portfolio tends
to experience large negative returns when stocks crash, while the aggregate gamma tends to be positive, suggesting positive
returns from stock price crashes.



intermediaries’ option position is that dealers’ most pronounced position is a short-position in
deep out-of-the-money puts, which experiences large losses in case of an equity market crash, but
contributes little to intermediaries inventory gamma, since gamma is close to zero for deep-out-of-
the money options. Instead, I find that intermediaries carry large negative shadow gamma. That
is, intermediaries’ inventory is well balanced against small equity price changes, but if the equity
price changes by a large amount, then there will be inventory gamma, equity market risk and

inventory losses.

Options’ shadow gamma predicts overnight option returns. I estimate option returns over
days, nights and weekends. Consistent with the previous literature, I find that option returns are
especially negative over weekends and nights. I find intraday option returns to not be significantly
different from the risk-free rate. Thus, most of the option risk premium can be attributed to
the periods (nights and weekends) when intermediaries face gap risk. I measure intraday option
returns from 09:45 to 16:15 and overnight returns from 16:15 to 09:45.> Measuring open prices
after a 15 minute gap reduces potential bias from illiquid open quotes. Returns are delta-hedged
at the start of the respective period. I show robustness of my findings to different methods for
calculating delta.

The comparison between puts and calls highlights the importance of intermediary inventory
risk over non-trading periods, as opposed to a general hedging friction. Both puts and calls are sold
by some market participant, who then potentially faces un-hedgeable risk from market illiquidity.
Yet, only puts exhibit more negative returns over nights and weekends, so only sellers of puts are
compensated for increased risk. This can be explained with the intermediary short position in
puts and the resulting downside intermediary gap risk.

I regress option returns on options’ lagged shadow gamma, and find that shadow gamma
predicts option returns over nights, but not over days. This predictability is largely driven by
the high shadow gamma of out-of-the-money puts, which tend to experience the most negative
average returns. The predictive power for night returns is highly significant, with ¢-stats exceeding

5, while there is no corresponding predictability of day returns. The option return predictability

SRegular equity trading hours are 09:30 to 16:00 (E.T.), Monday to Friday, and the relatively illiquid pre-market hours
cover only 04:00 to 09:30, while post-market hours cover 16:00 to 20:00. There is no equity trading on the major U.S.
stock exchanges between 20:00 and 04:00. Equity futures trade almost 24 hours a day from Sunday 18:00 to Friday 17:00,
but overnight volumes are reduced by an order of magnitude, especially between 20:00 and 04:00, when the major stock
exchanges are closed. S&P 500 option trading hours are 09:30 to 16:15 and thus almost identical to equity trading hours.



Figure 1: Increasing Equity Trade Volume Lowers the Option Risk Premium
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Note: This figure shows cumulative returns of S&P 500 put options. The top blue line cumulates returns from Monday to
Friday, the bottom red-line cumulates returns from Friday to Monday. Returns are measured between trading days’ market
close at 16:15 (E.T.) and delta-hedged at the beginning of the respective period. The Monday to Friday return is the average
over the four returns between Monday close and Friday close. Returns are in logs and are scaled to the same 10% annualized
volatility. The vertical line indicates the emergence of overnight equity trading around 2006.01.

suggests that negative option returns compensate the seller for the risk from shadow gamma, and
the elevated predictive power over nights suggests that shadow gamma derives its’ importance

from equity illiquidity.

Increasing equity liquidity leads to less negative option returns. Finally, I exploit the
increase of overnight equity trading around 2006 to study the impact of equity liquidity on option
returns. Several market changes around 2006, like the adoption of regulation “national market
systems” (nms) and the acquisition of major “electronic communication networks” by the Nyse
and the Nasdaq, increased overnight equity trade volumes between Mondays and Fridays, but
left the weekend period largely untradable. This emergence of overnight equity trading yields a
treatment group (Monday-to-Friday option returns) and a control group (Friday-to-Monday option
returns). I find that around 2006 the treatment group option returns become significantly less
negative, relative to the control group option returns. Figure 1 illustrates this result. A large and
persistent gap emerges between the cumulative returns of S&P 500 put options Monday to Friday

and Friday to Monday around the time when overnight equity trade volumes become meaningful.



These results relate to Dew-Becker and Giglio (2023), who show a decrease in the option risk
premium around the Great Financial Crisis. My decomposition of option returns into a night-
and weekend component suggests an explanation in the increasing liquidity of overnight equity

markets.

Contribution. This paper contributes to the literature on option returns. Black and Scholes
(1973) and Merton (1973) establish the risk-free rate as the benchmark for delta-hedged option
returns. Coval and Shumway (2001) and Bakshi and Kapadia (2003) show that delta-hedged
returns of equity index options are negative, especially for puts. Jones and Shemesh (2018)
and Muravyev (2016) show that option returns are especially negative over weekends and nights,
and provide explanations based on market mispricing. Jones and Shemesh (2018) show that
weekend returns could be explained if investors systematically underestimate the time decay in the
option value over weekends. Muravyev and Ni (2020) show that night returns could be explained
if investors systematically overestimate overnight equity volatility. I show that intermediaries’
exposure to gap risk can explain negative option returns, especially over weekends and nights.

This paper contributes to the literature on liquidity premia in options markets. Cao and Han
(2013) and Kanne, Korn, and Uhrig-Homburg (2023) show that stock option risk premia decrease
in the liquidity of the underlying stocks. Christoffersen, Feunou, Jeon, and Ornthanalai (2021)
estimate a model where the crash probability of the S&P 500 depends on its liquidity. I find that it
is the overnight il-liquidity of stocks that drives S&P 500 option returns, because of intermediaries
inventory gap risk.

Finally, this paper contributes to the literature on intermediary asset pricing. Haddad and
Muir (2021) and He, Kelly, and Manela (2017) show that intermediary constraints can explain
variation in returns across many asset classes. Du, Tepper, and Verdelhan (2018) show increased
cip deviations around quarter-ends, when banks face tighter capital requirements. Bollen and
Whaley (2004) and Garleanu, Pedersen, and Poteshman (2009) provide evidence that intermedi-
aries’ inventory risk can account for some of the risk premium in options. I document a new source
of unhedgeable inventory risk for option intermediaries: Gap risk. The day-night decomposition
of option returns suggests that intermediary gap risk explains most of the risk premium in S&P

500 options.



I. Markets and Data

This section outlines the market for S&P 500 options, and briefly discusses equity risk and equity
liquidity over day- and night periods. I conclude that differences in fundamental risk cannot
explain the concentration of the option risk premium over non-trading periods. Instead, I show
that the trade volume in equities and equity futures is substantially reduced at night, which, in
combination with intermediaries inventory, provides a potential explanation of the option risk
premium. The section briefly states data sources, while details on variable construction are in the

respective sections.

S&P 500 Options. This paper studies S&P 500 equity index options (SPX options), i.e., put-
and call options written on the S&P 500 equity index of U.S. large-cap stocks. SPX options are
exchange-traded exclusively on the Chicago Board Options Exchange (CBOE) and were initially
listed in 1983. While SPX option volumes were initially small, volumes have grown to about $2¢n
a year in 2023 and open interest has grown to about $2500n. Figure A.4 displays SPX options’
volume and open interest over time. The SPX options market is the worlds’ largest and most
liquid equity options market. The high option liquidity enables a return decomposition at high
frequency and the large market size makes SPX options an economically relevant market to study.

The original SPX options expired once a month on that months’ 3" Friday. Recently, the
CBOE has successively added SPXW options with different expiry dates.® When studying returns,
I restrict the sample to SPX options, in order to maintain a similar set of contracts over time.
When studying intermediary inventory, I consider both SPX and SPXW options, in order to
capture as many intermediary assets as possible with the data. SPX options are liquid across a
broad range of strike prices, which occur every $5. Liquidity is particularly high for out-of-the-
money options, which are puts (calls) with strike prices below (above) the current value of the
underlying index. SPX options are European, which can only be exercises at expiry. Table A.1

contains further contracts specifications.

S&P 500 Stocks. The S&P 500 equity index is a market-capitalization-weighted index of the
equity value of 500 U.S.-listed firms across a broad range of industries. Figure A.1 displays
cumulative S&P 500 returns over day- and night periods. Table A.1 displays the associated

5Specifically, the CBOE added weekly Friday expiries in 2011.09, Wednesday expiries in 2016.02, Monday expiries in
2016.08, Tuesday expiries in 2022.04, and Thursday expiries in 2022.05.



summary statistics. Day returns are calculated from 09:30 (E.T.) to 16:15, night returns are
calculated from 16:15 to 09:30, and both returns are calculated from trade prices. That is, I use
the S&P 500 Special-Opening-Quotation as the 09:30 price, and the index close value as the 16:15
price. Over the sample of 1996 to 2023, equity returns average 1.3 basis points during the day,
and 1.5 basis points during the night. Day returns are more volatile, with a standard deviation of
99 basis points, compared with 72 basis points for night returns. The lowest day return amounts
to —926bps and occurred during the GFC, while the lowest night return reached —1236bps and
occurred over a weekend during the covid crash. I conclude that fundamental equity risk is
comparable between nights and days and, if anything, is elevated during the day. Consistent with
Jones and Shemesh (2018) and Muravyev and Ni (2020), I conclude that differences in fundamental
risk cannot explain the day night variation in option returns.

