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1 Introduction

Innovation is a key driver of economic growth (Solow, 1957; Romer, 1990, 1994). The ge-

ography of innovation—its spatial distribution and clustering—plays a crucial role in how

knowledge diffuses and evolves.1 However, there is little understanding on the impact of

destructive, local exogenous shocks like extreme weather events on aggregate innovation and

its spatial distribution. The local vulnerability to such shocks and potential propagation

across regions are important to assess the resilience of innovation and the economic costs of

extreme weather events.

In this paper, we analyze the local impact of extreme weather shocks and these shocks

propagate through multi-location firms. We present a conceptual framework highlighting two

channels of shock propagation within firms’ internal networks: (i) the capital channel and (ii)

the innovation productivity channel. The first, in the style of Giroud and Mueller (2019),

posits that an extreme weather shock negatively impacts the local (and hence aggregate)

capital of a firm and predicts that innovation will decrease in establishments both inside and

outside the disaster zone, generating negative spillovers.2 The second channel predicts that

firms will reallocate innovation activity to establishments outside the disaster zone because

of higher relative productivity, generating positive spillovers. Which effect dominates is

ultimately an empirical question.

To analyze these mechanisms, we first overcome two key empirical challenges. First, by

harnessing recent advances in optical character recognition (OCR) and large language model

(LLM) technologies, we obtain a reliable database of patent activity that captures, for the

first time, a comprehensive view into inventor and assignee names, locations, and types for

the universe of around 12 million U.S. patents from 1836. We harness these data to match

establishments of the same firm to identify firms’ internal ”innovation” networks over this

1The externalities to the local distribution of people and firms have been long debated (Marshall, 1890;
Jacobs, 1969) with implications for both regional and national place-based policy (Acemoglu, Alp, Bloom,
and Kerr, 2018; Fajgelbaum and Gaubert, 2020).

2These spillovers can occur as corporate headquarters optimally allocate resources across different estab-
lishments (Stein, 1997; Gertner, Scharfstein, and Stein, 1994).
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period. Second, we obtain a set of exogenous local shocks that impact different locations

at different points in time by exploiting the quasi-exogenous spatial and temporal variation

of natural disasters over a period spanning two centuries. Adapting the research design of

Kruttli, Roth Tran, and Watugala (2025), we use hurricane landfalls as exogenous shocks to

local innovation. Using a long time series gives us a sample of 64 major hurricanes, which

helps reduce selection bias and allows for subsample analysis.

We first analyze the direct effects of hurricanes on county-level innovation. We assign

patents generated each year to counties by inventor location to obtain a county-year time

series and estimate a panel version of the local projections method developed by Jordà (2005).

The coefficient estimates imply large and long-lasting negative effects on patent output in

counties that are within the landfall region of a hurricane. For hit counties, the annual

patent output relative to the pre-period is up to ten percentage points lower than for control

counties (i.e., counties outside of the landfall region) for close to a decade after landfall.

The reduction in the growth rate of patents is most pronounced for counties located closest

to the eye of the hurricane at landfall, which likely experience the most intense weather.

Importantly, this reduction in the growth rate of patents for hit counties is a shortfall that

does not appear to be recouped by a higher patent growth rate once the hit county recovers.

Next, we analyze how these local hurricane shocks to innovation can spill over to other

regions in the U.S. through firms’ internal firm networks, testing the predictions of our

conceptual framework. Multi-location firms can have plants and establishments that span

different regions in the U.S. with corporate headquarters allocating capital across establish-

ments and adjusting to shocks. We find strong evidence of positive spillovers. Firms have a

decrease in patent output in their establishments within a landfall region, but increase patent

output in establishments elsewhere. The estimated effect is not only statistically but also

economically significant. If half of a firm’s establishments that produce patents are hit by a

hurricane, the firm increases patent output in the other half of the establishments by up to

8.5%. These results are robust to including county interacted with year fixed effects, which
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control for all time-varying and time-invariant county-level characteristics—like population

and GDP—and allows us to compare establishments from different firms in the same county.

Interestingly, the magnitude of the effects are larger when we analyze longer horizons

around the hurricane landfall. This finding is in line with agglomeration benefits and effi-

ciency gains stemming from the within-firm capital reallocation. When a firm is forced to

reallocate resources and capital across regions, they will choose the region where they expect

the largest agglomeration benefits and such benefits could be more likely to materialize at

longer horizons.

These spillover effects hold for both the period from 1851 to 1975—the period for which

we used OCR and LLM technologies to produce the novel patents data—and for the period

from 1976 to 2023. Further, the effects are stronger when a hurricane makes landfall during

a year in which the U.S. is in a recession, which suggests that reallocating resources out of

the hurricane landfall region is even more important during recessionary periods. This result

is consistent with theories on the high value of innovation during recessions due to creative

destruction (Schumpeter, 1942).

These spillovers via firms’ internal networks are not only important at the firm-level but

also at the county-level. We find that counties outside the hurricane landfall region but

with links to the hurricane landfall region through local firms’ internal networks experience

increases in patent growth post-landfall. These results hold when including state interacted

with year fixed effects, which allows for the comparison of two counties within the same state

and controls for all time-varying and time-invariant state-level characteristics.

There are two major aspects to our contributions to the literature in this paper. First,

by analyzing hurricane landfalls from 1851 to 2023, we show that extreme weather shocks

have a large negative effect on innovation output lasting up to a decade for counties hit

by the event. Further, firms’ internal networks are important for the propagation of such

exogenous local shocks, impacting innovation across regions. Our conceptual framework

formalizes two potential channels of within-firm spillovers, the capital and innovation pro-
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ductivity channels, which we test empirically. Our findings highlight the importance of the

innovation productivity channel, which shows that firms can compensate for some of the lost

innovation by reallocating resources out of the landfall region and increasing innovation in

other counties. Second, by developing a new methodology and constructing a new, highly

accurate, comprehensive database of patent information (including inventors and their lo-

cations, technological characteristics, and assignee information), we enable future research

that answers important questions regarding two centuries of U.S. innovation.

Our findings contribute to several strands of economic research. Our analysis adds to

previous studies on how local shocks can propagate across a firm’s establishments. Giroud

and Mueller (2019) show that for firms in non-tradable industries (e.g., retail and gastron-

omy), local shocks originating from collapse in house prices during the great recession lead

to lower employment at a firm’s establishments close to the local shock but also in other re-

gions in which the firm operates. In contrast, we exploit multiple exogenous shocks yielding

temporal and spatial variation that allow us to analyze the impact of local shocks on regional

and firm-level innovation. We formalize two potential channels of generating negative and

positive spillovers within firms and find strong support for positive spillovers. Our setting is

unique in the literature that examines agglomeration and local bias in knowledge spillovers

and the constraints to reallocating the physical and human capital necessary for innovation

across regions. The existing literature has shown that innovation and attendant knowledge

spillovers can be highly localized and sticky to a place (see, for example, Jaffe, Trajten-

berg, and Henderson, 1993; Audretsch and Feldman, 1996; Moretti, 2021; Atkin, Chen, and

Popov, 2022). However, only a few recent papers investigate spatial distribution of inno-

vation within a firm.3 Giroud, Liu, and Mueller (2025) find that large tech clusters have

high productivity both in local inventors and in distant inventors in plants linked via parent

firms. Chikis, Kleinman, and Prato (2025) study the social optimum of spatial distribution

3Other work on internal firm networks is not focused on innovation and include, for example, Cravino
and Levchenko (2017); Bena, Dinc, and Erel (2022); Biermann and Huber (2024) on international shock
propagation via multinational firms.
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of firms’ innovation. In contrast, our study focuses on the resilience of innovation in firms’

internal networks.

We add to the literature on the economic risks associated with climatic shocks. The risks

are broadly categorized into two types: physical and transition risks (Carney, 2015; Giglio,

Kelly, and Stroebel, 2021). Physical risks encompass the destruction from more intense and

frequent extreme weather events like hurricanes and heat waves (e.g., Hong, Li, and Xu,

2019; Kruttli, Roth Tran, and Watugala, 2025) or sea-level rise. Transition risks refer to the

risks associated with the transition to a low-carbon economy due to policies imposing a cost

on firms and households (e.g., a cap-and-trade program). There exists an inherent trade-

off between the two risks: imposing a price or a tax on greenhouse gas emissions increases

transition risks but reduces greenhouse gas emissions and consequently future physical risks

(e.g., Ivanov, Kruttli, and Watugala, 2024). Therefore, a precise estimate of the cost of

physical risks is key to determining how high the price or tax on greenhouse gas emissions

should be set.

Beginning with the seminal work of Nordhaus (1977), there is an extensive literature on

climatic risks and resulting economic costs in the form of reduced economic growth. Studies

on physical climate risks and economic growth have focused on the impact of tempera-

ture shocks (e.g., Dell, Jones, and Olken, 2012 and Burke, Hsieng, and Miguel, 2015) and

other natural disasters (e.g., Deryugina, 2017; Boustan, Kahn, Rhode, and Yanguas, 2020;

Roth Tran and Wilson, 2024) on countries and regions. Other work has shown that extreme

weather events can propagate through (across-firm) supply-chain networks (e.g., Barrot and

Sauvagnat, 2016; Pankratz and Schiller, 2024). Importantly, a key gap in this literature is

an in-depth empirical assessment of the impact of physical risks on innovation. Examining

this innovation channel is particularly important given the integral role for innovation and

technological change in economic growth.

Separately, there is a literature on climate adaptation, green technology, and innovation

Nanda, Younge, and Fleming, 2015; Cohen, Gurun, and Nguyen, 2020; Bena, Bian, and
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Tang, 2023; Howell, 2024; Atta-Darkua, Glossner, Krueger, and Matos, 2025. Noy and

Strobl (2023) analyze the impact of hurricanes on subsequent disaster-mitigating innovation

using the patent data constructed by Petralia, Balland, and Rigby (2016). They find small,

temporary increases in patents with the terms “hurricane” or “storm” in the text. In contrast,

we focus on transmission via firms’ internal networks and the substitution of innovation across

regions in the aftermath of a hurricane.4

By analyzing an extended history of the universe of U.S. patents, we complement other

papers that study innovation for years not covered by the NBER patent database (Hall,

Jaffe, and Trajtenberg, 2001), which starts in 1976. For example, Kogan, Papanikolaou,

Seru, and Stoffman (2017) process patent information for the subset of patents issued since

1926 for which the assignee is a publicly traded firm. Kelly, Papanikolaou, Seru, and Taddy

(2021) measure the novelty of historical patents using textual analysis methods but do not

extract information on the inventor and assignee names and location, and rely on the text

provided by Google Patents. Petralia, Balland, and Rigby (2016) also provide a database

of historical patents with inventor and assignee names and location. By exploiting recent

improvements in OCR and LLM technology to extract information, we are able to construct

a database that contains fewer errors and missing data than earlier databases.

