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ABSTRACT

This paper studies two channels—opportunity and regulatory uncertainty—through which

Artificial Intelligence (AI) affects the stock prices and risk premia. On the one hand, advances

in AI present firms with opportunities, leading them to exhibit characteristics of growth

firms and earn lower expected returns. On the other hand, firms face increased regulatory

uncertainty in AI development, increasing their political risk exposure and resulting in higher

expected returns. Using conference call transcripts, I construct a firm-level measure of AI

Exposure that captures the level of attention analysts and managers devote to AI-related

topics at specific points in time. Empirically and theoretically, I show that these two channels

exert opposing effects: firms focused on opportunity earn a negative AI risk premium, while

those more affected by regulatory uncertainty earn a positive AI risk premium.
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I. Introduction

Artificial Intelligence (AI) has emerged as a transformative force, driving both unprecedented

opportunities and regulatory uncertainties for firms across industries. By 2030, AI is pro-

jected to contribute up to $15.7 trillion to the global economy, with 40% of productivity

gains stemming from AI-driven automation and innovation (PwC, 2020). Firms utilizing or

investing AI technologies for productivity, product innovation, and market expansion have

seen revenue increases of up to 20% in some sectors (McKinsey, 2023). However, the rapid

adoption of AI also exposes firms to regulatory uncertainty, as governments worldwide try

to come up with frameworks to address ethical concerns, data privacy issues, and algorith-

mic accountability worries on AI. For example, the European Union’s AI Act, proposed in

2021, aims to classify AI systems by risk levels, potentially imposing stringent compliance

costs on firms. Meanwhile, 47% of executives cite regulatory uncertainty as a top barrier to

AI adoption (Deloitte, 2024), highlighting the tension between the potential opportunities

AI brings and the regulation risks AI poses. Consistent with these estimates and surveys,

examples from 10-K annual filings reveal that firms explicitly discuss both the opportuni-

ties and regulatory uncertainties surrounding AI (see Appendix B for details). This duality,

where AI simultaneously creates opportunities for growth and increasing productivity while

introducing regulatory uncertainties, has profound implications for the asset prices. This

paper studies how these two channels affect stock prices and risk premia.

AI, which Deming, Ong, and Summers (2025) argue to be the next General-Purpose

Technologies (GPTs) like electricity and steam power, will bring firms a great amount of

opportunities that tend to be widespread and long-spreading. This differentiates AI from

other recent technology breakthroughs documented in the literature. For example, in the

labor market, studies show that generative AI models can increase workers’ productivity in

writing, customer service, and programming tasks (Brynjolfsson, Li, and Raymond, 2023;

Peng et al., 2023; Noy and Zhang, 2023). Firms investing or taking advantage of these tools

will increase their productivity. However, firms starting to invest or adapt to using AI in

their operations might see negative profitability in the beginning due to long-term R&D

investments or payment for third-party AI use like ChatGPT4. These firms are primarily

concerned with rising opportunities, balancing entry costs against the potential for future

gains as they explore AI investment or adoption. I call these firms AI Starters. There are

also other firms that have invested in AI or used AI technologies in their daily operations for

quite some time and they see big profitability growth when there are positive AI opportunity

shocks like the launch of ChatGPT3. However, their advanced integration of AI exposes

them disproportionately to regulatory risks, as policymakers increasingly target established
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AI creators or adopters with compliance requirements, ethical scrutiny, or restrictions on

market dominance. I call these firms AI Elites.

This paper hence focuses on testing the null hypothesis that these two forces—opportunity

and regulatory uncertainty—exert opposing effects on stock prices and risk premia for AI

Starters and AI Elites. Specifically, I hypothesize that for AI Starters, the opportunity

channel dominates, as markets price their potential for future gains despite near-term costs,

while for AI Elites, the regulation channel dominates, as their exposure to AI amplifies risks

from policy changes. These two channels lead to contrasting asset pricing implications for

the two groups.

In the first part of this paper, I document the empirical results regarding asset prices

and risk premia associated with AI. The initial step is to construct a firm-level AI Exposure

measure to proxy for firms’ exposure to AI advances. I begin by creating an AI Vocabulary

(AIV) through textual analysis of 159,444 academic paper titles from the Web of Science,

specifically related to artificial intelligence. These papers span from 2010 to 2024 and are

accessible via ProQuest. I extract unigrams and bigrams, compute their TF-IDF scores, and

compile the AIV with the most frequent unigrams and bigrams. I utilize both unigrams

and bigrams to balance the tradeoff between using purely unigrams, which can introduce

excessive noise, and purely bigrams, which may overly restrict the scope of what can be

captured in a document. Figure 1 displays the AIV WordCloud, where a larger font size

indicates higher TF-IDF scores. The WordCloud reveals that the main terms align well

with those identified by Babina et al. (2024a), who analyzed AI topics using resumes and

job posting data. After establishing an AIV, I then construct an AI News Index through

textual analysis of the RavenPack newspaper database. I analyze approximately 170 million

news headlines from 2010 to 2024, counting each month how many headlines contain any

of the AIV bigrams and defining these as AI-related news. Figure 2 depicts the RavenPack

AI News Index, showing the number of AI-related news on a monthly basis. The figure

illustrates that the RavenPack AI News Index captures some of the main AI-related events

since 2010, with the ChatGPT launch at the end of 2023 marking the most significant rise

in AI-related news. Prior to 2017, the development of AI was focused on the implications

and advancements in machine learning and deep learning.

With the AIV in place, I construct a firm-level AI Exposure measure derived from firms’

conference call transcripts. Following Sautner et al. (2023), I conduct textual analysis on

these transcripts and compute the fraction of AI-related unigrams and bigrams, presented

in the previously defined AIV, relative to the total number of unigrams and bigrams in any

given transcripts. This method provides a firm-level AI Exposure measure that captures

the attention that financial analysts and managers pay to AI topics at specific times. To
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further study what this measure mainly captures, I decompose this measure into different

versions that speak to whether this measure is more about opportunity, regulation, or risk.

Furthermore, I create two versions of this measure that speak to the tone on whether it is

more positive or negative.

The second step involves conducting a long set of empirical asset pricing tests to see

how the two channels, opportunity and regulatory uncertainty, affect stock prices and risk

premia. To evaluate the opposing effects of these two channels—where AI Starters are more

opportunity-driven and AI Elites are more concerned about regulatory risks—I conduct sev-

eral complementary empirical tests. First, typical empirical asset pricing tests including

portfolio sorts on AI Exposure measures and factor regressions reveal stark contrasts in risk

premia: value-weighted portfolios (dominated by AI Elites) exhibit statistically significant

positive return spreads for high AI Exposure firms, consistent with regulatory risks driving

higher expected returns. Conversely, equal-weighted portfolios (tilted toward AI Starters)

show negative spreads, aligning with the opportunity channel’s dominance and lower ex-

pected returns for AI Starters. These results hold robustly across different factor models,

with significant unexplained alphas for AI Elites. More specifically, I divide firms into port-

folios based on their firm-level AI Exposure and run time-series regressions of the monthly

return spread between the 1st decile and the 10th decile on different sets of factors. These

factor models include the CAPM model, the ICAPM model (Chabi-Yo, Gonçalves, and

Loudis, 2025), the Fama and French three-factor (FF3) model (Fama and French, 1996), the

Fama and French three-factor model plus the momentum factor (FF4) by Carhart (1997),

the Fama French five-factor (FF5) models (Fama and French, 2015), and the Hou, Xue, and

Zhang q and q5 factor models (Hou, Xue, and Zhang, 2015; Hou et al., 2020). I find there

is a significantly positive α in all factor models, with the maximum monthly α = 99.1 basis

points (t=3.85) using q factors and the minimum monthly α = 66.6 basis points (t=3.24)

using FF4. These leading factor models cannot explain this risk premium associated with AI

Exposure in the full sample from 2009 to 2024. In subsequent subsample tests using recent

years, the factor alphas increase in both quantitative and statistical magnitudes. Further-

more, consistent with Babina et al. (2024a), I do find that growth options help explain the

risk premium associated with AI, which validates the fact that opportunity channel does

exist among AI Elites but does not dominate the price impact.

Second, Fama-MacBeth regressions further validate the results from portfolio sorts and

factor regressions. I run Fama-MacBeth regressions in Ordinary Least Squares (OLS) and

Weighted Least Squares (WLS) with market value as the weights. The overall AI Exposure-

return relationship is negative in both full-sample and subsample (more recent years) OLS

regressions. The coefficients on the overall AI Exposure are -0.0775 (t-statistics: -2.19) and
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-0.0867 (t-statistics: -1.52), respectively. However, the topic-specific AI exposure measure,

AIExposureOpp for AI opportunity-focused firms, reveal significantly negative coefficients,

with a coefficient on full-sample and subsample of -0.104 (t-statistics: -4.41) and -0.109

(t-statistics: -2.47), respectively. However, the overall AI Exposure-return relationship is

positive in both full-sample and subsample (more recent years) WLS regressions, which are

in line with the fact that AI Starters dominate the OLS regression results, while AI Elites

dominate the WLS regression results. The sign change in the overall AI Exposure-return

relationship from OLS to WLS validates the opposing effects of opportunity and regulatory

uncertainty on expected returns.

Third, to mitigate the concern that ex post realized returns might be a bad proxy for

ex ante expected returns, I follow Hou, van Dijk, and Zhang (2012) in constructing a few

implied cost of capital (ICC) measures and rerun the Fama-MacBeth regressions. These

ICC measures include Gebhardt, Lee, and Swaminathan (2001), Claus and Thomas (2001),

Ohlson and Juettner-Nauroth (2005), Easton and Monahan (2005), and a composite measure

which is the average of the previous four measures. I denote them as GLS, CT, OJ, MPEG,

and Composite, respectively. I run Fama-MacBeth regressions using the two main mea-

sures: the overall AIExposure measure and opportunity specific measure, AIExposureOpp.

There is a mix of results for the overall AIExposure measure. GLS and OJ show negative

while statistically insignificant coefficients on AI Exposure, while OJ, MPEG, and Compos-

ite show positive and statistically significant coefficients. However, all coefficients, except

for the MPEG measure, are negative and statistically significant for AIExposureOpp. Since

AIExposureOpp should mainly capture the opportunity channel, the consistent negative re-

lationship between ICC measures and AIExposureOpp validates the null hypothesis that

the opportunity channel dominates AI Starters and there should be a negative relationship

between AIExposureOpp and expected returns.

Fourth, in addition to using ICC measures as an alternative proxy for ex ante expected

returns, I also apply an option-implied expected return measure following Martin andWagner

(2019). One limitation of the option-implied measure is that it only applies to S&P 500

firms, which in my sample tend to be AI Elites. Hence, I would expect to see a significant

positive expected return spread between a value-weighted decile portfolio with the highest

AI Exposure stocks and a value-weighted decile portfolio with the lowest AI Exposure stocks.

That is exactly what I see in the real data. The return spreads, H-L, are statistically positive.

The magnitude of the monthly return spread ranges from 0.45% to 0.73%, which is relatively

smaller in magnitude but comparable to the VW return spread using realized returns, 0.96%.

Fifth, I re-estimate the risk premia associated with AI Exposure using a three-pass pro-

cedure following Giglio and Xiu (2021), to take into account the omitted variable bias and

5



measurement error. The three-pass approach is, in essence, a combination of Principal Com-

ponent Analysis (PCA) with two-pass cross-sectional regressions, to generate a consistent

estimate of risk premia. Assume that returns follow a linear factor model with p factors,

and my goal is to estimate the risk premium of one of them, gt, which is the AI risk factor

associated with AI Exposure. The three-pass approach consists of the following steps. First,

I use PCA to recover factors and their loadings using a total number of 3,127 equity portfo-

lios. Second, I run cross-sectional regressions using only the principal components, without

the factor of interest, gt, to estimate their risk premia. Third, I run time-series regressions of

gt onto the principal components to estimate the loadings on the principal components. The

risk premium of gt is calculated as the product of the loadings estimated in step two and

their risk premia estimated in step three. I showcase that although VW AI factors tend to be

more positive than EW AI factors, which is consistent with my hypothesis that AI Starters

tend to earn a negative risk premium while AI Elites tend to earn a positive risk premium,

most of the three-pass risk premia tend to be statistically insignificant. However, Giglio and

Xiu (2021) argue that the three-pass procedure performs better as T → ∞ (their sample

spans 1080 months), whereas my sample covers only 168 months; the limited time-series

length may diminish statistical power and lead to most insignificance.

Finally, I conduct several event studies that utilize plausibly exogenous shocks to disen-

tangle these two channels. I include several plausibly exogenous shocks: (1) the launch of

ChatGPT (November 30, 2022) as an opportunity shock, (2) Biden’s AI Executive Order

(October 30, 2023) as an AI-specific regulation shock, and (3) Trump’s and Biden’s election

wins (2016 and 2020) as general regulation shocks. For each event, I compute cumulative

abnormal returns (CARs) over a 10-day post-event window (CAR[1,10]), adjusting for mar-

ket movements using CAPM betas estimated from a pre-event window. Portfolios are sorted

into quintiles by AI Exposure and weighted equally. The results are striking: after Biden’s

AI Executive Order, high-exposure firms underperform low-exposure firms by -1.84% (t =

-2.49), but this gap diminishes when excluding large firms (AI Elites). Conversely, Chat-

GPT’s launch generates a +1.49% spread (t = 2.72) favoring high AI Exposure firms, which

dimishes when excluding small firms (AI Starters). General political shocks (Trump’s and

Biden’s election wins) show no significant differential effects. These results validate that the

regulatory channel predominantly affects AI Elites, while the opportunity channel primarily

influences AI Starters.

After documenting the empirical findings, I construct a competitive equilibrium model to

show how the two channels, opportunity and regulation uncertainty, affect the stock prices

and risk premia theoretically, building on Pástor and Veronesi (2012, 2013) and Hsu, Li,

and Tsou (2023). The main model incorporates two types of regime changes that directly
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impact firms’ profitability: regulation regime change and opportunity regime change. The

regulation regime change occurs between favorable and unfavorable policies, where an un-

favorable shift negatively affects firms’ profitability. A favorable policy indicates a pro-AI

government stance, including subsidies for AI research, tax incentives, or relaxed data pri-

vacy laws. In contrast, an unfavorable policy imposes stricter regulations and legal burdens,

such as Biden’s 2023 AI Executive Order emphasizing “safe, secure, and trustworthy de-

velopment and use of artificial intelligence,” which was widely viewed as restrictive to AI

development. A regulatory shift occurred when Trump revoked this order in early 2025,

with the White House stating that it had imposed “unnecessarily burdensome requirements”

that could “stifle private sector innovation and threaten American technological leadership.”

The model does not quantify how favorable or unfavorable different administrations are but

highlights how these shifts influence stock prices. The opportunity regime change reflects

AI’s aggregate development stage, transitioning from early to mature. In the early stage,

AI development involves high entry costs due to long-run R&D expenses and frictions such

as the unavailability of large language models like ChatGPT. In contrast, the mature stage

sees lower entry costs, aided by available open-source codes. For instance, in early 2025, the

Chinese tech company DeepSeek launched a large AI model, building on existing LLMs and

reducing training costs to under $6 million—whereas similar developments in the early 2010s

could have cost up to $1 billion. This model illustrates how these regime changes influence

firms’ expected profitability and stock prices over time. In the model, the government makes

decisions on regulation regime change with an endogenous political cost, while I assume

the opportunity regime change is exogenously given. Households maximize a CRRA utility

and liquidate firms’ value at terminal date. All agents observe signals—such as political

news—and learn about the political cost following a Bayesian Learning process.

The main intuition of the model is that for AI Elites, which are more concerned with reg-

ulatory uncertainty, firms with high AI Exposure are more sensitive to unfavorable regulatory

shifts and face greater exposure to regulatory regime change risk. Consequently, these firms

experience larger stock price declines following a materialized regulatory shock (e.g., Biden’s

AI Executive Order), implying that AI Elites should earn higher ex-ante expected returns.

In contrast, for AI Starters, which are more focused on opportunity, firms with high AI Ex-

posure are more sensitive to AI’s transition from early-stage to mature-stage development.

As a result, they see larger stock price gains when an opportunity shock materializes (e.g.,

the launch of ChatGPT), suggesting that AI Starters should earn lower ex-ante expected

returns.

The last part of this paper provides validation of the main measures used in the empir-

ical analysis, namely, AIV and firm-level AI Exposure measure. Following the mimicking
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portfolio approach of Engle et al. (2020), I show that using my AIV , investors can create

a time series of AI News Index to capture the innovation in AI development. In addition,

investors can use my firm-level AI Exposure measures to construct a mimicking portfolio to

hedge the innovation in the AI News Index.

The contributions of this paper are twofold. First, it is the first study to examine how the

two channels, opportunity and regulatory uncertainty, simultaneously affect stock prices and

risk premia for firms with AI exposure. The closest study to mine is Babina et al. (2024a).

They focus more on the systematic risk measured by CAPM market risk and find that most

AI-invested firms bear systematic risk resulting from growth options. However, my measure

differs from their labor-channel measure and captures more about “soft information” from

conference call transcripts. My measure aims to capture investors’ and managers’ views

on AI topics through conference call transcripts. Conference calls represent an important

corporate event where managers and analysts have the opportunity to sit together to review

the firm’s financial results for a given period and discuss their initiatives and perspectives

on various corporate topics. I have developed different versions of this measure to capture

overall AI exposure and topic-specific aspects such as opportunities and regulations. The

literature has shown that using conference calls is beneficial in capturing broader channels

or perspectives of investors’ perception of firm risk (Sautner et al., 2023). My focus is

also on studying whether and how the opportunity and regulation uncertainty affect the

AI risk premia. Through a series of empirical tests, including Fama-MacBeth and portfolio

regressions, I demonstrate that growth options cannot fully account for the AI risk premium.

Second, this paper adds to the existing body of research on the impact of AI on firm

outcomes. Using the launch of Google’s TensorFlow as an exogenous shock, Rock (2019)

demonstrates that increases in AI investment lead to significant gains in market valuation.

Acemoglu et al. (2022) explores the effects of AI exposure on labor demand using data from

Burning Glass job postings. Both Cockburn, Henderson, and Stern (2018) and Babina et al.

(2024b) find that AI investments enhance firm-level product innovation. The studies most

similar to mine are by Eisfeldt, Schubert, and Zhang (2023) and Babina et al. (2024a).

