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ABSTRACT

Do generative Al models as epitomized and popularized by large language models
(LLMs) exhibit systematic behavioral biases, especially in economic and financial de-
cisions? If so, how can we mitigate these biases? Following the cognitive psychology
literature and the experimental economics studies, we conduct the most comprehen-
sive set of experiments to date—originally designed to document human biases—on
prominent LLM families with variations in model version and parameter scale. We doc-
ument systematic behavioral biases exhibited by LLMs. For experiments concerning
the psychology of beliefs, LLM responses become more rational as the models become
more advanced or larger; for experiments concerning the psychology of preferences,
even the most advanced large-scale models frequently generate irrational and human-
like responses. Further exploring various methods for correcting these behavioral biases
reveals that prompting LLMs to behave as rational investors who make decisions ac-

cording to the Expected Utility framework seems the most effective.
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1. Introduction

Artificial intelligence (AI), especially generative large language models (LLMs), is becoming in-
creasingly essential in daily work and general economic activities. For example, banks and FinTech
firms are integrating generative Al (GenAl) technologies into operations management, customer
service, financial advice, and risk assessment and management (Vidal, 2023; Tomlinson, Laughridge,
and Dockar, 2024). Researchers are investigating the potential for LLMs to enhance experimenta-
tion that studies human behavior (Charness, Jabarian, and List, 2023; Korinek, 2023; Bail, 2024).
However, little is known about how Al algorithms and agents behave systematically, especially in
economic and financial decisions, let alone whether their behavior closely resembles that of humans.
Understanding the “behavioral economics” of Al—potentially a new intelligent life form (Tegmark,
2017)—starting with LLMs is urgent and crucial for assessing and improving the technology’s util-
ity, safety, and appropriateness.

Recent studies have started to examine whether LL.Ms exhibit specific biases in decision making,
with a focus on the behavior of ChatGPT.! Our paper not only adds to these studies but also aims
to establish benchmark results for the new field of behavioral economics of Al: we conduct the
most comprehensive set of experiments to date, originally designed to document human biases, but
now applied to investigate the biases of multiple prominent families of LLMs; we systematically
compare LLM responses with both rational responses and human responses; and we explore methods
for correcting their biases. An important goal of our paper is to develop a public database of
experimental questions for the ongoing evaluation of behavioral biases in various LLMs.

We begin by exploring two broad approaches for conducting experiments that allow us to
document the behavioral biases of LLMs. First, we draw on the cognitive psychology literature,
originated by Ellsberg (1961) and Kahneman and Tversky (1973, 1979), that uses carefully designed
experimental questions to assess the psychological biases in humans. From this literature, we
select a comprehensive set of experiments, covering both questions that study the psychology of
preferences and questions that study the psychology of beliefs. And our choice of questions ensures

the inclusion of those used to document the psychological biases that are first-order important

'For example, ChatGPT’s behavior has been examined in both individual decision-making settings (Chen et al.,
2023; Ma, Zhang, and Saunders, 2023; Chen et al., 2024) and game-theoretic settings (Bauer et al., 2023; Mei et al.,
2024; Fan et al., 2024; Brookins and DeBacker, 2024).



in financial markets.?

For each question, we design a prompt that is applicable to LLMs, hence
allowing us to elicit responses from these models and analyze their behavior. Next, we turn to the
experimental economics literature, which, compared to the cognitive psychology literature, includes
experimental tasks that are more closely tied to economic and financial settings. We adapt these
tasks for LLMs to investigate the behavioral biases they exhibit in financial decision making.

With the experimental questions at hand, we collect responses through an application pro-
gramming interface (API) from four prominent families of LLMs: OpenAI’s ChatGPT, Anthropic
Claude, Google Gemini, and Meta Llama.? For each family of LLMs, we consider two variations.
First, we examine an advanced version of the model alongside an older version; this allows us to
study the time-series variation in the model’s degree of behavioral biases. Second, for the advanced
model, we compare one version with a large parameter scale to another with a smaller scale; this
allows us to study the cross-sectional variation in the model’s degree of behavioral biases.

Analyzing the responses from the LLMs gives rise to five observations. First, when asked
questions from the cognitive psychology literature that document biases in beliefs, the LLMs’
answers exhibit a clear pattern: as we progress to more advanced models or those with a larger
parameter scale, the responses become increasingly rational. For example, Gemini 1.5 Pro, a highly
advanced large-scale LLM, answers ten out of ten belief-based questions correctly. In comparison,
Gemini 1.5 Flash, another advanced but smaller model, answers five out of the ten questions
correctly, while Gemini 1.0 Pro, an older version, answers only two out of the ten questions correctly.
Overall, three out of the four advanced large-scale LLMs we examine—GPT-4, Claude 3 Opus, and
Gemini 1.5 Pro—produce by and large rational answers to belief-based questions.

Second, when asked questions from the cognitive psychology literature that document biases in
preferences, the LLMs’ answers exhibit the opposite pattern: for models that are more advanced
or with a larger parameter scale, the responses become increasingly human-like and they are not
rational according to the Expected Utility framework. For example, Claude 3 Opus, an advanced
large-scale LLM, answers four out of six preference-based questions in a way that is consistent with
human responses. In comparison, Claude 3 Haiku, another advanced model but with a smaller

scale, gives human-like answers to three out of the six questions, while Claude 2, an older version,

2Barberis (2018) argues that prospect theory preferences, overextrapolation, and overconfidence are the three main
psychological biases that drive investor behavior, firm behavior, and asset prices in financial markets.
3They are also the extant LLMs when we started our study in 2023.



gives human-like answers only to one out of the six questions.

Third, we observe substantial heterogeneity in LLM responses when comparing responses across
the four different families of LLMs. For belief-based questions, responses from Meta Llama are less
rational and more human-like compared to those from ChatGPT, while the responses from An-
thropic Claude or Google Gemini are by and large similar to those from ChatGPT. For preference-
based questions, responses from Gemini are less rational and more human-like compared to those
from GPT, while the responses from Claude or Llama are by and large similar to those from GPT.

Fourth, we examine the LLMs’ responses to questions from experimental economics that doc-
ument biases in investor beliefs. Specifically, we follow the recent work of Afrouzi et al. (2023)
by asking the LLMs to first observe a sequence of past realizations of a random variable and then
forecast its future realizations; the time-series evolution of this random variable is governed by
an autoregressive process. We show that, for the advanced small-scale LLMs—GPT-40, Claude
3 Haiku, and Gemini 1.5 Flash—their forecasts are irrational and human-like: they perceive an
autoregressive process that is more persistent than the true process. Interestingly, compared to
these small-scale LLMs, the larger-scale models—GPT-4, Claude 3 Opus, and Gemini 1.5 Pro—
generate forecasts that are more rational: their perceived persistence of the autoregressive process
is similar to the true persistence.* This finding suggests that, for belief-based questions from both
the cognitive psychology literature and the experimental economics studies, the LLMs’ responses
become more rational as we progress from small-scale models to larger-scale ones.

Finally, we explore three methods for correcting the observed behavioral biases. Among these
methods, one is effective while the other two are not. The effective method involves a brief role-
priming instruction that asks a LLM to think of itself as a rational investor who makes decisions
using the Expected Utility framework; such an instruction is provided prior to the LLM answering
any question. We find that, relative to the baseline results, adding such a role-priming instruction
makes the LLM responses more rational and less human-like, for both the preference-based questions
and the belief-based questions. The other two methods involve combining the brief sentence that

primes a LLM to be a rational investor with the provision of additional bias-reducing information.

4For the questions designed in Afrouzi et al. (2023), eliciting responses from LLMs requires providing the models
with graphical inputs—figures that display a sequence of past realizations of a random variable. Currently, six out of
the twelve LLMs we examine do not support graphical inputs. As such, we do not run the questions on these LLMs.
See Section 2.3 for a detailed discussion.



These two methods are ineffective in reducing biases, suggesting that information overload might
hinder a LLM’s ability to give rational responses.

The five observations stated above are descriptive, albeit informative. Although a full under-
standing of the underlying mechanisms is beyond the scope of the paper, two conjectures are worth
noting. First, why do more advanced or larger-scale models become more human-like when re-
sponding to preference-based questions? We speculate this is in part due to the fact that advanced
and large-scale LLMs are increasingly based on Reinforcement Learning from Human Feedback
(RLHF), a training process that aligns the underlying model with human preferences as reflected
in human feedback (Stiennon et al., 2020). Second, why do more advanced or larger-scale models
become more rational when responding to belief-based questions? We conjecture this is in part
due to the fact that the larger training data and greater computational power of advanced and
large-scale LLMs enable these models to better identify ground truth in statistics on which they
base their responses to belief-based questions. Studying these conjectures may inform future LLM

designs.

Literature. Over the past five decades, the cognitive psychology literature (Ellsberg, 1961; Kah-
neman and Tversky, 1973, 1979; Tversky and Kahneman, 1981; Rapoport and Budescu, 1992,
1997; Barberis and Thaler, 2003) and the experimental economics literature (Lian, Ma, and Wang,
2018; Bose et al., 2022; Afrouzi et al., 2023) have systematically documented behavioral biases
exhibited by human participants. Correspondingly, a strand of research aims at developing and
understanding methods that help debias human participants (Choi et al., 2004; Thaler and Sun-
stein, 2008; DellaVigna and Linos, 2022). We expand the boundaries of these research fields by
moving beyond understanding human behavior to study a new field of behavioral economics of Al.
Doing so is important for addressing two fundamental issues: (i) the rapid advancement of GenAl
has led researchers and innovators to increasingly use LLMs as a tool to better understand human
behavior, yet the reliability of this tool has not been carefully studied; and (ii) Al algorithms and
agents are increasingly being deployed for various tasks in place of humans, yet their performance
remains largely unknown, causing challenges in design efficiency and risk management.