The paper is organized as follows. We present the details of the conceptual framework

in Appendix A and the empirical design in section 2. Section 3 describes the data, including

the methodology for constructing the novel patent database covering two centuries. Section

4 presents the results. Section 5 concludes.

2 Research design

Our empirical strategy takes hurricanes as exogenous shocks to regions and is adapted from

Kruttli, Roth Tran, and Watugala (2025). We construct the sample of hurricanes that made

4Our analysis of exogenous natural disaster shocks over two centuries also differs from papers like Nanda
and Nicholas (2014); Babina, Bernstein, and Mezzanotti (2023); Mao and Wang (2023) that analyze the
impact of historical bank access or financial crises on innovation.
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landfall on the Atlantic and Gulf Coasts of the U.S. by processing data on hurricane paths

that are available from 1851 onwards from NOAA. Hurricanes have made landfall over major

population and economic centers in various states in this region. The landfall region of a

hurricane typically spans several counties in one or more states. Figure 5 plots the landfall

regions of four hurricanes in our sample.

Figure 6A presents a stylized example illustrating inventor locations within counties that

are exposed and unexposed to a particular hurricane landfall. We consider counties located

within a hurricane landfall region as treated and counties outside of it as controls. This

spatial variation in the empirical design gives us cross-sectional variation. Because counties

are hit by hurricanes infrequently, the time series variation allows us to analyze within county

effects.

2.1 County analysis

Using the hurricane landfall regions and the location of the inventors for a given patent, we

first estimate how a hurricane affects innovation activity in a county. We adapt the local

projection estimator of Jordà (2005) for our panel of county-year observations.5

The local projection regression specification is:

log

(
NPatentsc,t+h

NPatentsc,t−1

)
= β1Hitc,t

+
h∑

r=−5,r ̸=0

ρrHitc,t+r +
5∑

r=1

κr logNPatentsc,t−r + µc + θt + ϵc,t. (1)

The dependent variable is the change in the log of the number of patents, NPatents, gener-

ated in a county c from the year before the hurricane hit, t−1, to h years after the hurricane

hit, t + h. A patent is assigned to county c if all the inventors of the patent are located in

that county. A patent is assigned to the year in which the patent is issued.6 The exceptions

5A similar regression specification is used by Roth Tran and Wilson (2024).
6The results are qualitatively similar when using the application instead of the issue date. However, for

patents before 1900, often no application date is recorded.
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are patents issued between January and May. These patents count for the previous year

to align patents to the correct event because Atlantic Coast hurricanes only make landfall

during the hurricane season from June to November.7 The variable Hitc,t is an indicator

variable that takes the value one when a county c is in the landfall region of a hurricane in

year t and zero otherwise. In addition to county and year fixed effects, we include several

control variables.8 First, we control for a county being hit by hurricanes that make landfall

during the preceding 5-year period from t−5 to t−1. We also control for a county being hit

by hurricanes that make landfall during the years from t+1 to t+h. These controls account

for the possibility of staggered and multiple treatment of counties (Athey and Imbens, 2022;

Baker, Larcker, and Wang, 2022; Dube, Girardi, Jorda, and Taylor, 2023). Second, we cap-

ture potential pre-trends in a county’s innovation activity by including the log of NPatents

lagged up to five years.9 The standard errors are double clustered at the county and year

levels. Of all the states in the US, 32 have at one point been hit by a hurricane from 1851

to 2023 based on our landfall region estimations. We include counties from only these 32

states in our sample when estimating county-level impacts.

2.2 Firm’s internal network analysis

The simple model that is presented in detail in Appendix A shows a firm with central head-

quarters that allocate resources across different establishments (e.g., Stein (1997); Giroud

and Mueller (2019)) to maximize the firm’s overall innovation. When a hurricane hits a

firm’s establishment, there are two channels for the propagation of this shock to other non-

hit establishments of the same firm. First, the hurricane reduces the total capital of the

firm and makes it poorer, because the establishment in the landfall region can experience

damage to the facility, inventory, and reduce cash flow from the local operations. This capi-

7Omitting this adjustment leads to qualitatively similar results.
8The dependent variable is a difference between the pre- and post-period and omitting the county fixed

effects leads to qualitatively similar estimates.
9The estimates are qualitatively similar when including additional lags. Including additional lags does

not materially improve the fit of the regression model.
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tal channel leads to a reduction in R&D at non-hit establishments as the firm equalizes the

marginal innovation product across establishments. Second, the innovation productivity at

the establishment in the landfall region decreases. The decrease in innovation productivity

is motivated by, for example, damaged county infrastructure and a labor force that is pre-

occupied with the aftermath of the hurricane. This innovation productivity channel leads to

an increase in R&D at non-hit establishments, as headquarters will allocate more resources

to the relatively more productive establishments.

To estimate which of these two channels dominate, we analyze changes in innovation

at the firm-county-year level. We employ a difference-in-differences regression framework.

We collapse the pre- and the post-period around each hurricane (Bertrand, Duflo, and Mul-

lainathan, 2004) and jointly estimate the difference-in-differences across all hurricanes:

log

(
NPatentsi,c,t:t+h−1

NPatentsi,c,t−h:t−1

)
= β1Hitc,t + β2

∑
k ̸=c

wi,k,t−h:t−1Hitk,t + µc + θt + εi,c,t+h (2)

The dependent variable is the change in the annual average number of patents of firm i

in county c over h years after a hurricane landfall relative to the annual average number

of patents over h years before landfall. The variable h is set to one, three, five, and ten

years, respectively. Using windows of multiple years around the landfall accounts for the

fact that firms do not generate a patent in a location every year. The variable wi,k,t−h:t−1 is

the share of firm innovation in county c over h years before the hurricane hit. The variable∑
k ̸=cwi,k,t−h:t−1Hitk,t measures the share of a firm’s innovation locations other than county

c that are in the hurricane landfall region. For simplicity, we will denote this variable as

HitOtheri,t. The weight is given by

wi,k,t−h:t−1 =
NPatentsi,k,t−h:t−1

NPatentsi,t−h:t−1

. (3)

Therefore, the variable HitOtheri,t ranges from zero to up to but not including one.
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We include county and year fixed effects.10 Further, we estimate specification that include

interacted county and year (c × t) fixed effects, which allows us to compare the changes

in innovation of one firm’s establishment to the changes in innovation of another firm’s

establishment within the same county and time. These fixed effects control, for example,

for differences in economic growth across regions. The standard errors are double clustered

by firm and year. To ensure that a firm hit by one hurricane does not enter as a control

for a different hurricane, we exclude firms that have more then 50% of their innovation

establishments hit from the controls for ten years before and after the hurricane.

3 Data

3.1 Novel patents database

[The Congress shall have Power . . . ] To promote the Progress of Science
and useful Arts, by securing for limited Times to Authors and Inventors the
exclusive Right to their respective Writings and Discoveries.

—U.S. Constitution, art. I, §8, cl. 8.

Innovation has been constitutionally protected in the United States since 1789 with a

recognition that innovation is fundamental to the advancement of science, health, prosperity,

public welfare, and national defense. Over 12 million patents have since been granted, with

the U.S. Patent and Trademark Office (USPTO).

To facilitate studying the longest possible time series of hurricanes, we construct a new

patent database. The long time series is necessary to capture the long-lasting effects of

hurricanes on innovation and helps minimize the potential bias from sampling just one or

a set of hurricanes. The data include information on grant date and inventor location (city

and state) spanning 1836 through 2023. For data beginning in 1976, we obtain data from

PatentsView, which is maintained by the Office of the Chief Economist at the USPTO. For

10The dependent variable is a difference between the pre- and post-period and omitting the county fixed
effects leads to qualitatively similar estimates.
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data from 1836 through 1975, we extract data directly from the PDFs of scanned patent

documents on the USPTO website by taking advantage of modern OCR algorithms and

ChatGPT, as we explain below. Additional details are provided in Appendix B.

Modern patent documents include the title and abstract of the invention; application

and grant dates; the name(s) and locations of residence for all inventors and any assignees; a

detailed description of the invention; drawings of the invention; and the claims, which define

the scope of legal protection provided by the patent. An inventor must be a person, but

patents can be assigned to a corporation or another person. Generally, when an invention is

developed in a company, the inventor will assign the patent to their employer. Beginning in

February 1947, patent documents began consistently including citations to existing patents

as references to “prior art” (Nicholas, 2010). Older patents typically do not contain all of

this information, although the grant date and inventor location have always been included.

While the layout of patent documents has changed over time, the required information

has mostly remained constant. Since 1976, the USPTO has digitally recorded newly-granted

patents and made machine-readable files publicly available. For the period prior to that,

information must be extracted from scanned documents, an example of which is shown in

Figure 1.

The launch of Google Patents in 2006 made it easier to search the text of the pre-

1976 historical patent documents. These data serve as the source for several influential

papers, including Kogan, Papanikolaou, Seru, and Stoffman (2017), who created a widely

used database, and Kelly, Papanikolaou, Seru, and Taddy (2021). However, the quality of

the text extracted from scanned documents using Optical Character Recognition (OCR)

available in Google Patents is quite variable, especially for patents granted before 1950. The

importance of the errors in these data depends greatly on how the text is being used. For

our analysis, correctly identifying the inventor’s location is of paramount importance.

As an example of the OCR errors that can be found in the Google data, Figure 2 shows

how the text for the patent in Figure 1 is rendered by Google (left column). Note that this
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text does not include anything that resembles the name of the inventor, his city of residence,

or the title of the invention. The entire first paragraph of the text is missing, as is the

beginning of the next paragraph. Although not all of the OCR in Google Patents is of this

poor quality, many hundreds of thousands of documents have significant degradation in the

extracted text. Even the use of exceptionally flexible textual analysis techniques cannot

overcome the “garbage-in-garbage-out” problems associated with such poor OCR quality.

