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Conservative Holdings, Aggressive Trades:

Ambiguity, Learning, and Equilibrium Flows

Abstract

We propose an equilibrium asset pricing model in which agents learn about the parameters

that drive economic fundamentals and have different confidence in their estimates. We first

show that, when agents are averse to parameter uncertainty, learning about the volatility of

fundamentals has a first-order effect on portfolio flows: uncertainty-averse agents increase

their risky asset holdings in periods of high uncertainty, despite holding conservative port-

folios. We then show that subjective risk premia increase following both unexpected good

and bad news. These predictions are consistent with observed portfolio flows of retail and

institutional investors around dividend surprises. Our model highlights that heterogeneity of

preferences and learning about volatility of fundamentals are key channels for understanding

the equilibrium dynamics of portfolio flows and risk premia following news about economic

outcomes.
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1 Introduction

Describing the behavior of portfolio flows and risk premia within an equilibrium theory of

asset markets presents a considerable challenge. Numerous studies have documented that

periods of heightened uncertainty, such as those experienced following unexpected corporate

or macro announcements, often lead to a flow of risky assets from institutional to individual

investors. Previous research suggests that these flow patterns can be attributed to factors

such as informational asymmetry, portfolio constraints, or limited attention on the part of

investors.1 Similarly, a significant body of research has demonstrated that a substantial

portion of the equity risk premium is earned during key macroeconomic events, such as

FOMC announcements, and that learning plays a crucial role in volatility dynamics.2 Despite

the abundance of literature on these topics, the challenge of jointly explaining equilibrium

dynamics of portfolio flows and risk premia remains open.

In this paper, we address this challenge by proposing an equilibrium asset pricing model

that rests on two key channels: learning and agents’ heterogeneity. Recent evidence empha-

sizes that subjective risk premia inferred from investors’ return expectations for a variety

of asset classes are much less counter-cyclical than objective risk premia identified from in-

sample predictive regressions (see, e.g., Nagel and Xu, 2022). Such a discrepancy can be

reconciled through representative-agent asset pricing models in which subjective expecta-

tions are time varying as in settings with perpetual learning (Collin-Dufresne, Johannes,

and Lochstoer, 2016; Nagel and Xu, 2021). While learning in representative-agent models

can explain asset pricing puzzles, these models are not designed to study portfolio flows.

In our model agents learn about the fundamental of the economy by observing a history

of realized dividends and are heterogeneous in their confidence about their parameter esti-

mates. We show that, when some agents are averse to parameter uncertainty, learning about

the volatility of fundamentals has a first-order effect on portfolio decisions and gives rise to

novel dynamics in portfolio flows and asset prices that are consistent with empirical obser-

vations. Specifically, we show that while in equilibrium uncertainty-averse agents are more

conservative in their holdings, they are more aggressive in their trades. They increase their

position in the risky asset after observing large positive or negative dividend realizations.

1See, among others, Frazzini and Lamont (2007), Barber and Odean (2008) and Hirshleifer, Myers,
Myers, and Teoh (2008) Kaniel, Saar, and Titman (2008), Kaniel, Liu, Saar, and Titman (2012).

2See the large literature on the announcement premium, e.g., Savor and Wilson (2016), Ai and Bansal
(2018), and many others.
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Furthermore, the agents’ equilibrium flow adjustments to the arrival of information imply

that larger dividend realizations are associated with higher expected market risk premia.

These results highlight the importance of learning about volatility of fundamentals when

interpreting empirical evidence from financial markets.

We first illustrate the main mechanism in a simple two-period heterogeneous agent model

that we can fully solve analytically. In this setting, we show that the equilibrium interaction

between ambiguity-averse and ambiguity-neutral agents generates risk premia that depend

linearly on both the variance and volatility of the dividend. This property is common when

agents have preferences that exhibit first-order risk aversion, see, e.g., Segal and Spivak

(1990). As a consequence of learning, both good and bad news increase the agents’ volatility

estimate. When some agents are ambiguity averse, these belief updates generate equilibrium

risk premia that are “too low” (i.e., prices too high) for ambiguity-neutral agents and “too

high” (i.e., prices too low) for ambiguity-averse agents to justify their existing portfolio

holdings. This difference in valuation implies gains from trade in which more (less) ambiguity

averse agents increase (decrease) their position in the risky asset in times of high uncertainty,

i.e., after both positive and negative surprises. In contrast, when no agent is ambiguity averse

the equilibrium risk premium is proportional only to the dividend variance, and a standard

“no-trade” result emerges where surprises do not generate equilibrium flows.

We then extend the simple model to an infinite-horizon model where overlapping genera-

tions of agents learn about the mean and the variance of the endowment process and differ in

their attitude towards ambiguity. When both the mean and the variance are not known, the

predictive distribution of dividends, which is normal if only the mean is unknown, becomes

a fat-tailed Student t-distribution. Unfortunately, with t-distributed dividends expected

utility might not be well defined, see, e.g., Geweke (2001). We overcome this difficulty by

imposing an a-priori restriction to the dividend variance, referring to recent developments in

Bayesian learning techniques with truncated distributions (see, e.g., Weitzman, 2007; Bakshi

and Skoulakis, 2010). Specifically, we assume that the unknown variance can take values on

an arbitrarily large, but finite interval. This assumption implies that the predictive distri-

bution of dividends is a “dampened Student t”—i.e., a Student t-distribution with thinner

tails—and allows us to fully characterize the equilibrium with learning about both mean and

variance.

Because in our model the true mean and variance are constant, agents might eventually

learn these parameters perfectly. As a consequence, ambiguity vanishes in the long run. In
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reality, parameter uncertainty is unlikely to disappear even after observing a long history of

data. To capture this realistic feature, we assume the existence of “information leakages”

that occurs as generations overlap: new generation partially forget the accumulated knowl-

edge handed over to them by the older generation. In a representative agent economy, this

assumption coincides with the idea of “fading memory” as in, e.g., Nagel and Xu (2021),

or “age-related experiential learning”, as in Malmendier and Nagel (2016), Collin-Dufresne,

Johannes, and Lochstoer (2016), and Malmendier, Pouzo, and Vanasco (2020).

We empirically investigate our model predictions using both aggregate data from Federal

Reserve of St. Louis database (FRED) and individual corporate ownership data from 13-F

filings. We find that exceptionally bad as well as exceptionally good signals of corporate

profitability are associated with low or even negative changes in institutional ownership.

In contrast, neutral signal realizations, indicating lack of surprise, are associated with an

increase in institutional ownership. These findings are consistent with the predictions of our

equilibrium model if we assume that, as suggested by the “competence hypothesis” (see, e.g.,

Heath and Tversky, 1991), retail investors are more averse to uncertainty than institutions.3

Furthermore, we also show that, in line with our model, the market risk premium is higher

following negative as well as positive surprises. This finding is consistent with Nagel and

Xu (2022) who report that subjective risk premia increase with the subjective estimate of

variance.

In summary, our model shows that (i) heterogeneous attitude towards ambiguity; (ii) learn-

ing about the variance of the endowment process; and (iii) market clearing, are necessary

conditions to generate equilibrium portfolio flows and risk premia consistent with those ob-

served in the data. In fact, a model without heterogeneity in the aversion to ambiguity

cannot explain observed flows in response to news. Similarly, a model in which the variance

of the dividend process is known does not generate sensitivity of portfolio flows to news.

Finally, in a partial equilibrium model that ignores the price effects of portfolio rebalancing

as uncertainty increases, agents with preference for robustness trade into more conservative

portfolios, contrary to the evidence we document in the data.

3The “competence hypothesis” states that agents are generally ambiguity-averse toward tasks for which
they do not feel competent. Li, Tiwari, and Tong (2017) provide support to the assumption that retail
investors have a stronger desire for robustness.
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Our work relates to three strands of literature. First, we contribute to the literature that

studies asset prices under parameter uncertainty and learning.4 We show that time varia-

tion in the estimated variance has significant qualitative implications for equilibrium flows

and asset prices that would be absent in a model where the variance is a known constant.

By emphasizing the importance of modelling the process of learning about volatility, our

paper echoes Weitzman (2007, p.1111) who claims that “for asset pricing implications [. . . ]

the most critical issue involved in Bayesian learning [. . . ] is the unknown variance”. When

dealing with parameter uncertainty and learning, the vast majority of the asset pricing lit-

erature assumes that the mean is unknown, but the variance is known. This assumption is

typically motivated by greater analytical tractability and the impression that with a large

sample and continuous observations, it is easy to learn the variance. In reality, however,

information reaches market participants in a lumpy fashion, such as during FOMC commu-

nication events or corporate earning announcements, and agents cannot avoid the effort to

learn about volatility.5

Second, we contribute to the literature on asset pricing with heterogeneous agents.6 We

differ from the work in this literature by considering learning and agents’ preference for ro-

bustness emerging from their aversion to parameter uncertainty. Chapman and Polkovnichenko

(2009) study asset pricing in two-date economies with heterogeneous agents endowed with

non-expected utility preferences. We focus on one form of deviation from expected utility,

namely ambiguity aversion, and we generalize their results to the case of learning about the

mean and the variance of the endowment process in an overlapping-generation economy.7

Buss, Uppal, and Vilkov (2021) study the dynamics of asset demand in a multi-period gen-

4Among others, key contributions are David (1997), Veronesi (1999), Pástor (2000), Barberis (2000), Xia
(2001) and Leippold, Trojani, and Vanini (2008). Pástor and Veronesi (2009) provide an extensive overview
of learning in financial markets.

5See the large literature on the announcement premium, e.g., Savor and Wilson (2016), Ai and Bansal
(2018), and many others.

6This literature is too vast to be reviewed here. Key contributions, among many others, are Mankiw
(1986), Dumas (1989), Constantinides and Duffie (1996), Dumas, Kurshev, and Uppal (2009), Bhamra and
Uppal (2014), and Gârleanu and Panageas (2015). Panageas (2020) provides an excellent review of the
literature.

7Similar to our setup, Easley and O’Hara (2009) model investors with a desire for robustness with respect
to ambiguity in both the dividend mean and variance. In our model, learning ties the ambiguity in the
dividend mean to the variance of the dividend distribution and helps rationalize portfolio flows in reaction
to new information. Cao, Wang, and Zhang (2005) use a similar model with heterogeneous uncertainty-
averse investors but no learning to show that limited asset market participation can arise endogenously in
the presence of model uncertainty. Illeditsch, Ganguli, and Condie (2021) analyze learning under ambiguity
about the link between information and asset payoffs and show that this leads to underreaction to news.
Ilut and Schneider (2022) provide a comprehensive survey of modelling uncertainty as ambiguity.
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eral equilibrium model in which agents are heterogeneous in their confidence about the assets’

return dynamics. They show that heterogeneous beliefs lead to asset demand curves that

are steeper than with homogeneous beliefs. Unlike Buss, Uppal, and Vilkov (2021), agents

in our model differ in their attitude towards ambiguity and learn about both the mean and

the variance of the dividend process. Because of agents’ ambiguity aversion, learning about

variance has a first-order effect on both equilibrium flows and asset prices. These effects are

instead negligible in a model where agents are ambiguity-neutral or do not differ in their

degree of ambiguity aversion.

Third, our work is related to the large literature that studies the trading behavior of

institutional and retail investors. Ample evidence indicates that retail investors act as liq-

uidity providers who meet institutional investors’ demand for immediacy.8 Consistent with

this view, we document that institutional investors tend to reduce their share in corporate

ownership when indicators of future corporate profitability are exceptionally bad. Although

retail investors might be less sophisticated, they face lower agency costs and less liquidity

constraints than their institutional counterparts. This advantage allows them to act as mar-

ket makers, especially during times of financial turmoil when liquidity is a scarce resource.

Surprisingly, and less discussed in this literature, institutional investors significantly reduce

their share in corporate ownership after exceptionally positive signals as well. The finding

that individual investors increase their holdings in the risky asset after bad and good sur-

prises is rationalized in the literature by invoking the “attention-grabbing” hypothesis, which

assumes that individual investors have limited attention and rarely sell short.9 We provide

an alternative explanation to the attention-grabbing hypothesis by highlighting the role of

agents’ ambiguity attitude and learning.

The rest of the paper proceeds as follows. In Section 2 we provide intuition in a sim-

ple equilibrium model which is analytically tractable. Section 3 presents an overlapping-

generations model with perpetual learning about the mean and variance of the dividend

process. Section 4 contains our empirical analysis of the equilibrium flow dynamics. Sec-

tion 5 concludes. Appendix A contains proofs, Appendix B provides technical details of

Bayesian learning with unknown variance, and Appendix C illustrates our numerical proce-

dure to determine the equilibrium.

8See, e.g., Kaniel, Saar, and Titman (2008), Barrot, Kaniel, and Sraer (2016), Glossner, Matos, Ramelli,
and Wagner (2020), and Pástor and Vorsatz (2020).

9See, e.g., Frazzini and Lamont (2007), Barber and Odean (2008), Hirshleifer, Myers, Myers, and Teoh
(2008), Berkman, Koch, Tuttle, and Zhang (2012), and Barber, Huang, Odean, and Schwarz (2021).
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2 A two-period model

In this section, we develop a simple equilibrium model to illustrate the effect of volatility on

portfolio weights and risk premia when agents differ in their ambiguity aversion.

Assets. There are two dates and a single “tree” producing a perishable dividend d̃ at

time 1. Agents live for two periods. In the first period, they can trade in claims over the

dividend tree (the risky asset) at a price p and a riskless asset available in infinite supply. In

the second period, they consume the dividend from their portfolio. Since consumption occurs

only at the terminal date, the riskless rate in the economy is undetermined and assumed to

be a constant r.

We assume that the dividend d̃ is normally distributed with unknown mean µ and known

variance σ2, d̃ ∼ N (µ, σ2).10 At the initial date, agents have observed a history of t dividend

realizations and calculate the time series average m and its standard error

s =
σ√
t
.

Preferences. The economy is populated by two types of agents, i = S,A, both having

CARA utility

u(W ) = −1

γ
e−γW ,

with identical absolute risk aversion γ > 0. Agents differ in their attitude towards uncertainty

about the mean estimate. Type-S agents are standard subjective expected utility investors.

Type-A agents are averse against ambiguity in the estimated mean m.

Agents S use m as their subjective dividend expectation and account for its estimation

error by inflating the variance σ2 by the variance of the mean s2. Therefore, the predictive

distribution of the dividend d̃ for agent S is

d̃ ∼S N
(
µS, σ2

(
t+ 1

t

))
, where µS = m. (1)

10In Section 3 we generalize the model to a setting with unknown mean and variance.
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In contrast, A agents have “multiple priors” about the distribution of d̃. The set of priors

is characterized by a “confidence interval” around the mean estimate, m, whose size depends

on the standard error s and their aversion towards ambiguity. Specifically, the set of priors

that A agents consider is

d̃ ∼A N
(
µA, σ2

(
t+ 1

t

))
, (2)

where µA belongs to the confidence interval

P ≡ [m− κs,m+ κs], (3)

with κ > 0 a preference parameter that captures the heterogeneity in attitude towards

parameter uncertainty between the agents. When κ = 0, the set of priors P collapses to

the singleton m, and A and S agents are identical. The parameter κ has also a classical

statistical interpretation as a quantile of a distribution.11

Optimal Portfolios. Each agent i = S,A is initially endowed with wealth W i and chooses

a portfolio of θi units of the risky assets. Therefore, the agents’ terminal wealth is

W̃ i = W i (1 + r) + θi
(
d̃− p(1 + r)

)
, i = S,A. (4)

Agents S set θS to maximize their expected utility of terminal wealth, that is,

max
θS

ES
[
−1

γ
e−γW̃

S

]
, (5)

subject to the budget constraint (4).