Instead, the concentration of the option risk premium over non-trading periods can be explained
by the lower equity liquidity over such periods. S&P 500 futures volumes are low for most parts of
the night, relative to intermediaries’ liquidity demand. Figure 2 panel (a) shows the dollar trading
volume in S&P 500 E-Mini futures for each 30 minute interval of the day. In 1995 S&P 500 futures
began trading on the CME Globex electronic exchange. Trading hours followed the major U.S.
equity trading hours: 09:30 to 16:00. In 1997, S&P 500 E-Mini futures began trading on the
CME Globex platform, with trading hours from Sundays at 18:00 to Fridays at 17:00 and a daily
maintenance period from 17:00 to 18:00. Futures trade volumes are from Boyarchenko, Larsen,
and Whelan (2023), who sample the most liquid futures contract every day. Volumes over regular
trading hours are high, between $8bn and $15bn every 30 minutes. In contrast, overnight futures
volumes are low, especially between 20:00 and 04:00, when the underlying equities do no trade, and
futures trade volumes average about $250m every 30 minutes. I conclude that overnight trading
volumes for U.S. equities are small relative to the delta-hedging needs of option intermediaries.

The reduction of trade volumes over night is even more pronounced in equities than in equity
futures. To illustrate stock trading hours, figure 2 panel (b) shows the average trade volume of
Apple Inc. stocks for every 30-minute window of the trade day over my sample period of 2011
to 2023. There is no equity trading between 20:00 and 04:00 the subsequent morning. Trade
volumes are barely perceptible from 04:00 to 07:30, and slightly elevated from 07:30 to 09:30.
Trade volumes increase by orders of magnitude when stock markets open for regular trading at

09:30, with trade volumes following a U-shape from open to close. After-hours trading tends to
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be more liquid than pre-market trading, but volumes are still relatively small. There is no trading
over the weekend, as stock trading ends on Friday’s at 20:00 and resumes on Monday’s at 04:00.

Figure A.9 displays the daily trade volume of the S&P 500 constituents stocks. Daily trade
volumes were relatively low during the late 90s at around $20bn a day. Volumes increased around
2007 to more than $100bn a day, and have reached about $200bn a day after the 2020 Covid crisis.
According to industry reports, as of Q1 2021 about 0.27% of the trade volume in S&P 500 stocks

occurs during pre-market hours and about 0.12% occurs during post market hours.

Data Sources. From CBOE, I obtain SPX option prices and quotes at 15-minute intervals. Fur-
ther, I obtain the daily “Open Close Volume” files that allow for the construction of intermediary
positions. From OptionMetrics, I obtain SPX option prices and quotes at the daily frequency.
I obtain data on S&P 500 E-mini futures from Boyarchenko, Larsen, and Whelan (2023), who
sample tick-level data of CME traded futures contracts. I obtain data on risk-free rates from the
OptionMetrics IvyDB zero-curve file. Data on daily stock trading volume is from CRSP. High-
frequency stock volumes are from Reuters. Details on variable construction are in the respective

sections.

II. Intermediaries are Exposed to Gap Risk

This section shows that intermediaries’ option inventory exposes them to gap risk. Gap risk is
the risk of overnight equity price changes. To that end, I document intermediaries’ buy- and sell
trades in S&P 500 options and cumulate these trades into positions. In call options, intermediaries’
buy- and sell volumes are remarkably balanced, while in put options, intermediaries’ sell volumes
consistently exceed buy volumes. As a result, the intermediary sector has a persistent short
position in puts, while the position in calls fluctuates around zero. Due to this inventory, the
intermediary sector is exposed to gap risk: If the S&P 500 drops by 10%, intermediaries option
inventory looses about $1.56n in value. Continuous delta-hedging could prevent such losses, but I
estimate that this would require selling about $15bn worth of stocks, far exceeding the overnight
equity trade volumes that are discussed in the previous section. Finally, I show that intermediaries’
inventory gamma fails to capture their exposure to gap risk. Instead, I propose shadow gamma

as a risk measure.



II.LA. Option Trades: Intermediaries Sell Puts

A major advantage of the S&P 500 index options market for the study of intermediary asset
pricing is the availability of comprehensive trade data. S&P 500 index options trade exclusively
on the Chicago Board Options Exchange (CBOE) and the CBOE makes datasets commercially
available that allow for the daily measurement of the options position of the intermediary sector.
Intermediaries’ options position provide information on their risk exposures and risk management.
Data: Trade Volume by Trader Type. I obtain “Open-Close Volume files” from the CBOE.
These files split daily option volumes by contract (puts vs calls, expiry date and strike price), by
trader group (“market maker”, “broker-dealer”, “firm”, “customer” and “professional customer”),
and by volume type (volume bought vs volume sold). Throughout the paper, I refer to market
makers as intermediaries. I focus on the sample periods of 2011 to 2023. Prior to 2011, market
makers are not separately identified in the Open-Close Volume files, but have to be imputed as
the counterparty to firms and customers. Focusing on the post 2011 period has the added benefit
of increased option liquidity, which yields more reliable estimates of the option risk premium at
high frequency. S&P 500 options have a contract multiplier of 100, i.e., one option is written on
100 units of the underlying asset. To aid interpretability, I adjust units such that one option is
linked to one unit of the underlying, i.e., I multiply all option volumes and positions by 100.

Table II shows intermediaries’ daily trade volume in S&P 500 options. Intermediaries buy
an average of 29.1 million puts a day, while they sell about 30.3 million puts a day. Thus, the
intermediary sector experiences net-buys of —1.2 million puts a day, where net-buys are calculated
as NetBuys, = Buys: — Sells! of option i over day t. In contrast, the average intermediary buy-
and sell volume in call options is almost identical at 17.5 million contracts a day, leading to

intermediary net-buys in call options of approximately zero.

Who buys puts? The literature suggests that intermediaries’ negative net-buys in S&P 500
put options stem largely from sophisticated investors’ hedging demands. Lemmon and Ni (2014)
link equity index option trading to this motive, while they argue that trading in equity options
(options on single stocks) is mostly driven by retail investors. Bollen and Whaley (2004) argue
that institutional investors hold long positions in index put options as portfolio insurance. Chen,
Joslin, and Ni (2019) interpret customers demand for put options as an indication for their aversion

to economic crash risk. Goyenko and Zhang (2019) find end-user buying pressure in S&P 500 put
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options, but selling pressure in S&P 500 call options. In summary, various types of institutional
investors demand equity index put options and there is no natural counterparty to supply such

options. As a result, intermediaries hold short put positions in their inventory.

II.B. Option Positions: Intermediaries are Short Puts
I cumulate intermediaries’ daily net-buys of S&P 500 options into the intermediary position,
via:

. S Buys, — Sellsi if t < Expiry
NetPosition; = = ; ‘ (1)

0 if t > Expiry

where k is a time index from the beginning of my sample to the end of the current day ¢. l.e.,
intermediaries’ Net Position! in option i at the end of day ¢ is calculated as the cumulative sum over
all past daily intermediary NetBuys:. Thus, NetPosition: is the number of contracts of option i
that intermediaries are long minus the number of contracts of option ¢ that intermediaries are short.
Since options are regularly listed and subsequently expire, this cumulation yields intermediaries’
option inventory after a burn-in period. I choose a burn-in period of six months and thus arrive at
my sample period of 2011.07 to 2023.08. After expiry the intermediary net position drops to zero.
Figure A.10 contains a numerical example regarding the estimation of intermediaries’ net-position.

Figure A.2 shows the time series of intermediaries’ net-position in S&P 500 puts and calls.
Intermediaries’ position in call options oscillates between +10m contracts and —10m contracts,
without any systematic pattern over most of the sample. Intermediaries’ zero net-position in calls
can explain why call returns are generally insignificant and do not vary between nights and days.

Intermediaries’ position in puts is markedly different than their position in calls. In July
2011 intermediaries have a short position in about 20 million puts. This short position gradually
increases to around 50 million contracts in early 2018. Subsequently, intermediaries’ net-position
oscillates at around —10 million contracts. Intermediaries’ short put position can explain why
put returns are generally negative and are significantly more negative overnight, where hedging
frictions are elevated. Intermediaries’ put position is negative on the vast majority of days, but

experiences a significant shift in early 2018, which I address in the “inventory risk management”
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paragraph below.

Table III shows intermediaries’ position in S&P 500 put options across option portfolios. I sort
options into portfolios by moneyness and days to expiry at market close and report intermediary
positions across portfolios. Options are re-assigned at the next market close. Intermediaries short
position of on average about 20 million puts is concentrated in short-maturity, out-of-the-money
options, where I find a short positions of about 14 million contracts. In the next section, I show
that short-maturity, out-of-the-money puts are the options that are most risky to hold when stocks

are illiquid, and they are also the options where most overnight option returns materialize.

II.C. Intermediaries’ Inventory Risk Management

Intermediaries sell more puts during times when equity market volatility is relatively low,
suggesting that (i) intermediaries actively manage their options inventory and (i7) that equity
market risk is a meaningful part of intermediaries inventory risk. The first example of this is
the change in intermediaries’ short put position around 2018 that is visible in figure A.2. Figure
A.7 shows the time series of S&P 500 index volatility, measured as the annualized volatility of
daily close-to-close returns of the S&P 500 index over a rolling 365 day window. Realized S&P
500 volatility is unusually low leading into 2018 and is persistently higher afterwards.” Thus,
intermediaries carry a smaller short put position in their inventory after 2018, but each option
exposes them to more risk, due to the higher return volatility of the underlying. Gruenthaler (2022)
finds that option intermediaries manage their net-vega exposure in anticipation of spikes in implied
volatility. I find evidence that intermediaries manage their equity market risk. The importance
of equity market risk for intermediaries’ inventory risk is consistent with the interpretation that
option risk premia materialize overnight because obstacles to delta-hedging expose intermediaries
to equity market risk.

