
A Market-Based Measure of Ambiguity Aversion:
Housing Prices Under Rising Seas ⋆

Michael Barnett† Jacob Dice ‡ Toàn Phan § David Rodziewicz ¶
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Abstract

We examine how ambiguity aversion shapes real estate market responses to long-run

sea-level rise (SLR) risk. We link theory and empirics to quantify ambiguity aversion,

and explore how this parameter impacts real estate markets and raises homeowners’

willingness to invest in climate change adaptation. Using a novel dataset of projected

inundation times for over two million coastal homes, we show that housing prices

reflect both expected SLR risk and uncertainty across climate scenarios. We estimate an

ambiguity aversion parameter, and find that this shifts probability weights toward worst-

case scenarios, substantially increasing the weight on the most extreme SLR projections.

Our paper provides the first market-based estimates for ambiguity aversion parameters

in the field. We further use our model and estimates to provide new estimates for very

long-run discount rates.
⋆The views expressed herein are those of the authors and do not necessarily represent the views of the

Federal Reserve Banks of Richmond, Federal Reserve Bank of Kansas City, or the Federal Reserve System. We
thank Rosemary Coskrey, Claire Conzelmann, Brooke Hansbrough, Adin Hammond, and Nick Weitzel for
excellent research assistance. All errors are our own.

†Arizona State University (michael.d.barnett@asu.edu.
‡Federal Reserve Bank of Kansas City (jacob.dice@kc.frb.org).
§Federal Reserve Bank of Richmond (toan.phan@rich.frb.org).
¶Federal Reserve Bank of Kansas City (david.rodziewicz@kc.frb.org).
∥University of Cambridge (cny21@cam.ac.uk)

mailto:Michael.D.Barnett@asu.edu
mailto:Jacob.Dice@kc.frb.org
mailto:toan.phan@rich.frb.org
mailto:David.Rodziewicz@kc.frb.org
mailto:cny21@cam.ac.uk


1. Introduction

Standard economic models often assume agents make decisions under risk, where all
relevant probabilities are known. However, in many real-world settings, decision-makers
face model uncertainty, where the true probabilities of key events are unknown or disputed
due to ambiguity across different potential models, misspecification about a given model, or
both. Ambiguity aversion can generate first-order welfare effects, altering savings decisions,
investment behavior, and policy design (Hansen, 2014).1 One of the most policy-relevant
domains where parameter uncertainty plays a critical role is climate change, and particularly
sea-level rise (SLR).

Future SLR projections vary widely across different Representative Concentration Path-
ways (RCPs), reflecting uncertainty in emissions, ice sheet dynamics, and geophysical
feedback mechanisms. For example, median projections under RCP2.6 and RCP8.5 can
diverge by several feet, with first-year inundation estimates for coastal properties spanning
a century or more (Kopp et al., 2014; DeConto and Pollard, 2016; Rodziewicz et al., 2022).
Moreover, the plausibility of these scenarios are themselves highly uncertain as scenario
developers and modelers do not provide probability distributions for these scenarios, de-
spite the different scenarios being labeled as “business as usual,” “most likely,” or “least
likely.” This deep uncertainty matters: economic agents making location and investment
decisions must evaluate risks that depend not only on expected SLR outcomes, but also
on the ambiguity surrounding them. A highly ambiguity-averse decision-maker may react
more strongly to the worst-case SLR projections, potentially discounting future real estate
values or avoiding coastal investments altogether, while a less ambiguity-averse agent might
take a more measured approach (Barnett, 2023; Ilut and Schneider, 2023). The extent to
which markets capitalize both SLR risk and ambiguity remains an open empirical question
with direct implications for climate adaptation and policy design.

This paper proposes a novel empirical approach to disciplining the ambiguity aversion
parameter in decision-making, especially in the context of climate-related risks. Our

1A large and growing literature studies decision-making under such settings with parameter uncertainty,
ambiguity, and robust control, recognizing their critical implications for economic planning and policy (Ilut
and Schneider, 2023; Ilut and Valchev, 2023). In such environments, agents internalize the possibility of
having competing models, leading to cautious behavior, precautionary actions, and non-trivial distortions
in asset pricing and macroeconomic outcomes.This concern has motivated a broad theoretical literature in
economics and finance that builds on the foundations of multiple priors models (Gilboa and Schmeidler,
1989), robust control (Hansen and Sargent, 2001, 2008, 2020), and smooth ambiguity preferences (Klibanoff
et al., 2005; Hansen and Miao, 2018), among others. These frameworks prescribe how economic agents
can account for model uncertainty, where they do not trust any single probability distribution, but instead
evaluate choices using a set of possible models and act in a way that is robust against worst-case scenarios.
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approach parallels that of Giglio et al. (2021), who use real estate market data to infer the
discount rates relevant for evaluating long-run climate change mitigation. Just as discount
rates observed in market transactions provide guidance on the appropriate social discount
rate for climate policy, we argue that the degree of ambiguity aversion reflected in real
estate prices offers a way to empirically discipline the ambiguity preferences that should
be incorporated into climate-economy models. If real estate markets capitalize not only
the expected SLR risk but also the uncertainty surrounding it, we can use these pricing
patterns to infer the degree of ambiguity aversion implicit in economic behavior.

Our strategy involves three key steps. First, we develop a simple theoretical model
to illustrate the role of ambiguity aversion in pricing uncertain climate risks. The model
formalizes the relationship between ambiguity aversion and the capitalization of risk and
uncertainty in asset prices. The model provides a clear asset-pricing equation under
ambiguity aversion that can be estimated in the data.

Second, we construct a new high-resolution dataset that combines proprietary property
transaction records with detailed geospatial SLR projections. Unlike global SLR estimates,
local SLR is highly heterogeneous due to differences in topography, land subsidence,
tidal variation, and ocean dynamics. Accurately assessing a property’s inundation risk
requires integrating localized elevation data, hydrologic connectivity, and regional sea-level
projections rather than relying on broad global trends. We begin with the universe of
Corelogic transaction data, and for each property in our dataset, we carefully calculate
its expected first year of inundation under different RCP scenarios by integrating local
elevation data with probabilistic SLR projections, following the methodology outlined in
Rodziewicz et al. (2022). Finally, using this extensive data set we estimate how housing
markets capitalize both SLR risk and uncertainty following an approach similar in spirit to
Baldauf et al. (2020). Linking directly to our theoretical model, we explore the relationship
between housing prices and the expected first year of inundation, capturing risk, as well as
the variance in the first year of inundation across climate scenarios, capturing uncertainty.
Our main results are as follows.

First, by linking these estimates to theoretical models of decision-making under ambigu-
ity, we derive an implied ambiguity aversion parameter for market participants. Consistent
with the model, we find that an increase in SLR uncertainty leads to an additional dis-
count in house prices. More importantly, the empirical estimates allows us to estimate a
market-based ambiguity aversion parameter which we find to be approximately 0.045. To
give a quantitative interpretation to this value, this degree of ambiguity aversion distorts a
uniform prior that puts equal probability weights (p1 = p2 = p3 = 1/3) across three scenar-
ios (RCP 2.6, RCP 4.5, RCP 8.5) towards a much more pessimistic distribution that puts
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much more probability weight on the worst-case scenario (q1 ≈ 17%, q2 ≈ 32%, q3 ≈ 51%,
i.e., the weight on the worst-case scenario RCP 8.5 increases from 1/3 to more than 1/2).
These estimates provide strong evidence that uncertainty about climate risks is a first-order
concern in asset valuation and highlight the need to incorporate ambiguity aversion into
(asset pricing) models of long-run risk and robust climate policy. Moreover we provide
some of the first estimates of ambiguity aversion parameters in the field, which can help
guide theory and disipline models.

