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Abstract

We analyze a duopoly real-option entry game where the second mover has a cost
advantage over the first mover. The equilibrium solution features five regions. In
addition to the option-value-of-waiting and competing-to-enter (first-mover-advantage)
regions (Fudenberg and Tirole, 1985; Grenadier, 1996), three new regions appear due
to the second-mover advantage: a waiting-to-be-Follower region and two disconnected
probabilistic-entry regions. Only when market demand is very high does Follower
immediately enter after Leader does. The second-mover advantage causes firms to use
state-contingent mixed strategies, significantly delaying their entry timing. Our model
generates new predictions, e.g., entry likelihood is non-monotonic in market demand.
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1 Introduction

In this paper, we study strategic real-option exercising decisions by building on Grenadier

(1996), which is the duopoly formulation of the classic single-firm real-option framework (Mc-

Donald and Siegel, 1986; Dixit and Pindyck, 1994).1 One of the most important predictions

of standard duopoly entry models, e.g., Fudenberg and Tirole (1985) and Grenadier (1996),

is that firms exercise their real options too soon relative to the socially efficient level because

firms want to capture the first-mover advantage: the monopoly rents earned by the Leader

until the Follower’s entry. As we show, this result critically depends on the assumption that

firms have the same entry costs.

However, in many real-world settings the second mover pays a lower entry cost and/or

has a more efficient production technology than the first mover. The ulcer-relief drug Zantac

is a known successful second mover (Berndt, Pindyck and Azoulay, 2003).2 While the first

mover may capture the whole market for a while, it also pays higher learning, R&D, and

other costs than the second mover. By observing and learning from the first mover’s successes

and failures, the second mover can lower its entry cost. Décaire and Wittry (2022) provide

evidence in support of the second-mover advantage in a classic real-option setting: the oil

and gas sector.

Motivated by the analyses in Berndt, Pindyck and Azoulay (2003) and Décaire and

Wittry (2022), we make a single change to Grenadier (1996): allowing the second mover to

have a lower (or more broadly different) entry cost than the first mover. Incorporating the

second-mover advantage into Grenadier (1996) fundamentally alters the economic predictions

in duopoly entry games. For example, when market demand is high, rather than competing

to enter as the first mover (using pure strategies), firms prefer to enter as the second mover

1Abel, Dixit, Eberly and Pindyck (1996) make the connection between the real options approach and the
q theory of investment (Hayashi, 1982; Abel and Eberly, 1994). Grenadier and Malenko (2010) develop a
Bayesian real-options approach and Orlov, Skrzypacz and Zryumov (2020) study Bayesian persuasion in a
real-options environment. Grenadier and Malenko (2011) analyze real-option signaling games. Real-options
models are widely used in Corporate Finance to study mergers (Lambrecht, 2004), takeovers (Morellec and
Zhdanov, 2008), and external equity financing (Hugonnier, Malamud and Morellec, 2015), among others.

2Also see the piece in Northwestern Kellogg’s Insight: https://insight.kellogg.northwestern.edu/

article/the_second_mover_advantage, titled “The Second-Mover Advantage,” which is based on a mar-
keting research article (Shankar, Carpenter and Krishnamurthi, 1998).
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(using mixed strategies). Moreover, the interaction between the first-mover and second-

mover advantages generates new predictions that would have been absent had we studied

either the first-mover or second-mover advantage alone in the classic real-option framework

(McDonald and Siegel, 1986).

Next, we sketch out our duopoly real-option model. Two ex ante identical firms compete

to enter a new product market. To ease exposition, we assume that the market demand

Xt is exogenous and follows a geometric Brownian motion. Each firm can enter the market

by paying a one-time fixed cost. The first mover captures the entire demand until Follower

enters. Upon entering the market, Follower takes one half of the market demand away from

Leader as in Fudenberg and Tirole (1985) and Grenadier (1996).3 Our key new assumption

is that Follower’s (fixed) entry cost (KF ) is different from Leader’s entry cost (KL). As

Follower and Leader are endogenously determined, the entry-cost ratio R = KL/KF , which

measures how large the second-mover advantage is, plays a key role in our model.

In Grenadier (1996), firms balance the option value of waiting against the first-mover

advantage. When the former dominates, firms wait. Otherwise, firms rush to enter and

Leader is randomly selected using the rent equalization principle (Fudenberg and Tirole,

1985).

In contrast, our model solution falls into one of the three cases: A, B, and C (more

specifically one of the five subcases: A1, A2, B1, B2, and C), depending on parameter values.4

For the subcase with the richest predictions, Subcase B1, the equilibrium solution features

five regions. Compared with Grenadier (1996), three new equilibrium regions surface in the

domain where the second-mover advantage dominates the first-mover advantage.

Additionally, for all five subcases, we can show that two measures, the entry-cost ratio

R = KL/KF and the real-optionality measure β,5 are necessary and sufficient to fully charac-

3We can generalize our model so that the total market demand depends on the industry structure (e.g.,
monopoly or duopoly). We can also relax the equal-profit-split assumption by allowing for other profit-split
assumptions after both firms enter. Our main results continue to hold.

4 We show that Case A can be divided into two subcases, Subcase A1 and Subcase A2; and Case B can
be divided into two subcases, Subcase B1 and Subcase B2.

5This measure, β, is the positive (larger) root of the classic fundamental quadratic equation in the real-
options literature (McDonald and Siegel, 1986; Dixit and Pindyck, 1994).
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terize the economics of our duopoly entry model. Intuitively speaking, the ratio R measures

the second-mover advantage, β captures the real optionality of firm entry, and these two

measures, R and β, jointly pin down the equilibrium tradeoff between the first-mover and

second-mover advantages in the real-option framework, fully characterizing the solution.

Next, we discuss the economics of our duopoly entry model incrementally by analyzing

the key results for each of the five subcases. We start with Case A where R is so large that

the second-mover advantage globally dominates the first-mover advantage.

In Case A, firms strictly prefer being Follower. However, without Leader there would be

no Follower. Each period a firm waits, it forgoes a large profit when the market demand

is sufficiently high. But there is also a benefit of waiting. A firm’s entry cost is lowered to

KF when its competitor becomes Leader. In equilibrium, probabilistic entry, the mid-of-the-

road strategy between waiting and entering (via pure strategies), is optimal. Put differently,

probabilistic entry is a compromise and Leader is randomly selected to enter in equilibrium.

We then use closed-form solutions to answer the following questions.

Under what market conditions do firms choose to enter probabilistically versus to wait?

And what are firms’ equilibrium entry rates in the probabilistic entry regions? What is

Follower’s equilibrium strategy and how does that influence firms’ entry strategies as Leader?

Does Leader earn equilibrium monopoly rents? If so, for how long and under what conditions?

The answers to these questions depend on the parameters of the duopoly model. Case

A has two subcases: A1 and A2. In Subcase A1, the entry-cost ratio R = KL/KF is so large

that Follower always enters immediately after Leader does, leaving Leader with no monopoly

rents. In equilibrium, firms wait in the x < x region and enter probabilistically in the x ≥ x

region, where x is the endogenous cutoff value for the total market demand Xt = x at t.6

What is the equilibrium entry rate in the probabilistic entry region where x ≥ x? By

entering as Leader, a firm in effect collects the stochastic profit {Xt/2} indefinitely.7 How-

ever, by entering, the firm forgoes the opportunity to lower its entry cost as Follower. In a

6Once one firm enters, the other immediately follows and as a result the two firms split the market equally.
7In Subcase A1, as Leader shares the market with Follower in equilibrium, Leader only collects Xt/2.

The one-time fixed cost KL paid upon entry is equivalent to a perpetual payment of rKL in present value.
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mixed-strategy equilibrium, firms are indifferent between entering and waiting for another

period. This indifference condition pins down the equilibrium entry rate, related to but

different from that in war-of-attrition games.8

What if the entry-cost ratio R is lower than in Subcase A1 but the second-mover advan-

tage remains significant? Then we have four regions in equilibrium divided by three cutoff

values (x̃, x, and x in ascending order). This is our Subcase A2.

In the x < x̃ region, firms wait. In the x ≥ x region, firms play mixed entry strategies.9

Between the x < x̃ and x ≥ x regions are: 1.) a second probabilistic entry region where the

market demand is moderate: x ∈ [x̃, x] and 2.) a second waiting region (between the two

probabilistic entry regions) where x ∈ (x, x).

The intuition for the second probabilistic entry region is as follows. When market demand

is moderate (i.e., for x ∈ [x̃, x]), half of the market demand is not enough for the second

mover to immediately follow Leader’s entry. Therefore, Leader collects equilibrium monopoly

rents for a stochastic duration, which in turn encourages firms to enter as the first mover.

Why do firms wait in the region where x ∈ (x, x)? This is because waiting yields a higher

value than probabilistic entry, the (only) other alternative, when the second-mover advantage

dominates. Market demand x in this region is not high enough for a firm to probabilistically

enter with no monopoly rents, nor offers a firm monopoly rents for a long enough duration.

In sum, waiting is the optimal strategy for x ∈ (x, x). This waiting motive is very different

from the standard irreversibility-induced option-value-of-waiting motive, explaining why we

have two disconnected waiting regions, unlike the single firm’s real option problem.

Note that because of the second-mover advantage there are two disconnected entry re-

gions, implying that the likelihood of firm entry is non-monotonic with respect to market

demand, absent in the first-mover-advantage-based models, e.g., Grenadier (1996).

We next turn to Case C where Leader’s entry cost is weakly lower than Follower’s (R ≤ 1)

so that there is no second-mover advantage.

8Section 8.1 of Tirole (1988) and Levin (2004) provide introductions to the war-of-attrition literature.
9Once a firm enters as Leader, the other follows immediately, leaving no monopoly rents for Leader,

similar to the probabilistic entry region in Subcase A1.
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Waiting Competing-to-Enter Probabilistic Entry Waiting Probabilistic Entry

0 x̂L x̂F x x x

Figure 1: Five-Region Equilibrium Solution for the General Case: Subcase B1.

Our analysis of Case C extends Grenadier (1996), corresponding to our R = 1 special

case. When market demand is sufficiently high, firms rush to enter and one firm is randomly

selected as Leader in a way that ex ante rents are equalized between the two firms (Fudenberg

and Tirole, 1985). In equilibrium there are two regions: the waiting (for the standard real-

option argument) region where x < x̂L and the first-mover-advantage region where x ≥ x̂L.

The endogenous cutoff value x̂L is the turning point above which firms prefer to be Leader.

We now analyze Case B, the intermediate case between Case A and Case C, where the

entry-cost ratio R is larger than one but not too large. The first-mover and second-mover

advantages co-exist and there are (up to) five regions in equilibrium. Figure 1 demonstrates

the five regions in equilibrium for Subcase B1, which we explain below.10

The far left region where x < x̂L is the standard option-value of-waiting region. In the

second region where x ∈ [x̂L, x̂F ], the first-mover advantage dominates. As in Case C, the

solution for these two regions are fully characterized on their own where x̂L and x̂F are the

two points at which being Leader and Follower yield the same value.

In the x > x̂F domain, there are three new regions (absent in Case C) where the second-

mover advantage dominates in equilibrium: 1.) a probabilistic entry x ∈ (x̂F , x] region where

Leader earns monopoly rents; 2.) a second probabilistic entry x ≥ x region where Leader

earns no monopoly rents; 3.) and a (second) waiting x ∈ (x, x) region between the two

probabilistic entry regions. Follower’s value at x̂F serves as a key boundary condition in the

x > x̂F domain. We show that the two smooth-pasting conditions at the two endogenous

cutoff values (x and x) divide the x > x̂F domain into the three regions discussed above.

In terms of technical contributions, we provide an equilibrium definition for the duopoly

entry game (featuring both first-mover and second-mover advantages), characterize the equi-

10In Subcase B2 where R is slightly larger than one, there are four regions in equilibrium as the fifth region
(the mixed strategy region where Leader earns monopoly rents) disappears.
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librium solutions via variational inequalities, and derive closed-form expressions for equilib-

rium strategies and value functions.11

While we have mainly focused on symmetric equilibria, we also analyze asymmetric

pure-strategy equilibria. We show that Leader’s value in pure-strategy equilibria equals a

firm’s pre-entry value in the mixed-strategy equilibrium and provide an economic connection

between the pure-strategy equilibria and the mixed-strategy symmetric equilibrium.

Finally, we quantify our model’s predictions using Subcase A1 as an example. We char-

acterize the distributions of entry time using partial differential equations with economically

intuitive boundary conditions for both pure-strategy and mixed-strategy equilibria. We find

large socially inefficient entry delays and substantial option value erosion. Moreover, the

mixed-strategy equilibrium is far more inefficient than the pure-strategy equilibria.

Related Literature

Our paper is closely related to Grenadier (1996, 2002), and Back and Paulsen (2009).12

We provide a unified analysis of real-option duopoly entry game where both the first-mover

and second-mover advantages exist. Grenadier (1996) is a special case of our model where

R = KL/KF = 1. As a result, there is no second-mover advantage and hence no mixed

strategy in equilibrium in his paper.13

Grenadier (2002) and Back and Paulsen (2009) analyze continuous-time oligopoly capital-

accumulation games. Their analyses build on an individual firm’s optimal singular control

and show that competition causes firms to speed up investment. In contrast, our duopoly

entry game builds on a firm’s stopping-time problem and we show that the second-mover

advantage can significantly delay entry timing. In sum, the economic insights and mathemat-

ical analysis of our model are complementary to but quite different from those in Grenadier

11In our game-theoretic setting, equilibria are not characterized by simple cutoff strategies, e.g., as in
McDonald and Siegel (1986), but rather multiple cutoff values implied by variational inequalities.

12Fudenberg, Gilbert, Stiglitz and Tirole (1983) model preemption games (e.g., patent races) in determin-
istic settings. Smets (1991) studies irreversible investment in a duopoly setting and analyzes an asymmetric
leader-follower equilibrium. Murto (2004) studies a duopoly exit game and focuses on pure strategies.

13The model in Fudenberg and Tirole (1985) is a deterministic version of Grenadier (1996). Weeds (2002)
integrates a real-options model with strategic interactions by incorporating technological uncertainty into
models along the lines of Grenadier (1996).
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(2002) and Back and Paulsen (2009).