Intermediaries’ inventory risk management in the face of equity market risk is visible in their
trades. Figure 3 shows a binscatter plot for intermediaries’ daily net-buys for 20 bins of lagged
realized volatility of the underlying S&P 500 index. The figure shows that intermediaries sell
more puts when equity market risk is relatively low. For example, when lagged S&P 500 return

volatility is around 5, intermediaries sell an average of 3.4 million put options a day. In contrast,

"February 5" 2018 marks the event that traders refer to as “Volmageddon”. Augustin, Cheng, and Van den Bergen
(2021) describe the event.
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when lagged S&P 500 return volatility is around 17, intermediaries sell an average of only 1
million put options a day. The relationship between equity market risk and intermediary net-buys
is almost monotonous, though the figure suggests a relationship that is logarithmic rather than
linear. Of course, this figure does not show whether trades in puts are driven by variation in
intermediary supply or customer demand. It is possible that customers demand more put options
when equity markets are calm. However, this seems less intuitive from a risk perspective than the
other side of the argument, that intermediaries are more willing to sell puts when equity markets

are calm.

II.D. Intermediaries’ Exposure to Gap Risk

Figure A.3 illustrates the main mechanism in this paper: The need to adjust the delta-hedge
on a short put position when the price of the underlying changes, and the large risk on such a
short put position if one fails to do so. The black line shows the final payoff of a short position
in a hypothetical put option with strike 5000, over different possible final prices of the underlying
asset. The red curve shows the current value of the short put position, following the Black-Scholes-
Merton pricing model, where time to expiry is 7 days and the expected equity return volatility is
30%. The right pink line shows the options’ delta at a stock price of 5200, the left pink line shows
the options’ delta at a stock price of 4800. Assume an initial underlying value of 5200, leading
to a Black-Scholes-Merton option price of about $20 and a delta of about 0.2. Assume now that
the underlying price drops continuously to 4800. The Black-Scholes-Merton option price rises to
about $219 and delta rises to about 0.9. The un-hedged return on a short put position in this
setting amounts to —995%. An initial delta-hedge would have limited the loss to —658%, but
would have required shorting $884 worth of stocks. A continuously adjusted delta-hedge would
have let to a risk-free return at the risk-free rate. However, this would have required continuous
selling of $3484 worth of stocks. This illustrates: Delta-hedging is of first-order importance for
option hedging and delta-hedging requires the trading of large amounts of equities for relatively
small option positions.

I exploit intermediaries’ option positions to estimate their exposure to equity market risk.
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Specifically, I estimate the Profit and Loss (PnL) of intermediaries’ option positions, as:

I
ﬁn\LtH = Z Net Position! x ]3ti+1 — P — Al x (S/P?(Hl — SPX,)|, (2)
i=1
where @H—l is the estimated PnL over period ¢+ 1, Net Position! is intermediaries’ net-position
in option 7 at the end of day ¢ as derived above, ﬁt’ .1 is the estimated market price of option ¢, A} is
the delta of option 7, and SPX 11 1s the estimated value of the S&P 500. Thus, I estimate the PnL
that the intermediary sector will incur under different scenarios for P and SPX. This estimation
approach is very flexible as it can accommodate any dynamics for P and SPX. However, the
estimation requires some assumptions. Estimating future option prices as a function of the price
of the underlying requires an option pricing model. In the spirit of simplicity, I choose the Black-
Scholes-Merton model. The choice of pricing model is likely immaterial for the results in this
paper, as long as the value of the option is a convex function of the value of the underlying, such
that changes in the price of the underlying change the options’ delta. To estimate the PnL, I
assume that intermediaries are initially fully delta-hedged, but subsequently do not adjust their
option positions or hedges, which captures intermediaries’ risk exposure over nights and weekends,
when equity market liquidity is low.

To estimate ﬁn\LtH in equation 2 from e.g., a —10% return in the underlying S&P 500 index,
I estimate f’; '+, as the Black-Scholes-Merton price of option i at the end of period ¢ + 1, assuming
that o},, = o} and SPX 11 = SPX; x 0.9, where o describes options’” implied volatility relative
to the Black-Scholes-Merton model. I.e., I change one market variable, while holding the other
constant. In practice, equity market returns and volatilities are negatively correlated.

Figure 4 illustrates intermediaries’ exposure to equity price gap risk. The figure shows the
estimated profits from intermediaries’ option portfolio for different hypothetical returns of the
underlying S&P 500, assuming initial delta-hedges that are subsequently not adjusted. The figure
shows that, for example, a —10% return in the S&P 500 index would lead to a loss of about $1.5bn.
The losses accrue from price increases on short positions. The estimates do not account for the
empirically negative correlation between equity market returns and options’ implied volatility.
Accounting for this correlation would lead to even higher option prices and larger losses on inter-

mediaries’ short positions. The estimated PnL for a 0% return in the S&P 500 is comparably small
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at $2.5m and stems from the time-decay of the option value. That is, the estimation does not
account for the empirically large option risk premium, and thus does not display the intermediary
profits that materialize when absolute equity returns are small.

Figure A.11 illustrates intermediaries’ exposure to equity price gap risk, following the method
above, but assuming no (initial) delta hedges. The resulting market exposure looks remarkably
similar to the estimates above. I conclude that intermediaries’ option position is well balanced
against small equity price moves. There is little need for delta-hedging with equities as long as
the stock returns stay between about —3% and +3%. Only in case of large (negative) equity
market returns will intermediaries need to continuously delta hedge in order to avoid losses on
their options inventory. These findings are consistent with Hu, Kirilova, and Muravyev (2023),
who study Korean data and find only little delta-hedging by option intermediaries. My results
suggest this is because intermediaries’ option inventory is well balanced against small equity price

moves.

II.LE. Intermediaries’ Liquidity Demand for Delta-Hedge Adjustments

How much would intermediaries need to trade in the underlying S&P 500 index component
stocks in order to remain delta-hedged during an equity market crash? To answer this question,

I estimate intermediaries’ liquidity demand as:

[ntermfz’q\DemandtH = i NetPosition! x [ﬁiﬂ - A;] x SPXy, (3)
i=1

where [ nterm@emandt 41 is the estimated dollar trading volume that would keep intermedi-
aries’ option positions delta-hedged, Net Position! is intermediaries’ net position in option 4 at the
end of day t as estimated above, A@ 1 is the estimated delta of option 7 and SPX; is the value of
the S&P 500 index. A! is options’ Black-Scholes-Merton delta, with o? set equal to the options’
Black-Scholes-Merton implied volatility. ﬁi 41 is estimated as options’ Black-Scholes-Merton delta,
where atiH = o} and SPX,,; = SPX; x u, where u takes values of [0.85,0.9, ..., 1.15] to simulate

S&P 500 returns of [—15%, —10%, ..., 15%).
Intermediaries’ liquidity demand for the adjustment of delta-hedges amounts to billions of

dollars. Figure 5 shows the estimated intermediary liquidity demand from equation 3 for different
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hypothetical returns of the underlying S&P 500 index. The figure shows that, if the underlying
index experiences a —10% return, intermediaries would need to sell about $15bn worth of equities
to remain delta hedged. This liquidity demand far exceeds typical trade volumes in equities and
futures between 20:00 and 04:00. As a result, intermediaries face large constraints on their hedge
adjustments over night periods, exposing them to significant inventory risk.

The estimation of intermediaries’ liquidity demand likely provides a lower bound. Investor
demand for puts likely leads to intermediary short positions in options beyond S&P 500 options,
which are the focus of this study. In addition, options’ delta increases in the expected volatility
of the underlying and expected volatility usually spikes in times of large negative equity market

returns.

II.F. Intermediaries’ Shadow Gamma

I show that intermediaries’ gap risk results from options’ shadow gamma, not from the common
option risk measure gamma. Gamma, measures the curvature in the option value function, and, as
such, measures the degree to which delta-hedges become imperfect when the price of the underlying
changes. However, over my main sample from 2011 to 2023, the total gamma in intermediaries
inventory oscillates around zero and is - if anything - positive. A positive inventory gamma suggests
profits from equity price changes, not losses. The reason why gamma fails as a risk measure for
intermediaries’ option position is that dealers’ most pronounced position is a short-position in
deep out-of-the-money puts, which experiences large losses in case of an equity market crash, but
contributes little to intermediaries inventory gamma, since gamma is close to zero for deep-out-of-
the money options. Instead, I find that intermediaries carry large negative shadow gamma. That
is, intermediaries’ inventory is well balanced against small equity price changes, but if the equity
price changes by a large amount, then there will be inventory gamma, equity market risk and
inventory losses.

I estimate intermediaries’ inventory shadow gamma as:
. I
IntermShadowGammag 1 = Z NetPosition; x ShadowGammaj, (4)
i=1

where NetPosition! is as defined above and ShadowGamma} measures the gamma of option i at
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time ¢ in case of some equity market return, which I estimate on the interval of [-15%, ..., 15%].

Figure 6 displays intermediaries’ inventory shadow gamma for different hypothetical returns
of the S&P 500. The intermediary gamma at a hypothetical S&P 500 return of 0, shows interme-
diaries’ average current inventory gamma. As indicated above, this value is positive, indicating
intermediary profits from S&P 500 returns, and thus failing to capture the intermediary inventory
risk over nights and weekends. For both positive and negative S&P 500 returns, the estimated
shadow gamma is negative, which captures the expected losses from intermediaries’ short put
position in case of a large negative S&P 500 return.

My approach to estimating intermediaries’ exposure to equity market risk is new to the liter-
ature. Since the work of Garleanu, Pedersen, and Poteshman (2009), the literature has focused
on intermediaries’ net-gamma and net-vega as measures of jump- and volatility-risk respectively.
Net-gamma is the sum-product of intermediaries’ net positions across options contracts and those
options’ gamma. Gamma is a “Greek” option risk-measure that approximates the change in delta
from changes in the price of the underlying.® Thus, intermediaries’ net-gamma approximates the
degree to which intermediaries’ need to adjust their delta-hedges due to small underlying price
changes. Net-gamma measures the local curvature of the value of intermediaries’ option portfolio
around the current price of the underlying, which approximates intermediaries’ risk from jumps-
and discrete trade time in the underlying, since jumps in the S&P 500 are small and sophisticated
investors can trade at very high frequency, i.e., since jumps and discrete trade time will leave the
underlying within a narrow range of its current value. Net-gamma cannot explain equity index put
option risk premia, since put option risk premia are especially pronounced in out-of-the-money
puts, while gamma is more pronounced in at-the-money puts. If gamma captured intermediaries’
primary risk exposure, then at-the-money puts should appear most expensive, which is rejected in
the data. In contrast, I provide evidence that intermediaries are exposed to the entire overnight
return in the S&P 500, even if there are no jumps in the S&P 500, due to the daily market close
of regular equity exchanges and the resulting overnight equity illiquidity. Thus, I explain why
out-of-the-money puts are especially risky for intermediaries and consequently why risk premia in

such options are especially pronounced.