Agents A guard against parameter uncertainty by choosing portfolios that are robust to

worst-case scenarios. This implies maximizing expected utility by using the “worst-prior”

from the set P in equation (3). Formally, type-A agents buy portfolios θA that solve the

11See Bewley (2011) for a discussion of how confidence intervals obtained from classical statistics are
related to Knightian uncertainty.
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following problem12

max
θA

min
µA∈P

EA
[
− 1

γA
e−γW̃

A

]
, (6)

subject to the budget constraint (4). The prior that minimizes A’s expected utility in

equation (6) is

arg min
µA∈P

EA
[
u
(
WA

)]
=


m− κs, if θA > 0

P if θA = 0.

m+ κs, if θA < 0

(7)

Therefore, the minimum expected utility for the ambiguity-averse agent A in equation (6)

can be computed from the predictive distribution of d̃ in equation (2) where the belief µA

is replaced by either m − κs, if θA > 0 or mt + κs, if θA < 0. This implies that agent A’s

problem in equation (6) is equivalent to the problem of agent S but with a “distorted” belief

µA = m− κs or µA = m+ κs. The optimal portfolio of agent i is therefore

θi =
µi − p(1 + r)

γσ2
(
t+1
t

) , i = S,A. (8)

Specifically, for agent A this implies

θA =


m−κs−p(1+r)

γσ2(n+1
n )

> 0 if p(1 + r) < m− κs,

0 if m− κs < p(1 + r) < m+ κs.
m+κs−p(1+r)

γσ2(n+1
n )

< 0 if p(1 + r) > m+ κs

(9)

Figure 1 shows the optimal demand θi as a function of the risky asset’s price p. Agents A

hold a more conservative portfolio than agents S, |θA| < |θS|. Moreover, as it is well-known,

ambiguity aversion implies no-participation. That is, A agents hold a positive amount of

the risky asset when p is sufficiently low, p(1 + r) < m− κs; short the risky asset when p is

sufficiently high, p(1 + r) > m+ κs; and do not participate otherwise.

Equilibrium. We determine the equilibrium price p by imposing market clearing, θA+θS =

1.

12For simplicity, in our analysis we rely on the “max-min” implementation of the Gilboa and Schmeidler
(1989) model, as in Garlappi, Uppal, and Wang (2007). Alternative and less extreme versions of this approach
are possible, such as models with “variational preferences” as in Hansen and Sargent (2001), in which the
desire for robustness can be captured by a “penalty” for deviations from the belief m, see, for example
Anderson, Hansen, and Sargent (2000) and Hansen and Sargent (2008).
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Figure 1: Risky asset demand. The figure shows the risky asset demand θS and θA from
equations (8)–(9) as a function of the risky asset price p. The red line denotes type-A’s
demand; the blue line type-S’s demand; the black line is aggregate demand; and the dashed
line is the aggregate supply of the risky asset. Parameter values: n = 20, γ = 1, κ = 0.15,
σ = 0.1.

Proposition 1. The equilibrium price p is given by

p =
1

1 + r
m− λ, (10)

where λ is the subjective risk premium of the S agent,

λ =


κ
2
σ√
t

+ γ
2

(
t+1
t

)
σ2 if κ ≤ κ∗,

γ
(
t+1
t

)
σ2 if κ > κ∗.

with κ∗ ≡ γ

(
t+ 1√
t

)
σ. (11)

The demand for the risky asset in equations (8) and (9) implies that either both agents

hold long positions or only S agents participate. The expression for the equilibrium subjec-
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tive risk premium in equation (11) shows that the participation of A-type agents is more

likely when risk aversion, volatility, and the number of dividend observation is high. When

both agents participate, i.e., κ < κ∗, the equilibrium risk premium is linear-quadratic in the

dividend volatility σ. The linear term in the expression of λ appears because the preferences

of type-A agents exhibit “first-order” risk aversion, (see, e.g., Segal and Spivak, 1990). In-

tuitively, unlike S agents who are locally risk-neutral, A agents are locally risk-averse and

demand a compensation for holding a vanishing amount of risk. Note that, from equa-

tion (11), the subjective risk premium λ depends only on the dividend volatility σ and the

variance σ2, and it will therefore be constant in an economy in which the dividend variance

is a known constant.

Substituting the equilibrium price p from equation (10) in the agents’ demand func-

tions (8) and simplifying we obtain that, when both agents participate, the equilibrium

weights are

θA =
1

2
− κ

2γ

( √
t

t+ 1

)
1

σ
, (12)

θS =
1

2
+

κ

2γ

( √
t

t+ 1

)
1

σ
. (13)

Equations (12)–(13) show that the equilibrium portfolio holdings do not depend on the

agents’ beliefs about the mean but only on the dividend volatility, the risk and the ambiguity

aversion parameters, and the number of observations. As the number of observations t

increases, the portfolio weights of both agents converge to 1/2, and the effect of ambiguity

aversion, risk aversion, and dividend volatility vanishes.13 This happens because the true

value of the mean dividend is constant and will eventually be learned by both agents. In

Section 3 we generalize the model to allow for perpetual learning.

Figure 2 illustrates the equilibrium portfolio weights θA and θS from equations (12)–(13)

as a function of the dividend volatility σ. The figure shows that if κ < κ∗ or, equivalently,

σ > σ∗ ≡
√
t

t+1
κ
γ

(the vertical dashed line), both agents hold the risky asset in equilibrium.

Furthermore, when both agents participate, A’s risky asset demand is increasing in the

dividend volatility σ while S’s demand is decreasing. As σ → ∞, the portfolio holdings

converge asymptotically to the constant weights θA = θS = 1/2.

13The value 1/2 corresponds to the perfect risk-sharing portfolio when agents have the same value of risk
aversion γ and no aversion to ambiguity. Our analysis can easily be extended to the case of heterogeneous
risk aversion. We refrain from it to highlight the role of heterogeneity in agents’ attitude towards ambiguity.
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Figure 2: Equilibrium portfolios. The figure shows the equilibrium portfolios θA and θS

from equations (12)–(13) as a function of the dividend volatility σ. The vertical dashed line

indicates the participation threshold σ∗ ≡
√
t

t+1
κ
γ
. For values of σ < σ∗, ambiguity-averse A

agents do not hold the risky asset, i.e., θA = 0 and θS = 1. Parameter values: t = 20, γ = 1,
κ = 0.15.

Figure 3 provides an intuition for the structure of the equilibrium holdings in equa-

tions (12)–(13). The dotted curves in the figure represent “iso-portfolio” curves for both

agents, that is, the combination of volatility σ and risk premium λ associated with the same

risky asset demand from equations (8), red-dashed lines, and (9), blue-dashed lines. The

solid black line traces the intersection of complementary iso-portfolio curves, that is the set

of volatility and risk premia (σ, λ) for which the market clears, θS + θA = 1.

From equation (11) in Proposition 1, A agents participate in the market only if the risk

premium exceeds the hurdle λ∗ = κ2

γ(t+1)
= κ√

t
σ∗. The θA = 0 iso-portfolio line intersects the

curve of the equilibrium risk premium line at (σ∗, λ∗). The red-shaded area indicates (σ, λ)

combinations for which A agents do not participate. For values of σ < σ∗, only S agents

hold the risky asset in equilibrium, and the equilibrium risk premium coincides with the
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volatility and risk premium values (σ, λ) that correspond to a given constant portfolio weight
in equations (8) and (9). The solid black line represents the set of points (σ, λ) at which the
market clears, θA + θS = 1, and λ is the equilibrium risk premium λ. The vertical dashed-
dotted line indicates the participation threshold σ∗ ≡

√
t

t+1
κ
γ
, and the horizontal dashed-dotted

line indicates the hurdle risk premium λ∗ = κ√
t
σ∗. Parameter values: t = 20, γ = 1, κ = 0.15.

θS = 100% iso-curve, i.e., the highest blue-dashed line. For values of σ > σ∗, both agents

participate in equilibrium. Lemma A.1 in Appendix A shows that in any equilibrium in

which A agents participate, their iso-portfolio lines in Figure 3 are always flatter than those

of S agents. Intuitively, because A agents hold fewer units of the risky asset than S agents,

starting from an equilibrium in which both A and S participate, A agents require relatively

less compensation than S agents to bear an additional unit of volatility while keeping the

portfolio unchanged. This implies that the marginal rate of substitution between required

risk premium and dividend volatility is strictly higher for S than for A. Because the risk
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premium in an equilibrium where both agents participate lies in between these two extremes,

it will be perceived as “too high” (price too low) by A and “too low” (price too high) by

S, and a gain from trade emerges in which S is willing to sell and A is willing to buy. To

summarize: In equilibrium, A agents hold a “conservative” portfolio but trade “aggressively”

by increasing the holdings of the risky asset following an increase in volatility.

While the above analysis suggests a role for volatility in driving equilibrium flows be-

tween agents that differ in their ambiguity aversion, the stylized model of this section is not

equipped to study how portfolio flows can emerge in equilibrium as a result of learning over

time. In the next section, we develop a model to address this issue.

3 An overlapping-generation model

In this section, we extend the two-period model of the previous section to an infinite-horizon,

overlapping-generation (OLG) setting. The main goal of this analysis is twofold. First,

we confirm the main economic mechanism of the simple model of Section 2 in a dynamic

context. Second, we provide a formal analysis of how portfolio flows can emerge as an

equilibrium outcome when agents who differ in their ambiguity attitude learn about economic

fundamentals.

3.1 Setup

We consider an infinite-horizon OLG model in which each generation consists of type-S and

type-A agents in equal mass, as in Section 2, who live for two periods. The setup we consider

is similar to De Long, Shleifer, Summers, and Waldmann (1990) and Lewellen and Shanken

(2002), however, unlike De Long, Shleifer, Summers, and Waldmann (1990) there are no

noise traders in our model, but agents differ in their attitude towards ambiguity. Unlike

Lewellen and Shanken (2002), each generation consists of heterogeneous agents instead of a

representative agent.

Assets. There is a riskless asset in perfectly elastic supply that pays the interest rate r in

every period t = 1, . . . ,∞ and a risky security in unit supply that pays the dividend dt in

13



each period t. Dividends are iid and are normally distributed,

dt ∼ N (µ, σ2), (14)

with constant mean µ and variance σ2. Agents know that dividends are normally distributed,

but they do not know the moments of the distribution.

Investors. Agents live for two periods with overlapping generations. There is no first-

period consumption or labor supply. In the first period, agents only decide how to allocate

their exogenous wealth between the risky and risk-free asset. In the second period, agents

collect the dividend, liquidate their risky portfolio by selling it to the new incoming genera-

tion, and consume the proceeds. There is no bequest. As in Section 2, we assume that both

agents have CARA preferences but differ in the way they determine expected end-of-period

wealth from historical dividend data: S-agents are subjective expected utility investors with

a unique prior over unknown parameters. A-agents are averse to ambiguity and entertain

multiple priors over the unknown parameters.

Because investors are short-lived, their portfolio decisions do not contain an intertempo-

ral hedging component. However, in equilibrium, to construct their portfolio, generation-t

investors need to form beliefs about both future dividends dt+1 and asset prices pt+1. To do

so, they would need to know how generation-(t+1) forms beliefs and so on, ad infinitum. As

in the case of the two-period model of Section 2, we assume that each generation observes the

past history of realized dividends and performs the same statistical analysis to estimate the

dividend moments and their confidence intervals on which agents’ beliefs are based. Because

of this belief formation process, the set of priors of the ambiguity-averse agent A in each

generation t can be characterized as confidence intervals.

Portfolio flows. The OLG structure of this economy allows us to formally define portfolio

flows. Denoting by θit the t-generation risky asset demand of type-i agents, we define portfolio

flows at time t as

∆θit = θit − θit−1. (15)

A positive flow ∆θit > 0 implies that the t-generation of type-i agents increases risky as-

set holdings relative to the (t − 1)-generation. Such a positive flow represents an intra-

generational trade in which type-i agents buy the risky asset from non-type-i agents. In

Section 3.4, we show how such flows could result from agents’ learning about the dividend

14



variance. In preparation for this result, in Section 3.2 we derive the equilibrium for an OLG

economy in which the dividend variance σ2 is known. This case allows for a closed-form

solution and generalizes the analysis of Section 2.

3.2 Equilibrium with known variance

Figure 4 illustrates the learning process underlying the construction of the equilibrium. The

top part represents the “information processing” step. Both agents agree on the estimate

of the unknown dividend mean and its standard error, that is, the sample mean serves as

a state variable. The bottom part of the figure illustrates the “belief formation” step that

affects agents’ portfolio choice problem.

Information

Beliefs

mt

t

mt+1 = t
t+1
mt + 1

t+1
dt+1

t + 1

µSt = mt

µAt = mt − κ σ√
t

µSt+1 = mt+1

µAt+1 = mt+1 − κ σ√
t+1

dt+1 ∼i N
(
µit, σ

2
(
t+1
t

))
dt+2 ∼i N

(
µit+1, σ

2
(
t+2
t+1

))
Figure 4: Updating and belief formation: known variance. The top part of the
figure illustrates the “information processing” step through which the sample mean mt is
updated upon observation of a new dividend realization dt+1. The bottom part of the figure
illustrates the “belief formation” step, and shows how agents at time t use the information
mt from the information processing step to form predictive distributions about the future
dividend dt+1.

Information processing. At each time t, both types of agents observe a history of t

realized dividends and agree on its sample mean mt and the corresponding standard error st

mt ≡
1

t

t∑
k=1

dk, st ≡
σ√
t
. (16)

The sample mean mt is a state variable that is observable by all agents. The standard error st

of mt is a deterministic fraction of the dividend volatility. At each time t, agents understand
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that the next generation will compute the time t+ 1 sample mean mt+1 after observing the

dividend dt+1 as

mt+1 =
t

t+ 1
mt +

1

t+ 1
dt+1. (17)

Equation (17) represents the updating rule of the state variable mt. The equation highlights

that the state variable mt is “handed” over by generation t to generation t+ 1, who updates

following the observation of the dt+1 dividend. This updating rule is agreed upon by all

agents. The state variable mt and its law of motion (17) are the input for agents’ belief

formation process needed for the construction of an equilibrium.