Lambrecht (2001) develops a duopoly exit model in a real-option setting with two ex

ante heterogeneous firms and studies pure-strategy equilibria.14 In contrast, we analyze how

ex ante identical firms become ex post heterogeneous via their market entry decisions and

characterize pure-strategy and mixed-strategy equilibria as well as hybrid-strategy equilibria,

which involve both pure and mixed strategies.

The second-mover advantage in our model gives firms incentives to delay entry. The

mechanism in our model is related to but different from that in classic war-of-attrition

games.15 First, while classic attrition games are about firm exit, our model is about firm

entry. Second, while firm payoffs in war-of-attrition games are often exogenous (Levin, 2004),

they are endogenous in our model. This is because Leader’s payoff depends on Follower’s

equilibrium entry strategy and contains an option-value component. Third, the interaction

between the first-mover and the second-mover advantages induces the coexistence of mixed

strategies and pure strategies in our duopoly entry model, which is absent in standard war-

of-attrition models. Finally, the likelihood of entry is not monotonic in market demand.

Our model is also related to Chamley and Gale (1994) and Grenadier (1999), in which

firms delay entry timing in anticipation of information spillover from their peer’s decisions.

Unlike these social-learning-based models, our model features complete information, entry-

cost savings for the second mover, and the coexistence of first-mover and second-mover

advantages.

There is also a growing literature that integrates industrial organization considerations

into asset pricing models. For example, Dou, Ji and Wu (2021) extend the standard Lucas-

tree asset pricing model to allow for endogenous strategic competition. Chen, Dou, Guo and

Ji (2022) study how strategic competition and financial distress dynamically interact.

14The heterogeneity arises from exogenously given different capital structures for two incumbents. Lam-
brecht and Perraudin (2003) introduce incomplete information into an equilibrium real-option exercising
model. Anderson, Friedman and Oprea (2010) generalize Lambrecht and Perraudin (2003) to settings with
multiple firms.

15For war-of-attrition-style duopoly exit models, see Ghemawat and Nalebuff (1985, 1990), Fudenberg and
Tirole (1986), and Hendricks, Weiss and Wilson (1988), among others. Steg (2015) analyzes mixed strategies
in symmetric stochastic war-of-attrition games.
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2 Model

In this section, we set up an entry game in which two ex ante identical firms choose their

optimal timing to enter a new market.

2.1 Market Demand and Industry Structure

The total market profit is governed by a stochastic process, {Xt; t ≥ 0}. As in McDonald

and Siegel (1986), Dixit and Pindyck (1994), and Grenadier (1996), we assume that {Xt; t ≥

0} follows a geometric Brownian motion (GBM):

dXt = µXtdt+ σXtdZt , (1)

where µ is the expected growth rate of X, σ > 0 is the constant volatility for the growth

rate of X, {Zt; t ≥ 0} is a one-dimensional standard Brownian motion, and the initial value

of X is known: X0 = x0 > 0.16

Let τL and τF denote the stochastic time when Leader and Follower enter the market,

respectively. By definition, τF ≥ τL. Let KL > 0 and KF > 0 denote the fixed entry cost

that Leader and Follower have to pay at their respective entry time τL and τF . We interpret

KL and KF as the present value of all expenses that Leader and Follower incur, respectively.

The key assumption of our model is that Leader incurs a larger entry cost than Follower

does as Leader may have to pay additional innovation and marketing costs, learn about a

new product market, and work with local governments in the new markets. Follower can

save some of the costs by observing Leader’s actions, learning from Leader’s experiences and

mistakes, and even possibly imitating Leader’s success and copying Leader’s strategies.

The industry structure has three phases. First, before either firm enters (t < τL), neither

firm receives any cash flow. Which firm becomes Leader is endogenous and random. Second,

after Leader enters at τL and before Follower enters at τF , Leader receives monopoly profits:

{Xs; s ∈ [τL, τF )}. Third, after Follower enters at τF , the economy permanently switches

from a monopoly to a duopoly setting in which Follower and Leader equally split the total

16Let (Ω,F , {Ft}t≥0,P) denote the probability space. We assume that the process {Zt; t ≥ 0} is progres-
sively measurable with respect to {Ft}t≥0.
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market profit and both receive profits indefinitely: {Xs/2; s ≥ τF}.

In sum, two ex ante identical firms, firm a (Alice’s) and firm b (Bob’s), maximize their

values by taking the total market profit {Xs; s ≥ 0} process and the industry structure

described above as given. Let τa and τb respectively denote firm a’s and b’s stochastic entry

time before Leader is determined. Leader’s entry time is then given by

τL = min{τa, τb} = τa ∧ τb . (2)

Both firms are risk-neutral and discount profits at the constant interest rate r. As in the

standard real-option models, we require r > µ and r > 0, which ensure that firm value is

finite. As we show later, the ratio between Leader’s entry cost (KL) and Follower’s (KF )

plays a crucial role in our analysis. Let R denote the entry-cost ratio:

R = KL/KF . (3)

As long as R > 1, there is a second-mover advantage. Below we summarize these assump-

tions, which apply throughout our analysis:

Assumptions : r > µ, r > 0, KL> 0, KF > 0 . (4)

Before we solve our duopoly problem, we first summarize the solution for the classic

single firm’s real-option problem (McDonald and Siegel, 1986; Dixit and Pindyck, 1994).

The monopoly solution will help us better understand the mechanism of our duopoly model.

2.2 Monopoly Solution

A firm with an exclusive market entry opportunity chooses its entry time, τM , to solve:

M(x) = max
τM≥t

Ext
[
e−r(τM−t)

(∫ ∞
τM

e−r(s−τM )Xsds−KL

)]
, (5)

where Xt = x > 0 and Ext [·] = Et[·|Xt = x]. The monopolist’s optimal entry is characterized

by a trigger strategy in that τ ∗M = inf{s ≥ t : Xs ≥ xM}, where the optimal threshold, xM ,

is given by

xM =
β

β − 1
(r − µ)KL (6)
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and β > 1 measures optionality and is given by17

β =
−(µ− 1

2
σ2) +

√
(µ− 1

2
σ2)2 + 2rσ2

σ2
. (7)

Let Π(x) denote the monopolist’s value function after entry:

Π(x) = Ext
[∫ ∞

t

e−r(s−t)Xsds

]
=

x

r − µ
. (8)

In the waiting region where x < xM , the monopolist’s value M(x) is

M(x) =

(
x

xM

)β
︸ ︷︷ ︸

PV of $1 paid at τ∗M

(Π(xM)−KL)︸ ︷︷ ︸
NPV at τ∗M

. (9)

As the stochastic entry time τ ∗M is characterized by the trigger policy (xM), before entry at

any time t, the monopolist’s value equals the product of (i) the time-t value of a $1 paid

at τ ∗M , given by (x/xM)β, and (ii) the NPV (Π(xM)−KL) collected at τ ∗M . In the x ≥ xM

region, the firm enters the market immediately and therefore

M(x) = Π(x)−KL, x ≥ xM . (10)

As β > 1, M(x) is globally increasing and convex in x. Next, we sketch out our solution

method for the duopoly model.

2.3 Duopoly Model Solution Procedure

We solve our duopoly model using backward induction as illustrated in Figure 2. After

both firms have entered, i.e., for t ≥ τF , they equally split profits, valued at Π(x)/2. This

is Step 0 in Figure 2. Next, we calculate Follower’s and Leader’s value after Leader’s entry

but before Follower’s entry, i.e., for the [τL, τF ) period. This is Step 1 in Figure 2.

Defining Follower’s Pre-entry and Leader’s Post-entry Values: F (x) and L(x).

Follower’s value in the [τL, τF ) period is given by:

F (x) = max
τF≥t

Ext
[∫ ∞

τF

e−r(s−t)
Xs

2
ds− e−r(τF−t)KF

]
, (11)

where Xt = x > 0. Let τ ∗F denote Follower’s optimal entry time for (11). Taking τ ∗F and

F (x) as given, we define Leader’s post-entry value function, L(x), for any t ∈ [τL, τ
∗
F ) as

17That is, β is the larger root of the fundamental quadratic equation, σ2z(z − 1)/2 + µz − r = 0, for the
GBM X process (1) in standard real option models.
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Pre-Entry Value: Ji(x)

Step 2

F (x), L(x)

Step 1

Post-Entry Value: Π(x)
2

Step 0τL τF
Time: t

Figure 2: This figure summarizes various value functions for a given pair of entry timing
(τL, τF ) in three time periods: t < τL (before Leader’s entry); t ∈ [τL, τF ); and t ≥ τF (after
Follower’s entry). Π(Xt) = Xt/(r − µ) is the total market capitalization. F (x) and L(x)
are Follower’s and Leader’s value functions in the t ∈ [τL, τF ) period. Ji(x) is firm i’s value
before Leader’s entry.

follows:

L(x) = Ext

[∫ ∞
t

e−r(s−t)Xsds−
∫ ∞
τ∗F

e−r(s−t)
Xs

2
ds

]
, (12)

where the first term in (12) gives time-t value if Leader were to monopolize the market

indefinitely and the second term gives the time-t value taken away by Follower from entry

time τ ∗F onward.18

2.3.1 Step 1: Solving F (x), L(x), and Follower’s Optimal Entry Time τ ∗F .

Using backward induction, we first jointly solve Follower’s optimal entry time τ ∗F and its

closed-form value function F (x), and then calculate Leader’s post-entry value L(x).

Follower’s Optimal Entry Threshold τ ∗F and Pre-entry Value F (x). At any time

t after Leader enters (t ≥ τL), by paying an entry cost KF at its chosen entry time τ ∗F ,

Follower occupies half of the total market. Therefore, Follower’s entry decision boils down

to a monopolist’s real-option problem analyzed in Section 2.2 but with an entry cost of KF

and a stochastic flow payoff of Xt/2. Follower’s value F (x) is thus given by:

F (x) =

(
Π(xF )

2
−KF

)(
x

xF

)β
, x < xF , (13)

F (x) =
Π(x)

2
−KF , x ≥ xF , (14)

18Note that as in Grenadier (1996), F (x) includes Follower’s entry cost KF but L(x) does not include
Leader’s entry cost KL as L(x) is calculated for t ≥ τL.
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where the optimal entry threshold, xF , is given by

xF =
2β

β − 1
(r − µ)KF . (15)

Note that the entry threshold xF is now proportional to Follower’s entry cost KF and the

multiple 2 is due to the assumption that Follower’s profit is a half of the total industry

profits. As in standard real option models, Follower’s pre-entry value F (x) is increasing and

convex. The higher the volatility σ, the higher the value F (x).

Leader’s Post-entry Value L(x). Solving L(x) defined in (12), we obtain

L(x) = Π(x)− Π(xF )

2

(
x

xF

)β
, x < xF , (16)

L(x) =
Π(x)

2
, x ≥ xF . (17)

In the x ≥ xF region, both Leader and Follower are in the market and they equally split

the market demand and hence both are valued at Π(x)/2. In the x < xF region, Leader’s

time-t value L(x) equals the difference between the total market capitalization Π(x) and

Π(xF )
2

(
x
xF

)β
, which equals the value of Leader’s lost profits caused by Follower’s entry. Note

that solving L(x) is a pure valuation problem as there is no decision by Leader involved.

Leader’s value L(x) for the x < xF region is concave but L(x) for the x ≥ xF region is

linear. Therefore, L(x) is not globally concave. This property has important equilibrium

implications in our duopoly model as we show later.

Next, we turn to Step 2, the final and key step of our analysis for the [0, τL) period. In

this period, firms formulate their optimal entry strategies into a market with no incumbents.

2.3.2 Step 2: Determining Leader and Its Entry Time τL

For a pair of entry strategy (τa, τb), firm i’s value function Ji(x) at time t is given by

Ext
[
e−r(τL−t)

(
1τi<τ−i(L(Xτi)−KL) + 1τi>τ−iF (Xτ−i) + 1τi=τ−i

L(Xτi)−KL + F (Xτi)

2

)]
, (18)

where τL = τi ∧ τ−i, Xt = x > 0, and 1A is an indicator function that equals one if event A

occurs and zero otherwise. The first term in (18) describes the event where firm i becomes

Leader, the second term describes the event where firm i becomes Follower, and the last

term accounts for the scenario where the two firms enter at the same time.
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Firm i chooses its optimal entry time τi to maximize its value given in (18) taking into

the best response of its competitor, firm −i. Next, we characterize our model solution and

focus on Markov perfect equilibria.

3 Characterizing Model Solution via Three Cases

In this section, we show that depending on how large the entry-cost ratio R = KL/KF

is, our model solution falls into one of the three cases, Case A, Case B, and Case C.

In Case A, the entry-cost ratio R is so large that firms are better off being Follower for

all levels of market demand x. We refer to Case A as the second-mover-advantage case.

In Case C where the entry-cost ratio R is weakly less than one, there is no second-mover

advantage at all. In equilibrium, firms trade off the first-mover advantage and the stan-

dard option value of waiting, as highlighted in Fudenberg and Tirole (1985) and Grenadier

(1996).19 We refer to Case C as the first-mover-advantage case.

Finally, in Case B where the entry-cost ratio R is larger than one but only by a moderate

margin, both the first-mover and second-mover advantages coexist in equilibrium.

Next, we formally describe these three cases of our duopoly model solution.

Proposition 1 Let RAB be given by20

RAB =

(
2β

β + 1

) 1
β−1

> 1. (19)

Depending on how large the entry-cost ratio R = KL/KF is, our duopoly model solution falls

into one of the following three cases.

Case A. If R > RAB, then the second-mover advantage globally dominates. This is because the

following inequality holds for all x:

L(x)−KL < F (x) , x > 0 . (20)

19Grenadier (1996) corresponds to the special R = 1 case of our duopoly model.
20We obtain RAB = KAB/KF , by solving for KAB , which is the unique root of the following equation for

KL ∈ (KF , 2KF ): L(xM )−KL
xβM

= F (xF )

xβF
.
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Case C Case B Case A

0 1 RAB
R

Figure 3: This figure summarizes all the three cases of the duopoly model solution: (i.):
Case A: R > RAB; (ii.) Case B: 1 < R ≤ RAB; and (iii.) Case C: R ≤ 1. The cutoff value

is RAB =
(

2β

β+1

) 1
β−1

> 1 and β is the optionality measure given in (7).