8Gamma is the second derivative of the option price with regards to the price of the underlying. That is, gamma measures
the curvature of the option price function around the current price of the underlying.
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III. Options’ Shadow Gamma Predicts Overnight Option Returns

I estimate delta-hedged option returns over days, nights and weekends. Intraday option returns
are not significantly different from the risk-free rate. Option returns are more negative over nights
than days, and are more negative over weekends than nights. That is, the option risk premium
materializes when intermediaries are exposed to gap risk: over nights and weekends. Overnight

option returns are more negative in options with more shadow gamma.

III.A. Option Returns: Day vs. Night

I study delta-hedged option returns to prevent my analysis of option returns to be biased by the
equity risk premium. It is well known that call (put) options tend to experience positive (negative)
returns when the price of the underlying rises. Historically, U.S. equity returns have been positive,
leading to positive (negative) returns of call (put) options. Delta-hedging controls for this effect
and is standard-practice in options pricing research.’

I calculate delta-hedged option returns as:

pi_ B Pl = Ay x (SPX, — SPX,)) 5
! Pti—l 7

where R! is the return of option i over period ¢, P, is the price of option i at the end of period ¢, SPX
is the price of the S&P 500 index and A! , is the lagged delta of option 7. Thus, the numerator
consists of the dollar change in the option price minus the dollar change in the option price that
can approximately be explained by changes in the price of the S&P 500. The denominator consists
of the lagged option price only. Thus, the equation is based on the assumption that traders do
not require any capital to trade the S&P 500 index. This is a common approach in option pricing
research and a reasonable assumption due to the wide availability of liquid futures contracts during
regular exchange trading hours (Muravyev and Ni, 2020).

An options’ delta is the partial derivative of the option value function with regards to the price
of the underlying asset (A = 22). If an (out of the money put) option has a delta of —0.2 and
the S&P 500 rises by $1 then the option price should fall by approximately $0.2. Delta-hedging

would involve an initial long position in 0.2 units of the index, such that a trader gains $0.2 from

°E.g., Bakshi and Kapadia (2003) and Jones and Shemesh (2018), among many others.
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the hedge-position that offset the —$0.2 from the option position. The increasing value of the
underlying SPX likely lead to a less negative option delta of now for example —0.15. To stay
delta-hedged the trader will buy 0.05 units of the SPX, which can involve large dollar trades if
the price of the underlying is high, since delta is in units of the underlying. For example, when
the S&P 500 index value is at 5000, a small delta-adjustment of 0.05, involves a trade of $250.
This example highlights the aspect of delta and delta-hedging that is central to this paper. Delta-
hedging is of first-order importance to reducing the risk of an options portfolio, but delta is a
local linear approximation. Delta changes with the price of the underlying and a trader will have
to keep trading the underlying to remain delta hedged. This paper shows that overnight equity
volumes are too low for intermediaries to quickly adjust their delta-hedges, which exposes them
to unhedgeable inventory risk.

Delta-hedged returns of equity index options are highly negative, especially for deep out-of-the-
money short-maturity put options (e.g., Bakshi, Charles, and Chen (1997), Coval and Shumway
(2001) and Bakshi and Kapadia (2003)). In this section, I show that both these patterns are
specific to night periods. S&P 500 put option returns are negative overnight, but not intraday
and overnight put options returns are concentrated in short-maturity out-of-the-money puts, while

intraday put returns do not vary by moneyness or time-to-maturity.

Data: Option Returns. I obtain high-frequency options data from the Chicago Board Options
Exchange (CBOE). The dataset aggregates observations at the 15-minute frequency, such that the
first available observation is at 09:45 (E.T.), 15 minutes after the regular options market open,
and the last available observation is at 16:15, at the regular options market close. For each of
these intervals the dataset provides options’ bid quote, ask quote, and first-, last-, high- and low-
trade price. Further, the dataset provides option volume, open interest and pre-calculated risk
measures like delta and gamma. Andersen, Archakov, Grund, Hautsch, Li, Nasekin, Nolte, Pham,
Taylor, and Todorov (2021) provide a detailed description of high-frequency option price data for
U.S. markets.

To alleviate concerns of liquidity and data errors, I apply several filters to the data. I exclude
options with either a zero trade volume on any of the previous three days or a zero trade volume
at the start of the respective return period. Le., to be included in the night (day) portfolio an
option needs to be traded for three consecutive days and be traded between 16:00 and 16:15 (09:30
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and 09:45)) prior to the return period. I discard options with negative lagged bid-ask spreads or
zero lagged bids or lagged mid quotes below $0.05. I discard large hedged or unhedged reversal
returns (returns above 1000% immediately followed by —90% or vice versa). Finally, I discard
observations that violate no-arbitrage bounds. Merging with the positions data yields the main
sample period of 2011 to 2023.

I measure night returns from 16:15 to 09:45 (E.T.) and day returns from 09:45 to 16:15. I
measure open prices at 09:45 since my dataset groups options data into 15 minute intervals, which
has the added benefit of alleviating the concern of illiquid open quotes. Throughout the paper, I
use mid-quotes to measure prices. I delta-hedge option returns with S&P 500 E-Mini futures at
the start of the respective period, i.e., the delta-hedge for a night returns is set up at 16:15 and
subsequently not adjusted. I estimate options’ delta from the Black-Scholes-Merton model, where
I set the volatility of the underlying equal to the options’ lagged implied volatility relative to the
BSM model. T lag the implied volatility to avoid biases from the negative correlation between
market volatility and market returns. In robustness checks I show that my results are robust
to alternative delta calculations. Throughout the paper, I report option returns in excess of the
risk-free rate, which does not impact my results, since risk-free rates over the period of a few hours
are negligible.

Table IV shows summary statistics for delta-hedged option returns. Panel (a) contains out-of-
the-money put options, panel (b) contains out-of-the-money calls. Over my sample (2011.07 to
2023.08) S&P 500 put option experienced an average night return of —2.49%.'° The associated
Newey-West t-statistic exceeds 10. In contrast, put option intraday returns average only 0.39%.
The difference between night and day returns is highly significant. Panel (b) shows that S&P
500 call options experienced an average night return of 0.32% and an equal average day return.
Neither the night return, the day return or the difference between the two is significantly different
from zero for call options.

The appendix contains several robustness tests. Table A.4 reports bootstrapped standard
errors instead of Newey-West t-statistics. Table A.5 regresses the delta-hedged option returns
on contemporaneous returns of the underlying equity index and reports summary stats for the
resulting alphas. Table A.6 divides options’ implied volatilities by 1.3 as inputs into the delta

calculation to account for the volatility risk premium in implied volatilities. Table A.7 delta-

10 Average returns are not annualized. Option risk premia are very large relative to most other traded assets.
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hedges option returns via the pre-calculated deltas in the CBOE dataset.

Table V separates put returns by weeknights (that is Monday to Friday) and weekends (that
is Friday to Monday). Both returns are negative at a highly significant level, but weekend returns
are even more negative than weeknight returns. This is consistent with the intermediary gap risk
channel, since equity liquidity is especially low over weekends.

Table VI shows overnight S&P 500 put returns by option portfolio. Options are sorted into
a portfolio by moneyness and days to expiry at market close and held in that portfolio until the
next market open. Put option returns are heavily concentrated in short-maturity, deep out-of-the-
money options, where average night returns amount to —382 basis points. For comparison, longer
maturity deep out-of-the-money put options have night returns of only about —14 basis points
on average and short-maturity out-of-the-money puts have night returns of only about —85 basis
points. Table A.8 shows intraday S&P 500 put option returns by moneyness and time-to-expiry.
Across portfolios, intraday put returns are close to zero. This result suggests that option returns
vary along the dimensions of moneyness and time-to-expiry because of their different sensitivity
to (overnight) market illiquidity, which I explore below. Tables A.9 and A.3 show intraday and
overnight call option returns by moneyness and days-to-expiry. Corresponding to puts, intraday
call risk premia are insignificant across portfolios. Overnight call risk premia are significant only
for in-the-money options, due to their no-arbitrage relationship to out-of-the-money put options.
Since European puts and calls with the same contract specifications have to be priced consistently,

I generally restrict the sample to out-of-the-money puts and calls.

III.B. Regress Option Returns on Options’ Shadow Gamma

I estimate shadow gamma at the option level. Table VII contains portfolios of puts and calls
and shows the estimated gamma of these options after a hypothetical -10% S&P 500 return.
Close-to-expiry deep-out-of-the-money puts have a shadow gamma that is about 8 times larger
than longer maturity puts and more than 500 times larger than deep-in-the-money puts. Similarly,
the shadow gamma of puts is vastly higher than that of calls. Thus, the pattern in shadow gamma
across options lines up remarkably well with the pattern in overnight option returns discussed

above.
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To test the relationship between shadow gamma and option returns, I estimate the following

regression specification:
R! = Byl + B1ShadowGammal_, + B> x Night, + BsShadowGammal_, x Night; + €.,  (6)

where R;; is the return of option i over period ¢, ShadowGamma_, is the lagged option shadow
gamma for a S&P 500 return of (-15%, -10%, -5%), and Night is an indicator for night periods.
Option returns are at the option level over days and nights and delta-hedged at the start of the
respective period. Returns are in basis points. Shadow gamma is standardized to zero mean and
unit variance. Standard errors are clustered at the level of date x night.