OCR algorithms have vastly improved in recent years (Correia and Luck, 2023) but the

text available from Google Patents has not been updated. Advances in computer vision have

given OCR algorithms the ability to identify the parts of documents, patterns in text layout,

and words in ways that far surpass what is available in Google Patents. Moreover, LLMs

are can be a game changer when it comes to extracting information from text. Even in the

presence of OCR errors, spelling mistakes, typos, or missing information, it can draw on

its vast training data to predict answers to carefully-crafted questions about the (intended)

meaning of text.

As a point of comparison with our novel data, we compared the locations of inventors in

our data with those in the “HistPat” data created by Petralia, Balland, and Rigby (2016).

Of the 3.9 million unique patents between 1836 and 1975, HistPat is missing over 600,000

patents, which appears to be mainly due to the exclusion of foreign inventors. Of the remain-

ing 3.3 million patents, just over 400,000 have a discrepancy between inventor locations; this

appears to be because the assignee’s location is often misreported as the inventor’s location

in the HistPat data. Despite the requirement that all patents have an inventor, another

115,000 patents in HistPat have an assignee but no inventor. We also observe significant

time series variation in differences between the two datasets. For example, the rate of miss-

ing patents in HistPat relative to our dataset is below 10% through 1880 before jumping to

the teens for most of the period between 1880 and 1965. This missing rate increases to 19%,

24%, and 50% in 1965, 1970, and 1975, respectively.
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Using our new inventor location data, aggregated to the county level, Figure 3 illustrates

the expected westward shift in innovation over the last two hundred years.

3.2 Firms’ internal networks

The raw patent data provide no identifier that links assignees across patents. An important

part of our analysis relies on our ability to identify which patents are assigned to which firms

over time—and to know that the same firm has been assigned different patents granted in

different years to inventors in different locations. We accomplish this disambiguation by

applying several machine learning techniques to the assignee names.

We begin by standardizing company names and extracting unique company names along

with corresponding patent grant years. Our basic approach is to apply clustering techniques

to these names, but we first preprocess the text, by standardizing special characters, merging

single-letter sequences, and normalizing legal entity abbreviations such as Inc. or Corp. We

then identify the 1,000 most common words across names to create a list of low-information

tokens. We apply fuzzy matching techniques to correct misspelled legal entities, and correct

inconsistent spacing, which can originate either in the original PDF document or from OCR

transcription errors.

After producing this relatively clean list of unique company names, we divide the data

into overlapping 40-year time windows for pairwise similarity scoring. We again apply a

fuzzy matching algorithm to identify name similarities above a threshold that we determine

from the data. (The pairwise nature of this procedure makes it extremely computationally

intensive, but we are able to exploit parallel processing to complete the work in a reasonable

time.) We use the UnionFind algorithm to merge related company names into clusters

and ensure continuity across overlapping windows, so firms like General Electric that are

continually granted patents over long spans of time are identified as one firm. To refine

these clusters and address false positives, we use hybrid TF–IDF cosine similarity metrics

to evaluate coherence, with low-quality clusters re-split using an agglomerative clustering
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algorithm. Finally, we used ChatGPT to review any large clusters (groups where at least

15 variations of a name are identified as belonging to one firm). This allows us to ensure

semantic consistency and correct any remaining misgroupings, resulting in a cleaned set of

company name clusters.

Figure 4 illustrates the geographic distribution of patent generation for four of the the

most innovative firms as of 1900.

3.3 Two centuries of hurricane landfalls

We obtain the hurricane path data for all Atlantic and Gulf Coast hurricanes making landfall

from 1851 to 2023 from NOAA’s Atlantic HURDAT2 database, which covers all known

tropical cyclones and subtropical cyclones and is a part of the Re-analysis Project (Landsea

and Franklin, 2013). These data record the latitude and longitude of the eye of a tropical

cyclone at least every 6 hours before it dissipates. This allows us to calculate hurricane paths

and landfall dates and times. We use these data to calculate the list of counties that are

within 50, 100, and 200 miles of the landfall location of the eye of a hurricane. These radii

line up with NOAA’s measurements on the average distance from the hurricane eye within

which wind speeds cause damage to infrastructure. Figure 5 shows the landfall regions for

four hurricanes in our sample.

For our main analysis, we focus on the set of deadliest tropical storms with more than

25 fatalities during our sample period. We construct this set from NOAA’s report on “The

deadliest, costliest, and most intense United States tropical cyclones from 1851 to 2010

(and other frequently requested hurricane facts)” that covers the 1851-2010 period (Blake,

Landsea, and Gibney, 2011). We manually augment these data for the more recent years to

cover the full sample period from 1851 to 2023. The list of 64 deadliest hurricanes in our

sample is shown in Table C.3. We focus on this set of storms for two key reasons. First, these

are likely the hurricanes with the most reliable data in the early period of our sample. Second,

these are likely the hurricanes that significantly impacted human and physical capital in the
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landfall regions. The number of fatalities is one reliable measure of the destructive impact

of a hurricane, which does not rely on as many assumptions as, potentially, the monetary

value of damages. However, this set overlaps substantially with the set of hurricanes with

the highest dollar damages.

Tables 1 and 2 present the summary statistics for the main variables used in our empirical

analysis.

4 Results

This section presents the results of our empirical analysis. First, we discuss the baseline ef-

fects of hurricanes on local innovation and spillovers of these local innovation shocks through

firms’ internal innovation networks. Then we report robustness tests, time-series variation

of the effects, and county-level spillovers.

4.1 Baseline effects

4.1.1 Local effects

We first estimate the regression in equation (1) to test if a hurricane hit adversely affects

innovation in a county, how large the effects are, and whether the effects are transitory or

permanent. When identifying hit counties, that is, the counties for which the variable Hitc,t

is one, we measure landfall regions based on three radii (50, 100, and 200 miles) around

the eye of the hurricane. We estimate the regression separately for each radius and horizon

h. For all estimations, we exclude from the control group any counties located within the

200-mile landfall region.

Figure 7 plots the coefficient estimate of the variable Hitc,t for regressions separately run

for different radii and horizons h. The negative effects on patents do not appear immediately

after landfall. The drop in the number of patents generated in a hit county, relative to the

year before landfall, begins three years after landfall. However, the effect intensifies as time
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passes and the decrease in innovation is most pronounced between five and eight years after

the hurricane landfall. Ten years after landfall, the coefficient estimates become statistically

insignificant.

The effects are larger for counties closer to the eye of the hurricane at landfall. The

magnitude of the coefficients for the 50-mile radius reaches as low as -0.094 in five years

after landfall. This magnitude implies that the number of patents in a hit county is 9.4%

lower in the fifth year after the hurricane hit than in the year before the hurricane hit. For

the 200-mile radius, the coefficient magnitude decreases but still reaches -0.044. The lower

coefficient magnitude is consistent with the idea that hurricanes are more destructive closer

to the eye of the storm. The negative and significant coefficient estimates for several years

after landfall show that a county in a hurricane landfall region experiences a substantial

shortfall in patents.

Table C.1 in the appendix reports the estimates of the coefficients in equation (1). The

first row of the table shows the coefficient of the independent variable of interest, Hitc,t,

which is plotted in Figure 7. The coefficient estimates on the lagged patent variables are

highly significant. The coefficient on the first lag is negative with a magnitude between -0.68

and -0.77. This estimate implies that the time series of county-level patents is no longer

explosive after differencing the dependent variable and is mean-reverting. We confirm the

unit root in the (undifferenced) county-level patent output series with an augmented Dickey-

Fuller test (unreported) for all U.S. patents from 1936 to 2023. Therefore, differencing the

dependent variable is necessary when estimating regression models with county-level time

series of patents. We also estimate a difference-in-differences ”event study” regression as an

alternative to the local projection model. The results are qualitatively similar and presented

in Table C.2.
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4.1.2 Spillovers via firms’ internal innovation networks

Given the results that hurricanes constitute large negative effects on local innovation, we

investigate how such shocks propagate in firms’ internal networks and test the two channels

described by our conceptual framework. On the one hand, negative shocks to one location

might lead to firms reducing R&D investment in other regions to better absorb the financial

shock—that is, the capital channel. On the other hand, firms might be able to move some

of their innovation capacity to counties outside the hurricane landfall region and prevent the

loss of innovation at least to some extent—that is, the innovation productivity channel.

The estimates of the regression model in equation (2) are presented in Table 3. We

estimate the regression model separately for landfall regions based on the 100-mile and 200-

mile radii, respectively.11 For estimations that rely on the 100-mile radius landfall region,

we exclude from the control group any observations in counties located within the 200-mile

but not the 100-mile landfall region, respectively.

The coefficient estimates of the variable Hitc,t are negative and significant. These esti-

mates imply that when a county is in a hurricane landfall region, a firms’ patent output is

up to 4% lower than for counties not in the landfall region. These estimates are consistent

with the county-level local innovation impact discussed in Section 4.1.1.

Interestingly, the coefficient estimate of the variable HitOtheri,c,t is positive and strongly

significant across all specifications. These results show that firms increase innovation in

establishments located in other counties when part of their operations are hit by a hurricane.

Across the different specifications, the coefficient estimates range from 0.05 to 0.17. These

magnitudes imply that a firm with nearly all of its establishments in a landfall region will

increase innovation in the remaining establishments located elsewhere by 5% to 17%.

These estimates are consistent with the innovation productivity channel dominating the

capital channel. A firm increases R&D output at other establishments when some of its

11We focus on the larger radii in this analysis to ensure a sufficient number of hit establishments for more
precise estimates.
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establishments are hit by a hurricane. This result indicates that firms’ internal innovation

networks are surprisingly resilient.

The magnitude of the coefficient estimates is larger for longer horizons around the hur-

ricane landfall. For both landfall region radii, the specification with the largest estimate is

the one where we compare ten years after to ten years before landfall. The larger increase

at longer horizons could be explained by agglomeration benefits and efficiency gains that

come with the relocation. When a firm is forced to reallocate resources and capital to other

regions, management will choose the region where they expect the agglomeration benefits to

be largest and such benefits are likely to materialize more at longer horizons.

Panel B shows the results when including county times year fixed effects. Including the

interacted fixed effects strengthens the identification. We can now compare the change in

innovation of two establishments of two different firms within the same county and time.

The fact that the coefficient estimates remain strongly significant and largely unchanged

in magnitude confirms that our results hold after controlling for both time-invariant and

time-varying unobservable county characteristics such as economic growth.12

Based solely on these regressions, it is unclear if firms simply reallocate resources within

counties in the hurricane landfall region or to counties elsewhere. Reallocation within the

landfall region is possible because the damage to counties within the landfall region can vary.