Second, our estimates of the capitalization of SLR risk (or the “SLR beta”) provide a
unique opportunity to revisit a foundational question in climate economics: what is the
appropriate discount rate for long-run climate damages (Weitzman, 2013)? The choice of
discount rate plays a central role in climate policy models, directly influencing estimates
of the social cost of carbon and optimal mitigation strategies (Giglio et al., 2021). Our
framework is well-suited for this estimation, as it relies on durable housing assets whose
long-run exposure to SLR risk is carefully projected under different climate scenarios. We
find that properties expected to be inundated 100 years earlier sell at approximately an
8.8% to 10.5% discount, which, through a deterministic present value calculation, implies
relatively low long-run discount rates: our baseline estimate is about 2.34% per year. This
estimate is lower than the 4% rate typically used in DICE models (Nordhaus, 2013) and
roughly aligns with prior empirical estimates from UK and Singapore real estate markets
(Giglio et al., 2015, 2021) of 2.6% over the 100-year horizon. The lower discount rate implied
by our market-based approach suggests that future climate damages are valued (at least in
the US coastal housing market) more heavily than previously thought.

Our framework also allows us to gauge the incremental willingness to adapt by raising
a home’s elevation, capturing how ambiguity aversion shifts homeowners’ valuations.
For instance, for a house currently at 1 ft above the inundation threshold, the baseline
willingness-to-adapt is estimated at $126,917; when ambiguity aversion is factored in,
this figure rises to $130,574—a nontrivial increase of about $3,657. As current elevation
increases from 1 ft to 6 ft, the additional willingness-to-adapt declines—from roughly
$3,600 down to around $554—reflecting diminishing marginal benefits of further elevation
gains. This quantification is, to our knowledge, the first market-based estimate linking
empirically derived discount rates and ambiguity aversion to adaptation costs, highlighting
that ambiguity aversion substantially influences asset valuations under long-run climate-
related risks.
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1.1. Related Literature

Our paper is related to several strands of the economic and finance literature. To the best
of our knowledge, our paper is the first to quantify ambiguity aversion based on market
transaction data and projections from scientific models.

We contribute to the broader discussion on the economic valuation of long-run climate
impacts, offering an asset-pricing-based complement to theoretical approaches in the
valuation of the social costs of carbon (Weitzman, 2012; Golosov et al., 2014; Nordhaus,
2017; Cai and Lontzek, 2019; Giglio et al., 2021; Barrage and Nordhaus, 2024) and empirical
estimates of the economic costs and consequences of climate change (Colacito et al., 2018;
Hsiang et al., 2017; Burke et al., 2018). Our paper contributes to the growing literature on real
estate and climate risk and the consequences of sea-level rise for various assets (Bernstein
et al., 2019; Baldauf et al., 2020; Murfin and Spiegel, 2020; Painter, 2020; Goldsmith-Pinkham
et al., 2023; Bakkensen and Barrage, 2022; Bakkensen et al., 2025) by quantifying how
markets price not just climate-related sea-level rise risk but also uncertainty. Furthermore,
an extensive climate finance literature has highlighted the implications of climate change
for various assets along diverse dimensions (Hong et al., 2019; Ilhan et al., 2021; Kruttli
et al., 2021; Seltzer et al., 2020; Alok et al., 2020; Krueger et al., 2020; Bansal et al., 2019;
Barnett, 2019; Choi et al., 2020; Engle et al., 2019; Giglio et al., 2021; Bolton and Kacperczyk,
2021b,a) to which we contribute a novel market-based analysis of ambiguity aversion.

Our work also contributes to the important work on uncertainty analysis and the
application of dynamic decision theory. As noted previously, this literature includes work
on multiple priors (Gilboa and Schmeidler, 1989), model misspecification (Anderson et al.,
2003; Maccheroni et al., 2006; Hansen and Sargent, 2007; Cerreia-Vioglio et al., 2021), and
smooth ambiguity (Klibanoff et al., 2009; Hansen and Miao, 2018; Ilut and Schneider, 2023).
There is also a growing literature exploring uncertainty analysis as it pertains to climate
change (Kelly and Kolstad, 1999; Crost and Traeger, 2010; Lemoine and Traeger, 2012;
Brock and Hansen, 2018; Barnett et al., 2020; Rudik, 2020; Barnett et al., 2021; Barnett,
2023; Barnett et al., 2023a). Prior work has attempted to quantify ambiguity aversion using
survey-based methods, such as eliciting imprecise probabilities or presenting hypothetical
choice experiments (Bhandari et al., 2024; Ilut and Schneider, 2023). While informative,
these approaches are limited by hypothetical bias and framing effects. Work by Brenner and
Izhakian (2018) provides one of the few market-based measures of ambiguity aversion based
on high frequency return volatility, woth a recent application of the methodology to climate
ambiguity (Rocciolo et al., 2024). Instead, we take a market-based approach integrated with
scientific model projections. By examining how housing markets capitalize both expected
SLR risk and uncertainty in inundation timing, we provide the first revealed-preference
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estimate of ambiguity aversion related to climate change. Hence, our paper helps address a
key gap in the literature on robust decision-making under uncertainty, the pricing of climate
risk in real estate markets, and the empirical discipline of ambiguity aversion—specifically
but not limited to the context of climate-related risks.

The remainder of the paper is structured as follows. Section 2 presents a simple theo-
retical model of ambiguity aversion in real estate markets. Section 3 describes our dataset
and empirical strategy, highlighting the integration of CoreLogic property transactions
with localized SLR projections. Section 4 presents our empirical results, quantifying the
extent to which real estate prices reflect SLR risk and uncertainty. Section 5 discusses the
implications of our findings for climate policy, particularly in calibrating dynamic, general
equilibrium optimal control models augmented by ambiguity aversion. Section 6 concludes.

2. A simple asset pricing model with ambiguity aversion

In this section we build a model of housing valuation with climate risk and ambiguity. We
use the framework to derive relationships between home values, projected climate damages
and ambiguity.

Environment Consider a homebuyer who evaluates a coastal housing unit that faces
uncertainty about future SLR. The buyer evaluates three possible climate scenarios: a good
scenario (s1) where SLR progresses slowly, a “middle-of-the-road” scenario s2, and a worst
scenario (s3) where SLR advances rapidly. The buyer has a reference probability distribution
(baseline belief) that assigns probability weights pi to scenario i. A more pessimistic agent
who is more concerned about climate risks places a higher probability mass on scenarios 2

and 3 (in a first order stochastic dominance sense).
Consider a robust control problem of the form:

min
q

{
Eq[v] + ξDKL(q∥p)

}
,

where v as the log value of housing that is subject to SLR risk, and v1 > v2 > v3. The
solution to the minimization problem yields a worst-case distortion in the probability
weights. The buyer has a baseline prior p = (p1, p2, p3) that puts benchmark probability
weights on the three scenarios. Ambiguity aversion distorts the prior p to distorted
probability weights q = (q1, q2, q3) that reflects the buyer’s robustness concern about
the worst case scenario. The expectation term Eq[v] = ∑i qivi captures the homebuyer’s
perceived value of the house, given their worst-case distorted beliefs q. The Kullback-Leibler
(KL) divergence term, DKL(q∥p), which penalizes deviations of q from the reference beliefs
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p, captures ambiguity averse preferences and is given by

DKL(q∥p) = ∑
i

qi log
(

qi

pi

)
.

This term quantifies the information cost of distorting the probability weights away from
the baseline beliefs. The parameter ξ controls how much the buyer dislikes ambiguity, or
not knowing the precise likelihood of future states of the world. A high ξ means the buyer
is less ambiguity averse and does not significantly adjust their beliefs, while a low ξ implies
strong ambiguity aversion and a greater tendency to overweight the worst-case scenario.
In the extreme case where ξ → ∞, the buyer does not deviate from the prior at all and
behaves as a standard expected utility maximizer.

Worst-case distorted probability weights Taking the first-order conditions with respect
to q yields the following optimal probability weights:

q∗i =
pi exp

(
− vi

ξ

)
∑3

j=1 pj exp
(
− vj

ξ

) .