Case B. If 1 < R < RAB, then L(x)−KL = F (x) has two roots, x̂L and x̂F : 21

L(x)−KL > F (x) , x̂L < x < x̂F , (21)

L(x)−KL < F (x) , x < x̂L or x > x̂F , (22)

and x̂L < xM < x̂F < xF .22 The first-mover advantage dominates in the x̂L < x < x̂F

region and the second-mover advantage dominates in x > x̂F region. Both firms wait

due to the option-value-of-waiting considerations in the x < x̂L region.

Case C. If R ≤ 1, then L(x)−KL = F (x) has a unique root x̂L in the (0, xF ) domain and23

L(x)−KL ≥ F (x) , x > x̂L, (23)

L(x)−KL < F (x) , x < x̂L, (24)

and x̂L < xM . The first-mover advantage dominates in x > x̂L region. Both firms wait

due to the option-value-of-waiting considerations in the x < x̂L region.

At the core of Proposition 1 is whether F (x) is larger than L(x)−KL or not.

Next, we analyze Case A, where F (x) > L(x) − KL holds for all x > 0. We focus on

symmetric equilibria in Section 4 and analyze asymmetric equilibria in Section 7.

21If R = RAB , the two roots for the L(x) − KL = F (x) equation reduce to one root: x̂L = x̂F = xM ,
where xM is the monopolist’s entry threshold given in (6). For all x 6= xM , L(x)−KL < F (x).

22Recall that xM and xF are the monopolist’s and Follower’s entry thresholds given in (6) and (15),
respectively.

23The inequality (23) is strict when R < 1. When R = 1, the inequality is strict for x̂L < x < xF and
holds with equality for x ≥ xF .
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4 Solution for Case A: Mixed-Strategy Equilibrium

In Case A, the entry-cost ratio is so large, R > RAB > 1, that F (x) > L(x)−KL holds for

all x > 0. As a result, between waiting and entering as Leader, a firm strictly prefers waiting

which yields a higher payoff. But there is no Follower without Leader. Does this mean

there is no equilibrium for Case A? The above reasoning implies that there is no symmetric

pure-strategy equilibrium for Case A. Importantly and somewhat surprisingly there exists

an economically intuitive symmetric mixed-strategy equilibrium which we analyze in this

section. First, we define the mixed-strategy equilibrium.

4.1 Definition of Markov Mixed-Strategy Equilibrium

Let λi(Xt) denote the rate at which firm i becomes Leader over a small time interval

[t, t+ dt] where t < τL. Firm i’s entry time τi is a doubly stochastic process as its associated

rate {λi(Xt)}t≥0 is also stochastic.24 Next, we define feasible Markov mixed strategies and

the Markov perfect mixed-strategy equilibrium.

Definition 1 An entry rate λi(x) is a measurable function from R+ to R+. A pair of Markov

strategy (λa( · ), λb( · )) is feasible if and only if for any t > 0,
∫ t

0
λi(Xs)ds <∞ almost surely.

Let Φ denote the set of all feasible Markov mixed strategies.

Definition 2 Let Ji(x;λa, λb) denote firm i’s value at time t defined in (18) for a given Xt =

x > 0 and a feasible Markov mixed strategy pair (λa, λb). A feasible strategy pair (λ∗a, λ
∗
b) is

24Stopping time τ is doubly stochastic if the underlying counting process {Nt}t≥0 whose first jump time
τ is doubly stochastic. A counting process {Nt}t≥0 is doubly stochastic if its associated intensity process
{λt}t≥0 is {Ft}t≥0-predictable and for all t and s > t, conditional on the σ-algebra generated by {Nu}u∈[0,t]
and Fs, the random variable (Ns −Nt) has a Poisson distribution with parameter

∫ s
t
λudu. Now we apply

these definitions to our model. Let {Gt}t≥0 be the σ-algebra generated by {Ft}t≥0 and {N i
t }t≥0, where

i = a, b. For any t ≥ 0 and s > t, conditional on the σ-algebra generated by Gt
⋃
Fs, the counting processes

{N a
u −N a

t }u∈[t,s] and {N b
u −N b

t }u∈[t,s] are independent and the random variable (N i
s −N i

t ) has a Poisson

distribution with parameter
∫ s
t
λi(Xu)du for i = a, b. Firm i’s entry time τi is thus doubly stochastic with

the underlying counting process {N i
t }t≥0 and the associated intensity process {λi(Xt)}t≥0. See Lando (1998)

and Duffie (2005) among others for applications of doubly stochastic processes to affine credit-risk models.
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a Markov perfect mixed-strategy equilibrium if for any x > 0, the following conditions hold:

Ja(x;λ∗a, λ
∗
b) ≥ Ja(x;λa, λ

∗
b), ∀ (λa, λ

∗
b) ∈ Φ, (25)

Jb(x;λ∗a, λ
∗
b) ≥ Jb(x;λ∗a, λb), ∀ (λ∗a, λb) ∈ Φ. (26)

Let Vi(x) denote firm i’s equilibrium value function: Vi(x) = Ji(x;λ∗a, λ
∗
b).

4.2 Closed-Form Markov Perfect Mixed-Strategy Equilibrium

In this subsection, we first discuss the economic mechanism underlying a firm’s entry

decision and then we provide a mathematical proof of our equilibrium solution by extending

the variational inequality method for a single firm’s entry problem to our duopoly setting.

For a given mixed strategy pair (λa(x), λb(x)), the following HJB equation for firm i’s

value, Ji(x) = Ji(x;λa(x), λb(x)), holds:

rJi(x) =
σ2x2

2
J ′′i (x) + µxJ ′i(x) + λi(x)[L(x)−KL − Ji(x)] + λ−i(x)[F (x)− Ji(x)] , (27)

where L(x) is given by (16)-(17) and F (x) is given by (13)-(14). The intuition for the

HJB equation (27) is as follows. The first two terms on the right side capture the standard

diffusion and drift effects of X on Ji(x). The third term describes the effect of firm i’s own

mixed (entry) strategy on its value and this term equals zero in equilibrium as a rational firm

will only mix with strictly positive probabilities between two strategies that yield the same

value.25 The last term in (27) describes the effect of the competitor’s mixed entry strategy

on firm i’s value. If the competitor enters, firm i becomes Follower and its value function

jumps from Ji(x) to F (x). The firm’s optimality requires that the sum of these four terms

on the right side equals the annualized firm value rJi(x) (Duffie, 2001).

It is worth noting although X is continuous, firm value is discontinuous and jumps when

its competitor enters the market. This is an example where strategic interactions generate

endogenous uncertainty (jump shocks) because firms play mixed strategies in equilibrium.

Next, we turn to the symmetric Markov perfect equilibrium. Let λ∗(x) = λ∗a(x) =

λ∗b(x) denote the symmetric equilibrium Markov perfect mixed strategy. Equation (18) and

25Otherwise, it is always better for the firm to play the pure strategy (waiting or entering) that yields
the higher value: max{L(x) −KL, Ji(x)}. Despite in equilibrium this term is zero, we leave it in the HJB
equation (27) to better understand the economic mechanism.
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inequality (20) together imply the following for Vi(x), firm i’s equilibrium value function:

L(x)−KL ≤ Vi(x) ≤ F (x) , x > 0 . (28)

That is, ex ante firm i’s value must be weakly larger than L(x) − KL, Leader’s net payoff

upon entry at τL, and weakly lower than Follower’s value F (x) because the second-mover

advantage globally dominates at all x > 0.

There are two scenarios to consider: 1.) λ∗(x) > 0 and 2.) λ∗(x) = 0. When λ∗(x) > 0,

the firm must be indifferent between entering the market (becoming Leader) and waiting.

That is, the value functions from the two strategies must equal:

Vi(x) = L(x)−KL if λ∗(x) > 0 , (29)

which implies

λ∗(x) = 0 if Vi(x) > L(x)−KL . (30)

Using (27) and (29), we obtain the following HJB equation for Vi(x):

rVi(x) =
σ2x2

2
V ′′i (x) + µxV ′i (x) + λ∗(x)[F (x)− Vi(x)] , (31)

which holds for both λ∗(x) > 0 and λ∗(x) = 0 cases. Re-arranging (31) yields the following

expression for λ∗(x) for all x > 0:

λ∗(x) =
rVi(x)−

[
σ2x2

2
V ′′i (x) + µxV ′i (x)

]
F (x)− Vi(x)

. (32)

When λ∗(x) > 0, substituting Vi(x) = L(x)−KL given in (29) into (32), we obtain

λ∗(x) =
rL(x)−

[
σ2x2

2
L′′(x) + µxL′(x)

]
− rKL

F (x)− (L(x)−KL)
. (33)

Since we have closed-form solutions for L(x) as given by (16)-(17) and F (x) as given by

(13)-(14), we have an explicit formula for the equilibrium entry rate λ∗(x).

The mechanism inducing firms to enter probabilistically in our Case A is related to that

causing firms to exit probabilistically in war-of-attrition games (see Levin (2004) for a PhD

teaching note on wars of attrition). Unlike standard war-of-attrition exit games, ours is

an entry timing game with stochastic payoffs. In our Case A, when market demand x is

sufficiently high, entering as Leader is profitable but Leader is not the winner but rather the

loser of the game in the war-of-attrition sense as Follower’s value is higher than Leader’s net

payoff F (x) > L(x)−KL at all levels of x. Also, because of irreversible entry and stochastic
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market demand, the option value of waiting is another key force in our model.

To complete our model solution, we still need to solve Vi(x) in the λ∗(x) = 0 region and

characterize the λ∗(x) > 0 region. We show that Vi(x) for x > 0 is the unique solution for

the following variational inequality (See Appendix B):

max

{
σ2x2

2
V ′′∗ (x) + µxV ′∗(x)− rV∗(x), (L(x)−KL)− V∗(x)

}
= 0 , (34)

subject to the following boundary conditions: 26

V∗(x) = 0 at x = 0, (35)

V∗(x)− (L(x)−KL)→ 0 as x→∞ . (36)

The variational inequality (34) is analogous to that of a monopolist’s real option problem,

but their economic implications are different. Mathematically, we generalize the variational-

inequality analysis in standard real-option models to our mixed-strategy equilibrium model.

Solving the variational-inequality problem (34)-(36), we obtain firm i’s equilibrium value

Vi(x) = V∗(x). Using (30), (33), and Vi(x) = V∗(x), we obtain the equilibrium entry rate

λ∗(x). We summarize these results in the following theorem:

Theorem 1 For Case A where R > RAB, there exists a symmetric Markov perfect equi-

librium. In this equilibrium, Va(x) = Vb(x) = V∗(x), where V∗(x) is the unique solution for

the variational-inequality problem (34)-(36) in the x ≥ 0 domain. The equilibrium strategy

is given by λ∗a(x) = λ∗b(x) = λ∗(x), where λ∗(x) = 0 in the V∗(x) > L(x) − KL region

and firms enter probabilistically at the strictly positive rate of λ∗(x) given in (33) in the

V∗(x) = L(x)−KL region.

While Theorem 1 fully describes the solution for Case A where R > RAB, we can further

divide Case A into two subcases: Subcase A1 and Subcase A2, depending on whether the

26Because X = 0 is an absorbing state for a geometric Brownian motion process X, firm value must be
zero as stated in (35). The condition given in (36) follows from the equilibrium result that firms must enter
probabilistically when demand is sufficiently high.
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entry-cost ratio R = KL/KF is larger or smaller than RA1A2 given by27

RA1A2 =

(
2β − 1

β

) 1
β−1

. (37)

It is straightforward to show RA1A2 > RAB, where RAB is given in (19).

In Subcase A1, R > RA1A2 holds and in Subcase A2, RAB < R ≤ RA1A2 holds. In

Subsection 4.3, we obtain explicit solutions for firm’s value Vi(x) and λ∗(x) for these two

subcases. As we will show, even though there is only a second-mover advantage in equilibrium

for both subcases, the equilibrium strategies are quite different for the two subcases.

4.3 Two Subcases: Subcase A1 and Subcase A2

First, we solve Subcase A1 where R > RA1A2 in closed form for Vi(x) and λ∗(x).

4.3.1 Subcase A1: R > RA1A2

Solution. For Subcase A1, there exists a threshold x dividing the x > 0 real line into two

regions: 1.) the waiting region where x < x and V∗(x) > L(x)−KL and 2.) the probabilistic

entry region where x ≥ x and V∗(x) = L(x)−KL. The variational inequality (34) is simplified

to the following ordinary differential equation (ODE) in the waiting (x < x) region:

σ2x2

2
V ′′∗ (x) + µxV ′∗(x)− rV∗(x) = 0 , (38)

subject to the following value-matching and smooth-pasting conditions at the threshold x:

V∗(x) = L(x)−KL, (39)

V ′∗(x) = L′(x) . (40)

While these two boundary conditions resemble the standard value-matching and smooth-

pasting conditions for a single firm’s optimal threshold in the standard models, the economics

underpinning (39)-(40) is different from standard real-option models, which we discuss later.

A key result for Subcase A1 is that Follower enters immediately after Leader does in that

τ ∗F = τ ∗L+. This implies that Leader earns no monopoly rents in equilibrium. Therefore, in

27We obtain RA1A2
= KA1A2

/KF by solving for KA1A2
, which is the unique root of the following equation

for KL ∈ (KF , 2KF ): L(xM )−KL
xβM

= L(2xM )−KL
(2xM )β

.
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the probabilistic entry region, Leader’s NPV netting out of its entry cost is given by

V∗(x) =
Π(x)

2
−KL , x ≥ x . (41)

Using Leader’s linear net payoff function at entry in the x ≥ x region, (41), and solving the

ODE (38) in the x < x region subject to the value-matching and smooth-pasting conditions,

(39) and (40), we obtain the closed-form expressions for V∗(x):

V∗(x) =
(x
x

)β (Π(x)

2
−KL

)
, x < x , (42)

where the threshold x is given by

x =
2β

β − 1
(r − µ)KL = 2xM . (43)

Note that x is the lower bound for Leader’s optimal (probabilistic) entry region. In our

model, even when Xt ≥ x, the firm may still be waiting as firms play mixed entry strategies.

Now we verify the equilibrium result that as soon as one firm enters probabilistically,

the other also immediately enters. This is because x = 2xM > xF which follows from a

comparison of (43) for x and (15) for xF under the second-mover advantage: R > RA1A2 > 1.