Table VIII contains the regression results from Equation 6. The columns contain option shadow
gamma for a S&P 500 return of (-15%, -10%, -5%). Across columns, intraday option returns are
around 46bps and not significant. Overnight option returns are on average about 245bps below day
returns at a high level of significance. Shadow gamma has no predictive power for intraday option
returns. The predictive power of shadow gamma for overnight option returns is more negative at
a high level of significance. The comparison across columns suggests that gamma is more valuable
at more negative equity market returns, i.e. the -15% gamma carries a higher price of risk than

the -5% gamma.

IV. Increasing Equity Liquidity Reduces the Option Risk Premium

This section exploits the increase in overnight equity trading around 2006, to study the impact
of equity liquidity on the option risk premium. I show that substantial overnight equity trading
emerged only around 2006, when Nasdaq and Nyse acquired major electronic communication
networks, which presents an opportunity for a difference-in-differences estimation: Intra-week
option returns are substantially less negative relative to weekend returns after the emergence of
overnight equity trading. In this section, I compare option returns from Monday to Friday and
Friday to Monday, instead of comaring day returns to night returns, to obtain robust return

estimates over the sample of 1996 to 2023.
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IV.A. The Growth of Overnight Equity Trading

The institutional details for overnight equity trading developed gradually. In 1991, the New
York Stock Exchange introduced its first off-hours trading sessions. In 1998, regulation ATS (Al-
ternative Trading Systems) distinguished ATS from registered exchanges, and increased reporting
requirements, thus prompting ECNs (Electronic Communications Networks) to merge and register
as exchanges. In 2001, Archipelago Electronic Communications Network and the Pacific Exchange
merged to create ArcaEx, the first totally electronic stock exchange. In 2005, NYSE Hybrid Mar-
ket was launched, creating a blend of floor-based auction and electronic trading. In 2006, New
York Stock Exchange became a public company and shortly thereafter acquired Archipelago ECN.
In connection with this, the NYSE eliminated the open outcry system on the floor. In 2005, in
order to regain the competitive advantage lost to the rise of ECNs, Nasdaq held an initial public
offering and purchased Instinet shortly thereafter. In 2005.04 Nasdaq trading hours were extended
from 08:00 to 18:30 to 04:00 to 18:30. In 2006.09 Nasdaq extended trading hours further to 04:00
to 20:00, thus establishing the extended stock trading hours that are valid throughout my sample.

Meaningful overnight equity trade volume emerged some time around 2006. S&P 500 E-mini
futures were introduced in 1996, with trading hours close to 24 hours a day from Sunday evening
to Friday evening. Yet, overnight volumes remained low until the mid 2000s. Figure 7 illustrates
the emergence of overnight equity trading. Panel (a) shows the monthly average of the overnight
dollar trading volume of the most liquid S&P 500 E-mini futures contract. Panel (b) shows the
monthly average of the overnight dollar trading volume of the S&P 500 SPY ETF. Both volume
series take off only around 2006. While the ETF volume is low relative to the futures volume,
it is still a relevant series to examine, since the emergence of overnight ETF trading signals the
emergence of overnight stock trading, with significant volume at least in large-cap stocks.

The increase in overnight equity trade volume relative to over-weekend trade volume offers
a rare opportunity to study the effects of market liquidity on asset returns. Intra-week returns
constitute the treatment group, since they include the weeknight periods where equity trading
emerged, and weekend returns constitute the control group, since they include a period of more
than 48 hours, where both equity- and equity futures exchanges remain closed, and trade volumes
remain unaffected. As a result, if equity liquidity affects the option risk premium, then week-

night option returns should become less negative relative to weekend option returns around the
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emergence of week-night equities trading. Unfortunately, high-frequency options data for the late
90s and early 2000s are either unavailable or illiquid. Thus, I take a different approach, that
uses widely available options data and circumvents the issue of potentially biased intraday option
returns over the low-liquidity sample.

Data: Option Returns Intra-Week and Weekend. 1 obtain daily option data from Option-
Metrics, which is the standard dataset for option pricing research. OptionMetrics aggregates
option trades at the daily frequency, such that all available observations are at 16:00. I obtain
option’s bid quote, ask quote, and delta. While OptionMetrics applies a proprietary method for
calculating options’ deltas, their deltas are typically close to Black-Scholes deltas where sigma is
set equal to the options implied volatility. To alleviate concerns of liquidity and data errors, I
apply several filters to the data. I exclude options with a zero trade volume on any of the previous
three days. I discard options with negative lagged bid-ask spreads, lagged bids of 0, lagged mid
quotes below $0.05 or lagged spreads above $10. I discard large hedged or un-hedged reversal
returns (returns above 1000% immediately followed by —90% or vice versa). Finally, I discard

observations that violate no-arbitrage bounds.

IV.B. The Change in the Option Risk Premium

In order to study the option risk premium around the emergence of overnight equity trading,

I estimate the following regression specification:
R: = By IntraWeek, + B Post, + B3 IntraWeek;, x Post, + €., (7)

where R! is the return of a portfolio of out-of-the-money puts, IntraWeek; is a dummy for close-
to-close returns that are not Friday to Monday, Post; is a dummy for the period after treatment.
I compare intra-week option returns to weekend option returns. Weekend returns are measured
from Friday 16:00 to Monday 16:00, intra-week returns comprise of all other daily close-to-close
returns. Returns are delta-hedged at the beginning of the respective period. Since the emergence
of overnight equity trading cannot be attributed to any specific year, I provide regression estimates
with post dummies between 2004 and 2008.

Table IX shows regression estimates of equation 7. Column (1) shows that the average weekend

24



return before 2004 was —168bps and intra-week returns were higher by 34bps, tough not signifi-
cantly different. After 2004 the average weekend put return changes by —328bps, while average
intra-week put returns changes by 395bps. The crucial coefficient for the diff-in-diff estimation
is the interaction of treatment group dummy “IntraWeek” with treatment dummy “Post”, which
shows relatively less negative option returns over periods where equity trade volume has experi-
enced a relative increase. For robustness, the subsequent columns repeat the estimation for Post
dummies in 2005.01 to 2008.01. Across columns, intra-week option returns are significantly less
negative relative to weekend returns after the treatment. These results suggest an impact of equity
liquidity on the option risk premium, likely through dealers’ inventory risk. As I argue in this
paper, dealers’ inventory risk is related to equity liquidity, since low equity trade volumes impede
dealers’ ability to continuously adjust their inventory delta-hedges.

The increase in the weekend risk-premium over the Post period, that is visible in the second row
of the table, is possibly caused by the 2008 Global Financial crisis, that occurred immediately after
the emergence of weeknight equity trading. Risk-premia across asset classes were substantially
suppressed ahead of the 2008 GFC and the increase in the weekend option risk premium after
2008 possibly reflects increased investor attention to risk.

Figure 1 illustrates the change in the option risk premium around the emergence of week-night
equity trading. The figure plots the cumulative log returns of out-of-the-money S&P 500 puts
over intra-week and weekend periods. The Monday to Friday return is the average over the four
returns between Monday close and Friday close. Returns are scaled to the same 10% annualized
volatility. Cumulative scaled log returns of out-of-the-money puts are similar over weeks and
weekends before 2006, which is indicated with the vertical line. Afterwards, a large and persistent
gap emerges between the two cumulative return series.

Table X presents regression estimates for equation 7, but includes the returns of the four out-of-
the-money put portfolios and four out-of-the-money call portfolios, with breakpoints as in tables
VI and A.3. This estimation allows for the inclusion of a dummy OtmPuts that indicates the
portfolio of deep-out-of-the-money close-to-expiry puts. Across columns, the table shows that the

change in option returns is elevated in those options where gap risk is concentrated: OtmPuts.
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V. Conclusion

This paper shows that intermediary inventory and equity il-liquidity can explain most of the option
risk premium. Option returns are negative on average, indicating the presence of an option risk
premium. These negative option returns materialize largely over nights and weekends. I find
that, due to their options inventory, intermediaries bear inventory gap risk, the risk of equity
price changes over nights and weekends, when equity il-liquidity impedes an adjustment of equity
market (delta) hedges. Thus, intermediary inventory risk can explain the option risk premium.
Intermediaries appear as the marginal seller of options, and, ahead of a night or weekend, they sell
options only at high prices, in anticipation of the inventory gap risk that they will have to bear.