Belief formation and portfolio choice. Agents in the economy base their beliefs about

the unknown dividend mean µ on the observed state variable mt. Type-S agents’ prior about

µ is given by14

µ ∼S N
(
µSt ,

σ2

t

)
, µSt = mt. (18)

In contrast, ambiguity-averse agents entertain a set of priors Pµt representing a confidence

interval around the sample mean,

Pµt ≡
[
mt − κ

σ√
t
, mt + κ

σ√
t

]
. (19)

Specifically, for A agents the set of priors for the mean µ is

µ ∼A N
(
µAt ,

σ2

t

)
, µAt ∈ P

µ
t . (20)

At each time t, agents are initially endowed with wealth W i
t and choose a portfolio of θit

units of the risky assets. Their wealth at time t+ 1 is

W i
t+1 = W i

t (1 + r) + θit (pt+1 + dt+1 − pt(1 + r)) , i = S,A. (21)

Hence, to determine their portfolios at time t, agents have to form expectations about future

dividends dt+1 and prices pt+1. From the beliefs (18) and (20), the subjective distribution of

14This distribution can be thought of as the Bayesian update of a diffuse prior over µ. See, e.g., Section
2.5 of Gelman, Carlin, Stern, Dunson, Vehtari, and Rubin (2020) for a proof of this result.
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future dividends for i agents is15

dt+1 ∼i N
(
µit, σ

2

(
t+ 1

t

))
, µSt = mt, µ

A
t ∈ P

µ
t . (22)

To determine their optimal portfolio, in addition to the future dividend, agents have to

form expectations about the future price pt+1. We conjecture, and later verify, that the

equilibrium price pt is affine in the state variable mt. Therefore, t-generation agents need to

form expectations about the future state variable mt+1 in order to determine their risky asset

demand. Therefore, using the predictive distributions of the future dividend in equation (22),

the agents’ subjective distribution of the state variable mt+1 is

mt+1 ∼i N
(
mt

(
t

t+ 1

)
+

1

t+ 1
µit, σ

2

(
1

t(t+ 1)

))
, i = S,A, (23)

with µSt = mt and µAt ∈ P
µ
t . Equation (23) shows that when forming beliefs about the

future sample mean mt+1 agents’ subjective distribution differs because of their different

predictive distributions of the future dividend realization dt+1. From equation (23) and the

conjecture that the price pt+1 is affine in mt+1, it follows that for both types of agents the

predictive distribution of the price pt+1 is normal. Both types of t- and t + 1-generation

agents understand and agree on the value of the state variable mt, which can be interpreted

as the historical “knowledge” that is passed on from generation t to generation t + 1. In

Section 3.4, in order to model perpetual learning, we relax the assumption that the state

variable is perfectly communicated across generations and allow for “information leakage”.

Equilibrium. Given the assumption of CARA preferences for both agents, the optimal

portfolios are

θit =
Eit [pt+1 + dt+1]− (1 + r)pt

γVart [pt+1 + dt+1]
, i = S,A. (24)

In equilibrium the price pt is such that asset markets clear, that is θAt +θSt = 1. The following

proposition characterizes the equilibrium price and the portfolio weights in an infinite-horizon

overlapping-generation economy when variance is known.

15See, e.g., Section 2.5 of Gelman, Carlin, Stern, Dunson, Vehtari, and Rubin (2020) for a proof of this
result.
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Proposition 2. The equilibrium price of the risky asset when both agents participate is

pt =
1

r
mt − Λt, (25)

where the risk premium Λt is given by

Λt = gt
κ

2
σ + ft

γ

2
σ2, (26)

with gt and ft deterministic functions of time defined in equations (A.23) and (A.24) of

Appendix A. The equilibrium portfolio weights are

θAt =
1

2
− κ

2γ

(
r
√
t

1 + r(t+ 1)

)
1

σ
, (27)

θSt =
1

2
+

κ

2γ

(
r
√
t

1 + r(t+ 1)

)
1

σ
. (28)

The equilibrium weights (27)–(28) are the infinite-horizon OLG equivalent of the equilib-

rium weights (12)–(13) in the two-period model of Section 2. The portfolio holdings highlight

that only unexpected changes in volatility can generate trade among agents in equilibrium.

As in the simple model of Section 2, A-agents hold conservative portfolios, θAt < θSt , but

increase risk when σ increases, i.e., ∂θAt /∂σ > 0. Unfortunately, a model with constant and

known dividend variance is not rich enough to explain portfolio flows. In the next section, we

extend the analysis to the case in which volatility is unknown and overlapping generations

learn about both the mean and the variance of the dividend process. Such a model delivers

a realistic description of flows in equilibrium and forms the foundation for our empirical

analysis in Section 4.

3.3 Equilibrium with known variance and perpetual learning

Because the unknown dividend mean is constant, the effect of learning on asset prices van-

ishes as the number of dividend observations increases and agents eventually learn the true

parameter. To address this common shortcoming of learning models, we extend the above

analysis to the case in which uncertainty does not disappear even after agents observe a long

history of data. We achieve this goal by assuming that some of the information from past

observations is gradually lost as generations overlap. In a representative agent economy,
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this setting coincides with the idea of “fading memory” as in, e.g., Nagel and Xu (2021),

or “age-related experiential learning”, as in Malmendier and Nagel (2016), Collin-Dufresne,

Johannes, and Lochstoer (2016), and Ehling, Graniero, and Heyerdahl-Larsen (2018).

Perpetual learning. Agents of each generation have a common knowledge about the

unknown true dividend mean µ and know the variance σ2. In the next section we generalize

the analysis to the case of unknown variance. The agents’ knowledge is summarized by prior

distributions available to both types of agents at birth. To model perpetual learning, we

assume that some information leakage occurs when generation t “hands over” information

to generation (t+ 1). As a result, the next generation perceives the inherited knowledge less

precise when updating it with the new dividend observation, dt+1, and hence, puts a weight

on the new dividend observation that is higher than the one the previous generation would

use. Formally, we model this information loss as a shock that affects the informativeness

of the prior about µ. When forming beliefs about the resale price pt+1 of the risky asset,

agents of generation t, however, fully anticipate this information leakage and the information

processing of the next generation. How agents S and A differ in their belief formation is

explained below.

Figure 5 illustrates the learning process underlying the construction of the equilibrium

for the known variance. The top part represents the “information processing” step, referring

to the evolution of the observable state variables. The bottom part of the figure illustrates

the “belief formation” step that affects agents’ portfolio choice.

The state variables representing the information set of the agents in generation t are the

dividend mean mt and the “effective number of observation”, nt (see, e.g., Nagel and Xu

(2021)).16 In generation t, the prior of the mean µ is normally distributed:

µ ∼ N
(
mt,

σ2

nt

)
, (29)

Without information leakage, nt corresponds to the number of observations used for the

estimate of µ. Information leakage leads to a down-weighting of historical data relative to

more recent observations. With a new dividend observation, information is gained, but at

the same time part of the historical information gets lost. So nt does not grow linearly with

16In Appendix A.1 we formally derive the updating recurrences for the state variables mt and nt.
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t t + 1

nt
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nt+1 = ωnt + 1

mt+1 = ωnt
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ω
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)
Figure 5: Updating and belief formation: known variance and perpetual learning.
The top part of the figure illustrates the “information processing” step with information
leakage (ω < 1) in which the state variables nt and mt are updated upon observation of a
new dividend realization dt+1. The bottom part of the figure illustrates the “belief formation”
step, and shows how agents at time t use the information from the state variables in the
information processing step to form predictive distributions about the future dividend.

the number of observations and its dynamics properly accounts for the net-informativeness

of the priors of each generation.

The parameter ω ∈ [0, 1] controls the amount of data handed over to the next generation,

with (1 − ω) the extent of information loss. Information gain and loss is described by the

recurrence

nt+1 = ωnt + 1. (30)

As t grows and information leakage becomes relevant, nt approaches the asymptotic value

n = 1
1−ω . This implies that, for large t, only mt is a state variable of the economy. When

this “steady state” is reached, the gain in estimation precision from observing new dividend

information and the information leakage over time are exactly balanced.

The updated posterior, which serves as the priors for generation t+ 1, is

µ ∼ N
(
mt+1,

σ2

nt+1

)
,

with the new estimate of the dividend mean mt+1 given by

mt+1 =
ωnt

ωnt + 1
mt +

1

ωnt + 1
dt+1. (31)
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Equation (31) shows that the role of the parameter ω is to “blur” the information as it gets

passed across generations. Intuitively, when ω < 1, the (t + 1)-generation partially forgets

information contained in mt and “overweights” the more recent observation dt+1. When

ω = 1 the (t + 1)-generation does not forget the past and equation (31) corresponds to the

standard updating of the sample mean used in equation (17).

Belief formation and portfolio choice. Although both types of agents observe the same

state variables and process information in the same way, they differ in how they use such

information to form beliefs about the distribution of their future wealth. Specifically, S

agents time-t prior about the mean µ is normal with mean µSt = mt,

µ ∼S N
(
µSt ,

σ2

nt

)
, µSt = mt. (32)

In contrast, the ambiguity-averse A agents entertain the following set of normal priors

µ ∼A N
(
µAt ,

σ2

nt

)
, (33)

where µAt belongs to the set

Pµt =

[
mt − κ

σ
√
nt
,mt + κ

σ
√
nt

]
. (34)

At each time t, agents are initially endowed with wealth W i
t and choose a portfolio of θit

units of the risky assets. Their wealth at time t+ 1 is

W i
t+1 = W i

t (1 + r) + θit (pt+1 + dt+1 − pt(1 + r)) , i = S,A. (35)

Hence, to determine their portfolios at time t, agents have to form expectations about future

dividends dt+1 and prices pt+1. Note that agents of generation t do not suffer from memory

loss over the span of their life, thus their belief about the next period’s dividend dt+1 is not

subject to information leakage. However, they rationally anticipate that the t+ 1 generation

uses a different information set to determine pt+1 from dt+1. Standard results from Bayesian

theory imply that agents i’s predictive distribution of future dividends is

dt+1 ∼i N
(
µit, σ

2

(
nt + 1

nt

))
, i = S,A, (36)
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where µSt = mt and µAt ∈ P
µ
t .

The following corollary to Proposition 2 characterizes the equilibrium price and the port-

folio weights in an infinite-horizon overlapping-generation with known variance and perpetual

learning.

Corollary 1. The equilibrium price of the risky asset when both agents participate is

pt =
1

r
mt − Λ, (37)

where the risk premium Λ is given by

Λ = g
κ

2
σ + f

γ

2
σ2, (38)

with g and f constant defined in equations (A.40) and (A.41) of Appendix A. The equilibrium

portfolio weights are

θA =
1

2
− κ

2γ

(
r
√
n

1 + r(n+ 1)

)
1

σ
, (39)

θS =
1

2
+

κ

2γ

(
r
√
n

1 + r(n+ 1)

)
1

σ
. (40)

The equilibrium weights (39)–(40) are the perpetual learning equivalent of the infinite-

horizon OLG equilibrium weights (27)–(28) in Proposition 2. With perpetual learning, agents

do not perfectly learn the mean dividend µ, thus, ambiguity does not vanish over time.

Consequently, portfolio weights θA and θB do not converge to 1/2. Nevertheless, since

dividend volatility σ is known, asymptotic weights are constant and hence there are no

portfolio flows. The asymptotic number of effective observations n̄ = 1
1−ω determines the

effect of ambiguity aversion in the limit for t→∞. The lower ω (i.e., the less information is

passed over from one generation to the next), the more pronounced is the effect of ambiguity

aversion on equilibrium risk aversion and on equilibrium portfolio weights. As in the simple

model of Section 2, A-agents hold conservative portfolios, θA < θS, but increase risk when σ

increases, i.e., ∂θA/∂σ > 0.
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3.4 Equilibrium with unknown variance and perpetual learning

In the model of the previous section there cannot be portfolio flows in equilibrium because

variance is known and constant. In this section, we extend the analysis to the case in which

variance is unknown and agents learn about it by observing dividend realizations. As in the

previous section, we retain the assumption of perpetual learning. Learning about variance,

by generating time-variation in the second moment of returns and gives rise to equilibrium

flows across agents of different type. An alternative way to introduce time-variation in

volatility would be to just assume stochastic and observable volatility. In Section 3.7, we

show that in a model with stochastic volatility ambiguity declines monotonically over time

as any new dividend observation reduces the size of the mean confidence interval.

Unknown variance. When estimating unknown mean and variance from normally dis-

tributed dividends, the predictive dividend distribution is Student-t, see Greene (2020). As

a consequence of the heavy tails of this distribution, the expected CARA utility is not well-

defined (see, e.g. Geweke, 2001; Weitzman, 2007). We overcome this difficulty by relying on

the approach proposed by Bakshi and Skoulakis (2010) who provide a learning framework in

which the dividend variance is constrained to a pre-specified, arbitrary finite interval. They

replace the well-known normal-inverse Gamma framework for updating mean and variances

with a normal-inverse truncated Gamma setup that preserves conjugacy.17 The effect of

restricting the variance is to dampen the fat tails of the Student-t distribution, which allows

us to properly define the agents’ portfolio choice problem.

Information leakage and perpetual learning As in Section 3.3, we model information

leakage as shocks to the priors that reduce the confidence in historical estimates and increase

the responsiveness to new dividend observations. While in the previous section agents learn

only about µ, they now learn about both dividend mean µ and the precision φ = 1/σ2.

Furthermore, information leakage affect the priors of both, as we describe below. Agents

of each generation have a common knowledge about µ and φ ≡ 1/σ2. This knowledge

is summarized by prior distributions available to both types of agents at birth. When

generation t “hands over” information to generation (t+1) some information leakage occurs.

17See, e.g., Gelman, Carlin, Stern, Dunson, Vehtari, and Rubin (2020) for an introduction to Bayesian
data analysis, including Bayesian updating of prior distributions to newly observed information and the
concept of conjugacy.
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As a result, the next generation perceives the inherited knowledge less precise when updating

it with the new dividend observation, dt+1, and hence, puts a weight on the new dividend

observation that is higher than the one the previous generation would use. Formally, we

model this information loss as a shock that affects the priors about µ and φ. When forming

beliefs about the resale price pt+1 of the risky asset, agents of generation t, however, fully

anticipate this information leakage and the information processing of the next generation.

How agents S and A differ in their belief formation is explained below.

Figure 6 illustrates the learning process underlying the construction of the equilibrium

for the case of unknown variance. The top part represents the “information processing” step,

referring to the evolution of the observable state variables. The bottom part of the figure

illustrates the “belief formation” step that affects agents portfolio choice problem.

Information

Beliefs

Information leakage

t t + 1

nt, νt

bt

mt

nt+1 = ωnt + 1, νt+1 = ωνt + 1

bt+1 = ωbt + ωnt
ωnt+1

(dt+1 −mt)
2

mt+1 = ωnt
ωnt+1

mt + 1
ωnt+1

dt+1

E
ω

dt+1 ∼i tDνt
[
µit, β

i
t,
nt+1
nt

]
dt+2 ∼i tDνt+1

[
µit+1, β

i
t+1,

nt+1+1
nt+1

]
Figure 6: Updating and belief formation: unknown variance and perpetual learn-
ing. The top part of the figure illustrates the “information processing” step with information
leakage (ω < 1) in which the state variables nt, bt and mt are updated upon observation of
a new dividend realization dt+1. The bottom part of the figure illustrates the “belief forma-
tion” step, and shows how agents at time t use the information from the state variables in
the information processing step to form predictive distributions about the future dividend.