Finally, substituting (14) and (17) into (33) gives the equilibrium entry rate:

λ∗(x) =
x/2− rKL

KL −KF

> 0 , x ≥ x. (44)

The numerator in (44) equals firm i’s net income, which equals the equilibrium profit for a

duopoly, x/2, minus rKL, the interest expense of financing the entry cost KL. The entry

rate λ∗(x) increases linearly with x for x ≥ x and approaches ∞ as x→∞. Intuitively, the

higher the market demand x the more likely a firm enters so as to end the waiting game and

collect profits sooner. Next we summarize the solution for Subcase A1 where R > RA1A2 .

Proposition 2 For Subcase A1 (R > RA1A2), there exists a symmetric Markov perfect

mixed-strategy equilibrium where the threshold x given in (43) divides the x > 0 real line into

two solution regions. In the x < x region, firms wait (λ∗(x) = 0) and Va(x) = Vb(x) = V∗(x),

where V∗(x) is given in (42). In the x ≥ x, region, firms enter probabilistically at the same

rate, λ∗a(x) = λ∗b(x) = λ∗(x), where λ∗(x) is given in (44), and Va(x) = Vb(x) = V∗(x), where

V∗(x) is given in (41). As soon as one firm enters, the other enters immediately: τ ∗F = τ ∗L+.

The ex ante probability that either firm becomes Leader is one half.
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Throughout our paper, we use figures to supplement our formal analysis to further deepen

our understanding of the economic mechanism. We start with Subcase A1. First, we discuss

our choices of parameter values for the figures.

Parameter Choices. Our duopoly model has five parameters in total. First, for the risk-

free rate (r), the expected growth rate (drift) of the profit process (µ), and the volatility

of the profit growth rate (σ), we choose commonly used values: r = 4%, µ = 2%, and

σ = 10% per annum, following the standard practice in real-options and contingent-claim

literature, e.g., Grenadier (1996) and Leland (1994). The implied optionality measure given

in (7) is β = 1.70. Substituting β = 1.70 into (37) for RA1A2 and (19) for RAB, we obtain

RA1A2 = 1.49 and RAB = 1.3 that split Case A into Subcase A1 and Subcase A2.

Which subcase our model solution falls into only depends on two measures: (1.) the

optionality measure β given in (7), which determines the cutoff values RA1A2 and RAB,

and (2.) the entry-cost ratio R = KL/KF , which determines how strong the second-mover

advantage is. Finally, we set Follower’s entry cost to KF = 0.5.

Graphical Illustration. To demonstrate the economics of Subcase A1, it is necessary and

sufficient to choose a value of R = KL/KF that is larger than RA1A2 = 1.49. We choose

R = 1.6, which implies Leader’s entry cost of KL = 0.8.

In Panel A of Figure 4, we highlight how to graphically pin down firm value before Leader

is determined (i.e., t ≤ τ ∗L). First, we plot L(x)−KL, which is concave in the x < xF region

and linear in the x ≥ xF region (the dashed red line). Second, we plot Follower’s value F (x),

which is increasing and convex (the magenta dash-dotted line). Because L(x)−KL < F (x)

holds for all x > 0, neither firm wants to be Leader with probability one. Moreover, firm

value Vi(x) must satisfy L(x)−KL ≤ Vi(x) ≤ F (x) in equilibrium.

Third, we pin down firm value Va(x) = Vb(x) = V∗(x) by smoothly pasting a convex

curve (from the origin) onto the L(x)−KL payoff line. Doing so determines the endogenous

threshold x (the solid black dot): To the left of x is the increasing convex Vi(x) (the black

solid line) and to the right of x is the straight net payoff line L(x)−KL = Π(x)/2−KL (the
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blue solid straight line).
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Figure 4: Value functions Va(x) = Vb(x) = V∗(x) and entry rates λ∗a(x) = λ∗b(x) = λ∗(x)

in the symmetric Markov perfect mixed-strategy equilibrium in Subcase A1. The
threshold value dividing the market demand x into the two regions is: x = 2xM , where xM
is the entry threshold for a monopolist with an entry cost of KL. The two regions are: 1.)
the x < x waiting region and 2.) the x ≥ x probabilistic entry region. Panel A plots
pre-entry firm value V∗(x) (solid line), Follower’s value F (x) (dash dotted line), and
Leader’s net payoff upon entry L(x)−KL (dashed line). Panel B plots the equilibrium

entry rates: λ∗(x) = x/2−rKL
KL−KF

in the x ≥ x region and λ∗(x) = 0 in the x < x waiting region.
Parameter values are R = 1.6, KF = 0.5, r = 4%, µ = 2%, and σ = 10%, which imply
RA1A2 = 1.49, RAB = 1.3, xF = 0.0485, and x = 2xM = 0.0776.

Panel B of Figure 4 plots the equilibrium entry rate λ∗(x) that supports Vi(x) = V∗(x)

obtained in panel A. The vertical dashed line in panel B divides the solution into two regions.

To the left of x is the waiting region where λ∗(x) = 0. To the right of x is the probabilistic

entry region where λ∗(x) = x/2−rKL
KL−KF

. The mixed-strategy equilibrium is a compromised

outcome between the two firms. As a firm waits for the other to enter, it forgoes the

opportunity of collecting profits x/2 − rKL, but preserves the option value of being the

second mover and saving ∆K = KL−KF . In equilibrium, the linear λ∗(x) entry rate makes

the firm indifferent between entering and waiting. The higher the value of x, the higher the

costs of forgoing one-period profit and thus the more likely it enters to end the game sooner.

Finally, we point out that the lower bound of x that firms are willing to probabilistically

enter, x given in (43), equals twice the value of xM , the entry threshold of a monopolist
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(with an entry cost of KL). This is because in equilibrium Leader only collects Xt/2 and

never enjoys monopoly rents. Next, we turn to Subcase A2.

4.3.2 Subcase A2: R ∈ (RAB, RA1A2 ]

Solution Overview. Compared with Subcase A1 where R > RA1A2 , the entry-cost ratio R

for Subcase A2 is lower but still larger than one and lies in the region (RAB, RA1A2 ]. Although

the second-mover advantage for Subcase A2 is lower than that for Subcase A1, firms still

prefer to be Follower for all x > 0.

The solution for Subcase A2 is richer and subtler than for Subcase A1 and can still be

obtained in closed form. There are four regions in equilibrium for Subcase A2: two dis-

connected waiting regions and two disconnected probabilistic entry regions. There are two

waiting regions because there are two distinct waiting motives: one is due to the standard

option value and the other is due to the second-mover advantage. Depending on the market

demand x, we have two probabilistic entry regions: When x is very high, Follower enters

immediately after Leader leaving no monopoly rents for Leader. When x is in the intermedi-

ate range, we also have a mixed strategy equilibrium but Follower voluntarily waits so that

Leader can make enough monopoly profits for a sufficiently long period.

Next, we obtain the four-region solution for firm value V∗(x) by using smooth-pasting

conditions with the net payoff function being L(x) −KL. Doing so, we obtain three cutoff

values of market demand x: x̃, x, and x that define the four regions. Without loss of

generality, let 0 < x̃ < x < x. Why do we have four regions (with three smooth-pasting

conditions in Subcase A2) rather than two regions (with only one smooth-pasting condition

in Subcase A1)? Geometrically, this is because the second-mover advantage (R) is smaller in

Subcase A2 than in Subcase A1, which leaves less wiggle room between F (x) and L(x)−KL,

leading V∗(x) to paste onto L(x)−KL at three points.

Consequently, [x̃, x] and [x,∞) are the two probabilistic regions where λ∗(x) > 0, while

(0, x̃) and (x, x) are the two waiting regions where λ∗(x) = 0. Solving (38) in the (0, x̃) and

(x, x) waiting regions subject to the value-matching and smooth-pasting conditions (39)-(40)
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at x = x̃, x, and x, yields the four-region solution, which we discuss in detail below.28

Four-Region Solution. First, in the standard waiting region where x ∈ [0, x̃), V∗(x) is

convex and given by

V∗(x) =
(x
x̃

)β
(L(x̃)−KL) , x ∈ [0, x̃) . (45)

Note that firm value equals the product of (a.) the present value of a dollar paid at τ :=

inf{s : Xs = x̃} and (b.) the net payoff if the firm enters at τ as Leader. We can prove that

the threshold below which waiting is a firm’s dominant strategy, x̃, equals xM , the entry

threshold of a monopolist with an entry cost of KL, given by (6):

x̃ = xM . (46)

Second, in the x ≥ x region, as soon as one firm enters as Leader, the other follows

immediately because the market demand is sufficiently high (and formally xF < x). This

mechanism is the same as the one for the probabilistic entry region in Subcase A1. Therefore,

firm value (in this probabilistic entry region) is also linear, V∗(x) = Π(x)/2−KL, and λ∗(x)

has the same linear expression as (44) for Subcase A1. The only difference is the value of x

in Subcase A2 is different from x = 2xM given in (43) in Subcase A1.

Third, in the x ∈ [xM , x] region, firms enter probabilistically and a firm’s pre-entry value

is thus given by V∗(x) = L(x) − KL, which is concave. As soon as Leader is determined,

the other firm waits and Leader thus collects monopoly rents until τ ∗F = inf{s : Xs ≥ xF}.

Technically, this follows from x < xF . The equilibrium entry rate function that makes firms

indifferent between entering as Leader and waiting in this region is:

λ∗(x) =
x− rKL

F (x)− (L(x)−KL)
, x ∈ [xM , x]. (47)

The numerator in (47) is the opportunity cost of not collecting by waiting and the denom-

inator in (47) is the net benefit of waiting to be Follower: the value gap between becoming

Leader immediately and being Follower.

28Mathematically, we can prove that the variational-inequality problem (34)-(36) boils down to the smooth-
pasting conditions at x̃, x, and x, which define the four regions. Firm value, V∗(x), is the solution to the
variational inequality problem (34)-(36), which satisfies the ordinary differential equation (38) in the two
waiting regions (0, x̃) and (x, x).
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Fourth, in the x ∈ (x, x) region, firms wait because they prefer to enter as Follower to

lower their entry costs. Solving the ODE (38) in this region subject to the value-matching

and smooth-pasting conditions (39)-(40) at x and x, we obtain the closed-form expression:

V∗(x) = Θ(x;x, x), x ∈ (x, x) , (48)

where Θ(x; a, b) for any a ≤ x ≤ b is given by

Θ(x; a, b) = θ1(a, b)xβ + θ2(a, b)xγ , (49)

β > 1 is given in (7), and γ < 0 is given by29

γ =
−(µ− 1

2
σ2)−

√
(µ− 1

2
σ2)2 + 2rσ2

σ2
. (50)

Finally, in Lemma 2 of Appendix B, we prove xM < x < xF < x and characterize the

pair (x, x) defining the waiting (to be Follower) region. Below we summarize the duopoly

model solution for Subcase A2.

Proposition 3 For Subcase A2 (RAB < R ≤ RA1A2),30 firm i’s value function is given by

Vi(x) = V∗(x) for all x > 0. In the x < xM and x ∈ (x, x) regions, V∗(x) is given by (45)

and (48), respectively. In the x ∈ [xM , x] and x ∈ [x,∞) regions, V∗(x) = L(x) −KL. The

cutoff values, x and x, are given in (B.8) via the smooth-pasting conditions in Lemma 2. The

symmetric Markov perfect equilibrium strategy is given by λ∗a(x) = λ∗b(x) = λ∗(x). In both

x < xM and x ∈ (x, x) regions, firms wait: λ∗(x) = 0. In the x ∈ [xM , x] and x ≥ x regions,

firms enter stochastically at the rate of λ∗(x) > 0 given in (47) and (44), respectively.

After Leader is determined at τ ∗L = τ ∗a ∧τ ∗b , the other firm enters at τ ∗F = inf{s : Xs≥xF},

where xF is given in (15). In the x ∈ [xM , x] region, Leader earns monopoly rents in the

(τ ∗L, τ
∗
F ) period but in the x ≥ x region, Leader earns no monopoly rents as τ ∗F = τ ∗L+.

Graphical Illustration. Next, we use Figure 5 to corroborate our analysis of Subcase A2.

We set the entry-cost ratio at R = 1.4, which lies in the (RAB, RA1A2 ] = (1.30, 1.49] region.

The implied Leader’s entry cost is KL = 0.7.

29 Mathematically, γ is the smaller (and negative) root of the fundamental quadratic equation, σ2z(z −
1)/2 + µz − r = 0, for the GBM X process (1). See (B.2) for the expressions of θ1(a, b) and θ2(a, b).

30RAB and RA1A2
are given in (19) and (37), respectively.
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Figure 5: Value functions and entry rate in the symmetric equilibrium in
Subcase A2. Parameter values are R = 1.4, KF = 0.5, r = 4%, µ = 2%, and σ = 10%,
which imply RA1A2 = 1.49, RAB = 1.3, xM = 0.0340, x = 0.0388, x = 0.0686, and
xF = 0.0485.

First, F (x) > L(x)−KL still holds for all x > 0 in Subcase A2 in that the second-mover

advantage dominates globally. Second, we can geometrically fit a smooth curve for Vi(x)

at three smooth-pasting points: xM , x, and x with L(x) − KL being the net payoff line

because KL = 0.7 is lower than KL = 0.8 in Subcase A1. As a result, Figure 5 confirms our

model’s prediction that as x increases from zero to ∞, a firm finds itself in one of the four

mutually exclusive regions: 1.) the first waiting region (to preserve option value); 2.) the first

mixed entry strategy (with monopoly profits); 3.) the second waiting region (second-mover

advantage); and 4.) the second mixed entry strategy (no monopoly profits).

4.3.3 Summary of Case A

In sum, the second-mover advantage dominates for all x > 0 for Case A, where R >

RAB > 1. As a result, we only have two types of regions: waiting and probabilistic entry

regions. This is because entry with probability one is a strictly dominated strategy in a

symmetric equilibrium. Depending on whether R > RA1A2 or not, we have two subcases:

Subcase A1 and Subcase A2, discussed in detail earlier in this section.

Next, we analyze Case C where R ≤ 1.
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5 Case C: Equilibrium with First-Mover Advantage

In Case C (R ≤ 1), there is no second-mover advantage. The equilibrium is determined

by firms’ tradeoff between the first-mover advantage and the option value of waiting.

Let Ei ⊂ (0,∞) denote a closed set associated with firm i’s entry strategy: firm i enters

at t if and only if Xt ∈ Ei. Let Φ denote the set of all feasible entry strategies (Ea, Eb) and

let Ji(Xt; Ea, Eb) denote the associated time-t value of firm i defined by (18). Next, we define

the pure-strategy equilibrium.

