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1 Introduction

[The Congress shall have Power . . . ] To promote the Progress of Science
and useful Arts, by securing for limited Times to Authors and Inventors the
exclusive Right to their respective Writings and Discoveries.

—U.S. Constitution, art. I, §8, cl. 8.

Innovation has been constitutionally protected in the United States since 1789. The

Founders were visionary in recognizing that innovation is fundamental to the advancement

of science, health, prosperity, public welfare, and national defense. Economists have similarly

highlighted the importance of innovation, as it serves as a key driver of economic growth in

numerous seminal theoretical models (e.g., Romer, 1990, 1994). Given the central role of

innovation, it is crucial to understand how it has evolved and diffused across the U.S., as

well as the mechanisms that may either hinder or promote innovation in different regions.

Studying these dynamics presents two key challenges for empirical researchers. First, a

comprehensive analysis of the history of U.S. innovation requires a reliable and complete

database of U.S. patents. Second, it is necessary to identify exogenous shocks that are

recurrent throughout the entire time series of U.S. innovation, and that affect different regions

over time.

In this paper, we address these challenges. First, we construct a new database of patent

activity by harnessing recent advances in optical character recognition (OCR) and large lan-

guage model (LLM) technologies that give, for the first time, a comprehensive view into

inventor and assignee names, locations, and types for the universe of around 12 million

U.S. patents from 1836. Second, we exploit the spatial and temporal variation of historical

natural disaster shocks to analyze how exogenous local shocks experienced by inventors af-

fect the amount and type of innovative output and its geographic distribution. Specifically,

we combine the patent data with data spanning nearly two centuries on hurricane land-

falls and storm paths, which we construct based on information obtained from the National

Oceanic and Atmospheric Administration (NOAA). Adapting the research design of Krut-

tli, Roth Tran, and Watugala (2024), we exploit the quasi-exogenous variation in regional
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climatic shocks for identification by using these hurricane landfalls as exogenous events that

destroy local human and physical capital. We then analyze their long-term impact on local

and national innovation.

The relationship between extreme weather events and innovation is also crucial for un-

derstanding how climate change affects economic growth and its implications for the social

cost of carbon (e.g., Nordhaus (1977)). Climate scientists predict that extreme weather

events will become more frequent and intense. If extreme weather events destroy innovative

output in a region, and if there is imperfect substitution of innovation across regions in the

U.S., then this opens another channel through which climate change can reduce aggregate

innovation and contribute to economic costs.

We begin by analyzing the effects of hurricanes on county-level innovation. We use patents

issued in each county and year to estimate a panel version of the local projections method

developed by Jordà (2005). The coefficient estimates imply large and long-lasting negative

effects on patents for a county that is in the landfall region of a hurricane. The effect is not

immediate, but when comparing the number of patents in the third year after landfall to

the year before landfall, the growth rate for hit counties is 4.3 percentage points lower than

for control counties—counties outside of the landfall region. The effect is even larger for the

fourth to the ninth year after landfall. When comparing the number of patents by county

in the fifth year after landfall to the year before landfall, the hit counties’ patent growth

rate is 9.5 percentage points lower. The effect becomes insignificant only in the tenth year

after landfall. The reduction in the growth rate of patents is most pronounced for counties

located closest to the eye of the hurricane at landfall. Importantly, this reduction in the

growth rate of patents for hit counties is a shortfall that does not seem to be compensated

for by a higher growth rate once the hit county recovers.

Next, we analyze how the role of firms in the resilience of a location’s innovative capacity.

The majority of patents in the history of U.S. innovation are developed by individuals without

an institutional affiliation. We call these “independent” patents. Most of the remaining
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patents have an inventor who is backed by a company—that is, the patent is assigned to the

company when it is granted. We call these “firm” patents. We hypothesize that independent

innovation faces greater financial constraints compared to firm-backed innovation following

a disaster and consequently, is less resilient to hurricane hits. Firms are more likely to have

greater access to capital that is also regionally diversified. Our findings are consistent with

this hypothesis. Counties for which the share of independent patents is large experience a

disproportionately larger decrease in their innovation output. For the counties that mostly

rely on firm patents, the effect is reversed, and they experience only a muted impact of the

hurricane on their innovation output. This finding is in line with firms being better able to

withstand destructive shocks to human and physical capital.

Finally, we examine whether the U.S. innovation network can perfectly substitute the

patents shortfall in treated regions. On the one hand, innovation might decrease in hit

regions, but inventors might relocate to unaffected counties, or those already in unaffected

counties might increase their innovation output. In this case, aggregate innovation in the

U.S. would not be affected. On the other hand, a region might be highly specialized in

a certain type of innovation, and there may be imperfect substitution across regions for

this type of innovation. Then, hurricanes would not only affect local but also aggregate

innovation in the U.S. We find evidence for the latter. When patents in a class—we use

the United States Patent Classification (USPC) system to identify patent classes—originate

from a region that is hit by a hurricane, aggregate patent growth in the years after landfall

in this class is up to 31 percentage points lower than for control classes.

We make two significant contributions to the literature. First, by developing a new

methodology and constructing a new, highly accurate, comprehensive database of patent in-

formation (including inventors and their locations, technological characteristics, and assignee

information), we enable research that answers important questions regarding two centuries

of U.S. innovation. Second, by analyzing hurricane landfalls from 1851 to 2023, we show

that hurricanes have a large negative effect on innovation output lasting several years for
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counties in the landfall region. The effect is larger for counties in which the share of inde-

pendent patents is large. Further, there exists imperfect substitution in innovation output

across regions in the U.S. When a region that specializes in an innovation class is hit by a

hurricane, aggregate patenting in this innovation class decreases in the years after hurricane

landfall.

Our paper contributes to several strands of economic research. First, by constructing

a new database for the universe of U.S. patents, we complement other papers that analyze

innovation for years not covered by the NBER patent database (Hall, Jaffe, and Trajtenberg,

2001), which starts in 1976. For example, Kogan, Papanikolaou, Seru, and Stoffman (2017)

process patent information for the subset of patents issued since 1926 for which the assignee

is a publicly traded firm. Kelly, Papanikolaou, Seru, and Taddy (2021) measure the novelty

of historical patents using textual analysis methods but do not extract information on the

inventor and assignee names and location, and rely on the text provided by Google Patents.

Petralia, Balland, and Rigby (2016) are more closely related to our paper in that their goal

is to develop a database of historical patents that contains inventor and assignee names

and location. However, as we discuss in Section 3, there are substantial discrepancies when

comparing the Petralia, Balland, and Rigby (2016) data to our database. These discrepancies

are likely driven by recent improvements in OCR and our ability to use LLM technology to

extract information with fewer errors.