Now we describe the “data processing” in a normal-inverse truncated Gamma setup in

detail. The prior for the precision φ is a truncated Gamma with νt degrees of freedom and

“shape” parameter bt:

φ ∼ TG

[
νt
2
,
bt
2

;φ, φ

]
, 0 < φ < φ <∞. (41)

The shape parameter bt is essentially the sum of historical squared errors. The parameters

φ and φ are arbitrary truncation constants and all agents agree on these bounds for the

precision. Truncating the precision is key to guarantee existence of agents’ expected utility.
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Conditional on φ the prior of the mean µ is normally distributed:

µ|φ ∼ N
(
mt,

1

ntφ

)
, (42)

with nt describing the precision of the prior about µ relative to the dividend variance.

The generation-t information set consists of the state variables mt, bt, nt, and νt. Without

information leakage, nt corresponds to the number of observations used for the estimate of

µ and νt = nt − 1. As we discuss below, information leakage leads to a down-weighting

of historical data relative to more recent observations. With a new dividend observation,

information is gained, but at the same time part of the historical information gets lost. So

nt and νt do not grow linearly with the number of observations, but their dynamics properly

accounts for the net-informativeness of the priors of each generation. We therefore refer to

nt as “effective number of observations” in the sense it is used by Weitzman (2007), Bakshi

and Skoulakis (2010), and Nagel and Xu (2021).

The parameter ω ∈ [0, 1] controls the amount of data handed over to the next generation,

with (1 − ω) the extent of information loss. Appendix B.2 provides details about how we

explicitly model the shocks to the priors about µ and φ and how the state variables are

updated in a Bayesian way with new dividend information. Information gain and loss is

described by the recurrence

nt+1 = ωnt + 1, νt+1 = ωνt + 1. (43)

For small t, νt ≈ nt − 1. However, as t grows and information leakage becomes relevant,

both nt and νt approach a common asymptotic value n = 1
1−ω . This implies that, for large t,

only mt and bt are state variables of the economy. When this “steady state” is reached, the

gain in estimation precision from observing new dividend information and the information

leakage over time are exactly balanced.

The updated posteriors, which serve as the priors for generation t+ 1, are

φ ∼ TG

[
νt+1

2
,
bt+1

2
;φ, φ

]
,

µ|φ ∼ N
(
mt+1,

1

nt+1φ

)
,
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with the new estimate of the dividend mean mt+1 given by

mt+1 =
ωnt

ωnt + 1
mt +

1

ωnt + 1
dt+1, (44)

and the updated sum of squared errors bt+1 given by

bt+1 = ωbt +
ωnt

ωnt + 1
(dt+1 −mt)

2. (45)

The parameter ω “blurs” information as it gets passed across generations. Intuitively, when

ω < 1, the (t + 1)-generation partially forgets the information contained in mt and “over-

weights” the more recent observation dt+1. When ω = 1 the (t + 1)-generation does not

forget the past and equation (44) corresponds to the standard updating of the sample mean

used in equation (17). Likewise, equation (45) shows that the information bt about historical

variance is down-weighted to ωbt before being updated with the newly observed squared

error (dt+1 −mt)
2.

Belief formation and portfolio choice. Although both types of agents observe the

same state variables and process information in the same way, they differ in how they use

such information to form beliefs about the distribution of their future wealth. Specifically,

S agents time-t prior about the precision φ is truncated Gamma distributed with shape

parameter βSt = bt,

φ ∼S TG

[
νt
2
,
βSt
2

;φ, φ

]
, βSt = bt, 0 < φ < φ <∞, (46)

and, conditional on φ, their prior about the mean µ is normal with mean µSt = mt,

µ|φ ∼S N
(
µSt ,

1

ntφ

)
, µSt = mt. (47)

In contrast, the ambiguity-averse A agents entertain the following set of truncated Gamma-

normal priors

φ ∼A TG

[
νt
2
,
βAt
2

;φ, φ

]
, (48)

µ|φ ∼A N
(
µAt ,

1

ntφ

)
, (49)
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where (µAt , β
A
t ) belong to the set

P(µ,σ2)
t =

{
(µAt , β

A
t ) : µAt ∈ Pmt , βAt ∈ Pbt

}
, (50)

with

Pmt =

[
mt −

κ√
ntEAt [φ|βAt ]

,mt +
κ√

ntEAt [φ|βAt ]

]
, (51)

Pbt =
[
`bt, ¯̀bt

]
, 0 < ` < 1 < ¯̀. (52)

At each time t, agents are initially endowed with wealth W i
t and choose a portfolio of θit

units of the risky assets. Their wealth at time t+ 1 is

W i
t+1 = W i

t (1 + r) + θit (pt+1 + dt+1 − pt(1 + r)) , i = S,A. (53)

Hence, to determine their portfolios at time t, agents have to form expectations about

future dividends dt+1 and prices pt+1. Note that agents of generation t do not suffer from

memory loss over the span of their life, thus their belief about the next period’s dividend

dt+1 is not subject to information leakage. However, they rationally anticipate that the

t + 1 generation uses a different information set to determine pt+1 from dt+1. Lemma B.1

in Appendix B.1 shows that agents i’s predictive distribution of future dividends is a non-

standardized “dampened” Student-t18

dt+1 ∼i tDnt

[
µit, β

i
t ,
nt + 1

nt

]
, (54)

where (µSt , β
S
t ) = (mt, bt) and (µAt , β

A
t ) ∈ P(µ,σ2)

t . The dampened Student-t distribution

has thinner tails than the Student-t. This guarantees the existence of a moment generating

function, which allows us to formally define the agent’s expected utility and solve for optimal

portfolios.

The following proposition characterizes the time-t generation expected utility for the case

in which both the mean and variance are unobservable.

Proposition 3. Suppose dt ∼ N (µ, σ2), with µ and σ unobservable and that agents i = S,A

form beliefs µit and βit about µ and σ2 as described in equations (47)–(46) and (49)–(48).

18See Definitions B.1 and B.2 in Appendix B.1 for a formal definition of the density of a dampened
t-distribution.
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Then, given a portfolio θit and state variables mt, bt, nt, and νt, the time-t expected utility of

future wealth W i
t+1 from equation (21) is

Eit[u(W i
t+1)] =

1

C(βit , νt;φ, φ)

∫ φ

φ

Eit[u(W i
t+1)|φ]f i(φ)dφ, (55)

with f i(φ) = φ
νt
2
−1e−φ

βit
2 the density of the truncated Gamma distribution, C(βit , νt;φ, φ) an

integration constant defined in equation (B.1) of Appendix B.2 and

Eit[u(W i
t+1)|φ] = −1

γ
e−γ(1+r)(Wt−θpt)

√√√√ φ

2
(
nt+1
nt

)
π

∫ ∞
−∞

e
−γθit(µit+eit+1+pt+1)− 1

2
φ

(nt+1
nt )

(eit+1)2

deit+1.

(56)

In equation (56), eii+1 = dt+1−µit denotes agents i’s dividend surprise, pt ≡ pt(mt, bt, nt, νt),

for all t, and the t+ 1 state variables are

nt+1 = ωnt + 1, νt+1 = ωνt + 1, ω ∈ [0, 1], (57)

mt+1 =

(
1− 1

nt+1

)
mt +

1

nt+1

dt+1, (58)

bt+1 = ωbt + ω
nt
nt+1

(dt+1 −mt)
2. (59)

The above proposition characterizes the expected utility of future wealth for a given

portfolio θit. The existence of the expected utility in equation (55) follows from the fact

that the dividend variance is truncated over the bounded support [1/φ, 1/φ], which results

in dampened t-distributed dividends, see Bakshi and Skoulakis (2010). The boundedness of

this variance implies boundedness of the risk premium in equilibrium. This guarantees that

the equilibrium price pt+1 is finite, and hence the integral in equation (56) is well defined.

Optimal portfolios. In each generation, agents face the budget constraint (21) and choose

their optimal portfolio by solving, respectively, the following maximization problems,

max
θSt

ESt [u(W S
t+1)], (60)

and

max
θAt

min
(µAt ,β

A
t )∈P(µt,σ

2)
t

EAt [u(WA
t+1)], (61)
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where the expected utility Eit
[
u(W i

t+1)
]

is derived in Proposition 3 and the set of prior

P(µ,σ2) is defined in equation (50). While the above setup allows to consider ambiguity

aversion about both mean and variance, in the max-min setting of Gilboa and Schmeidler

(1989) the ambiguity-averse agent always elects the highest possible return variance in the set

P(µ,σ2) when constructing optimal portfolios, see, e.g., Easley and O’Hara (2009). Therefore,

the portfolio choice problem with ambiguity about both µ and σ2 reduces to a problem with

ambiguity only about µ, where βAt is fixed at the maximum over the set of its possible values,

that is, `bt.

Equilibrium. The optimal demand of the risky asset is therefore determined by the first-

order conditions
dEit[u(W i

t+1)]

dθit
= 0, i = S,A. (62)

By Proposition 3, the optimal demand θit and hence the equilibrium price pt depend on the

subjective distribution of the future dividend dt+1 and price pt+1.

To construct an equilibrium, we focus on large values of t, for which nt = νt = n. This

reduces the state variables to two only: mt and bt. Under this assumption, we first solve for

the price pt in a fictitious economy with τ periods, where we can use the terminal condition

pt+τ = 0. We conjecture, and verify, that the equilibrium price in this fictitious economy

takes the form

p(mt, bt, τ) = h(t, τ)mt − Λ(bt, τ). (63)

The price in equation (63) is the discounted expected future dividend income minus a risk

premium Λ(bt, τ) that depends on the current belief about the dividend volatility, character-

ized by bt, and the time horizon τ . The time t equilibrium price in the overlapping-generation

economy is given by the limit as τ →∞ of p(mt, bt, τ)

p(mt, bt) =
1

r
mt − Λ(bt). (64)

Hence, to construct an equilibrium, we must determine the risk premium Λ as a univariate

function of bt. Unfortunately, a closed-form expression is not available for the case with

learning about variance. In Appendix C we provide details of the numerical procedure we

use to construct the equilibrium.
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3.5 Equilibrium flows

Proposition 2 in Section 3.2 shows that, in an equilibrium when both types of agents partic-

ipate, portfolio holdings depend on the dividend volatility, σ. This result suggests that, in

an economy with both ambiguity-averse and ambiguity-neutral agents, changes in volatility

play a key role in determining portfolio flows. When the volatility parameter is not known,

as in Section 3.4, agents’ learning about volatility naturally generates time-variation in the

subjective beliefs about volatility, which in turn gives rise to inter-generational portfolio

flows in equilibrium. In this section, we illustrate the implications of the equilibrium model

of Section 3.4 for the dynamic of portfolio flows and risk premia.
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Figure 7: Equilibrium portfolios and volatility. The figure shows A and S agents’
equilibrium portfolios as a function of the standard deviation estimate σ̂t ≡

√
bt/νt, where

bt is the sum of squared error and νt the degrees of freedom. The dividend mean and variance
are unknown to agents, as in Section 3.4. Parameters values: κ = 1, φ and φ such that the

true volatility σ ∈ [0.2, 0.6], ` = 1.05, r = 0.1, and νt = n = 20.

Figure 7 shows that A-agents’ (S-agents’) equilibrium portfolio from the overlapping-

generation economy of Section 3.4 is an increasing (decreasing) function of the standard

deviation estimate σ̂t =
√
bt/νt. This pattern is consistent with the intuition we developed
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Figure 8: Equilibrium portfolios and dividend surprise. The figure shows the equi-
librium portfolio of A-agents (left panel) and S-agents (right panel) as a function of the
standard deviation estimate σ̂t ≡

√
bt/νt = 0.3, where bt is the sum of squared error and

νt the degrees of freedom. Different lines corresponds to different values of the ambiguity
aversion parameter κ. Parameters values: φ and φ such that σ ∈ [0.2, 0.6], ` = 1.05, r = 0.1,
and νt = n = 20.

in the two-period model of Section 2 and with the OLG model with known variance in

Section 3.2. In both cases, in fact, the portfolio weights of A-agents (S-agents) are increasing

(decreasing) in the volatility σ. Figure 7 extends this intuition to a realistic model in which

variance is unknown. In the figure we set an a-priori restriction of σ ∈ [0.2, 0.6]. When the

estimated σ̂t takes values outside this range, agents become very confident that the true σ

is either at the upper or at the lower bound of the a-priori interval. Therefore, as the figure

shows, the portfolio weights are less sensitive to changes in σ̂t for values outside the range

of [0.2, 0.6].

The dependence of the portfolio weights θAt and θSt on σ̂t illustrated in Figure 7 has a

direct counterpart in terms of dividend “surprises”, i.e., deviations of the realized dividend

from the historical mean mt. Figure 8 shows the equilibrium risky asset holdings of A-

agents (left panel) and S-agents (right panel) as a function of this surprise. Consistent with

the structure of the portfolios described in Figure 7, Figure 8 shows that large dividend

surprises are associated with large subjective values of volatility. Different lines corresponds

to different values of the ambiguity aversion parameter κ. Larger values of κ imply stronger
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ambiguity aversion and more conservative (aggressive) portfolios for A-agents (S-agents).

The U-shape nature of the equilibrium portfolios in the left panel of Figure 8 implies that A-

agents are more aggressive than S-agents in their trades. After large positive and negative

surprises A-agents increase their risky asset holdings. Figure 7 confirms this finding by

explicitly illustrating how A-agents equilibrium weights depend on the observed standard

deviation estimate σ̂t. Heterogeneity in ambiguity attitude is crucial for this result. In

fact, in an economy in which A-agents are ambiguity neutral (κ = 0) there are no flows in

equilibrium, even if agents differ in their degree of risk aversion.

Modelling time-variation in volatility through the learning process allows us to explicitly

derive and analyze equilibrium flows. In Figure 9, we report the equilibrium flows ∆θAt

defined in equation (15), from S-agents to A-agents, for a random path of dividend realiza-

tions. The solid line reports the time series of normalized surprises while the bars represent

flows. Consistent with the intuition illustrated in Figures 7 and 8, following large positive

and negative surprises, ambiguity-averse A-agents increase their holding of the risky asset

by buying from ambiguity-neutral S-agents, ∆θAt > 0. In contrast, periods with low sur-

prises are characterized by A-agents selling to S-agents. The figure therefore reiterates the

aggressiveness of ambiguity-averse agents’ trades when faced with large dividend surprises

and confirms, in an infinite horizon model with learning about mean and volatility, the main

intuition developed in the simple two-period model of Section 2.

3.6 Return predictability

In this section, we explore the implications of our model for return predictability. Figure 10

shows the equilibrium risk premium as a function of the standard deviation estimate σ̂t in

the steady state of the overlapping-generation economy of Section 3.4. Not surprisingly, the

risk premium is an increasing function of the estimated standard deviation. Hence, unlike

the case in which variance is known and the risk premium is constant (see equation (26) in

Proposition 2), the risk premium is time-varying if agents learn about the variance. This, in

turn, implies that returns are predictable in our economy.