Definition 3 A pair of entry strategy (E∗a , E∗b ) is a pure-strategy equilibrium if for any x > 0

the following conditions hold:

Ja(x; E∗a , E∗b ) ≥ Ja(x; Ea, E∗b ), ∀ (Ea, E∗b ) ∈ Φ, (51)

Jb(x; E∗a , E∗b ) ≥ Jb(x; E∗a , Eb), ∀ (E∗a , Eb) ∈ Φ. (52)

Let Vi(x) denote firm i’s equilibrium value function: Vi(x) = Ji(x; E∗a , E∗b ).

Proposition 1 shows that for Case C where R ≤ 1, F (x) intersects with L(x)−KL at x̂L

and L(x) −KL ≥ F (x) for any x ≥ x̂L. Therefore, in the x ≥ x̂L region, both firms want

to enter as Leader but only one firm can be randomly selected (with 50% probability) to be

Leader. This is the rent equalization principle of Fudenberg and Tirole (1985) and Grenadier

(1996), which implies that the equilibrium firm value for both firms is:

Vi(x) =
L(x)−KL + F (x)

2
(53)

for x ≥ x̂L. In the x < x̂L region, firms optimally wait and the equilibrium firm value is:

Vi(x) = F (x) as in Grenadier (1996). Next, we summarize the solution in the following

theorem.

Theorem 2 Consider Case C where R ≤ 1. Let x̂L be the unique root of L(x)−KL = F (x)

in the (0, xF ) region for Case C in Proposition 1. Then there exists a pure strategy equilibrium

such that firm i’s equilibrium value Vi(x) equals F (x), where F (x) is given in (13) in the

x < x̂L region, and Vi(x) is given by (53) in the x ≥ x̂L region. Both firms wait in the x < x̂L

region. In the x ∈ [x̂L, xF ) region, firms compete to enter and one firm is randomly selected
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Figure 6: Value functions and entry rate in the symmetric equilibrium in
Case C. Parameter values are R = 0.8, KF = 0.5, r = 4%, µ = 2%, and σ = 10%. The
two cutoff values of the three x regions are x̂L = 0.0112 and xF = 0.0485.

to enter immediately as Leader and the other optimally waits until τ ∗F = inf{s : Xs ≥ xF} to

enter as Follower. In the x ≥ xF region, the two firms in effect simultaneously enter with

one chosen to be Leader randomly.

Graphical Illustration. Next, we use Figure 6 to highlight the key results of Case C. We

set the entry-cost ratio at R = 0.8 < 1. The implied Leader’s entry cost is KL = 0.4.

First, we note that L(x) − KL > F (x) holds in the x > x̂L = 0.0112 region, which

implies that the first-mover advantage dominates and both firms want to enter first. To

select Leader, we need a randomization device while keeping the ex ante rents for the two

firms equal (Fudenberg and Tirole, 1985). The solid (blue) line depicts the value function

Vi(x) given in (53) in the entry region. To the left of the red square is the x < x̂L = 0.0112

region, where both firms wait. Note that x̂L = 0.0112 < xM = 0.0194. That is, the option

value of waiting is eroded as emphasized in Grenadier (1996). Mathematically, we prove

x̂L < xM for R ∈ (0, 1] in Lemma 1.

Second, in the x ≥ xF subregion (recall that xF > x̂L and in our example xF = 0.0485 >

x̂L = 0.0112), Follower immediately enters after Leader is randomly chosen. This is the

“simultaneous entry” region in Panel B of Figure 6. Third, in the x ∈ [x̂L, xF ) subregion,
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the (lucky) Leader collects monopoly rents until Follower enters when Xt reaches xF for the

first time. This is the “sequential entry” region in Panel B of Figure 6.

In sum, V∗(x) is convex in the x < x̂L waiting region, concave in the x ∈ [x̂L, xF )

sequential-entry region, and linear in the x ≥ xF simultaneous-entry region. Note that all

entry decisions are pure strategies. Mathematically, there is no smooth-pasting condition

involved for Case C, as there is no second-mover advantage and firms compete to be the first

mover as soon as Leader’s net payoff L(x)−KL exceeds Follower’s value F (x).

Notation-wise, for pure entry strategies, although we do not explicitly refer to equilibrium

entry rates, we write λ∗(x) =∞ in the entry region and λ∗(x) = 0 in the waiting region.

6 Case B: First- and Second-mover Advantages

In this section, we analyze Case B where 1 < R ≤ RAB. Because the range of R for Case

B lies between that for Case A and for Case C, we expect that both first-mover and second-

mover advantages (the key force behind Case A and for Case C, respectively) influence the

equilibrium outcomes. Indeed, our analysis of Case B confirms the key results in Case A

and Case C and also generates new insights that depend on the interaction between the two

types of advantages in our real-option context.

Next, we summarize the solution for Case B. In Appendix A, we define the equilibrium

involving both pure and mixed strategies.

6.1 Closed-Form Markov Perfect Equilibria

Theorem 3 Consider Case B where 1 < R ≤ RAB. Let x̂L and x̂F be the two roots of

L(x) −KL = F (x) in the (0, xF ) region for Case B in Proposition 1.31 Then there exists a

symmetric Markov perfect equilibrium with the following properties:

1. In the x ≤ x̂F domain, firms only play pure strategies.

(a) In the x < x̂L region, both firms wait and Va(x) = Vb(x) = F (x).

31If R = RAB , the two roots of L(x) − KL = F (x) are the same and moreover equal xM , the entry
threshold of a (hypothetical) monopolist with entry cost KL: x̂L = x̂F = xM .
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(b) In the x ∈ [x̂L, x̂F ] region, firms compete to become Leader with one firm being

randomly selected as Leader and Va(x) = Vb(x) = (L(x)−KL + F (x))/2.

2. In the x > x̂F domain, firms play mixed strategies. Firm value is Va(x) = Vb(x) =

V∗(x), where V∗(x) is the unique solution to the variational inequality (34) in the x > x̂F

domain subject to the boundary conditions: (36) as x→∞ and

V∗(x̂F ) = F (x̂F ). (54)

The equilibrium strategy is λ∗a(x) = λ∗b(x) = λ∗(x), where λ∗(x) > 0 is given by (33) in

the probabilistic entry region:

RE := {x > x̂F : V∗(x) = L(x)−KL} (55)

and λ∗(x) = 0 for any x in the x > x̂F domain but not in RE, i.e., x ∈ (x̂F ,∞) \RE.

Intuitively speaking, the cutoff value x̂F divides the total market demand x into two domains:

(1.) the x ≤ x̂F domain where firms play pure strategies in equilibrium as in Case C and (2.)

the x > x̂F domain where firms play mixed strategies as in Case A. We provide additional

discussions of the key results including Follower’s strategies in Subsection 6.2 using figures.

As for Case A, there are also two subcases for Case B. Let RB1B2 denote the level of the

entry-cost ratio R that solves x̂F = x, where x is given in Lemma 2.32 The two subcases

of Case B are (i) Subcase B1 where RB1B2 < R ≤ RAB and (ii) Subcase B2 where 1 <

R ≤ RB1B2 , as shown in Figure 7. The solution for Subcase B1 features five regions and

the solution for Subcase B2 features four regions. For both subcases, there are two regions

to the left of x̂F : the x < x̂L waiting region and the x ∈ [x̂L, x̂F ] entry region where firms

compete to be Leader and one firm is luckily selected. Theorem 3 summarizes the solutions

in the x < x̂L and x ∈ [x̂L, x̂F ] regions which apply to both subcases. Next, we summarize

the solutions in the x > x̂F domain for the two subcases.

Proposition 4 The solution in the x > x̂F domain for Case B is as follows.

1. Subcase B2 where 1 < R ≤ RB1B2. There are two regions (x ∈ (x̂F , x) and x ≥ x)

where the second-mover advantage dominates. In the x ∈ (x̂F , x) region, both firms

32To be precise, RB1B2
= sup {R ∈ (1, RAB) : x ≤ x̂F }.
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Figure 7: This figure summarizes all cases of the duopoly model solution with
four entry-cost ratio (R = KL/KF ) thresholds, RA1A2 > RAB > RB1B2 > 1: Subcase
A1: R > RA1A2; Subcase A2: RAB < R ≤ RA1A2; Subcase B1: RB1B2 < R ≤ RAB; Subcase
B2: 1 < R ≤ RB1B2; and Case C: R ≤ 1.

wait and firm i’s value is Vi(x) = Θ(x; x̂F , x), where Θ(x; a, b) for any x ∈ [a, b] is

given by (49) and x is given in case (ii) in Lemma 4. In the x ≥ x region, both

firms enter probabilistically at the rate of λ∗(x) > 0 given in (44) and firm i’s value is

Vi(x) = Π(x)/2−KL.

2. Subcase B1 where RB1B2 < R ≤ RAB. There are three regions (x ∈ (x̂F , x], x ∈ (x, x),

and x ≥ x) where the second-mover advantage dominates. In the x ∈ (x̂F , x] region,

both firms enter probabilistically at the rate of λ∗(x) > 0 given in (47), and firm i’s

value is given by Vi(x) = L(x) − KL. In the x ∈ (x, x) region, both firms wait and

firm i’s value is Vi(x) = Θ(x;x, x), where Θ(x; a, b) for any x ∈ [a, b] is given by

(49) and the cutoffs x and x are given in Lemma 2. In the x ≥ x region, both firms

enter probabilistically at the rate of λ∗(x) > 0 given in (44) and firm i’s value is

Vi(x) = Π(x)/2−KL.

6.2 Comparing Subcase B1 vs Subcase B2: Graphical Illustration

For the triplet (r, µ, σ), we use the same (annualized) parameter values as for Case A

in Subsection 4.3: r = 4%, µ = 2%, and σ = 10%. This triplet (r, µ, σ) pins down the

optionality measure β = 1.70, the cutoff value between Case A and Case B, RAB = 1.30,

and the cutoff value for the two subcases of Case B, RB1B2 = 1.19. We choose R = 1.28 ∈

(RB1B2 , RAB) = (1.19, 1.30) to illustrate the economics of Subcase B1 and R = 1.18 ∈

(1, RB1B2) = (1, 1.19) to illustrate the economics of Subcase B2.

In Panels A and B of Figure 8, we plot the solution for Subcase B2. First, by intersecting
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L(x) − KL with F (x) as in Case C, we obtain the two regions on the left: (1.) The x <

x̂L = 0.021 region where firms wait to preserve the option value and (2.) the x ∈ [x̂L, x̂F ] =

[0.021, 0.042] region where firms compete to enter as Leader as discussed earlier. Graphically,

we determine the remaining parts of our model solution by smoothly pasting a curve starting

from the magenta square at (x̂F , F (x̂F )) onto Leader’s net payoff line L(x)−KL. This convex

curve is the equilibrium firm value V∗(x) for x > x̂F where the second-mover advantage

dominates. Moreover, the smooth-pasting condition at x = x divides the x > x̂F domain

into two regions: the x ≥ x region where firms play mixed entry strategies and the (x̂F , x)

region where firms wait to lower entry costs.

In sum, for Subcase B2, firms have four strategies: 1) waiting for the standard option

value reason (subject to entry competition) in the x < x̂L region where λ∗(x) = 0 as shown in

panel B; 2.) competing to enter as Leader due to the first-mover advantage in the x ∈ [x̂L, x̂F ]

region where λ∗(x) = ∞; 3.) waiting with the hope of becoming Follower to lower entry

costs in the x ∈ (x̂F , x) region where λ∗(x) = 0; and 4.) entering probabilistically in the

x ≥ x region. The first two regions resemble the solution for Case C while the latter two

regions resemble the solution in Subcase A1. Note that the threshold, x, dividing the two

regions where the second-mover advantage dominates, depends on the threshold: x̂F . That

is, there is a feedback effect from the first-mover advantage to the second-mover advantage.

Panel B of Figure 8 plots the equilibrium entry rates. We emphasize that in the fourth

region where x ≥ x, firms probabilistically enter at the rate of (x/2 − rKL)/(KL − KF )

as Follower immediately enters after Leader does and therefore Leader enjoys no monopoly

rents. This is the same as in the x ≥ x region of Subcase A1.

Panels C and D of Figure 8 plot the solution for Subcase B1. Compared with Subcase B2

(see Panels A and B of Figure 8), there is a new fifth region for Subcase B1: the probabilistic

entry region where x ∈ (x̂F , x]. Unlike the probabilistic entry region x ≥ x where Follower

immediately enters after Leader and hence Leader enjoys no monopoly rents, Leader enjoys

a (stochastic) period of monopoly rents in the x ∈ (x̂F , x] region.

Also note that Vi(x) is concave in the x ∈ (x̂F , x] region, while convex in the x ≥ x region.

This new (x̂F , x] region arises in Subcase B1 as we increase the second-mover advantage
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measured by R. The intuition is as follows. As R increases for a fixed KF , the [x̂L, x̂F ]

region becomes narrower,33 leaving more room for Leader to earn monopoly rents (as x̂F is

further to the left of Follower’s entry threshold xF ). As a result, a symmetric equilibrium

where firms play mixed entry strategies in the (x̂F , x] region becomes feasible. This explains

why we have a new (fifth) region as we move from Subcase B2 to Subcase B1.
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Figure 8: Value functions and entry rates in the symmetric equilibria of
Subcase B2 (Panels A-B) and Subcase B1(Panels C-D). For both subcases, we set
KF = 0.5, r = 4%, µ = 2%, and σ = 10%, which imply RAB = 1.3, RB1B2 = 1.19, and
xF = 0.0485. We choose R = 1.18 for Subcase B2 and R = 1.28 for Subcase B1. The three
cutoff values defining the four regions in Subcase B2 are x̂L = 0.021, x̂F = 0.042, and
x = 0.062. The four cutoff values defining the five regions in Subcase B1 are x̂L = 0.027,
x̂F = 0.036, x = 0.041, and x = 0.064.

33Lemma 1 shows that x̂L increases and x̂F decreases with R for Case B.
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Panel D plots the equilibrium entry rate λ∗(x) in the (x̂F , x] region, which equals the

forgone monopoly profit (x − rKL) divided by the net benefit of being Follower: F (x) −

(L(x)−KL). Because of embedded optionality, λ∗(x) given in (47) is highly nonlinear.

6.3 Summary of Case B: 1 < R ≤ RAB

Case B is the most general case where both the first-mover and second-mover advantages

are present. Depending on the value of R, the solution fits into Subcase B1 or Subcase B2.