The solution shows that the distorted probabilities q∗i are a weighted version of the baseline
probabilities pi, where the weights are given by exp(−vi/ξ). This is often referred to
as “exponential tilting.” Since the valuation of the house in the worst case is lowest
(v3 < v2 < v1), the ambiguity-averse buyer puts more weight on the worst case (q∗3 > p3).
The strength of this adjustment depends on 1/ξ. If 1/ξ is large, the buyer significantly
increases their weight on the bad scenario relative to the prior (q∗3 → 1 as 1/ξ → ∞). If 1/ξ

is small, they largely retain their original beliefs (q∗ → p as 1/ξ → 0).

Ambiguous asset pricing To analytically characterize how ambiguity aversion affects
housing prices, we assume a simple parametrization for the valuation of the house as a
linear function of SLR risk:

vi = v̄ − βSi, i ∈ {1, 2, 3}.

where the SLR risk ranks according to:

S1 < S2 < S3.

The term v̄ represents the amenity value of the house absent climate risk, Si is a measure
of SLR risk under scenario i, and β captures how strongly house prices respond to SLR
exposure (the “SLR beta”).
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Remark 1. The linearity of v in S simplifies our analysis, and can be partially justified
by the empirical observation that the log of housing prices are approximately linear in
the projected first year of inundation, once amenities are controlled for (see Figure 4).
The linearity can be microfounded as follows. Consider a house that, in the absence
of SLR risk, yields housing utility flow between period t = 0 and a terminal period
Tmax. However, with SLR risk, the housing utility flow will stop as soon as the house is
permanently inundated by the rising seas. Denote the first period of inundation under SLR
scenario i by Ti. Suppose the homeowner discounts the future at rate ρ. Then the present
discounted value of the housing unit in scenario i is given by vi =

1
ρ (1− exp(−ρTi ∧ Tmax)).

Let Si ≡ (Tmax − Ti)
+. Then the housing valuation can be approximated linearly by

vi ≈ α − βSi, where α ≡ 1
ρ (1 − exp(−ρTmax) and β ≡ exp(−ρTmax).2

Substituting this linear valuation structure into the belief adjustment equation and
solving for the ambiguity-adjusted expectations, we obtain

q∗i =
pi eβSi/ξ

∑j pj eβSj/ξ
≈ pi

[
1 +

β

ξ
(Si − S̄)

]
(1)

where S̄ is the average SLR risk under the benchmark prior p:

S̄ ≡ ∑
j

pjSj.

Again, this equation implies that if Si > S̄ (SLR risk is higher in scenario i on average),
then ambiguity aversion will tilt the probability weight more towards scenario i (qi > pi).
Clearly, the distortion is stronger if the buyer is more ambiguity averse (higher 1/ξ). It is
also stronger if the SLR beta is larger (more positive β).

With distorted weights q∗, the ambiguity-adjusted housing valuation V ≡ Eq[v] is given
by

V ≈ v̄︸︷︷︸
invariant of SLR

− β

avg S̄︷ ︸︸ ︷
(∑

i
piSi)︸ ︷︷ ︸

SLR capitalization term

−1
ξ

β2

uncertainty σ2
S︷ ︸︸ ︷

∑
i<j

pi pj(Si − Sj)
2

︸ ︷︷ ︸
ambiguity capitalization term

. (2)

The first hedonic term represents the intrinsic amenity value of the house. The second
term represents the capitalization of the average SLR risk S̄ ≡ ∑i piSi based on the buyer’s

2The approximation is reasonable in our context. For example, with Tmax = 2301 − 2001 (our SLR
projection ends in 2300 and the first year in our data is 2001), T = 2273− 2001 (the median projected first year
of inundation due to SLR under RCP 4.5 is 2273), ρ = 2%, the value of vi is 49.783, which is well approximated
by 49.807.
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baseline belief. The third term introduces an ambiguity discount, which depends on the
variance of the SLR projections across scenarios, weighted by the baseline probabilities:

σ2
S ≡ ∑

i<j
pi pj(Si − Sj)

2 = ∑
i

pi(Si − S̄)2,

the ambiguity aversion parameter ξ, and the SLR beta β. A more ambiguity-averse buyer,
characterized by a higher 1/ξ, applies a larger discount to the uncertainty across the
scenarios. Similarly, a larger SLR beta implies a larger ambiguity capitalization term.

This equation provides a direct mapping between market pricing of SLR uncertainty
and ambiguity aversion. If buyers are ambiguity neutral, house prices should only reflect
expected SLR risk, and the last term vanishes. However, if buyers are ambiguity averse,
properties with greater variation in SLR projections experience larger price discounts.

Heterogeneity Is it reasonable to expect all homebuyers to be so sophisiticated with
respect to scientific projections of SLR? In fact, it is well documented that a significant
portion of US populations are not worried about global warming, or even do not believe that
global warming is happening (Howe et al., 2015). Furthermore, this “optimism” manifests
in the lack of capitalization of SLR risk in housing prices in areas with low degree of worry
or belief in global warming (Baldauf et al., 2020; Bakkensen et al., 2025).

Hence, we enrich the model by introducing heterogeneity among homebuyers. Suppose
there are two types of homebuyers: optimists and pessimists (or realists). The pessimists’
behaviors are as described above. However, the optimists do not believe that climate change
will lead to an increase in sea levels, and hence their housing valuation does not depend or
SLR projections:

Vopt = v̄.

Taking the difference in valuations between pessimists (2) and optimists yields:

Vpes − Vopt = −βS̄ − 1
ξ

β2σ2
S. (3)

This equation shows that the difference in housing valuations between pessimists and
optimists consists of two components. The first term reflects the standard SLR capitalization
effect, meaning that pessimists discount home values according to their expected exposure
to SLR. The second term is the ambiguity discount, which depends on both the spread in
SLR risk across scenarios and the pessimists’ belief weights.

Equation (3) provides the key empirical link between market pricing and ambiguity
aversion. The first term allows us to estimate β, the SLR capitalization rate, while the
second term enables the estimation of ξ, the ambiguity aversion parameter. In the next
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sections, we will estimate ξ using observed variation in house prices and uncertainty in SLR
projections across climate scenarios. The coefficient from our main estimates will uncover
these parameters by leveraging variation in house prices, SLR risk, and uncertainty across
different climate belief groups.

3. Empirical analysis

3.1. Data construction

Our analysis is based on high-resolution property transaction data from CoreLogic, which
provides extensive mortgage and real estate transaction records spanning 2001 to 2016. By
integrating CoreLogic’s comprehensive property records with state-of-the-art SLR modeling,
we construct a uniquely detailed dataset that allows for an in-depth analysis of how climate
change risk is transmitted to housing markets. This dataset includes detailed property
characteristics such as sale prices, transaction dates, number of bedrooms and bathrooms,
building size, lot size, elevation, and year built. The availability of precise geolocation
coordinates for each property enables us to merge these records with sea-level rise (SLR)
projections and construct property-specific inundation risk estimates.

To estimate the first year of inundation for each property, we follow the methodology
detailed in Rodziewicz et al. (2022). This process involves multiple steps. First, we determine
property-specific elevations by matching each property’s coordinates with NOAA’s Digital
Elevation Models (DEMs). These elevation values are adjusted to a consistent vertical
datum and account for differences in land height relative to sea level. Unlike simple
elevation-based assessments, we incorporate NOAA’s Sea-Level Rise Viewer shapefiles,
which delineate areas projected to be hydrologically connected to the ocean. This ensures
that properties behind levees, dunes, or other protective barriers are not misclassified as
vulnerable to near-term SLR.