To address this point, Table 4 presents the results for the specification with the county times

year fixed effects, but where we exclude counties in the hurricane landfall region from the

sample. The magnitude and significance of the coefficient estimates remains qualitatively

the same. These results confirm that hurricane shocks create spillovers via firms’ internal

networks, and this leads to innovation growth in distant firm establishments outside the

landfall region.

12This specification is particularly useful because county-level economic data and other statistics are not
available for the full sample period. For example, county-level GDP growth is only available from the 1950s.
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4.2 Effects across time

The results presented in the previous sections are for our total time series of 173 years.

A natural question is whether these baseline estimates on the propagation of hurricane

shocks via firms’ internal innovation networks change through time. Particularly, are the

results different when using the patents data up to 1975, which we generated using our novel

methodology, compared to when using the digitized patents data available directly from

USPTO starting in 1976?

To address this question, we adapt the regression specification in equation (2) and include

an indicator term that takes the value one for hurricanes that make landfall between 1851

and 1975 and zero otherwise. We interact this indicator variable with our variable of interest

HitOtheri,c,t. Table 5 reports the results. The magnitude of the coefficient estimate on the

unconditional variable HitOtheri,c,t remains strongly significant and positive for all specifi-

cations. The magnitude decreases slightly compared to the estimates in Table 3. However,

the coefficient estimates for HitOtheri,c,t × It∈1851−1975 are also positive, strongly significant,

and larger in magnitude.

These estimates show that the mechanism we document is present across both patent

datasets. However, the magnitude of the effects are larger in the sample up to 1975. A

potential reason could be that infrastructure became more resilient and rebuilding efforts

quicker, and therefore, the need to move innovation activity into other regions became some-

what mitigated. Improved and faster rebuilding efforts could have been partly driven by

the Federal government. The Federal Disaster Relief Act of 1950 started efforts for centrally

organized and improved disaster relief.

Our second analysis on the time-series variation of the baseline effects focuses on U.S.

recessions. On the one hand, recessions constrain firms’ operations and can limit their inno-

vation capacity (Hall, 2015). Such constraints could tighten even further when a firm is hit

by a hurricane, which leads to a stronger capital channel. On the other hand, recessions could

present opportunities for innovation and accelerate creative destruction (Schumpeter, 1942).
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These opportunities would incentivize firms to keep innovating and enhancing productivity,

which could lead to a stronger innovation productivity channel with greater reallocation of

R&D resources to more productive establishments.

To test these hypotheses, we estimate the same regression as presented in Table 5, but

we replace the time indicator variable with an indicator variable that takes the value of

one if the year of the hurricane landfall is in a recession year. To identify recession years,

we use the NBER recession data to identify years for which at least six months were in

a recession. Table 6 presents the results. The unconditional regression estimate remains

positive and strongly significant, but the spillovers within firms’ internal networks are more

pronounced when a hurricane makes landfall in a recession year. The coefficient estimates

for HitOtheri,c,t × It∈Recession are always positive and mostly strongly significant. These

estimates are consistent with the innovation productivity channel becoming stronger during

recessions.

4.3 Extensive margin

In the regression in equation (2), the dependent variable is the log change in the average

annual number of patents of a firm in a county from h years pre- to h years post-hurricane

landfall. Using the log change as the dependent variable ensures that the variable is well

behaved despite large differences in the number of patents across firms, and we control for

unobservable firm-county level characteristics. However, the estimates do not capture if a

firm completely stops innovation in a particular county in the post-hurricane landfall period

or starts innovating in a county in which it had no innovation in the pre-hurricane landfall

period. In this section, we analyze these potential extensive margin effects.

To address the first case, we estimate a logit regression to analyze the likelihood that a

firm continues to innovate in a county after a hurricane hit. Here, the dependent variable

takes the value of one if the firm innovates in the county in the post-hurricane landfall period
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and zero otherwise. The regression specification is given by

logit(P (NPatentsi,c,t:t+h−1 > 0|NPatentsi,c,t−h:t−1 > 0)) =β1HitOtheri,c,t (4)

+ ψc,t + εi,c,t+h.

Table 7 presents the estimates. A firm whose establishments elsewhere are in counties

that are in a hurricane landfall region is much more likely to keep innovating in an existing

establishment in a county. The coefficient estimate forHitOtheri,c,t is strongly significant and

positive for all specifications. The coefficient magnitude is between 0.4 and 0.5, which implies

a marginal effect between 8% and 12%. This indicates that the probability of a firm retaining

innovation activity in a county is 8% to 12% higher if the HitOtheri,c,t variable increases by

one unit. Compared to the baseline estimates in Table 3, the magnitude of the coefficient

estimates do not increase for longer horizons. This finding is intuitive, as the dependent

variable in the logit regression is capped at one and does not measure agglomeration benefits.

To address the second case—whether firms with exposure to a hurricane are more likely

to start generating patents in counties in which they did not innovate before—we estimate

the firm-year level regression given by

NrNewCountiesi,t:t+h−1

NrTotalCountiesi,t−h:t−1

= β1SharePatentsHiti,t + θt + εi,t+h. (5)

The dependent variable measures the number of counties in which the firm generated patents

in the post-landfall period but not the pre-landfall period (i.e., innovation in counties ”new”

to the firm) relative to the total number of counties in which the firm generated patents

in the pre-landfall period. We include year fixed effects and the standard errors are double

clustered by year and firm. The variable SharePatentsHiti,t measures the share of a firms’

innovation locations within the landfall region of the hurricane, which can range from zero
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to one:

Hiti,t =

∑
c

(
NPatentsi,c,t−h:t−1 × Hitc,t

)
∑

c NPatentsi,c,t−h:t−1

. (6)

Table 8 reports the results. The coefficient estimate of SharePatentsHiti,t is positive

for all eight specifications and strongly significant for six of the eight specifications. The

magnitude of the coefficient estimate goes up to 0.04, which suggests that a firm that had all

of its establishments in the landfall region adds innovation to 4% new counties. This number

is relatively small. The results suggest that while firms do shift resources and innovation

activity into new counties post-hurricane landfall, our baseline regression specification in

equation (2) captures the major effects by analyzing the spillovers within a firm’s existing

internal innovation network.

4.4 Firm-level substitution

Our results raise the question of whether firms can perfectly substitute the impact from a

hurricane on their innovation output by moving resources to other locations. To test whether

there is perfect substitution, we estimate a firm-level regression that is similar to equation

(5):

log

(
NPatentsi,t:t+h−1

NPatentsi,t−h:t−1

)
= β1SharePatentsHiti,t + θt + εi,t+h. (7)

The dependent variable is the change in the average annual number of patents pre- and

post-hurricane. We again include a year fixed effects and double cluster the standard errors

by year and firm.

The results in Table 9 show that firms can almost perfectly substitute the effects from a

hurricane. The coefficient estimates are negative and significant for some specification but

the magnitude is small. The magnitude ranges from 0 to -0.05, which implies that a firm
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that has all of its establishments hit by a hurricane experiences a decline in its total number

of patents output at the firm-level of only up to 5%.

4.5 County-level spillovers

When firms reallocate resources in their internal networks in response to a hurricane shock,

there may be observable changes in innovation output at the aggregate county level. A

natural question that follows is if a county is located outside of the hurricane landfall region

but the firms with establishments in that county have other establishments in the hurricane

landfall region, does the county see an increase in innovation? This question is important

as it allows us to examine whether the shock propagation through firms’ internal networks

is large enough to affect aggregate local innovation output.

To test such county-level spillovers we estimate the regression model given by:

log

(
NPatentsc,t:t+h−1

NPatentsc,t−1

)
= β1CountyHitOtherc,t + µc + ϕs,t + ϵc,t+h. (8)

The dependent variable is the change in the average annual number of patents in county c

over h years after the hurricane landfall relative to the number of patents in the year before

landfall. We include county fixed effects and state interacted with year fixed effects. The

standard errors are clustered by county and year. Counties in the hurricane landfall region

are excluded from the regression. The independent variable CountyHitOtherc,t measures

the share of patents for firms with establishments in county c that are hit by a hurricane in

counties other than county c:

CountyHitOtherc,t =

∑
i∈c

∑
k ̸=c

NPatentsFirmi,k,t−5:t−1 × Hitk,t∑
i∈c

∑
k

NPatentsFirmi,k,t−5:t−1

(9)

Table 10 presents the results. Panel A shows the estimates with county and year fixed

effects. The estimates are positive for all specifications. The magnitude of the estimates are
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increasing for longer horizons h and are strongly significant for all specifications where h is

larger than one year. The magnitude increases from 0.05 at the one year horizon to 0.18 at

the ten year horizon. This increase is in line with the increasing estimates at the firm-county

level (e.g., Table 3) and suggest that agglomeration benefits also occur at the county-level.

Panel B includes state interacted with year fixed effects in the regression model. These

fixed effects allow us to compare counties within the same state and year, but with different

exposure to the hurricane landfall region through the firms’ internal networks. The results

are largely unchanged in terms of magnitude and significance.

5 Conclusion

Innovation supports continued economic growth and is an essential driver of an economy

maintaining a competitive edge. In this paper, we analyze how quasi-exogenous local ex-

treme weather shocks impact the spatial distribution of innovation. To do so, we first

construct a comprehensive, nearly-error-free database of all U.S. patents from 1836 to 2023

using advanced OCR and LLM technologies. We then analyze how hurricanes affect local

innovation output and lead to spillovers across the U.S. through firms’ internal innovation

networks.

We find that major hurricanes destroy local innovative capacity for up to a decade fol-

lowing landfall and lead to permanent counterfactual losses for the landfall region. Firms

that produce patents in the region before landfall, reallocate resources and increase their

innovation output in other counties. These result are in line with a simple model where the

innovation productivity channel dominates the capital channel. Our results are robust to dif-

ferent time-periods and become stronger during recessions. Further, the spillovers along the

firms’ internal networks lead to increases in aggregate innovation output for counties located

outside of the hurricane landfall region. Our findings suggest potential efficient reallocation

and agglomeration benefits following destructive natural disasters.
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Harnessing almost two centuries of data, we reveal a mechanism that can generate diver-

gence in regional economic prosperity. This mechanism is important for local and national

policymakers to factor in when choosing policies to promote economic growth and prosperity,

especially those focused on protecting and promoting innovative activity. Our results on how

local natural disaster shocks have long-lasting effects on innovation are of particular impor-

tance to current debates regarding how to ensure the competitiveness of the U.S. economy

while keeping it resilient to unexpected disasters and shocks.