Second, we add to the literature on the economic risks associated with a changing climate.

The risks are broadly categorized into two types: physical and transition risks (Carney,

2015). Physical risks encompass the destruction from more intense and frequent extreme

weather events like hurricanes and heat waves (e.g., Kruttli, Roth Tran, and Watugala,

2024) or sea-level rise due to climate change. Transition risks refer to the risks associated

with the transition to a low-carbon economy due to policies imposing a cost on firms and

households (e.g., a cap-and-trade program). There exists an inherent trade-off between the

two risks: imposing a price or a tax on greenhouse gas emissions increases transition risks but

5



reduces greenhouse gas emissions and consequently future physical risks (e.g., Ivanov, Kruttli,

and Watugala, 2024). Therefore, a precise estimate of the cost of physical risks is key to

determining how high the price or tax on greenhouse gas emissions should be set. Beginning

with the seminal work of Nordhaus (1977), there is an extensive literature on the economic

cost—in the form of reduced economic growth—of greenhouse gas emissions. The empirical

studies on physical climate risks and economic growth have focused on temperature shocks

(e.g., Dell, Jones, and Olken, 2012 and Burke, Hsieng, and Miguel, 2015) and other natural

disasters (e.g., Deryugina, 2017; Boustan, Kahn, Rhode, and Yanguas, 2020; Roth Tran

and Wilson, 2024). However, what is missing from this literature is an in-depth empirical

assessment of the impact that physical risks have on innovation. Examining this innovation

channel is particularly important given the integral role for innovation and technological

change in economic growth. Noy and Strobl (2023) analyze the impact of hurricanes on

innovation but rely on the patent data constructed by Petralia, Balland, and Rigby (2016),

which has large discrepancies to our database. Moreover, our research questions differ due

to our focus on independent versus firm patents and the substitution effects in innovative

output across U.S. regions.

Third, we empirically test predictions of theoretical models on innovation. Innovation is

a key driver of economic growth in many seminal theoretical models (e.g., Romer, 1990, 1994;

Aghion and Howitt, 1992), and capital in the form of infrastructure and labor is needed to

generate innovation in these models. However, the impact of changes in available capital on

innovation (i.e., the capital channel) has been challenging to identify empirically because long

time series measures of both innovation and exogenous shocks to capital have thus far not

been collected and analyzed. In an ideal experiment, one would exploit exogenous variation

in the capital stock of a (treated) region and analyze how innovation in this region changes

compared to the contemporaneous innovation in other (control) regions. Our research design

approaches this setting by using hurricane landfall data that dates back to 1851 as exoge-

nous shocks to capital combined with comprehensive data on patents—arguably the most
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commonly used measure of innovation and technological change. Hurricanes are destructive

shocks to the capital stock of a region. For example, hurricanes can both damage a region’s

infrastructure and lead to an out-migration of the labor force (Deryugina, Kawano, and

Levitt, 2018). Importantly, whether a hurricane makes landfall in a specific location is not

caused by the prevailing economic conditions of that location.

The remainder of the paper is organized as follows. In the next section, we describe the

empirical design. Section 3 discusses the data, including the methodology for constructing

the novel patent database covering two centuries. Section 4 presents the results. Section 5

concludes.

2 Empirical strategy

Our identification strategy relies on hurricanes as exogenous shocks to regions and is adapted

from Kruttli, Roth Tran, and Watugala (2024). Hurricanes make landfall on the Atlantic

and Gulf Coasts of the U.S. and the landfall region typically spans several counties in one

or more states. Hurricanes have made landfall over major population and economic centers

in a range of states in this region. Figure 4 plots the landfall regions of four hurricanes in

our sample, which we construct by processing text files on hurricane paths that are available

from 1851 onwards from NOAA.

Figure 5A presents a stylized example illustrating inventor location within counties that

are exposed and unexposed to a particular hurricane landfall. We consider counties located

within a hurricane landfall region as treated and counties outside of it as controls. This

dimension of spatial variation in the empirical design gives us cross-sectional variation. Be-

cause counties are hit by hurricanes infrequently, the time series variation allows us to analyze

within county effects.

Using the hurricane landfall regions and the location of the inventors for a given patent,

we can estimate how a hurricane affects innovation activity in a county. For our baseline
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estimates, we adapt the local projection estimator of Jordà (2005) for our panel of county-

year observations.1 The regression specification is:

log

(
NPatentsc,t+h

NPatentsc,t−1

)
= β1Hitc,t

+
h∑

r=−5,r ̸=0

ρrHitc,t+r +
5∑

r=1

κr logNPatentsc,t−r + µc + θt + ϵc,t. (1)

The dependent variable is the change in the log of the number of patents, NPatents, of a

county c from the year before the hurricane hit, t − 1, to h years after the hurricane hit,

t + h. A patent is assigned to county c if all the inventors of the patent are located in that

county. A patent is assigned to the year in which the patent is issued. The exceptions are

patents issued between January and May. These patents count for the previous year to align

patents to the correct event because Atlantic Coast hurricanes only make landfall during

the hurricane season from June to November.2 The independent variable of interest is the

variable Hitc,t, which is an indicator variable that takes the value one when a county c is

in the landfall region of a hurricane in year t and zero otherwise. In addition to county and

year fixed effects, we include several control variables. First, we control for a county being

hit by hurricanes that make landfall during the preceding 5-year period from t− 5 to t− 1.

We also control for a county being hit by hurricanes that make landfall during the years

from t + 1 to t + h These controls are important to account for the possibility of staggered

and multiple treatment of counties (De Chaisemartin and d’Haultfoeuille, 2020; Athey and

Imbens, 2022; Baker, Larcker, and Wang, 2022). Second, we capture potential pre-trends in

a county’s innovation activity by including the log of patents lagged up to five years.3 The

standard errors are double clustered at the county and year levels. Of all the states in the

1A similar regression specification is used by Roth Tran and Wilson (2024).
2Omitting this adjustment leads to qualitatively similar results.
3The estimates are qualitatively similar when including additional lags, and including additional lags does

not materially improve the fit of the regression model.
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US, 32 have at one point been hit by a hurricane from 1851 to 2023 based on our landfall

region estimations. We only include counties from these 32 states in our sample.