For Subcase B2 where 1 < R ≤ RB1B2 , there are four regions: two disconnected waiting

regions (one to preserve the option value and the other to lower entry costs), the pure entry

strategy region where rents are equalized (Fudenberg and Tirole, 1985), and the probabilistic

entry region where Leader enjoys no monopoly rents in equilibrium.

For Subcase B1 where RB1B2 < R ≤ RAB, we have a new (fifth) region in addition to

the four regions as in Subcase B2. This new region appears between the [x̂L, x̂F ] region

where the first-mover advantage dominates and the second waiting region (x, x) where firms

want to lower their entry costs. In this new region, once a firm becomes Leader, it enjoys

monopoly rents for a stochastic duration as the other firm chooses to wait and therefore Vi(x)

is concave.34 Finally, we emphasize that the interaction between the two types of advantages

in our real-option context fundamentally alters how these five regions are determined and

connected. For example, firms may enter in one of three different ways: pure strategy, prob-

abilistic entry with or without monopoly rents (of stochastic duration). Moreover, firm entry

is not monotonic as market demand increases. In sum, game-theoretic considerations when

both first- and second-mover advantages are present fundamentally enrich the equilibrium

real-option exercising decisions and firm valuation.

7 Pure- vs Mixed-strategy Equilibria: A Comparison

In this section, we first analyze the pure-strategy equilibria and then compare them with

the mixed-strategy equilibrium. We further analyze and quantify the distribution of time to

34The insights for the other four regions are similar to those for the four regions of Subcase B2.
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Leader’s entry τ ∗L − t and value losses for an industry as a whole. We find that the second-

mover advantage fundamentally changes both the qualitative and quantitative implications

of duopoly competition. For brevity, we focus on Subcase A1 where R > RA1A2 .

7.1 Solution for Pure-strategy Equilibria

Consider the pure-strategy equilibrium where firm a is Leader and firm b is Follower.35

Let PL(x) denote Leader’s value in this equilibrium. Firm a solves the following problem:

PL(x) = max
τ≥t

Ext
[
e−r(τ−t)(L(Xτ )−KL)

]
. (56)

Let xL denote firm a’s optimal entry threshold. First, we show that Leader’s value PL(x)

in this pure-strategy equilibrium equals firm value Vi(x) = V∗(x) in the mixed-strategy

equilibrium: PL(x) = V∗(x) where V∗(x) is given in (41)-(42). Second, Leader’s optimal

entry time is: τ ∗L = inf{s ≥ t : Xs ≥ xL}, where Leader’s optimal entry threshold xL equals

the cutoff in the mixed-strategy equilibrium x: xL = x and x is given in (43). Third, Follower

enters at τ ∗F = inf{s ≥ τ ∗L : Xs ≥ xF}, where xF is given in (15). Because x = 2xM > xF ,

Follower enters immediately after Leader does: τ ∗F = τ ∗L+. Hence, Follower’s value, PF (x), is

PF (x) = Ext
[
e−r(τ

∗
L−t)(

Π(Xτ∗L
)

2
−KF )

]
, (57)

where τ ∗L = inf{s ≥ t : Xs ≥ x}. Solving (57), we obtain the following closed-form solutions:

PF (x) = F (x) = Π(x)/2−KF , x ≥ x, (58)

PF (x) = (x/x)β F (x) = (x/x)β (Π(x)/2−KF ), x < x . (59)

Next, we summarize the key results for the pure-strategy equilibria.

Theorem 4 There are two asymmetric pure-strategy equilibria for Subcase A1 where R >

RA1A2. Leader enters at τ ∗L = inf{s ≥ t : Xs ≥ xL} where xL = x as given in (43) and

Leader’s value is PL(x) = V∗(x), where V∗(x) is given in (41)-(42). Because Follower’s entry

threshold xF is lower than Leader’s threshold xL: xL = x > xF , Follower enters immediately

after Leader (τ ∗F = τ ∗L+) and Follower’s value PF (x) is given by (58)-(59).

35This equilibrium is supported by beliefs that firm a is Leader and firm b is Follower with probability
one. Making firm a Follower and firm b Leader, we obtain the other pure-strategy equilibrium.

35



7.2 Comparing Mixed-strategy with Pure-strategy Equilibria

In Figure 9, we plot Leader’s and Follower’s value functions, PL(x) and PF (x), for the

asymmetric pure-strategy equilibria and then compare them with firm i’s value function

Vi(x) = V∗(x) (where i = a, b) for the symmetric mixed-strategy equilibrium.
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(x,F (x))

PL(x) = Vi(x), x < x

PL(x) = Vi(x) =
Π(x)
2 −KL, x ≥ x

PF (x), x < x

PF (x) = F (x) = Π(x)
2 −KF , x ≥ x

F (x), x < xF

F (x) = Π(x)
2 −KF , x ∈ [xF , x)

∆K

Figure 9: Comparing value functions for pure-strategy and mixed-strategy
equilibria for Subcase A1. Leader’s value in a pure-strategy equilibrium, PL(x),
equals firm value in the mixed-strategy equilibrium: PL(x) = Vi(x) = V∗(x), and Follower’s
value in a pure-strategy equilibrium, PF (x), is higher than Leader’s value: PF (x) > PL(x).
Leader’s entry threshold in a pure-strategy equilibrium, xL, equals the cutoff value, x,
between the probabilistic entry region and the waiting region in the mixed-strategy
equilibrium: xL = x = 0.0776, where x is given in (43). Parameter values are R = 1.6,
KF = 0.5, r = 4%, µ = 2%, and σ = 10%, which imply KL = 0.8 and xF = 0.0485.

In a pure-strategy equilibrium, firms are pre-determined to be Leader and Follower due

to beliefs. The solid lines depict the equilibrium pre-entry Leader’s value PL(x) where the

blue segment is increasing and convex in the waiting region (x < xL = x) and the magenta

solid line is Leader’s net linear payoff function Π(x)/2−KL in the entry region (x ≥ xL = x).

Note that PL(x) in pure-strategy equilibria equals firm value Vi(x) in the mixed-strategy

equilibrium. This is because PL(x) and Vi(x) are both determined by a smooth-pasting

condition with the same net payoff functions Π(x)/2−KL. Also, we can show x = 2xM > xF .

Now we turn to Follower’s value PF (x). The solid red line gives PF (x) in the x ≥

xL = x region where both firms are in the market. This is because in equilibrium Follower
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immediately enters after Leader. Also, Follower’s pre-entry value function PF (x) in the

waiting region (x < x) is increasing and convex (the solid green line.) Because Leader’s

entry threshold xL = x is higher than Follower’s unconstrained entry threshold xF given

in (15), Follower’s equilibrium entry threshold thus equals xL = x. Follower’s value in a

pure-strategy equilibrium PF (x) must be lower than Follower’s unconstrained value function

F (x), i.e., PF (x) < F (x) and also the smooth-pasting condition does not hold for PF (x) at

its equilibrium entry threshold xL = x.36 To ease exposition, we use solid lines to draw all

the on-the-equilibrium-path value functions.

As KL > KF , Follower’s value in the pure-strategy equilibria is larger than in the mixed-

strategy equilibrium: PF (x) > Vi(x). The industry’s total market capitalization in a pure-

strategy equilibrium is thus larger than in the mixed-strategy equilibrium for all x > 0.37

Note that in our pure-strategy equilibria, Leader still exercises its entry option too late

compared with the socially optimal level. This is because Leader anticipates no monopoly

rents in equilibrium. This result differs from those in simple war-of-attrition games, where

the pure-strategy equilibria are socially efficient as one firm immediately drops out Levin

(2004). Why are our pure-strategy equilibria socially inefficient? This is because Leader (the

loser in the attrition game) also has a real option. This result highlights the rich predictions

generated by the interaction between the real-option value and the second-mover advantage

in our stochastic entry game.

A key feature of our model is that Leader enters probabilistically in the mixed-strategy

equilibrium even when market demand is very high. We next show that probabilistic entry

substantially lengthens the time it takes for a firm to become Leader: τ ∗L−t. We demonstrate

the economic significance of this result by comparing the distribution of τ ∗L− t in the mixed-

strategy equilibrium with that in pure-strategy equilibria.

36The black dotted and green dashed line segments for F (x) in Figure 9 aid our understanding of the
model’s mechanism and solutions but are off-the-equilibrium path.

37This follows from PL(x) + PF (x)− [Va(x) + Vb(x)] = PF (x)− Vi(x) = PF (x)− PL(x) > 0 , as PL(x) =
Va(x) = Vb(x) and PF (x) > PL(x) (implied by the second-mover advantage).
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7.3 Time to Entry τ ∗L − t in Pure- and Mixed-strategy Equilibria

Definitions. Fix a calendar date T and let Xt = x at t ≤ T . Let Gmixed(t, x;T ) denote the

time-t cumulative distribution function (CDF) that a firm enters as Leader before T in the

mixed-strategy equilibrium. Similarly, let Gpure(t, x;T ) denote the time-t CDF for the same

event in the pure-strategy equilibria. Mathematically, for any x > 0 and time t ∈ [0, T ]:

Gmixed(t, x) = Pxt (τmixed
L − t ≤ T − t) and Gpure(t, x) = Pxt (τ

pure
L − t ≤ T − t) . (60)

In (60), we use superscripts, mixed and pure, to indicate that Leader’s entry time τ ∗L in

the mixed- and pure-strategy equilibria (characterized in Proposition 2 and Theorem 4),

respectively.

For every sample path, Leader enters sooner in a pure-strategy equilibrium than in the

mixed-strategy equilibrium. In both types of equilibria, firm entry is characterized by trigger

strategies and the entry threshold is the same, which implies that entry is only possible in

the x ≥ x region. But the economic forces underpinning the entry strategies in the x ≥ x

region are different: In a pure-strategy equilibrium, Leader enters with probability one but

in contrast both firms enter probabilistically at the rate of λ∗(x) = (x/2− rKL)/∆K in the

mixed-strategy equilibrium. As a result, entry can be much delayed in the mixed-strategy

equilibrium than in the pure-strategy equilibria. Next, we characterize the distribution of

entry timing.

CDF for the Mixed-strategy Equilibrium: Gmixed(t, x;T ). The CDF for time to entry

τ ∗L − t satisfies the following partial differential equation (PDE) for t < T and all x > 0:

Gmixed
t (t, x) + µxGmixed

x (t, x) +
1

2
σ2x2Gmixed

xx (t, x) + 2λ∗(x)(1−Gmixed(t, x)) = 0 , (61)

subject to the boundary conditions: Gmixed(t, 0) = 0, limx→∞G
mixed(t, x) = 1 for t ∈ [0, T ),

and Gmixed(T, x) = 0 for x ∈ (0,∞). The last term in PDE (61) captures the effect of mixed

strategies on the CDF. As either firm can become Leader, Leader is determined at the rate

of 2λ∗(x) and the CDF jumps from Gmixed(t, x) to one at Leader’s entry time τ ∗L = τ ∗a ∧ τ ∗b .

The first three terms in the PDE (61) are the standard terms describing the calendar time

effect, the drift effect of x, and the volatility effect of x on the CDF.
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CDF for the Pure-strategy Equilibria: Gpure(t, x;T ). The CDF for τ ∗L − t in the

pure-strategy equilibria, Gpure(t, x), satisfies the following PDE for t < T and x ∈ [0, x):

Gpure
t (t, x) + µxGpure

x (t, x) +
1

2
σ2x2Gpure

xx (t, x) = 0 , x ∈ [0, x) , (62)

subject to the boundary conditions: Gpure(t, x) = 1, Gpure(t, 0) = 0 for t ∈ [0, T ), and

Gpure(T, x) = 0 for x ∈ [0, x). Solving (62), we obtain the following closed-form solution for

the CDF:

Gpure(t, x) = Φ(d2) + (x/x)(1−2µ/σ2) Φ(d1), (63)

where Φ( · ) is the CDF for the standard normal distribution and

d1 = d2 −
(
2µ/σ2 − 1

)
σ
√
T − t , (64)

d2 =
ln(x/x) + (µ− 1

2
σ2)(T − t)

σ
√
T − t

. (65)

The first term Φ(d2) in (63) is the time-t probability for the XT ≥ x event.38 The second

term is the probability for all the events where XT < x but {Xs; s ∈ (t, T )} exceeds x at

least once at some s ∈ (t, T ). Next, we show that the CDFs of time to entry τ ∗L − t for the

two types of equilibria are not only different qualitatively but also quantitatively.

Comparing CDFs for Mixed-strategy and Pure-strategy Equilibria. Panel A of

Figure 10 plots the CDFs Gmixed(t, x;T ) of τ ∗L− t in the mixed-strategy equilibrium for four

levels of x: 0.08, 0.4, 0.7, 1. When Xt = x = 0.08, firms enter within one year with a small

probability (4.21%). Even within four years, firms only enter with 18.7% probability. In

contrast, in a pure-strategy equilibrium, as Xt = x = 0.08 > x = 0.0776, entry occurs

with probability one. This comparison of CDFs for the mixed-strategy and pure-strategy

equilibria shows that quantitative predictions of the model are very different depending on

which equilibrium we choose. To us, the mixed-strategy equilibrium is more natural and

robust as it is symmetric between the two firms.

In the mixed-strategy equilibrium, entry can take significantly much longer time. For

example, even when market demand is very high, e.g., Xt = x = 1, (recall this is a flow

38The first term is analogous to the conditional (risk-neutral) probability that the option holder receives
a strictly positive payoff at the option maturity date in the Black-Scholes option pricing formula.
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Figure 10: CDFs of time to entry τ ∗L − t in pure-strategy and mixed-strategy
equilibria. Panel A plots the CDF of τ ∗L − t in the mixed-strategy equilibrium for four
levels of market demand: x = 0.08, 0.4, 0.7, and 1. Panel B plots the CDF of τ ∗L − t in the
pure-strategy equilibria for four levels of market demand: x = 0.05, 0.06, 0.07, and 0.08.
Parameter values are KF = 0.5, KL = 0.8, r = 4%, µ = 2%, and σ = 10%.

variable and Follower’s one-time lumpy entry cost is only KF = 0.5. half of one year’s profit

Xt), there is still 4.5% = 1−Gmixed(t, 1; t+ 1) probability that firms have not entered within

one year. This is in sharp contrast with the prediction in a pure-strategy equilibrium where

entry is immediate provided that x ≥ x = 0.0776 as we discussed earlier.