Eisfeldt, Schubert, and Zhang (2023) investigates the impact of Generative AI—specifically

the public release of ChatGPT—on equity returns at the firm level. Babina et al. (2024a)

shows that firms increasing their AI investments, particularly through the growth of AI-

related workers, experience an increase in their systematic risk as measured by the CAPM.

Unlike these studies which focus on the labor channel, this paper uses a measure based on

the general perceptions of investors and managers as expressed in conference call transcripts,

capturing not only the labor channel but potentially the physical capital and business idea

channels, which are crucial for evaluating asset prices in existing literature.
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The rest of the paper is organized as follows. Section II describes the data, and how

I construct the main empirical measures. In Section III, I present the empirical results.

Section IV shows the general equilibrium model. In Section V, I validate the main measures

used in this paper. In Section VI, I conclude the paper.
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II. Data and Measures

This section describes the data and measures. In Section II.A, I first construct an Artificial

Intelligence Vocabulary (AIV) using AI-related academic papers fromWeb of Science through

ProQuest. This AIV allows me to capture the most frequent AI-related terms that will be

used to conduct textual analysis in firms’ conference call transcripts. In Section II.B, I

construct the firm-level AI Exposure measure by studying how frequent AIV terms are

discussed in firms’ quarterly call transcripts. This measure is to capture how much attention

investors and managers have devoted to AI-related topics.

A. Artificial Intelligence Vocabulary (AIV)

To construct an Artificial Intelligence Vocabulary (AIV), I study a corpus of Web of Science

texts on the subject of AI. More specifically, I collect a total number of 159,444 academic

paper titles fromWeb of Science via ProQuest. Following the literature (see, e.g., Engle et al.,

2020), I extract the unigrams and bigrams that are directly related to artificial intelligence,

and compute their TF-IDF scores. Figure 1 presents word clouds that summarize the terms

extracted from academic paper titles in the Web of Science. The larger the term size, the

more frequent the term appears in the corpus (measured in TF-IDF score). The years range

from 2010 to 2024. Panel (a) shows most frequent bigrams. Panel (b) shows most frequent

unigrams. Panel (a) shows that most terms are largely related to machine learning and deep

learning topics, which is consistent with the fact that these topics are at the core of AI. Other

than those, I also see a lot of data-related terms like data mining and big data. Panel (b)

is largely consistent with Panel (a) but extracts the unigrams that are also focused on the

similar topics in machine learning and deep learning. Overall, these terms, including both

unigrams and bigrams, largely capture the main intuitive terms that we could think of in

the topics of AI. Here, I am not claiming these are the best keywords that are representative

to AI. However, these represents well the terms that are most studied in academic research

for this given period from 2010 to 2024.

For robustness, I construct the AIV using a larger and more general sample of 744,044

Web of Science academic articles or books that are directly related to: artificial intelligence,

machine learning, natural language processing, and computer vision. These are the terms

used in Babina et al. (2024a) when they study the systematic risk of AI through the labor

channel. Appendix Figure D.1 show the word cloud of bigrams. The top bigrams are

consistent with the Figure 1 Panel (a) in capturing mostly machine learning and deep learning

topics.

I select the top 50 unigrams and top 50 bigrams as my final AIV in Figure 1 for simplic-
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ity. Specifying a different number, such as 25 or 100, would alter the quantitative outcomes,

though the main qualitative results would remain consistent. Determining the optimal num-

ber of unigrams and bigrams to include in the final AIV is beyond the scope of this paper.

Appendix Table D.2 and Appendix Table D.3 list the top 50 bigrams and top 50 unigrams

by their TF-IDF scores.

B. Firm-level AI Exposure

B.1. AI Exposure Measure

After having an AIV, I follow Sautner et al. (2023) in constructing a firm-level AI Exposure

measure using firms’ call transcripts. As argued in the literature, exposure measures studying

call transcripts well capture the attention devoted to a topic by the call participants, such as

executives, analysts, investors and media. I use around 53 million quarterly call transcripts

from 2009 to 2024 via Refinitiv. The overall firm-level AI Exposure measure is defined as the

fraction of unigrams and bigrams from AIV over all unigrams and bigrams of a transcript,

AIExposurei,t =
1

Ui,t +Bi,t

Ui,t∑
u=1

1[u ∈ AIV ] +

Bi,t∑
b=1

1[b ∈ AIV ]

 , (1)

where u = 0, 1, ..., Ui,t and b = 0, 1, ..., Bi,t are unigrams and bigrams in the call transcripts

of firm i in quarter t, and 1[·] is an indicator function. The annual measure is the average

value aggregated from quarter measures.

To study the specific context of each sentence containing AI-related terms, I include

different versions of the AI Exposure measures based on different topics. These topics include

opportunity, regulation, and risk. I also study the tone of the transcript and define two

versions of the AI Exposure measures as either positive or negative (Loughran and McDonald,

2011). The definition for these topic-specific AI Exposure measures, for example regarding

opportunity, is defined as the fraction of unigrams and bigrams from AIV over all unigrams

and bigrams of a transcript, but conditional on opportunity topic bigrams existing in the

same sentence that contains AIV terms,

AIExposureOpp
i,t =

1

Ui,t +Bi,t

Ui,t∑
u=1

(1[u ∈ AIV ] ∗ 1[u, o ∈ S]) +

Bi,t∑
b=1

(1[b ∈ AIV ] ∗ 1[b, o ∈ S])

 ,

(2)

where 1[u/b, o ∈ S] denotes that a sentence with AI-related bigrams or unigrams also in-

clude opportunity-related bigrams or unigrams in the same sentence. Other topic-specific AI

Exposure measures are defined in a similar way. The topic bigrams for opportunity, regula-
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tion, and risk are from Sautner et al. (2023) and extended by ChatGPT4. The positive and

negative bigrams are from Loughran and McDonald (2011) and extended by ChatGPT4.

Throughout the texts, I denote the overall AI Exposure measure, the AI Exposure regarding

opportunity, the AI Exposure regarding regulation, the AI Exposure regarding risk, the AI

Exposure with positive tones, and the AI Exposure with negative tones as AIExposure,

AIExposureOpp, AIExposureReg, AIExposureRisk, AIExposurePos, and AIExposureNeg,

respectively.

Table I presents the summary statistics of different versions of AI Exposure and their

correlations at the firm-quarter level. For the ease of exposition, I multiply by 1,000 for each

measure. Panel A shows that the mean of AI Exposure is 4.4 while AIExposureOpp has the

mean of 2.44 which is more than half the size of the mean of AI Exposure. Hence, the overall

AI Exposure mostly captures topics related to opportunity. The mean of AIExposureReg

and AIExposureRisk are similar in magnitudes, 0.78 and 0.90 respectively, which are around

20% of the mean of the overall AIExposure. Interestingly, the mean for AIExposurePos is

0.86 while the mean for AIExposureNeg is only 0.17, which indicates that any sentences that

mention AI-related topics with a non-neutral tone are more possible to have a positive tone

rather than a negative tone. Panel B shows the correlation among different AI Exposure

measures. Similar to the mean, AIExposureOpp has the highest correlation with the overall

AIExposure, and then it is AIExposurePos and AIExposureReg.

Figure 3 shows the summary statistics of the overall AI Exposure, AIExposureOpp, and

AIExposureReg. Panel (a) presents the monthly mean of AI Exposure, AIExposureOpp, and

AIExposureReg, and Panel (b) presents the unique number of firms over time. The full

dataset spans from July 2009 to June 2023. There are several observations that are worth

noticing. First, the average means of all three measures have increased since 2009 and there

is a boost near 2023. Second, the unique number of firms included in the full sample has been

increasing since 2009. This is in line with the fact that over years, the transcript database

covers more and more firms. The spikes shown in the figure are due to the quarterly basis

measurement and there are clustering on transcripts on specific quarters.

B.2. Summary Statistics of AI Exposure Sorted Portfolios

After getting the overall firm-level AI Exposure measures, I present the summary statistics

(mean) of the overall AI Exposure sorted portfolios. Table II presents the mean of the firm

characteristics by quintiles. At the end of June of each year, stocks are ranked by their

AI Exposure and sorted into quintiles. AI Exposure is defined as the fraction of AI-related

unigrams and bigrams in a firm’s call transcripts, and here it is multiplied by 1000 for

ease of exposition. Firm size, ln(ME), is measured as the log of market equity in June of
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year t. BE/ME is measured as the ratio between book equity at the end of June of year

t and market equity at the end of December of year t − 1. ROE is profitability, measured

as income before extraordinary items divided by book equity. ROA is another profitability

measure, defined as income before extraordinary items divided by total assets. Asset Growth

is defined as the ratio between the change of total assets from year t − 2 to year t − 1 and

total assets in year t − 2. I follow Fahlenbrach, Rageth, and Stulz (2021) to construct the

following three financial flexibility measures. Cash/Assets is the ratio of cash to total assets.

St Debt/Assets is the ratio of debt in current liabilities to total assets. Lt Debt/Assets is

the ratio of long-term debt to total assets. Tangibility is property, plant, and equipment

divided by total assets. Book Leverage is the sum of current liabilities and long-term debt

divided by total assets. WW Index is the Whited and Wu index used to measure financial

constraint (see, Whited and Wu, 2006). I include all topic-specific AI Exposure measures

as well. After winsorizing at the 1st and 99th percentiles to limit the influence of outliers,

all firm characteristics variables are standardized to have a mean of zero and a standard

deviation of one. The sample period is 2009 to 2024 at an annual frequency.

As shown in Table II, firms with higher AI Exposure tend to be smaller firms, growth

firms (lower BE/ME and higher Asset Growth), with lower profitability, higher financial

flexibility (higher cash ratio and lower debt ratio/leverage), and lower tangibility. With

these characteristics pattern, I link to the anomaly literature in thinking ex ante whether AI

Exposure could be positively priced or negatively priced in the stock market.

On the one hand, firms with smaller size should earn higher expected returns (Banz,

1981), and firms with lower tangibility or higher intangibility should earn higher expected

returns (Eisfeldt and Papanikolaou, 2013). On the other hand, firms that behave like growth

firms (Chan, Hamao, and Lakonishok, 1991), with lower profitability (Hou, Xue, and Zhang,

2015) and higher financial flexibility (Gamba and Triantis, 2008) should earn lower expected

returns. Overall, firms with higher AI Exposure could be positively or negatively priced in

the stock market. In the later empirical tests, I will dig more into this question.

B.3. AI Exposure by Industry

After having the overall firm-level AI Exposure measure, I aggregate to the industry level

by firms’ Standard Industrial Classification (SIC) code. Table III presents the mean of AI

Exposure measures of top ten industries classified by the SIC 2-digit code. Panel A shows

the top ten industries by the overall AI Exposure measure. The top four industries with the

highest average AI Exposure are Educational Services, Insurance Agents, Brokers, & Service,

Local & Interurban Passenger Transit, and Business Services. In general, Services face the

highest AI exposure, potentially due to large impacts in areas such as customer support,
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where tasks traditionally performed by humans could be automated through technologies

like chatbots. In Transportation, the advancements in autonomous vehicle technologies

and AI-powered driving assistance could increasingly replace human-operated processes and

hence have a high AI exposure. Appendix Table D.4 shows a more detailed decomposition

by industries at the SIC 2-digit code level. Panel B shows the top ten industries by the

overall AIExposureOpp measure. Seven out of ten match with the ranking by the overall AI

Exposure measure in Panel A. This verifies the fact that the overall AI Exposure measure

mainly captures opportunity.

III. Empirical Results

This section focuses on testing the null hypothesis in this paper that the two forces, reg-

ulatory uncertainty and opportunity, have opposing effects on firms’ prices and expected

stock returns. More specifically, the opportunity channel dominates AI Starters, while the

regulation channel dominates AI Elites. As discussed in the introduction, I define the AI

Starters as the small firms that might just start AI projects that suffer from profitability

loss and more prone to opportunity shocks, and the AI Elites as the big firms that are

well-developed and mature in AI projects and more prune to regulation shocks. To test this

null hypothesis, I perform four sets of empirical tests. The following empirical tests will be

around the prediction that the opportunity channel dominates AI Starters and AI Starters

with higher AIExposure should earn lower expected returns, while the regulation channel

dominates AI Elites and AI Elites with higher AIExposure should earn higher expected re-

turns. Section III.A follows the typical asset pricing in portfolio sorts and factor regressions.

Section III.B conducts multivariate Fama-MacBeth regressions with one-year forwarded re-

alized returns. Section III.C also conducts multivariate Fama-MacBeth regressions, but with

implied cost of capital estimates, instead of realized returns. Section III.D estimates the risk

premium with option-implied expected return measure. Section III.E estimates risk premia

associated with AI Exposure following a three-pass procedure, in order to take into account

the omitted variable bias and measurement error. Section III.F conducts events studies to

show the price reaction heterogeneity upon plausibly exogenous opportunity (innovation) or

regulation (political) shocks.

A. Portfolio Sorts and Factor Regressions

First, I follow the typical asset pricing approaches in conducting portfolio sorts onAIExposure

measures (see, e.g., Davis, Fama, and French, 2000). In the first test, I calculate the return
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spread of value-weighted (VW) portfolios sorted on AIExposure and AIExposureOpp be-

tween the highest decile (H) and lowest decile (L). If the null hypothesis is correct that the

regulation channel dominates the AI Elites, then I should see a statistically positive return

spread between H and L. However, if I calculate the return spread of equal-weighted (EW)

portfolios sorted on AIExposure and AIExposureOpp, I should see a less positive or even

negative return spread since the EW portfolios would be dominated by AI Starters that tend

to be smaller in size, and hence more prune to the opportunity.

Table IV presents average monthly value-weighted (VW) or equal-weighted (EW) returns

(in percentage) of portfolios sorted by overall firm-level AI Exposure and AIExposureOpp.

Here, I do not include other versions of measures due to the fact that other measures have

too many zeros. The t-statistics are computed using heteroscedasticity and autocorrela-

tion consistent Newey-West (1987) standard error estimates with a lag length of 12 months.

Panel A presents VW returns of decile portfolios of different versions of AI Exposure mea-

sures. H-L is the return spread between the highest decile and the lowest decile. There

is an overall increase in VW returns from portfolio L to portfolio H for both AI Expo-

sure and AIExposureOpp sorted portfolios, although not strictly monotonic. The mean of

monthly return spread, H-L, reaches 96 basis points for AI Exposure and 60 basis points

for AIExposureOpp, with a t-statistics of 2.65 and 1.67, respectively. Panel B presents VW

returns of quintile portfolios of different versions of AI Exposure measures. The mean of

monthly return spread, H-L, reaches 77 basis points for AI Exposure and 56 basis points for

AIExposureOpp, with a t-statistics of 2.56 and 2.08, respectively. Both Panel A and Panel

B show that the return spread, H-L, is positive and (almost always) statistically significant

for both AI Exposure and AIExposureOpp sorted portfolios. This is consistent with the

fact that VW returns are usually dominated by big firms and big firms in my sample tend

to be AI Elites that are predicted to be dominated by the regulation channel and hence

firms with higher AI Exposure should earn positive expected returns. Panel C presents

EW returns of decile portfolios of different versions of AI Exposure measures. The mean of

monthly return spread, H-L, reaches -32 basis points for AI Exposure and -19 basis points

for AIExposureOpp, with a t-statistics of -0.73 and -0.83, respectively. Panel D presents EW

returns of quintile portfolios of different versions of AI Exposure measures. The mean of

monthly return spread, H-L, reaches -19 basis points for AI Exposure and -24 basis points

for AIExposureOpp, with a t-statistics of -0.53 and -1.03, respectively. Except for the case

of AIExposureOpp in EW returns by quintiles, all return spread, H-L, is negative but statis-

tically insignificant. This is consistent with the fact that EW returns are usually dominated

by small firms and small firms in my sample tend to be AI Starters that are predicted to

be dominated by the opportunity channel and hence firms with higher AI Exposure should
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earn lower expected returns.

There is a concern that the AI Exposure measures are correlated with common anomalies

and once these anomalies are taken into account, the return spread will become statistically

insignificant. Hence, I include sequential sorts. Table V present average monthly VW returns

(in percentage) of sequentially sorted portfolios, first sorted by anomalies, and then sorted

by overall firm-level AI Exposure. In each panel, I report sequential sort returns using full

sample, and subsample that includes the second half of the full sample, i.e., recent years.

This table shows that even after controlling for leading anomalies, the return spread, H-L, is

overall positive and statistically significant, except for size, R&D, and cash holdings in the

full sample. In the subsample, all return spread, H-L, is positive and statistically significant.

This is in line with the fact that AI has become more prominent in recent years.

Then, I follow the standard procedure in factor regression tests to see if there is a risk

premium associated with the AI Exposure measures that could not be explained by the

leading risk factors. I first form ten portfolios based on AI Exposure. Specifically, at the

end of June of each year, I allocate stocks into ten AI Exposure-sorted portfolios. I compute

the portfolio returns (value weighted) difference between highest AI Exposure and lowest

AI Exposure, and run time-series regressions of the returns spread on leading factor models.

Here I include seven factor models. The first one is the CAPM model; The second one is the

Chabi-Yo, Gonçalves, and Loudis (2025) ICAPM model; The third is the Fama and French

(1996) three factor model; The fourth is the Fama and French (1996) three factor model

plus Carhart (1997) momentum factor; The fifth is the Fama and French (2015) five factor

model; the sixth is the Hou, Xue, and Zhang (2015) four q factors; the seventh is the Hou

et al. (2020) five q5 factors. Data on the Fama-French factors and the Carhart factor are

downloaded from Kenneth French’s website. Data on q factors are from Lu Zhang’s website.

Table VI presents the regressions estimation results using the full sample from July 2009

to June 2023. Overall, the results show that the risk premium associated with AI Exposure

cannot be fully explained by leading factor models. There is a significantly positive α in all

factor models at a monthly basis, with the maximum α = 99.1 basis points (t=3.85) using

q factors and the minimum α = 66.6 (t=3.24) using Fama-French four factors. Since the

portfolio returns are value weighted and more dominated by big stocks which in my sample

tend to be AI Elites, the statistically positive alphas in these factor regressions indicate that

AI Elites are dominated by the regulation channel and firms with higher AI Exposure earn

a positive premium.