In addition to the local projection regression in equation 1, we estimate the effect of

hurricanes on innovative output through an event study specification. The event study

regression takes the form:

log

(
NPatentsc,t+h

NPatentsc,t−1

)
= β1Hitc,t +

5∑
r=1

κr log NPatentsc,t−r + µc + θt + ϵc,t. (2)

For the event study specification, the dependent variable is the difference between the logs of

the 5-year average of the number of patents from county c after h years following a hurricane

hit, NPatentsc,t+h, and the number of patents from county c the year before the hurricane

hit, NPatentsc,t−1. This regression is jointly estimated for all the hurricanes in our sample.

County and year fixed effects in addition to lagged patents are included as in equation 1. To

ensure that the control counties are not hit by hurricanes that make landfall outside of year

t, we exclude hit counties from the control group ten years before and after the hit. The

standard errors are again double clustered by year and county. This event study specification

is more parsimonious than the local projection specification and allows us to interact the

treatment variable Hit with other variables to investigate cross-sectional heterogeneity in

how hurricanes affect innovation in a county.

3 Data

3.1 Novel patents database

To facilitate studying the longest possible time series of hurricanes, we construct a new

patent database. The data include information on grant date and inventor location (city

and state) spanning 1836 through 2023. For data beginning in 1976, we obtain data from

PatentsView, which is maintained by the Office of the Chief Economist at the USPTO. For
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data from 1836 through 1975, we extract data directly from the PDFs of patent documents

on the USPTO website by taking advantage of modern OCR algorithms and ChatGPT, as

we explain below. Additional detail is provided in the Appendix.

Modern patent documents include the title and abstract of the invention; application

and grant dates; the name(s) and locations of residence for all inventors and any assignees; a

detailed description of the invention; drawings of the invention; and the claims, which define

the scope of legal protection provided by the patent. An inventor must be a person, but

patents can be assigned to a corporation or another person. Generally, when an invention is

developed in a company, the inventor will assign the patent to their employer. Beginning in

February 1947, patent documents began consistently including citations to existing patents

as references to “prior art” (Nicholas, 2010). Older patents don’t typically contain all of this

information, although the grant date and inventor location have always been included.

While the layout of patent documents has changed over time, the required information

has mostly remained constant. Since 1976, the USPTO has digitally recorded newly-granted

patents and made machine-readable files publicly available. For the period prior to that,

information must be extracted from scanned documents, an example of which is shown in

Figure 1.

The launch of Google Patents in 2006 made it easier to search the text of the pre-

1976 historical patent documents. These data served as the source for several influential

papers, including Kogan, Papanikolaou, Seru, and Stoffman (2017), who created a widely

used database, and Kelly, Papanikolaou, Seru, and Taddy (2021). However, the quality of

the text extracted from scanned documents using Optical Character Recognition (OCR)

available in Google Patents is quite variable, especially for patents granted before 1950. The

importance of the errors in these data depends greatly on how the text is being used. For our

paper, correctly identifying the inventor’s location is of paramount importance, so correctly

capturing this information is critical.

10



As an example of the OCR errors that can be found in the Google data, Figure 2 shows

how the text for the patent in Figure 1 is rendered by Google (left column). Note that this

text does not include anything that resembles the name of the inventor, his city of residence,

or the title of the invention. The entire first paragraph of the text is missing, as is the

beginning of the next paragraph. Although not all of the OCR in Google Patents is of this

poor quality, many hundreds of thousands of documents have significant degradation in the

extracted text. Even the use of exceptionally flexible textual analysis techniques cannot

overcome the “garbage-in-garbage-out” problems associated with such poor OCR quality.

OCR algorithms have vastly improved in recent years (Correia and Luck, 2023) but the

text available from Google Patents has not been updated. Advances in computer vision have

given OCR algorithms the ability to identify parts of documents, patterns in text layout, and

words in ways that far surpass what is available in Google Patents. Moreover, ChatGPT is

a game changer when it comes to extracting information from text. Even in the presence of

OCR errors, spelling mistakes, typos, or missing information, it can draw on its vast training

data to answer carefully-crafted questions about the (intended) meaning of text.

As a point of comparison with our novel data, we compared the locations of inventors in

our data with those in the “HistPat” data created by Petralia, Balland, and Rigby (2016).

Of the 3.9 million unique patents between 1836 and 1975, HistPat is missing over 600,000

patents, which appears to be mainly due to the exclusion of foreign inventors. Of the remain-

ing 3.3 million patents, just over 400,000 have a discrepancy between inventor locations; this

appears to be because the assignee’s location is often misreported as the inventor’s location

in the HistPat data. Despite the requirement that all patents have an inventor, another

115,000 patents in HistPat have an assignee but no inventor. We also observe significant

time series variation in differences between the two datasets. For example, the rate of miss-

ing patents in HistPat relative to our dataset is below 10% through 1880 before jumping to

the teens for most of the period between 1880 and 1965. This missing rate increases to 19%,

24%, and 50% in 1965, 1970, and 1975, respectively.
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Using our new inventor location data, aggregated to the county level, Figure 3 illustrates

the expected westward shift in innovation over the last two hundred years.

3.2 Two centuries of hurricane landfalls

We obtain the hurricane path data for all Atlantic and Gulf Coast hurricanes making landfall

from 1851 to 2023 from NOAA’s Atlantic HURDAT2 database, which covers all known

tropical cyclones and subtropical cyclones and is a part of the Re-analysis Project (Landsea

and Franklin, 2013). These data document the latitude and longitude of the eye of a tropical

cyclone at least every 6 hours before it dissipates. This allows us to calculate hurricane paths

and landfall dates and times. We use these data to calculate the list of counties that are

within 50, 100, and 200 miles of the landfall location and path of the eye of a hurricane as

in Kruttli, Roth Tran, and Watugala (2024). Figure 4 shows the landfall regions for four

hurricanes in our sample. The counties that are within 50 miles of a hurricane eye would

likely be the hardest ”hit,” while those that fall only within 200 miles of a hurricane eye

would experience winds at lower speeds and likely suffer less destructive impacts. We use

this idea in our empirical analysis and show results separately with assignment to treatment

measured at different landfall radii.

For our main analysis, we focus on the set of deadliest tropical storms with more than

25 fatalities during our sample period. We construct this set starting with NOAA’s report

on “The deadliest, costliest, and most intense United States tropical cyclones from 1851

to 2010 (and other frequently requested hurricane facts)” that covers the 1851-2010 period

(Blake, Landsea, and Gibney, 2011). We manually augment these data for more recent years

to cover the period from 1851 to 2023. The list of 64 deadliest hurricanes in our sample is

shown in Table B.2. We focus on this set of storms for two key reasons. First, these are

likely the hurricanes with the most reliable data for the early period of our sample. Second,

these are likely the hurricanes that significantly impacted human and physical capital in the

landfall regions. The number of fatalities is one reliable measure of the destructive impact
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of a hurricane, which does not rely on as many assumptions as, potentially, the monetary

value of damages.