These property-specific elevations are then integrated with well known SLR projections
developed by DeConto and Pollard (2016). These projections estimate the timing of
inundation under three Representative Concentration Pathways (RCPs): RCP2.6 (low
emissions, slow SLR), RCP4.5 (moderate emissions, moderate SLR), and RCP8.5 (high
emissions, accelerated SLR). The projections incorporate global and local uncertainties in
future sea-level rise, accounting for ice sheet loss dynamics, thermal expansion, and land
subsidence. The resulting property-level SLR inundation timing estimates range from 2050

to 2300, with uncertainty bands capturing projections from the 10th to the 90th percentile.
Figure 2 illustrates how we construct the projections of the first year of inundation for

each property. The solid lines represent the median SLR projections for RCP2.6, RCP4.5, and
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RCP8.5. For each property, its elevation (represented for a single house by the horizontal
solid line) determines the first year of inundation. Taking the RCP4.5 scenario as an
example, the intersection of the horizontal line with the median SLR curve for RCP4.5
determines the first year (TRCP4.5) that the property will be permanently inundated under
the median projection. The same method is applied for the RCP2.6 and RCP8.5 scenarios,
yielding the corresponding first years of inundation TRCP2.6 and TRCP8.5.

As an example, Figure 3 plots the actual local SLR projections for the city of Miami.
Again, the solid lines represent the median SLR projections for RCP2.6, RCP4.5, and RCP8.5,
while the dotted lines plot the corresponding 10th and 90th percentile projections under
each scenario.

Beyond physical exposure to SLR, we analyze how buyers’ perceptions of climate risk
influence housing transactions. We incorporate county-level climate opinion data from the
2014 Yale Climate Opinion Survey (Howe et al., 2015), which provides estimates of the
percentage of residents who believe climate change is occurring. This dataset, based on
over 13,000 survey responses, serves as a proxy for buyers’ climate awareness at the time of
purchase. By linking this measure to property transactions, we evaluate how climate beliefs
impact pricing, demand, and market behavior.

To control for broader economic and demographic trends, we merge our dataset with
county-level statistics from the U.S. Census Bureau, including population density, median
income levels, and local economic indicators. These controls help disentangle the effects of
SLR risk from other economic factors affecting property values.

We restrict our analysis to single-family properties from 17 major coastal metropolitan
statistical areas (MSAs) (Figure 1). To reduce the influence of extreme outliers, we exclude
transactions with sale prices outside the $50,000–$10,000,000 range and winsorize key
housing variables, including house price, building size, elevation, and age, at the 1st and
99th percentiles.

Table 1 provides summary statistics for the properties in our dataset. The average home
sale price is $464,496 (std: $539,648), with a median price of $325,500. Houses typically
have 3.25 bedrooms and 2.31 bathrooms, with an average building size of 2,049.8 square
feet. The average property elevation is 82.11 feet above sea level, but 10 percent of homes
sit below 6.8 feet, highlighting the range of exposure to coastal flooding. SLR projections
suggest substantial variation in the first year of inundation across properties and climate
scenarios. Under RCP2.6, the average projected inundation year is 287 years from the base
year of 2010, while under RCP8.5, it drops to 234. Uncertainty in these estimates increases
under more extreme climate scenarios, with projected standard deviations ranging from
13.6 years (RCP2.6) to 86.5 years (RCP8.5).
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3.2. Specification

To estimate the impact of sea-level rise (SLR) risk and uncertainty on housing prices, we
employ the following empirical specification. This specification follows Baldauf et al. (2020),
who analyze how housing markets capitalize exposure to climate risk. We extend their
framework by incorporating our novel measure of SLR uncertainty at the house level,
capturing the variation in projected inundation timing across climate scenarios.

log Vi,c,t = α1SLR Riski + α2SLR Uncertaintyi + β1(Pessimistc × SLR Riski)

+ β2(Pessimistc × SLR Uncertaintyi) + Xi,c,tΓ + θZ×D + τt + εi,c,t. (4)

The dependent variable log Vi,c,t represents the log of the value (the sale price) of property
i in county c at time t. Note that |β1| maps to the SLR capitalization parameter β in our
model. Furthermore, as discussed in more details below, |β2|

β2
1

will be scaled and mapped to
the model’s ambiguity aversion parameter 1/ξ.

SLR risk measure Consistent with the model, the variable SLR Riski is defined as

SLR Riski ≡ (2301 − Tmedian
RCP 4.5,i)

+,

where Tmedian
RCP 4.5,i is the median projected first year of permanent inundation under the RCP

4.5 scenario. We normalize 2301 as the upper bound for SLR Risk because our sea-level rise
projections extend to 2300, beyond which we do not have model estimates for individual
properties. This means that all properties with Tmedian

RCP 4.5,i > 2300 are grouped into a single
category, assigned an SLR Risk of zero. This specification assumes that the economic effects
of inundation risk diminish beyond this threshold, as properties projected to be safe until
at least 2301 are unlikely to be perceived as exposed to meaningful near-term risk.3 Note
that with 2301 being the terminal year of SLR projection and 2001 as the first year of our
data, the implied terminal period Tmax in the model is 2301 − 2001 = 300.

Our SLR risk measure is significantly more fine-tuned than those used in prior studies.
For example, in much of the existing literature, SLR risk is measured using a binary
indicator that equals one if a house is projected to be inundated with three feet or with
six feet of SLR (Bernstein et al., 2019; Baldauf et al., 2020; Bakkensen and Barrage, 2022;
Bakkensen et al., 2025). While useful, such a binary measure provides no information

3Quantitatively little changed by taking this assumption. Even with an extremely low discount rate of
2% (we will directly estimate long-run discount rates in Section 4), the value of a home 275 years into the
future will be less than 1% of the purchase price. While this choice is reasonable given the long horizon and
significant discounting of distant climate risks, we will later conduct sensitivity analyses where we vary the
normalization year to alternative cutoffs, such as 2250 or 2290.
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about the timing of inundation. A house expected to be submerged in 2050 is treated the
same as a house expected to be submerged in 2150, even though the latter faces little to no
economic risk in the foreseeable future. Our approach, by contrast, assigns each property a
continuous, property-specific measure of inundation timing, allowing us to differentiate
between near-term and long-term risk. This enables a more precise assessment of how
markets price SLR exposure, making our analysis much richer than existing studies that
rely on static thresholds.

SLR uncertainty measure The variable SLR Uncertaintyi measures the ambiguity in SLR
projections and is constructed as

SLR Uncertaintyi ≡ (Tmedian
RCP 2.6,i − Tmedian

RCP 8.5,i)
2.

The indicator Pessimistc is set to one if the fraction of residents in county c who express
concern about climate change in the Yale Climate Opinion Survey exceeds the sample
median. The model includes property-level controls such as building age, elevation,
number of bedrooms and bathrooms, and square footage. County-level controls include
median income, population, and GOP vote share in the last presidential election. Fixed
effects θZ×D control for unobserved heterogeneity at the ZIP code × distance-to-coast bin
level, while year fixed effects τt absorb broader market trends.4

Identification relies on the granular property-level variation in SLR risk and uncertainty,
which are computed using precise elevation data and local sea-level rise projections. Unlike
global SLR forecasts, localized projections incorporate differences in land subsidence,
hydrologic connectivity, and ocean dynamics. This ensures that SLR exposure varies
meaningfully across properties within the same region, even after accounting for fixed
effects.

A typical concern is that housing prices may reflect omitted factors correlated with both
SLR risk and broader market conditions. We address this by controlling for an extensive set
of observable characteristics at both the property and county levels. Property-level controls
include building age, elevation, number of bedrooms, number of bathrooms, and building
square footage. County-level controls include average county income, county population
for the year of transaction, and GOP voter share in the last presidential election. In some
specifications, these controls are also interacted with SLR Riski, allowing us to account
for potential heterogeneity in how these characteristics influence the capitalization of SLR
exposure.

4Following Baldauf et al. (2020); Bakkensen et al. (2025), we use nonlinear bins for the distance from the
East Coast: 0 – .01 miles, .01 – .02 miles, .02 – .08 miles, .08 – .16 miles, and more than .16 miles.
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Additionally, we exploit heterogeneity in climate beliefs to provide further evidence that
our estimates capture market perceptions of SLR risk rather than unobserved confounders.
If properties in counties with greater climate concern (as measured by the Yale Climate
Opinion Survey) exhibit stronger price responses to the same level of SLR risk or uncertainty,
this suggests that beliefs about climate change, rather than purely omitted economic
fundamentals, drive differences in capitalization effects. This heterogeneity provides an
additional check on the causal interpretation of our findings by isolating variation in price
sensitivity that aligns with differences in expectations about climate risk.