Regarding (i), several studies discuss the potential of GenAl in advancing social science research,

highlighting its ability to enhance research design, experimentation, data analysis, as well as agent-



based modeling of complex activities (Charness, Jabarian, and List, 2023; Korinek, 2023; Bail,
2024). These studies largely assume that LLMs function as neutral research tools, implicitly treat-
ing their responses as unbiased. However, our paper challenges this assumption: we systematically
study the behavior of LLMs by leveraging the knowledge from the cognitive psychology litera-
ture and the experimental economics studies, and we document the behavioral biases exhibited by
LLMs——some human-like, others unique to GenAl. Understanding these biases is critical for eval-
uating GenAl’s role in studying human behavior, as they may affect the reliability of LLM-based
experiments and simulations. Moreover, understanding the behavior of Al agents is helpful for
addressing (ii), as the insights can guide the ways in which societies utilize Al technologies while
controlling their risks.

Along this line, a new strand of research examines LLMs’ performance for tasks previously
assigned to humans. Chen et al. (2023) find that, in multiple domains of individual decision mak-
ing, GPT-3.5 Turbo exhibits a higher degree of economic rationality and a lower degree of choice
heterogeneity compared to human participants. Mei et al. (2024) show that GPT-4 exhibits behav-
ioral traits in games that are similar to those from typical human participants. Chen et al. (2025)
document that, when forecasting future returns of individual stocks, LLMs manifest biased beliefs
that are commonly observed among human participants. Bowen et al. (2025) document that, in
mortgage underwriting, loan approvals and denials recommended by LLMs exhibit strong racial
biases, although prompt-based instructions that explicitly require unbiased decisions are successful
in reducing these biases. And Ouyang, Yun, and Zheng (2024) study how risk preferences of LLMs
in financial settings can be modulated by techniques that are designed to align LLM behavior with
human ethical standards. These studies suggest that LLM behavior is sometimes similar to human
behavior, but not always, and is sensitive to prompt framing, training data, and model architecture.

Compared to the studies mentioned above and the broader literature that analyzes LLM per-
formance or algorithmic biases, our work is more systematic and comprehensive in several ways.
First, prior studies focus on specific cases, i.e., either a single LLM—typically a version of GPT—
or isolated aspects of LLM behavior, such as a concrete rationality measure or a specific type of
behavioral bias. By contrast, our paper systematically documents behavioral biases across multiple

prominent LLM families; and within each family, we explore both cross-sectional and time-series



variations in LLM responses.” When documenting biases, we draw on both the cognitive psychol-
ogy literature and the experimental economics literature, and we cover both experimental questions
that study the psychology of preferences and experimental questions that study the psychology of
beliefs.® Our exploration of debiasing methods is also more comprehensive: we compare different
methods and propose new ones, with relevance for practical interventions that aim at reducing
biases in real-world settings. Overall, our work lays the foundation for a comprehensive documen-
tation of LLMs’ behavioral biases and a systematic exploration of debiasing methods, adding to
the nascent literature that calls for LLM evaluations.” Finally, we are among the first to advocate
treating behavioral economics of Al as a new research field and treating GenAl agents as a new
species.

The rest of the paper proceeds as follows. Section 2 discusses the experimental design. Sec-
tion 3 presents our main results on LLMs’ responses to preference-based and belief-based questions.
Section 4 explore the methods that aim at correcting the observed behavioral biases of LLMs, and

Section 5 concludes.

2. Experimental Design

This section describes the experimental design. First, we discuss the selection of questions
that study either the psychology of preferences or the psychology of beliefs. Next, we discuss the
selection of LLMs. Finally, we discuss our design of API prompts that allow us to systematically

collect answers to the experimental questions from the LLMs.

2.1.  Section of Ezxperimental Questions

Traditional theories in economics and finance posit that economic agents make rational decisions.

Here, rationality contains two components. The first component is rational preferences, namely that

®Our work is contemporaneous to the above studies of Chen et al. (2023), Mei et al. (2024), Ouyang et al.
(2024), Chen et al. (2025), and Bowen et al. (2025). Nonetheless, we needed a longer data sample that allows us to
study the time-series variation in LLM responses.

50ur approach is consistent with the one advocated in Binz and Schulz (2023) and Shiffrin and Mitchell (2023):
treating a LLM as a subject in a psychology experiment and studying its responses can be helpful for understanding
the LLM’s mechanisms of reasoning and decision making.

"The recent work by Vafa, Rambachan, and Mullainathan (2024) finds that many LLMs, in particular the more
capable models such as GPT-4, perform poorly on tasks that humans expect them to perform well; this discrepancy
points to the necessity of systematic evaluations of LLMs. See Chang et al. (2024) for an extensive review of LLM
evaluations across multiple domains.



agents make decisions according to the Expected Utility framework proposed by Von Neumann and
Morgenstern (1944). The second component is rational beliefs, namely that agents incorporate new
information into their beliefs according to Bayes’ law.

While the traditional theories serve as a rational benchmark for economic studies, decades of
research from cognitive psychology casts doubt on such theories. Specifically, through carefully
designed experimental questions, the psychology literature has documented actual behaviors of
human participants that systematically deviate from rational decision making. To illustrate an
example, consider the following question posed to human participants by Kahneman and Tversky

(1979):

“In addition to whatever you own, you have been given 1,000. You are now asked to choose

between A: (1,000, .50), and B: (500).”

Here, (1,000, .50) means winning $1,000 with 0.5 probability and winning zero with 0.5 probability,
and (500) means winning $500 with certainty. For this question, the majority of participants would

choose option B. Then, the same set of participants are asked a separate question:

“In addition to whatever you own, you have been given 2,000. You are now asked to choose

between C: (~1,000, .50), and D: (-500).”

Here, (—1,000, .50) means losing $1,000 with 0.5 probability and losing zero with 0.5 probability,
and (—500) means losing $500 with certainty. For this question, the majority of participants would
choose option C.

It is easy to check that, in terms of monetary payoff, option A from the first question is equivalent
to option C from the second question, and option B from the first question is equivalent to option D
from the second question. As such, the same participant choosing option B from the first question
and then option C from the second question is a clear violation of the Expected Utility framework.

Through experimental questions such as the one described above, cognitive psychologists have
carefully examined human psychology of preferences—including both risk preferences and time
preferences—and human psychology of beliefs, and they have documented a comprehensive set of
behavioral biases. In this paper, we ask LLMs to answer the same experimental questions and

collect their responses through a prompt design that we describe in Section 2.3; in other words,



we replace a human participant by a LLM. This approach allows us to systematically document
the behavioral biases of LLMs and compare LLM behavior with human behavior. Table 1 below

provides a summary of all the experimental questions that our paper currently studies.

[Place Table 1 about here]

Two observations are worth noting. First, for each question in Table 1, a LLM response can be
classified into one of three categories: a rational response that is derived from rational preferences
and rational beliefs, a human-like (irrational) response that corresponds to the response from the
majority of human participants, and a non-human-like response that is neither rational nor human-
like. Second, Table 1 covers the experimental questions that are designed to document prospect
theory preferences (questions 1 to 3), overextrapolation (questions 7 to 10), and overconfidence
(questions 15 and 16). These three psychological biases, according to Barberis (2018), are the
“big three” biases that are of first-order importance when making sense of investor behavior, firm
behavior, and asset prices observed in financial markets.

Compared to the cognitive psychology literature, a more recent literature from experimental
economics studies human behavior by designing and conducting experimental tasks that are more
closely tied to real-world economic and financial settings. To broaden the scope of our analysis, we
also collect LLM responses to a set of recent experimental tasks from this literature. In particular,
we follow Afrouzi et al. (2023) by asking the LLMs to first observe a sequence of past realizations
of a random variable z; and then forecast its future realizations; the time-series evolution of this

random variable is governed by the following autoregressive process:

Ty = [+ PT_1 + €4, (1)

where p measures the persistence of the process and ¢; is an i.i.d. Gaussian random variable.

As in Afrouzi et al. (2023), we consider three experiments. In the baseline experiment, a LLM
is endowed with the knowledge that the evolution of z; is a “stable random process.” The LLM
first observes 40 past realizations of z;, ranging from x; to x40, and is then asked, at time 40, to
forecast the next two outcomes, x41 and x40; subsequently, it observes the realization of x4 and is

then asked, at time 41, to forecast the next two outcomes, x40 and x43; such a procedure continues



until the LLM observes 44 past realizations of x; and is then asked, at time 44, to forecast the
next two outcomes, z45 and x45. The second and third experiments each serve as a variant to the
baseline experiment. The second experiment is identical to the baseline experiment, except that,
at each time ¢, the LLM is asked to forecast x;+1 and x:.5; for example, at time 40, the LLM first
observes 40 past realizations of x;, ranging from x1 to x40, and is then asked to forecast x41 and
x45. The third experiment is identical to the baseline experiment, except that the LLM is now
endowed with more detailed knowledge that the evolution of z; is “a fixed and stationary AR(1)
process: Ty = [+ pTy-1 + €, with a given p, a given p in the range [0,1], and an ¢; that is an i.i.d.
random shock.”

For each of the three experiments and for a wide range of values of p, we compare p with p,
the “perceived” autoregressive coefficient implied by LLMs’ forecasts. This comparison allows us

to document biases in LLM beliefs through experiments that mimic real-world forecasting tasks.