The summary statistics for the variables described in Section 2 and Section 4 are presented

in Table 1.

4 Results

This section presents the results of our analyses. First, we discuss the baseline effects. Sec-

ond, we analyze how reliance on household versus company innovation differentially affects

the impact of a hurricane on a county’s innovative activity. Third, we test whether regions

not hit by a hurricane can compensate for the shortfall of patents in the hit region. In other

words, how resilient is U.S. innovation to local shocks?

4.1 Baseline effects

We estimate the regression in equation (1) to test if a hurricane hit adversely affects in-

novation in that county, how large the effects are, and whether the effects are transitory

or permanent. When identifying hit and control counties, that is, for which counties the

variable Hit is one, we measure landfall regions based on three radii around the eye of the

hurricane. We expect that the effects are largest for counties that lie within 50 miles of

the eye of the hurricane. The effects are thought to weaken if the county lies farther away,

that is, within 100 or 200 miles of the eye of the hurricane. We estimate the regression

separately for each radius. These radii correspond to the radii used in Kruttli, Roth Tran,

and Watugala (2024) and line up with NOAA’s measurements on the average distance from

the eye within which wind speeds are at hurricane strength. For all estimations, including

those using smaller radii, we exclude from the control group any counties located within the

200-mile landfall region.
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Figure 6 plots the coefficient estimate of the variable Hit for different horizons h. The

negative effects on patents do not appear immediately after landfall. The drop in the number

of patents from a hit county, relative to the year before landfall, starts three years after

landfall. However, the effect intensifies as time passes and the decrease in innovation is most

pronounced between five and eight years after the hurricane landfall. Ten years after landfall,

the coefficient estimates become insignificant.

The effects are larger for counties closer to the eye of the hurricane at landfall. The

magnitude of the coefficients for the 50-mile radius reaches as low as -0.094 in five years

after landfall. This magnitude implies that the number of patents in a hit county is 9.4%

lower in the fifth year after the hurricane hit than in the year before the hurricane hit. For

the 200-mile radius, the coefficient magnitude decreases but still goes as low as -0.044. The

lower coefficient magnitude is consistent with the idea that hurricanes are more destructive

closer to the eye of the storm.

The negative and significant coefficient estimates for several years post-landfall show

that a county in a hurricane landfall region experiences a substantial shortfall in patents.

This shortfall can affect aggregate U.S. innovation output if innovation is not perfectly

substitutable across regions. Section 4.3 investigates this hypothesis.

Table B.1 in the appendix reports the estimates of all the coefficients in equation (1).

The first row of the table shows the coefficient on the independent variable of interest, Hitc,t,

which is plotted in Figure 6. The coefficient estimates on the lagged patent variables are

highly significant. The coefficient on the first lag is negative with a magnitude between -0.67

and -0.78. This estimate implies that the time series of county-level patents is no longer

explosive after differencing the dependent variable. However, the positive and significant

coefficient estimates on the additional patent lags suggest that the undifferenced time series

is a unit root process. We confirm the unit root in county-level patents with an augmented

Dickey-Fuller test (unreported) for all U.S. patents from 1936 to 2023. Therefore, differencing
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the dependent variable is essential when estimating regression models with county-level time

series of patents.

We estimate the event study regression in equation (2) and find that the estimates of

the magnitudes and horizons for the decline in patent output are qualitatively similar to

the estimates of the local projection model. The estimates of the event study regression

are reported in Table 2. As with the local projection regression, the coefficient estimates

decrease for landfall regions based on a larger radius around the eye of the hurricane. Also,

the coefficients on the lagged patents are of the same sign and close in magnitude to the

coefficients in Table B.1.

4.2 Firm versus independent inventors and the resilience of local

innovation

U.S. patents come from three main sources. The majority of innovations that receive a

patent are developed by individuals who are unaffiliated with a company. The second largest

category is patents that are developed by employees of a company and assigned to that

company. The third category is substantially smaller than the other two and stems from

employees who work for government or educational institutions.

Because individuals without any company backing likely have considerably less capital, a

hurricane could have a more detrimental effect on counties that rely on ”independent” versus

”company” patents. A company can absorb a shock to capital and insulate innovative

activity, which is more challenging for individual inventors. We test this hypothesis by

adapting the regression specification in equation (2):

log

(
NPatentsc,t+h

NPatentsc,t−1

)
= β1Hitc,t + β2Hitc,t × FirmSharec,t−1:t−5

+β3FirmSharec,t−1:t−5 +
5∑

r=1

κr logNPatentsc,t−r + µc + θt + ϵc,t. (3)

15



This specification adds the term FirmSharec,t−1, which is interacted with the treatment

variable Hitc,t. The variable FirmSharec,t−1 measures the share of patents from that county

for which the assignee was a firm over the five-year window before the hurricane hit. The

variable is standardized to facilitate the interpretation of the coefficients.

Table 3 reports the coefficient estimates. In counties where innovative activity is driven

by firms, the impact of a hurricane on patents is muted. In fact, a one standard deviation

increase in FirmSharec,t−1 cancels out the negative coefficient on the Hitc,t variable. The

coefficient estimate on the interaction term is positive for all the specifications, but the

statistical significance is stronger for the landfall region based on the 100 and 200 miles

around the eye of the hurricane. This increase in statistical significance is likely due to more

counties falling within the larger landfall regions, making the estimates more precise.

Table 4 reports the coefficient estimates for the regression in equation (3) but replacing

the variable FirmSharec,t−1 with the variable IndSharec,t−1. This variable is constructed in

the same way as FirmSharec,t−1 but instead captures the share of independent innovations,

that is, patents for which the inventor is not affiliated with any firm. The estimates yield the

same finding as those in Table 3: in counties that rely on independent innovative activity, a

hurricane hit is more detrimental to future innovation output.

4.3 Substitution effects and the resilience of aggregate innovation

In Section 4.1, we estimate large shortfalls in patents in the years after a hurricane makes

landfall. A natural question that follows is whether this shortfall in patents from one region

is compensated for by an increase in patents in another region, or whether the local short-

fall in innovation after a hurricane hit affects aggregate U.S. innovation. This question is

particularly important when a region hit by a hurricane is specialized in a certain type of

innovation.