Further, if extreme weather events like hurricanes become more damaging in the future,

academics and policymakers alike will need to better understand the impact of extreme

weather events on innovation to comprehensively assess the economic costs of these events.

Our findings will be crucial for policymakers who seek to balance the costs and benefits of

adaptation and resilience to extreme weather events.
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Jordà, Òscar, 2005, Estimation and inference of impulse responses by local projections,
American Economic Review 95, 161–182.

Kelly, Bryan, Dimitris Papanikolaou, Amit Seru, and Matt Taddy, 2021, Measuring techno-
logical innovation over the long run, American Economic Review: Insights 3, 303–320.

Kogan, Leonid, Dimitris Papanikolaou, Amit Seru, and Noah Stoffman, 2017, Technological
innovation, resource allocation, and growth, Quarterly Journal of Economics 132, 665–712.

Kojima, Takeshi, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa,
2024, Large language models are zero-shot reasoners, in Proceedings of the 36th Interna-
tional Conference on Neural Information Processing Systems NIPS ’22 Red Hook, NY,
USA. Curran Associates Inc.

Kruttli, Mathias S., Brigitte Roth Tran, and Sumudu W. Watugala, 2025, Pricing poseidon:
Extreme weather uncertainty and firm return dynamics, Journal of Finance 80, 783–832.

Landsea, Christopher W, and James L Franklin, 2013, Atlantic hurricane database uncer-
tainty and presentation of a new database format, Monthly Weather Review 141, 3576–
3592.

Mao, Yifei, and Jessie Jiaxu Wang, 2023, Access to finance and technological innovation:
Evidence from pre-Civil War America, Journal of Financial and Quantitative Analysis 58,
1973=2023.

Marshall, Alfred, 1890, Principles of Economics (Macmillan: London).

Moretti, Enrico, 2021, The effect of high-tech clusters on the productivity of top inventors,
American Economic Review 111, 3328–3375.

Nanda, Ramana, and Tom Nicholas, 2014, Did bank distress stifle innovation during the
great depression?, Journal of Financial Economics 114, 273–292.

Nanda, Ramana, Ken Younge, and Lee Fleming, 2015, Innovation and entrepreneurship in
renewable energy, The changing frontier: Rethinking science and innovation policy 199.

29



Nicholas, Tom, 2010, The role of independent invention in U.S. technological development,
1880-1930, Journal of Economic History 70, 57–82.

Nordhaus, William D., 1977, Economic growth and climate: The carbon dioxide problem,
American Economic Review 67, 341–346.

Noy, Ilan, and Eric Strobl, 2023, Creatively destructive hurricanes: Do disasters spark inno-
vation, Environmental and Resource Economics 84, 1–17.

Pankratz, Nora MC, and Christoph M Schiller, 2024, Climate change and adaptation in
global supply-chain networks, The Review of Financial Studies 37, 1729–1777.

Petralia, Sergio, Pierre-Alexandre Balland, and David L. Rigby, 2016, Unveiling the geog-
raphy of historical patents in the United States from 1836 to 1975, Scientific Data 3,
160074.

Romer, Paul M., 1990, Endogenous technological change, Journal of Political Economy 98,
71–102.

, 1994, The origins of endogenous growth, Journal of Economic Perspectives 8, 3–22.

Roth Tran, Brigitte, and Daniel J Wilson, 2024, The local economic impact of natural
disasters, Federal Reserve Bank of San Francisco working paper.

Schumpeter, Joseph A., 1942, Capitalism, Socialism, and Democracy (Harper Brothers).

Solow, Robert M, 1957, Technical change and the aggregate production function, Review of
Economics and Statistics 39, 312–320.

Stein, Jeremy C., 1997, Internal capital markets and the competition for corporate resources,
Journal of Finance 52, 111–133.

Williamson, Oliver E., 1975, Market and Hierarchies: Analysis and Antitrust Implications
(New York: Free Press).

30



Figure 1: Example USPTO scan of a patent (number 159,227)
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Google Patents OCR Our New OCR

iNITED, UNITED STATES PATENT OFFICE.
’ Bnl-uns n. srNoLAin, on, ourense, immers. HEMAN B. SINCLAIR, OF CHICAGO, ILLINOIS.
inn-Psovsmsnr ns Forense tastes. IMPROVEMENT IN FOLDING TABLES.
Specification formingpart of Letters Patent Specification forming part of Letters Patent
No. 159,227. dated January 26, li875; No. 159,227, dated January 26, 1875
application-filed October 21, 1874. f f application filed October 21, 1874.
runstnnctionjindrrangement ofraQldiUE. tn- To all whom it may concern:

ble, as-will be hereinafter more fully set forth.

Be it known that I, HEMAN B. SINCLAIR,
of the city of Chicago, in the county of Cook
and State of Illinois, have invented certain
new and useful Improvements in Folding Ta-
bles; and I do hereby declare that the fol-
lowing is a full, clear, and exact description
thereof, reference being had to the accompa-
nying drawings and to the letters of reference
marked thereon, which form part of this speci-
fication.
The nature of my invention consists in the
construction.and arrangement of a folding ta-
ble, as-will be hereinafter more fully set forth.

Figure 2: Comparison of OCR rendering of patent number 159,227
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(A) 1835–1839 (B) 1860–1869

(C) 1890–1899 (D) 1920–1929

(E) 1950–1959 (F) 2010–2019

Figure 3: Locations of inventors

This figure shows the location of inventors who have patents granted during different periods over the last
two centuries. Inventor locations are aggregated to counties that are then sorted into deciles in each period
based on the number of inventors residing in each county. The darker the shade, the greater the number of
active inventors in a county.
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(A) SS White Dental Manufacturing Company (B) The American Bell Telephone Company

(C) General Electric Company (D) Western Electric Company

Figure 4: Firms’ internal innovation networks as of 1900

This figure shows for each firm the counties where they generated patents up to 1900. These four firms are
in the top five in generated patents up to 1900: SS White Dental Manufacturing Company (216 cumulative
patents), The American Bell Telephone Company (266 cumulative patents), General Electric Company 581
(cumulative patents), and Western Electric Company (587 cumulative patents).
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(A) 1893 Louisiana Hurricane (B) 2005 Katrina

(C) 2012 Sandy (D) 2017 Irma

Figure 5: Counties within a hurricane landfall region

This figure shows the counties within 50, 100, 150, and 200 miles of the hurricane eye for four hurricanes in
our sample from 1851-2023.
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(A) Stylized example of spatial exposure (across variation)

(B) The timeline of a hurricane (within variation)

Figure 6: Identification strategy

Panel A illustrates a stylized example of inventor locations and county exposure to a hurricane landfall
region. Panel B illustrates the timeline of a hurricane.
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−0.08

−0.04

0.00

1 3 5 7 9
Years after landfall

N
P

at
en

ts
 c

ha
ng

e 
(in

 %
)

(B) Counties within 100-mile radius
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(C) Counties within 200-mile radius

Figure 7: Change in local innovation following landfall
This figure presents the β1 estimate and its 95% confidence interval from estimating the local projection
estimation described in equation (1) for horizons h = 0, 1, 2, . . . , 9, 10. Panels A, B, and C show the estimates
with landfall regions determined at 50-, 100- and 200-miles radii, respectively, from the eye of the hurricane.
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Table 1: Patent Summary Statistics

This table shows the summary statistics for the main variables used in the paper. Panel A presents the
data from 1851 to 2023 used in the county-year level local projection model given in equation (1). Panel B
presents the summary statistics for the firm-county-year level event study regression given in equation (2).
Panel C reports the summary statistics for the firm-level event study regression given in equation (7). Panel
B and C show summary statistics for the landfall region based on a 100-mile radius around the eye of the
hurricane and five years pre- and post-hurricane landfall. All variables are described in Appendix Table C.4.

Panel A: County-Year Level

Observations Avg. St. dev. 10th 25th 50th 75th 90th

NPatentsc,t 514,753 19.337 185.338 0.000 0.000 1.000 4.000 17.000

∆log(NPatentsc,t) 226,493 0.014 0.633 -0.693 -0.336 0.000 0.375 0.693

Panel B: Firm-County-Year Level

NPatentsi,c,t:t+4 394,053 2.035 12.915 0.200 0.200 0.400 1.200 3.200

NPatentsi,c,t−5:t−1 394,053 1.721 10.520 0.200 0.200 0.400 1.000 2.600

log(NPatentsi,c,t:t+4/NPatentsi,c,t−5:t−1) 394,053 0.079 0.961 -1.099 -0.560 0.000 0.693 1.322

Hitc,t 394,053 0.093 0.290 0.000 0.000 0.000 0.000 0.000

HitOtheri,c,t 394,053 0.051 0.162 0.000 0.000 0.000 0.001 0.100

Panel C: Firm-Year Level

NPatentsi,t:t+4 184,163 5.030 55.539 0.200 0.400 0.600 1.800 5.400

NPatentsi,t−5:t−1 184,163 4.181 45.370 0.200 0.200 0.600 1.600 4.600

log(NPatentsi,t:t+4/NPatentsi,c,t−5:t−1) 184,163 0.095 1.044 -1.099 -0.651 0.000 0.693 1.386

SharePatentsHiti,t 184,163 0.082 0.248 0.000 0.000 0.000 0.000 0.227
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Table 2: Hurricane Summary Statistics

This table shows summary statistics for the number of counties that lie in a hurricane landfall region. Panel
A presents the summary statistics for the full time series of hurricanes from 1851 to 2023. Panel B presents
the summary statistics for the hurricanes from 1851 to 1975—the time series for which we construct the
patent data. Panel C presents the summary statistics for hurricanes from 1976 to 2023—the time series for
which the USPTO has digitized patent data. The number of counties in the landfall region are shown based
on different radii from the eye of the hurricane.