2.2.  Selection of LLMs

We select twelve LLMs from four of the most prominent families of Generative Pre-trained
Transformers (GPT): ChatGPT, Anthropic Claude, Google Gemini, and Meta Llama. Specifically,
for each of the four families, we select three models: a benchmark model defined as the most
recent and best-performing one available at the time of the writing, its smaller-scale version, and
its predecessor. For ChatGPT, we use GPT-4 as the benchmark, GPT-40 as its smaller-scale
version, and GPT-3.5 Turbo as its predecessor. For Anthropic Claude, we use Claude 3 Opus as
the benchmark, Claude 3 Haiku as its smaller-scale version, and Claude 2 as its predecessor. For
Google Gemini, we use Gemini 1.5 Pro as the benchmark, Gemini 1.5 Flash as its smaller-scale
version, and Gemini 1.0 Pro as its predecessor. Finally, for Meta Llama, we use Llama 3 70B as the
benchmark, Llama 3 8B as its smaller-scale version, and Llama 2 70B as its predecessor. Table 2

presents all the LLMs we examine.
[Place Table 2 about here]

These twelve models differ both across and within families. In particular, we note important
differences along the three following dimensions: size of the training data, design of the model

architecture, and the reinforcement learning algorithm. In terms of the training data, newer models



are trained on more data compared to older models; for example, Meta Llama explains that the
training dataset of Llama 3 consists of over 15 trillion tokens, while Llama 2 consists of 1.8 trillion
tokens only.®”

In terms of model architecture, we further note three differences across models. First, model
specifics such as the context window—the maximum number of words that a model can take as
input—and the number of parameters in the model architecture vary significantly from one model to
another. For example, among the older generation of models, the largest is Claude 2, which has an
estimate of 200 billion parameters and a context window of approximately 100,000 words (tokens),
whereas the smallest is Llama 2 with 70 billion parameters and a context window of approximately
4,000 words. Second, within each family, the model architecture has evolved significantly between
the two generations that we consider. In particular, for ChatGPT, Anthropic Claude, and Google
Gemini, the most significant evolution is the transition from a single-transformer architecture to a
multi-transformer mixture-of-experts architecture.'® Third, within each family and each generation,
model architecture can differ between the benchmark model and its smaller-scale version. The
smaller versions are often obtained by applying compression techniques to the benchmark model;
for example, Gemini 1.5 Flash is a distilled version of Gemini 1.5 Pro.!!>!2

In terms of the reinforcement learning algorithm, each model relies on a different implementa-
tion of the Reinforcement Learning from Human Feedback (RLHF) algorithm to align its answers
with human preferences. RLHF was initially implemented by Ouyang et al. (2022) to fine-tune

ChatGPT using human feedback. Today, each family of LLMs uses its proprietary RLHF; for ex-

8For more details, please visit Meta Llama 3 characteristics on Meta Llama at: https://ai.meta.com/blog/meta-
llama-3/.

9For the other three families, although the exact training data are not often disclosed publicly, newer models in
general tend to be trained on more data. Brown et al. (2020) explain that OpenAl used around 500 billion tokens
to train GPT 3.5. While the exact number of tokens used to train GPT-4 is not known, unofficial sources claim that
OpenAl used around 13 trillion tokens to train GPT-4; for more information on GPT-4’s training data, please visit:
https://semianalysis.com/2023/07/10/gpt-4-architecture-infrastructure/.

10Mixture-of-experts architectures use a “router,” otherwise called a gating network, to activate specific experts
for each input token (Shazeer et al., 2017). The sparsity that arises from activating only a fraction of parameters
for each input enables the development of larger models. For example, while GPT-3.5 Turbo uses a single-expert
architecture with 175 billion parameters, unofficial sources suggest that GPT-4 uses a mixture-of-experts architecture
that consists of multiple transformers with approximately 110 billion parameters each for a total of over 1 trillion
parameters.

" Two commonly used compression techniques are: quantization, which reduces parameter precision, and pruning,
which removes less important connections from the neural network.

1211 the case of Meta Llama, the architecture is very similar between Llama 3 8B and Llama 3 70B: the two models
are trained on the same dataset and they use similar architectures. However, Llama 3 8B uses fewer parameters
compared to Llama 3 70B (8 billion versus 70 billion).

10
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ample, Anthropic Claude combines RLHF with a method called Constitutional AI, which aligns
the model behavior with human principles of helpfulness, harmlessness, and honesty (Bai et al.,

2022).

2.3.  Prompt Design

We collect LLM responses to each of our experimental questions through an application pro-
gramming interface (API). The API takes as input a “prompt,” which is a text file submitted to
a LLM in order to receive a response back. Below, we describe the prompt design that allows for
elicitation of desired responses from LLMs.

A proper prompt needs to satisfy two requirements. First, it must instruct the LLMs to provide
standardized responses for subsequent analysis. Second, it must contain questions that are similarly
phrased compared to the original experimental questions used to study human behavior. Given
these two requirements, Fig. 1 provides an example—the prompt we use to elicit LLM responses
to the question that Kahneman and Tversky (1979) design for documenting diminishing sensitivity

as a key element of prospect theory.
[Place Fig. 1 about here]

Fig. 1 shows that a prompt is structured in three parts; this applies to all experimental questions
listed in Table 1. The first part contains a general instruction that asks a LLM to consider specific
experimental scenarios; in Fig. 1, this part starts from “Instructions” and ends with “completely
separate from the other.” The second part contains a code block that instructs the LLM to format
its responses in a standardized JSON format; in Fig. 1, this part starts from “The output should
be” and ends with “ ¢¢¢?.13 The third part is the main element of the prompt. It contains the
precise experimental questions designed by psychologists to study human behavior; in Fig. 1, this
part starts from “Scenario A” and ends with “calculations).” At the end of each question, further
instructions are given to the LLM, to make sure that it provides the set of responses that we elicit.

Two observations are worth noting. First, with our prompt design, a LLM response typically

contains four different parts: choice, confidence, explanation, and reasoning. Here, “choice” refers

13This part of the prompt requires formatting LLM responses as a snippet that contains a JSON object within a
code block. Here, JSON is a widely used format that stores data as key-value pairs. Encapsulating the JSON object
within a code block is to ensure that LLM responses adhere to a pre-specified format.
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to an explicit choice made by the LLM—for example, whether the LLM accepts or turns down a
risky gamble.'* “Confidence” refers to the confidence level the LLM assigns to its choice using a
score between 0 and 1. “Explanation” refers to a brief explanation that the LLM provides to justify
its choice. And “reasoning” asks for choosing between two reasoning types: type “A” corresponds
to reasoning that is based more on intuitive thinking, while type “B” corresponds to reasoning that
is based more on analytical thinking and calculations.'® Second, many experimental questions we
examine document behavioral biases by having the same participant provide responses in different
scenarios; for example, as discussed in Section 2.1, Kahneman and Tversky (1979) document the
diminishing sensitivity element of prospect theory by having the same human participant answer
two different questions—one that frames lottery payoffs as gains and the other that frames lottery
payoffs as losses. Such experimental questions require a “within-subject” design that allows us
to think of a LLM as a participant and elicits its responses in different scenarios. To implement
this design, we combine multiple questions into a single API call; we treat each API call as an
individual participant; and we include in the prompt a sentence that instructs the LLM to “treat
each scenario as completely separate from the other.”!6

The above discussion is concerned with the prompt design that implements experimental ques-
tions from the cognitive psychology literature. We conclude this section by making three obser-
vations about a separate prompt design that implements the Afrouzi et al. (2023) experiments
described in Section 2.1. First, these experiments require not only textual inputs but also graph-
ical inputs: participants are presented with both textual instructions and figures that plot past
realizations of a random variable. To satisfy this requirement, a LLM needs to support graphical
inputs; this leads to the exclusion of six LLM platforms.!” For the remaining LLMs that sup-

port graphical inputs, we follow platform-specific guidelines when uploading figures.'® Second, the

M1nstead of eliciting a “choice” between multiple options, question 10 (regarding “base rate neglect”) and question
12 (regarding “gambler’s fallacy”) ask for an estimate of a probability; question 14 (regarding “anchoring”) asks for
an estimate of a percentage number.

50ur current analysis uses the “choice” part only. We plan to use the other three parts in future iterations of the
paper.

18T, LM responses can be random—asking the same LLM an idential question multiple times can yield varying
responses. As such, we find it plausible to view each API call as an individual participant.

17All three Meta Llama models—Llama 3 70B, Llama 3 8B, and Llama 2 70B—as well as GPT-3.5 Turbo, Claude
2, and Gemini 1.0 Pro do not support graphical inputs.

¥Google Gemini directly processes figures that are uploaded as .jpg files. ChatGPT and Anthropic Claude,
however, require first encoding a binary image input into bytes and then converting the byte output into a regular
UTF-8 string format.
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LLMs do not always provide precise forecasts that we elicit when they are presented with figures;
sometimes, they refuse to respond. To address this issue, we include the following sentences in the
instruction: “For the following question, please provide an estimate to the best of your knowledge.
Please ensure that you always provide a concrete numerical answer when prompted to do so.”
Third and finally, the Afrouzi et al. (2023) experiments require that the same individual makes
multiple rounds of forecasts; each round depends on textual and graphical inputs presented up to
that point in time. To enforce such sequential dependence, we implement a sequence of API calls.
In particular, for each call, we feed the entire conversation history—including all previous prompts

and responses—into the LLM, hence preserving the structure of the original experiments.

3. Behavioral Biases of LLMs

In this section, we document patterns in LLM responses to the experimental questions drawn
from the cognitive psychology literature and the experimental economics studies. We begin with a
baseline analysis of the four highly advanced large-scale LLMs; we treat these models as benchmark
models; and we analyze how they respond to the questions from psychology, with a focus on whether
these models are more likely to produce rational or human-like responses. A central feature of this
analysis is to draw distinction between the LLM responses to preference-based questions and their
responses to belief-based questions. We then explore the heterogeneity in LLM responses across
LLM families, model generations, and parameter scales. Finally, we examine the LLM responses to
questions from the experimental economics tasks that are more closely tied to real-world economic

and financial decision making.

3.1. Baseline Results

This section presents our baseline results. We first describe the procedure for data collection.
We then analyze the responses from the four benchmark models—GPT-4, Claude 3 Opus, Gemini
1.5 Pro, and Llama 3 7T0B—to the sixteen experimental questions drawn from the psychology
literature, as listed in Table 1.

For each question and each model, we collect 100 responses; in other words, for each LLM, we

iterate over each question 100 times. Each iteration consists of an API call submitted to the model,
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whereby the prompt for the specific question is provided as an input along with a key temperature
parameter. This parameter controls the randomness of the model. For our baseline analysis, we
set the temperature parameter to 0.5, the recommended value for most LLM families.'® Note that
setting the temperature parameter to zero results in deterministic outputs, while higher values
increase the randomness in LLM responses.?’