To answer this question, we estimate a regression at the patent classification-year level.

For the patent classification, we use the USPC codes from the USPTO. The regression
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equation is given by:

log

(
NPatentsk,t+h

NPatentsk, t−1

)
= β1Hitk,t +

5∑
r=1

κr logNPatentsk, t−r + µk + θt + ϵk,t (4)

Hitk,t is an indicator variable that is equal to one if more than 25% of the geographic

footprint of innovation within a particular patent classification k is ”hit” by a hurricane in

year t and is zero otherwise. Specifically, Hitk,t = 1 if ClassShareHitk,t ≥ 0.25, where

ClassShareHitk,t is a continuous variable between zero and one defined as:

ClassShareHitk,t =
N∑
c=1

(Hitc,t × CountyClassSharec,k,t−5:t−1). (5)

The variable ClassShareHitk,t measures for each USPC patent class k the share of all

patents issued in the preceding 5 years that come from a region hit by a hurricane at time

t. In other words, the variable measures the extent to which the hit region specialized in

that type of innovation.4 The regression in equation (4) includes patent class and year fixed

effects. The standard errors are double clustered at the class and year levels.

We first note that individual patent classes heavily rely on innovation output from a few

counties, and the composition of these counties changes relatively little over time. Of the

top ten contributing counties to a patent class, around 50% of the counties stay the same

over 5-year increments.

The estimates of the regression in equation (4) are reported in Table 5. The coefficient

estimates are negative and significant for the landfall regions based on the 50- and 100-mile

radius around the hurricane eye. The coefficient estimates are also economically large. For

the 50-mile radius landfall regions, the coefficient estimate is up to 0.31. This magnitude

implies that the number of patents in a hit classification is 31% lower between five and

nine years after hurricane landfall compared to the year before hurricane landfall. For the

4We only include a class in the regression once the class reached 50 patents in a year. This filter is imposed
to avoid including nascent classes in the regression. Such nascent classes are more likely to be identified as
hit due to the small number of counties that innovate in these classes.
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100-mile radius landfall regions, the magnitude of the coefficient estimates is lower, which is

consistent with counties experiencing less destructive force further away from the eye of the

hurricane. For landfall regions based on the 200-mile radius, the estimates are statistically

insignificant.

Overall, these results show that there is imperfect substitution of innovation between

different regions in the US. When a center for a class of innovation is hit by a hurricane,

aggregate innovation output decreases for this class in the years following hurricane landfall.

5 Conclusion

Innovation supports continued economic growth and is an essential driver of an economy

maintaining a competitive edge. In this paper, we focus on the capital channel and ana-

lyze the impacts on innovation from quasi-exogenous local disasters that cause human and

physical capital destruction. To do so, we first construct a comprehensive, nearly-error-free

database of all U.S. patents from 1836 to 2024 using advanced OCR and LLM technolo-

gies. We then analyze the resilience of regional innovation to disaster shocks using hurricane

landfalls spanning two centuries.

We find that major hurricanes destroy local innovative capacity for up to a decade fol-

lowing landfall and lead to permanent counterfactual losses. A higher presence of innovation

backed by firms increases the resilience of local innovative output to disasters, suggesting

that firms are important in easing constraints on the capital required to support innovation.

We analyze the variation in the evolution of aggregate innovation levels between patent

classifications that are significantly exposed to a hurricane hit compared to those that are

not. We find that innovative capacity is not perfectly substituted across regions, leading

to aggregate losses in innovative output following hurricane hits. Our findings reveal that

the capital destruction and capital constraints induced by natural disasters generate large,

long-lasting innovation losses and can explain regional variation in economic outcomes.
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Our findings are highly relevant for policymakers and regulators focused on protecting

and promoting innovative activity. Our results on how the capital destruction and con-

straints induced by local natural disaster shocks have long-lasting effects on innovation are

of particular importance to current debates regarding how to ensure the competitiveness of

the U.S. economy while keeping it resilient to unexpected disasters and shocks.

Harnessing almost two centuries of data, we reveal a mechanism that can generate di-

vergence in regional economic prosperity. This channel is important for local and national

policymakers to factor in when choosing policies to promote economic growth and prosperity.

Further, if extreme weather events like hurricanes become more damaging or frequent in

the future given the trends in demographics, construction, or the environment, academics

and policymakers alike will need to better understand the impact of extreme weather events

on innovation to comprehensively assess the economic costs of disaster shocks. Our findings

will be crucial for policymakers who seek to balance the costs and benefits of adaptation and

resilience to natural disasters.
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Figure 1: Example USPTO scan of a patent (number 159,227)
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Google Patents OCR Our New OCR

iNITED, UNITED STATES PATENT OFFICE.
’ Bnl-uns n. srNoLAin, on, ourense, immers. HEMAN B. SINCLAIR, OF CHICAGO, ILLINOIS.
inn-Psovsmsnr ns Forense tastes. IMPROVEMENT IN FOLDING TABLES.
Specification formingpart of Letters Patent Specification forming part of Letters Patent
No. 159,227. dated January 26, li875; No. 159,227, dated January 26, 1875
application-filed October 21, 1874. f f application filed October 21, 1874.
runstnnctionjindrrangement ofraQldiUE. tn- To all whom it may concern:

ble, as-will be hereinafter more fully set forth.

Be it known that I, HEMAN B. SINCLAIR,
of the city of Chicago, in the county of Cook
and State of Illinois, have invented certain
new and useful Improvements in Folding Ta-
bles; and I do hereby declare that the fol-
lowing is a full, clear, and exact description
thereof, reference being had to the accompa-
nying drawings and to the letters of reference
marked thereon, which form part of this speci-
fication.
The nature of my invention consists in the
construction.and arrangement of a folding ta-
ble, as-will be hereinafter more fully set forth.