My results have two implications. Regarding the functioning of the options market, my results
imply that security market design has a large impact on the option risk premium. Regulators
who want to lower hedging costs for option market customers should consider the potentially
beneficial impact of around-the-clock market liquidity. Regarding the interpretation of the option
risk premium, my results suggest that option returns reflect a combination of customer- and

intermediary risk preferences.
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VI. Figures

Figure 2: Equity Trade Volume Around the Clock
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Note: This figure shoes that equity trade volume is relatively small for most parts of the night. The figure shows average
trade volumes for each 30-minute interval of the day. Panel (a) contains the most liquid S&P 500 E-mini futures contract,
panel (b) contains Apple Inc. stocks, to provide an idea of overnight trade volumes in stocks themselves. The sample period
is 2011 to 2023.
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Figure 3: Intermediary Put Trading By Lagged Equity Return Volatility
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Note: This figure shows that intermediaries sell more puts when equity markets are less volatile. The figure shows dealers’
net-buys of puts for different groups of lagged S&P 500 index return volatility. Net-Buys are the daily number of S&P 500
puts bought minus the number of S&P 500 puts sold. Volatility is measured for a rolling window of 10 daily close-to-close
returns and is lagged by one day. The sample period is 2011 to 2023.
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Figure 4: Expected Dealer Profits for Hypothetical Stock Returns
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Note: This figure shows that dealers are exposed to overnight equity price gap risk. The figure shows estimated profits of
intermediaries’ option inventory for different hypothetical overnight returns of the underlying S&P 500 equity index. Option
returns are delta-hedged, but hedges are not adjusted. The shaded area shows the 95% confidence interval. The sample
period is 2011 to 2023.
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Figure 5: Expected Intermediary Liquidity Demand
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Note: This figure shows dealers’ liquidity demand for the adjustment of delta-hedges. Dealers’ liquidity demand is estimated
for different hypothetical returns of the underlying S&P 500 index via equation 3. The sample period is 2011 to 2023.
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Figure 6: Intermediary Gamma and Shadow Gamma
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Note: This figure shows dealers’ liquidity demand for the adjustment of delta-hedges. Dealers’ liquidity demand is estimated
for different hypothetical returns of the underlying S&P 500 index via equation 4. The sample period is 2011 to 2023.
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Figure 7: The Time Series of Overnight Equity Trade Volume
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Note: This figure shows that S&P 500 Night Trade Volume Became Meaningful Around 2006. Panel (a) shows the monthly
average of the overnight trade volume in the most liquid S&P 500 E-mini futures contract. Panel (b) shows the monthly
average of the overnight trade volume in the S&P 500 SPY ETF. Overnight trade volume is measured between 16:00 and
09:30 and displayed in billion dollars.
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VII. Tables

Table I: S&P 500 Equity Returns

Mean Std Min P1 P50 P99 Max
DayReturn 1.3 99.4 -926.2 -275.1 4.2 279.7 817.8
NightReturn 1.5 71.6 -1,235.7 -218.1 3.9 190.5 585.8

Note: This table displays summary statistics for S&P 500 equity returns. Day returns are from 09:30 to 16:15 (E.T.), night
returns are from 16:15 to 09:30, and both are calculated from trade prices. Returns are in basis points. P1 indicates the
first percentile. The sample period is 1996 to 2023.

Table II: Intermediaries’ Option Trade Volume

Mean Std P10 P50 P90
Panel (a): Puts
Buys (No. m.) 29.1 12.7 15.9 26.3 46.8
Sells (No. m.) 30.3 12.6 16.6 28.0 473
Net Buys (Buys - Sells) -1.2 2.2 -3.8 -1.1 1.0
Panel (b): Calls
Buys (No. m.) 17.5 7.3 9.8 15.8 27.8
Sells (No. m.) 174 7.3 9.6 15.7 27.8
Net Buys (Buys - Sells) 0.1 1.0 -1.1 0.1 1.3

Note: This table displays summary statistics for dealers’ daily trade volume in S&P 500 options, separated by buy volume
and sell volume. Trade volume is in millions of contracts. Panel (a) contains puts, panel (b) contains calls. The sample
period is 2011 to 2023.
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Table III: The Cross-Section of the Intermediary Net-Position in Puts

Days to Expiry

2-70 71- All
0.00 < |A| <€ 0.25 Deep Out of the Money -13.54 -3.32 -16.86
0.25 < |A| < 0.50 Out of the Money -0.47 -1.47 -1.94
0.50 < |A| < 0.75 In the Money 0.38 -0.07 0.32
0.75 < |A| < 1.00 Deep In the Money 0.47 0.17 0.63
All -13.15 -4.70 -17.85

Note: This table shows dealers’ net position in S&P 500 put options by moneyness and days to expiry. Dealer net position
is the number of contracts that dealers are long minus the number of contracts that dealers are short. Section II describes
the variable construction. Numbers are in millions. The sample period is 2011 to 2023.
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Table IV: Option Returns over Nights and Days

Mean t-stat Std Skew P10 P50 P90
Panel (a): Puts
Night Return (%) -2.49 -10.34 12.40 9.31 -12.66 -2.50 6.30
Day Return (%) 0.39 1.49 13.51 5.02 -10.38 -1.56 34.64
Night minus Day Return (%) -2.88 -7.28 18.48 0.62 -19.15 -1.34 11.95
Panel (b): Calls
Night Return (%) 0.32 0.64 27.72 10.13 -16.71 -2.41 18.44
Day Return (%) 0.32 0.65 22.75 4.89 -17.03 -3.06 56.58
Night minus Day Return (%)  0.00 0.01 36.38 2.86 -28.60 0.51 25.87

Note: This table shows that put option returns are significantly more negative over nights than days, while there is no such
difference for call option returns. Panel (a) shows summary statistics for S&P 500 put option returns, panel (b) contains
calls, and both groups are restricted to out-of-the-money options. Within each panel, row 1 (2) contains returns between
16:15 and 09:45 (09:45 and 16:15). Returns are in percent and delta-hedged at the beginning of the respective period. The
sample period is 2011 to 2023.

Table V: Option Returns over Weeknights and Weekends

Mean t-stat Std Skew P10 P50 P90
Weeknight Return (%) -2.26 -8.49 12.50 10.75 -11.78 -2.17 6.45
Weekend Return (%) -3.53 -6.38 11.93 2.06 -14.11 -4.46 5.42
Weekend - Weeknight (%) -1.27 -2.07

Note: This table shows that put option returns are more negative over weekends, relative to weeknights. Returns are
measured from 16:15 to the subsequent 09:45 and are delta-hedged at the beginning of the respective period. Returns are
in percent. The sample period is 2011 to 2023.
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Table VI: The Cross-Section of Night Put Returns

0.00 < |A| < 0.25
0.25 < |A| < 0.50
0.50 < |A| < 0.75
0.75 < |A] < 1.00

All

Deep Out of the Money

Out of the Money

In the Money

Deep In the Money

Days to Expiry

2-70 71- All
-381.7 -14.4 -300.6
(—10.9) (—0.8) (—9.9)
-85.4 -22.7 -69.3
(—5.0) (—4.7) (—6.2)
-56.8 -20.1 45.1
(—5.0) (—4.1) (—4.6)
-68.4 -58.9 -62.7
(—4.0) (—1.6) (—4.0)
-292.1 -19.6 -228.4
(—11.0) (—1.6) (—10.1)

Note: The table shows average S&P 500 put returns for eight portfolios, sorted by days to expiry and moneyness. Returns
are measured from option market close at 16:15 to the subsequent market open at 09:45. Returns are in basis points and
are delta-hedged at the beginning of the respective period. Newey-West t-statistics are in brackets. The sample period is

2011 to 2023.
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Table VII: Options’ Shadow Gamma, at -10%

Puts

0.00 < |A| < 0.25
0.25 < |A| < 0.50
0.50 < |A| < 0.75
0.75 < |A| < 1.00
All

Calls

0.00 < |A| < 0.25
0.25 < |A| < 0.50
0.50 < |A| < 0.75
0.75 < |A| < 1.00
All

Days to Expiry

Deep Out of the Money
Out of the Money

In the Money

Deep In the Money

Deep Out of the Money
Out of the Money

In the Money

Deep In the Money

2-70 71- All
1,207.6 176.0 1,464.7
132.5 109.9 245.0
23.0 21.8 45.4
2.2 1.6 3.9
1,365.4 310.3 1,762.8
5.4 9.6 15.2
28.4 41.6 70.8
73.7 52.8 128.0
130.8 17.5 155.8
252.6 121.6 392.5

Note: The table shows options’ shadow gamma. Shadow gamma is the expected option gamma, conditional on a hypothetical
return in the underlying asset. This table displays options shadow gamma for an S&P 500 return of —10%. Shadow gamma

is multiplied by 1000 for readability. The sample period is 2011 to 2023.
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Table VIII: Option Returns on Options’ Shadow Gamma

(-15%) (-10%) (-5%)
ShadowGamma 34.5 15.8 -8.4
(1.50) (0.70) (-0.35)
Night -247.0%** -247.0%** -240.4***
(-4.10) (-4.09) (-3.99)
ShadowGamma x Night -178.9*** -174.4%* -83.8%**
(-5.82) (-5.41) (-2.58)
Constant 46.0 46.5 46.8
(0.96) (0.96) (0.97)
Observations 3,225,692 3,225,692 3,225,692
R2-adjusted 0.00 0.00 0.00

Note: The table shows regression estimates of equation 6, where option returns are regressed on options lagged shadow
gamma. Columns 1,2,3 contain options shadow gamma for an underlying return of -15%, -10%, and -5% respectively. Option
returns are at the option level over days and nights and delta-hedged at the start of the respective period. Returns are in
basis points. Shadow gamma is standardized to zero mean and unit variance. Standard errors are clustered at the level of
date x night. The sample period is 2011 to 2023.
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Table IX: Put Returns around the Emergence of Overnight Equity Trading

04 05 06 07 08
IntraWeek 33.6 53.0 86.7 116.7** 181.2%**
(0.47) (0.80) (1.42) (2.02) (3.15)
Post -327.5*** -297 .2%** -264.5*** -249.7%** -214.3***
(-3.86) (-3.60) (-3.27) (-3.09) (-2.62)
IntraWeek x Post 395.0*** 387.1%** 355 8%+ 326.8*** 234.0***
(4.24) (4.28) (4.00) (3.68) (2.59)
Constant -168.0** -200.1%** -231.4%** -249.5%** -278.7***
(-2.55) (-3.30) (-4.17) (-4.80) (-5.66)
Observations 6,958 6,958 6,958 6,958 6,958
R2-adjusted 0.01 0.01 0.01 0.01 0.01

Note: The table presents regression estimates of Equation 7, where option returns are regressed on a dummy for intra-week
returns, a dummy for the period post emergence of overnight equity trading, and an interaction of the two. Option returns
are for the portfolio of out-of-the-money S&P 500 puts. Intra-week returns comprise of all daily close-to-close returns, except
Friday to Monday. Returns are in basis points and are delta-hedged at the beginning of the respective period. Column 04
(05, etc.) sets the treatment dummy in 2004.01 (2005.01, etc.). The sample period is 1996 to 2023.
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Table X: Option Returns around the Emergence of Overnight Equity Trading