The key takeaway from our analysis of distribution of τ ∗L − t is that the mixed-strategy

equilibrium can be much more inefficient and entry is significantly delayed than the pure-

strategy equilibria, which are also inefficient.

Next we study the effect of competition on welfare by comparing our duopoly competition

model solution to the cooperative duopoly solution.

7.4 Option Value Erosion in Pure- and Mixed-strategy Equilibria

We measure inefficiency by dividing the total market capitalization of the duopoly in-

dustry, Va(x) + Vb(x), by the total market capitalization of the industry in a cooperative

duopoly setting, W (x), and subtracting this ratio from one.39 Let ∆(x) denote this ineffi-

39Mathematically, W (x) = maxτF≥τL≥t Ext
[∫∞
τL
e−r(s−t)Xsds−KLe

−r(τL−t) −KF e
−r(τF−t)

]
.
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ciency measure:

∆(x) = 1− Va(x) + Vb(x)

W (x)
, (66)

where W (x) = M(x) and M(x) is the monopolist’s market value given in (9) for x < xM

and given in (10) for x ≥ xM .
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Figure 11: Industry Value Loss ∆(x). Panels A and B plot ∆(x) for the mixed-
strategy equilibrium and the pure-strategy equilibria, respectively. Both types of equilibria
are socially inefficient. Quantitatively, the mixed-strategy equilibrium is significantly more
inefficient than the pure-strategy equilibria. Parameter values are KF = 0.5, KL = 1, 2 and
3, r = 4%, µ = 2%, and σ = 10%.

In Panels A and B of Figure 11, we plot ∆(x) for mixed-strategy and pure-strategy

equilibria, respectively. First, the industry value loss ∆(x) decreases with x for both types of

equilibria, which is consistent with our intuition. Second, in the mixed-strategy equilibrium

(Panel A), ∆(x) for empirically plausible levels of market demand is very large. For example,

∆(x) = 39% in the x ≤ xM region. Also at the threshold above which firms play mixed

entry strategy, x = x = 2xM , ∆(x) = (β − 1)/(β + 1) = 26%, independent of Leader’s entry

cost KL. (see the three black dots on the dashed black line.)

Third, in the pure-strategy equilibria (Panel B), competition also significantly erodes

firm option value. For example, ∆(x) = 27.7% in the x ≤ xM = 0.0485 region for the case

KL = 1. Note that even for pure-strategy equilibria, entry is inefficiently and significantly

delayed (where the optimal entry threshold increases from xM to x = 2xM).
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Comparing the two panels in Figure 11 makes it clear that the mixed-strategy equilibrium

is much more inefficient than the pure-strategy equilibria. The intuition is as follows. In the

mixed-strategy equilibrium firms play a war-of-attrition game even when market demand

is very high and are only willing to enter probabilistically (with the hope that the other

firm becomes Leader). In contrast, in a pure-strategy equilibrium, there is no uncertainty

which firm is Leader. For brevity, we do not analyze value losses for other cases, which

have even richer economics due to the interaction between the first-mover and second-mover

advantages in a standard real-option framework.

In sum, when the second-mover advantage is the dominating force, e.g., Subcase A1 of

our model, the value loss for the industry as a whole is very large for both types of equilibria,

especially in the mixed-strategy equilibrium due to excessively delayed entry. This is in sharp

contrast with the predictions in Grenadier (1996) where firms in equilibrium make preemptive

moves and enter sooner than a monopolist. Of course, in our general case encompassing both

first- and second-mover advantages, firms exercise their entry option either too soon or too

late depending on x in a nonlinear and non-monotonic way. We leave these analyses out due

to space considerations.

8 Conclusion

In some industries, the second mover faces a lower entry cost and/or has a more efficient

production technology than the first mover. We incorporate the second-mover advantage

into the duopoly entry game model of Grenadier (1996), where firms trade off the first-mover

advantage against the classic option value of waiting (McDonald and Siegel, 1986; Dixit and

Pindyck, 1994). Our model solution critically depends on two measures: the optionality

measure (β) as in the classic real-option models and the entry-cost ratio (R = KL/KF ),

which measures the second-mover advantage. Depending on the values of these two measures

(β and R), our closed-form solution fits into one of the five subcases.

Our general model solution (Subcase B1) features five regions, defined by four endogenous

cutoff values (x̂L, x̂F , x, x) in ascending order. In addition to the option-value of waiting

region where x ∈ (0, x̂L) and the competing-to-enter region where x ∈ [x̂L, x̂F ] (due to the
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first-move advantage) as in Grenadier (1996), there are three new regions in the x > x̂F

domain where the second-mover advantage dominates: 1.) in the x ∈ (x̂F , x] region, firms

enter probabilistically and Leader earns monopoly rents until Follower enters; 2.) in the

x ≥ x region, firms enter probabilistically with no equilibrium monopoly rents for Leader;

and 3.) in the x ∈ (x, x) region between the two probabilistic entry regions, firms wait.

Our model generates new quantitative and testable predictions. For example, firm entry

is non-monotonic with respect to market demand and can occur either in clusters or se-

quentially. Also in contrast to the classic real-option model’s prediction, a firm’s (pre-entry)

option value can be concave in market demand x and decrease with market volatility in

the probabilistic entry region (with monopoly rents) due to the interactive effect between

imperfect competition and the second-mover advantage. Quantitatively, we find that (a.)

the second-mover advantage significantly erodes the industry’s market capitalization and

(b.) firms significantly delay their entry decisions even when market demand is high, as it is

optimal for firms to play mixed entry strategies, engaging in a war-of-attrition game.

To sharpen the key mechanism of duopoly entry games, we have purposefully chosen a

minimalistic setting. A firm has complete information about its competitor’s cost structure

and type. One important extension that we plan to pursue is to incorporate the effects of

reputation as in Kreps and Wilson (1982), Milgrom and Roberts (1982), and Abreu and Gul

(2000) into our duopoly entry game. Another interesting extension of our model is to grant

the first mover with monopoly rents for some periods to capture industrial policies, e.g.,

patent protection for newly developed drugs. Indeed, a key reason for patent protection is

to encourage firm innovation and entry, consistent with our duopoly model’s excessive entry

delay prediction caused by the second-mover advantage.

Finally, we can generalize our entry game model along several directions, e.g., to al-

low for a richer cost structure (with both fixed and flow operating costs) and/or a more

flexible profit-sharing scheme between Leader and Follower, or to introduce risk premia via

a stochastic discount factor to study the asset pricing applications of competition (Duffie,

2001). Importantly, the second-mover advantage that induces firms to play mixed strategies

and significantly delay firm entry remains a key force in these extensions.
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Appendices

A Definition of Equilibrium for the General Case

Definition 4 A Markov entry strategy for firm i ∈ {a, b} is a pair: ϕi = (Ei, λi(x)), where

Ei ⊆ R+ is a closed set and the entry rate λi(x) is a measurable function from R+\Ei to R+.

Firm i enters the market for sure when Xt ∈ Ei and randomly at an intensity rate of λi(Xt)

when Xt /∈ Ei. A Markov strategy pair (ϕa, ϕb) = {(Ea, λa), (Eb, λb)} is feasible if and only if∫ t
0
λi(Xs)ds < ∞ almost surely for any t < inf{s ≥ 0 : Xs ∈ Ea ∪ Eb}. Let Φ denote the set

of all feasible entry strategies.

Given X0 = x0 > 0 and a feasible Markov strategy pair (ϕa, ϕb) = {(Ea, λa), (Eb, λb)}, the

entry time pair (τa, τb) is determined by the joint distribution:

Px0(τa ≤ ta, τb ≤ tb) =Ex0
[∫

s∈[0,tb]

∫
t∈[0,ta]

dGa(t)dGb(s)

]
=Ex0 [(Ga(ta)−Ga(0))(Gb(tb)−Gb(0))] , ta ≥ 0, tb ≥ 0, (A.1)

where Gi(t) is the conditional distribution of firm i’s entry time τi given {Xs; s ≥ 0}:

Gi(t) = 1−
(
1− 1t≥inf{s≥0:Xs∈Ei}

)
e−

∫ t
0 λi(Xu)du. (A.2)

Definition 5 Let Ji(x;ϕa, ϕb) denote firm i’s value at time t defined in (18) for a given

Xt = x > 0 and a feasible Markov strategy pair (ϕa, ϕb) = {(Ea, λa), (Eb, λb)}. A feasible

entry strategy pair {ϕ∗a, ϕ∗b} forms a Markov perfect equilibrium if for any x > 0, we have

Ja(x;ϕ∗a, ϕ
∗
b) ≥ Ja(x;ϕa, ϕ

∗
b), ∀ϕa = (Ea, λa) s.t. {ϕa, ϕ∗b} ∈ Φ, (A.3)

Jb(x;ϕ∗a, ϕ
∗
b) ≥ Jb(x;ϕ∗a, ϕb), ∀ϕb = (Eb, λb) s.t. {ϕ∗a, ϕb} ∈ Φ. (A.4)

B Some Technical Results

Deriving the Variational Inequality (34) for Case A. The HJB equation (31) and

the inequality Vi(x) ≤ F (x) given in (28) together imply

σ2x2

2
V ′′i (x) + µxV ′i (x)− rVi(x) ≤ 0 .
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Substituting (30) into (31), we obtain

σ2x2

2
V ′′i (x) + µxV ′i (x)− rVi(x) = 0 if L(x)−KL < Vi(x).

Combining the above with L(x) − KL ≤ Vi(x) given in (28), we obtain the variational

inequality (34).

The Expressions of θ1(a, b) and θ2(a, b). Let τab = inf{s ≥ t : Xs ≤ a or Xs ≥ b} for

a given pair (a, b) satisfying 0 < a < b and let Θ(x; a, b) denote the following present value:

Θ(x; a, b) = Ext [e−r(τab−t)(L(Xτab)−KL)], x ∈ [a, b]. (B.1)

We can show that Θ(x; a, b) is given by (49), where θ1(a, b) and θ2(a, b) solve:

θ1a
β + θ2a

γ = L(a)−KL and θ1b
β + θ2b

γ = L(b)−KL.

Solving the above equations yields

θ1(a, b) =
(L(a)−KL)bγ − (L(b)−KL)aγ

aβbγ − aγbβ
and θ2(a, b) =

(L(b)−KL)aβ − (L(a)−KL)bβ

aβbγ − aγbβ
.

(B.2)

Next, we present two lemmas used several times in the main body of the paper.

Lemma 1 We characterize the cutoff values, x̂L and x̂F , as follows.

(i) For R ∈ (1, RAB] (Case B), x̂L and x̂F , the two roots of L(x)−KL = F (x) in Propo-

sition 1, have the following closed-form expressions:

x̂F = η (R) (r − µ)KF and x̂L = η (R) (r − µ)KF , (B.3)

where η(R) and η(R) are given by

η (R) := sup{y > 0 : y − β + 1

β − 1

(
β − 1

2β

)β
yβ = R}, (B.4)

η (R) := inf{y > 0 : y − β + 1

β − 1

(
β − 1

2β

)β
yβ = R}. (B.5)

We can further show: xF > x̂F > xM > x̂L for R ∈ (1, RAB). For the special case

R = RAB, xF > x̂F = xM = x̂L. Finally, lim
R→1+

x̂F = xF .

(ii) For R ∈ (0, 1] (Case C), the equation L(x) − KL = F (x) has only one root in the

x < xF region: x̂L given in (B.3). Finally, x̂L < xM .
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(iii) The root x̂L increases in R ∈ (0, RAB] and the root x̂F decreases in R ∈ (1, RAB].

Lemma 2 For any R ∈ [1, RA1A2), there exists a unique pair of thresholds (x, x) in the

domain (xM , xF )× (2xM ,∞) satisfying40

Θ(x;x, x) = L(x)−KL, Θx(x;x, x) = L′(x), (B.6)

Θ(x;x, x) =
Π(x)

2
−KL, Θx(x;x, x) =

Π′(x)

2
, (B.7)

where Θ(x; a, b), xM , and xF are given by (49), (6), and (15), respectively. Also, x and x

as functions of R are continuously differentiable in R ∈ [1, RA1A2). Moreover, x and x are

given by

x = (1 + u)
β

β − 1
(r − µ)KL and x = (1 + U)

2β

β − 1
(r − µ)KL, (B.8)

where (u, U) is the unique solution pair to the following system of equations in the domain

(0, 2/R− 1)× (0,∞):

U(1 + U)−γ = 2γu(1 + u)−γ, (B.9)

H(U) = 2βH(u)− β

β − 1
Rβ−1, (B.10)

with H(z) =
(1−γ) β

β−1
(1+z)+γ

(β−γ)(1+z)β
. When R = RA1A2, we have x = xM , x = 2xM , and for any

x ∈ [x, x], Θ(x;x, x) = V∗(x) where V∗(x) is given by (41)-(42).

The proofs of Lemmas 1 and 2 are available upon request.

Finally, we determine RB1B2 , the cutoff value of R for the Subcase B1 and Subcase B2.

Determining RB1B2. First, Lemma 2 implies that x is continuous in R ∈ [1, RAB] and

satisfies xM < x < xF for any R ∈ [1, RAB]. Second, Lemma 1 implies that x̂F is continuous

in R ∈ (1, RAB] and satisfies x̂F → xF as R → 1+ and x̂F = xM for R = RAB. Combining

these two results, we conclude: x > x̂F for R = RAB, x < x̂F as R→ 1+, RB1B2 = sup { R ∈

(1, RAB) : x ≤ x̂F} is well-defined, RB1B2 ∈ (1, RAB), and

x > x̂F , if R ∈ (RB1B2 , RAB]. (B.11)

40Recall that in this case, we have xF ≤ 2xM , which implies x > xF .
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C Proofs

We now prove the theorems and propositions in the main text. Let AV (x) denote the

infinitesimal generator operating on a function V (x):

AV (x) =
σ2

2
x2V ′′(x) + µxV ′(x)− rV (x) . (C.1)

Proof of Proposition 1: Let KAB = RABKF . Using (16)-(17) for L(x) and (13)-(14) for

F (x), we can verify KAB = maxx>0 [L(x)− F (x)] . Then, for any x > 0, we have

L(x)−KL − F (x) ≤ max
x>0

[L(x)− F (x)]−KL = KAB −KL = KF (RAB −R) < 0

for R > RAB. We thus have proven Case A of Proposition 1. The proofs of results for Case

B and Case C in Proposition 1 are available upon request. �

Before proving Theorem 1, we introduce the following lemma for the variational-inequality

equation (34) for Case A.