We collect and analyze each LLM response, categorizing it into one of the three groups: rational,
human-like, or other. A response is categorized as rational if a LLM’s choice or estimate aligns
with that of an agent who has rational preferences and rational beliefs; a response is categorized
as human-like if it is irrational but aligns with the most common behavior observed in human
participants from prior psychology research; and a response falls into the category of “other” if
it is neither rational nor human-like. Take the diminishing sensitivity question from Fig. 1 as an
example. A rational response, according to the Expected Utility framework, is to choose option B,
the option that indicates risk aversion, in both Scenario A and Scenario B. Kahneman and Tversky
(1979) show that the majority of human participants choose option B in Scenario A and option A
in Scenario B; if a LLM makes the same choices, we categorize such a response as “human-like.”
If, however, the LLM selects option A in Scenario A and option B in Scenario B or selects option

A in both scenarios, we categorize such a response as “other.”
[Place Fig. 2 and Table 3 about here]

Fig. 2 summarizes the responses obtained from the four benchmark models of GPT-4, Claude
3 Opus, Gemini 1.5 Pro, and Llama 3 70B. For each model, we categorize questions from the
cognitive psychology literature into two groups: preference-based questions (left panel) and belief-
based questions (right panel). The results are presented using bar charts that depict the proportion

of responses categorized as rational (blue), human-like (red), or other (gray). Table 3 provides the

'9The range for the temperature parameter varies across platforms: for ChatGPT and Anthropic Claude, the range
is [0, 1]; for Meta Llama, the range is [0, 5]; finally, the range for Gemini 1.0 Pro is [0, 1] and the range for Gemini
1.5 Pro and Gemini 1.5 Flash is [0, 2].

208pecifically, for the iterative process of generating each word (token) in a response, the LLM first produces a
probability distribution over all possible tokens in its dictionary and then draws the next token from this distribution.
The temperature parameter reshapes the distribution: a higher temperature parameter makes the distribution more
uniform, hence increasing the randomness of the output token. Two other parameters, k and p, also affect the
selection of the output token: top-k sampling restricts the selection to the top-k most probable tokens only; and
top-p sampling retains a subset of the top-k most probable tokens whose cumulative probability, when normalized
using the total probability of the top-k most probable tokens, exceeds the threshold of p. In our analysis, we set k to
its default value of 50 and p to its default value of 0.9.
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same results in tabular form and includes a binomial test for each question, where the null hypothesis
states that the proportion of rational (or human-like) responses is less than or equal to 50%.

Two important observations are worth noting. First, the majority of the LLM responses fall into
either the rational category or the human-like category, with the responses registered as “other” in
just a few cases. Specifically, for GPT-4, “other” responses are observed only in question 3, which
pertains to the probability weighting element of prospect theory. For Claude 3 Opus, “other”
responses are observed in two preference-based questions—question 3 on probability weighting
and question 4 on narrow framing—and two belief-based questions—question 10 on base rate ne-
glect and question 15 on overprecision. For Gemini 1.5 Pro, “other” responses are observed in
one preference-based question only—question 3 on probability weighting. Finally, for Llama 3
70B, “other” responses are observed in one preference-based question—question 3 on probability
weighting—and one belief-based question—question 7 on sample size neglect.

Second, a comparison between the left and right panels of Fig. 2 reveals a clear pattern: the
LLM responses to preference-based questions tend to be more human-like, whereas their responses
to belief-based questions tend to be more rational. Table 3 confirms this result. For a large fraction
of preference-based questions, a binomial test confirms, with a confidence level greater than 99%,
that the LLMs produce human-like responses more than 50% of the time. Specifically, Gemini 1.5
Pro has the majority of responses categorized as human-like in five out of six questions; Claude
3 Opus has the majority of responses categorized as human-like in four out of six questions; and
GPT-4 and Llama 3 70B have the majority of responses categorized as human-like in three out of
six questions. For most belief-based questions, the LLMs produce rational responses more than 50%
of the time. Specifically, Gemini 1.5 Pro has the majority of responses categorized as rational in ten
out of ten questions; both GPT-4 and Claude 3 Opus have the majority of responses categorized as
rational in eight out of ten questions; and Llama 3 70B has the majority of responses categorized

as rational in five out of ten questions.

3.2.  Heterogeneity in LLM Responses

While Section 3.1 documents systematic patterns in LLM responses for the four benchmark
models, we now broaden our analysis to examine a total of twelve models. These include three

versions for each LLM family: (i) the benchmark model that is highly advanced and large-scale, (i7)
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a highly advanced model with a smaller scale, and (7i7) a large-scale model of an older generation.
We begin by examining variations in responses across the four LLM families. Then, controlling
for LLM family fixed effects, we analyze how variations in model generation and parameter scale
influence the patterns in LLM responses. As in Section 3.1, we conduct separate analyses for the

six preference-based questions and the ten belief-based questions.

3.2.1. Heterogeneity across LLM families

We first examine variations in LLM response across the four LLM families. Fig. 2 provides
preliminary graphical evidence of variations among the four benchmark models. For the preference-
based questions, Gemini 1.5 Pro, relative to GPT-4, produces a lower share of rational responses
and a higher share of human-like responses. For belief-based questions, Llama 3 70B, relative to
GPT-4, produces a lower share of rational responses and a higher share of human-like responses.

To formally examine the heterogeneity in responses across the four LLM families, we estimate

a series of probit regressions using all twelve LLMs. The regression specification is:

Pr(Yigr = 1) = ®(a + p1 - Claude; + B2 - Gemvini; + B3 - Llama; + €q,) (2)

for model 7, question ¢, and iteration k, where ®(-) denotes the cumulative distribution function
of a standard Normal random variable. For studying how variation in LLM families affects the
likelihood of observing a rational response, Yjqk, the dependent variable in (2), is a binary variable
that takes the value of one if model i’s response to question ¢ in iteration & is classified as rational,
and zero otherwise. For studying how variation in LLM families affects the likelihood of observing
a human-like response, Yjq; is a binary variable that takes the value of one if model i’s response
to question ¢ in iteration k is classified as human-like, and zero otherwise. For both cases, the
independent variables—Claude;, Gemini;, and Llama;—are indicators for the three LLM families
of Claude, Gemini, and Llama, with the LLM family of GPT serving as the omitted baseline

category.
[Place Table 4 about here]

Table 4 reports the marginal effects from the above probit regressions, where each reported
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coefficient represents the change in the predicted probability of observing an outcome Y;4 of one
that is associated with changing the LLM from GPT to each of Claude, Gemini, and Llama.
Consistent with the heterogeneity observed from Fig. 2 across the LLM families, for the preference-
based questions, Gemini models are 22.9% less likely to produce a rational response, compared to
GPT models; this effect is significant at the 1% level. At the same time, Gemini models are 16.7%
more likely to produce a human-like response, compared to GPT models; this effect is significant
at the 5% level. Moreover, the responses from Claude or Llama models to the preference-based
questions are by and large similar to those from GPT models.

Again, consistent with the heterogeneity observed from Fig. 2 across the LLM families, for the
belief-based questions, Llama models are 25.0% less likely to produce a rational response, compared
to GPT models; this effect is significant at the 5% level. Llama models are 21.0% more likely to
produce a human-like response, compared to GPT models; and this effect is also significant at
the 5% level. Finally, the responses from Claude or Gemini models to the belief-based questions
are by and large similar to those from GPT models. Taken together, the findings from Table 4
highlight meaningful LLM family-level differences in responses to experimental questions drawn
from cognitive psychology. As such, we control for LLM family fixed effects in our subsequent

analyses of heterogeneity across model generations and parameter scales.

3.2.2.  Heterogeneity across model generations and parameter scales

We next examine variations in LLM responses across model generations and parameter scales.
The evolutions of model generation and parameter scale capture the key aspects of LLM develop-
ment, including improvements of model architectures and advancements of reinforcement learning
algorithms. To study the effect of model generation on LLM responses, we compare advanced mod-
els with older models of similar scale. To study the effect of parameter scale on LLM responses, we
compare large-scale models with smaller-scale ones of the same generation. For both comparisons,

we control for LLM family fixed effects.

[Place Fig. 3 about here]

We begin by presenting graphical evidence on the differences in LLM responses across model

generations and parameter scales. Fig. 3 displays radar charts that summarize the number of
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preference-based questions and the number of belief-based questions for which each model produces
predominantly rational or human-like responses. These visualizations correspond to the underlying
data reported in Table 3 and offer a compact view of cross-model variations. For example, Claude
3 Opus does not produce predominantly rational responses for any preference-based question, while
Claude 3 Haiku produces predominantly rational responses for three out of six preference-based
questions.

The radar charts in Fig. 3 reveal a striking contrast between the LLM responses to the preference-
based questions and their responses to the belief-based questions. For the preference-based ques-
tions, the left panel of Fig. 3 shows that, as the LLMs become more advanced or larger in parameter
scale, the number of questions that receive predominantly rational responses tends to decrease,
while the number of questions that receive predominantly human-like responses increases. For
the belief-based questions, the right panel of Fig. 3 shows the opposite pattern: more advanced
and larger-scale models tend to generate predominantly rational responses for a large number of
questions.

To formally examine the heterogeneity in LLM responses across model generations and param-
eter scales, we estimate a series of probit regressions. In particular, we conduct two analyses. First,
to study the effect of model generation on LLM responses, we restrict our sample to the LLM re-
sponses from either the four advanced large-scale models or the four older models. The regression
specification is:

Pr(Yigr = 1) = ®(a + B - Advanced; + ¢ + €;q1) (3)

for model i, question ¢, and iteration k. For studying the effect of a change in model generation
on the likelihood of observing a rational response, Yj4 is a binary variable that takes the value of
one if model i’s response to question ¢ in iteration k is classified as rational, and zero otherwise.
For studying the effect of a change in model generation on the likelihood of observing a human-like
response, Yjq is a binary variable that takes the value of one if model i’s response to question ¢
in iteration k is classified as human-like, and zero otherwise. For both cases, the key independent
variable, Advanced;, is an indicator for the four advanced models; moreover, vy captures the LLM
family fixed effects.