The comparison between Column (5) and Column (6) shows that expected growth does

help explain the risk premium associated with AI Exposure. This is consistent with the

mechanism as explained in Babina et al. (2024a). They find that growth options best explain
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the higher systematic risk associated with higher AI-investment firms in the labor channel.

Figure 4 plots the cumulative returns and twelve-month rolling alpha. Panel (a) presents

the cumulative returns of the return spread between high- and low-AIExposure orAIExposureOpp

portfolios, either VW or EW. The VW cumulative returns sorted by AIExposure quickly be-

come positive and reaches a nearly 200% cumulative returns by the end of the sample. The

VW cumulative returns sorted by AIExposureOpp experiences a negative value before 2018

but becomes positive shortly after 2018, and reaches more than 100% cumulative returns by

the end of the sample. Panel (b)-(e) show the twelve-month rolling factor alphas of a strategy

that longs the high AIExposure or AIExposureOpp portfolio and short the low AIExposure

or AIExposureOpp portfolio. Panel (b) and (c) show that VW factor alphas are largely pos-

itive for both measures, but the AIExposure sorted factor alphas are far more positive than

the AIExposureOpp sorted factor alphas. Panel (d) and (e) show that EW factor alphas are

more negative in general and both experience a big negative alpha post 2021.

Overall, the results from portfolio sorts and factor regressions are consistent with the

null hypothesis that AI Elites are dominated by the regulation channel and AI Starters are

dominated by the opportunity channel.

B. Fama-MacBeth Regressions

Here, I study the AI Exposure-returns relationship by running Fama-MacBeth regressions

with a long list of control firm-level characteristics. More specifically, I run cross-sectional

regressions on a monthly basis from July of year t to June of year t + 1. Each month,

individual stock returns are regressed on AI Exposure from year t − 1 and various control

variables available by the end of June of year t. The definition for the control variables

are the same as Section II.B.2. The t-statistics are based on standard errors adjusted using

the Newey-West method. The full sample is from July 2009 to June 2023. I run Fama-

MacBeth regressions in Ordinary Least Squares (OLS) and Weighted Least Squares (WLS)

with market value as the weights.

Table VII presents the Fama-MacBeth regressions using the full sample. Model (1) shows

that there is a significantly negative relationship between the overall AI Exposure measure

and excess returns. Furthermore, the coefficients are negative and statistically significant

for model (2) and (3) for AIExposureOpp and AIExposureReg, while the coefficient is sta-

tistically insignificant for AIExposureRisk. ROE and R&D/Asset ratio positively predict

the excess returns. While financial flexibility also helps explains the excess returns, size,

BE/ME, and Tangibility do not have statistically significant coefficients. The OLS regres-

sions are often dominated by small firms, which in my context tend to be AI Starters. I
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further include WLS regressions with the market value as weights and I see positive (while

not significant) coefficient between excess returns and AI Exposure (AIExposureOpp).

One concern is that AI is not prevalent in the early 2010s and investors might not care.

I hence do subsample regression and ex ante I expect to see a more pronounced negative

relationship between AI Exposure measures and excess returns. Table VIII presents the

results on a subsample from July 2016 to June 2023, and the overall AI Exposure-returns

relationship becomes less statistically significant in model (1), while the magnitude of the

negative relationship becomes greater. The coefficient is still significantly negative in model

(2) for AIExposureOpp and with a bigger magnitude. The WLS model (5) and model (6)

show greater positive coefficients between excess returns and AI Exposure (AIExposureOpp).

C. Implied Cost of Capital

There is a continuing debate in the literature on what the best proxies for expected returns

are. To mitigate the concern that ex-post returns might be a bad proxy for expected returns,

I estimate a few Implied Cost of Capital (ICC) measures and run Fama-MacBeth regressions

to compare with ex-post returns.

Table IX presents the results. I follow Hou, van Dijk, and Zhang (2012) in constructing

four main ICC measures. Column (1) reports regressions of ex-post realized returns on AI

Exposure; column (2) reports results of ICC estimates based on Gebhardt, Lee, and Swami-

nathan (2001); column (3) reports results of ICC estimates based on Claus and Thomas

(2001); column (4) reports results of ICC estimates based on Ohlson and Juettner-Nauroth

(2005); column (5) reports results of ICC estimates based on Easton and Monahan (2005);

column (6) reports results of ICC estimates that are computed as the average of the previous

four ICC estimates. I denote these ICC measures as GLS, CT, OJ, MPEG, and Composite,

respectively. Panel A regresses on the overall AIExposure measure, while Panel B regresses

on AIExposureOpp.

There is a mixed result. In Panel A, Column (1) shows that AI Exposure negatively

predict future ex-post realized turns as discussed before. Column (2) shows that AI Exposure

negatively predicts GLS, but not statistically significant. Column (3) to (6) show that AI

Exposure positively predicts CT, OJ, MPEG and the Composite ICC measure. Here, AI

Exposure is adjusted to mean zero and one standard deviation. Hence to interpret the

coefficient, for example in Column (6), one standard deviation increase in AI Exposure is

associated with 0.649 percentage point increase in the Composite ICC measure.

In Panel B, Column (1) to (6) all show a negative coefficient between AIExposureOpp

and realized returns/ICC measures. All coefficients are statistically significant except for
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MPEG measure. Since AIExposureOpp should mainly capture the opportunity channel,

the consistent negative relationship between ICC measures and AIExposureOpp validate the

null hypothesis that the opportunity channel dominates AI Starters and there should be a

negative AIExposureOpp-returns relationship.

D. Option-Implied Returns

Apart from the ICC measures, I apply another option-implied ex ante expected returns

measure following Martin and Wagner (2019). The monthly expected stock returns for

firms in the S&P 500 using the 1-month, 3-month, 6-month, 9-month, and 12-month option-

implied measures are obtained from Vilkov (2023). One limitation of this measure is that

it only applies to S&P 500 firms, which in my sample tend to be AI Elites. Hence, I would

expect to see a positive expected return spread between a value-weighted decile portfolio

with the highest AI Exposure stocks and a value-weighted decile portfolio with the lowest

AI Exposure stocks. This is exactly what I see in the real data.

Table X presents the average monthly value-weighted (VW) option-implied returns (in

percentage) of portfolios sorted by overall firm-level AI Exposure. Panel A presents VW

average monthly 1-month returns of decile portfolios. H-L is the return spread between

the highest decile and the lowest decile. Panel B presents VW average monthly 3-month

returns of decile portfolios. Panel C presents VW average monthly 6-month returns of decile

portfolios. Panel D presents VW average monthly 9-month returns of decile portfolios. Panel

E presents VW average monthly 12-month returns of decile portfolios. The return spreads,

H-L, are statistically positive across all panels. The magnitude of the monthly return spread

ranges from 0.45% to 0.73%. This is comparable to the VW return spread using realized

returns in Table IV, which is 0.96%.

E. Three-Pass Procedure with Latent Factors

One big critique regarding the traditional two-pass cross-sectional regressions, like Fama-

MacBeth regressions and factor regressions, is that they are susceptible to omitted variable

bias (see, e.g., Burmeister and McElroy, 1988; Jagannathan and Wang, 1998). Estimating

risk premia using the traditional regressions cannot guarantee resolving the omitted variable

bias since we cannot possibly account for all priced risks in the market. This section follows

the three-pass approach proposed by Giglio and Xiu (2021) to take omitted variable bias

and measurement error into account and to estimate the risk premia associated with AI

Exposure. The three-pass approach is, in essence, a combination of Principal Component

Analysis (PCA) with two-pass cross-sectional regressions, to generate a consistent estimate
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of AI risk premium. Assume that returns follow a linear factor model with p factors, and my

goal is to estimate the risk premium of one of them, gt, which is the AI risk factor associated

with AI Exposure.

The three-pass approach consists of the following steps. First, I use PCA to recover

factors and their loadings using a large set of portfolios. Second, I run cross-sectional re-

gressions using only the principal components, without the factor of interest, gt, to estimate

their risk premia. Third, I run time-series regressions of gt onto the principal components

to estimate the loadings on the principal components. The risk premium of gt is calculated

as the product of the loadings estimated in step two and their risk premia estimated in step

three.

In the first step, I include a wide range set of testing portfolios. First, I include 202

standard equity portfolios available on Kenneth French’s website as Giglio and Xiu (2021)

do, covering the most well-known dimensions of risk. These include: 25 portfolios sorted

by size and book-to-market ratio, 17 industry portfolios, 25 portfolios sorted by operating

profitability and investment, 25 portfolios sorted by size and variance, 35 portfolios sorted

by size and net issuance, 25 portfolios sorted by size and accruals, 25 portfolios sorted by size

and beta, and 25 portfolios sorted by size and momentum. Second, I include 2925 equity

portfolios available on Lu Zhang’s website with monthly two-way sorted (3×5) portfolios

based on 195 anomalies including momentum (42), value-versus-growth (32), investment

(32), profitability (48), intangibles (31), and frictions (10).

One concern regarding this approach is on selecting parameters to display best results.

To mitigate this concern, I follow the three-pass procedure to estimate the risk premium

of eight AI factors constructed either using H-L with decile or quintile sorting and value-

weighted or equal-weighted for AI Exposure or AIExposureOpp. I include a range of one to

ten for Lags when computing Newey-West standard errors. I also include a range of one to

ten for the number of PCs.

Figure 5 plots the estimated risk premium for the eight AI factors. The four circle plots

represent value-weighted AI factors, while the four triangle plots represent equal-weighted

AI factors. “AIE” denotes the return spread between the highest and lowest deciles sorted

by AIExposure, and “AIE Opp” denotes the return spread between the highest and lowest

deciles sorted by AIExposureOpp. When the notation “5” is used, it indicates the return

spread between the highest and lowest quintiles. For each factor, I estimate the risk premia

using different sets of testing portfolios, a range of one to ten lags for computing Newey-West

standard errors and a range of one to ten for principal components. The dataset spans from

July 2009 to June 2023.

There are several observations. First, overall, the three-pass risk premia for both value-
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weighted (VW) and equal-weighted (EW) factors are mostly insignificant at the 95% confi-

dence level. However, there are exceptions: the EW factors exhibit negative significant risk

premia, with the minimum monthly risk premia around -100 basis points, and no factors

show positive significant risk premia. This contradicts my null hypothesis, as the signifi-

cance of the risk premia essentially disappears. Nonetheless, Giglio and Xiu (2021) argue

that the three-pass procedure performs better as T → ∞ (their sample spans 1080 months),

whereas my sample covers only 168 months; the limited time-series length may diminish

statistical power.

Second, VW factors are, on average, more positive than EW factors, while EW factors

are more negative than VW factors across all setups. The maximum monthly risk premia

for VW factors reach almost 40 basis points, compared to less than 10 basis points for EW

factors. This finding aligns with the null hypothesis that AI Starters earn a more negative

risk premium, while AI Elites earn a more positive risk premium.

F. Event Study

In this section, I conduct two sets of event studies to test the null hypothesis that the op-

portunity channel dominates AI Starters, while the regulation channel dominates AI Elites.

The event studies are to show whether there is price reactions heterogeneity for firms with

different AI Exposure upon plausibly exogenous opportunity or regulation shocks. For op-

portunity shocks to AI, I include the launch of ChatGPT on Nov 30th, 2022. The launch of

ChatGPT is often treated as a plausibly exogenous shock to AI innovations and bring op-

portunities for firms to boost their productivity across all industries. For example, Eisfeldt,

Schubert, and Zhang (2023) show a positive “Artificial Minus Human” return spread after

the launch of ChatGPT. For regulation shocks to AI, I include Trump’s U.S. presidential

election win on Nov 8th, 2016, Biden’s U.S. presidential election win on Nov 3rd, 2020, and

Biden’s AI Executive Order on Oct 30th, 2023. Trump’s election is widely assumed to be

favorable to AI related regulations, while Biden’s election is relatively restrictive. However,

Biden signed an AI Executive Order to further restrict AI development and uses in the US,

which is more restrictive.

I follow the literature (see, e.g., Brown and Huang, 2020; Fahlenbrach, Ko, and Stulz,

2024) in estimating average cumulative abnormal returns (CAR) in percentage after opportu-

nity or regulation shocks in each quintile portfolio sorted on AI Exposure. More specifically,

I compute the CARs over a 10-day window from day t + 1 to day t + 10 after the event day

t by equally weighted across AI Exposure-sorted portfolios, which I denote as CAR[1,10]. I

follow the typical way by using a 250-trading day window that ends 25 days before the event
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day to estimate CAPM beta (daily market returns and the risk-free rate obtained from the

French website).

Table XI presents the results. Panel A computes the CAR[1,10] upon the Trump election

win on Nov 8th, 2016 by quintile and high minus low (H-L). It shows that there is no

significant CAR difference since the CAR[1,10] spread between high and low quintile is only

-0.75% with a t-statistics of -0.89. The same observation holds for the Biden election win

on Nov 3rd, 2020 in Panel B that the CAR[1,10] spread between high and low quintile is

only -0.27% with a t-statistics of -0.45. These two events are general political events which

are not targeting AI. Hence, it is not surprising to see no heterogeneity in price reactions

across different AI Exposure quintiles. However, in Panel C, the CAR[1,10] spread between

high and low quintile is -1.84% with a t-statistics of -2.49. This is consistent with the fact

that Biden’s AI Executive Order on Oct 30th, 2023 is largely restricting AI developments

and uses in the US so that we see firms with higher AI Exposure experience a more negative

price reactions. To test whether regulation channel dominates AI Elites that tend to be

bigger firms, in Panel D, I exclude big stocks (top 20 percentile in size) and show that price

reactions diminish in all quintiles and the CAR[1,10] spread between high and low quintile.

In Panel E, I show that the launch of ChatGPT3 as a plausibly exogenous AI innovation

shock leads to a statistically positive CAR[1,10] spread between high and low quintile, with

a 1.49% return spread and a t-statistics of 2.72. There is a monotonic increase in CAR[1,10]

from the lowest AI Exposure-sorted quintile to the highest AI Exposure-sorted quintile. To

test whether opportunity channel dominates AI Starters that tend to be smaller firms, in

Panel F, I exclude tiny stocks (bottom 20 percentile in size) and show that price reactions

diminish in all quintiles and the CAR[1,10] spread between high and low quintile.

The results from these event studies are consistent with the null hypothesis that both

regulation and opportunity shocks lead to significant price reactions, and regulation channel

dominates the AI Elites and opportunity channel dominates the AI Starters.

IV. Theory

After documenting the empirical findings, I construct a competitive equilibrium model to

show how the two forces, regulation uncertainty and opportunity, affect the stock prices and

risk premium, building on Pástor and Veronesi (2012, 2013) and Hsu, Li, and Tsou (2023).

In the base model, I assume there are two types of regime changes that directly affect firms’

profitability process: regulation regime change and opportunity regime change.

The regulation regime change is between Favorable (F) and Unfavorable (U) policy. I

assume the change from Favorable (F) and Unfavorable (U) policy would negatively affect
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the profitability process which will be incorporated in the profitability process. Here, the

Favorable policy means the government’s attitude towards AI development, investments,

and uses are generally favorable, which could be related to government subsidies for AI

research, positive tax incentives, or relaxed data privacy laws. However, the Unfavorable

policy means that government’s attitude is more restrictive and legally burdensome. As

previously discussed, Biden’s AI Executive Order in 2023 emphasized, “safe, secure, and

trustworthy development and use of artificial intelligence,” which is usually deemed as unfa-

vorable to AI development and uses in the US. For example, Trump revoked Biden’s EO in

2025. On January 23, 2025, the White House stated that “The Biden AI Executive Order

established unnecessarily burdensome requirements for companies developing and deploying

AI that would stifle private sector innovation and threaten American technological leader-

ship.” This model’s main purpose is not to quantify how unfavorable or favorable different

presidential administrations are towards the AI development and uses, but to showcase the

regulation regime change could affect prices.

The opportunity regime change is regarding the overall AI development stages between

Early (E) and Mature (M). I assume the change of overall AI development from Early (E)

and Mature (M) would positively affect the profitability process. In the Early stages of AI

development or uses, there are high entry costs since most of the AI development or uses

incur long-run R&D expenses and high costs due to other frictions like unavailability of large

language models (ChatGPT). However, in the Mature stages of AI development or uses, the

entry costs are lower due to less frictions. For example, building on open resources of existing

LLMs, the Chinese tech company, DeepSeek, launched a large AI model in early 2025 and

said that training one model cost less than $6 million, which would have cost up to $1 billion

back in early 2010s.

A. Firm Profitability

I assume there is a continuum of firms of i ∈ [0, 1] and a finite horizon t ∈ [0, T ]. The stage

of AI development and uses for firm i at time t is denoted as sit ∈ [0, 1]. Specifically, when

sit = 0, firms are classified as AI Starters, where profitability is more sensitive to innovation

or opportunity shocks. Conversely, when sit = 1, firms are classified as AI Elites, where

profitability is more sensitive to regulatory changes. The profitability process for firm i at

time t is modeled as:

dΠi
t =

(
µ+ ξit

[
sit · gt + (1− sit) · ηt

])
dt+ σdZt + σ1dZ

i
t , (3)
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where µ represents the baseline profitability growth rate, and ξit captures firm i’s exposure

to AI, which could be deemed as the AI Exposure measure in the empirical setting and

captures how much attention investors and managers devote to AI developments, investments

and uses. The term gt reflects regulatory uncertainty, where gFt > 0 denotes a Favorable

regulatory environment and gUt < 0 denotes an Unfavorable one. Additionally, ηt captures

the opportunity environment, representing the overall stage of AI development and uses, with

ηEt < 0 characterizing an Early-stage environment and ηMt > 0 characterizing a Mature-stage

environment. The terms σdZt and σ1dZ
i
t correspond to aggregate and idiosyncratic shocks,

respectively.