Panel A: Hurricanes from 1851 to 2023

# counties in hurricane landfall region
Landfall radius Hurricane-years Avg. St. dev. 10th 25th 50th 75th 90th

50 49.000 63.469 32.220 21.800 44.000 60.000 77.000 93.000
100 50.000 163.540 88.751 77.000 108.000 155.000 213.250 229.900
200 50.000 375.680 156.437 201.300 267.500 353.500 477.250 536.300

Panel B: Hurricanes from 1851 to 1975

50 36.000 63.361 35.090 21.500 43.750 60.500 77.000 92.000
100 37.000 161.892 97.231 73.400 99.000 155.000 217.000 230.800
200 37.000 373.324 171.990 172.600 252.000 351.000 483.000 544.400

Panel C: Hurricanes from 1976 to 2023

50 13.000 63.769 23.686 41.600 52.000 60.000 77.000 91.600
100 13.000 168.231 61.398 102.000 129.000 170.000 195.000 226.600
200 13.000 382.385 105.458 263.200 280.000 387.000 440.000 528.600
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Table 3: Spillovers via Firms’ Internal Networks

This table presents results from estimating the regression specification given in equation (2). The dependent

variable log
(

NPatentsi,c,t:t+h−1

NPatentsi,c,t−h:t−1

)
is at the firm-county-year level. The numerator (denominator) is the annual

average number of patents over h years post (pre) hurricane landfall. The first independent variable is an
indicator variable that takes a value of 1 if a county was in the landfall region of a hurricane in a given
year (Hitc,t). The dependent variable (HitOtheri,c,t) measures the share of a firm’s patents in counties
other than county c that were in the hurricane landfall region. The data span from 1851 to 2023. The
specifications include year and county fixed effects (Panel A) and year interacted with county fixed effects
(Panel B). Standard errors are double clustered by year and firm and shown in parentheses. The significance
of each coefficient estimate is indicated by * for p < 0.10, ** for p < 0.05, and *** for p < 0.01.

Panel A: With County and Year Fixed Effects

Landfall radius 100 200

Window length in years (h) 1 3 5 10 1 3 5 10

Hitc,t -0.024∗∗∗ -0.028∗∗∗ -0.031∗∗∗ -0.027 -0.023∗∗∗ -0.030∗∗∗ -0.038∗∗∗ -0.039∗

(0.006) (0.008) (0.011) (0.019) (0.005) (0.008) (0.012) (0.022)
HitOtheri,c,t 0.054∗∗∗ 0.076∗∗∗ 0.101∗∗∗ 0.162∗∗∗ 0.058∗∗∗ 0.064∗∗∗ 0.100∗∗∗ 0.172∗∗∗

(0.019) (0.021) (0.025) (0.040) (0.015) (0.019) (0.022) (0.036)

Year FE Yes Yes Yes Yes Yes Yes Yes Yes
County FE Yes Yes Yes Yes Yes Yes Yes Yes

Observations 232,955 406,105 451,265 384,621 210,375 407,701 409,129 346,958
R2 0.012 0.015 0.017 0.023 0.013 0.015 0.017 0.024

Panel B: With County×Year Fixed Effects

HitOtheri,c,t 0.059∗∗∗ 0.072∗∗∗ 0.095∗∗∗ 0.154∗∗∗ 0.063∗∗∗ 0.069∗∗∗ 0.104∗∗∗ 0.168∗∗∗

(0.020) (0.022) (0.027) (0.043) (0.016) (0.020) (0.023) (0.038)

County × Year FE Yes Yes Yes Yes Yes Yes Yes Yes

Observations 232,955 406,105 451,265 384,621 210,375 407,701 409,129 346,958
R2 0.094 0.071 0.072 0.083 0.104 0.075 0.074 0.086
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Table 4: Spillovers via Firms’ Internal Networks (Excluding Hit Counties)

This table presents results from estimating the regression specification given in equation (2) but excluding

hit counties from the sample. The dependent variable log
(

NPatentsi,c,t:t+h−1

NPatentsi,c,t−h:t−1

)
is at the firm-county-year level.

The numerator (denominator) is the annual average number of patents over h years post (pre) hurricane
landfall. The dependent variable (HitOtheri,c,t) measures the share of a firm’s patents in counties other than
county c that were in the hurricane landfall region. The data span from 1851 to 2023. The specifications
include county times year fixed effects. Standard errors are double clustered by year and firm and shown in
parentheses. The significance of each coefficient estimate is indicated by * for p < 0.10, ** for p < 0.05, and
*** for p < 0.01.

Landfall radius 100 200

Window length in years (h) 1 3 5 10 1 3 5 10

HitOtheri,c,t 0.054∗∗ 0.066∗∗ 0.087∗∗ 0.124∗∗ 0.052∗∗ 0.051∗ 0.087∗∗∗ 0.128∗∗∗

(0.023) (0.032) (0.035) (0.047) (0.022) (0.028) (0.028) (0.041)

County × Year FE Yes Yes Yes Yes Yes Yes Yes Yes

Observations 192,735 369,023 357,472 295,421 185,009 355,942 346,952 284,358
R2 0.100 0.072 0.073 0.086 0.102 0.074 0.075 0.089
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Table 5: Spillovers via Firms’ Internal Networks (Pre-1976 Period)

This table presents results from estimating the regression specification given in equation (2) but interacting
the independent variable with an indicator that takes the value of one for the years from 1851 to 1975

and zero otherwise. The dependent variable log
(

NPatentsi,c,t:t+h−1

NPatentsi,c,t−h:t−1

)
is at the firm-county-year level. The

numerator (denominator) is the annual average number of patents over h years post (pre) hurricane landfall.
The dependent variable (HitOtheri,c,t) measures the share of a firm’s patents in counties other than county c
that were in the hurricane landfall region. The data span from 1851 to 2023. The specifications include county
times year fixed effects. Standard errors are double clustered by year and firm and shown in parentheses.
The significance of each coefficient estimate is indicated by * for p < 0.10, ** for p < 0.05, and *** for
p < 0.01.

Landfall radius 100 200

Window length in years (h) 1 3 5 10 1 3 5 10

HitOtheri,c,t 0.041∗∗ 0.059∗∗ 0.070∗∗ 0.111∗∗ 0.049∗∗∗ 0.053∗∗ 0.079∗∗∗ 0.115∗∗∗

(0.018) (0.025) (0.029) (0.048) (0.017) (0.023) (0.024) (0.038)
HitOtheri,c,t × It∈1851−1975 0.128∗∗∗ 0.079∗∗ 0.134∗∗∗ 0.177∗∗∗ 0.095∗∗∗ 0.086∗∗ 0.127∗∗∗ 0.191∗∗∗

(0.025) (0.036) (0.036) (0.058) (0.033) (0.035) (0.039) (0.054)

County × Year FE Yes Yes Yes Yes Yes Yes Yes Yes

Observations 207,623 398,787 394,053 333,573 210,375 407,701 409,129 346,958
R2 0.010 0.071 0.072 0.082 0.104 0.074 0.074 0.085
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Table 6: Spillovers via Firms’ Internal Networks (during US Recessions)

This table presents results from estimating the regression specification given in equation (2) but interacting
the independent variable with an indicator that takes the value of one if the year was a US recession year
and zero otherwise. A year is classified as a recession year if at least six months were in a recession based on

NBER data. The dependent variable log
(

NPatentsi,c,t:t+h−1

NPatentsi,c,t−h:t−1

)
is at the firm-county-year level. The numerator

(denominator) is the annual average number of patents over h years post (pre) hurricane landfall. The
dependent variable (HitOtheri,c,t) measures the share of a firm’s patents in counties other than county c
that were in the hurricane landfall region. The data span from 1851 to 2023. The specifications include county
times year fixed effects. Standard errors are double clustered by year and firm and shown in parentheses.
The significance of each coefficient estimate is indicated by * for p < 0.10, ** for p < 0.05, and *** for
p < 0.01.

Landfall radius 100 200

Window length in years (h) 1 3 5 10 1 3 5 10

HitOtheri,c,t 0.049∗∗ 0.067∗∗∗ 0.084∗∗∗ 0.135∗∗∗ 0.059∗∗∗ 0.063∗∗∗ 0.095∗∗∗ 0.146∗∗∗

(0.019) (0.023) (0.028) (0.045) (0.016) (0.021) (0.023) (0.036)
HitOtheri,c,t × It∈Recession 0.110∗∗∗ 0.064 0.102∗∗∗ 0.147∗∗∗ 0.069∗ 0.084∗∗∗ 0.121∗∗∗ 0.199∗∗∗

(0.032) (0.047) (0.033) (0.042) (0.035) (0.029) (0.023) (0.033)

County × Year FE Yes Yes Yes Yes Yes Yes Yes Yes

Observations 207,623 398,697 394,029 333,595 210,375 407,645 409,171 346,958
R2 0.099 0.072 0.072 0.083 0.104 0.075 0.075 0.086
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Table 7: Probability of Firm Keeping Existing Innovation Location

This table presents results from estimating the logit regression specification given in equation (4). The
dependent variable takes a value of one if the firm has patents in a county over h years post-hurricane
landfall and zero otherwise. The sample includes only firm-county-year observations where the number of
patents was positive over h years pre-hurricane. The dependent variable (HitOtheri,c,t) measures the share
of a firm’s patents in counties other than county c that were in the hurricane landfall region. The data
span from 1851 to 2023. The specifications include county times year fixed effects. Standard errors are
double clustered by year and firm and shown in parentheses. The significance of each coefficient estimate is
indicated by * for p < 0.10, ** for p < 0.05, and *** for p < 0.01.

Landfall radius 100 200

Window length in years (h) 1 3 5 10 1 3 5 10

HitOtheri,c,t 0.523∗∗∗ 0.426∗∗∗ 0.400∗∗∗ 0.403∗∗∗ 0.534∗∗∗ 0.435∗∗∗ 0.408∗∗∗ 0.403∗∗∗

(0.048) (0.054) (0.059) (0.063) (0.054) (0.055) (0.056) (0.060)

Marginal effect 0.118 0.097 0.087 0.079 0.120 0.099 0.089 0.079

County × Year FE Yes Yes Yes Yes Yes Yes Yes Yes

Observations 541,060 1,037,433 1,157,467 1,185,779 553,164 1,060,368 1,192,796 1,211,923
Pseudo R2 0.040 0.036 0.035 0.032 0.041 0.037 0.035 0.033
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Table 8: Firms’ Expansion Into New Counties

This table presents results from estimating the firm-level regression specification given in equation (5). The
dependent variable is the number of new counties in which the firm generated patents over h years post-
hurricane landfall divided by the total number of counties in which the firm generated patents over h years
pre-hurricane landfall. The dependent variable (SharePatentsHiti,t) measures the share of a firm’s patents
in counties that are in the hurricane landfall region. The data span from 1851 to 2023. The specifications
include year fixed effects. Standard errors are double clustered by year and firm and shown in parentheses.
The significance of each coefficient estimate is indicated by * for p < 0.10, ** for p < 0.05, and *** for
p < 0.01.