Second, to study the effect of parameter scale on LLM responses, we restrict our sample to
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the responses from either the four advanced large-scale models or the four advanced smaller-scale

models. The regression specification is:

Pr(Yigr = 1) = ®(a+ B - LargeScale; + ¢ + €41, (4)

For studying the effect of a change in parameter scale on the likelihood of observing a rational
response, Y4 is a binary variable that takes the value of one if model i’s response to question
q in iteration k is classified as rational, and zero otherwise. For studying the effect of a change
in parameter scale on the likelihood of observing a human-like response, Yj,; is a binary variable
that takes the value of one if model i’s response to question ¢ in iteration k is classified as human-
like, and zero otherwise. The key independent variable, LargeScale;, is an indicator for the four

large-scale models.
[Place Table 5 about here]

Table 5 reports the marginal effects from the above probit regressions, where the reported
coefficients represent the change in the predicted probability of observing an outcome Yj4 of one
that is associated with either moving from an older model to an advanced model or from a smaller-
scale model to a large model. The regression results are by and large consistent with the variations in
LLM responses observed from Fig. 3 across model generations and parameter scales. For preference-
based questions, Columns (1) to (4) in Panel A show that, as the models become more advanced,
their responses are less likely to be categorized as rational and more likely to be categorized as
human-like; Columns (1) to (4) in Panel B shows that, as the models become larger in parameter
scale, the same patterns occur—the models’ responses are less likely to be rational and more likely
to be human-like. Most of the coefficients reported in Columns (1) to (4) are statistically significant;
the only exception is that, as the models become larger, the increase in human-like responses to
the preference-based questions is insignificant.

For belief-based questions, Columns (5) to (8) in Panel A show that the more advanced models
generate responses that are more likely to be categorized as rational and less likely to be categorized
as human-like; Columns (5) to (8) in Panel B shows the same patterns as the models become larger

in parameter scale. All the coefficients reported in Columns (5) to (8) are statistically significant.
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In summary, both Fig. 3 and Table 5 show systematic heterogeneity in LLM responses across
model generations and parameter scales. As we progress to more advanced or larger-scale mod-
els, the LLM responses to preference-based questions become increasingly human-like, while their
responses to belief-based questions become more rational. These opposing patterns highlight the

importance of separately studying preferences and beliefs when evaluating the behavior of LLMs.

3.3.  LLM Responses to Questions from the Afrouzi et al. (2023) Ezxperiments

We now examine the LLM responses to questions from the three Afrouzi et al. (2023) experi-
ments; these experiments are described in Section 2.1 and are labeled “Experiment 1,” “Experiment

2,” and “Experiment 3.” For each of the experiments, we simulate the autoregressive process:

Tt = U+ PTi-1 + €

specified in (1), by setting p, the constant term, to 0 and o, the standard deviation of €, to 20;
these parameter values are taken from Afrouzi et al. (2023). For p, the persistence parameter, we
take six values of 0, 0.2, 0.4, 0.6, 0.8, and 1; and for each value, we generate 100 different paths.
As such, each experiment has a total of 600 simulated paths.

For a given experiment and a given simulated path, we ask the LLMs to make five rounds
of forecasts. Take Experiment 1 as an example. We begin by randomly selecting one of the 600
simulated paths. In the first round, we present each LLM with a figure that displays the first 40
realizations of z; from this simulated path. Then, a prompt requests the LLM to provide its forecasts
for the next two values: x4; and z40. The model’s response is recorded and used to establish the
beginning of a conversation history. In the second round, we first update the conversation history
by appending the previous figure, prompt, and LLM response. We then present a new figure that
extends the observed sequence to z41 and prompt the LLM to forecast the next two values, x4
and z43. We record the LLM’s response and append it to the conversation history. This iterative
process continues until the LLM has completed five rounds of forecasts.

To evaluate the extent to which the LLM’s forecasts are biased, we estimate p, the “perceived”
autoregressive coefficient implied by the LLM’s forecasts. Specifically, for each LLM ¢, each value

of p, and each forecast horizon s of 1, 2, or 5, we collect 500 forecasts and 500 realizations of z;.
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We then estimate the perceived persistence p by running the following regression:

Pz =cs + (ﬁ)sfﬁ‘t + Us it, (5)

where Fjix:,s represents model i’s forecast of x4, at time s, and x; is the actual realization of x at
time ¢.

Fig. 4 presents our estimates. The top panel displays the estimated p values for three baseline
models: ChatGPT-4, Claude 3 Opus, and Gemini 1.5 Pro. The bottom panel shows the same
estimates for the three smaller-scale models: ChatGPT-40, Claude 3 Haiku, and Gemini 1.5 Flash.?!
Each estimate includes a 95% confidence interval. The results are compared to the 45-degree line,

which represents the implied persistence under Full Information Rational Expectations (FIRE).
[Place Fig. 4 about here]

The results show that baseline models behave rationally, while smaller-scale models exhibit
human-like biases. The larger models produce similar results, which we classify as rational behav-
ior based on two evidence. First, we notice that baseline models do not display persistent over- or
underreaction. For small values of p (< 0.2), the estimates of p show overreaction implying that
LLMs perceive the autoregressive process as more persistent than it actually is. For large values of
p (p >0.4), the models exhibit underreaction, meaning they underestimate the actual persistence
of the autoregressive process. This pattern differs from human behavior, where overreaction occurs
consistently across all values of p. Second, the extent of over- and underreaction remains stable
across values of p for baseline models. Unlike human participants—who display stronger overreac-
tion for smaller values of p—the baseline LLMs exhibit a relatively constant level of deviation from
the FIRE benchmark. Small-scale models exhibit human-like overreaction. These models consis-
tently overreact, similar to human participants. Moreover, their degree of overreaction is larger for
smaller values of p, aligning with the cognitive biases in human forecasting behavior documented
by Afrouzi et al. (2023).

Overall, our findings are consistent with those from the cognitive psychology literature on be-

liefs: larger models exhibit significantly more rational behavior, while smaller-scale models display

21Llama models do not support graphical inputs. As such, they are excluded from this analysis.
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human-like biases. This result reinforces the broader pattern observed in our experiments—LLMs
with larger architectures tend to align more closely with normative rationality, whereas smaller

models retain cognitive distortions characteristic of human decision-making.

4. Correcting LLM Biases

Section 3 has documented that, for many preference-based questions and belief-based questions,
the LLM responses exhibit behavioral biases. In this section, we explore role priming methods—
instructing a LLM to view itself as a certain type of individual—as well as debiasing techniques
that aim at correcting the observed LLM biases.

We begin by discussing how role priming affects the LLM responses. Here, we consider two
versions: the first version instructs the LLMs to view themselves as rational investors; the second
version instructs the LLMs to view themselves as real-world retail investors. We implement each
version by adding one sentence at the beginning of the prompt. The sentence is “When answering
questions below, please think of yourself as a rational investor who makes decisions using the
‘expected utility’ framework.” for the first version and “When answering questions below, please
think of yourself as a real-world retail investor who makes economic and financial decisions.” for

the second version.
[Place Table 6 about here]

Table 6 presents the effects of role priming on LLM behavior. Panel A reports the treatment
effects of priming the LLMs to be a rational investor. Averaged across the twelve LLMs, such role
priming increases rational responses by 4.3% for the preference-based questions (significant at the
5% level) and increases rational responses by 3.3% for the belief-based questions (significant at the
10% level).22 Panel B reports the treatment effects of priming the LLMs to be a real-world retail
investor. Averaged across the twelve LLMs, such role priming reduces rational responses by 3.9%
for the preference-based questions (significant at the 5% level); and it does not cause a significant

change in the LLM responses to the belief-based questions.

22Here we report the treatment effects with the model fixed effect—acknowledging the differences across the twelve
LLMs—included as a control. Without this control, the treatment effects are by and large similar.
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Table 6 suggests that instructing the LLMs to behave as rational investors is effective in reducing
biases; that is, such role priming can be used as a debiasing technique. Table 7 explores two more
debiasing techniques. The first technique combines the sentence that primes the LLMs to be rational
investors with the provision of a detailed four-step procedure that guides the LLMs to rationally
choose a course of action under the Expected Utility framework. The specific four-step procedure

is given by:

“Please be reminded of the procedure of choosing a course of action under the ‘expected utility’
framework. For each course of action:
(1) You list all possible wealth outcomes it could result; here, a wealth outcome accounts for existing
wealth and any potential changes in wealth.
(2) You compute the utility of each wealth outcome, using a globally concave utility function; note
that the utility function focuses on total wealth outcomes rather than gains or losses alone.
(3) You weigh the utility of each outcome by the probability of the outcome.

(4) You sum up across outcomes to obtain the expected utility of the course of action.

You repeat the four-step procedure above for each possible course of action and choose the course
of action with the highest expected utility. When answering questions below, please provide the

concrete steps you take for computing the expected utility of each course of action.”

The second technique combines the sentence that primes the LLMs to be rational investors
with the provision of a summary of the key findings from Kahneman and Tversky (1979) that
describe biased human behavior. The summary is generated by first uploading the .pdf form of the
original Kahneman and Tversky (1979) paper to an interactive GPT-40 chat box and then asking

for a summary of the paper’s key insights. The specific summary is given by:

“Please be reminded of prospect theory, a framework that describes human decision-making.
The main takeaway from Prospect Theory: An Analysis of Decision under Risk by Daniel Kahne-
man and Amos Tversky (1979) is that human decision-making under risk systematically deviates
from the predictions of traditional expected utility theory. Instead of evaluating choices purely in

terms of final wealth states, individuals evaluate gains and losses relative to a reference point.

Key Insights:
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Certainty Effect — People overweight certain outcomes relative to probable ones, leading to risk
aversion in gains and risk-seeking behavior in losses.

Loss Aversion — Losses loom larger than equivalent gains, meaning the psychological impact of
losing $100 is greater than the pleasure of gaining $100.

Diminishing Sensitivity — The value function is concave for gains and convex for losses, meaning
the impact of an additional dollar diminishes as amounts increase.

Decision Weights vs. Probabilities — People do not evaluate probabilities linearly; they tend to
overweight small probabilities (making lotteries attractive) and underweight moderate to high prob-
abilities (explaining why they buy insurance).

Isolation Effect — Decision-making is influenced by how choices are framed, leading to inconsistent
preferences when identical problems are presented in different ways. This theory revolutionized
behavioral economics by demonstrating that individuals do not always make rational choices based
on maximizing expected utility but rather follow heuristics and biases shaped by psychological

perceptions of risk and reward.”