The profitability process can be interpreted differently depending on the stage of AI

development and uses. For AI Elites (sit ≈ 1), profitability is predominantly driven by

regulatory uncertainty, resulting in the simplified profitability process:

dΠi
t ≈

(
µ+ ξitgt

)
dt+ σdZt + σ1dZ

i
t . (4)

In contrast, for AI Starters (sit ≈ 0), profitability is more influenced by the overall AI

development stage, with the profitability process expressed as:

dΠi
t ≈

(
µ+ ξitηt

)
dt+ σdZt + σ1dZ

i
t . (5)

In this base model, I consider two types of firms with either high or low AI Exposure, i.e., ξHt

or ξLt . gt captures the impact of AI-related regulation. For simplicity, I consider two cases

for regulation regimes, Favorable (F) or Unfavorable (U). I further assume that,

g =

gFt > 0 means Favorable regulation on AI carries a positive effect

gUt < 0 means Unfavorable regulation on AI carries a negative effect,
(6)

because under Early AI-stage, firms bears negative cash flow effects for high entry costs. For

example,

I also consider two cases for opportunity regimes, Early (E) or Mature (M) for the

aggregate AI development and uses in the US. I further assume that,

η =

ηMt > 0 means aggregate Mature AI-stage carries a positive effect

ηEt < 0 means aggregate Early AI-stage carries a negative effect,
(7)

If we assume the current AI regulation in the U.S. is more Unfavorable during Biden’s

administration, then we should expect a negative relationship between profitability, i.e.,
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ROE, and firm-level AI Exposure since,

gUt (ξ
H
t − ξLt ) < 0, (8)

where ξHt > ξLt > 0. Likewise, in the Early-AI stages such as early 2010s, the entry costs

are high and impose a negative effect on profitability, and so we should expect a negative

relationship between profitability, i.e., ROE, and firm-level AI Exposure since,

ηEt (ξ
H
t − ξLt ) < 0, (9)

where ξHt > ξLt > 0. With these assumptions, I have two corresponding predictions that I

can test in the real data:

Prediction 1. Firms with higher AI Exposure should have lower ROE under the overall

Unfavorable policy environment or the Early-stage AI environment.

Prediction 2. Firms with higher AI Exposure are more sensitive to policy changes.

I show in the empirical section that this assumption is consistent with what I find in the

data. The prediction cannot be directly tested regarding the Early-stage part since AI is still

at the early stage as widely assumed. However, I have discussed the assumption is decent

using the example of Deepseek. The following test will be focused on the Unfavorable part.

The following panel regression is proposed to test these two predictions,

ROEi,t = β0+β1AIExposurei,t+β21{gt=gUt }+β3(AIExposurei,t×1{gt=gUt })+γXi,t+εi,t, (10)

where ROEi,t represents the return on equity for firm i at time t. The variable AIExposurei,t

is defined as the firm-level AI exposure as before. The dummy variable 1{gt=gUt } captures

period with Unfavorable AI regulatory, where gUt < 0. The vector Xi,t includes control

variables such as firm size, leverage, and industry fixed effects..

Table XII reports panel regressions of ROE on AI Exposure and other firm characteristics.

isUnfav is a dummy variable if year is between 2021 and 2023 during Biden’s administration,

when the AI policy is relatively unfavorable. I include the interaction term between AI

Exposure and isUnfav. Current ROE is defined as the ROE at year t, Lagged ROE at

year t − 1, and Future ROE at year t + 1. Column (1) and (2) have Current ROE as the

dependent variable and include Lagged ROE as one of the independent variables. Column

(3) and (4) have Future ROE as the dependent variable and include Current ROE as one

of the independent variables. The coefficients of interest are β2 (coefficient on isUnfav) and

β3 (coefficient on AI Exposure × isUnfav). The Prediction 1 and Prediction 2 basically
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test whether β2 and β3 are statistically negative. First, the results show that the firm-

level AI Exposure does negatively comove with current ROE and negatively predict future

ROE, i.e., β2 is statistically negative. The only exception is Column (2) when clustering

SE by Industry × Year. Second, the results show that β3 is statistically negative across all

regressions regarding the SE clustering level.

B. Household and Government Maximization Problems

Households/investors maximize a CRRA utility function,

U(Wt) =
W 1−γ

t

1− γ
, γ > 1, (11)

where γ is the risk aversion and Wt is the wealth of households at time t. To keep the model

trackable, I assume that there is no dividend payment before T and households liquidate

and consume all wealth at time T .

Government decides on whether to have a policy change at time τ , and households

observe the decision at τ . Government maximizes a similar problem as households, but face

a non-pecuniary cost (or benefit) associated with an AI-policy change from Favorable to

Unfavorable,

max
τ>t

{
Et

[
ϕ(c)W 1−γ

τ

1− γ
| U

]
,Et

[
W 1−γ

τ

1− γ
| F

]}
, (12)

where

ϕ(c) = 1 + ec, (13)

which could be interpreted as the shadow cost of imposing an Unfavorable AI policy from

the government’s perspective. For example, Biden Administration’s Executive Orders on AI

Safety, Security, and Privacy could be treated as an Unfavorable AI policy, which imposes

costs for the government. And the prior distribution of c is assumed to be drawn from a

normal distribution,

c ∼ N

(
−σ2

c

2
, σ2

c

)
, (14)

where σc captures the policy uncertainty. Using a Moment Generating Function shows that,

E[ec] = 1. The market clears at time T ,

WT = BT =

∫ 1

0

Bi
Tdi, (15)

where Bi
T denotes firm i’s capital at time T .
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C. Bayesian Learning

The political cost, c, is unknown to all agents in this economy and all agents learn about c

for any time before the policy decision, i.e., t < τ . The Bayesian learning process involves

updating signals, s, with the mean and an independent noise,

dst = cdt+ hdZc
t , (16)

where h governs the magnitude of noise, and dZc
t is an independent Brownian motion from

aggregate and idiosyncratic shocks in Equation (3). We can think of these dst as a steady

flow of political news related to AI policy.

Lemma 1. Combining the signals, Equation (16), and prior distribution of the political cost,

Equation (14), we can get the posterior distribution of the political cost,

c | F s
t ∼ N(ĉt, σ̂

2
c,t) (17)

where

dĉt = σ̂2
c,th

−1dẐc
t , (18)

and

σ̂2
c,t =

1
1
σ2
c
+ 1

h2 t
(19)

Proof. See the Proof in Appendix E.A.

The intuition behind the posterior distribution of the political cost is straightforward: If

the signal is noisy (h is large), the update is small. If the signal is precise (h is small), the

update is large. The uncertainty about cost decreases over time as more signals are observed.

The rate of learning depends on the noise level (h) and prior political uncertainty (σc).

D. Government Optimal Choice

Government learns about c and makes a policy-change decision at τ , i.e., from Favorable (F )

to Unfavorable (U) iff:

Eτ

[
W 1−γ

T

1− γ
| F

]
< Eτ

[
ϕ(c)

W 1−γ
T

1− γ
| U

]
(20)

As assumed, the government AI policy change will directly affect profitability, and the two

expectations in equation (20) should be calculated under different stochastic processes for
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the aggregate capital Bt =
∫ 1

0
Bi

tdi, combined with market clear condition equation (15).

Without loss of generality, I further assume that, ξi ∼ Uniform(0, 2) with E[ξi] = 1, and

each firm’s AI stage, si ∼ Bernoulli(p), where si = 1 (AI Elites) with probability p, and

si = 0 (AI Starters) with probability 1−p, where p captures the proportion of AI Elite firms

in the continuum of firms.

Lemma 2. The aggregate capital at time T , BT =
∫ 1

0
Bi

Tdi, is given by

BT = Bτe
(µ+pg+(1−p)η− 1

2
σ2)(T−τ)+σ(ZT−Zτ ),

where g ≡ gF under Favorable regulation, g ≡ gU under Unfavorable regulation, η ≡ ηE in

Early-stage AI environment, and η ≡ ηM in Mature-stage AI environment.

Proof. See the Proof in Appendix E.B.

It is straightforward to see that the aggregate capital at terminal time T depends on

the regulation regime and opportunity regime. With Lemma 2, we can further simplify the

condition on which the government will choose to switch from a Favorable (F) AI policy to

an Unfavorable (U) AI policy. The following proposition shows the condition.

Proposition 1. The government will switch from a Favorable (F) to an Unfavorable (U) AI

policy at time τ if and only if the realized political cost c exceeds the threshold:

c > c(τ) ≡ log
(
e(γ−1)(gF−gU)(T−τ) − 1

)
,

where gF > 0 and gU < 0 represent the regulatory impacts on profitability under Favorable

and Unfavorable regimes, respectively. The threshold c(τ) increases with risk aversion (γ > 1)

and the magnitude of the regulatory gap |gF − gU |.

Proof. See the Proof in Appendix E.C.

Corollary 1. The time-t perceived probability of a government AI policy shift from Favorable

(F ) to Unfavorable (U) at time τ (t < τ) is:

pτ |t = 1− Φ
(
c(τ); ĉt, σ̂

2
c,t

)
,

where Φ(·; ĉt, σ̂2
c,t) is the CDF of the posterior normal distribution c ∼ N(ĉt, σ̂

2
c,t), and c(τ)

is defined in Proposition 1.

Proof. See the Proof in Appendix E.D.
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The above Proposition 1 and Corollary 1 lead to several testable predictions. I will

discuss them one by one below.

Prediction 3. When investors have higher risk aversion, i.e., γ > 1, it becomes less likely

to have an AI-related policy change from Favorable to Unfavorable.

Prediction 4. When the impact of policy change from Favorable to Unfavorable (gF − gU)

becomes larger, it becomes less likely to have a policy change from Favorable to Unfavorable.

Prediction 5. The Trump’s US presidential victory at the end of 2016 decreases (or neu-

tral) the probability of adopting Unfavorable policy change on AI development. He actually

enhanced AI development, e.g., 2019 American AI Initiative. Firms with higher AI Exposure

should experience more positive stock prices reactions upon these events.

Prediction 6. The 2019 Trump’s American AI Initiative marks a more Favorable AI polit-

ical environment. The impact of AI Favorable policy, i.e., gF in the model, should become

more positive. This could be tested to see if more labor displacement threats happen, more

business ideas replaced by AI, and more physical capital becomes obsolete.

Prediction 7. Biden signed Unfavorable (or less Favorable) Executive Order on Oct, 2023.

In the model, it means, the probability of change from Favorable to Unfavorable increases,

or the impact of AI Favorable policy, i.e., gF in the model, should become less positive or

even become negative as gU (Unfavorable) in the model. AI labor displacement effect reduced.

Firms with higher AI Exposure react less positively or even negatively in the stock prices upon

these events.

The event studies in the previous empirical section speak partially to the above pre-

dictions (5-7). I defer additional empirical tests to future work to further examine these

predictions.

E. SDF, Stock Returns, and Risk Premia

Now we turn to the stock market implications, we can derive the SDF and see how this

policy shock from Favorable to Unfavorable is priced in the stock market. We first derive

the state price density in the following proposition:

Proposition 2. Before a regulatory or opportunity regime shift (t < τ), the state price

density is:

πt = B−γ
t Ωt,
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where

Ωt = e(−γµ+ 1
2
γ(γ+1)σ2)(T−t)−γ

(
pgF+(1−p)η

)
(τ−t)

[
pτ |te

−γ
(
pgU+(1−p)η

)
(T−τ)+(1−pτ |t)e

−γ
(
pgF+(1−p)η

)
(T−τ)

]
and pτ |t is the probability of a shift to Unfavorable AI policy (Corollary 1).

Proof. See the Proof in Appendix E.E.

After deriving the state price density, we can apply Itô’s Lemma and get the process for

SDF in the following proposition:

Proposition 3. The SDF is,

dπt

πt

= Et

[
dπT

πT

]
− λdZt − λc,tdẐ

C
t

where,

λ = γσ > 0

and

λc,t =
1

Ωt

∂Ωt

∂Ĉt

σ̂2
c,tη

−1 > 0

Proof. See the Proof in Appendix E.F.

Prediction 8. AI policy change shock risk (from Favorable to Unfavorable) is negatively

priced in the stock market, e.g., Biden’s EO should decrease prices for high AI-exposure

firms.

With the derived SDF process, we can further write down the stock returns and risk pre-

mia assuming zero risk-free rate as the continuous time model typically does. The following

proposition states the process for stock realized returns and risk premia. Before we jump to

the proposition, we need a lemma to help us prove the proposition.

Lemma 3. For t < τ , the stock price for firm i is given by:

M i
t = Bi

tΘ
i
t,

where

Θi
t = e(µ−γσ2)(T−t)+ξi

(
pgF+(1−p)η

)
(τ−t)

[
ϕte

ξi
(
pgU+(1−p)η

)
(T−τ) + (1− ϕt)e

ξi
(
pgF+(1−p)η

)
(T−τ)

]
,

and

ϕt =
pτ |t

pτ |t + (1− pτ |t)e−γp(gF−gU )(T−τ)
.
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Proof. See the Proof in Appendix E.G.

Proposition 4. Firm i’s stock realized returns:

dM i
t

M i
t

= Et

[
dM i

T

M i
T

]
+ σdZt + σ1dZ

i
t + βi

M,tdẐ
c
t ,

where

βi
M,t =

1

Θi

∂Θi
t

∂ĉt
σ̂2
c,t < 0,

and risk premia can be expressed as:

Et

[
dM i

T

M i
T

]
= σλdt+ βi

M,tλc,tdt,

where

∂βi
M,t

∂ξi
=

{
> 0 if p = 0 (Firms are all AI Starters),

< 0 if p = 1 (Firms are all AI Elites),
and λc,t < 0.

Proof. See the Proof in Appendix E.H.

Lemma 4. For any two firms, i and j, with AI Exposure ξi > ξj, ∀i ̸= j, return premia

spread between i and j is,

Et

[
dM i

T

M i
T

]
− Et

[
dM j

T

M j
T

]
= (βi

M,t − βj
M,t)λc,tdt

{
> 0 if p = 0 (Firms are all AI Starters),

< 0 if p = 1 (Firms are all AI Elites),

Proof. See the Proof in Appendix E.I.

Prediction 9. There should be a statistically significant positive H-L return spread among

AI Exposure-sorted portfolios if value-weighted (AI Elites dominate), and a statistically sig-

nificant negative H-L return spread among AI Exposure-sorted portfolios if equal-weighted

(AI Starters dominate).

The results from the previous empirical section (Table IV) show largely consistency with

this prediction. Panel A presents VW returns of decile portfolios of different versions of

AI Exposure measures. H-L is the return spread between the highest decile and the lowest

decile. Panel B presents VW returns of quintile portfolios of different versions of AI Exposure

measures. Both Panel A and Panel B show that the return spread, H-L, is positive and

statistically significant for both AI Exposure and AIExposureOpp sorted portfolios. This is

consistent with the fact that VW returns are usually dominated by big firms and big firms in
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my sample tend to be AI Elites that are predicted to be dominated by the regulation channel

and hence firms with higher AI Exposure should earn positive expected returns. Panel C

presents EW returns of decile portfolios of different versions of AI Exposure measures. Panel

D presents EW returns of quintile portfolios of different versions of AI Exposure measures.

Except for the case of AIExposureOpp in EW returns by quintiles, all return spread, H-L, is

significantly negative. This is consistent with the fact that EW returns are usually dominated

by small firms and small firms in my sample tend to be AI Starters that are predicted to

be dominated by the opportunity channel and hence firms with higher AI Exposure should

earn lower expected returns.

V. Validation: Hedging AI Innovations

This section validates the main measures used in the empirical analysis, namely, AIV and

firm-level AI Exposure. Following the mimicking portfolio approach of Engle et al. (2020),

I show that using my AIV , investors can create a time series of AI News Index to capture

the innovation in AI development. In addition, investors can use my firm-level AI Exposure

measures to construct a mimicking portfolio to hedge the innovation in the AI News Index.

A. RavenPack AI News Index

After getting the AIV, I construct the RavenPack AI News Index. I use approximately 170

million news headlines from the Dow Jones and Press Release Edition of the RavenPack

News database from 2020 to 2024. I compute a monthly RavenPack AI News Index in two

version, Number of Headlines and Fraction of AI-Related Headlines. Number of Headlines is

defined as the total number of headlines that contain unigrams or bigrams in the previously

defined AIV on a monthly basis. Fraction of AI-Related Headlines is the fraction of total

number of headlines that contain unigrams or bigrams in the previously defined AIV over

the total number of headlines on a monthly basis.

Figure 2 presents the RavenPack AI News Index from 2010 to 2024, along with key

AI-related news announcements highlighted in the plot. The plot displays the Number of

Headlines, representing the monthly count of RavenPack news headlines that include AIV

terms. The RavenPack AI News Index effectively captures the primary trends in AI-related

news. Notably, significant events include the launch of ChatGPT3 at the end of 2022 and

ChatGPT4 in March 2023, which correspond to notable increases in the Number of Headlines.

Prior to 2017, AI-related news was sparse. Key developments in AI-related topics during

this period were focused on machine learning and deep learning applications. For instance,
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Google’s Neural Networks team succeeded in identifying cats from millions of YouTube

videos, DeepMind excelled at Atari games, Facebook introduced DeepFace, Google launched

TensorFlow, and AlphaGo triumphed over Lee Sedol in the Go match. After 2017, appli-

cations of machine learning and deep learning expanded into everyday home and customer

services, exemplified by products like Google Home, Amazon Alexa, and Waymo’s taxi ser-

vice initiation. This period also saw AI applications in biotech advancing the development

of vaccines and other technologies during the COVID pandemic.

After constructing AI News Index, I define the series of AI Innovations. AI Innovations

is defined as residuals, εt, from an AR(1) process:

AINewsIndext = β ∗ AINewsIndext−1 + εt (21)

where t is on a monthly basis. Running this regression gives me a series of 168 full months

AI Innovations that will be included in my final analysis, from July 2009 to June 2023.

B. Constructing Hedging Portfolio

In this part, I apply the mimicking portfolio approach and construct hedging portfolio for

innovations in RavenPack AI News Index. To disentangle the AI risk factor, the one condition

for mimicking portfolio approach is to spanning all risk factors in the projection portfolios.

Obviously this is impossible to do. To mitigate the concern, I not only include a long-short

portfolio sorted on AI Exposure but also include Fama and French (1993) three factors in

constructing the projection portfolio. I explain this in a regression,

AIInnovationst = ξ + wAIExpZ
AIExp′

t−1 rt + wSIZEZ
SIZE′

t−1 rt

+ wHMLZ
HML′

t−1 rt + wMKTZ
MKT ′

t−1 rt + et, (22)

where AI Innovations are the residual series from an AR(1) regressions on AI News Index.