Landfall radius 100 200

Window length in years (h) 1 3 5 10 1 3 5 10

SharePatentsHiti,t 0.024∗∗ 0.021∗∗ 0.029∗∗ 0.005 0.033∗∗∗ 0.031∗∗∗ 0.036∗∗∗ 0.013
(0.010) (0.009) (0.012) (0.010) (0.009) (0.009) (0.010) (0.008)

Year FE Yes Yes Yes Yes Yes Yes Yes Yes

Observations 232,955 406,105 451,265 384,621 210,375 407,701 409,129 346,958
R2 0.094 0.071 0.072 0.083 0.104 0.075 0.074 0.086
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Table 9: Within-Firm Substitution After Hurricane Shock

This table presents results from estimating the regression specification given in equation (7). The dependent

variable log
(

NPatentsi,t:t+h−1

NPatentsi,t−h:t−1

)
is at the firm-year level. The numerator (denominator) is the annual average

number of patents over h years post (pre) hurricane landfall. The dependent variable (SharePatentsHiti,t)
measures the share of a firm’s patents in counties that are in the hurricane landfall region. The data span
from 1851 to 2023. The specifications include year fixed effects. Standard errors are double clustered by
year and firm and shown in parentheses. The significance of each coefficient estimate is indicated by * for
p < 0.10, ** for p < 0.05, and *** for p < 0.01.

Landfall radius 100 200

Window length in years (h) 1 3 5 10 1 3 5 10

SharePatentsHiti,t -0.020∗ -0.029∗∗∗ -0.029∗∗ -0.050∗∗∗ -0.002 -0.012 -0.005 -0.031∗∗∗

(0.012) (0.010) (0.011) (0.010) (0.008) (0.011) (0.011) (0.010)

Year FE Yes Yes Yes Yes Yes Yes Yes Yes

Observations 93,582 176,664 184,163 178,620 98,079 183,568 192,548 185,843
R2 0.0063 0.0101 0.0127 0.0177 0.0060 0.0103 0.0133 0.0173
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Table 10: Aggregate County Patents Spillovers via Firms’ Internal Networks

This table presents results from estimating the regression specification given in equation (8). The dependent

variable log
(

NPatentsc,t:t+h−1

NPatentsc,t−1

)
is at the firm-year level. The numerator is the annual average number of

patents over h years post-hurricane landfall. The denominator is the number of patents in the year before
landfall. The dependent variable (CountyHitOtherc,t) measures for firms located in county c the share of
their patents that are outside county c and in the hurricane landfall region given in equation (8). Only
counties outside the landfall region are included in the regression. The data span from 1851 to 2023. The
specifications include county, year, and year interacted with state fixed effects. Standard errors are double
clustered by year and county and shown in parentheses. The significance of each coefficient estimate is
indicated by * for p < 0.10, ** for p < 0.05, and *** for p < 0.01.

Panel A: With County and Year Fixed Effects

Landfall radius 100 200

Window length in years (h) 1 3 5 10 1 3 5 10

CountyHitOtherc,t 0.047 0.138∗∗∗ 0.139∗∗∗ 0.176∗∗∗ 0.045 0.123∗∗∗ 0.119∗∗∗ 0.150∗∗∗

(0.041) (0.043) (0.038) (0.049) (0.032) (0.029) (0.029) (0.037)

Year FE Yes Yes Yes Yes Yes Yes Yes Yes
County FE Yes Yes Yes Yes Yes Yes Yes Yes

Observations 35,821 36,128 34,174 30,731 30,460 30,818 29,520 26,466
R2 0.371 0.489 0.548 0.614 0.376 0.498 0.558 0.628

Panel B: With County and State×Year Fixed Effects

CountyHitOtherc,t 0.026 0.098∗∗ 0.119∗∗∗ 0.169∗∗∗ 0.032 0.105∗∗∗ 0.122∗∗∗ 0.147∗∗∗

(0.039) (0.047) (0.042) (0.037) (0.033) (0.033) (0.031) (0.032)

Year×State FE Yes Yes Yes Yes Yes Yes Yes Yes
County FE Yes Yes Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes Yes Yes

Observations 35,821 36,128 34,174 30,731 30,460 30,818 29,520 26,466
R2 0.418 0.539 0.598 0.666 0.426 0.550 0.610 0.680
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Appendix A Conceptual framework

Consider a firm operating J establishments indexed by j = 1, . . . , J . Each establishment

can spend on R&D. The variable φj ≥ 0 is the level of R&D inputs at an establishment,

for example, labor, plants, and equipment. Each establishment takes the price of the R&D

input, pj > 0, as given. Whether or not an establishment j is in a disaster-hit region is

captured by the parameter θj. An establishment hit by a disaster has θj > 0, otherwise

θj = 0.

Each establishment j has a capital endowment:

Kj(θj) = K̄j e
−ξθj , K̄j > 0, ξ > 0. (10)

The capital endowment decreases when an establishment is in the hurricane landfall re-

gion. The interpretation is that the establishment can experience physical damages from

the hurricane, which reduces the firm’s overall capital. The hurricane can destroy, for ex-

ample, facilities, equipment, and inventory. The parameter ξ determines the sensitivity of

an establishment’s capital to the hurricane. If ξ is large, the capital is more vulnerable to

the hurricane hit, for example, the firm has no insurance or has less resilient facilities. Its

derivative with respect to the shock is

K ′
j(θj) = −ξ K̄je

−ξθj < 0. (11)

We call this effect from the hurricane the capital channel.

Given a level of R&D input φj and input productivity γ, the innovation output of estab-

lishment j, πj, is given by

πj = e−θjφγ
j , 0 < γ < 1. (12)

The derivatives of π are

∂π

∂φ
= e−θjγφγ−1

j > 0, (13)

∂2π

∂φ2
= e−θjγ(γ − 1)φγ−2

j < 0, () (14)

∂2π

∂φ ∂θ
= −e−θjγφγ−1

j < 0(). (15)

The sign of these derivatives show that higher R&D input for establishment j increases

innovation (13) but at a decreasing rate (14). If the establishment is hit by a hurricane,

the marginal product of an additional unit of R&D input is lower (15). In other words,
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establishments become less productive at innovation following a hurricane landfall. The

worsening productivity is motivated by the large decrease in patent generation for counties

in a hurricane landfall region reported in Section 4.1.1. There is less innovation activity in

these counties because of, for example, damaged county-level infrastructure or a labor force

that is pre-occupied with the aftermath of the hurricane, which lowers the productivity of

establishments located there. We call this the innovation productivity channel.

Importantly, the firm’s headquarters make the decisions on factor input choices and

funding for all establishments. The headquarters’ goal is to maximize overall firm value as

modeled by, for example, Williamson (1975); Gertner, Scharfstein, and Stein (1994); Stein

(1997). As in Giroud and Mueller (2019), the headquarters pool the endowments of all the

establishments to form the total capital endowment for the firm.

K̄(θ1, . . . , θJ) =
J∑

j=1

Kj(θj) =
J∑

j=1

K̄je
−ξθj . (16)

The budget constraint for R&D expenditures is:

J∑
j=1

pj φj = K̄(θ1, . . . , θJ). (17)

The firm allocates its capital endowment to maximize total innovation:13

max
φ1,...,φJ≥0

J∑
j=1

e−θjφγ
j + λ(

J∑
j=1

K̄je
−ξθj −

J∑
j=1

pjφj). (18)

The first order conditions are

e−θjγφγ−1
j = λpj, ∀j, (19)

and the budget constraint binds:

J∑
j=1

pjφj =
J∑

j=1

K̄je
−ξθj . (20)

Because of the binding budget constraint, the shadow value of capital, λ, is greater than

zero.

13The firm allocates all capital to R&D and is only concerned with how much capital to allocate to each
establishment. This choice keeps the framework tractable. An extension where the firm also decides how
much capital to allocate to R&D in general leads to qualitatively similar predictions.
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Based on equation (19), the following equality has to hold for any two establishments i

and j:

e−θiγφγ−1
i

pi
= λ =

e−θjγφγ−1
j

pj
. (21)

This equation implies that the marginal product of R&D input per dollar of price must be

the same across the establishments. We want to determine how R&D input and consequently

innovation output changes at establishment j in response to a hurricane making landfall in

the location of establishment k. The derivative of the R&D input at establishment j, φj,

with respect to the hurricane hit of establishment k is given by

∂φj

∂θk
=

pj e
θj φ2−γ

j

J∑
m=1

p2m e
θm φ2−γ

m

[
−ξ K̄ke

−ξθk +
pk φk

1− γ

]
, (j ̸= k). (22)

Because of the two channels: capital and innovation productivity, the sign of the derivative

can be negative or positive. In other words, establishment k being hit by the hurricane can

increase or decrease innovation at establishment j. The reason for this can be seen from

the term in brackets in equation (22). The capital endowment channel is captured by the

first bracket term −ξ K̄ke
−ξθk < 0. The hurricane shrinks the total R&D budget of the firm,

which reduces innovation across the establishments. This mechanism is consistent with the

results in Giroud and Mueller (2019), who find that regional shocks from the house price

collapses during the Great Recession decrease employment of establishments in this region

but also for the same firms’ establishments in other regions. Importantly, the innovation

productivity channel is captured by the second bracket term (pk φk)/(1 − γ) > 0. The

hurricane makes establishment k a less productive establishment to innovate, which leads

the firm to reallocate R&D resources to other establishments.14

The term outside of the bracket is a weight that captures how sensitive innovation at es-

tablishment j is to establishment k being hit by the hurricane. The numerator is the relative

steepness of each establishment’s marginal innovation productivity. When establishment k

becomes less productive, the firm must reallocate capital so that the marginal productivity is

the same across all plants. This effect operates through a drop in the shadow value of capital,

λ, based on equation (22). Plants that operate at steeper marginal productivity curves will

see larger adjustments to their R&D inputs. Similarly, when the capital at establishment k

14In the model, the lower innovation productivity at establishment k because of the hurricane does not
affect the price of R&D input, pk. This choice is motivated by sticky prices but also by the fact that a
hurricane is only a regional event and part of the R&D input, for example, equipment is tradable across
regions. Empirically, if the lower productivity led to a reduction in pj , the capital channel would be more
likely to dominate the innovation productivity channel.
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decreases, the shadow value of capital increases. Establishments with a high R&D input, φ,

and R&D input price, p, will experience a larger decrease in φ to achieve a sufficiently high

marginal productivity.