Figure 2: Comparison of OCR rendering of patent number 159,227
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(A) 1835–1839 (B) 1860–1869

(C) 1890–1899 (D) 1920–1929

(E) 1950–1959 (F) 2010–2019

Figure 3: Locations of inventors

This figure shows the location of inventors who have patents granted during different periods over the last
two centuries. Inventor locations are aggregated to counties that are then sorted into deciles in each period
based on the number of inventors residing in each county. The darker the shade, the greater the number of
active inventors in a county.
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(A) 1999 Bret (B) 2005 Katrina

(C) 2012 Sandy (D) 2017 Irma

Figure 4: Counties within a hurricane landfall region

This figure shows the counties within 50, 100, 150, and 200 miles of the hurricane eye for four hurricanes in
our sample from 1851-2023.
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(A) Stylized example of spatial exposure (across variation)

(B) The timeline of a hurricane (within variation)

Figure 5: Identification strategy

Panel A illustrates a stylized example of inventor locations and county exposure to a hurricane landfall
region. Panel B illustrates the timeline of a hurricane.
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(C) Counties within 200-mile radius

Figure 6: Coefficients from the baseline local projection estimation
This figure presents the β1 estimate and its 95% confidence interval from estimating the regression given
in equation (1) for horizons h = 0, 1, 2, . . . , 9, 10. Panels A, B, C show the estimates with landfall regions
determined at 50-, 100- and 200-miles, respectively, from the radius of the eye of a hurricane.
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Table 1: Summary statistics

This table shows the summary statistics for the main variables used in the paper. For Panel A, the data
are at the county-year level from 1851 to 2023. For Panel B, the data are at the patent class-year level for
the years in which at least one patent class had at least 25% exposure to a hurricane between 1851 and
2014. R50 radius denotes that hurricane landfall regions are based on a 50-mile radius around the eye of the
hurricane. All variables are described in Appendix Table B.3.

Panel A: County-year level

Observations Avg. St. dev. 10th 25th 50th 75th 90th

NPatentsc,t 100,941 37.290 125.992 2.000 3.000 8.000 22.000 74.000
∆log(NPatentsc,t) 100,941 -0.002 0.614 -0.693 -0.326 0.000 0.325 0.693

Hitc,t R50 miles 100,941 0.008 0.087 0.000 0.000 0.000 0.000 0.000
Hitc,t R100 miles 100,941 0.021 0.143 0.000 0.000 0.000 0.000 0.000
Hitc,t R200 miles 100,941 0.045 0.208 0.000 0.000 0.000 0.000 0.000

IndependentSharec,t 100,941 0.603 0.323 0.167 0.297 0.614 0.941 1.000
FirmSharec,t 100,941 0.383 0.319 0.000 0.053 0.360 0.684 0.824

Panel B: Patent class-year level

Observations Avg. St. dev. 10th 25th 50th 75th 90th

NPatentsk,t 4,065 115.245 143.944 21.000 40.000 77.000 140.000 241.000
∆log(NPatentsk,t) 4,065 0.014 0.338 -0.377 -0.173 0.019 0.213 0.393

ClassShareHitk,t R50 miles 4,065 0.022 0.040 0.000 0.000 0.003 0.030 0.067
ClassShareHitk,t R100 miles 4,065 0.080 0.111 0.000 0.000 0.026 0.127 0.235
ClassShareHitk,t R200 miles 4,065 0.138 0.139 0.000 0.021 0.098 0.217 0.336
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Table 2: Baseline local effects - event study specification

This table presents results from estimating the regression specification given in equation (2). The dependent

variable is log
(

NPatentsc,t+h

NPatentsc,t−1

)
. The main independent variable on interest is Hitc,t. The data span from 1851

to 2023. Standard errors are clustered by year and county and shown in parentheses. The specifications
include county and time fixed effects. The significance of each coefficient estimate is indicated by * for
p < 0.10, ** for p < 0.05, and *** for p < 0.01.

Landfall radius 50 100 200

Years since hit 3 5 3 5 3 5

Hitc,t -0.084** -0.086** -0.069** -0.067** -0.056** -0.061**
(0.034) (0.035) (0.029) (0.029) (0.023) (0.025)

logNPatentsc,t−1 -0.735*** -0.752*** -0.739*** -0.756*** -0.740*** -0.747***
(0.010) (0.010) (0.011) (0.011) (0.010) (0.011)

logNPatentsc,t−2 0.182*** 0.180*** 0.183*** 0.175*** 0.175*** 0.169***
(0.009) (0.009) (0.009) (0.009) (0.010) (0.009)

logNPatentsc,t−3 0.123*** 0.128*** 0.134*** 0.132*** 0.140*** 0.137***
(0.011) (0.009) (0.011) (0.009) (0.011) (0.010)

logNPatentsc,t−4 0.132*** 0.125*** 0.115*** 0.119*** 0.133*** 0.132***
(0.011) (0.010) (0.011) (0.011) (0.011) (0.011)

logNPatentsc,t−5 0.100*** 0.103*** 0.097*** 0.101*** 0.097*** 0.098***
(0.009) (0.009) (0.009) (0.009) (0.010) (0.009)

Year FE Yes Yes Yes Yes Yes Yes
County FE Yes Yes Yes Yes Yes Yes

Observations 17,287 16,911 18,297 17,999 17,816 17,574
R2 0.523 0.568 0.526 0.570 0.531 0.570
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Table 3: Resilience of local innovation by firm share

This table presents results from estimating the regression specification given in equation (3). The dependent

variable is log
(

NPatentsc,t+h

NPatentsc,t−1

)
. The interacted independent variable of interest is Hitc,t × FirmSharec,t−1.

FirmShare is standardized. The data span from 1851 to 2023. Standard errors are clustered by year and
county and shown in parentheses. The specifications include county and time fixed effects. The significance
of each coefficient estimate is indicated by * for p < 0.10, ** for p < 0.05, and *** for p < 0.01.

Landfall radius 50 100 200

Years since hit 3 5 3 5 3 5

Hitc,t -0.070** -0.078** -0.066** -0.068** -0.055** -0.043*
(0.033) (0.037) (0.026) (0.029) (0.021) (0.023)

Hitc,t × FirmSharec,t−1 0.046 0.037 0.064*** 0.043* 0.050*** 0.037*
(0.030) (0.034) (0.021) (0.025) (0.018) (0.019)

FirmSharec,t−1 0.046*** 0.048** 0.042** 0.046** 0.053*** 0.060***
(0.017) (0.018) (0.017) (0.018) (0.017) (0.018)

logNPatentsc,t−1 -0.759*** -0.771*** -0.763*** -0.780*** -0.769*** -0.779***
(0.010) (0.009) (0.010) (0.010) (0.010) (0.011)

logNPatentsc,t−2 0.166*** 0.160*** 0.165*** 0.161*** 0.162*** 0.156***
(0.008) (0.009) (0.008) (0.008) (0.008) (0.009)

logNPatentsc,t−3 0.115*** 0.107*** 0.116*** 0.107*** 0.117*** 0.112***
(0.009) (0.009) (0.010) (0.010) (0.010) (0.010)

logNPatentsc,t−4 0.116*** 0.113*** 0.105*** 0.112*** 0.121*** 0.124***
(0.009) (0.010) (0.011) (0.010) (0.009) (0.010)

logNPatentsc,t−5 0.090*** 0.092*** 0.091*** 0.089*** 0.093*** 0.087***
(0.008) (0.007) (0.009) (0.008) (0.009) (0.008)

Year FE Yes Yes Yes Yes Yes Yes
County FE Yes Yes Yes Yes Yes Yes

Observations 15,061 13,852 15,739 14,435 15,438 14,192
R2 0.569 0.606 0.569 0.610 0.577 0.616
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Table 4: Resilience of local innovation by independent inventor share

This table presents results from estimating the regression specification given in equation (3). The dependent

variable is log
(

NPatentsc,t+h

NPatentsc,t−1

)
. The interacted independent variable of interest is Hitc,t × IndSharec,t−1.