04 05 06 07 08
IntraWeek 34.5 47.8 85.7 100.1* 134.4***
(0.52) (0.79) (1.53) (1.89) (2.65)
Post -166.1** -137.1* -84.4 -61.2 -33.7
(-2.16) (-1.85) (-1.17) (-0.85) (-0.47)
IntraWeek x Post 181.3** 171.2** 121.9 105.4 52.4
(2.19) (2.15) (1.57) (1.36) (0.67)
OtmPuts -288.3*** -308.2*** -307.3*** -316.1*** -351.9***
(-2.99) (-3.39) (-3.66) (-4.00) (-4.71)
IntraWeek x OtmPuts 39.9 56.3 61.7 93.0 177.0**
(0.38) (0.57) (0.67) (1.07) (2.05)
Post x OtmPuts -302.9** -289.0** -305.6*** -308.4*** -264.7**
(-2.53) (-2.47) (-2.68) (-2.74) (-2.35)
IntraWeek x Post 454 .9*** 454 7% 470.9*** 446.4*** 325.9%**
x OtmPuts (3.47) (3.55) (3.77) (3.60) (2.61)
Constant -70.1 -95.8* -134.7*** -151.8*** -169.8***
(-1.13) (-1.69) (-2.59) (-3.09) (-3.68)
Observations 54,842 54,842 54,842 54,842 54,842
R2-adjusted 0.00 0.00 0.00 0.00 0.00

Note: The table presents regression estimates for a variation of equation 7, where option returns are regressed on a dummy
for intra-week returns, a dummy for the period post emergence of overnight equity trading, and an interaction of the two.
This table contains an additional dummy for deep-out-of-the-money short-maturity puts. Option returns are for out-of-the-
money option portfolios (4 put portfolios and 4 call portfolios) with breakpoints as in tables VI and A.3. Intra-week returns
comprise of all daily close-to-close returns, except Friday to Monday. Returns are in basis points and are delta-hedged at
the beginning of the respective period. Column 04 (05, etc.) sets the treatment dummy in 2004.01 (2005.01, etc.). Standard
errors are clustered at the daily level. The sample period is 1996 to 2023.
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A.1. Appendix: Figures

Figure A.1: Cumulative S&P 500 Equity Returns
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Note: This figure plots cumulative returns of the S&P 500 equity index over day and night periods. Day returns are from
09:30 to 16:15 (E.T.), night returns are from 16:15 to 09:30. Returns are from trade prices.
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Figure A.2: Intermediaries’ Net-Position in Puts and Calls
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Note: This figure shows that dealers have a persistently negative net-position in S&P 500 put options. Panel (a) shows
the daily time-series of dealers’ net-position in S&P 500 puts, panel (b) shows calls. Dealers’ net-position is the number
of contracts that dealers are long minus the number of contracts that dealers are short. Section II describes the variable
construction. Net-positions are in million contracts.
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Figure A.3: Illustration: Delta-Hedge Adjustment on a Short Put Position
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Note: The black line shows the final payoff of a short position in a hypothetical put option, over different possible final prices
of the underlying asset. The red curve shows the current value of the short put position, following the Black-Scholes-Merton
pricing model, where time to expiry is 7 days and the expected equity return volatility is 30%. The right pink line shows
the options’ delta (about 0.2) at a stock price of 5200, the left pink line shows the options’ delta (about 0.9) at a stock price
of 4800.
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Figure A.4: S&P 500 Option Market Size
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Note: This figure shows that the market for S&P 500 options is large and growing. The upper dotted blue line shows S&P
500 options’ average monthly dollar open interest. The lower solid red line shows S&P 500 options’ monthly sum of dollar
trading volume.
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Figure A.5: S&P 500 Futures Trade Volume
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Note: This figure shows the average daily dollar trading volume of the most liquid S&P 500 E-Mini futures contract. The
blue (red) line shows monthly average volumes between 0930 (1600) and 1600 (0930). The black line shows the ratio between
day and night volumes. The sample period is 2011.1 - 2022.12.
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Figure A.6: S&P 500 Return Volatility: Day vs. Night
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Note: This figure shows that S&P 500 returns are more volatile over day periods than night periods. The figure shows the
annualized return volatility of S&P 500 E-Mini futures. Blue (red) bars show the annualized volatility of day (night) returns
over the respective month. Day returns are measured between 0930 and 1600, night returns are measured between 1600 and
0930. The black line shows the ratio between day and night volatilities on the right hand scale.
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Figure A.7: S&P 500 Daily Return Volatility, Rolling
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Note: This figure shows the rolling volatility of S&P 500 index returns. Returns are measured close-to-close, i.e. 16:00 to
16:00 (E.T.). Volatility is measured over a rolling 365 day window and is annualized to 252 trade days.
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Figure A.8: The “VIX” Volatility Index
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Note: This figure shows the “VIX” index for the expected volatility of S&P 500 index returns. The VIX reaches a value of
83 in March 2020.
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Figure A.9: S&P 500 Equity Trade Volume
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Note: This figure shows the daily trade volume of the S&P 500 constituent stocks.
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Figure A.10:

Variable Construction: Dealer Position

v

Vi

Vil Vil IX X Xl
Weekday Date Put 1 Put 2 Sum Net Position
Buys sells Net Buys Net Position Buys Sells Net Buys Net Position
(=DB) (DS) (=DB-D5) (=CDNB1) (=CDNB2) (=CDNB1+ CDNB2)
Monday 18-Sep-23
Tuesday 19-Sep-23
Wednesday 20-5ep-23
Thursday 21-Sep-23 20 10 70 70 70
Friday 22-Sep-23 50 20 30 100 100
Saturday 23-Sep-23 100 100
Sunday 24-Sep-23 100 100
Monday 25-Sep-23 30 110 -80 20 a0 200 -160 -160 -140
Tuesday 26-5ep-23 200 10 190 210 30 150 -120 -280 -70
Wednesday 27-5ep-23 100 100 4] 210 100 100 o -280 -70
Thursday 28-Sep-23 0 100 50 50 -230 -230
Friday 29-5ep-23 1] 100 200 -100 -330 -330

Note: This figure illustrates the construction of the variable Dealer Net-Position from the CBOE OpenClose files. The
CBOE OpenClose Volume files contain for every day and every option contract the number of contracts that dealers buy
(col ITI) and the number of contracts sell (col IV). NetBuys is the number of contracts bought minus the number of contracts
sold. Net-Position is the cumulative sum of NetBuys. The figrue is adapted from Baltussen, Terstegge, and Whelan (2024).
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Figure A.11: Expected Dealer Profits for Hypothetical Stock Returns: Unhedged
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Note: This figure shows the equivalent to figure 4, only that dealer profits are estimated under the assumption that there
are no (initial) delta hedges.
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Figure A.12: Dealers’ Gap Risk: Spiking into 3¢ Friday Option Expiry
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Note: This figure shows that dealers’ gap risk spikes into the 3"¢ Friday option expiry. The figure plots dealers’ equity
market gap risk as estimated in section II relative to each months’ 3"¢ Friday, where the standard SPX options regularly

expire. Day 0 marks the 3"¢ Friday, where risk is low since I consider positions at market close, when SPX options have
already expired. The sample period is 2011 to 2023.
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Figure A.13: Option Returns Materialize During the Option Expiry Week
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Note: This figure shows that the nagetive night returns of S&P 500 put options materialize mostly over the five days before
the monthly 3" Friday option expiry. Day returns are measured from 09:45 to 16:15, night returns from 16:15 to 09:45.
Returns are delta-hedged at the start of the respective period. Option returns into expiry are excluded from the sample.
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Figure A.14: Mlustration: Returns

0 /?-
-200
~ -400 —
S IS
£ £
2 2
o} L 3]
x -600 4
= c
=} 8
a a
© gt o
1000 === Short Maturity, Out-of-the-money
s Short Maturity, In-the-money
== 0Ng Maturity, Out-of-the-money
m— |_ong Maturity, In-of-the-money
~1200 I T I T I I I
-10 -4 -2 0 2 4 6 8 10
Underlying Return (%)
(a) Calls, Hedged
\i
g i g
£ £
2 2
o 4 1]
o o
= c
= 8
a B
o) | o
1000 - s Short Maturity, Out-of-the-money i
== Short Maturity, In-the-money
= |_ONg Maturity, Out-of-the-money
s | 0Ng Maturity, In-the-Money
~1200 I T T T I I I

Note: This figure

-4 -2 0 2 4 6 8 10
Underlying Return (%)

(c) Puts, Hedged

K = 5100 (K = 4900).
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illustrates the impact of equity returns on the returns of an option short position. Panels (a), (b)
contains calls, (c), (d) contain puts. Panels (a), (c) assume that the option position is initially delta-hedged, but the hedge
is subsequently not adjusted. Panels (b), (d) assume unhedged options positions. Returns are simulated for option prices
following Black-Scholes-Merton pricing with implied volatility o = 0.8, risk-free rate » = 0.03, dividend yield ¢ = 0.05 and
an underlying price of = 5000. Short-maturity options have days to expiry T = 7, long maturity options have T' = 70.
Out-of-the-money puts (calls) have a strike price K = 4900 (K = 5100). In-of-the-money puts (calls) have a strike price



A.2. Appendix: Tables

Table A.1: S&P 500 Option Contract Specifications

Root SPX SPXW
Underlying S&P 500 -

Expiry Date 37 Friday a.m. any weekday, p.m.
Expiry Month Up to 12 months 5 weeks

Last Trade Date business day pre expiry  expiry day (1600 E.T.)
Strike Price every 5% -