For ease of exposition, I follow the notation of Engle et al. (2020). I set ZAIExp′

t−1 rt to repre-

sent the returns of a long-short portfolio, which longs the top half of firms with higher AI

Exposure and shorts the bottom half with lower AI Exposure. Similarly, I set size (using

cross-sectionally standardized market value to create ZSIZE′
t−1 , so that half the firms, sorted

by market value, have positive weight, and half have negative weight; note that this portfolio

will be long large firms and short small firms), value (using cross-sectionally standardized

values of book-to-market to create ZHML′
t−1 ), and the market (setting ZMKT ′

t−1 to equal the

share of total market value). wAIExp, wSIZE, wHML, and wMKT capture the weights for each

factor for the final mimicking portfolio.
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C. In-Sample Fit

I first run Equation (22) for the in-sample fit using the full sample from July 2009 to June

2023. Table XIII presents the in-sample regression results. Column (1) runs the AI Innova-

tions on the mimicking portfolio only with AI Exposure sorted portfolio; Column (2) adds

MKT portfolio; Column (3) adds SIZE portfolio; Column (4) adds HML portfolio; Column

(5) is the full regression.

Compare these five results, we can observe several things. First, the full regression in

Column (5) gives the highest in-sample regression R-squared, 8.19%. Second, full regression

in Column (5) gives the AI Exposure sorted portfolio highest weights. Third, the only

statistically significant weights are the AI Exposure sorted portfolio. However, from Column

(5), we see other factors help boost the R-squared.

A possible explanation for this relatively low R-squared could result from the fact that

the full sample starts from July 2009, when AI was not a big thing. This could also be

seen in the Figure 2. Intuitively, we would see a higher weight on the AI Exposure sorted

portfolio and higher overall R-squared if we run the in-sample fit on the later years from July

2016. Table XIV presents the subsample in-sample regression results from July 2016 to June

2023. The regression results are consistent with the intuition, that both the weight on the

AI Exposure sorted portfolio and overall R-squared are higher now. The overall R-squared

is 10.4%.

In the above regressions, the results show that the AI Exposure sorted portfolio really

matters. Hence, if we construct the AI Exposure sorted portfolio by quartile sorting and

long the top quartile and short the bottom quartile, instead of long the top half and short

the bottom half, we might get more variations and hence better in-sample fitness. Table XV

presents the subsample in-sample regression results from July 2016 to June 2023 and quartile

sorting on AI Exposure portfolio. In Column (5), both the weight on the AI Exposure sorted

portfolio and overall R-squared are higher now. The overall R-squared is 19.6%.

These in-sample tests show that investors can always figure out a better subsample to

boost the in-sample fitness. While the most important thing an investor should care is the

out-of-sample performance. In the next part, I show the out-of-sample performance of the

above in-sample models.

D. Out-of-Sample Performance

To test the out-of-sample performance of the above in-sample models, I use the estimated

in-sample weights and run regressions with these weights for a later sample period in rolling

window style. More specifically, I run regression using data from the initial month, tmin, for
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which I observe AIExposure and AIInnovationst series, to month t − 1, for any month t,

but making sure each regression has at least 30 months.

Figure 6 presents the out-of-sample performance for each of the in-sample estimated

models. The left-hand-side graphs (a)(c)(e) show binscatter plots between the returns of

the hedge portfolios and the AI News Index Innovations, while the right-hand-side graphs

(b)(d)(f) depict the time series of the two. Panel (a) and (b) corresponds to the in-sample

results in Table XIII with full sample. There is a positive, 18.57%, correlation between the

constructed mimicking portfolio returns and AI News Index Innovations. This means that

the AI mimicking portfolio does earn higher returns when the positive AI news innovations

materialize. Panel (c) and (d) corresponds to the in-sample results in Table XIV with recent

years from July 2016 to June 2023. There is a positive, 20.24%, correlation between the

constructed mimicking portfolio returns and AI News Index Innovations. Panel (e) and (f)

corresponds to the in-sample results in Table XV with recent years from July 2016 to June

2023, and sorting is based on the top quartile minus the bottom quartile. There is a positive,

40.20%, correlation between the constructed mimicking portfolio returns and AI News Index

Innovations.

The last subsample out-of-sample correlation reaches 40.20%, which is great to investors.

However, here I am not claiming this is the optimal hedging subsample or best hedging

strategy. My goal is to show it is valid to apply the mimicking portfolio approach in hedging

long-run AI risk.

VI. Conclusion

AI has emerged as a transformative force reshaping firms’ risk profiles and opportunities.

This paper studies two channels, opportunity and regulatory uncertainty, through which

AI affects the stock prices and risk premia. I study this question between firms that I

call AI Starters and AI Elites. The AI Starters are firms that start to invest or adapt

to using AI in their operations, while the AI Elites are firms that have invested in AI or

used AI technologies in their daily operations for quite some time. The main finding in this

paper is that AI Starters are more opportunity-driven and AI Elites are more concerned

about regulatory risks, which leads to AI Starters showing a negative AI Exposure-returns

relationship while AI Elites showing a positive AI Exposure-returns relationship.

The findings are largely robust across several complementary empirical tests. First,

standard asset pricing tests, including portfolio sorts on AI Exposure measures and factor

regressions, show a positive return spread and significant positive alpha for AI Elites, while

AI Starters exhibit a negative return spread. Second, Fama-MacBeth regressions reveal a
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negative relationship between AI Exposure and returns for AI Starters, particularly for the

opportunity-related AIExposureOpp measure. Third, this negative AI Exposure-returns re-

lationship also holds for Implied Cost of Capital estimates. Fourth, the result is robust when

using option-implied expected return measures. Fifth, the risk premia mostly disappear fol-

lowing a three-pass procedure, which accounts for omitted variable bias and measurement

error, although the heterogeneous effects from the two channels remain. Lastly, using plau-

sibly exogenous regulation and opportunity shocks, I show that the real price reactions are

consistent with the main findings.

These results highlight a growing need for investors to account for AI-driven opportunities

and regulatory uncertainties in their asset allocation strategies. In the last part of the of

the paper, I implement a mimicking portfolio approach to showcase that AI innovations

are hedgeable. Future research could further investigate whether there could be an optimal

approach in hedging this AI innovations by leveraging the opposing effects of the two channels

discussed in this paper. As firms increasingly integrate AI technologies, understanding and

mitigating associated risks will be critical for achieving sustainable financial performance.

Future research could extend the theoretical framework to explore cross-industry variations

in AI risk exposure and assess its impact on asset prices.

36



(a) Artificial Intelligence Bigrams

(b) Artificial Intelligence Unigrams

Figure 1. Artificial Intelligence Vocabulary WordCloud. The figures present word
clouds that summarize the Artificial Intelligence Vocabulary (AIV) extracted from academic
paper titles in the Web of Science. Following the literature, I focus on unigrams and bigrams.
The larger the term size, the more frequent the terms appear in the corpus (measured in
TF-IDF score). The Web of Science paper titles are downloaded from ProQuest, and cover
159,444 papers specifically related to artificial intelligence. The years range from 2010 to
2024. Panel (a) shows most frequent bigrams. Panel (b) shows most frequent unigrams.
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Figure 2. RavenPack AI News Index. The figures present the RavenPack AI News
Index from 2010 to 2024, together with main AI-relevant news announcements marked in the
plot. The y-axis variable, Number of Headlines, represents the monthly count of RavenPack
news headlines containing AIV terms. The plot utilizes the Dow Jones and Press Release
Edition of the RavenPack News database, which includes approximately 170 million news
headlines from 2010 to 2024.
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(a) Monthly Mean of AI Exposure

(b) Unique Number of Firms Over Time

Figure 3. Summary Statistics of AI Exposure. This figure presents summary statistics
of firm-level AI Exposure measures on a monthly basis. Panel (a) presents the monthly mean
of AI Exposure, AIExposureOpp, and AIExposureReg, and Panel (b) presents the unique
number of firms over time. The dataset spans from July 2009 to June 2023.
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(a) Cumulative Returns

(b) VW sorted by AIE (c) VW sorted by AIE Opp

(d) EW sorted by AIE (e) EW sorted by AIE Opp

Figure 4. Cumulative Returns and Twelve-Month Rolling Alpha. Panel (a) presents
the cumulative returns of the return spread between high- and low- AIExposure or AIExposureOpp

portfolios, either VW or EW. Panel (b)-(e) show the twelve-month rolling factor alphas of a strategy
that longs the high AIExposure or AIExposureOpp portfolio and short the low AIExposure or
AIExposureOpp portfolio.
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Figure 5. Three-Pass Risk Premia of AI Factors. This figure shows the risk pre-
mia estimates from the three-pass procedure for AI factors constructed using firm-level
AIExposure measures on a monthly basis, following Giglio and Xiu (2021). The four cir-
cle plots represent value-weighted AI factors, while the four triangle plots represent equal-
weighted AI factors. “AIE” denotes the return spread between the highest and lowest deciles
sorted by AIExposure, and “AIE Opp” denotes the return spread between the highest and
lowest deciles sorted by AIExposureOpp. When the notation “5” is used, it indicates the
return spread between the highest and lowest quintiles. For each factor, I estimate the
risk premia using different sets of testing portfolios, a range of one to ten lags for computing
Newey-West standard errors and a range of one to ten for principal components. The dataset
spans from July 2009 to June 2023.
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(a) Binscatter (Full Sample) (b) Time Series: Full Sample

(c) Binscatter (Subsample: Recent Years) (d) Time Series (Subsample: Recent
Years)

(e) Binscatter (Subsample: Recent Years
+ Quartile Mimicking Portfolio)

(f) Time Series (Subsample: Recent Years
+ Quartile Mimicking Portfolio)

Figure 6. Out-of-sample Performance. This figure presents out-of-sample performance of
hedge portfolios constructed to hedge the RavenPack AI News Index. The left-hand graphs (a)(c)(e)
show binscatter plots between the returns of the hedge portfolios and the AI News Index Innova-
tions, while the right-hand graphs (b)(d)(f) depict the time series of the two. The full sample
analysis covers months from July 2009 to June 2023, with a subsample with recent years from July
2016 to June 2023. For the full sample, the mimicking portfolios are sorted by the top half minus
the bottom half; for the subsample, sorting is based on the top quartile minus the bottom quartile.
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Table I
Summary Statistics and Correlation: AI Exposure Measures

This table presents the summary statistics and correlation of the overall firm-level AI Ex-
posure and different versions of topic-specific or tone-specific AI Exposure measures at the
firm-quarter level. Panel A presents the summary statistics of different versions of AI Ex-
posure measures. Panel B presents the correlation among different versions of AI Exposure
measures. I denote the overall AI Exposure measure, the AI Exposure regarding opportunity,
the AI Exposure regarding regulation, the AI Exposure regarding risk, the AI Exposure with
positive tones, and the AI Exposure with negative tones as AIExposure, AIExposureOpp,
AIExposureReg, AIExposureRisk, AIExposurePos, and AIExposureNeg, respectively. For
the ease of exposition, I multiply 1,000 for each measure.

Panel A: Summary Statistics

Variable Observation Mean SD 10% 25% 50% 75% 90% Max
AIExposurei,t 391,232 4.40 1.73 2.55 3.22 4.11 5.27 6.60 24.83

AIExposureOpp
i,t 391,232 2.44 2.64 0.00 0.00 2.41 4.44 5.91 24.83

AIExposureReg
i,t 391,232 0.78 1.87 0.00 0.00 0.00 0.00 3.99 24.83

AIExposureRisk
i,t 391,232 0.90 1.88 0.00 0.00 0.00 0.00 4.14 22.42

AIExposurePos
i,t 391,232 0.86 1.97 0.00 0.00 0.00 0.00 4.22 23.71

AIExposureNeg
i,t 391,232 0.17 0.88 0.00 0.00 0.00 0.00 0.00 19.63

Panel B: Correlation

AIExposurei,t AIExposureOpp
i,t AIExposureReg

i,t AIExposureRisk
i,t AIExposurePos

i,t AIExposureNeg
i,t

AIExposurei,t 1.000

AIExposureOpp
i,t 0.478 1.000

AIExposureReg
i,t 0.203 0.240 1.000

AIExposureRisk
i,t 0.119 0.192 0.355 1.000

AIExposurePos
i,t 0.241 0.176 0.081 0.052 1.000

AIExposureNeg
i,t 0.033 0.031 0.026 0.028 0.016 1.000
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Table II
Characteristics of AI Exposure-Sorted Portfolios (Quintile)

This table reports the summary statistics for characteristics of AI Exposure-sorted quintile portfolios. At the end of
June of each year, stocks are ranked by their AI Exposure and sorted into quintiles. AI Exposure is defined as the
fraction of AI-related unigrams and bigrams in a firm’s call transcripts, and here it is multiplied by 1000 for ease of
exposition. Firm size, ln(ME), is measured as the log of market equity in June of year t. BE/ME is measured as the
ratio between book equity at the end of June of year t and market equity at the end of December of year t− 1. ROE
is profitability, measured as income before extraordinary items divided by book equity. ROA is another profitability
measure, defined as income before extraordinary items divided by total assets. R&D/Assets is defined as the ratio
of R&D to lagged total assets. Firm Age measures the age of a firm starting from its initial listing in the CRSP
database. Asset Growth is defined as the ratio between the change of total assets from year t − 2 to year t − 1 and
total assets in year t − 2. I follow Fahlenbrach, Rageth, and Stulz (2021) to construct the following three financial
flexibility measures. Cash/Assets is the ratio of cash to total assets. St Debt/Assets is the ratio of debt in current
liabilities to total assets. Lt Debt/Assets is the ratio of long-term debt to total assets. Tangibility is property, plant,
and equipment divided by total assets. Book Leverage is the sum of current liabilities and long-term debt divided
by total assets. WW Index is the Whited and Wu index used to measure financial constraint (see, Whited and Wu,
2006). After winsorizing at the 1st and 99th percentiles to limit the influence of outliers, all firm characteristics
variables are standardized to have a mean of zero and a standard deviation of one. The sample period is 2009 to
2024 at an annual frequency.

Quintile 1 2 3 4 5
mean mean mean mean mean

AIExposure -1.14 -0.62 -0.18 0.37 1.57
AIExposureOpp -0.76 -0.37 -0.08 0.30 0.92
AIExposureReg -0.32 -0.14 -0.01 0.11 0.36
AIExposureRisk -0.23 -0.03 0.04 0.09 0.13
AIExposurePos -0.45 -0.22 -0.04 0.19 0.53
AIExposureNeg -0.07 -0.01 0.04 0.05 -0.00
Size 0.05 0.10 0.06 -0.02 -0.19
BE/ME 0.05 0.03 -0.01 -0.04 -0.02
ROA 0.25 0.23 0.15 -0.03 -0.60
ROE 0.19 0.15 0.08 -0.05 -0.38
R&D/Assets -0.39 -0.33 -0.19 0.13 0.78
Firm Age 0.21 0.15 0.06 -0.10 -0.31
Asset Growth -0.09 -0.07 -0.02 0.04 0.14
Cash/Assets -0.46 -0.36 -0.18 0.16 0.83
St Debt/Assets 0.10 0.01 -0.01 -0.03 -0.07
Lt Debt/Assets 0.17 0.18 0.08 -0.07 -0.37
Tangibility 0.21 0.17 0.07 -0.10 -0.32
Book Leverage 0.20 0.17 0.07 -0.08 -0.37
WW Index -0.00 0.01 0.01 0.02 -0.04
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Table III
AI Exposure by Industry (SIC2)

Full Sample: July 2009 to June 2023

This table shows the average AI Exposure for the top ten industries based on their SIC
2-digit codes. Panel A lists the top ten industries with the highest overall AI Exposure,
while Panel B shows the top ten industries ranked by the AI Exposure measure based on
opportunities (AIExposureOpp).

Panel A: AIExposurei,t

Industry (SIC2) N Mean SD Median

Educational Services 1,582 6.29 2.40 5.82
Insurance Agents, Brokers, & Service 887 5.56 3.00 4.59
Local & Interurban Passenger Transit 176 5.50 2.33 4.98
Business Services 29,793 5.46 1.91 5.25
Chemical & Allied Products 24,532 5.40 2.12 5.14
Instruments & Related Products 12,424 5.38 2.05 5.03
Electronic & Other Electric Equipment 15,788 5.05 1.91 4.82
Engineering & Management Services 3,582 4.99 1.79 4.77
Eating & Drinking Places 2,925 4.85 1.43 4.72
Communications 7,630 4.80 1.91 4.57

Panel B: AIExposureOpp
i,t

Industry (SIC2) N Mean SD Median

Insurance Agents, Brokers, & Service 887 3.89 3.84 3.75
Business Services 29,793 3.78 3.08 4.37
Educational Services 1,582 3.75 3.88 4.04
Instruments & Related Products 12,424 3.62 3.07 3.99
Local & Interurban Passenger Transit 176 3.36 3.41 3.72
Engineering & Management Services 3,582 3.30 2.89 3.72
Miscellaneous Manufacturing Industries 1,369 3.30 2.41 3.70
Security & Commodity Brokers 5,094 3.21 2.55 3.72
Electronic & Other Electric Equipment 15,788 3.07 2.99 3.43
Industrial Machinery & Equipment 9,478 2.95 2.74 3.15
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Table IV
Portfolio Sorts and Returns

This table presents average monthly value-weighted (VW) or equal-weighted (EW) returns
(in percentage) of portfolios sorted by overall firm-level AI Exposure and AIExposureOpp.
Panel A presents VW returns of decile portfolios of different versions of AI Exposure mea-
sures. H-L is the return spread between the highest decile and the lowest decile. Panel
B presents VW returns of quintile portfolios of different versions of AI Exposure measures.
Panel C presents EW returns of decile portfolios of different versions of AI Exposure mea-
sures. Panel D presents EW returns of quintile portfolios of different versions of AI Exposure
measures. The t-statistics are computed using heteroscedasticity and autocorrelation con-
sistent Newey-West (1987) standard error estimates with a lag length of 12 months.