Importantly, as a debiasing technique, the goal of providing the key findings from Kahneman
and Tversky (1979) is to have the LLMs avoid making the same mistakes. Therefore, we add the
following sentence to the end of the above summary: “As a rational investor, you should avoid

making the mistakes described in prospect theory.”
[Place Table 7 about here]

Table 7 compares the baseline debiasing technique of simply priming the LLMs to be ratio-
nal investors with the two detailed debiasing techniques described above. The analysis in this
table focuses only on the first three experimental questions listed in Table 1: these are prospect
theory-related questions, one on diminishing sensitivity, one on loss aversion, and one on proba-
bility weighting.?®> Table 7 shows that the provision of the four-step procedure that guides the
LLMs to behave rationally is ineffective in reducing biases. Moreover, the provision of the key find-

ings from Kahneman and Tversky (1979) reduces rational responses by about 26% and increases

23We focus on the three prospect theory-related questions for two reasons. First, the LLM responses to these
questions are often irrational, suggesting that there is room for debiasing. Second, one debiasing technique described
above involves the provision of prospect theory’s key findings. Such information will mostly likely affect the LLMs’
responses to the prospect theory-related questions.
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human-like responses by about 18%. Taken together, these findings suggest that provision of more
information—even if such information is genuinely useful for decision making—is not always useful
in correcting LLM biases: information overload might hinder a LLM’s ability to provide rational

responses.

5. Conclusion

Artificial intelligence, especially generative Al epitomized by LLMs, has become increasingly
important in social and economic activities. In this paper, we systematically examine the behavior
of four prominent families of LLMs—ChatGPT, Anthropic Claude, Google Gemini, and Meta
Llama—by leveraging the experimental designs used in the cognitive psychology literature and the
experimental economics studies.

Overall, LLMs exhibit systematic behavioral biases. For experimental questions that study hu-
man beliefs, the LLMs’ responses become more rational as we move towards more advanced models
or models with a larger parameter scale; here, we examine belief-based questions from both the
psychology and experimental economics literatures. For questions that study human preferences,
however, even the most advanced large-scale LLMs frequently generate responses that are irrational
and human-like. Moreover, we observe significant heterogeneities in the LLM responses across the
four families of LLMs.

We also explore role priming methods that affect LLM behavior. In particular, a prompt that
instructs LLMs to behave as rational investors who make decisions according to the Expected Util-
ity framework is effective in reducing biases; a prompt that instructs LLMs to behave as real-world
retail investors leads to less rational responses when the LLMs answer preference-based questions.
Finally, we show that provision of bias-reducing information—either a detailed procedure that
guides the LLMs to rationally choose a course of action under the Expected Utility framework
or a summary of key findings from Kahneman and Tversky (1979) that describe biased human

behavior—is not necessarily useful in reducing LLM biases.
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Figures and Tables

Instructions:

Consider the following scenarios and respond according to the template provided. Please treat
each scenario as completely separate from the other. The output should be a markdown code
snippet formatted in the following schema, including the leading and trailing “¢‘‘json” and
“€¢” and should not include any note or comment:

‘¢ ‘json

{

"Scenario A": {
"Choice": string,
"Confidence": float,
"Explanation": string,
"Reasoning": string

}s

"Scenario B": {
"Choice": string,
"Confidence": float,
"Explanation": string,
"Reasoning": string

}

%((

Scenario A

In addition to whatever you own, you have been given $1,000. You now need to choose between
the following two options: option A ($1,000, 0.5), meaning winning $1,000 with 0.5 probability and
winning zero with 0.5 probability, versus option B ($500), meaning winning $500 with certainty.
Please answer as shown above. Indicate the choice you prefer (“A” or “B”), your confidence level
(a number between 0 and 1), a brief explanation for your choice (in less than 50 words), and
your reasoning type (“A” if your reasoning is based more on intuitive thinking, and “B” if your
reasoning is based more on analytical thinking and calculations).

Scenario B:

Next, please consider a different scenario; please treat it as a completely separate scenario from
the one you were just asked about. Specifically, please consider the following scenario. In addition
to whatever you own, you have been given $2,000. You now need to choose between the following
two options: option A (=$1,000, 0.5), meaning losing $1,000 with 0.5 probability and losing zero
with 0.5 probability, versus option B: (—$500), meaning losing $500 with certainty. Please answer
as shown above. Indicate the choice you prefer (“A” or “B”), your confidence level (a number
between 0 and 1), a brief explanation for your choice (in less than 50 words), and your reasoning
type (“A” if your reasoning is based more on intuitive thinking, and “B” if your reasoning is based
more on analytical thinking and calculations).

Fig. 1. Example of prompt: Diminishing sensitivity of prospect theory.
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GPT: A large-scale advanced version

(preference-based questions)

PT-DS sample size neglect (1)
sample size neglect (2)

PT-LA sample size neglect (3)

PT-PW base rate neglect

narrow framing

conjunction fallacy
gambler's fallacy
confirmation bias

GPT: A large-scale advanced version
(belief-based questions)

ambiguity aversion anchoring
A . overprecision
hyperbolic discounting overestimation
2 4 6 8 2 4 6 8
human-like other rational human-like other rational

Claude: A large-scale advanced version

(preference-based questions)

PT-DS sample size neglect (1)

sample size neglect (2)
PT-LA sample size neglect (3)
PT-PW base rate neglect

narrow framing
ambiguity aversion

hyperbolic discounting

2 4

human-like

Gemini: A large-scale advanced version

6

other

8

rational

(preference-based questions)

conjunction fallacy
gambler's fallacy
confirmation bias
anchoring
overprecision
overestimation

PT-DS sample size neglect (1)
sample size neglect (2)

PT-LA sample size neglect (3)

PT-PW base rate neglect

narrow framing
ambiguity aversion
hyperbolic discounting

2 4

human-like

Llama: A large-scale advanced version

6

other

-8

rational

(preference-based questions)

conjunction fallacy
gambler's fallacy
confirmation bias
anchoring
overprecision
overestimation

PT-DS sample size neglect (1)
sample size neglect (2)

PT-LA sample size neglect (3)

PT-PW base rate neglect

narrow framing

conjunction fallacy
gambler's fallacy
confirmation bias

ambiguity aversion anchoring
C . overprecision
hyperbolic discounting overestimation

2 4

human-like

6

other

8

rational

Claude: A large-scale advanced version
(belief-based questions)

2 4 6 .8

human-like other rational

Gemini: A large-scale advanced version
(belief-based questions)

2 4 6 .8

human-like other rational

Llama: A large-scale advanced version
(belief-based questions)

2 4 6 .8

human-like other rational

Fig. 2. Proportion of LLM responses: Advanced large-scale models.

This figure plots the proportion of LLM responses categorized as rational (blue), human-like (red),
or other (gray), for the four advanced large-scale LLMs: GPT-4, Claude 3 Opus, Gemini 1.5 Pro,
and Llama 3 70B. The left panel presents results for the six preference-based questions. The right
panel presents results for the ten belief-based questions.
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Fig. 3. Heterogeneity in LLM responses across model generations and parameter scales.

This figure presents radar charts that compares the number of questions that receive predominantly rational responses (top row) or human-
like responses (bottom row) across different LLMs, separately for preference-based questions (left panels) and belief-based questions
(right panels). Comparisons are made between advanced large-scale models and advanced smaller-scale models, and between large-scale
advanced models and older models.
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Fig. 4. LLM responses to questions from Experiment 1 of Afrouzi et al. (2023).

The figure plots forecast-implied persistence (y-axis) and the actual AR(1) persistence (z-axis) for
questions based on Experiment 1 of Afrouzi et al. (2023). For each level of AR(1) persistence p, we
estimate the implied persistence p from Fjx,s = ¢s+(p) x4 +usi¢. The red line is the 45-degree line,
and corresponds to the implied persistence under Full Information Rational Expectations (FIRE).
The vertical bars show the 95% confidence interval of the point estimates. Top panel reports the
results for three large-scale advanced LLMs that allow image input: GPT-4, Claude 3 Opus, and
Gemini 1.5 Pro; bottom panel reports the results for three small-scale advanced LLMs that allow

i

image input: GPT-4o, Claude 3 Haiku, and Gemini 1.5 Flash.
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Fig. 5. LLM responses to questions from Experiments 2 and 3 of Afrouzi et al.

The figure plots forecast-implied persistence (y-axis) and the actual AR(1) persistence (z-axis)
for questions based on Experiments 2 and 3 of Afrouzi et al. (2023). For each level of AR(1)
persistence p, we estimate the implied persistence p from Fjxiis = ¢s + (p)°xt + us it The red line
is the 45-degree line, and corresponds to the implied persistence under Full Information Rational
Expectations (FIRE). The vertical bars show the 95% confidence interval of the point estimates.
Top panel reports the results for three large-scale advanced LLMs that allow image input: GPT-4,
Claude 3 Opus, and Gemini 1.5 Pro; bottom panel reports the results for three small-scale advanced
LLMs that allow image input: GPT-40, Claude 3 Haiku, and Gemini 1.5 Flash.
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Table 1. Summary of experimental questions from cognitive psychology.

Panel A: A list of questions that study the psychology of preferences

Question number Documented bias Note
1 prospect theory - diminishing sensitivity risk preferences
2 prospect theory - loss aversion risk preferences
3 prospect theory - probability weighting  risk preferences
4 narrow framing risk preferences
5 ambiguity aversion risk preferences
6 hyperbolic discounting time preferences

Panel B: A list of questions that study the psychology of beliefs

Question number Documented bias
7 sample size neglect
8 sample size neglect
9 sample size neglect
10 base rate neglect
11 conjunction fallacy
12 gambler’s fallacy
13 confirmation bias
14 anchoring
15 overconfidence - overprecision
16 overconfidence - overestimation
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Table 2. Description of Large Language Models.