To illustrate the origin of return predictability in our model, consider first the case in

which the true dividend mean is constant and unknown, while the variance is constant

and known to all investors, as in Section 3.2. This case is similar to the economy studied

by Lewellen and Shanken (2002). In such a setting, after positive dividend realizations,
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Figure 9: Portfolio flows on a simulated path. The figure illustrates A-agents’s sur-
prises, eAt = dt+1 − µAt (left axis), and portfolio flows, ∆θAt (right axis). The state variable
b0 is chosen such that σ̂0 =

√
b0/n = 0.3. Parameters values: κ = 1, φ and φ such that the

true volatility σ ∈ [0.2, 0.6], ` = 1.05, r = 0.1, and νt = n = 20.

investors’ estimate of the mean dividend mt is higher than the true mean µ, and the stock is

“over-priced” relative to its fundamental value. Since the true mean is lower than investors’

estimate, the price will be mean reverting. An econometrician looking at the data will find

that high prices predict lower returns. However, such a return predictability cannot be

exploited by agents in the economy. To see why this is the case, let λobj

t = rΛobj

t = µ − ptr
denote the (per period) objective risk premium, and decpmpose it as follows

λobj

t = µ− ptr = µ− µit︸ ︷︷ ︸
unobservable

+µit − ptr︸ ︷︷ ︸
≡λit

, (65)
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Figure 10: Equilibrium risk premium. The figure shows the equilibrium risk premium
Λt as a function of the standard deviation estimate σ̂t ≡

√
bt/νt when both the dividend

mean and variance are unknown. Parameters values: κ = 1, φ and φ such that the true

volatility σ ∈ [0.2, 0.6], ` = 1.05, r = 0.1, and νt = n = 20.

with λit denoting i-agents’ subjective risk premium. Using the equilibrium price pt derived

in Proposition 2, equations (37)–(26), we deduce that the subjective risk premium λit is only

a deterministic function of t. Following a positive dividend realization, agents’ subjective

estimate of the mean µit increases and the objective expected risk premium λobj

t decreases,

implying lower expected returns. However, unlike the econometrician, investors do not know

the true dividend mean µ and therefore cannot exploit such a predictability.

In contrast, when the variance is not known and there is perpetual learning, as in the

model of Section 3.4, the equilibrium subjective risk premium is time-varying as it explicitly

depends on the the state variable bt. Formally, we can use equation (64) to define the
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objective and subjective risk premia, Λi
t and Λobj

t , as follows

pt(mt, bt) =
1

r
mt − Λ(bt) =

1

r
µit −

(
1

r
(µit −mt) + Λ(bt)

)
︸ ︷︷ ︸

≡Λit(bt)

, (66)

=
1

r
µ−

(
1

r
(µ−mt) + Λ(bt)

)
︸ ︷︷ ︸

≡Λobj
t (bt)

. (67)

Because for S agents, µit = mt, equation (66) implies that Λt(bt) is agents S’s subjective risk

premium. As Figure 10 shows, Λt(bt) is an increasing function of σ̂t ≡
√
bt/νt. This implies

that agents expect higher returns after large positive or negative dividend surprises.19 In

a setting with unknown variance and perpetual learning, subjective risk premia are time-

varying, even in the steady state. Hence, this model gives rise to return predictability that

can be exploited by market participants.

Finally, note that the objective risk premium Λobj

t in equation (67) responds asymmet-

rically to dividend surprises. Positive surprises increase mt and negative surprises decrease

mt. However, dividend surprises, regardless of their sign, increase bt, and hence Λt(bt).

Therefore, an econometrician observing ex-post dividend realization would detect a more

pronounced increase in risk premia following bad dividend news than following good div-

idend news of equal magnitude. This asymmetric reaction to new information is a direct

consequence of learning and does not require additional behavioral assumptions, such as

agents’ over-reaction to bad news. This asymmetry, however, can only be detected ex-post

by an econometrician who knows the true mean dividend µ. Ex-ante, when agents learn from

new observations, changes in the mean estimates mt are immediately absorbed in the asset

price and only the variance estimate—which is symmetric in dividend surprises—causes time

variation in subjective risk premia. Figure 11 illustrates the dynamic of the risk premium

Λt(bt) for a simulated random path of dividend surprises, eit = dt+1 − µit, i = A, S. The

figure shows that the risk premium increases after large positive (t = 20) as well as large

negative (t = 40) surprises, and declines gradually when dividend realizations are close to

their expected value, i.e., surprises are small in magnitude.

19Nagel and Xu (2022) analyze CFO survey data and find that the subjective risk premium is positively
related to subjective estimates of variance and that CFOs’ subjective return expectations strongly depend
on realized variance.
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Figure 11: Risk premium on a simulated path. The figure illustrates surprises eit =
dt+1−µit, i = A, S (left axis), with the corresponding steady state equilibrium risk premium
Λt (right axis). The state variable b0 is chosen such that σ̂0 =

√
b0/n = 0.3. Parameters

values: κ = 1, φ and φ such that σ ∈ [0.2, 0.6], ` = 1.05, r = 0.1, and νt = n = 20.

3.7 Learning about variance vs. stochastic volatility

One might be tempted to argue that a model in which subjective variance is endogenously

time-varying due to learning, as in Section 3.4, is observationally equivalent to a model with

observable stochastic volatility. Although both models exhibit time-variation in volatility,

they have starkly different implication for equilibrium flows. In fact, in a model with learning,

a revision in the estimated variance following a new dividend observation can both increase

or decrease the standard error of the mean. This is because a change in the estimated

variance implies a change in the perceived information quality of all historically observed

dividends. In contrast, in a model with stochastic volatility, any new dividend observation

can only reduce the standard error of the mean and hence its confidence interval. Because
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variance is known, albeit time-varying, a change in variance cannot affect the quality of

past information. Therefore, in the limit with known and stochastic volatility the confidence

interval of the mean collapses to a singleton and the effect of ambiguity on portfolio flows

vanishes.

To illustrate this point, suppose the dividend process dt is iid with unknown and constant

mean µ and time-varying but observable variance σ2
t . In this setting, the Generalized Least

Square (GLS) estimate of the mean mt from a history of t observations is (see, e.g., Chapter 9

in Greene, 2020)

mt =
t∑
i=1

widi, with wi =

1
σ2
i∑t

i=1
1
σ2
i

, (68)

where the weight wi represents the precision of each observation and s2
t =

(∑t
i=1

1
σ2
i

)−1

the

squared standard error of the mean.20

At time t + 1, the updated values of the mean and standard error, after observing the

new realized dividend dt+1 and variance σ2
t+1, are

mt+1 = (1− wt+1)mt + wt+1dt+1, wt+1 =

1
σ2
t+1

1
s2t

+ 1
σ2
t+1

=
s2
t

s2
t + σ2

t+1

(69)

1

s2
t+1

=
1

s2
t

+
1

σ2
t+1

. (70)

Equation (70) shows that with stochastic but known variance, the updated standard error

st+1 does not depend on the new dividend realization dt+1 and that st+1 ≤ st. Hence, new

observations can only reduce the standard error of the mean. Because the standard error

controls the size of the set of priors Pµt = [m − κst,m + κst] in equation (70), in a model

with stochastic volatility a new dividend observation always reduces ambiguity. Dividends

dt+1 observed in times of high volatility σt+1 receive a tiny weight wt+1 in the updated mean

mt+1 and only marginally reduce the standard error st+1.

20Because dividend realizations are independent, the variance of mt is given by

s2t = var(mt) =

t∑
i=1

w2
i var(di)︸ ︷︷ ︸

=σ2
i

=

 1∑t
i=1

1
σ2
i

2
t∑
i=1

[(
1

σ2
i

)2

σ2
i

]
=

1∑t
i=1

1
σ2
i

.

37



In contrast, in the model of Section 3.4 where agents learn about an unknown variance,

large dividend surprises (et+1 = dt+1−mt) increase the estimated variance, directly leading to

a higher estimated standard error of the mean. Therefore, the new signal affects the quality

of all historical dividends, and agents revise their confidence interval of the mean. We

conclude that a model of stochastic but know volatility would imply negligible equilibrium

flows following dividend surprises, contrary to the empirical evidence.

4 Empirical analysis

In this section, we provide evidence in support of our model predictions. Two challenges

arise when bringing the model to the data: (i) how to map the idealized agent types in

our model to observable classes of market participants; and (ii) how to find good empirical

characterizations of surprising changes in future dividend prospects.

With regard to the first challenge, when interpreting the empirical results we take the

ambiguity-averse type-A agents of our model as representatives of the class of individual

investors and type-S agents as representative of the class of institutional investors. This

classification is admittedly crude, given the substantial heterogeneity observed within each

investor type. It is however motivated by a large body of empirical and experimental evi-

dence that favors the interpretation of individual investors being relatively more averse to

uncertainty than institutions. For instance, Li, Tiwari, and Tong (2017) provide empirical

support for the assumption that retail investors have a stronger desire for robustness. More-

over, experimental studies document that ambiguity aversion is influenced by the perceived

competence of decision makers (known as competence hypothesis, see Heath and Tversky,

1991), or “by a comparison with less ambiguous events or with more knowledgeable indi-

viduals” (known as comparison hypothesis, see Fox and Tversky, 1995). Relatedly, Graham,

Harvey, and Huang (2009) argue that investors who perceive themselves competent are likely

to have less parameter uncertainty about their subjective distribution of future asset returns.

Because institutional investors have typically access to larger resources and are professional

investors, they might therefore be perceived by individuals as more knowledgeable.

With regard to the second challenge, we use exceptionally high or low market returns as a

timely signal on which agents condition their expectations about future dividend payments.

In the model, agents use dividend payments as signals of future expected profitability. Ideally,

unexpected firms’ earnings would be a natural measure of changes in profitability. However,
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earnings reports are notoriously noisy and contain outdated information. The use of returns

as indicators for news about profitability is justified by our model, in which realized dividends

and contemporaneous price reactions are highly correlated in equilibrium.

Within this framework, we provide empirical evidence of the two main predictions of our

model: First, exceptionally good or bad news about future corporate profitability lead to

an increase in corporate ownership by individual investors and a corresponding decrease of

holdings by institutional investors. Second, using only in-sample data, investors’ estimate of

the expected risk premium around surprising signals about corporate profitability are higher

than on average.

We conduct our analysis out-of-sample, that is, from the perspective of investors who

learn with fading memory as they observe dividend realizations over time. Specifically, we

are interested in estimating an empirical counterpart of the subjective risk premium λSt in

equation (65) which is observable by investors in real-time.

4.1 Data

We use two different data sources: (i) aggregate level and flow data on corporate equity

holdings of households and the domestic financial sector from 1952.Q1 to 2020.Q4, obtained

from the Federal Reserve of St. Louis database (FRED)21 and (ii) institutional holdings

of U.S. firms from 2000.Q1 to 2020.Q1, obtained from the Thomson Reuters OP Global

Ownership database (Consolidated Holdings), which we augment with information from

Compustat-CapitalIQ. From CRSP we obtain return data of all firms listed at NYSE, AMEX,

and NASDAQ from 1965.01 to 2020.12. The market return is taken from Kenneth French’s

data library.22

We use level and flow data of corporate equities held by households and by components

of the domestic financial sector, according to the FRED definitions: mutual funds, security

brokers and dealers, closed-end and exchange-traded funds, other financial business, private

depository institutions, insurance companies and pension funds, and monetary authority.

Given the inertia in pension funds portfolio allocation, (see, e.g., Agnew, Balduzzi, and

Sunden, 2003; Hu, McLean, Pontiff, and Wang, 2014), we do not consider pension fund data

21Data source: https://fred.stlouisfed.org/tags/series.
22Data source: https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
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in our analysis. From the level and flow data of households and the financial sector, we

compute quarterly aggregated (value-weighted) equity returns.

The Thomson Reuters OP Global Ownership (Consolidated Holdings) database covers

13-F reporting institutions, mutual, pension and insurance funds, declarable stakeholders

and UK share registers. After excluding firms with market cap below $5 millions, we end

up with quarterly data for the time span 2000.Q1-2020.Q1 for 8,488 firms with 274,697

firm-quarter observations.23

To measure surprises in the firms’ future profitability, we use standardized quarterly

market returns, zr, i.e., normalized to have zero mean and unit variance using a 20-quarter

rolling windows, and we group observations in both data sets into five bins. The breakpoints

for bins are given by the 7.5%, 25%, 75%, and 92.5% percentiles of a standard normal

distribution.

4.2 Equilibrium flows

Figure 12 shows the relationship between changes in institutional ownership, ∆θS, and stan-

dardized market returns, zr. The left panel plots aggregate data from the FRED database,

the right panel shows changes in ownership of individual firms from the Thomson Reuters

OP Global Ownership database for firms listed on the NYSE, AMEX or NASDAQ exchanges

and with a market capitalization in excess to $5 million. Mean values are in black, median

values in red. As the figure shows, exceptionally bad as well as exceptionally good returns,

representing signals of extraordinary negative and positive news about corporate profitabil-

ity, are associated with low or even negative changes in institutional ownership. In contrast,

neutral signal realizations, indicating lack of surprise, exhibit an increase in institutional

ownership. These changes should be interpreted relative to the substantial trend towards

institutional ownership which is present since 1980, see Stambaugh (2014).24

23As standard in this strand of literature, outstanding shares not held by institutional investors are
assumed to be held by private investors.

24In the FRED data, institutional ownership (excluding pension funds) increases from 3% in 1952.Q1 to
42% in 2020.Q4. In the individual-firm data, over the sample period from 1999.Q1 to 2020.Q1 institutional
ownership increases from 32% to 59% for firms with a market capitalization in excess to $5 millions, and
from 44% to 76% for firms with a market capitalization exceeding $1 billion. Hence, quarterly changes in
institutional ownership must be compared to the average growth of institutional ownership (approximately
0.14% per quarter for FRED data, and 0.30% per quarter for our individual-firm data).
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Figure 12: Change in institutional holdings and dividend surprises. The figure
shows mean (black) and median (red) quarterly changes in institutional ownership, ∆θS, as
a function of dividend surprises. As a proxy for surprises, we use the standardized quarterly
market returns, zr, obtained from a 20-quarter rolling window. We use zr to group observa-
tions into five bins with breakpoints given by the 7.5%, 25%, 75%, and 92.5% percentiles of a
standard normal distribution. The left panel shows results for data from the Federal Reserve
Bank of St. Louis database. Ownership data are calculated from equity level data of market
participants (households and financials). The right panel shows results for individual firms
listed on NYSE, AMEX or NASDAQ. Ownership data are from Thomson Reuters Global
Ownership database restricted to common shares traded on NYSE, AMEX or NASDAQ with
a market capitalization larger than $5 millions. The market return is taken from Kenneth
French’s data library.

While the reduction of institutional ownership in response to negative surprises is in

line with the ample evidence about private investors acting as liquidity providers who meet

institutional investors’ demand for immediacy (see, e.g., Kaniel, Saar, and Titman, 2008;

Barrot, Kaniel, and Sraer, 2016; Glossner, Matos, Ramelli, and Wagner, 2020; Pástor and

Vorsatz, 2020), this line of reasoning would not explain the reduction in θS after positive

surprises found in both data sets.