3.3. Results

Table 2 presents our core findings on how housing markets capitalize SLR risk and uncer-
tainty. The empirical specification follows equation (4), where we estimate the effect of SLR
Risk (the projected timing of inundation) and SLR Uncertainty (the variability in first-year
inundation across climate scenarios) on house prices.

3.3.1 SLR beta

Column (1) begins with a baseline estimate of SLR Risk. The coefficient is small and not
statistically significant, suggesting that, on average, variation in the timing of inundation
does not strongly influence prices. However, in column (2), where the sample is restricted
to counties with above-median climate concern (Pessimist counties), the coefficient becomes
significantly negative. This indicates that in regions where buyers are more concerned
about climate change, homes with earlier projected inundation years are discounted more
heavily, consistent with prior findings in Baldauf et al. (2020).

Figure 4 provides a visual counterpart to this result. The bin scatter plot shows the
relationship between SLR Risk and log house price, after controlling for the full set of
property and county-level characteristics. The downward slope of the fitted line confirms
the negative price response observed in column (2), reinforcing the finding that home
values decline as inundation dates become nearer in climate-conscious regions.5

Column (3) introduces an interaction term between SLR Risk and Pessimist, allowing us
to test whether properties in climate-concerned regions exhibit differential price sensitivity
to inundation timing. The interaction coefficient is

β̂1 = −0.00105

5Notably, this bin scatter specification employs more stringent fixed effects—ZIP × distance bin × year
fixed effects—ensuring that the variation exploited is within highly localized markets and further reducing
concerns about omitted variable bias.
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and statistically significant at the 1% level. This implies that in pessimist counties, a house
expected to be inundated 10 years earlier sells for approximately 1% less, while a house
expected to be inundated 100 years earlier sells for 10% less, relative to an otherwise
comparable home.6

3.3.2 Capitalization of scenario uncertainty

Columns (4)–(6) introduce SLR Uncertainty, our novel measure capturing ambiguity in the
timing of inundation. Column (4) suggests that SLR Uncertainty has little effect on prices
on average, but in column (5), where the sample is restricted to Pessimist counties, the
coefficient on SLR Uncertainty is negative and significant. This suggests that ambiguity
aversion plays a role in climate risk pricing, particularly in areas where homebuyers are
predisposed to worry about climate change.

Figure 5 illustrates this effect using a bin scatter plot of SLR Uncertainty vs. log house
price, with the same full set of controls and more stringent fixed effects. The downward
slope of the fitted line confirms that greater ambiguity in SLR projections correlates with
lower property values, consistent with column (5). The comparison between Figures 4 and
5 underscores that both SLR Risk and SLR Uncertainty influence pricing, but uncertainty
effects emerge more clearly in markets where climate risks are salient.

Column (6) presents our key specification, interacting both SLR Risk and SLR Uncer-
tainty with the Pessimist indicator. The coefficient on Pessimist × SLR Risk remains negative
and significant at the 5% level:

β̂1 = −0.0008869.

More importantly, the coefficient on Pessimist × SLR Uncertainty is

β̂2 = −0.0000029,

also significant at the 5% level. The negative sign suggests that in Pessimist counties, an
increase in SLR Uncertainty leads to additional price discount. The sign provides evidence
that markets penalize ambiguity itself, not just expected risk.

This pattern of results is crucial for our quantification of ambiguity aversion. Under
standard expected utility, homebuyers should care about the expected year of inundation
but should be indifferent to variance in that projection unless they exhibit ambiguity

6To put in context, Bernstein et al. (2019); Bakkensen et al. (2025) estimate that homes projected to be
inundated at six feet of SLR sell for approximately 6-7% less than otherwise comparable homes that remain
above water. However, these estimates cannot be directly compared to our estimate, because these papers
have no information about the timing of 6ft of SLR.
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aversion. The fact that SLR Uncertainty commands a price discount—especially in climate-
concerned regions—suggests that ambiguity aversion is an important factor in climate risk
pricing. The next section formalizes this interpretation by estimating the implied ambiguity
aversion parameter based on market responses to uncertainty.

4. Market-based estimate of the long-run discount rate

Our framework provides a unique opportunity to revisit the debate on what are appropriate
long-run discount rates in climate economics, as we can estimate the discount rate against
long-run SLR risk using our data. In our model, the parameter β captures the sensitivity
of house prices to shifts in the expected first year of inundation due to sea-level rise. Our
empirical estimates of β̂1 range between 0.0008869 and 0.0010489, implying that, all else
equal, a property with an expected inundation date 100 years earlier sells at an 8.8% to
10.5% lower price.

What long-run discount rates do these numbers suggest? Let us focus on the more
conservative estimate of the SLR beta β = |β̂1| = 0.0008869. Recall from Remark 1 that the
SLR beta is derived from β = exp(−ρTmax). With Tmax = 2301− 2001, the implied discount
rate is ρ =

− log 0.0008869
300 ≈ 2.34%.

Hence, our analysis provides an independent, market-based way to calibrate the long-
run discount rate for climate damages, a key input in climate policy models. To put in
perspective, previous empirical work based on UK and Singapore housing data (Giglio
et al., 2015, 2021) suggest a discount rate of about 2.6% for the 100-year horizon, while the
discount rate typically used in DICE models is 4% (Nordhaus, 2013). A lower discount
rate suggests a (much) larger social cost of carbon and underscores the importance of our
approach in integrating market-based estimates with theoretical models of long-run climate
damages.

5. Market-based estimate of the ambiguity aversion parameter

We now use the empirical estimates of β1 and β2 from Column 6 of Table 2 to infer the
ambiguity aversion parameter 1/ξ in equation (3) of the model:

Vpes − Vopt = −βS̄ − 1
ξ

β2σ2
S

where

S̄ =
3

∑
i=1

piSi and σ2
S =

3

∑
i=1

pi(Si − S̄)2.
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Assume a uniform baseline prior (i.e., p1 = p2 = p3 = 1
3). Furthermore assume that the

middle scenario approximates the average of the two extremes (T2 ≈ T1+T3
2 and hence

S2 ≈ S1+S3
2 , as Si ≡ 2301 − Ti).7 Then we obtain S̄ ≈ S2, and the variance further simplifies

to
σ2

S ≈ 1
6
(S1 − S3)

2, (5)

since the deviations of S1 and S3 from S2 are symmetric. This reduction means that instead
of including all six terms—S1, S2, S3, (S1 − S2)

2, (S2 − S3)
2, and (S3 − S1)

2—our specifica-
tion needs only two key terms: the median inundation time S2 and the squared difference
(S1 − S3)

2. This simplification streamlines the empirical implementation, allowing us to
map (3) to our econometric specification (4).

As mentioned before, the coefficient estimate on Pessimist × SLR Risk is |β̂1| = 0.0008869,
which is the empirical counterpart of β in (3). Similarly, the coefficient estimate on Pessimist
× SLR Uncertainty is β̂2 = −0.0000029, which corresponds to the ambiguity discount term in
equation (3). Notably, SLR Uncertainty appears negatively in both the empirical estimates
and the theoretical expression, reinforcing the consistency between the structural model
and the data.