IndShare is standardized. The data span from 1851 to 2023. Standard errors are clustered by year and
county and shown in parentheses. The specifications include county and time fixed effects. The significance
of each coefficient estimate is indicated by * for p < 0.10, ** for p < 0.05, and *** for p < 0.01.

Landfall radius 50 100 200

Years since hit 3 5 3 5 3 5

Hitc,t -0.070** -0.079** -0.067** -0.068** -0.054** -0.042*
(0.033) (0.037) (0.027) (0.029) (0.021) (0.024)

Hitc,t × IndSharec,t−1 -0.052* -0.044 -0.068*** -0.047* -0.051*** -0.038**
(0.029) (0.033) (0.021) (0.025) (0.018) (0.019)

IndSharec,t−1 -0.057*** -0.060*** -0.051*** -0.056*** -0.062*** -0.069***
(0.017) (0.019) (0.018) (0.020) (0.018) (0.020)

logNPatentsc,t−1 -0.760*** -0.772*** -0.764*** -0.780*** -0.769*** -0.780***
(0.010) (0.009) (0.010) (0.010) (0.010) (0.011)

logNPatentsc,t−2 0.165*** 0.159*** 0.164*** 0.160*** 0.161*** 0.155***
(0.008) (0.009) (0.008) (0.008) (0.008) (0.009)

logNPatentsc,t−3 0.114*** 0.106*** 0.115*** 0.106*** 0.117*** 0.112***
(0.009) (0.009) (0.010) (0.010) (0.010) (0.010)

logNPatentsc,t−4 0.115*** 0.112*** 0.105*** 0.112*** 0.120*** 0.123***
(0.009) (0.010) (0.011) (0.010) (0.009) (0.010)

logNPatentsc,t−5 0.090*** 0.092*** 0.091*** 0.089*** 0.093*** 0.087***
(0.008) (0.008) (0.009) (0.008) (0.009) (0.008)

Year FE Yes Yes Yes Yes Yes Yes
County FE Yes Yes Yes Yes Yes Yes

Observations 15,061 13,852 15,739 14,435 15,438 14,192
R2 0.570 0.606 0.569 0.610 0.578 0.616
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Table 5: Substitution effects and resilience of aggregate innovation

This table presents results from estimating the regression specification given in equation (4). The dependent

variable is log
(

NPatentsk,t+h

NPatentsk, t−1

)
. The main independent variable on interest isHitk,t. The data span from 1851

to 2014. Standard errors are clustered by year and USPC classification category and shown in parentheses.
The specifications include classification and time fixed effects. The significance of each coefficient estimate
is indicated by * for p < 0.10, ** for p < 0.05, and *** for p < 0.01.

Landfall radius 50 100 200

Years since hit 3 5 3 5 3 5

Hitk,t -0.267*** -0.306* -0.142*** -0.149*** 0.014 -0.002
(0.054) (0.125) (0.030) (0.032) (0.035) (0.037)

logNPatentsk,t−1 -0.624*** -0.634*** -0.612*** -0.623*** -0.617*** -0.642***
(0.110) (0.105) (0.102) (0.097) (0.047) (0.049)

logNPatentsk,t−2 0.153*** 0.146** 0.149*** 0.142*** 0.124** 0.138***
(0.036) (0.045) (0.028) (0.039) (0.050) (0.044)

logNPatentsk,t−3 0.109 0.150* 0.088 0.127* 0.110*** 0.129***
(0.057) (0.068) (0.056) (0.064) (0.032) (0.032)

logNPatentsk,t−4 0.134* 0.138* 0.140* 0.144** 0.130*** 0.145***
(0.067) (0.059) (0.066) (0.059) (0.035) (0.034)

logNPatentsk,t−5 0.095*** 0.059 0.111** 0.077* 0.116* 0.082
(0.025) (0.032) (0.032) (0.039) (0.055) (0.053)

Year FE Yes Yes Yes Yes Yes Yes
Classification FE Yes Yes Yes Yes Yes Yes

Observations 1,878 1,879 1,880 1,881 3,073 3,074
R2 0.527 0.572 0.550 0.591 0.554 0.593
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Appendix A Constructing the patents database

We extract information from pre-1976 patents in three steps. First, we identify the title

page of each patent document. Second, we perform OCR (optimal character recognition) on

the title page of each patent to obtain the text of each title page. Third, we use ChatGPT

to extract inventor and assignee names and locations. We manually checked the accuracy

of the extracted data of a random sample of 500 patents by comparing them to the patent

documents. Only one patent had a minor discrepancy, indicating an error rate of 0.2%.

Combining these two technologies, we construct a new database of patents.5 Our process

is as follows:

1. Identify the title-page in each patent document. Beginning in the early 1970s, the first

page of a patent document is the title page and contains relevant biographical and

other information. Prior to that, the initial pages of a patent were often one or more

pages of drawings, so the first page of text appears later.

2. Apply state-of-the-art OCR on the relevant PDF pages. We extract the layout of the

document, making it possible to, for example, read columns of text in the correct order.

3. Use ChatGPT to extract information from the OCR text. To date, we have extracted

inventor and assignee names and locations. We do this using a fine-tuned version of

the GPT model and use OpenAI’s Python API to submit millions of batch requests.

Consider again the patent shown in Figure 1; the OCR output we obtain is shown in the

right column of Table 2. The quality improvement over the Google Patents version of the

text is readily apparent; this rendering perfectly matches the original patent document.

Next, we use ChatGPT to exactract the relevant information from the enhanced text.

In particular, we use automated queries with questions about the text, as shown here along

with ChatGPT’s corresponding answers:

Input question ChatGPT response

1) What is the title of this patent document? IMPROVEMENT IN FOLDING TABLES

2) How many inventors are listed? 1

3) What is the name of each inventor? Heman B. Sinclair

4) What city/state is each inventor from? Chicago, IL

5) If the text mentions an “assignor” or “assignee,”
null

to what person or company was it assigned?