Panel A. VW Returns by Deciles
AIExposure L 2 3 4 5 6 7 8 9 H H-L
Mean 1.47 1.50 1.59 1.37 1.51 1.43 1.69 1.80 2.07 2.43 0.96
[t] 5.54 4.94 6.65 5.62 5.21 5.44 5.65 6.06 5.83 5.06 2.65

AIExposureOpp L 2 3 4 5 6 7 8 9 H H-L
Mean 1.74 1.21 1.46 1.49 1.58 1.38 1.51 1.77 2.03 2.34 0.60
[t] 6.05 4.32 5.13 5.47 6.56 4.89 6.09 6.01 6.83 5.00 1.67

Panel B. VW Returns by Quintiles
AIExposure L 2 3 4 H H-L

Mean 1.49 1.49 1.50 1.77 2.26 0.77
[t] 5.27 6.27 5.67 6.13 5.77 2.56

AIExposureOpp L 2 3 4 H H-L
Mean 1.63 1.47 1.48 1.63 2.19 0.56
[t] 6.07 5.39 5.85 6.15 6.09 2.08

Panel C. EW Returns by Deciles
AIExposure L 2 3 4 5 6 7 8 9 H H-L
Mean 1.23 1.10 1.26 1.19 1.13 1.04 1.06 0.92 1.04 0.91 -0.32
[t] 2.69 2.41 2.69 2.74 2.57 2.31 2.19 1.87 2.00 1.43 -0.73

AIExposureOpp L 2 3 4 5 6 7 8 9 H H-L
Mean 1.07 1.08 1.19 1.10 1.22 1.08 1.06 1.15 0.93 0.88 -0.19
[t] 2.17 2.15 2.64 2.46 2.78 2.45 2.42 2.31 1.75 1.50 -0.83

Panel D. EW Returns by Quintiles
AIExposure L 2 3 4 H H-L

Mean 1.16 1.22 1.08 0.99 0.97 -0.19
[t] 2.56 2.72 2.45 2.05 1.70 -0.53

AIExposureOpp L 2 3 4 H H-L
Mean 1.14 1.14 1.15 1.11 0.90 -0.24
[t] 2.40 2.55 2.62 2.37 1.63 -1.03
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Table V
Sequential Sorts and Returns

This table presents average monthly value-weighted (VW) returns (in percentage) of sequen-
tially sorted portfolios, first sorted by anomalies, and then sorted by overall firm-level AI
Exposure. In each panel, I report sequential sort returns using full sample, and subsample
that includes the second half of the full sample, i.e., recent years. The t-statistics are com-
puted using heteroscedasticity and autocorrelation consistent Newey-West (1987) standard
error estimates with a lag length of 12 months.

Panel A. Size × AIE Sequential Sort
Full Sample L 2 3 4 H H-L
Mean 1.52 1.55 1.45 1.64 1.91 0.40
[t] 5.39 6.02 5.43 6.50 5.71 1.58

Recent Years L 2 3 4 H H-L
Mean 1.45 1.49 1.40 1.63 2.25 0.80
[t] 3.37 3.83 3.11 4.01 3.81 1.90

Panel B. B/M × AIE Sequential Sort
Full Sample L 2 3 4 H H-L
Mean 1.54 1.50 1.54 1.81 2.18 0.64
[t] 5.81 6.15 5.55 6.37 5.67 2.60

Recent Years L 2 3 4 H H-L
Mean 1.46 1.50 1.58 1.86 2.61 1.16
[t] 3.64 3.69 3.63 3.88 3.87 2.94

Panel C. R&D × AIE Sequential Sort
Full Sample L 2 3 4 H H-L
Mean 1.63 1.56 1.59 1.55 1.91 0.28
[t] 6.28 5.58 6.12 5.98 5.59 1.62

Recent Years L 2 3 4 H H-L
Mean 1.66 1.52 1.50 1.68 2.22 0.57
[t] 4.01 3.39 3.44 4.16 3.74 2.03

Panel D. Age × AIE Sequential Sort
Full Sample L 2 3 4 H H-L
Mean 1.53 1.58 1.50 1.61 1.98 0.45
[t] 5.50 5.69 5.97 5.87 6.24 1.96

Recent Years L 2 3 4 H H-L
Mean 1.44 1.57 1.47 1.61 2.33 0.89
[t] 3.39 3.57 3.50 3.60 4.26 2.49

Panel E. ROE × AIE Sequential Sort
Full Sample L 2 3 4 H H-L
Mean 1.51 1.51 1.52 1.63 1.98 0.47
[t] 5.13 6.24 5.47 6.41 6.08 2.07

Recent Years L 2 3 4 H H-L
Mean 1.43 1.50 1.45 1.72 2.25 0.82
[t] 3.14 3.89 3.02 4.45 3.89 2.10

Panel F. AG × AIE Sequential Sort
Full Sample L 2 3 4 H H-L
Mean 1.51 1.48 1.57 1.63 2.16 0.65
[t] 5.66 5.71 5.76 6.09 6.13 2.49

Recent Years L 2 3 4 H H-L
Mean 1.43 1.45 1.57 1.65 2.57 1.14
[t] 3.66 3.35 3.41 4.02 4.13 2.69

Panel G. CA × AIE Sequential Sort
Full Sample L 2 3 4 H H-L
Mean 1.58 1.67 1.54 1.54 1.83 0.25
[t] 5.89 5.88 5.87 5.67 6.06 1.66

Recent Years L 2 3 4 H H-L
Mean 1.54 1.63 1.56 1.67 2.03 0.49
[t] 3.64 3.58 3.53 3.74 3.79 2.13

Panel H. BL × AIE Sequential Sort
Full Sample L 2 3 4 H H-L
Mean 1.49 1.58 1.43 1.69 2.07 0.58
[t] 5.54 6.00 5.40 6.01 6.16 2.27

Recent Years L 2 3 4 H H-L
Mean 1.40 1.54 1.40 1.80 2.40 1.00
[t] 3.47 3.59 3.21 3.85 4.10 2.31

Panel I. TANT × AIE Sequential Sort
Full Sample L 2 3 4 H H-L
Mean 1.49 1.59 1.52 1.74 1.98 0.49
[t] 5.52 6.22 5.82 6.18 5.33 1.96

Recent Years L 2 3 4 H H-L
Mean 1.43 1.47 1.61 1.82 2.32 0.89
[t] 3.43 3.64 3.76 3.98 3.49 2.02
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Table VI
Regressions for H-L Portfolios Sorted on AI Exposure

This table reports the estimated monthly α (basis points) and coefficients of regression of
dependent variable H-L (based on VW returns) on a sets of leading factors (see, Chabi-Yo,
Gonçalves, and Loudis, 2025; Fama and French, 1996; Fama and French, 2015; Hou, Xue,
and Zhang, 2015; Hou et al., 2020). H-L is the monthly return spread between firms with
High AI Exposure (10th decile) and Low AI Exposure (1st decile). Column (1) reports the
CAPM; Column (2) reports the ICAPM; Column (3) reports Fama-French 3 factors; Column
(4) reports Fama-French 3 factors plus Carhart (1997) momentum factor-UMD; Column (5)
reports Fama-French 5 factors; Column (6) reports q factors; Column (7) reports q5 factors.
The sample period is from July 2009 to June 2023 at an monthly frequency. The t-statistics
are based on standard errors estimated using the Newey-West correction for 12 lags. ***,
**, and * correspond to statistical significance at the 1%, 5%, and 10% levels, respectively.

(1) (2) (3) (4) (5) (6) (7)
CAPM ICAPM FF3 FF4 FF5 q q5

α 66.88** 72.92** 67.90*** 66.62*** 81.19*** 99.09*** 83.58***
(2.25) (2.58) (3.22) (3.24) (3.65) (3.85) (3.61)

MktRF 11.80 5.726 10.63 11.22 8.800 0.871 4.244
(1.55) (0.73) (1.51) (1.51) (1.19) (0.10) (0.55)

rE -14.96
(-0.67)

rV 6.986
(0.34)

SMB 30.47* 30.71* 23.82
(1.94) (1.93) (1.61)

HML -63.20*** -62.22*** -47.44***
(-10.91) (-11.72) (-5.21)

UMD 2.767
(0.32)

RMW -13.22
(-0.76)

CMA -34.07**
(-2.09)

qME 14.68 26.79*
(0.96) (1.66)

qIA -79.78*** -59.95***
(-8.28) (-5.75)

qROE -14.49 -40.18***
(-1.59) (-3.55)

qEG 51.92***
(4.22)

R-squared 0.023 0.035 0.359 0.360 0.386 0.304 0.351
Observations 162 162 162 162 162 162 162
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Table VII
Fama-MacBeth Regressions on AI Exposure

Full Sample: July 2009 to June 2023

This table reports Fama-MacBeth regressions of individual stock excess returns (in percentage)
on AI Exposure and other firm characteristics. Cross-sectional regressions are conducted monthly
from July of year t to June of year t + 1. Each month, individual stock returns are regressed on
AI Exposure from year t − 1 and various control variables available by the end of June of year t.
The list of control variables are defined as Table II. Column (1)-(4) report Ordinary Least Square
(OLS) regression results. Column (5)-(8) report Weighted Least Square (WLS) regression results
using market equity as the weights. The t-statistics are based on standard errors adjusted using
the Newey-West method. The full sample is from July 2009 to June 2023.

OLS WLS

(1) (2) (3) (4) (5) (6) (7) (8)
AI Exposure -0.0775** 0.0806

(-2.19) (1.32)
AI Exposure Opp -0.104*** 0.102

(-4.41) (1.39)
AI Exposure Reg -0.0566** -0.0593**

(-2.06) (-1.86)
AI Exposure Risk -0.0283 0.0113

(-0.91) (0.38)
Size -0.0887 -0.0809 -0.0817 -0.0838 -0.0764 -0.0771 -0.0756 -0.0768

(-1.62) (-1.50) (-1.51) (-1.57) (-1.40) (-1.41) (-1.39) (-1.41)
BE/ME 0.139 0.140 0.143 0.138 0.132 0.131 0.129 0.130

(0.96) (0.96) (0.98) (0.94) (0.91) (0.90) (0.88) (0.89)
ROE 0.540*** 0.543*** 0.545*** 0.546*** -0.151 -0.155 -0.153 -0.153

(4.11) (4.13) (4.13) (4.14) (-1.00) (-1.03) (-1.03) (-1.03)
R&D/Assets 0.154** 0.147** 0.139** 0.137** 0.295** 0.324*** 0.332*** 0.323***

(2.61) (2.50) (2.38) (2.35) (2.59) (2.94) (2.92) (2.83)
Firm Age -0.0682 -0.0686 -0.0685 -0.0682 -0.0749 -0.0752 -0.0750 -0.0747

(-1.50) (-1.48) (-1.46) (-1.45) (-1.60) (-1.61) (-1.59) (-1.58)
Asset Growth -0.0693 -0.0707 -0.0662 -0.0662 -0.0317 -0.0344 -0.0287 -0.0306

(-1.23) (-1.25) (-1.18) (-1.15) (-0.43) (-0.47) (-0.40) (-0.41)
Cash/Assets 0.349*** 0.350*** 0.374*** 0.374*** 0.526*** 0.545*** 0.582*** 0.577***

(4.29) (4.33) (4.13) (4.35) (4.28) (4.39) (4.26) (4.31)
St Debt/Assets -0.0638* -0.0652* -0.0599* -0.0597* -0.0917* -0.0964* -0.0902* -0.0898*

(-1.43) (-1.47) (-1.36) (-1.36) (-1.80) (-1.88) (-1.79) (-1.76)
Lt Debt/Assets 0.0829 0.0865 0.0863 0.0898 0.0508 0.0544 0.0542 0.0595

(1.43) (1.48) (1.46) (1.51) (0.91) (0.97) (0.96) (1.05)
Tangibility 0.00989 0.0103 0.00700 0.00810 0.0493 0.0498 0.0451 0.0456

(0.12) (0.12) (0.09) (0.10) (0.50) (0.51) (0.47) (0.48)
Constant 1.724*** 1.452** 1.437** 1.827*** 2.265*** 2.223** 2.136** 2.138**

(3.16) (2.57) (2.53) (3.08) (2.64) (2.57) (2.48) (2.34)
Industry (SIC2) FE Yes Yes Yes Yes Yes Yes Yes Yes
Observations 528170 528170 528170 528170 528170 528170 528170 528170
R-squared 0.286 0.286 0.284 0.285 0.286 0.285 0.284 0.285
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Table VIII
Fama-MacBeth Regressions on AI Exposure

Subsample: July 2016 to June 2023

This table reports Fama-MacBeth regressions of individual stock excess returns (in percentage)
on AI Exposure and other firm characteristics. Cross-sectional regressions are conducted monthly
from July of year t to June of year t + 1. Each month, individual stock returns are regressed on
AI Exposure from year t − 1 and various control variables available by the end of June of year t.
The list of control variables are defined as Table II. Column (1)-(4) report Ordinary Least Square
(OLS) regression results. Column (5)-(8) report Weighted Least Square (WLS) regression results
using market equity as the weights. The t-statistics are based on standard errors adjusted using
the Newey-West method. The subsample is from July 2016 to June 2023.

OLS WLS

(1) (2) (3) (4) (5) (6) (7) (8)
AI Exposure -0.0867 0.184*

(-1.52) (1.96)
AI Exposure Opp -0.109* 0.216**

(-2.47) (2.48)
AI Exposure Reg -0.0420 0.000160

(-1.01) (0.01)
AI Exposure Risk 0.0121 0.0570

(0.24) (1.57)
Size -0.0146 -0.00903 -0.0128 -0.0158 -0.0314 -0.0340 -0.0266 -0.0265

(-0.22) (-0.14) (-0.19) (-0.24) (-0.98) (-1.06) (-0.81) (-0.81)
BE/ME 0.0342 0.0342 0.0327 0.0282 -0.00613 0.00511 0.0129 0.0129

(0.65) (0.65) (0.62) (0.54) (-0.06) (0.05) (0.13) (0.13)
ROE 0.483* 0.486* 0.489* 0.487* 0.00345 0.000945 0.0165 0.00237

(2.58) (2.57) (2.58) (2.58) (0.02) (0.00) (0.09) (0.01)
R&D/Assets 0.130 0.122 0.116 0.117 0.414** 0.453*** 0.484*** 0.473***

(1.39) (1.27) (1.22) (1.24) (2.61) (2.84) (3.00) (2.89)
Firm Age -0.00410 -0.00291 -0.00206 -0.00366 -0.133* -0.137* -0.137* -0.136*

(-0.04) (-0.03) (-0.02) (-0.03) (-1.72) (-1.74) (-1.73) (-1.70)
Asset Growth -0.122 -0.121 -0.121 -0.123 -0.105 -0.104 -0.0995 -0.0988

(-2.07) (-2.06) (-2.07) (-2.07) (-1.19) (-1.17) (-1.15) (-1.07)
Cash/Assets 0.259* 0.244 0.238 0.232 0.454*** 0.460*** 0.508*** 0.512***

(2.16) (1.95) (1.88) (1.82) (3.18) (3.24) (3.19) (3.50)
St Debt/Assets -0.0906 -0.0917 -0.0880 -0.0911 0.00387 0.000215 0.00889 0.00969

(-1.19) (-1.22) (-1.17) (-1.21) (0.07) (0.00) (0.16) (0.18)
Lt Debt/Assets 0.0805 0.0879 0.0915 0.0917 0.134** 0.142*** 0.145*** 0.147***

(1.24) (1.29) (1.33) (1.34) (2.58) (2.81) (2.80) (2.79)
Tangibility 0.150 0.144 0.152 0.150 0.146 0.148 0.137 0.137

(1.32) (1.28) (1.33) (1.34) (1.38) (1.41) (1.36) (1.39)
Constant 0.731 1.120 0.469 0.875 1.091 0.804 0.948 1.181

(0.60) (1.34) (0.42) (0.95) (1.61) (1.09) (1.31) (1.54)
Industry (SIC2) FE Yes Yes Yes Yes Yes Yes Yes Yes
Observations 275346 275346 275346 275346 275343 275343 275343 275343
R-squared 0.107 0.107 0.106 0.106 0.308 0.307 0.306 0.306
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Table IX
Multivariate Fama-MacBeth Regressions of Realized Returns and ICC

Measures on AI Exposure

This table reports mutivariate Fama-MacBeth regressions of ex-post realized returns (in
percentage) and Implied Cost of Capital (ICC) measures (in percentage) on AI Exposure.
Column (1) reports regressions of realized returns on AI Exposure; column (2) reports results
of ICC estimates based on Gebhardt, Lee, and Swaminathan (2001); column (3) reports
results of ICC estimates based on Claus and Thomas (2001); column (4) reports results of
ICC estimates based on Ohlson and Juettner-Nauroth (2005); column (5) reports results
of ICC estimates based on Easton and Monahan (2005); column (6) reports results of ICC
estimates that are computed as the average of the previous four ICC estimates. The detailed
ICC estimates construction could be found in Hou, van Dijk, and Zhang (2012). The list
of control variables are the same as Table VII. For the ease of exposition, their estimated
coefficients are not shown here.

Panel A: AIExposure

(1) (2) (3) (4) (5) (6)
Realized Ret GLS CT OJ MPEG Composite

AI Exposure -0.0775** -0.0128 0.0443 0.332*** 1.348*** 0.649***
(-2.19) (-0.17) (1.02) (5.51) (4.80) (3.32)

Industry (SIC2) FE Yes Yes Yes Yes Yes Yes
Observations 528174 302464 255532 208890 233935 335901
R-squared 0.106 0.332 0.325 0.255 0.388 0.339

Panel B: AIExposureOpp

(1) (2) (3) (4) (5) (6)
Realized Ret GLS CT OJ MPEG Composite

AI Exposure Opp -0.104*** -0.0869* -0.113*** -0.0821* -0.0139 -0.0813*
(-4.41) (-1.69) (-4.32) (-1.72) (-0.15) (-1.83)

Industry (SIC2) FE Yes Yes Yes Yes Yes Yes
Observations 528174 302464 255532 208890 233935 335901
R-squared 0.106 0.332 0.325 0.254 0.383 0.336
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Table X
Portfolio Sorts and Option-Implied Returns

This table presents average monthly value-weighted (VW) option-implied returns (in per-
centage) of portfolios sorted by overall firm-level AI Exposure. The option-implied expected
returns are estimated following Martin and Wagner (2019). Panel A presents VW average
monthly 1-month returns of decile portfolios. H-L is the return spread between the highest
decile and the lowest decile. Panel B presents VW average monthly 3-month returns of decile
portfolios. Panel C presents VW average monthly 6-month returns of decile portfolios. Panel
D presents VW average monthly 9-month returns of decile portfolios. Panel E presents VW
average monthly 12-month returns of decile portfolios.