Table 1 provides details on the analysis underlying the results in Figure 12. The table

shows that high as well as low standardized returns zr are associated with low contempora-

neous changes in institutional ownership, ∆θS, intermediate zr-values come with an increase

in institutional ownership ∆θS. The results hold regardless of whether we consider the mean
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or the median changes within bins. In the upper panel, we show results for the FRED data

set. In order to corroborate our claim that institutional ownership declines after good and

bad surprises, we conduct a non-parametric Kruskal-Wallis (KW) rank sum test (Kruskal

and Wallis, 1952).25 The KW test confirms that ∆θS differs across bins, and the post-hoc

Dunn test attests that central bins have a significantly higher ∆θS compared to the extreme

bins (see the corresponding p-values).

The lower panel shows results for the Thomson Reuters Global Corporate Ownership

data. Since individual firm observations are correlated within each quarter, we perform a

clustered Wilcoxon rank sum test (clustered by quarter) to conduct the pair-wise comparison

between bins. The results confirm the findings in the FRED data set. Change in institutional

ownership in the first bin (low market returns) is significantly lower than in bins 3 and 4.

Change in institutional ownership in bin 5 is significantly lower than in bin 4.

4.3 Equilibrium risk premium

Our second model prediction is the U-shaped relationship between news and risk premia.

The left panel of Figure 13 shows estimates of the equity risk premium, computed as return

in excess of the 3-month T-Bill rate from aggregate FRED data. The right panel shows

estimates of the market risk premium from a conditional Fama-MacBeth regression using

return data of all stocks (common equity) traded on NYSE, AMEX or NASDAQ from CRSP

in the period from 1965 to 2021. Specifically, we first compute asset βs through time se-

ries regressions of individual monthly returns in excess to the 1-month T-Bill rate on the

value-weighted market excess return over a sliding window of 36 months. We then estimate

cross-sectional regressions of individual quarterly excess returns on these β-estimates (see

Fama and MacBeth, 1973). The slope coefficients of these regressions, i.e., the quarterly

estimates of the market risk premium, are then sorted into bins conditional on the lagged

standardized market return. Hence, the mean and the median coefficient within each bin rep-

resent estimates of the expected compensation per unit of market risk exposure conditional

on lagged standardized returns. Both panels of Figure 13 show that market risk premia are

higher following negative and positive surprises.

25The KW test, an extension of the (Wilcoxon)-Mann-Whitney U-test, is a non-parametric rank-sum
test analyzing whether observations in the different bins originate from the same distribution. While the
test indicates whether observations in one bin are different from observations in the others bins, it does not
indicate which bins cause these results. For that purpose, a subsequent (post hoc) Dunn test (Dunn, 1964)
allows for a pairwise comparison of the bins.
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Consistent with Cao, Wu, and Wu (2022), we find that the low-beta anomaly, that is,

the negative relationship between equity beta and the risk premium, is present during times

of low uncertainty when the standardized market returns zr are close to zero. In contrast,

during times of high uncertainty, i.e., zr far away from zero, there is a positive premium for

bearing market risk, implying that a “betting-against-beta” strategy would not be profitable.

The premium reported in the right panel of Figure 13 does not include the cross-sectional

regression intercept, hence, it should be interpreted as an estimate of the marginal premium

offered for bearing one additional unit of market β risk rather than the total expected

premium for holding the market portfolio. While the expected marginal premium is even

negative in calm times, consistent with the low-beta anomaly, the total premium for holding

the market is positive, since the intercept is significantly positive under these conditions (a

fact also reported by Cao, Wu, and Wu, 2022).
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Figure 13: Risk premia and dividend surprises. The figure shows the mean (black)
and median (red) market risk premia as a function of dividend surprises. As a proxy for
surprises, we use the standardized quarterly market returns, zr, obtained from a 20-quarter
rolling window. We use zr to group observations into five bins with breakpoints given by
the 7.5%, 25%, 75%, and 92.5% percentiles of a standard normal distribution. The left
panel shows results for data from the Federal Reserve Bank of St. Louis database. Return
data are calculated from equity level and flow data of market participants (households and
financials), and the risk premium is computed as excess return over the 3-month T-Bill
rate. The right panel shows the conditional beta premium calculated from Fama-MacBeth
regressions of returns of common shares traded on NYSE, AMEX or NASDAQ with a market
capitalization larger than $5 millions. The market return is taken from Kenneth French’s
data library.
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Table 2 provides details on the analysis underlying the results in Figure 13. The table

shows that while high as well as low lagged standardized returns zr are associated with high

risk premia, intermediate lagged zr-values imply low risk premia. The results hold for the

mean as well as for the median premium within bins. The upper panel shows results for

FRED data while the lower panel shows results for CRSP data. In order to test the claim that

risk premia increase after good and bad surprises, on the right side of both panels we report

a non-parametric Kruskal-Wallis rank sum test. The tests confirm that risk premia differ

across bins, and subsequent post-hoc Dunn tests show that central bins have significantly

lower risk premia compared to the extreme bins, as indicated by the corresponding p-values.

5 Conclusion

We study asset prices and portfolio flows following episodes of increased economic uncer-

tainty through the lens of an equilibrium model in which agents learn about the mean and

the volatility of the endowment process and differ in their aversion towards parameter un-

certainty. We show that, in equilibrium, ambiguity-averse investors hold more conservative

portfolios but trade more aggressively in response to surprises about corporate profitability.

Regardless of the sign of the surprise —positive or negative— ambiguity-neutral (subjec-

tive expected-utility) investors reduce their share in the risky asset while ambiguity-averse

investors increase their share. Moreover, agents’ learning about volatility gives rise to a

time-varying equilibrium risk premium. While in equilibrium innovations to the expected

dividend are immediately absorbed in prices, large positive and negative surprises generate

upward revisions in the estimated dividend volatility and increase risk premia. When some

of the agents are ambiguity averse, the equilibrium risk premium depends linearly on both

the variance and the volatility of the endowment. Therefore, when the estimated volatility

increases, as it happens following dividend surprises, the linearity in volatility makes the

risky asset relatively more attractive to ambiguity-averse agents who increase their risky

holdings compared to ambiguity-neutral agents.

We first illustrate these results in a simple model which is analytically tractable. We

then analyze an infinite-horizon overlapping-generation model. When agents learn about

the mean and the variance of the endowment process, ambiguity is time-varying and persists

over time. The model highlights that three main ingredients are needed to explain flows of

funds and risk premia in our setting: (i) differences in ambiguity aversion; (ii) learning about
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variance; and, (iii) market clearing. Without ambiguity aversion, agents do not rebalance

their portfolio after surprises, but only risk premia react. Without learning about dividend

variance, the equilibrium risk premium is a constant and agent’s portfolios are static. Similar

to prior work in the literature on learning and predictability, risk premia in our model are

counter-cyclical. However, in contrast to studies that assume a known variance, in our

setting a part of the risk-premium is observable to forward-looking investors. From an

econometrician’s perspective, this implies that good and bad surprises have an asymmetric

effect on the objective risk premium.

Finally, we bring the predictions of our model to the data by analyzing portfolio holdings

of institutional and individual investors. Using aggregated data from FRED as well as sin-

gle stock data from the CRSP-Compustat universe, we provide evidence that institutional

investors tend to reduce their share in corporate ownership when indicators of future cor-

porate profitability are exceptionally bad and exceptionally good. We further find that the

expected risk premium is higher after both positive and negative surprises. These findings are

consistent with the predictions of our model when institutions trade with ambiguity-averse

investors who are conservative in their holdings but aggressive in their trades.
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FRED

mean median KW: χ2 = 13.93, p = 0.0075

bin zr ∆θS (%) zr ∆θS (%) n Dunn post hoc

1 -2.07 -0.12 -1.96 -0.08 24 bin 1 2 3 4
2 -1.01 0.34 -1.02 0.18 33 2 0.00
3 0.06 0.20 0.09 0.12 146 3 0.01 0.24
4 1.03 -0.01 1.04 0.02 36 4 0.36 0.02 0.06
5 1.91 0.02 1.85 -0.03 18 5 0.42 0.05 0.18 0.98

Thomson Reuters Global Ownership

mean median

bin zr ∆θS (%) zr ∆θS (%) n clustered Wilcoxon rank sum

1 -2.05 -0.23 -1.73 -0.01 37,457 bin 1 2 3 4
2 -1.16 -0.03 -1.24 0.01 23,774 2 0.51
3 0.07 0.31 0.14 0.12 162,316 3 0.05 0.29
4 1.03 1.03 1.06 0.31 40,832 4 0.01 0.05 0.05
5 1.86 0.22 1.94 0.04 10,318 5 0.20 0.62 0.18 0.08

Table 1: Change in institutional holdings and dividend surprises. The table shows
the relationship between institutional ownership ∆θS (%) and dividend surprises zr. As a
proxy for surprises, we use the standardized quarterly market returns, zr, obtained from a
20-quarter rolling window. We use zr to group observations into five bins with breakpoints
given by the 7.5%, 25%, 75%, and 92.5% percentiles of a standard normal distribution. The
number of observations in each bin is n, and ∆θS (%) is the quarterly change in institutional
ownership in percent. The top panel shows results for data from the Federal Reserve Bank
of St. Louis database. Ownership data are calculated from equity level data of market
participants (households and financials). Kruskal-Wallis (KW) tests for difference in median
values of ∆θS across the bins, and the post hoc Dunn test is used to conduct pairwise
comparisons. The bottom panel shows results for individual firms with ownership data from
Thomson Reuters Global Ownership database restricted to common shares traded on NYSE,
AMEX or NASDAQ and a market capitalization larger than $5 millions. The clustered
Wilcoxon rank sum test clusters observations within the same quarter when performing
bin-wise comparisons. The market return is taken from Kenneth French’s data library.
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FRED

mean median KW: χ2 = 10.60, p = 0.0314

bin lag(zr) r − rf (%) lag(zr) r − rf (%) n Dunn post hoc

1 -2.07 4.25 -1.96 5.95 24 bin 1 2 3 4
2 -1.01 0.54 -1.02 2.43 33 2 0.12
3 0.06 1.30 0.09 2.50 146 3 0.08 0.87
4 1.02 -0.03 1.04 0.72 35 4 0.03 0.47 0.27
5 1.91 6.24 1.85 6.07 18 4 0.54 0.04 0.02 0.01

CRSP

mean median KW: χ2 = 18.72, p = 0.0009

bin lag(zr) r − rf (%) lag(zr) r − rf (%) n Dunn post hoc

1 -2.01 9.96 -1.76 7.05 22 bin 1 2 3 4
2 -1.01 0.27 -0.99 -1.89 27 2 0.00
3 0.04 -0.81 0.06 -0.93 125 3 0.00 0.98
4 0.98 1.44 0.98 -0.55 34 4 0.01 0.49 0.38
5 1.87 5.16 1.78 2.96 16 5 0.49 0.04 0.02 0.12

Table 2: Risk premia and dividend surprises. The table shows the relationship between
risk premia and dividend surprises, zr. We use standardized quarterly market returns zr (i.e.
normalized to have zero mean and unit variance using a rolling window of 20 quarters)
to group observations into five bins, and within each bin we calculate mean and median
values. The breakpoints for bins are given by the 7.5%, 25%, 75%, and 92.5% percentiles of
a standard normal distribution. The number of observations in each bin is n, and r− rf (%)
is the quarterly excess return in percent. Observations are according to lagged zr into five
bins, and within each bin we calculate mean and median values. The top panel shows results
for data from the Federal Reserve Bank of St. Louis database. Return data are calculated
from equity level and flow data of market participants (households and financials), and the
risk premium is indicated as excess return over the 3-month T-Bill rate. Kruskal-Wallis
(KW) tests for difference in the risk premia r − rf across the bins, and the post hoc Dunn
test is used to conduct pairwise comparisons. The bottom panel shows conditional Fama-
MacBeth estimates of the market risk premium obtained in the cross-section of firms listed
on NYSE, AMEX or NASDAQ, with a market capitalization larger than $5 millions. The
market return is taken from Kenneth French’s data library.
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A Proofs

Proof of Proposition 1

The agents solve the following optimization problem

max
θi

E
[
−1

γ
e−γi(W

i(1+r)+θi(d̃−p(1+r))

]
. (A.1)

Using the normality of d̃, the optimal portfolio weights are:

θi =
µi − p(1 + r)

γσ2
(
t+1
t

) , (A.2)

where µs = m and µA = m− sign(θA)κs. In equilibrium θA ≥ 0, therefore, imposing market

clearing we obtain

p =
1

r + 1
m− λ, (A.3)

where

λ =


κ
2
σ√
t

+ γ
2

(
t+1
t

)
σ2 if κ ≤ κ∗,

γ
(
t+1
t

)
σ2 if κ > κ∗.

with κ∗ ≡ γ

(
t+ 1√
t

)
σ (A.4)

Lemma A.1. Let λ̄S(σ) and λ̄A(σ) denote the iso-portfolios of agent S and A, respectively.

For all equilibrium values λ of the risk premium in equation (11), we have that ∂λ̄A(σ)/∂σ <

∂λ̄S/∂σ.

Proof. From equation (9) we derive the risk premium that A-agents require for holding a

fraction θA of the risky asset (the iso-portfolio line) and its derivative with respect to the

dividend volatility σ as

λ̄i =
κσ√
t

+ γθi
(
t+ 1

t

)
σ2, (A.5)

∂λ̄i

∂σ
=

κ√
t

+ 2γθi
(
t+ 1

t

)
σ., i = S,A. (A.6)
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We prove that along the equilibrium risk premium λ in equation (11) the slope of λ̄A is

flatter than the slope of λ̄S, i.e.,

∂λ̄A

∂σ
<

∂λ̄S

∂σ
. (A.7)

Using equations (A.5)–(A.6), and market clearing, θS = 1− θA, this is equivalent to prove

κ√
t

+ 2γθA
(
t+ 1

t

)
σ < 2γ(1− θA)

(
t+ 1

t

)
σ, (A.8)

or, rearranging,

4γθA
(
t+ 1

t

)
σ < 2γ

(
t+ 1

t

)
σ − κ√

t
. (A.9)

We restrict our analysis to the region where both agents are in the market, σ >
√
t

t+1
κ
γ
, and

substitute equilibrium portfolios weights from equation (12) into the above inequality. This

yields

2γ

(
t+ 1

t

)
σ − 2

( √
tκ

(t+ 1)σ

)(
t+ 1

t

)
σ < 2γ

(
t+ 1

t

)
σ − κ√

t
, (A.10)

2
κ√
t

>
κ√
t
, (A.11)

which is true for κ > 0 and n <∞ independently of σ.

Proof of Proposition 2

We first solve for the equilibrium in a fictitious finite-horizon overlapping-generation economy

with horizon τ , and we then derive the equilibrium in the infinite horizon as limit for τ →∞.