From equations (3) and (5), we have:

1
ξ
≈ 6

|β̂2|
(β̂1)2

= 6
0.0000029
0.00088692 ≈ 22.12

or equivalently:
ξ ≈ 0.045

What does this value mean for the distortion of belief from p1 to q1 due to ambiguity
aversion? Using equation (1), and plugging in the average value of T in our sample, we
get a distortion of probability that increases the weight on the worst-case scenario RCP 8.5
from the baseline of 1/3 to about 1/2 (see Table 4). This distortion implies that market
participants assign disproportionately higher probability weight to the worst-case climate
scenario than an unbiased prior would suggest. In economic terms, this shift means that
homebuyers in coastal markets act as if they believe extreme sea-level rise outcomes are
significantly more likely than indicated by scientific projections alone. This finding provides
the first known market-based estimate of probability distortion due to ambiguity aversion,
quantifying how uncertainty reshapes expectations and influences asset pricing in a way
that is economically significant for climate risk valuation and policy design.8

7This approximation is reasonable. Figure 6 plots the histogram of S2 − S1+S3
2 , which has a substantial

concentration of mass at 0.
8Our estimate of 1/ξ ≈ 22 can be mapped to a risk aversion parameter of approximately 23 in a recursive
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6. Application: Willingness to adapt to SLR

Our framework also allows us to quantify, for the first time to our knowledge, the role of
ambiguity aversion in adaptation decisions by linking empirically estimated discount rates
and ambiguity parameters to homeowners’ willingness to raise their property’s elevation.
We have in mind the adaptation technology of raising a house on stilts (Fried, 2022). In
the model, this technology simply maps to an increase in the house’s elevation above the
sea level.9 Under our model, the housing utility flow is normalized to 1 until inundation
occurs at time T, so that the value of the house is given by

V(T) =
1 − e−ρT

ρ
.

Sea-level rise is modeled as
St = S0eµt, S0 = 1,

and for a house with current elevation h, the inundation time is

T(h) =
1
µ

log
(

1 +
h
S0

)
.

A homeowner can raise the elevation by increasing h, and the marginal willingness to

adapt is given by ∂V(h)
∂h = (S0+h)−

ρ
µ −1

µ . Similarly, the willingness to raise elevation by 1 unit
is captured by the difference V(h + 1)− V(h).

As a baseline, we set ρ = 2.4% (as previously derived from our SLR capitalization
estimates) and set the rat of SLR to be µ1 = 1.60%, µ2 = 1.75%, and S3 = 1.97% (calibrated
to average inundation timings under the RCP2.6, RCP4.5, and RCP8.5 scenarios given the
average house elevation in the data). We obtain some quantitative predictions for the cost
of adaptation. Table 5 summarizes our preliminary estimates: columns 2, 3, and 4 show the
willingness to raise the current elevation by 1 ft as a percentage of the current house value,
while columns 5, 6, and 7 report the corresponding dollar amounts based on an average
house price of $464,000. For example, for a house with a current elevation of 1 ft, the
baseline probability weights imply a willingness to raise elevation by 1 ft of approximately

preference setting. This follows from the well-documented mathematical equivalence between ambiguity
aversion in robust control models and risk aversion in Epstein-Zin recursive utility frameworks (Hansen and
Sargent, 1995; Skiadas, 2003). This transformation suggests that ambiguity aversion plays a significant role
in asset pricing, as a risk aversion parameter of this magnitude is notably high—well beyond typical values
used in macro-finance models, where risk aversion often ranges between 2 and 10 (Duffie and Epstein, 1992;
Maenhout, 2004).

9We can also alternatively consider a version of the exercise where the decision maker is a local authority
that is considering building a sea wall.
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27.2% of its value, while under distorted probability weights (reflecting ambiguity aversion)
this increases to 28.08%—a difference of about 0.79 percentage points (or roughly $3,657).
This is the first time, to the best of our knowledge, that the role of ambiguity aversion
in adaptation decisions can be quantified using empirically estimated discount rates and
ambiguity parameters.

7. Dynamic model (work in progress)

In Appendix A, we provide a dynamic model that analyzes how ambiguity aversion shapes
housing investment and adaptation decisions under stochastic SLR risk. Homeowners or
policymakers choose adaptation investments, such as raising elevation, while accounting
for model uncertainty over emissions pathways, climate sensitivity, and sea-level response.
The model incorporates ambiguity-averse preferences that distort prior beliefs toward
worst-case scenarios, with the degree of distortion governed by our estimated ambiguity
aversion parameter.

By embedding these estimates into a recursive optimization framework, we plan to
quantify how uncertainty affects the value of climate adaptation. The model will provide
a structured approach to assessing long-term housing investments under climate risk.
Such a quantitative characterization of climate change is not possible in the static or
modular settings commonly explored in the literature which cannot capture the dynamic,
long-run nature of climate change or the interconnected general equilibrium feedbacks
resulting from optimal policy choices. The resulting valuations derived in this setting
provide a more complete, global quantification of climate consequences, rather than local
approximations that are ill-suited for capturing consequences of nonlinear settings such
as those coming from climate change and model uncertainty consequences. Moreover, by
linking our dynamic general equilibrium model to the empirical estimates provided in this
paper, we provide one of the first set of valuations of the consequences and uncertainties
associated with climate change that are founded on empirically-estimated quantitative
model parameters, particularly with regards to the degree of model uncertainty aversion.
See the appendix for preliminary details.

8. Conclusion

Our findings provide direct empirical evidence that ambiguity aversion plays a significant
role in how housing markets capitalize climate risks. By linking observed house price dis-
counts to uncertainty in sea-level rise projections, we quantify the degree to which market
participants exhibit aversion to ambiguous climate outcomes. The estimated ambiguity
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aversion parameter, ξ, varies with assumed prior beliefs, but our benchmark estimates
suggest that homebuyers in climate-conscious markets apply substantial discounts to prop-
erties with greater uncertainty in their inundation timing. This highlights the importance of
considering not just expected climate risks, but also the uncertainty surrounding those risks
when assessing asset prices and policy interventions. Future research could explore how
these effects evolve over time as more information about climate change becomes available
and whether markets adjust their responses dynamically to new scientific projections and
policy signals.
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Figure 1: Geographic coverage: Our sample (of more than 2 million housing transactions)
covers 17 major coastal metropolitan statistical areas (MSAs). Each MSA’s circle radius is
proportional to the sample size in that MSA.
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Figure 2: Illustration of how we construct each property’s first year of inundation T using
the median projection of local SLR under each climate scenario (RCP 2.6, 4.5, or 8.5)
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Figure 3: Example of local SLR projections under different scenarios for the city of Miami.
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Figure 4: Bin scatter of SLR Risk and Log of House Sale Price, after controlling for property
controls (building age, elevation, number of bedrooms, number of bathrooms, building
square footage), the house’s county controls (average county income and county population
for the year of transaction, and GOP voter share in the last presidential election), and ZIP
by distance to coast bin by sale year fixed effects.
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Figure 5: Bin scatter of SLR Uncertainty (:= (Tmedian
RCP 2.6 − Tmedian

RCP 8.5)
2)) and Log of House Sale

Price. The controls and fixed effects include those described in the caption of Figure 4 and
additionally the interactions of the controls with SLR Risk.
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Figure 6: Histogram of SRCP4.5 − SRCP2.6+SRCP8.5
2 .
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Housing characteristics
Mean Std p10 p50 p90 N

House sale price ($) 464,496.00 539,648.10 117,000.00 325,500.10 879,000.40 2,278,863

Number of bedrooms 3.25 0.88 2.00 3.00 4.00 2,449,749

Number of bathrooms 2.31 1.04 1.00 2.00 4.00 2,680,114

Building square feet 2,049.80 975.59 1,082.00 1,824.00 3,284.00 2,628,989

Property elevation (feet) 82.11 106.91 6.80 32.53 260.61 2,100,303

House age (years) 39.29 28.36 1.00 39.00 78.00 2,172,837

First year of SLR inundation, median projection undereach RCP scenarios, up to 2300
Mean Std Corr Trcp2.6 Trcp4.5 Trcp8.5

Trcp2.6 2,297.27 23.52 Trcp2.6 1.0000

Trcp4.5 2,273.39 56.30 Trcp4.5 0.5113 1.0000

Trcp8.5 2,244.11 78.03 Trcp8.5 0.3438 0.8422 1.0000

σT = Trcp2.6 − Trcp8.5 53.16 73.34

σ2
T 8205.05 12735.54

Table 1: Summary statistics of key selected variables.
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log House Sale Price
(1) (2) (3) (4) (5) (6)