Whether the capital or the innovation productivity dominates—whether the firm reduces

R&D input at all establishments or reallocates R&D input to establishments not hit by the

hurricane—is ultimately an empirical question.
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Appendix B Constructing the patents database

We extract information from pre-1976 patents in three steps. First, we identify the title page

of each patent document. Second, we perform OCR (optimal character recognition) on the

title page of each patent to obtain the text of each title page. Third, we use ChatGPT to

extract inventor and assignee names and locations.

Combining OCR and LLM technologies, we construct a new database of patents.15 Our

process is as follows:

1. Identify the title-page in each patent document. Beginning in the early 1970s, the first

page of a patent document is the title page and contains relevant biographical and

other information. Prior to that, the initial pages of a patent were often one or more

pages of drawings, so the first page of text appears later.

2. Apply state-of-the-art OCR on the relevant PDF pages. We extract the layout of the

document, making it possible to, for example, read columns of text in the correct order.

3. Use ChatGPT to extract information from the OCR text. To date, we have extracted

inventor and assignee names and locations. We do this using a fine-tuned version of

the GPT model and use OpenAI’s Python API to submit millions of batch requests.

Consider again the patent shown in Figure 1; the OCR output we obtain is shown in the

right column of Table 2. The quality improvement over the Google Patents version of the

text is readily apparent; this rendering perfectly matches the original patent document.

Next, we use ChatGPT to extract the relevant information from the enhanced text. In

particular, we use automated queries with questions about the text, as shown here along

with ChatGPT’s corresponding answers:

Input question ChatGPT response

1) What is the title of this patent document? IMPROVEMENT IN FOLDING TABLES

2) How many inventors are listed? 1

3) What is the name of each inventor? Heman B. Sinclair

4) What city/state is each inventor from? Chicago, IL

5) If the text mentions an “assignor” or “assignee,”
null

to what person or company was it assigned?

6) And if it was assigned, list any corresponding cities. null

Given the improved quality of the OCR, one might wonder whether ChatGPT pro-

vides a significant benefit over simpler text analysis approaches. Determining the name and

15To date, we have extracted information only for the title page of patent documents, which covers the
data required for this paper. We are in the process of expanding these data to create a complete and highly
accurate historical database.
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city/state of the inventor from this high-quality OCR text may appear to be quite straight-

forward using simple regular expression pattern matching. But ChatGPT can seamlessly

handle far more complicated situations involving multiple inventors from different cities,

multiple assignees, significant changes in formatting, and other edge cases that are hard to

anticipate across millions of patents.

Our results were obtained using a recent ChatGPT model, gpt-4o-mini, which OpenAI

describes as an “affordable and intelligent small model for fast, lightweight tasks.” Out-

of-the-box, this model performed quite well on our questions. We are able to elicit even

higher-quality responses over a range of input types with two approaches. First, we adopt

recent advances in prompt engineering. For example, we instruct the model to “take it step

by step” before answering. Despite its apparent simplicity, this instruction has been shown

to provide a significant improvement of an LLM’s ability to “reason” through certain types of

questions (Kojima, Gu, Reid, Matsuo, and Iwasawa, 2024). This approach is especially useful

in patents with multiple inventors; in these patents we see an improvement in ChatGPT’s

answers once we require it first to count how many inventors there are, and then to name

them and identify their locations.

Second, we further improve the output by “fine-tuning” the model to our particular needs.

This is done by providing the model with additional training examples of questions along

with our desired output; the model then learns to adjust its output to match the target.

Fine-tuning alters the learning environment from “zero-shot” to “few-shot” by showing the

LLM what an appropriate response looks like. After providing 100 fine-tuning examples, we

verify that our model performs exceptionally well. We manually checked the accuracy of

the extracted inventor and assignee names and locations of a random sample of 500 patents

by comparing them to the patent documents. Only one patent had a minor discrepancy,

indicating an error rate of 0.2%, which can likely be reduced further with additional fine-

tuning of the model.
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Appendix C Additional tables

Table C.1: Baseline Local Effects - Local Projection Estimation

This table presents results from estimating the regression specification given in equation (1) for horizons
h = 0, 1, 2, . . . , 9, 10. Panels A, B, C show the estimates with landfall regions determined at 50-, 100- and
200-miles, respectively, from the radius of the eye of a hurricane. The data span from 1851 to 2023. Standard
errors are double clustered by year and county and shown in parentheses. The specifications include county
and time fixed effects. The significance of each coefficient estimate is indicated by * for p < 0.10, ** for
p < 0.05, and *** for p < 0.01.
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Table C.2: Baseline Local Effects - Event Study Specification

This table presents results from estimating a difference-in-differences regression specification to examine the
impact of hurricanes on county-level patent output. This specification is an alternative to the local projection

estimation shown in equation 1. The dependent variable is log
(

NPatentsc,t+h

NPatentsc,t−1

)
, where the numerator is the

average number of patents from 5 to 7 and 5 to 9 years, respectively, post hurricane hit. The main independent
variable on interest is Hitc,t. The data span from 1851 to 2023. Standard errors are clustered by year and
county and shown in parentheses. The specifications include county and time fixed effects. The significance
of each coefficient estimate is indicated by * for p < 0.10, ** for p < 0.05, and *** for p < 0.01.

Landfall radius 50 100 200

Post-hit window length 3 5 3 5 3 5

Hitc,t -0.084** -0.086** -0.069** -0.067** -0.056** -0.061**
(0.034) (0.035) (0.029) (0.029) (0.023) (0.025)

logNPatentsc,t−1 -0.735*** -0.752*** -0.739*** -0.756*** -0.740*** -0.747***
(0.010) (0.010) (0.011) (0.011) (0.010) (0.011)

logNPatentsc,t−2 0.182*** 0.180*** 0.183*** 0.175*** 0.175*** 0.169***
(0.009) (0.009) (0.009) (0.009) (0.010) (0.009)

logNPatentsc,t−3 0.123*** 0.128*** 0.134*** 0.132*** 0.140*** 0.137***
(0.011) (0.009) (0.011) (0.009) (0.011) (0.010)

logNPatentsc,t−4 0.132*** 0.125*** 0.115*** 0.119*** 0.133*** 0.132***
(0.011) (0.010) (0.011) (0.011) (0.011) (0.011)

logNPatentsc,t−5 0.100*** 0.103*** 0.097*** 0.101*** 0.097*** 0.098***
(0.009) (0.009) (0.009) (0.009) (0.010) (0.009)

Year FE Yes Yes Yes Yes Yes Yes
County FE Yes Yes Yes Yes Yes Yes

Observations 17,287 16,911 18,297 17,999 17,816 17,574
R2 0.523 0.568 0.526 0.570 0.531 0.570
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Table C.3: List of Deadliest Hurricanes

This table presents the list of deadliest Atlantic and Gulf Coast hurricanes included in our sample based on
data from NOAA. The first column indicates the main states of impact and/or, from 1954, the hurricane
names.

Hurricane Year Fatalities

LA (Last Island) 1856 400
LA 1860 47
TX 1875 176
New England 1878 27
NC, VA 1879 46
GA/SC 1881 700
NC 1883 53
TX (Indianola) 1886 150
Texas 1886 27
Mid-Atlantic 1889 40
LA (Cheniere Caminanda) 1893 1100-1400
SC/GA (Sea Islands) 1893 1000-2000
SC, FL 1893 28
FL, GA, SC 1896 130
GA, SC, NC 1898 179
NC, SC 1899 50
TX (Galveston) 1900 8000
SE FL 1906 164
MS/AL/Pensacola 1906 134
LA (Grand Isle) 1909 350
TX (Velasco) 1909 41
SW FL 1910 30
LA (New Orleans) 1915 275
TX (Galveston) 1915 275
SW LA/Upper TX 1918 34
FL (Keys)/S TX 1919 287
FL (Miami)/MS/AL/Pensacola 1926 372
LA 1926 25
FL (SE/Lake Okeechobee) 1928 2500
TX (Freeport) 1932 40
S TX 1933 40
FL (Keys) 1935 408
New England 1938 256
GA/SC/NC 1940 50
Northeast U.S. 1944 64
SE FL/SE LA/MS 1947 51
Hazel (SC/NC) 1954 95
Carol (NE U.S.) 1954 60
Diane (NE U.S.) 1955 184
Connie (NC) 1955 25
Audrey (SW LA/N TX) 1957 416
Donna (FL/Eastern U.S.) 1960 50
Carla (N & Central TX) 1961 46
Hilda (LA) 1964 38
Betsy (SE FL/SE LA) 1965 75
Camille (MS/SE LA/VA) 1969 256
Agnes (FL/NE U.S.) 1972 122
Andrew (S FL, LA) 1992 26
Alberto (NW FL, GA, AL) 1994 30

Continued on the next page.59



Table C.3: List of Deadliest Hurricanes (continued)

Hurricane Year Fatalities

Fran (NC) 1996 26
Floyd (Mid Atlantic & NE U.S.) 1999 56
Allison (SE TX) 2001 41
Ivan (NW FL, AL) 2004 25
Katrina (SE LA/MS) 2005 1200
Irene 2011 48
Sandy 2012 160
Matthew 2016 47
Harvey 2017 106
Irma 2017 96
Florence 2018 54
Michael 2018 59
Laura 2020 41
Ida 2021 92
Ian 2022 156
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Table C.4: Variable Definitions

This table presents definitions of the main variables. The first column gives the variable name. The second
column includes a short description.

Variable Name Description Source

CountyHitOtherc,t

This variable measures for firms located in county c
the share of their patents over five years before
hurricane landfall from counties in the hurricane
landfall region and but not from county c.

NOAA, USTPO,
Census

Hitc,t

This is an indicator variable that takes a vlue of
one if a county c is in the landfall region of a
hurricane in year t and zero otherwise.

NOAA, Census

HitOtheri,c,t

This variable measures the share of firm i’s patents
over h years before hurricane landfall that are from
counties in the landfall region but not from county
c.

NOAA, USPTO,
Census

NPatentsc,t
This variable counts the number of patents issued
in year t for which all inventors reside in county c.

USPTO, Census

NPatentsi,c,t:t+h−1

This variable is the average annual number of
patents issued for firm i in county c over h years
starting in year t.

USPTO, Census

SharePatentsHiti,t

This variable measures the share of firm i’s patents
over h years before hurricane landfall from counties
in the hurricane landfall region.

NOAA, USPTO,
Census
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