We group twelve LLMs based on the four LLM families that we consider: OpenAl’s ChatGPT, Anthropic Claude, Google Gemini,
and Meta Llama. For each family, we consider the advanced and large-scale models as our baselines: GPT-4, Claude 3 Opus,
Gemini 1.5 Pro, and Llama 3 70B. We also analyze their smaller-scale versions—GPT-40, Claude 3 Haiku, Gemini 1.5 Flash, and
Llama 3 8B—and their predecessors—GPT-3.5 Turbo, Claude 2, Gemini 1.0 Pro, and Llama ‘2 70B. RLHF and RLAI are the
abbreviations for “Reinforcement Learning from Human Feedback” and “Reinforcement Learning from Al respectively. MMLU is the
abbreviation for “Massive Multitask Language Understanding” and it provides a benchmark score for evaluating the capabilities of LLMs.

Model Release year  Size (number of parameters) Data (number of tokens) Instruction Context window MMLU  Vision
GPT-3.5 Turbo 2022 175 B 300 B RLHF 16,385 70 No
GPT-4 2023 1T* 13T* RLHF 128,000 86.5 Yes
GPT-40 2024 - 131" RLHF 128,000 88.7 Yes
Claude 2 2023 200 B * - RLAI + RLHF 100,000 78.5 No
Claude 3 Opus 2024 1T * - RLAI + RLHF 200,000 86.8 Yes
Claude 3 Haiku 2024 20B * - RLAI + RLHF 200,000 75.2 Yes
Gemini 1.0 Pro 2024 100 B* - RLHF 32,000 - Yes
Gemini 1.5 Pro 2024 1T* - RLHF 128,000 81.9 Yes
Gemini 1.5 Flash 2024 30 B” - RLHF 128,000 81.0 Yes
Llama 2 70B 2023 70 B 2T RLHF 4,096 68.9 No
Llama 3 70B 2024 70 B 15T RLHF 8,200 80.2 No
Llama 3 8B 2024 8B 15T RLHF 8,200 68.4 No

*These numbers are unofficial and estimated.
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Table 3. Rational responses versus human-like responses: Advanced large-scale models.

This table reports the proportion of responses classified as rational or human-like for the four advanced large-scale LLMs: GPT-4,
Claude 3 Opus, Gemini 1.5 Pro, and Llama 3 70B. Panel A presents results for the six preference-based questions. Panel B presents
results for the ten belief-based questions. The numbers in parentheses are p-values from a binomial test with the null hypothesis that
the proportion of rational or human-like responses is less than or equal to 50%. ***p < 0.01, **p < 0.05 and *p < 0.1.

Panel A: Preference-based questions

Claude GPT Gemini Llama
Y%rational %human-like Y%rational %human-like Y%rational Y%human-like Y%rational %human-like
PT-DS 0.00  (1.000) 1.00  (0.000)%**  0.00 (1.000) 100 (0.000)%**  0.00 (1.000) 100 (0.000)%** 100 (0.000)%** 0.00 (1.000)
PT-LA 034  (1.000) 0.66 (0.001)*** 100 (0.0000¥* 0.00 (1.000) 0.12  (1.000) 0.88  (0.000)%** 100 (0.000)%** 0.00 (1.000)
PT-PW 0.00  (1.000) 0.00  (1.000) 0.92  (0.000)%** 0.00 (1.000) 0.00  (1.000) 0.00  (1.000) 028 (1.000) 0.00  (1.000)
narrow framing 0.00  (1.000) 0.00  (1.000) 0.19  (1.000) 0.81  (0.000)***  0.00 (1.000) 1.00 (0.000)%**  0.00 (1.000) 100 (0.000)%**
ambiguity aversion 0.00  (1.000) 1.00  (0.000)%**  0.00 (1.000) 1.00  (0.000)%**  0.00 (1.000) 1.00  (0.000%** 0.0 (1.000) 100 (0.000)%**
hyperbolic discounting  0.00  (1.000) 100 (0.000Y%*  1.00 (0.000)%** 0.00 (1.000) 0.00  (1.000) 100 (0.000)%**  0.07 (1.000) 0.93  (0.000)%**
Panel B: Belief-based questions
Claude GPT Gemini Llama
Y%rational Y%human-like Y%rational Y%human-like Jorational Y%human-like Y%rational Y%human-like

sample size neglect (1)  1.00  (0.000)***  0.00 (1.000) 1.00  (0.000)***  0.00 (1.000) 1.00  (0.000)*** 0.00 (1.000) 0.88  (0.000)*** 0.00 (1.000)
sample size neglect (2) 1.00  (0.000)*** 0.00 (1.000) 1.00  (0.000)*** 0.00 (1.000) 1.00  (0.000)*** 0.00 (1.000) 0.00  (1.000) 1.00  (0.000)***
sample size neglect (3)  1.00  (0.000)***  0.00 (1.000) 0.00  (1.000) 1.00  (0.000)*** 1.00  (0.000)***  0.00 (1.000) 1.00  (0.000)***  0.00 (1.000)
base rate neglect 0.00  (1.000) 0.10  (1.000) 1.00  (0.000)*** 0.00 (1.000) 1.00  (0.000)*** 0.00 (1.000) 1.00  (0.000)***  0.00 (1.000)
conjunction fallacy 100 (0.000)%** 0.00 (1.000) 100 (0.000%* 0.00 (1.000) 100 (0.000)¥** 0.00 (1.000) 100 (0.000)%** 0.00 (1.000)
gambler’s fallacy 1.00 (0.000)%** 0.00 (1.000) 100 (0.000%* 0.00 (1.000) 100 (0.000)%** 0.00 (1.000) 100 (0.000)%** 0.00 (1.000)
confirmation bias 100 (0.000)%** 0.00 (1.000) 100 (0.0000%** 0.00 (1.000) 100 (0.000)¥** 0.00 (1.000) 024  (1.000) 0.76  (0.000)***
anchoring 043  (0.933) 0.57  (0.097)* 100 (0.000)*% 0.00 (1.000) 100 (0.000)%** 0.00 (1.000) 0.00  (1.000) 100 (0.000)%%*
overprecision 0.99  (0.000)*** 0.00 (1.000) 0.51  (0.460) 0.49 (0.618) 100 (0.000)¥** 0.00 (1.000) 0.00  (1.000) 100 (0.000)%**
overestimation 1.00  (0.000)%** 0.00 (1.000) 100 (0.000)*% 0.00 (1.000) 1.00  (0.000)¥** 0.00 (1.000) 0.00  (1.000) 100 (0.000)%**




Table 4. Heterogeneity in responses across LLM families.

This table reports the marginal effects from the probit regressions specified by:
Pr(Yigr = 1) = ®(a + 1 - Claude; + 2 - Gemini; + B3 - Llama; + €;q1,)

for model i, question ¢, and iteration k, where ®(-) denotes the cumulative distribution function of
a standard Normal random variable. For Columns (1) and (3), Yjq; is a binary variable that takes
the value of one if model i’s response to question ¢ in iteration k is classified as rational, and zero
otherwise. For Columns (2) and (4), Yjq is a binary variable that takes the value of one if model
1’s response to question ¢ in iteration k is classified as human-like, and zero otherwise. For both
cases, the independent variables—Claude;, Gemini;, and Llama;—are indicators for the three
LLM families of Claude, Gemini, and Llama, with the LLM family of GPT serving as the omitted
baseline category. The reported coefficients represent the change in the predicted probability of
observing an outcome Yj,, of one that is associated with changing the LLM from GPT to each
of Claude, Gemini, and Llama. Standard errors, clustered at the question level, are reported in

parentheses. ***p < 0.01, **p < 0.05 and *p < 0.1.

(1)

(2)

(3)

(4)

Dep. var: LLM response is characterized as
Rational Human-like Rational Human-like
Sample: Preference-based questions Belief-based questions
Claude -0.126 —0.0483 —-0.0997 0.126
(0.083) (0.118) (0.084) (0.102)
Gemini —0.229%** 0.167** —-0.0800 0.0107
(0.065) (0.077) (0.049) (0.051)
Llama 0.0816 -0.141 —0.250%* 0.210**
(0.150) (0.127) (0.098) (0.088)
Baseline LLM family: GPT
Observations 7,150 7,150 12,000 12,000
Pseudo R-squared 0.043 0.037 0.025 0.026
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Table 5. Heterogeneity in responses across model generations and parameter scales.

This table reports the marginal effects from the probit regressions specified in equations (3) and (4) of the main text. For Columns
(1), (2), (5), and (6), the dependent variable is a binary variable that takes the value of one if a LLM response is classified as rational,
and zero otherwise; for Columns (3), (4), (7), and (8), the dependent variable is a binary variable that takes the value of one if a LLM
response is classified as human-like, and zero other wise. Regressions in Columns (1) to (4) are for preference-based questions and those
in Columns (5) to (8) are for belief-based questions. Panel A compares advanced large-scale models with older models. In this case,
we restrict the sample to the LLM responses from either the advanced large-scale models or the older models; the key independent
variable is an indicator for the advanced models, with the older models serving as the baseline. Panel B compares large-scale models
with smaller ones. In this case, we restrict the sample to LLM responses from either the advanced large-scale models or the advanced
smaller-scale models; the key independent variable is an indicator for the large-scale models. Standard errors, clustered at the question

level, are reported in parentheses. ***p < 0.01, **p < 0.05 and *p < 0.1.

Panel A: Advanced models versus older models

(1) (2) 3) (4) (5) (6) (7 (8)
Dep. var: LLM response is characterized as
Rational Rational Human-like Human-like Rational Rational Human-like Human-like
Sample: Preference-based questions Belief-based questions
Advanced —0.223* —0.231** 0.272%* 0.273** 0.407*** 0.409*** —0.327%%* —0.333%**
(0.121) (0.116) (0.127) (0.126) (0.127) (0.125) (0.104) (0.102)
LLM family FE No Yes No Yes No Yes No Yes
Observations 4,800 4,800 4,800 4,800 8,000 8,000 8,000 8,000
Pseudo R-squared 0.042 0.120 0.055 0.107 0.133 0.162 0.097 0.134
Panel B: Large-scale models versus smaller-scale models
(1) (2) 3) (4) (5) (6) (M) (8)
Dep. var: LLM response is characterized as
Rational Rational Human-like Human-like Rational Rational Human-like Human-like
Sample: Preference-based questions Belief-based questions
Large —0.321%%* —0.331%** 0.212 0.216 0.240*** 0.239*** —0.155%* —0.157**
(0.093) (0.091) (0.130) (0.132) (0.092) (0.090) (0.074) (0.073)
LLM family FE No Yes No Yes No Yes No Yes
Observations 4,750 4,750 4,750 4,750 8,000 8,000 8,000 8,000
Pseudo R-squared 0.081 0.153 0.033 0.066 0.054 0.144 0.029 0.117




ov

Table 6. Treatment effects of role priming prompts.