Lemma 3 Let V∗(x) be the solution to the variational-inequality problem (34)-(36) in the

x ≥ 0 region. Let RE denote the probabilistic entry region:

RE := {x > 0 : V∗(x) = L(x)−KL}. (C.2)

(i) For Subcase A1 where R > RA1A2, V∗(x) is given by (41)-(42) and RE = [x,∞),

where x = 2xM .

(ii) For Subcase A2 where RAB < R ≤ RA1A2, V∗(x) is given below:

V∗(x) =

(
x

xM

)β
(L(xM)−KL) , x ∈ [0, xM) , (C.3)

V∗(x) = L(x)−KL, x ∈ [xM , x] , (C.4)

V∗(x) = Θ(x;x, x), x ∈ (x, x) , (C.5)

V∗(x) = L(x)−KL =
Π(x)

2
−KL, x ≥ x , (C.6)

where Θ(x; a, b) is given by (49) and the thresholds, x and x, are given in Lemma 2.

Finally, RE = [xM , x] ∪ [x,∞).

The proof of Lemma 3 is available upon request.
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Proof of Theorem 1: Let f(x) := AV∗(x) for x ≥ 0, where AV is the infinitesimal generator

given in (C.1). Substituting the closed-form expressions for V∗(x) for both Subcase A1 and

Subcase A2 into (C.1)41, we obtain

f(x) = AV∗(x) = λ∗(x)[L(x)−KL − F (x)], x > 0, (C.7)

where λ∗(x) is given by (33) for any x ∈ RE and λ∗(x) = 0 for any x ∈ (0,∞) \ RE. Using

the expression for λ∗(x) given in (33) and L(x) given in (16)-(17), we obtain:

f(x) = 1x∈RE [(rKL − x)1x<xF + (rKL − x/2)1x>xF ]

for any x > 0.

For Subcase A1, using λ∗(x) given by (33) for any x ∈ RE, where RE = [2xM ,∞), we

obtain λ∗(x) = x/2−rKL
KL−KF

. Similarly, for Subcase A2, in the [x,∞) region, we also obtain

λ∗(x) = x/2−rKL
KL−KF

. Therefore, there exist an positive value x′ and a positive constant λ′, such

that λ∗(x) ≥ λ′ > 0 for all x > x′, which further implies:

e−
∫∞
t λ∗(Xs)ds = 0, almost surely. (C.8)

Next, we complete our proof in two steps. First, we show that it is suboptimal for firm

a to deviate from its equilibrium strategy if firm b does not (Step 1).

Step 1: We prove V∗(x) ≥ Ja(x;λa, λ
∗) where (λa, λ

∗) ∈ Φ.

Let τa and τb be firm a’s and b’s stochastic entry time associated with the strategy pair

(λa, λb) = (λa, λ
∗), where λa 6= λ∗. Let τ := min{τa, τb}.

For both Subcase A1 and Subcase A2, V∗(x) is twice continuously differentiable except

at finite points and is globally continuously differentiable (see Lemma 3.) Applying Itô’s

Lemma to e−rsV∗(Xs) for s ∈ [t, τ ] and taking expectations at time t, we obtain the following

expression for V∗(x):

V∗(x) = Ext [e−r(τ−t)V∗(Xτ )]− Ext
[∫ τ

t

e−r(s−t)AV∗(Xs)ds

]
. (C.9)

Recall that V∗(x) satisfies the variational inequality (34), we have V∗(x) ≥ L(x)−KL, ∀x > 0.

41According to Lemma 3, the variational-inequality problem (34)-(36) admits a unique solution, V∗(x),
given by (41)-(42) for Subcase A1 and (C.3)-(C.6) for Subcase A2, respectively.
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Substituting it into the right side of (C.9), we obtain the following inequality:

V∗(x) ≥ Ext [e−r(τ−t)(L(Xτ )−KL)]− Ext [
∫ τ

t

e−r(s−t)AV∗(Xs)ds]. (C.10)

Note that

Ja(x;λa, λ
∗) = Ext

[
e−r(τ−t) [1τa<τb(L(Xτ )−KL) + 1τa>τbF (Xτ )]

]
= Ext [e−r(τ−t)(L(Xτ )−KL)]− Ext

[
1τa>τbe

−r(τ−t)(L(Xτ )−KL − F (Xτ ))
]
,

(C.11)

where the second equality follows from the property: 1τa=τb = 0 almost surely. Using (C.11)

and (C.10), we obtain

Ja(x;λa, λ
∗) ≤ V∗(x) + Ext

[∫ τ

t

e−r(s−t)AV∗(Xs)ds− 1τa>τbe
−r(τ−t)(L(Xτ )−KL − F (Xτ ))

]
.

(C.12)

We can simplify the first term on the right side of (C.12) as follows:

Ext
[∫ τ

t

e−r(s−t)AV∗(Xs)ds

]
=Ext

[∫ τ

t

e−r(s−t)f(Xs)ds

]
=Ext

[∫ ∞
t

∫ τa∧z

t

e−r(s−t)f(Xs)λ
∗(Xz)e

−
∫ z
t λ
∗(Xu)dudsdz

]
=Ext

[∫ τa

t

∫ ∞
s

λ∗(Xz)e
−

∫ z
t λ
∗(Xu)dudze−r(s−t)f(Xs)ds

]
=Ext

[∫ τa

t

e−
∫ s
t (r+λ∗(Xu))duf(Xs)ds

]
=Ext

[∫ τa

t

e−
∫ s
t (r+λ∗(Xu))duλ∗(Xs)[L(Xs)−KL − F (Xs)]ds

]
=Ext

[
1τa>τbe

−r(τb−t)[L(Xτb)−KL − F (Xτb)]
]

(C.13)

using (C.7), Tonelli’s Theorem (to interchange the integration order in the third equality as

f(x) ≤ 0 and λ∗(x) ≥ 0 for any x > 0), integration by parts, and (C.8). Combining (C.12)

and (C.13) yields Ja(x;λa, λ
∗) ≤ V∗(x).

Step 2: We prove V∗(x) = Ja(x;λ∗, λ∗).

Recall that τ ∗a and τ ∗b are firm a’s and b’s stochastic entry time, respectively, associated

with strategy (λa(x), λb(x)) = (λ∗(x), λ∗(x)) and τ ∗ := min{τ ∗a , τ ∗b }. Because λ∗(x) = 0 for

any x ∈ (0,∞) \RE, we have Xτ∗ ∈ RE, which implies V∗(Xτ∗) = L(Xτ∗)−KL. Therefore,

we can see that (C.10)-(C.12) hold with equality if λa, τa, τb and τ therein are set to λ∗, τ ∗a ,

τ ∗b and τ ∗, respectively. We have thus shown V∗(x) = Ja(x;λ∗, λ∗).
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In sum, combining our analyses in Steps 1 and 2, we obtain Ja(x;λ∗, λ∗) ≥ Ja(x;λa, λ
∗).

By symmetry, we also have Jb(x;λ∗, λ∗) ≥ Jb(x;λ∗, λb) for (λ∗, λb) ∈ Φ. �

Proof of Proposition 2: This is implied by Theorem 1 and part (i) in Lemma 3. �

Proof of Proposition 3: This is implied by Theorem 1 and part (ii) in Lemma 3. �

Proof of Theorem 2:

Let τ ∗a = τ ∗b = τ̂ := inf{s ≥ t : Xs ≥ x̂L}. We prove that (τ ∗a , τ
∗
b ) is the equilibrium

strategy pair in three steps.

First, because L(x)−KL ≥ F (x) holds in x ≥ x̂L region, it is optimal for firms to compete

to enter as Leader in this region. Leader is selected randomly via the rent-equalization

principle of Grenadier (1996), which implies Vi(x) = (L(x)−KL + F (x))/2.

Second, we analyze the solution in the x ∈ (0, x̂L) region. As both firms wait in the

(0, x̂L) region and compete to enter only when {Xs; s ≥ 0} exceeds x̂L, firm i’s value is given

by

Vi(x) =Ext
[
e−r(τ̂−t)

L(Xτ̂ )−KL + F (Xτ̂ )

2

]
= Ext

[
e−r(τ̂−t)F (Xτ̂ )

]
= F (x), (C.14)

where the first equality is due to definition (18), the second equality follows from L(x̂L) −

KL = F (x̂L) (see Proposition 1) and Xτ̂ = x̂L, and the last equality follows from the property

that Follower’s present value is a martingale in its pre-entry region.

Third, we show that firms have no incentives to deviate from the strategy pair (τ ∗a , τ
∗
b ).

Suppose firm a chooses its entry time τa, deviating from τ ∗a , and firm b chooses τb = τ ∗b . Let

τ := min{τa, τ ∗b }. Using the definition of Ji(x) given in (18), we obtain

Ja(x) ≤Ext
[
e−r(τ−t)F (Xτ )

]
= F (x) = Va(x), (C.15)

where the inequality in (C.15) follows from 1.) τb = τ̂ and 2.) the property that X(s) ≤ x̂L

and L(Xs)−KL ≤ F (Xs) hold for any s ∈ [t, τ ] (see Proposition 1), the first equality follows

from the property that {F (Xs); s ≥ 0} is a martingale in the pre-entry region Xs ≤ xF and

the second equality follows from (C.14). Therefore, firm a has no incentives to deviate from

τ ∗a . The same analysis holds for firm b. We thus have proven (τ ∗a , τ
∗
b ) is the equilibrium
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strategy pair. �

Before proving Theorem 3, we introduce the following lemma for the variational-inequality

equation (34) for Case B.

Lemma 4 Let V∗(x) be the unique solution to the variational-inequality problem (34) in

the x > x̂F region subject to the boundary conditions (36) and (54). Let Θ(x; a, b) for any

x ∈ [a, b] be given by (49) and let RE denote the probabilistic entry domain defined in (55).

(i) For Subcase B1 where RB1B2 < R ≤ RAB, we have

V∗(x) = L(x)−KL, x ∈ [x̂F , x] , (C.16)

V∗(x) = Θ(x;x, x), x ∈ (x, x) , (C.17)

V∗(x) =
Π(x)

2
−KL, x ≥ x , (C.18)

where the cutoff, x̂F , is given in Lemma 1 and the cutoffs, x and x, are given in Lemma

2. The RE domain is the union of two disconnected regions: RE = (x̂F , x] ∪ [x,∞).

(ii) For Subcase B2 where 1 < R ≤ RB1B2, we have

V∗(x) = Θ(x; x̂F , x), x ∈ [x̂F , x) , (C.19)

V∗(x) =
Π(x)

2
−KL, x ≥ x , (C.20)

where x̂F is given in Lemma 1 and x is the unique solution of the following equation:

Γ(x̂F , y) = F (x̂F ) (C.21)

in the y > 2xM region, where Γ(x, y) for x > 0 and y > 0 is defined as follows:

Γ(x, y) =
1
2
(1− γ)Π(y) + γKL

β − γ

(
x

y

)β
+

1
2
(β − 1)Π(y)− βKL

β − γ

(
x

y

)γ
. (C.22)

Finally, the probabilistic entry region is given by RE = [x,∞).

The proof of Lemma 4 is available upon request.

Proof of Theorem 3: Using Lemma 4 and similar arguments as in Theorems 1 and 2, we

can prove Theorem 3. �

Proof of Proposition 4: This is implied by Theorem 3 and parts (i)-(ii) of Lemma 4. �
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Proof of Theorem 4: We prove that E∗a = [xL,∞) and E∗b = ∅ form an asymmetric pure-

strategy entry equilibrium in two steps.

Step 1: We show that Leader has no incentives to deviate its strategy from E∗a = [xL,∞)

to another strategy Ea.

Let τa = inf{s ≥ t : Xs ∈ Ea}. As E∗b = ∅, to prove Leader has no incentive to deviate, it

is sufficient to prove

Ext
[
e−r(τ

∗
L−t)(L(Xτ∗L

)−KL)
]
≥ Ext

[
e−r(τa−t)(L(Xτa)−KL)

]
. (C.23)

Recall that V∗(x) ∈ C2(R+ \ {x}) ∩ C1(R+). Applying Itô’s Lemma to e−rsV ∗(Xs) for s ∈

[t, τa], we obtain

V∗(x) =Ext [e−r(τa−t)V∗(Xτa)]− Ext
[∫ τa

t

e−r(s−t)AV∗(Xs)ds

]
≥Ext

[
e−r(τa−t)(L(Xτa)−KL)

]
, (C.24)

where the inequality follows from AV∗(x) ≤ 0 and V∗(x) ≥ L(x) − KL (see Lemma 3-(i)).

Also note that when τa = τ ∗L, (C.24) holds with equality. This is because xL = x, AV∗(x) = 0

for x < x, and V∗(x) = L(x)−KL for x ≥ x. Therefore, the inequality given in (C.23) holds.

Step 2: We show that Follower has no incentives to deviate its strategy from E∗b = ∅ to

another strategy Eb.

Using the definition of PF (x) given in (57), we obtain Jb(x; E∗a , E∗b ) = PF (x). Let τ ∗a :=

inf{s ≥ t : Xs ≥ x}, τb := inf{s ≥ t : Xs ∈ Eb}, and τ := min{τ ∗a , τb}. For any x ≥ x, we

conclude from the properties that F (x) ≥ L(x) −KL and F (Xs) is a supermartingale that

Jb(x; E∗a , Eb) ≤ Ext [e−r(τ−t)F (Xτ )] ≤ F (x) = PF (x),

For any x ∈ (0, x), applying Itô’s Lemma to e−rsPF (Xs) where s ∈ [t, τ ], we obtain

PF (x) =Ext [e−r(τ−t)PF (Xτ )] = Ext
[
e−r(τ−t)

(
F (Xτ∗a )1τ∗a≤τb + PF (Xτ )1τ∗a>τb

)]
≥Ext

[
e−r(τ−t)

(
F (Xτ∗a )1τ∗a≤τb + (L(Xτ )−KL)1τ∗a>τb

)]
≥ Jb(x; Ea, E∗b ),

where the second equality uses Xτ∗a ≥ x and PF (x) = F (x) for all x ≥ x, the first inequality

follows from Xτ ≤ x and PF (x) ≥ L(x)−KL for any x ≤ x, and the last inequality uses the

result: F (x) ≥ L(x)−KL for any x > 0. �
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