SLR Risk 0.0001455 -0.0003327** 0.0000290 0.0001901 -0.0002081 0.0002067

(0.0001305) (0.0001464) (0.0007480) (0.0001208) (0.0001555) (0.0007598)
SLR Uncertainty -0.0000006 -0.0000012* 0.0000017

(0.0000007) (0.0000007) (0.0000012)
Pessimist # SLR Risk -0.0010489*** -0.0008869**

(0.0003752) (0.0003575)
Pessimist # SLR Uncertainty -0.0000029**

(0.0000012)

Sample Full Pessimist Full Full Pessimist Full
Controls Y Y Y Y Y Y
Controls interacted Y Y
FE ZxD Y ZxD Y ZxD Y ZxD Y ZxD Y ZxD Y
N 1058703 488638 1058703 1058703 488638 1058703

R2 0.807 0.810 0.808 0.807 0.810 0.808

Table 2: Capitalization of SLR risk and of its ambiguity across climate scenarios (RCPs).
The dependent variable is the log of house sale price. SLR Risk is defined as 2301 minus
the first year of permanent inundation due to SLR under RCP 4.5 median projection.
SLR Uncertainty measures the variation of SLR median projections under the worst and
the best climate scenarios (i.e., := (Tmedian

RCP 2.6 − Tmedian
RCP 8.5)

2). Pessimist indicates whether the
housing transaction takes place in a county where the fraction of respondents in Yale
Climate Opinion Survey stating that they are worried about global warming is above the
sample median. Columns 2 and 5 are restricted to the Pessimist = 1 subsample. Z × D
indicates ZIP code × distance to coast bin fixed effects, and Y indicates sale year fixed
effects. Controls refer to property controls (building age, elevation, number of bedrooms,
number of bathrooms, building square footage) and the house’s county controls (average
county income and county population for the year of transaction, and GOP voter share in
the last presidential election). Controls interacted indicates that the controls are interacted
with SLR Risk. Standard errors in parentheses are clustered at the ZIP code level; * (p < 0.1),
** (p < 0.05), *** (p < 0.01).
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log House Sale Price
(1) (2) (3) (4) (5)

Pessimist # SLR Risk -0.0011316*** -0.0010575***
(0.0003646) (0.0003648)

Pessimist # SLR Uncertainty -0.0000025** -0.0000027**
(0.0000012) (0.0000012)

Pessimist (happening) # SLR Risk -0.0006350*
(0.0003531)

Pessimist (happening) # SLR Uncertainty -0.0000030**
(0.0000012)

Pessimist (timing) # SLR Risk -0.0002942

(0.0003943)
Pessimist (timing) # Uncertainty -0.0000041***

(0.0000013)
Pessimist (worried buyer) # SLR Risk -0.0001747

(0.0001916)
Pessimist (worried buyer) # Uncertainty -0.0000019**

(0.0000009)

Controls Y Y Y Y Y
Controls interacted Y Y Y Y Y
FE ZxDxY ZxDxYxB ZxD Y ZxD Y ZxD Y
N 1056084 1041216 1058703 1058703 1056248

R2 0.836 0.847 0.808 0.808 0.808

Table 3: Robustness checks. Pessimist (happening) (or Pessimist (timing)) indicate whether
the housing transaction takes place in a county where the fraction of respondents in Yale
Climate Opinion Survey stating that they believe global warming is happening (or global
warming will start to harm people in the U.S. within ten years, respectively) is above the
sample median. Pessimist (worried buyer) indicates whether the buyer in the transaction
comes from a county where the fraction of respondents in Yale Climate Opinion Survey
stating that they are worried about global warming is above the sample median. Z × D ×Y
(or Z × D × Y × B) indicates ZIP by distance to coast bin by sale year fixed effects (ZIP by
distance to coast by sale year by number of bedroom fixed effects, respectively). The rest
are as in Table 2. For brevity, uninteracted terms (SLR Risk and SLR Uncertainty) are not
shown.
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Scenario Baseline belief (pi) Worst-case belief (q∗i ) Change (pp)

RCP2.6 (Best) 33.3% ∼ 17% −16
RCP4.5 (Mid) 33.3% ∼ 32% −1
RCP8.5 (Worst) 33.3% ∼ 51% +17

Table 4: Belief distortion from ambiguity aversion
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Willingness to raise elevation by 1ft Willingness to raise elevation by 1ft
(% of current house value) ($, based on average house price)

Current house Baseline Distorted Difference (pp) Baseline Distorted Difference
elevation (ft) prob weights prob weight prob weights prob weight

1 27.29% 28.08% 0.79% $126,917 $130,574 $3,657

2 9.51% 9.89% 0.38% $44,217 $45,991 $1,774

3 4.78% 5.01% 0.24% $22,221 $23,317 $1,097

4 2.84% 3.00% 0.16% $13,213 $13,968 $755

5 1.87% 1.99% 0.12% $8,681 $9,236 $554

6 1.31% 1.40% 0.09% $6,097 $6,523 $425

7 0.97% 1.04% 0.07% $4,493 $4,830 $337

8 0.74% 0.80% 0.06% $3,434 $3,708 $274

9 0.58% 0.63% 0.05% $2,700 $2,927 $227

10 0.47% 0.51% 0.04% $2,173 $2,364 $191

Table 5: Model-implied willingness to raise elevation by 1 ft, expressed both as a percentage
of current house value (columns 2–4) and in dollars (columns 5–7), based on an average
house price of $464,000 in our sample.
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Appendix

A. Dynamic Model with Policy Choice

In this section, highlight an important application of the estimated uncertainty aversion
parameter from our empirical analysis. Specifically, we derive a social valuation of climate
change adaptation investment by constructing and solving a dynamic general equilibrium
model of house prices subject to inundation resulting from a stochastic SLR process. Given
the significance of housing as both a financial asset and durable consumption good, this
novel quantitative framework highlights the importance of our analysis to the literature
focused on the social costs of climate change by incorporating the first-order implications
of model uncertainty identified and quantitatively validated by our empirical estimation.
In what follows, we outline the model and derive key theoretical results, and will provide
the computational results for different numerical examples in future work.

A.1. Housing

Our stylized model is focused on the pricing of the housing stock of an individual home-
owner. In our framework, we assume consumption is proportional to the housing stock Ht

owned by our homeowner, less investment in additional housing stock, such that

Ct = Ht (α − it)

where it is the fraction of “output” from housing invested in building new housing “capital”.
The evolution of the log of the housing stock log Ht = ht is determined by investment,
adjustment costs, and Brownian shocks

dht =

(
µh + Γ log (1 + ϕit)−

1
2
|σh|2

)
dt + σh · dWt

where µh is the housing stock depreciation rate and (Γ, ϕ) are adjustment cost parameters.
We assume the per period (instantaneous) contribution to preferences, or utility function

U(·), is of the risk neutral form over consumption Ct, exponentially discounted at the
subjective rate of discount ρ. Thus preferences are given by

U(Ct) = Ct = Ht (α − it)

Critically for our analysis, we introduce the additional component for our house price
valuation which is the potentially negative consequences associated with climate change
and sea-level rise. We elaborate on these dynamics and the consequences in what follows.
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A.2. Climate Change and Seal-Level Rise

The sea-level rise dynamics for our model are based on three geoscientific ingredients:

1. An affine relationship between carbon emissions and changes in atmospheric tem-
perature known as the Transient Climate Response to cumulative carbon Emissions
(TCRE).

2. An exogenous (to the household) emission pathway corresponding to the implied
atmospheric temperature outcome of a given IPCC RCP scenario.

3. A semi-empirical dual model of sea-level rise dynamics that reflects the long-term
trend and rapid-response effect of climate change on sea-level rise.