Style European -

Settlement Cash -

Multiplier 100 -

Minimum Tick 0.05 -

Exchange CBOE -

Begin trading 1984 2010

Trading Hours, Regular 0930 to 1615 E.T. -

Trading Hours, Curb 1615 to 1700 E.T. -

Trading Hours, Global 0930 to 1615 E.T. -

Note: This table displays the contract specifications for the standard S&P 500 index options (SPX options) and the weekly
S&P 500 index options (SPXW options).
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Table A.2: Intermediaries’ Gap Risk: Summary Stats

Mean Std Skew P5 P50 P95

Intermediary Gap Risk ($ bn) 1.5 5.2 3.4 -3.7 0.9 8.4

Note: This table shows summary statistics for option dealers’ inventory risk exposure to overnight equity price gaps as
estimated in section II. That is, the table shows the estimated dealer Profit-and-Loss from a —10% return in the underlying
S&P 500. Inventory risk is in billions of dollars. The sample period is 2011 to 2023.
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Table A.3: The Cross-Section of Night Call Returns

Days to Expiry

2-70 71- All

0.00 < |A| <£0.25 Deep Out of the Money 78.0 33.6 74.6
(0.8) (1.1) (0.8)

0.25 < |A| <€ 0.50 Out of the Money -3.9 -20.1 -3.2
(—0.2) (—3.7) (—0.2)

0.50 < |A| < 0.75 In the Money -24.0 -13.3 -21.1
(—3.1) (—3.5) (—3.4)

0.75 < |A| < 1.00 Deep In the Money -19.3 -T.7 -16.3
(-3.1) (~1.9) (~3.1)

All 29.9 -2.7 20.5
(0.6) (—0.2) (0.5)

Note: The table shows average S&P 500 call returns for eight portfolios, sorted by days to expiry and moneyness. Returns
are measured from option market close at 16:15 to the subsequent market open at 09:45. Returns are in basis points and
are delta-hedged at the beginning of the respective period. Newey-West t-statistics are in brackets. The sample period is
2011 to 2023.
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Table A.4: Option Returns, Bootstrapped Standard Errors

Mean S.E. Std Skewness P10 P50 P90
Panel (a): Puts
Night Return (%) -2.49 0.24 12.40 9.31 -12.66 -2.50 6.30
Day Return (%) 0.39 0.26 13.51 5.02 -10.38 -1.56 11.30
Night minus Day Return (%) -2.88 0.38 18.48 0.62 -19.15 -1.34 11.95
Panel (b): Calls
Night Return (%) 0.32 0.49 27.72 10.13 -16.71 -2.41 18.44
Day Return (%) 0.32 0.47 22.75 4.89 -17.03 -3.06 19.12
Night minus Day Return (%) 0.00 0.69 36.38 2.86 -28.60 0.51 25.87

Note: Panel A (B) shows summary statistics for S&P 500 put (call) option returns. Within each panel, row 1 (2) contains
returns between 1615 (0945) and 0945 (1615). Returns are in excess of the risk-free rate. Returns are in percent. The sample
period is 2011 to 2023.

Table A.5: Option Alphas to the Equity Return

Mean t-stat Std Skewness P10 P50 P90
Panel (a): Puts
Night Return (%) -2.49 -10.41 12.33 9.34 -12.39 -2.39 6.23
Day Return (%) 0.45 1.76 13.25 4.58 -10.67 -1.30 11.47
Night minus Day Return (%) -2.94 -7.68 18.28 0.75 -19.43 -1.42 11.93
Panel (b): Calls
Night Return (%) 0.83 1.84 25.04 11.93 -14.96 -1.12 14.67
Day Return (%) 0.49 1.13 21.18 5.84 -15.42 -2.52 17.63
Night minus Day Return (%) 0.34 0.52 33.51 2.88 -23.92 1.56 23.03

Note: Panel A (B) shows summary statistics for S&P 500 put (call) option alphas. Within each panel, row 1 (2) contains
returns between 1615 (0945) and 0945 (1615). Alphas are obtained as the intercept of a univariate regression of delta-hedged
option returns on contemporaneous S&P 500 futures returns. Returns are in percent. The sample period is 2011 to 2023.
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Table A.6: Option Returns via Alternative Deltas I

Mean t-stat Std Skew P10 P50 P90
Panel (a): Puts
Night Return (%) -2.31 -9.38 13.05 7.71 -12.90 -3.59 8.92
Day Return (%) -0.04 -0.13 15.61 4.29 -12.19 -3.14 43.95
Night minus Day Return (%) -2.28 -5.66 20.19 0.22 -19.81 -0.77 14.71
Panel (b): Calls
Night Return (%) 0.12 0.48 13.94 9.21 -991 -1.47 9.83
Day Return (%) 0.65 1.98 17.14 7.40 -11.71 -2.22 39.70
Night minus Day Return (%) -0.52 -1.16 22.45 -1.81 -17.33 0.80 15.42

Note: This table shows that the main result from table IV is robust to alternative approaches to calculate delta for the
estimation of option risk premia. This table divides options’ implied volatilities by 1.3 before calculating delta, to account
for the volatility risk premium in implied volatilities. Panel (a) shows summary statistics for S&P 500 put option returns,
panel (b) contains calls. Within each panel, row 1 (2) contains returns between 16:15 and 09:45 (09:45 and 16:15). Returns
are in percent and in excess of the risk-free rate. Returns are delta-hedged at the beginning of the respective period. The
sample period is 2011 to 2023.

Table A.7: Option Returns via Alternative Deltas II

Mean t-stat Std Skew P10 P50 P90
Panel (a): Puts
Night Return (%) -2.38 -10.10 12.02 10.79 -11.72 -2.52 6.33
Day Return (%) 0.22 0.90 1291 4.69 -10.22 -1.46 31.16
Night minus Day Return (%) -2.60 -6.94 17.70 1.37 -18.49 -1.32 11.53
Panel (b): Calls
Night Return (%) -0.51 -1.42 20.55 2.76 -18.60 -2.29 19.56
Day Return (%) 0.22 0.44 22.52 4.27 -19.42 -3.17 59.14
Night minus Day Return (%) -0.73 -1.11 31.27 -1.16 -31.31 0.04 29.98

Note: This table shows that the main result from table IV is robust to alternative approaches to calculate delta for the
estimation of option risk premia. This table uses the CBOE pre-calculated option deltas. Panel (a) shows summary statistics
for S&P 500 put option returns, panel (b) contains calls. Within each panel, row 1 (2) contains returns between 16:15 and
09:45 (09:45 and 16:15). Returns are in percent and in excess of the risk-free rate. Returns are delta-hedged at the beginning
of the respective period. The sample period is 2011 to 2023.
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Table A.8: The Cross-Section of Day Put Returns

0.00 < |A| < 0.25
0.25 < |A| < 0.50
0.50 < |A| < 0.75
0.75 < |A] < 1.00

All

Deep Out of the Money

Out of the Money

In the Money

Deep In the Money

Days to Expiry

2-70 71- All
58.0 0.2 41.7
(1.6) (—0.0) (1.4)
12 1.0 -3.9

(—0.1) (—0.3) (—0.3)

1.8 2.0 0.9
(0.2) (—0.2) (0.1)
42 22.9 46
(0.3) (1.3) (0.3)
45.0 0.7 32.9
(1.6) (—0.1) (1.4)

Note: This figure shows average S&P 500 put option returns for six portfolios, sorted by days to expiry and moneyness.
Returns are measured from shortly after option market open at 0945 to the subsequent market close at 1615. Returns
delta-hedged and in excess of the risk-free rate. Returns are in basis points. Newey-West t-statistics are in brackets. The
sample period is 2011 to 2023.

Table A.9: The Cross-Section of Day Call Returns

0.00 < |A| < 0.25
0.25 < |A] < 0.50
0.50 < |A| < 0.75
0.75 < |A] < 1.00

All

Deep Out of the Money

Out of the Money

In the Money

Deep In the Money

Days to Expiry

2-70 71- All
-0.5 17.8 5.0
(—0.0) (0.6) (0.1)
4.0 8.8 2.5
(0.3) (0.0) (0.2)
2.6 4.9 2.8
(0.3) (1.1) (0.3)
6.0 -5.8 3.0
(0.9) (—0.5) (0.7)
39.2 24.7 35.6
(0.8) (1.4) (0.9)

Note: This figure shows average S&P 500 put option returns for six portfolios, sorted by days to expiry and moneyness.
Returns are measured from shortly after option market open at 0945 to the subsequent market close at 1615. Returns
delta-hedged and in excess of the risk-free rate. Returns are in basis points. Newey-West t-statistics are in brackets. The
sample period is 2011 to 2023.
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Table A.10: The Cross-Section of Dealers’ Call Position

0.00 < |A| < 0.25
0.25 < |A| < 0.50
0.50 < |A| < 0.75
0.75 < |A] < 1.00
All

Days to Expiry

2-70 71- All
Deep Out of the Money -0.84 -0.50 -1.33
Out of the Money 1.55 0.87 2.42
In the Money 1.40 0.47 1.87
Deep In the Money 0.61 -0.01 0.59
2.72 0.83 3.55

Note: The table shows dealers’ net position in S&P 500 call options by moneyness and days to expiry. Dealer net position
is the number of contracts that dealers are long minus the number of contracts that dealers are short. Section II describes
the variable construction. Numbers are in millions. The sample period is 2011 to 2023.

64



	1 Markets
	2 Intermediaries Gap Risk
	Option Trades
	Option Positions
	Intermediaries' Inventory Risk Management
	Intermediaries' Exposure to Gap Risk
	Intermediaries' Liquidity Demand
	Intermediaries' Shadow Gamma

	3 Shadow Gamma
	Option Returns: Day vs. Night
	Regress Option Returns on Options' Shadow Gamma

	4 Equity Liquidity
	Growing Overnight Equity Trading
	The Change in the Option Risk Premium

	5 Conclusion
	6 Figures
	7 Tables
	A Figures
	A Tables