Panel A. Average Monthly 1-month Expected Returns
AIExposure L 2 3 4 5 6 7 8 9 H H-L
Mean 3.79 4.21 4.10 3.81 3.61 3.95 3.81 3.85 4.11 4.23 0.45
[t] 6.98 6.80 6.99 7.82 7.11 7.44 6.83 7.75 8.24 8.35 1.79

Panel B. Average Monthly 3-month Expected Returns
AIExposure L 2 3 4 5 6 7 8 9 H H-L
Mean 3.86 4.19 4.10 3.90 3.68 4.01 3.91 3.97 4.20 4.43 0.57
[t] 7.77 7.61 8.02 8.86 8.22 8.22 7.91 8.94 9.37 8.80 1.88

Panel C. Average Monthly 6-month Expected Returns
AIExposure L 2 3 4 5 6 7 8 9 H H-L
Mean 4.00 4.33 4.21 4.04 3.82 4.13 4.05 4.12 4.34 4.59 0.59
[t] 8.57 8.43 9.14 10.09 9.71 9.39 8.95 10.13 10.66 9.91 1.91

Panel D. Average Monthly 9-month Expected Returns
AIExposure L 2 3 4 5 6 7 8 9 H H-L
Mean 3.51 3.79 3.67 3.62 3.38 3.67 3.64 3.71 3.95 4.20 0.69
[t] 8.30 8.74 10.32 10.14 10.57 9.84 9.17 10.72 11.85 9.59 1.77

Panel E. Average Monthly 12-month Expected Returns
AIExposure L 2 3 4 5 6 7 8 9 H H-L
Mean 3.47 3.72 3.63 3.59 3.35 3.62 3.63 3.68 3.92 4.20 0.73
[t] 8.46 9.13 11.10 10.68 11.35 10.48 9.48 11.28 12.57 10.05 1.85
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Table XI
Event Studies: Cumulative Abnormal Returns (CAR)

Political and Innovation Shocks

This table presents cumulative abnormal returns (in percentage) post several AI related
political and innovation stocks sorted into AI Exposure-sorted portfolios. The table reports
daily cumulative abnormal returns over a 10-day window from day 0 (event day) to day
11 after the election. These cumulative abnormal returns are equally weighted across AI
Exposure-sorted portfolios. I follow the typical way by using a 250-trading day window that
ends 25 days before the event day to estimate CAPM beta. I focus on the period from
the day of the U.S. presidential election to ten days post-election. I adjust the Cumulative
Abnormal Return (CAR) of each stock for market trends using daily market returns and the
risk-free rate obtained from the French website.

Panel A: Trump Election Win on Nov 8, 2016

CAR [1,10] 1 2 3 4 5 H - L

Daily Return 4.18 3.00 2.42 2.64 3.43 -0.75
[t] 5.96 6.07 6.42 6.44 7.19 -0.89

Panel B: Biden Election Win on Nov 3, 2020

CAR [1,10] 1 2 3 4 5 H - L

Daily Return 1.84 2.45 1.58 1.55 1.57 -0.27
[t] 5.19 4.91 4.20 3.17 3.26 -0.45

Panel C: Biden AI EO on Oct 30, 2023

CAR [1,10] 1 2 3 4 5 H - L

Daily Return -2.22 -3.31 -2.59 -3.63 -4.06 -1.84
[t] -5.60 -8.38 -5.01 -6.68 -6.51 -2.49

Panel D: Biden AI EO on Oct 30, 2023
Exclude Big Stocks

CAR [1,10] 1 2 3 4 5 H - L

Daily Return -1.64 -2.78 -1.52 -2.66 -2.75 -1.11
[t] -4.66 -7.76 -2.93 -5.11 -5.11 -1.73

Panel E: The launch of ChatGPT3 on Nov 30, 2022

CAR [1,10] 1 2 3 4 5 H - L

Daily Return -0.35 -0.14 0.36 0.49 1.14 1.49
[t] -1.61 -0.46 0.89 1.31 2.27 2.72

Panel F: The launch of ChatGPT3 on Nov 30, 2022
Exclude Tiny Stocks

CAR [1,10] 1 2 3 4 5 H - L

Daily Return -0.23 0.12 0.40 0.12 0.61 0.83
[t] -1.22 0.60 0.95 0.49 1.60 1.98
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Table XII
Profitability Regressions on AI Exposure

This table reports panel regressions of ROE on AI Exposure and other firm characteristics.
isUnfav is a dummy variable if year is between 2021 and 2023 during Biden’s administration,
when the AI policy is relatively unfavorable. I include the interaction term between AI
Exposure and isUnfav. All other control variables are defined the same as Table II. The
analysis spans from July 2009 to June 2023. Current ROE is defined as the ROE at year t,
Lagged ROE at year t− 1, and Future ROE at year t+1. Column (1) and (2) have Current
ROE as the dependent variable and include Lagged ROE as one of the independent variables.
Column (3) and (4) have Future ROE as the dependent variable and include Current ROE
as one of the independent variables. Industry FE is included. Column (1) and (3) cluster
standard errors by Firm, while Column (2) and (4) cluster standard errors by Industry ×
Year.

(1) (2) (3) (4)
Current ROE Current ROE Future ROE Future ROE

AI Exposure -0.0415*** -0.0415*** -0.0250*** -0.0250
(-6.08) (-3.11) (-3.87) (-1.76)

isUnfav -0.0304*** -0.0304 -0.127*** -0.127***
(-2.80) (-0.47) (-8.52) (-3.54)

AI Exposure × isUnfav -0.0506*** -0.0506*** -0.0618*** -0.0618*
(-4.33) (-3.75) (-3.50) (-1.96)

Lagged ROE 0.468*** 0.468***
(21.93) (6.96)

Current ROE 0.496*** 0.496***
(22.58) (7.01)

Size 0.219*** 0.219*** 0.115*** 0.115***
(21.98) (5.43) (15.97) (6.57)

log(BE/ME) 0.186*** 0.186*** -0.0103 -0.0103
(15.20) (4.26) (-1.60) (-1.07)

Asset Growth -0.0523*** -0.0523*** -0.0518*** -0.0518**
(-4.85) (-3.58) (-5.14) (-2.54)

Cash/Assets -0.0345*** -0.0345 -0.0834*** -0.0834**
(-3.70) (-0.99) (-8.20) (-2.18)

St Debt/Assets -0.144*** -0.144*** -0.0252 -0.0252
(-3.59) (-4.02) (-0.62) (-0.99)

Lt Debt/Assets -0.218** -0.218** -0.0455 -0.0455
(-2.20) (-2.74) (-0.43) (-0.89)

Tangibility -0.00749 -0.00749 0.0223*** 0.0223
(-0.89) (-0.58) (3.02) (1.41)

Book Leverage 0.113 0.113 0.00127 0.00127
(1.05) (1.41) (0.01) (0.02)

WW Index 0.00479 0.00479 0.00661*** 0.00661*
(1.59) (1.27) (2.84) (2.04)

Constant -0.0230*** -0.0230 0.00237 0.00237
(-3.86) (-1.55) (0.44) (0.09)

Industry FE Yes Yes Yes Yes
Cluster SE by Firm Yes No Yes No
Cluster SE by Industry × Year No Yes No Yes
Observations 35242 35242 32429 32429
R-squared 0.340 0.340 0.285 0.285
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Table XIII
In-Sample Regressions for AI Innovations on Mimicking Portfolio Returns

Full Sample: July 2009 to June 2023

This table presents results from in-sample regression (1). The dependent variable captures
innovations in the Ravenpack AI News Index measure. Observations are monthly, covering
the period from July 2009 to June 2023. Following Engle et al. (2020), I set ZAIExp′

t−1 rt to
represent the returns of a mimicking portfolio, which longs the top half of firms with higher
AI Exposure and shorts the bottom half with lower AI Exposure. Similarly, I set size (using
cross-sectionally standardized market value to create ZSIZE′

t−1 , so that half the firms, sorted
by market value, have positive weight, and half have negative weight; note that this portfolio
will be long large firms and short small firms), value (using cross-sectionally standardized
values of book-to-market to create ZHML′

t−1 ), and the market (setting ZMKT ′
t−1 to equal the

share of total market value). The t-statistics are provided in parentheses. ***, **, and *
denote statistical significance at the 1%, 5%, and 10% levels, respectively.

AIInnovationst = ξ + wAIExpZ
AIExp′

t−1 rt + wSIZEZ
SIZE′

t−1 rt

+ wHMLZ
HML′

t−1 rt + wMKTZ
MKT ′

t−1 rt + et, (22)

(1) (2) (3) (4) (5)

ZAIExp′

t−1 rt 82.24*** 82.25*** 86.42*** 92.40*** 93.25***
(3.60) (3.59) (3.73) (2.87) (2.87)

ZMKT ′
t−1 rt -2.717 -7.683

(-0.27) (-0.72)
ZSIZE′

t−1 rt 17.87 21.57
(1.07) (1.17)

ZHML′
t−1 rt 8.226 4.805

(0.45) (0.25)
Constant 11.89 14.97 10.18 9.012 16.87

(0.27) (0.33) (0.23) (0.20) (0.36)
Observations 168 168 168 168 168
R-squared 0.0724 0.0728 0.0787 0.0735 0.0819

t statistics in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01
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Table XIV
In-Sample Regressions for AI Innovations on Mimicking Portfolio Returns

Subsample: July 2016 to June 2023

This table presents results from regression (1). The dependent variable captures innova-
tions in the Ravenpack AI News Index measure. Observations are monthly, covering the
period from July 2016 to June 2023. Following Engle et al. (2020), I set ZAIExp′

t−1 rt to rep-
resent the returns of a mimicking portfolio, which longs the top half of firms with higher
AI Exposure and shorts the bottom half with lower AI Exposure. Similarly, I set size (using
cross-sectionally standardized market value to create ZSIZE′

t−1 , so that half the firms, sorted
by market value, have positive weight, and half have negative weight; note that this portfolio
will be long large firms and short small firms), value (using cross-sectionally standardized
values of book-to-market to create ZHML′

t−1 ), and the market (setting ZMKT ′
t−1 to equal the

share of total market value). The t-statistics are provided in parentheses. ***, **, and *
denote statistical significance at the 1%, 5%, and 10% levels, respectively.

AIInnovationst = ξ + wAIExpZ
AIExp′

t−1 rt + wSIZEZ
SIZE′

t−1 rt

+ wHMLZ
HML′

t−1 rt + wMKTZ
MKT ′

t−1 rt + et, (22)

(1) (2) (3) (4) (5)

ZAIExp′

t−1 rt 93.26*** 94.39*** 102.1*** 107.1** 115.6**
(2.71) (2.73) (2.88) (2.10) (2.24)

ZMKT ′
t−1 rt -9.021 -17.29

(-0.53) (-0.94)
ZSMB′

t−1 rt 29.10 38.23
(1.00) (1.20)

ZHML′
t−1 rt 10.76 6.706

(0.37) (0.22)
Constant 35.26 43.90 30.30 27.78 40.65

(0.41) (0.50) (0.35) (0.31) (0.45)
Observations 84 84 84 84 84
R-squared 0.0824 0.0855 0.0935 0.0839 0.104

t statistics in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01
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Table XV
In-Sample Regressions for AI Innovations on Mimicking Portfolio Returns

Subsample: July 2016 to June 2023 + Quartile Sorting

This table presents results from regression (1). The dependent variable captures innovations
in the Ravenpack AI News Index measure. Observations are monthly, covering the period
from July 2016 to June 2023. Following Engle et al. (2020), I set ZAIExp′

t−1 rt to represent
the returns of a mimicking portfolio, which longs the top quartile of firms with higher AI
Exposure and shorts the bottom quartile with lower AI Exposure. Similarly, I set size (using
cross-sectionally standardized market value to create ZSIZE′

t−1 , so that half the firms, sorted
by market value, have positive weight, and half have negative weight; note that this portfolio
will be long large firms and short small firms), value (using cross-sectionally standardized
values of book-to-market to create ZHML′

t−1 ), and the market (setting ZMKT ′
t−1 to equal the

share of total market value). The t-statistics are provided in parentheses. ***, **, and *
denote statistical significance at the 1%, 5%, and 10% levels, respectively.

AIInnovationst = ξ + wAIExpZ
AIExp′

t−1 rt + wSIZEZ
SIZE′

t−1 rt

+ wHMLZ
HML′

t−1 rt + wMKTZ
MKT ′

t−1 rt + et, (22)

(1) (2) (3) (4) (5)

ZAIExp′

t−1 rt 77.87*** 81.19*** 82.04*** 101.4*** 112.8***
(3.78) (3.89) (3.91) (3.53) (3.82)

ZMKT ′
t−1 rt -16.45 -28.75

(-0.99) (-1.62)
ZSMB′

t−1 rt 28.92 38.41
(1.04) (1.28)

ZHML′
t−1 rt 30.95 31.01

(1.17) (1.13)
Constant -2.915 9.852 -7.205 -27.65 -11.07

(-0.03) (0.12) (-0.09) (-0.32) (-0.13)
Observations 84 84 84 84 84
R-squared 0.148 0.159 0.160 0.163 0.196

t statistics in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01

57



References

Acemoglu, Daron, David Autor, Jonathon Hazell, and Pascual Restrepo, 2022, Artificial

Intelligence and jobs: Evidence from online vacancies, Journal of Labor Economics 40,

S293–S340.

Babina, Tania, Anastassia Fedyk, Alex He, and James Hodson, 2024a, Artificial Intelligence

and firms’ systematic risk, Working Paper.

Babina, Tania, Anastassia Fedyk, Alex He, and James Hodson, 2024b, Artificial Intelligence,

firm growth, and product innovation, Journal of Financial Economics 151, 103745.

Banz, Rolf W., 1981, The relationship between return and market value of common stocks,

Journal of Financial Economics 9, 3–18.

Brown, Jeffrey R., and Jiekun Huang, 2020, All the president’s friends: Political access and

firm value, Journal of Financial Economics 138, 415–431.

Brynjolfsson, Erik, Danielle Li, and Lindsey R Raymond, 2023, Generative AI at work,

Working Paper 31161, National Bureau of Economic Research.

Burmeister, Edwin, and Marjorie B. McElroy, 1988, Joint estimation of factor sensitivities

and risk premia for the arbitrage pricing theory, The Journal of Finance 43, 721–733.

Carhart, Mark M., 1997, On persistence in mutual fund performance, The Journal of Finance

52, 57–82.
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Pástor, Ľuboš, and Pietro Veronesi, 2012, Uncertainty about government policy and stock

prices, The Journal of Finance 67, 1219–1264.
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Appendix A 10K Annual Filing Examples

Here are some examples from 10-K annual filings reveal that firms explicitly discuss both

the opportunities and regulatory uncertainties surrounding AI:

• Firms face regulatory uncertainty on AI:

The Company’s global operations are subject to complex and changing laws

and regulations on subjects, including antitrust; privacy, data security and

data localization, ..., machine learning and artificial intelligence - Apple,

2023

“Additionally, a number of states have recently introduced or passed legisla-

tion as it relates to disclosures of the use of artificial intelligence (“AI”) in

political advertising... which may impact the sale of political advertising.” -

Fox, 2024

• Firms face opportunity on AI:

“Building on decades of analytics and data science expertise, the company ac-

celerated its application of artificial intelligence in 2023 to drive innovation,

increase employee productivity and deliver business outcomes.” - Chevron,

2024

“Therefore, one of our top priorities is to digitalize the Coca-Cola system

by, among other things, ..., digitalizing operations through the use of data,

artificial intelligence, automation, robotics and digital devices to increase

efficiency and productivity.” - Coca-Cola, 2024
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Appendix B Conference Call Transcripts Examples

Here are some examples from conference call transcripts reveal that firms explicitly use either

unigrams or bigrams about AI, opportunity, or regulatory uncertainty:

• Firms face regulatory uncertainty on AI:

“Indeed, the generative AI space remains very active with regulatory over-

sight, a top priority to continue development and adoption in a responsible

manner... For example, we have already established governance processes for

new technologies, including AI, to continuously assess the compliance of our

revolving solutions with regulatory requirements and industry standards. ” -

TELUS International, Earnings Call 2023

“In the U.S., even as support continues to build for a federal right of publicity,

several states are taking action. The State of Tennessee recently enacted the

Ensuring Likeness Voice and Image Security Act, known as the ELVIS Act

that provides strong protections against generative AI voice cloning. We

expect further action on these issues as there are ongoing legislative debates

in jurisdictions around the world, but we are not waiting for these processes

to complete... ” - Universal Music Group, 2024

• Firms face opportunity on AI:

“As we enter 2024, we are seeing much more optimism as growth prospects

driven by new artificial intelligence capabilities start to emerge... Finally,

we get a lot of questions about how MST is related to the fast-evolving de-

velopments in artificial intelligence. And I can tell you it’s extensive.” -

Atomera Incorporated, Earnings Call 2023

“So again, artificial intelligence can be applied at any of these different stages

of the digital thread. So you have discover, create, make and sell. When

people typically think of us, they see us in this manufacturing this make

area, where we talk about areas like manufacturing operations, but really

everything from product ideation influences manufacturing costs and other

areas upstream. So when we talk about the digital thread, again, it’s artificial

intelligence applied throughout.” - Rockwell Automation, Special Call

2023
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Appendix C Variable Definitions

Variable Definition

Book Leverage The sum of current liabilities (DLC) and long-term debt (DLTT) divided

by total assets (AT).

Cash/Assets The ratio of cash (CHE) to total assets (AT) following Fahlenbrach,

Rageth, and Stulz (2021).

St Debt/Assets The ratio of debt in current liabilities (DLC) to total assets (AT) follow-

ing Fahlenbrach, Rageth, and Stulz (2021).

Lt Debt/Assets The ratio of total long-term debt (DLTT) to total assets (AT) following

Fahlenbrach, Rageth, and Stulz (2021).

ROE The measure of profitability. It is calculated as the income before ex-

traordinary items (IB) divided by book equity.

ROA Profitability measure, defined as income before extraordinary items di-

vided by total assets.

R&D/Assets The ratio of R&D to lagged total assets.

Firm Age The age of a firm starting from its initial listing in the CRSP database.

Asset Growth The ratio of the change in total assets from year t − 2 to year t − 1 to

total assets in year t− 2.

Sales Total sales, calculated as the total income generated by an organization

through the sale of products and services. Preferably, consolidated sales

data is used when available.

Firm Size ln(ME), measured as the log of market equity in June of year t.