In general form, we denote the sea-level rise (SLR) dynamics as follows:

dSt = µS(St)dt + σS(St)dWt

We assume that climate change and sea-level rise are relevant to our house price
valuations as their is a potential for catastrophic flooding from sea-level rise that inundates
the home and drives the value of the house to zero. Therefore, our preferences are alter to
account for this risk as follows

U(Ct) = Ct = Ht (α − it) IS≤S̄

The price of the house in our model will reflect the likelihood of this potentially catas-
trophic risk occurring.10 Importantly, there is significant uncertainty about the climate
change pathway we are on, the magnitude of sea-level rise we will experience, and the re-
sulting economic consequences from the different possible realizations we could experience
along these dimensions. As such, we augment our framework to account for such model
uncertainty in what follows.

A.3. Model Uncertainty

We allow for model uncertainty broadly conceived in our framework by applying the
toolset of dynamic decision theory as via continous-time smooth ambiguity as developed in

10While the technical mathematical representation for jump arrival intensity function is a Dirac delta
function, for computational purposes can approximate this with a smooth function which builds up to a
probability of (approximately) one by S̄ for the jump to occur:

I(S; S̄, S) = r1

(
exp

( r2

2
(s − s̄)2

)
− 1

)
Is≤s

We can use scientific projections of SLR and inundation times to calibrate these parameter values.
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Hansen and Miao (2018) and applied in Barnett et al. (2020) and Barnett et al. (2023b). We
consider ambiguity as it relates to the models of climate change and sea-level rise dynamics.
Specifically, we assume there are a range of potential climate sensitivity values β f values,
emissions trajectories (Ē, δ), and sea-level rise response values (a, b). For tractability, we
consider a discrete set of each values of the form

β f ,ℓ, ℓ ∈ {1, . . . ,L}(
Ēj, δj

)
, j ∈ {RCP2.0, . . . , RCP8.5}

(ai, bi) , i ∈ {1, . . . , I}

We denote a given model in our setting by θ(m) where

θ(m) =
(

β f ,ℓ, Ēj, δj, ai, bi
)

m = (ℓ, j, i)

m ∈ {(1, RCP2.0, 1), . . . , (L, RCP2.0, 1),

(1, RCP2.0, 2), . . . , (L, RCP2.0, 2),

. . .

(1, RCP8.5, I), . . . , (L, RCP8.5, I)}

The number of models m in our framework is therefore given by M = L×J × I where L
is the number of TCRE parameters, J is the number of RCP emissions scenarios, and I is
the number of sea-level rise response values. We denote the prior probability weighting
for a given model θ(m) by π(m), and assume an equal-weighted probability across the
different potential models so that π(m) = 1/M, ∀m ∈ {1, . . . ,M}.

This preference structure brings uncertainty concerns inside the house price valuation
and decision maker’s problem by applying, as opposed to model averaging or sensitivity
analysis comparisons often done in the literature. To do this requires that we make two
adjustments to our framework as currently given. First, the dynamic evolution of the
climate change and sea-level rise state variables are adjusted to account for the set of
possible alternative models considered by the decision-maker. This adjustments leads to
the evolution of the state variables being given as follows

dYt =
M
∑

m=1
π(m) (Ē(m)− δ(m)Yt) β f (m)dt + σYdWt

dSt =
M
∑

m=1
π(m)a(m)Ytdt +

M
∑

m=1
π(m)b(m) (Ē(m)− δ(m)) β f (m)dt

+
M
∑

m=1
π(m)b(m)ςdWt + σSdWt
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Second, we augment the preferences and optimization problem of the decision-maker
to include a penalization term over which the planner can optimize “reasonable” worst-
case models to inform their sagacious optimal policy decisions. The penalization is a
measure of model discrepancy, in our case the Kullback-Leibler or relative entropy distance
measure, scaled by a parameter ξ which constrains the model distortion minimization of
the decision-maker. Specifically, the preferences of the planner are now of the form

max
it

min
π̃(m)

Ht (α − it) IS≤S + ξ
M

∑
m=1

π̃(m) (log π̃(m)− log π(m))

With these components, we can now characterize the planner’s optimization problem
and provide it’s recursive representation through a Hamilton-Jacobi-Bellman equation.

A.4. Model Solution

The HJB equation, as well as corresponding FOC for investment in the housing stock and
optimal model distortions, are given in the following form

ρV(h, Y, S) = min
π̃,g

max
it

(α − it) Ht + ξ
M

∑
m=1

π̃(m) log
π̃(m)

π(m)
+ ξI(Y)(1 − g + g log g)− gI(S)V

+Vh

(
µh + Γ log (1 + ϕit)−

1
2
|σH|2

)
+

1
2

Vhh|σH|2

+Vy ∑ π̃(m)β f (m)(Ē(m)− δ(m)Y) +
1
2

Vyy|ς|2

+Vs

M
∑

m=1
π(m)

(
a(m)Yt + b(m)β f (m) (Ē(m)− δ(m))

)
+

1
2

Vss

(
|σY|2 + |σS|2

)
g = exp(

1
ξ

V(h, Y, S))

π̃(m) ∝ π(m) exp
(
−1

ξ

(
[Vy + b(m)Vs]β f (m)(Ē − δ(m)Y) + Vs (a(m)Yt)

))
it =

vhΓ
Ht

− 1
ϕ

We can solve this model computationally, and examine the distorted probabilities
resulting from g and π̃(m) to understand the implications of ambiguity aversion for
housing prices, as well as their implications for the optimal housing investment choice
it. Of particular interest to us is determining the social value of adaptation in response
to climate change induced SLR risk. To derive this, we can augment the model in the
following ways: first, we incorporate a cost of adaptation investment that enters the
consumption-output market clearing condition; and second we allow for the adaptation
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investment to alter the SLR state which determines the time to inundation for the house
with decreasing returns to scale benefits. With this additional model richness, we can follow
the methodology put forth in Barnett et al. (2023a) and derive the social value of adaptation
investment based upon the impact so social welfare from an additional unit increase of
adaptation investment. We leave this analysis for future work, providing a rich application
of our ambiguity aversion parameter estimate derived earlier in our analysis.

A.5. Climate Change and Seal-Level Rise - Calibration

The climate dynamics of the model are based on two main components. First, we assume
an affine relationship between carbon emissions and changes in atmospheric temperature
known as the Transient Climate Response to cumulative carbon Emissions (TCRE).11 We use
a stochastic version of this approximate relationship, so that the evolution of atmospheric
temperature Yt is given by

dYt = Etβ f dt + ςdWt

where β f is the TCRE parameter, Et is per period emissions, and ς is the volatility loading
of temperature on the Brownian motion Wt.

For the second component, we assume emissions follow a pathway that is exogenous to
the household12, which are given by the functional form

E = e(y) = ē − δy

The values ē and δ are estimated to match temperature outcomes implied by the IPCC’s
RCP Scenarios. We discuss the uncertainty about which RCP scenario governs the climate
change dynamics when we elaborate on the planner’s preferences.

The consequences of climate change are reflected by sea-level rise in our model. Specifi-
cally, we assume that the level of sea-level depends upon the magnitude of climate change
experienced based on the following dynamics

dSt = aYtdt + bdYt + σSdWt

= (a − bδβ f )Ytdt + bĒβ f dt + bςdWt + σSdWt

≈ b
(
Ēβ f dt + ςdWt

)
11This approximation follows from Matthews et al. (2009); Friedlingstein et al. (2019), and others.
12The assumption of exogenously given emissions is based on the fact that our analysis focuses not on

global production choices that impact climate change in a measurable way, but instead on individual house
prices in response to given climate change outcomes.
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This specification comes from the semiempirical dual model specification proposed and
estimated by Vermeer and Rahmstorf (2009) where the term aYtdt reflects the long-term
trend of climate change on sea-level rise and the second term bdYt captures the rapid-
response effect, on geoscientific time-scales.

The last approximate expression allows for three specific uncertainty: the SLR sensitivity
(b), the climate sensitivity (β f ), and the emissions pathway (Ē).
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