Let pt,τ be the time t equilibrium price in a τ -period economy. The risky asset demand

θit,τ , i = A, S is

θit,τ =
Eit [pt+1,τ−1 + dt+1]−Rpt,τ
γVart [pt+1,τ−1 + dt+1]

, τ > t,
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where we denoted by R ≡ (1 + r). Using the fact that pt,0 = 0 for all t, we can construct the

equilibrium in a τ = 1 economy. In this economy, when both agents participate

θit,1 =
Eit [dt+1]−Rpt,1
γVart [dt+1]

=
µit −Rpt,1
γσ2

(
t+1
t

) ,
where

dt+1 ∼i N
(
µit, σ

2

(
t+ 1

t

))
, with µSt = mt and µAt = mt − κ

σ√
t
. (A.12)

Imposing market clearing we have

pt,1 =
1

R
mt − Λt,1, (A.13)

where the risk premium Λt,1 is

Λt,1 =
κ

2
gt,1σ +

γ

2
ft,1σ

2, with gt,1 =
1

R

1√
t
, and ft,1 =

1

R

(
t+ 1

t

)
. (A.14)

In a τ = 2 period economy, agents demand is

θit,2 =
Eit [pt+1,1 + dt+1]−Rpt,2
γVart [pt+1,1 + dt+1]

, (A.15)

where pt+1,1 is given by equation (A.30). Because

mt+1 =
t

t+ 1
mt +

1

t+ 1
dt+1,

using the predictive distribution (A.29) we obtain

ESt [pt+1,1 + dt1] =

(
1 +

1

R

)
mt − Λt+1,1, (A.16)

EAt [pt+1,1 + dt1] =

(
1 +

1

R

)
mt −

(
1 +

1

R(t+ 1)

)
κ
σ√
t
− Λt+1,1, (A.17)

Vart [pt+1,1 + dt+1] =

(
1 +

1

R(t+ 1)

)2(
t+ 1

t

)
σ2, (A.18)
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with Λt+1,1 defined in equation (A.31). Substituting in equation (A.32) and imposing market

clearing we obtain

pt,2 =

(
1

R
+

1

R2

)
mt − Λt,2, (A.19)

where

Λt,2 =
κ

2
gt,2σ +

γ

2
ft,2σ

2, (A.20)

with

gt,2 =
1

R

(
1 +

1

R(t+ 1)

)
1√
t

+
1

R2

1√
t+ 1

,

ft,2 =
1

R

(
1 +

1

R(t+ 1)

)2(
t+ 1

t

)
+

1

R2

(
t+ 2

t+ 1

)
.

Following similar steps, we can show that for a generic τ the equilibrium price is:

pt,τ =
τ∑
i=1

1

Ri
mt − Λt,τ , (A.21)

where

Λt,τ =
κ

2
gt,τσ +

γ

2
ft,τσ

2, (A.22)

with

gt,τ =
τ∑
j=1

1

Rτ+1−j

(
1 +

1

t+ τ − j + 1

j−1∑
i=1

1

Ri

)
1√

t+ τ − j
,

ft,τ =
τ∑
j=1

1

Rτ+1−j

(
1 +

1

t+ τ − j + 1

j−1∑
i=1

1

Ri

)2(
t+ τ − j + 1

t+ τ − j

)
.

Taking the limit as τ →∞ we obtain

gt = lim
τ→∞

gt,τ =
∞∑
j=1

1

Rj

(
1 +

1

r(t+ j)

)
1√

t+ j − 1
, (A.23)

ft = lim
τ→∞

ft,τ =
∞∑
j=1

1

Rj

(
1 +

1

r(t+ j)

)2
t+ j

t+ j − 1
. (A.24)
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Hence the equilibrium price in the infinite-horizon overlapping generation economy is

pt =
1

r
mt − Λt, (A.25)

with

Λt = gt
κ

2
σ + ft

γ

2
σ2, (A.26)

and gt, and ft given in equations (A.23) and (A.24), respectively.

To determine equilibrium weights we start from the expression for the agents’ optimal

asset demand

θit =
Eit [pt+1 + dt+1]− (1 + r)pt

γVart [pt+1 + dt+1]
, i = S,A. (A.27)

Direct computation using the equilibrium price in equation (A.25) yields:

ESt [pt+1 + dt+1] =

(
1 +

1

r

)
mt − gt+1

κ

2
σ − ft+1

γ

2
σ2,

EAt [pt+1 + dt+1] =

(
1 +

1

r

)(
mt − κ

σ√
t

)
− gt+1

κ

2
σ − ft+1

γ

2
σ2,

Varit[pt+1 + dt+1] =

(
1 +

1

r(t+ 1)

)2(
t+ 1

t

)
σ2, i = A, S.

Substituting these expressions in equation (A.27), we obtain the following equilibrium weights:

θAt =
−1+r

r
1√
t
κσ + [(1 + r)gt − gt+1] κ

2
σ + [(1 + r)ft − ft+1] γ

2
σ2

γ
(

1 + 1
r(t+1)

)2 (
t+1
t

)
σ2

=
1

2
− κ

2γ

(
r
√
t

1 + r(t+ 1)

)
1

σ

and

θSt =
[(1 + r)gt − gt+1] κ

2
σ + [(1 + r)ft − ft+1] γ

2
σ2

γ
(

1 + 1
r(t+1)

)2 (
t+1
t

)
σ2

=
1

2
+

κ

2γ

(
r
√
t

1 + r(t+ 1)

)
1

σ
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A.1 Learning about the dividend mean with information leakage

During the transfer of information from generation t to generation t+1 —and before the next

dividend dt+1 is observed— part of the information content is lost. For a formal modelling

of the information leakage, we borrow from the so-called discount factor approach of West

and Harrison (2006) and the fading memory model of Nagel and Xu (2021). We model

information leakage in form of a shock that adds noise to prior about µ before it is updated

with the information contained in the dividend dt+1. More precisely, the prior of µ based

on normally distributed dividend observations with variance σ2, is N
(
mt,

σ2

nt

)
distributed,

with σ√
nt

the standard error of the mean. The scalar nt, which determines the precision of

the prior is interpreted as the effective number of observations. Information leakage of the

prior about µ is then modelled via an additive Gaussian shock ηµt+1 with mean 0 and variance(
1
ω
− 1
)
σ2

nt
with ω ∈ [0, 1]. The parameter ω controls the extent of the information leakage

—the smaller ω, the less informative is the prior of µ after the shock. The shock ηµt+1 is

independent of the estimation error in µ, so the prior variance of µ and the variance of the

shock simply add. After absorbing this “leakage shock”, we denote the posterior µ+,

µ+|mt, nt ∼ N
(
mt,

1

ω

σ2

nt

)
, ω ∈ [0, 1].

This noisy posterior is then updated with the information contained in the dividend dt+1.

The following posterior is transferred to both agents of generation t+1 in form of the updated
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state variables mt+1 and nt+1

p(µ|dt+1,mt, nt) ∝ f(dt+1|µ)p(µ+|mt, nt, ω)

=

√
1

2πσ2
e−

1
2

(dt+1−µ)
2

σ2

√
ωnt
2πσ2

e−
1
2
ωnt
σ2

(µ−mt)2 ,

=

√
ωnt

(ωnt + 1)2πσ2
e
− 1

2
ωnt

(ωnt+1)

(dt+1−mt)
2

σ2

×
√

(ωnt + 1)

2πσ2
e
− 1

2
(ωnt+1)

σ2

(
µ− dt+1+ωntmt

ωnt+1

)2
,

∝
√

(ωnt + 1)

2πσ2
e
− 1

2
(ωnt+1)

σ2

(
µ− dt+1+ωntmt

ωnt+1

)2
,

=

√
nt+1

2πσ2
e−

1
2

nt+1

σ2
(µ−mt+1)2 ,

µ|dt+1,mt, nt ∼ N

(
mt+1,

σ2

nt+1

)
,

et+1 = dt+1 −mt,

mt+1 = mt +
1

nt+1

et+1,

nt+1 = ωnt + 1.

Proof of Corollary 1

The proof is similar to that of Proposition 2. Let pt,τ be the time t equilibrium price in a

τ -period economy. The risky asset demand θit,τ , i = A, S is

θit,τ =
Eit [pt+1,τ−1 + dt+1]−Rpt,τ
γVart [pt+1,τ−1 + dt+1]

, τ > t, (A.28)

where we denoted by R ≡ (1 + r). Using the fact that pt,0 = 0 for all t, we can construct the

equilibrium in a τ = 1 economy. In this economy, when both agents participate

θit,1 =
Eit [dt+1]−Rpt,1
γVart [dt+1]

=
µit −Rpt,1
γσ2

(
nt+1
nt

) ,
where nt is the effective number of observations and

dt+1 ∼i N
(
µit, σ

2

(
nt + 1

nt

))
, with µSt = mt and µAt = mt − κ

σ
√
nt
. (A.29)
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Imposing market clearing we have

pt,1 =
1

R
mt − Λt,1, (A.30)

where the risk premium Λt,1 is

Λt,1 =
κ

2
gt,1σ +

γ

2
ft,1σ

2, with gt,1 =
1

R

1
√
nt
, and ft,1 =

1

R

(
nt + 1

nt

)
. (A.31)

In a τ = 2 period economy, agents demand is

θit,2 =
Eit [pt+1,1 + dt+1]−Rpt,2
γVart [pt+1,1 + dt+1]

, (A.32)

where pt+1,1 is given by equation (A.30). Because

mt+1 =
ωnt

ωnt + 1
mt +

1

ωnt + 1
dt+1,

using the predictive distribution (A.29) we obtain

ESt [pt+1,1 + dt1] =

(
1 +

1

R

)
mt − Λt+1,1, (A.33)

EAt [pt+1,1 + dt1] =

(
1 +

1

R

)
mt −

(
1 +

1

Rnt+1

)
κ
σ
√
nt
− Λt+1,1, (A.34)

Vart [pt+1,1 + dt+1] =

(
1 +

1

Rnt+1

)2(
nt + 1

nt

)
σ2, (A.35)

with Λt+1,1 defined in equation (A.31). Substituting in equation (A.32) and imposing market

clearing we obtain

pt,2 =

(
1

R
+

1

R2

)
mt − Λt,2, (A.36)

where

Λt,2 =
κ

2
gt,2σ +

γ

2
ft,2σ

2, (A.37)

with

gt,2 =
1

R

(
1 +

1

Rnt+1

)
1
√
nt

+
1

R2

1
√
nt+1

,

ft,2 =
1

R

(
1 +

1

Rnt+1

)2(
nt + 1

nt

)
+

1

R2

(
nt+1 + 1

nt+1

)
.
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Following similar steps, we can show that for a generic τ the equilibrium price is:

pt,τ =
τ∑
i=1

1

Ri
mt − Λt,τ , (A.38)

where

Λt,τ =
κ

2
gt,τσ +

γ

2
ft,τσ

2, (A.39)

with

gt,τ =
τ∑
j=1

1

Rτ+1−j

(
1 +

1

n(t+τ−j+1)

j−1∑
i=1

1

Ri

)
1

√
n(t+τ−j)

,

ft,τ =
τ∑
j=1

1

Rτ+1−j

(
1 +

1

n(t+τ−j+1)

j−1∑
i=1

1

Ri

)2(
n(t+τ−j) + 1

n(t+τ−j)

)
.

In the above sums, we use the convention that when the running index j = 1, the inner sum

vanishes. For large t, nt converges to n, i.e., for large t the expressions for gt,τ = gτ and

ft,τ = fτ become independent of t and are given by

gτ =
τ∑
j=1

1

Rτ+1−j

(
1 +

1

n

j−1∑
i=1

1

Ri

)
1√
n
,

fτ =
τ∑
j=1

1

Rτ+1−j

(
1 +

1

n

j−1∑
i=1

1

Ri

)2(
n+ 1

n

)
.

Taking the limit as τ →∞ we obtain

g =
1

r

(
1 +

1

nr

)
1√
n
, (A.40)

f =
1

r

(
1 +

1

nr

)2(
n+ 1

n

)
, (A.41)

and the risk premium is given by

Λ =
κ

2
gσ +

γ

2
fσ2.

Substituting these expressions in equation (A.28) for τ → ∞, we obtain the equilibrium

weights in equations (39)–(40).
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B Learning about variance: Technical appendix

In this appendix, we derive the predictive distribution of the dividend when the variance

is not known (Section B.1) and provide details of data processing with information leakage

(Section B.2). The principles of Bayesian data analysis can be found, e.g., in the textbook

of Gelman, Carlin, Stern, Dunson, Vehtari, and Rubin (2020).

B.1 Predictive distribution of the dividend

Agents of generation t base their belief about the dividend dt+1, on which their terminal

wealth depends, on the prior information they receive in their first period of life. This

is characterized by the state variables mt, bt, nt, and νt. If the precision φ = 1/σ2 has

a truncated Gamma distributed with shape parameter b and ν degrees of freedom is, its

density is given by

p(φ|b, ν) =
1

C(bt, νt;φ, φ)
φ
νt
2
−1e−φ

bt
2 1[φ,φ], φ ∼ TG

[
νt
2
,
bt
2

;φ, φ

]
, 0 < φ < φ <∞,

with 1 the indicator function and

C(bt, νt;φ, φ) =

∫ φ

φ

φ
νt
2
−1e−φ

bt
2 dφ =

(
bt
2

)− kt
2
[
Γ

(
νt
2
, φ
bt
2

)
− Γ

(
νt
2
, φ
bt
2

)]
. (B.1)

The function Γ(x, y) is the upper incomplete Gamma function defined as

Γ(x, y) =

∫ ∞
y

φx−1e−φdφ.

Definition B.1 (Dampened t-distribution). Let φ be a truncated Gamma random vari-

able,

φ ∼ TG
[ν

2
,
ν

2
;φ, φ

]
, 0 < φ < φ ≤ ∞,

and x a conditionally Normal random variable with mean 0 and precision φ,

x ∼ N (0, 1/φ).
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Then, the distribution of x is a “dampened t-distribution” with ν degrees of freedom

x ∼ tDν [φ, φ],

and its density is given by

f(x) =

∫ φ

φ

√
φ

2π
e−

1
2
φx2 1

C(ν, ν;φ, φ)
φ
ν
2
−1e−φ

ν
2 dφ

=
1

C(ν, ν;φ, φ)

√
1

2π

∫ φ

φ

φ
ν+1
2
−1e−φ

ν
2
− 1

2
φx2dφ

=

√
1

2π

C(ν(1 + x2

ν
), ν + 1;φ, φ)

C(ν, ν;φ, φ)
,

with C(·, ·;φ, φ) a normalizing constant defined in equation (B.1).

Since φ has finite support and is especially bound away from 0, the fat tails of x are

dampened. As a consequence, its moment generating function is finite, and, thus, all its

moments exist and are finite, see Bakshi and Skoulakis (2010) for a proof. If φ → 0 and

φ→∞, the distribution of x becomes a Student-t distribution. In this limit, fat tails emerge

and moments of order ≥ ν do not exist.

Definition B.2 (Non-standardized dampened t-distribution). A random variable y

has a non-standardized dampened t-distribution with mean m, shape b, variance scale param-

eter v2, ν degrees of freedom and truncation bounds φ, φ,

y ∼ tDν [m, b, v2;φ, φ]

if

y|φ ∼ N (µ, v2/φ),

φ ∼ TG

[
ν

2
,
b

2
;φ, φ

]
, f(φ) =

1

C(b, ν;φ, φ)
φ
ν
2
−1e−

b
2
φ1[φ,φ].