This table reports the marginal effects from probit regressions where the dependent variable is an indicator for whether a LLM response
is classified as rational or human-like. Regressions in Columns (1) to (4) are for preference-based questions and those in Columns (5)
to (8) are for belief-based questions; each regression uses responses from all the twelve LLMs. Panel A restricts the sample to the LLM
responses generated using either the baseline prompt or a treatment prompt that primes the LLMs to be rational investors; Panel B
restricts the sample to the LLM responses generated using either the baseline prompt or a treatment prompt that primes the LLMs to
be real-world retail investors. For both panels, the key independent variable is an indicator for the treatment prompt, with the baseline

prompt serving as the omitted category. Standard errors, clustered at the question level, are reported in parentheses. ***p < 0.01,
**p <0.05 and *p <0.1.

Panel A: Role priming prompt (rational investor)

(1) () 3) (4) (5) (6) (7) (8)

Dep. var: LLM response is characterized as
Rational Rational Human-like Human-like Rational Rational Human-like Human-like
Sample: Preference-based questions Belief-based questions
Role-priming prompt 0.0439%** 0.0430** -0.0418* —-0.0405* 0.0331* 0.0325%* —-0.0087 -0.0067
(0.017) (0.017) (0.021) (0.021) (0.019) (0.019) (0.025) (0.024)
Model FE No Yes No Yes No Yes No Yes
Observations 14,308 14,308 14,308 14,308 23,993 23,993 23,993 23,993
Pseudo R-squared 0.001 0.155 0.001 0.098 0.001 0.184 0.000 0.153

Panel B: Role priming prompt (retail investor)

(1) (2) 3) (4) (5) (6) (7) (®)

Dep. var: LLM response is characterized as
Rational Rational Human-like Human-like Rational Rational Human-like Human-like
Sample: Preference-based questions Belief-based questions
Role-priming prompt -0.0361* —-0.0388%** 0.0150 0.0152 0.0010 —-0.0021 0.0052 0.0084
(0.019) (0.019) (0.024) (0.025) (0.018) (0.018) (0.020) (0.020)
Model FE No Yes No Yes No Yes No Yes
Observations 14,310 14,310 14,310 14,310 23,999 23,999 23,999 23,999

Pseudo R-squared 0.001 0.165 0.000 0.101 0.000 0.163 0.000 0.143




Table 7. Comparison of debiasing techniques (prospect theory-related questions).

This table reports the marginal effects from probit regressions where the dependent variable is
an indicator for whether a LLM response is classified as rational or human-like. Regressions are
estimated using the LLM responses to prospect theory-related questions only; each regression uses
responses from all the twelve LLMs. Panel A restricts the sample to the LLM responses generated
using either the baseline prompt or a treatment prompt that primes the LLMs to be rational
investors; Panel B restricts the sample to the LLM responses generated using either the baseline
prompt or an instruction-based prompt that combines the sentence that primes the LLMs to be
rational investors with the provision of a detailed four-step procedure that guides the LLMs to
rationally choose a course of action; Panel C restricts the sample to the LLM responses generated
using either the baseline prompt or a knowledge-enrichment prompt that combines the sentence
that primes the LLMs to be rational investors with the provision of a summary of the key findings
from Kahneman and Tversky (1979) that describes biased human behavior. For all three panels,
the key independent variable is an indicator for the treatment prompt, with the baseline prompt
serving as the omitted category. Standard errors, clustered at the question level, are reported in
parentheses. ***p < 0.01, **p < 0.05 and *p < 0.1.

Panel A: Role priming prompt (rational investor)

1) (2) (3) (4)

Dep. var: LLM response is characterized as
Rational Rational Human-like Human-like
Sample: Prospect theory-related questions
Role priming prompt 0.0375%** 0.0401%*** -0.0225** -0.0267**
(0.007) (0.007) (0.011) (0.012)
Model FE No Yes No Yes
Observations 7,195 7,195 7,195 6,595
Pseudo R-squared 0.001 0.231 0.001 0.150

Panel B: Instruction-based prompt

(1) ) ®3) (4)

Dep. var: LLM response is characterized as
Rational Rational Human-like Human-like
Sample: Prospect theory-related questions
Instruction-based prompt -0.0617 —0.0596 0.0614 0.0605
(0.079) (0.077) (0.081) (0.084)
Model FE No Yes No Yes
Observations 7,200 7,200 7,200 6,600
Pseudo R-squared 0.003 0.204 0.004 0.184

Panel C: Knowledge-enrichment prompt

e0) 2 ®3) (4)

Dep. var: LLM response is characterized as
Rational Rational Human-like Human-like
Sample: Prospect theory-related questions
Knowledge-enrichment prompt ~0.269*** ~0.263%** 0.185* 0.185*
(0.069) (0.065) (0.111) (0.106)
Model FE No Yes No Yes
Observations 7,196 7,196 7,196 7,196
Pseudo R-squared 0.054 0.222 0.029 0.136
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Appendix

GPT: A small-scale advanced version
(preference-based questions)

PT-DS sample size neglect (1)
sample size neglect (2)

PT-LA sample size neglect (3)

PT-PW base rate neglect

narrow framing

conjunction fallacy
gambler's fallacy
confirmation bias

ambiguity aversion anchoring
A " overprecision
hyperbolic discounting overestimation

2 4 .6 8

human-like other rational

Claude: A small-scale advanced version
(preference-based questions)

PT-DS sample size neglect (1)

sample size neglect (2)
PT-LA sample size neglect (3)
PT-PW base rate neglect

narrow framing
ambiguity aversion

hyperbolic discounting

2 4 6 8

human-like other rational

Gemini: A small-scale advanced version
(preference-based questions)

conjunction fallacy
gambler's fallacy
confirmation bias
anchoring
overprecision
overestimation

PT-DS sample size neglect (1)
sample size neglect (2)

PT-LA sample size neglect (3)

PT-PW base rate neglect

narrow framing

conjunction fallacy
gambler's fallacy
confirmation bias

ambiguity aversion anchoring
- " overprecision
hyperbolic discounting overestimation

2 4 6 8

human-like other rational

Llama: A small-scale advanced version
(preference-based questions)

PT-DS sample size neglect (1)

sample size neglect (2)
PT-LA sample size neglect (3)
PT-PW base rate neglect

narrow framing

conjunction fallacy
gambler's fallacy
confirmation bias

ambiguity aversion anchoring
- N overprecision
hyperbolic discounting overestimation

2 4 6 8

human-like other rational

GPT: A small-scale advanced version
(belief-based questions)

2 4

human-like

Claude: A small-scale advanced version

6

other

.8

rational

(belief-based questions)

2 4

human-like

Gemini: A small-scale advanced version

6

other

.8

rational

(belief-based questions)

2 4

human-like

6

other

-8

rational

Llama: A small-scale advanced version
(belief-based questions)

2 4

human-like

6

other

.8

rational

Fig. IA.1. Proportion of LLM responses: Advanced small-scale models.

This figure plots the proportion of LLM responses categorized as rational (blue), human-like (red),
or other (gray), for the four advanced small-scale LLMs: GPT-40, Claude 3 Haiku, Gemini 1.5
Flash, and Llama 3 8B. The left panel presents results for the six preference-based questions. The
right panel presents results for the ten belief-based questions.



GPT: An older version GPT: An older version

(preference-based questions) (belief-based questions)
PT-DS i sample size neglect (1)
: sample size neglect (2)
PT-LA ; sample size neglect (3)
H base rate neglect
PT-PW conjunction fallacy

gambler's fallacy

narrow framin, hy W -
9 confirmation bias

ambiguity aversion anchoring
o N : overprecision
hyperbolic discounting : overestimation
0 2 4 6 8 1 0 2 4 6 .8 1
human-like other rational human-like other rational

Claude: An older version Claude: An older version

(preference-based questions) (belief-based questions)
PT-DS | sample size neglect (1)
H sample size neglect (2)
PT-LA H sample size neglect (3)
H base rate neglect
PT-PW i conjunction fallacy

gambler's fallacy

narrow framin, h v 1
g confirmation bias

ambiguity aversion anchoring
L N : overprecision
hyperbolic discounting H overestimation
0 2 4 6 8 1 0 2 4 6 8 1
human-like other rational human-like other rational

Gemini: An older version Gemini: An older version

(preference-based questions) (belief-based questions)
PT-DS i sample size neglect (1)
: sample size neglect (2)
PT-LA H sample size neglect (3)
H base rate neglect
PT-PW H conjunction fallacy

gambler's fallacy

narrow framin, hy W .
9 confirmation bias

ambiguity aversion anchoring
A " : overprecision
hyperbolic discounting . overestimation
0 2 4 6 8 1 0 2 4 6 8 1
human-like other rational human-like other rational

Llama: An older version Llama: An older version

(preference-based questions) (belief-based questions)
PT-DS sample size neglect (1)
: sample size neglect (2)
PT-LA ; sample size neglect (3)
H base rate neglect
PT-PW ! conjunction fallacy

gambler's fallacy

narrow framin, : > "
9 confirmation bias

ambiguity aversion anchoring
o . : overprecision
hyperbolic discounting : overestimation
0 2 4 6 8 1 0 2 4 6 .8 1
human-like other rational human-like other rational

Fig. IA.2. Proportion of LLM responses: Older models.

This figure plots the proportion of LLM responses categorized as rational (blue), human-like (red),
or other (gray), for the four older versions of LLMs: GPT-3.5 Turbo, Claude 2, Gemini 1.0 Pro,
and Llama 2 70B. The left panel presents results for the six preference-based questions. The right
panel presents results for the ten belief-based questions.
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