6) And if it was assigned, list any corresponding cities. null

5To date, we have extracted information only for the title page of patent documents. We are in the
process of securing funds to allow the creation of a complete and highly accurate historical database.
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Given the improved quality of the OCR, one might wonder whether ChatGPT pro-

vides a significant benefit over simpler text analysis approaches. Determining the name and

city/state of the inventor from this high-quality OCR text may appear to be quite straight-

forward using simple regular expression pattern matching. But ChatGPT can seamlessly

handle far more complicated situations involving multiple inventors from different cities,

multiple assignees, significant changes in formatting, and other edge cases that are hard to

anticipate across millions of patents.

Our results were obtained using a recent ChatGPT model, gpt-4o-mini, which OpenAI

describes as an “affordable and intelligent small model for fast, lightweight tasks.” Out-

of-the-box, this model performed quite well on our questions. We are able to elicit even

higher-quality responses over a range of input types with two approaches. First, we adopt

recent advances in prompt engineering. For example, we instruct the model to “take it step

by step” before answering. Despite its apparent simplicity, this instruction has been shown

to provide a significant improvement of an LLM’s ability to “reason” through certain types of

questions (Kojima, Gu, Reid, Matsuo, and Iwasawa, 2024). This approach is especially useful

in patents with multiple inventors; in these patents we see an improvement in ChatGPT’s

answers once we require it first to count how many inventors there are, and then to name

them and identify their locations.

Second, we further improve the output by “fine-tuning” the model to our particular needs.

This is done by providing the model with additional training examples of questions along

with our desired output; the model then learns to adjust its output to match the target.

Fine-tuning alters the learning environment from “zero-shot” to “few-shot” by showing the

LLM what an appropriate response looks like. After providing 100 fine-tuning examples, we

verify that our model performs exceptionally well. We manually checked the accuracy of

the extracted inventor and assignee names and locations of a random sample of 500 patents

by comparing them to the patent documents. Only one patent had a minor discrepancy,

indicating an error rate of 0.2%, which can likely be reduced further with additional fine-

tuning of the model.
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Appendix B Additional tables

Table B.1: Baseline local effects - local projection estimation

This table presents results from estimating the regression specification given in equation (1) for horizons
h = 0, 1, 2, . . . , 9, 10. Panels A, B, C show the estimates with landfall regions determined at 50-, 100- and
200-miles, respectively, from the radius of the eye of a hurricane. The data span from 1851 to 2023. Standard
errors are clustered by year and county and shown in parentheses. The specifications include county and
time fixed effects. The significance of each coefficient estimate is indicated by * for p < 0.10, ** for p < 0.05,
and *** for p < 0.01.
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Table B.2: List of deadliest hurricanes

This table presents the list of deadliest Atlantic and Gulf Coast hurricanes included in our sample based on
data from NOAA. The first column indicates the main states of impact and/or, from 1954, the hurricane
names.

Hurricane Year Fatalities

LA (Last Island) 1856 400
LA 1860 47
TX 1875 176
New England 1878 27
NC, VA 1879 46
GA/SC 1881 700
NC 1883 53
TX (Indianola) 1886 150
Texas 1886 27
Mid-Atlantic 1889 40
LA (Cheniere Caminanda) 1893 1100-1400
SC/GA (Sea Islands) 1893 1000-2000
SC, FL 1893 28
FL, GA, SC 1896 130
GA, SC, NC 1898 179
NC, SC 1899 50
TX (Galveston) 1900 8000
SE FL 1906 164
MS/AL/Pensacola 1906 134
LA (Grand Isle) 1909 350
TX (Velasco) 1909 41
SW FL 1910 30
LA (New Orleans) 1915 275
TX (Galveston) 1915 275
SW LA/Upper TX 1918 34
FL (Keys)/S TX 1919 287
FL (Miami)/MS/AL/Pensacola 1926 372
LA 1926 25
FL (SE/Lake Okeechobee) 1928 2500
TX (Freeport) 1932 40
S TX 1933 40
FL (Keys) 1935 408
New England 1938 256
GA/SC/NC 1940 50
Northeast U.S. 1944 64
SE FL/SE LA/MS 1947 51
Hazel (SC/NC) 1954 95
Carol (NE U.S.) 1954 60
Diane (NE U.S.) 1955 184
Connie (NC) 1955 25
Audrey (SW LA/N TX) 1957 416
Donna (FL/Eastern U.S.) 1960 50
Carla (N & Central TX) 1961 46
Hilda (LA) 1964 38
Betsy (SE FL/SE LA) 1965 75
Camille (MS/SE LA/VA) 1969 256
Agnes (FL/NE U.S.) 1972 122
Andrew (S FL, LA) 1992 26
Alberto (NW FL, GA, AL) 1994 30

Continued on the next page.39



Table B.2: List of deadliest hurricanes (continued)

Hurricane Year Fatalities

Fran (NC) 1996 26
Floyd (Mid Atlantic & NE U.S.) 1999 56
Allison (SE TX) 2001 41
Ivan (NW FL, AL) 2004 25
Katrina (SE LA/MS) 2005 1200
Irene 2011 48
Sandy 2012 160
Matthew 2016 47
Harvey 2017 106
Irma 2017 96
Florence 2018 54
Michael 2018 59
Laura 2020 41
Ida 2021 92
Ian 2022 156
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Table B.3: Variable definitions

This table presents definitions of the main variables. The first column gives the variable name. The second
column includes a short description.

Variable Name Description Source

Hitc,t
This variable captures if a county c is in the
landfall region of a hurricane in year t.

NOAA, Census

NPatentsc,t
This variable counts the number of patents issued
in year t for which all inventors reside in county c.

USPTO, Census

FirmSharec,t
This variable captures the share of NPatents in year
t and county c that have firms as assignees.

USPTO, Census

IndependentSharec,t
This variable captures the share of NPatents in year
t and county c that have no institution as assignees.

USPTO, Census

CountyClassSharec,k,t

This variable measures how much of the patents of
a patent class (based on the USPC system) come
from county c five years before year t.

USPTO, Census

ClassShareHitk,t
This variable sums CountyClassSharec,k,t across
all counties that are hit by a hurricane in year t.

NOAA, USPTO,
Census

Hitk,t

This is an indicator variable that takes the value
one if the variable ClassShareHitk,t is at least 0.25
and zero otherwise.

NOAA, USPTO,
Census
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