Then the random variable y−µ
v
√
b/ν

has a dampened Student-t distribution, as per Definition B.1,

with truncation bounds at b
ν
φ and b

ν
φ,

y − µ
v
√
b/ν
∼ tDν

[
b

ν
φ,
b

ν
φ

]
.
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Definition: The stochastic variable y is non-standardized dampened t-distribution with

mean µ, shape b, variance scaling parameter v2 and truncated φ ∈ [φ, φ] if

y|φ ∼ N(µ, v2/φ),

φ ∼ TG[
ν

2
,
b

2
;φ, φ], f(φ) =

1

C(b, ν;φ, φ)
φ
ν
2
−1e−

b
2
φ1[φ,φ],

y ∼ tDν
[
µ, b, v2;φ, φ

]
Then y−µ

v
√
b/ν

is dampened Student t-distributed with truncation bounds at b
ν
φ and b

ν
φ,

y − µ
v
√
b/ν
∼ tDν

[
b

ν
φ,
b

ν
φ

]
.

Lemma B.1. Consider a subjective Normal/inverse-Gamma prior for µ and σ with param-

eters µit, β
i
t, nt, and νt. The predictive distribution of dt+1 is then a dampened Student-t,

dt+1|µi, βi, nt, νt ∼i tDν
[
µi, βi,

nt + 1

nt
;φ, φ

]
.

Proof: With the given subjective prior, the predictive density of dt+1 is conditionally

normal

f(dt+1|φ, µi, nt) =

∫ +∞

−∞
f(dt+1|µ, φ)p(µ+|φ, µi, nt)dµ

=

∫ +∞

−∞

√
φ

2π
e−

1
2
φ(dt+1−µ)2

√
ntφ

2π
e−

1
2
ntφ(µ−µi)2dµ

=

√
ntφ

(nt + 1)2π
e
− 1

2
ntφ

(nt+1)
(dt+1−µi)2

∫ +∞

−∞

√
(nt + 1)φ

2π
e
− 1

2
(nt+1)φ

(
µ− dt+1−ntµ

i

nt+1

)2

dµ

=

√
ntφ

(nt + 1)2π
e
− 1

2
ntφ

(nt+1)
(dt+1−µi)2 ,

dt+1|φ, µi, nt ∼ N

(
µi,

nt + 1

ntφ

)
.
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The unconditional density of dt+1 can be determined from the conditional density by inte-

grating out the precision φ.

f(dt+1|µi, βi, nt, νt) =

∫ φ

φ

f(dt+1|φ, µi, nt)p(φ|βi, nt)dφ,

=

∫ φ

φ

√
ntφ

(nt + 1)2π
e
− 1

2
ntφ

(nt+1)
(dt+1−µi)2 1

C(βi, νt;φ, φ)
φ
νt
2
−1e−φ

βi

2 dφ,

=
1

C(βi, νt;φ, φ)

√
nt

(nt + 1)2π

∫ φ

φ

φ
νt+1

2
−1e
−φβ

i

2
− 1

2
ntφ

(nt+1)
(dt+1−µi)2dφ,

=

√
nt

(nt + 1)2π

C(βi + nt
(nt+1)

(dt+1 − µi)2, νt + 1;φ, φ)

C(βi, νt;φ, φ)
, dt+1 − µi√

nt+1
nt

√
βi

νt

 |µi, βi, nt, νt ∼ tDνt [
βi

νt
φ,
βi

νt
φ],

dt+1|µi, βi, nt, νt ∼ tDνt

[
µi, βi,

nt + 1

nt
;φ, φ

]
.

B.2 Data processing with information leakage

The information set of generation t about the unknown dividend mean µ and the precision

φ is given by the priors in equations (41) and (42). The truncated Gamma density of φ has

νt degrees of freedom and is restricted to a support within the interval [φ, φ] and given by

p(φ|bt, νt) =
1

C(bt, νt;φ, φ)
φ
νt
2
−1e−φ

bt
2 1[φ,φ], φ ∼ TG

[
νt
2
,
bt
2

;φ, φ

]
, 0 < φ < φ <∞,

with 1 the indicator function and C(bt, νt, φ, φ) defined in equation (B.1).

The conditional density of µ with nt (effective) observations is√
ntφ

2π
e−

1
2
ntφ(µ−mt)2 , µ|φ ∼ N

(
mt,

1

ntφ

)
.
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During the transfer of this information from generation t to generation t+1 —and before

the next dividend dt+1 is observed— part of the information content is lost. For a formal

modelling of the information leakage, we borrow from the so-called discount factor approach

of West and Harrison (2006), the fading memory model of Nagel and Xu (2021), and the

dampened t-distribution of Bakshi and Skoulakis (2010). We model information leakage

in form of shocks that add noise to priors before they are updated with the information

contained in the dividend dt+1. Initially, with an effective number of observations n0, the

initial number of degrees of freedom v0 is eventually set to ν0 = n0 − 1. However, as we

see below, due to information leakage, nt and νt do not grow linearly with new observations

but converge to a joint upper limit, which is defined by the extent of information leakage,

controlled by the parameter ω below. Information leakage of the prior about µ is modelled

via an additive Gaussian shock ηµt+1 with mean 0 and variance
(

1
ω
− 1
)
s2
t where st is the

standard error of the time t posterior and ω ∈ [0, 1]. The shock ηµt+1 is independent of the

estimation error in µ. After absorbing this “leakage shock”, we denote the posterior µ+,

µ+|φ,mt, nt ∼ N
(
mt,

1

ω

1

ntφ

)
, ω ∈ [0, 1].

This noisy posterior is then updated with the information contained in the dividend dt+1.

The following posterior is transferred to both agents of generation t+1 in form of the updated
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state variables mt+1 and nt+1

p(µ|dt+1, φ,mt, nt) ∝ f(dt+1|µ, φ)p(µ+|φ,mt, nt, ω)

=

√
φ

2π
e−

1
2
φ(dt+1−µ)2

√
ωntφ

2π
e−

1
2
ωntφ(µ−mt)2 ,

=

√
ωntφ

(ωnt + 1)2π
e
− 1

2
ωntφ

(ωnt+1)
(dt+1−mt)2

×
√

(ωnt + 1)φ

2π
e
− 1

2
(ωnt+1)φ

(
µ− dt+1+ωntmt

ωnt+1

)2
,

∝
√

(ωnt + 1)φ

2π
e
− 1

2
(ωnt+1)φ

(
µ− dt+1+ωntmt

ωnt+1

)2
,

=

√
nt+1φ

2π
e−

1
2

(nt+1)φ(µ−mt+1)2 ,

µ|dt+1, φ,mt, nt ∼ N

(
mt+1,

1

nt+1φ

)
,

et+1 = dt+1 −mt,

mt+1 = mt +
1

nt+1

et+1,

nt+1 = ωnt + 1.

To update also the φ prior with the t+1 dividend, we must first determine the distribution

of dt+1 conditional of φ.

f(dt+1|φ,mt, nt) =

∫ +∞

−∞
f(dt+1|µ, φ)p(µ+|φ,mt, nt)dµ,

=

∫ +∞

−∞

√
φ

2π
e−

1
2
φ(dt+1−µ)2

√
ωntφ

2π
e−

1
2
ωntφ(µ−mt)2dµ,

=

√
ωntφ

(ωnt + 1)2π
e
− 1

2
ωntφ

(ωnt+1)
(dt+1−mt)2

∫ +∞

−∞

√
(ωnt + 1)φ

2π
e
− 1

2
(ωnt+1)φ

(
µ− dt+1−ωntmt

ωnt+1

)2
dµ,

=

√
ωntφ

(ωnt + 1)2π
e
− 1

2
ωntφ

(ωnt+1)
(dt+1−mt)2 ,

dt+1|φ,mt, nt ∼ N

(
mt,

ωnt + 1

ωntφ

)
.

The t + 1 posterior of the precision φ under information leakage is subject to a multi-

plicative shock 1/ωηφt+1 that is generalized-beta distributed (see Bakshi and Skoulakis, 2010,
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equation (35)), leading to a posterior denoted φ+, that is again a Gamma distribution trun-

cated at the same bounds,

φ+|bt, νt ∼ TG

[
ω
νt
2
, ω
bt
2

;φ, φ

]
, 0 < φ < φ <∞.

Updating with dt+1 leads to the posterior which is transferred to the agents of generation

t+ 1 in the form of bt+1 and νt+1.

p(φ|dt+1,mt, bt, nt, νt;φ, φ) ∝ f(dt+1|φ,mt, nt)p(φ
+|bt, νt;φ, φ),

=

√
ωntφ

(ωnt + 1)2π
e
− 1

2
ωntφ

(ωnt+1)
(dt+1−mt)2

× 1

C(bt, ωνt;φ, φ)
φ
ωνt
2
−1e−φω

bt
2 1[φ,φ],

∝ φ
ωνt+1

2
−1e
−φ
(
ω
bt
2

+ 1
2

(dt+1−mt)
2ωnt

ωnt+1

)
1[φ,φ],

∝ 1

C(bt+1, νt+1;φ, φ)
φ
νt+1

2
−1e−φ

bt+1
2 1[φ,φ],

φ|dt+1, bt,mt, nt, νt;φ, φ ∼ TG

[
νt+1

2
,
bt+1

2
;φ, φ

]
,

et+1 = dt+1 −mt,

bt+1 = ωbt + ω
nt
nt+1

e2
t+1,

nt+1 = ωnt + 1,

νt+1 = ωνt + 1.

When ω < 1 and t large, the effective number of observations nt and the degrees of freedom

νt converge to the same upper limit

lim
t→∞

nt = lim
t→∞

νt ≡ n =
1

1− ω
.

We implement a desired asymptotic effective number of observations n by choosing

ω =
n− 1

n
.
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C Numerical procedure to determine the equilibrium

Both types of agents of generation t know the state variables mt, bt, nt and νt from the

“information processing” step. Agents’ memory does not fade over the lifetime, i.e., they

act rationally according to their utility functions. However, generation-t agents anticipate

that information gets lost, when information is transferred to generation t + 1. Since this

generation buys the asset from generation-t agents, agents of generation t must anticipate

the demand of generation-t+ 1 agents and the price pt+1.

Let ∆µit denote the agents i’s adjustment to mt when forming beliefs about the dividend

mean, that is ∆µit = mt− µit. The density of the dividend dt+1 under the subjective prior of

agents i is dampened t-distributed

dt+1 ∼i tDνt

[
µit, β

i
t ,
nt + 1

nt

]
,

dt+1 − µit√
nt+1
nt

√
βit
νt

∼i tDνt

[
βit
νt
φ,
βit
νt
φ

]
.

The individual surprise eit+1 is defined relative to the subjective expectation µit

eii+1 = dt+1 − µit,
eii+1√
nt+1
nt

√
βit
νt

∼i tDνt

[
βit
νt
φ,
βit
νt
φ

]
.

While agents have subjective beliefs about the distribution of dt+1, they agree on the way

information is handed over to the next generation (including the information leakage during

the transition of information) and how the next generation will learn from observing dt+1.
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We express the mechanics of updating the state variables in terms of eit+1

nt+1 = ωnt + 1,

νt+1 = ωνt + 1,

mt+1 =
ωnt

ωnt + 1
mt +

1

ωnt + 1
dt+1,

= mt −
1

nt+1

∆µit +
1

nt+1

eit+1,

bt+1 = ωbt +
1

2

ωnt
ωnt + 1

(mt − dt+1)2,

= ωbt +
ωnt
nt+1

(∆µit − eit+1)2.

We assume that t is large, so nt and νt have already reached their asymptotic limit n. We

conjecture that in an economy that lasts for τ generations the price can be written as a

function of the state variables pt = h(τ)mt − Λ(bt, τ) and all agents agree on this functional

form. For τ →∞, we can write pt+1 as

pt+1 =
1

r
mt+1 − Λ(bt+1),

=

(
1

r
mt −

1

rn
∆µit +

1

rn
eit+1

)
− Λ(bt+1),

=

(
1

r
mt −

1

rn
∆µit +

1

rn
eit+1

)
− Λ(bt+1).

Under this conjecture, the budget constraint becomes independent ofmt and only depends

on Λ(bt) and Λ(bt+1).
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W i
t+1(θ) = (W i

t − θpt)(1 + r) + θ(dt+1 + pt+1),

= (W i
t − θ

(
1

r
mt − Λ(bt)

)
)(1 + r)

+ θ

(
1 +

1

r

)
mt − θ(1 +

1

rn
∆µit) + θ

(
1 +

1

rn
eit+1

)
− θΛ(bt+1),

= (W i
t + θΛ(bt))(1 + r)− θ

(
1 +

1

rn
∆µit

)
+ θ

(
1 +

1

rn
eit+1

)
− θΛ(bt+1).

The expected utility of agents i is then

Ei(u(W i
t+1(θ))) =

1

C(bit, n;φ, φ)

∫ φ

φ

Ei(u(W i
t+1(θ)|φ, bt)φ

n
2
−1e−φ

βit
2 dφ,

Ei(u(W i
t+1(θ))|φ, bt) =

= −1

γ
exp

{
−γ
[
(1 + r)(Wt + θΛ(bt))− θ

(
1 +

1

rn

)
∆µit

]}
×

√
nφ

(n+ 1)2π

∫ ∞
−∞

exp

{
−γθ

[(
1 +

1

rn

)
eit+1 − Λ(bt+1)

]}
× exp

{
−1

2

nφ

(n+ 1)
eit+1

2
}
deit+1

bt+1 = ω
(
bt + (∆µit − eit+1)2

)
.

Since eit+1 is dampened t, Λ(bt) ≥ 0, and limbt→∞ Λ(bt) < ∞, the expected utility is well

defined.
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The marginal utility is computed as

dEi(u(W i
t+1(θ))|bt)
dθ

=
1

C(bit, n;φ, φ)

×
∫ φ

φ

dE(u(W i
t+1(θ))|φ, bt)
dθ

φ
n
2
−1e−φ

βit
2 dφ,

dEi(u(Wt+1(θ))|φ, bt)
dθ

= −γ
[
(1 + r)Λ(bt)−

(
1 +

1

rn

)
∆µit

]
Ei(u(Wt+1(θ))|φ, bt)

+
1

γ
exp

{
−γ
[
(1 + r)(Wt + θΛ(bt))− θ

(
1 +

1

rn

)
∆µit

]}
×

√
nφ

(n+ 1)2π

∫ ∞
−∞

γ

[(
1 +

1

rn

)
eit+1 − Λ(bt+1)

]
× exp

{
−γθ

[(
1 +

1

rn

)
eit+1 − Λ(bt+1)

]}
× exp

{
−1

2

nφ

(n+ 1)
eit+1

2
}
deit+1,

bt+1 = ω(bt +
(
∆µit − eit+1)2

)
We determine the function Λ(bt) as a fixed point via value function iteration. When both

agents invest at a given bt, they take Λ(bt) as given and optimize their holding θit via the

first-order condition dEi(u)
dθi

= 0. The equilibrium risk premium Λ(bt) satisfies market clearing,

θS(bt) + θA(bt) = 1.
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