BE/ME The ratio between book equity at the end of June of year t and market

equity at the end of December of year t− 1.

SIC4 Four-digit SIC Code, categorizing businesses based on their primary ac-

tivity per the US 1987 SIC classification.

Tangibility Property, plant, and equipment (PPENT) divided by total assets (AT).

WW Index The Whited-Wu index, computed as per Whited and Wu (2006). Higher

values indicate greater financial constraint.

ICC: GLS Mt = Bt +
∑11

k=1

(
Et[(ROEt+k−R)×Bt+k−1]

(1+R)k

)
+

(
Et[(ROEt+12−R)×Bt+11]

R(1+R)11

)
, fol-

lowing Gebhardt, Lee, and Swaminathan (2001).

ICC: CT Mt = Bt +
∑5

k=1

(
E[(ROEt+k−R)×Bt+k−1]

(1+R)k

)
+ E[(ROEt+5−R)×Bt+4](1+g)

(R−g)×(1+R)5
, follow-

ing Claus and Thomas (2001).
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Variable Definition

ICC: OJ R = A+
√

A2 + Et[Et+1]
Mt

× (g − (γ − 1)) where A = 0.5(γ − 1) + Et[Dt+1]
Mt

and g = 0.5
(

Et[Et+3]−Et[Et+2]
Et[Et+2]

+ Et[Et+5]−Et[Et+4]
Et[Et+4]

)
, following Ohlson and

Juettner-Nauroth (2005).

ICC: MPEG Mt =
Et[Et+2]+R×(Et[Dt+1]−Et[Et+1])

R2 , following Easton and Monahan (2005).

TF-IDF TF-IDF score is the Term Frequency (TF) times Inverse Document Fre-

quency (IDF). Term Frequency (TF) measures how frequently a term

occurs in a document.

TF(t, d) =
Number of times term t appears in document d

Total number of terms in document d

Inverse Document Frequency (IDF) measures how important a term is.

It downweights terms that appear more frequently across multiple docu-

ments.

IDF(t,D) = log

(
Total number of documents D

Number of documents with term t

)
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Appendix D Additional Figures and Tables

Figure D.1. Alternative Artificial Intelligence Vocabulary WordCloud. The figures
present word clouds that summarize the bigrams extracted from a total number of 744,044
academic paper titles in the Web of Science that are directly related to artificial intelligence,
machine learning, natural language processing, and computer vision. These are the keywords
used in Babina et al. (2024a) when they study the systematic risk of AI through the labor
channel. The larger the term size, the more frequent the terms appear in the corpus (mea-
sured in TF-IDF score). The Web of Science paper titles are downloaded from ProQuest.
The years range from 2010 to 2024.
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Table D.2
Top 50 Artificial Intelligence Bigrams

This table presents the initial AI bigrams derived from 159,444 titles of academic papers
directly related to AI from the Web of Science. The bigrams are selected by computing the
TF-IDF scores and these are the top 50 with highest scores.

artificial intelligence neural network machine learning
neural networks deep learning reinforcement learning
artificial neural multi agent real time
convolutional neural big data decision making
genetic algorithm case study application artificial
time series support vector data mining
decision support deep neural feature selection
learning approach intelligence techniques fuzzy logic
natural language internet things intelligence ai
particle swarm multi objective use artificial
special issue swarm optimization bee colony
deep reinforcement fault diagnosis artificial bee
large scale intelligence machine semi supervised
transfer learning object detection genetic algorithms
intrusion detection intelligence technology face recognition
data driven agent systems short term
breast cancer optimization algorithm
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Table D.3
Top 50 Artificial Intelligence Unigrams

This table presents the initial AI unigrams derived from 159,444 titles of academic papers
directly related to AI from the Web of Science. The unigrams are selected by computing the
TF-IDF scores and these are the top 50 with highest scores.

artificial base intelligence
system network learning
model algorithm neural
approach analysis application
datum learn detection
machine multi method
deep image design
ai classification agent
intelligent optimization prediction
recognition control study
fuzzy knowledge research
time problem technology
human feature decision
information management technique
framework robot new
support dynamic process
development logic
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Table D.4
AI Exposure by Industry (SIC2)

Full Sample: July 2009 to June 2023

Industry (SIC2) AI Exposure Industry (SIC1)

Educational Services 6.285266 Services

Insurance Agents, Brokers, & Service 5.561357 Finance, Insurance, & Real Estate

Local & Interurban Passenger Transit 5.495105 Transportation & Public Utilities

Business Services 5.464625 Services

Chemical & Allied Products 5.396434 Manufacturing

Instruments & Related Products 5.375045 Manufacturing

Electronic & Other Electric Equipment 5.047649 Manufacturing

Engineering & Management Services 4.989501 Services

Eating & Drinking Places 4.852603 Retail Trade

Communications 4.803536 Transportation & Public Utilities

Real Estate 4.79584 Finance, Insurance, & Real Estate

Furniture & Homefurnishings Stores 4.609057 Retail Trade

Industrial Machinery & Equipment 4.607254 Manufacturing

Health Services 4.544601 Services

Printing & Publishing 4.542002 Manufacturing

Hotels & Other Lodging Places 4.534035 Services

Legal Services 4.505624 Services

Security & Commodity Brokers 4.504373 Finance, Insurance, & Real Estate

Miscellaneous Retail 4.495735 Retail Trade

Automotive Dealers & Service Stations 4.447903 Retail Trade

Miscellaneous Manufacturing Industries 4.394613 Manufacturing

Personal Services 4.361629 Services

Electric, Gas, & Sanitary Services 4.355988 Transportation & Public Utilities

Transportation Services 4.337441 Transportation & Public Utilities

Metal Mining 4.291618 Mining

Auto Repair, Services, & Parking 4.2776 Services

Building Materials & Gardening Supplies 4.218395 Retail Trade

Transportation Equipment 4.200852 Manufacturing

Amusement & Recreation Services 4.153239 Services

Nondepository Institutions 4.148221 Finance, Insurance, & Real Estate

Continued on next page
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Table D.4 Continued from previous page

Industry (SIC2) AI Exposure Industry (SIC1)

Non-Classifiable Establishments 4.127732 Nonclassifiable Establishments

Furniture & Fixtures 4.074484 Manufacturing

Motion Pictures 4.060033 Services

Food Stores 4.036707 Retail Trade

Insurance Carriers 4.028654 Finance, Insurance, & Real Estate

General Merchandise Stores 3.994649 Retail Trade

Transportation by Air 3.958159 Transportation & Public Utilities

Social Services 3.9469 Services

Trucking & Warehousing 3.927254 Transportation & Public Utilities

Holding & Other Investment Offices 3.916995 Finance, Insurance, & Real Estate

Pipelines, Except Natural Gas 3.909467 Transportation & Public Utilities

Agricultural Production – Crops 3.903013 Agriculture, Forestry, & Fishing

Rubber & Miscellaneous Plastics Products 3.870281 Manufacturing

Wholesale Trade – Durable Goods 3.854764 Wholesale Trade

Apparel & Accessory Stores 3.794587 Retail Trade

Oil & Gas Extraction 3.788054 Mining

Apparel & Other Textile Products 3.761449 Manufacturing

Textile Mill Products 3.726901 Manufacturing

Agricultural Services 3.714297 Agriculture, Forestry, & Fishing

Fabricated Metal Products 3.710879 Manufacturing

General Building Contractors 3.696674 Construction

Wholesale Trade – Nondurable Goods 3.69314 Wholesale Trade

Leather & Leather Products 3.685508 Manufacturing

Food & Kindred Products 3.648712 Manufacturing

Tobacco Products 3.604894 Manufacturing

Heavy Construction, Except Building 3.603374 Construction

Depository Institutions 3.542971 Finance, Insurance, & Real Estate

Railroad Transportation 3.538 Transportation & Public Utilities

Petroleum & Coal Products 3.512356 Manufacturing

Water Transportation 3.417509 Transportation & Public Utilities

Nonmetallic Minerals, Except Fuels 3.302386 Mining

Services, Not Elsewhere Classified 3.285075 Services

Continued on next page
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Table D.4 Continued from previous page

Industry (SIC2) AI Exposure Industry (SIC1)

Stone, Clay, & Glass Products 3.240903 Manufacturing

Primary Metal Industries 3.235793 Manufacturing

Lumber & Wood Products 3.230363 Manufacturing

Paper & Allied Products 3.219572 Manufacturing

Special Trade Contractors 3.182942 Construction

Coal Mining 3.137699 Mining
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Appendix E Theoretical Derivations and Proofs

A Proof of Lemma 1 (using Kalman-Bucy filter)

Lemma 1. Combining the signals, Equation (16), and prior distribution of the political cost,

Equation (14), we can get the posterior distribution of the political cost,

c ∼ N(ĉt, σ̂
2
c,t)

where

dĉt = σ̂2
c,th

−1dẐc
t ,

and

σ̂2
c,t =

1
1
σ2
c
+ 1

h2 t

Proof. I use a Kalman-Bucy filter to prove this Lemma. As agents observe the signals (dst),

they update their beliefs about political cost using Bayesian updating. The Kalman-Bucy

filter provides a way to compute the posterior distribution of the political cost given the

observed signals. Assume the political cost, c, is a constant parameter (state) with prior

distribution:

c ∼ N

(
−σ2

c

2
, σ2

c

)
.

Agents observe a signal process st governed by:

dst = c dt+ h dZc
t , where dZc

t is a Brownian motion.

This corresponds to a continuous-time filtering problem with:

• State equation: dc = 0 (since c is constant),

• Observation equation: dst = c dt+ h dZc
t .

Applying a Kalman-Bucy filter, the posterior distribution, c | F s
t , is Gaussian, with mean ĉt

and variance σ̂2
c,t. The Kalman-Bucy filter gives the dynamics for ĉt and σ̂2

c,t:

dĉt =
σ̂2
c,t

h2
(dst − ĉt dt) , (E1)

dσ̂2
c,t

dt
= −

(
σ̂2
c,t

)2
h2

. (E2)
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Now we can solve the variance equation. The equation (E2) is solved as follows:

d

dt

(
1

σ̂2
c,t

)
=

1

h2
.

Integrating from 0 to t, with initial condition σ̂2
c,0 = σ2

c :

1

σ̂2
c,t

=
1

σ2
c

+
t

h2
⇒ σ̂2

c,t =
1

1
σ2
c
+ t

h2

.

Then we update the posterior mean: Define the innovation process dẐc
t , a F s

t -Brownian

motion:

dẐc
t =

1

h
(dst − ĉt dt) .

Substitute dst = ĉt dt+ h dẐc
t into (E1) to obtain:

dĉt = σ̂2
c,t h

−1dẐc
t .

The posterior distribution of c given observations up to time t is:

c | F s
t ∼ N

(
ĉt, σ̂

2
c,t

)
,

with dynamics:

dĉt = σ̂2
c,th

−1dẐc
t , σ̂2

c,t =
1

1
σ2
c
+ t

h2

,

which is what we need to prove.

B Proof of Lemma 2 (Aggregate Capital)

Lemma 2. The aggregate capital at time T , BT =
∫ 1

0
Bi

Tdi, is given by

BT = Bτe
(µ+pg+(1−p)η− 1

2
σ2)(T−τ)+σ(ZT−Zτ ),

where g ≡ gF under Favorable regulation, g ≡ gU under Unfavorable regulation, η ≡ ηE in

Early-stage AI environment, and η ≡ ηM in Mature-stage AI environment.

Proof. The capital growth follows dBi
t = Bi

tdΠ
i
t with the profitability process, equation (3),
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we derive:

Bi
T = Bi

τ exp

{(
µ+ ξi

[
sig + (1− si)η

]
− 1

2
σ2 − 1

2
σ2
1

)
(T − τ) + σ(ZT − Zτ ) + σ1(Z

i
T − Zi

τ )

}
The above equation is derived by applying Itô’s Lemma to ln(Bi

t) and taking integral from

τ to T .

Aggregating across firms:

BT =

∫ 1

0

Bi
Tdi = e(µ−

1
2
σ2− 1

2
σ2
1)(T−τ)+σ(ZT−Zτ )

∫ 1

0

Bi
τe

ξi[sig+(1−si)η](T−τ)+σ1(Zi
T−Zi

τ )di

Applying the Law of Large Numbers:∫ 1

0

Bi
τe

ξi[sig+(1−si)η](T−τ)+σ1(Zi
T−Zi

τ )di → Ei
[
Bi

τ

]
Ei

[
eξ

i[sig+(1−si)η](T−τ)
]
e

1
2
σ2
1(T−τ)

Using cross-sectional independence, and the expectation value of Uniform distribution and

Bernoulli distribution, ξi ∼ Uniform(0, 2) with E[ξi] = 1, and each firm’s AI stage, si ∼
Bernoulli(p), where si = 1 (AI Elites) with probability p, and si = 0 (AI Starters) with

probability 1− p:

Ei
[
eξ

i[sig+(1−si)η](T−τ)
]
= e(pg+(1−p)η)(T−τ)

Given Ei[Bi
τ ] = Bτ , we obtain:

BT = Bτe
(µ+pg+(1−p)η− 1

2
σ2)(T−τ)+σ(ZT−Zτ ),

which is what we need to prove.

C Proof of Proposition 1 (Optimal AI Cost Threshold)

Proposition 1. The government will switch from a Favorable (F) to an Unfavorable (U) AI

policy at time τ if and only if the realized political cost c exceeds the threshold:

c > c(τ) ≡ log
(
e(γ−1)(gF−gU)(T−τ) − 1

)
,

where gF > 0 and gU < 0 represent the regulatory impacts on profitability under Favorable

and Unfavorable regimes, respectively. The threshold c(τ) increases with risk aversion (γ > 1)
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and the magnitude of the regulatory gap |gF − gU |.

Proof. Using Lemma 2, aggregate capital under each regime is:

BF
T = Bτe

(µ+pgF+(1−p)η− 1
2
σ2)(T−τ)+σ(ZT−Zτ ),

BU
T = Bτe

(µ+pgU+(1−p)η− 1
2
σ2)(T−τ)+σ(ZT−Zτ ).

The government compares expected utilities under both regimes:

Eτ

[
W 1−γ

T

1− γ
| F

]
=

B1−γ
τ

1− γ
e(1−γ)(µ+pgF+(1−p)η− 1

2
σ2)(T−τ)+ 1

2
(1−γ)2σ2(T−τ),

Eτ

[
ϕ(c)

W 1−γ
T

1− γ
| U

]
=

ϕ(c)B1−γ
τ

1− γ
e(1−γ)(µ+pgU+(1−p)η− 1

2
σ2)(T−τ)+ 1

2
(1−γ)2σ2(T−τ).

Substitute ϕ(c) = 1 + ec into the inequality Eτ [U(WT ) | F ] < Eτ [ϕ(c)U(WT ) | U ]:

e(1−γ)(pgF+(1−p)η)(T−τ) < (1 + eC)e(1−γ)(pgU+(1−p)η)(T−τ).

Cancel common terms and simplify:

e(1−γ)p(gF−gU )(T−τ) < 1 + ec.

Take logarithms and rearrange:

c > log
(
e(1−γ)p(gF−gU )(T−τ) − 1

)
≡ c(τ),

which is what we need to prove.

D Proof of Corollary 1

Corollary 1. The time-t perceived probability of a government AI policy shift from Favorable

(F ) to Unfavorable (U) at time τ (t < τ) is:

pτ |t = 1− Φ
(
c(τ); ĉt, σ̂

2
c,t

)
,
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where Φ(·; ĉt, σ̂2
c,t) is the CDF of the posterior normal distribution c ∼ N(ĉt, σ̂

2
c,t), and c(τ)

is defined in Proposition 1.

Proof. From Lemma 1, the posterior distribution of the political cost c, given information

and signals F s
t , is:

c | F s
t ∼ N

(
ĉt, σ̂

2
c,t

)
.

The government switches policies at τ iff c > c(τ). The perceived probability of this event

is:

pτ |t = P (c > c(τ) | F s
t ) = 1− Φ

(
c(τ); ĉt, σ̂

2
c,t

)
,

where Φ(·; ĉt, σ̂2
c,t) is the CDF of N(ĉt, σ̂

2
c,t). More specifical:

P (c > c(τ) | F s
t ) = P

(
c− ĉt
σ̂c,t

>
c(τ)− ĉt

σ̂c,t

| F s
t

)
= 1− Φ

(
c(τ)− ĉt

σ̂c,t

)
,

which is what we need to prove.

E Proof of Proposition 2 (State Price Density)

Proposition 2 (State Price Density). Before a regulatory or opportunity regime shift (t <

τ), the state price density is:

πt = B−γ
t Ωt,

where

Ωt = e(−γµ+ 1
2
γ(γ+1)σ2)(T−t)−γ

(
pgF+(1−p)η

)
(τ−t)

[
pτ |te

−γ
(
pgU+(1−p)η

)
(T−τ)+(1−pτ |t)e

−γ
(
pgF+(1−p)η

)
(T−τ)

]
and pτ |t is the probability of a shift to Unfavorable AI policy (Corollary 1).

Proof. Households maximize CRRA utility U(WT ) =
W 1−γ

T

1−γ
. The state price density is de-

rived from marginal utility:

πt = Et [U
′(WT )] = Et

[
W−γ

T

]
.

By market clearing, aggregate wealth equals aggregate capital: WT = BT =
∫ 1

0
Bi

Tdi, where

Bi
T follows the profitability process in Equation (3). From Lemma 2, aggregate capital
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evolves as:

BT = Bte
(µ+pgT+(1−p)ηT− 1

2
σ2)(T−t)+σ(ZT−Zt),

with gT ∈ {gU , gF} (regulatory regimes) and ηT ∈ {ηE, ηM} (opportunity regimes). Substi-

tuting BT into πt:

πt = B−γ
t Et

[
e−γ(µ(T−t)+pgT (T−t)+(1−p)ηT (T−t)− 1

2
σ2(T−t)+σ(ZT−Zt))

]
.

The stochastic term −γσ(ZT − Zt) is Gaussian, with expectation:

Et

[
e−γσ(ZT−Zt)

]
= e

1
2
γ2σ2(T−t).

Substitute this result and decompose the expectation over regimes:

πt = B−γ
t e(−γµ+ 1

2
γ(γ+1)σ2)(T−t)Et

[
e−γ(pgT+(1−p)ηT )(T−t)

]
.

Conditional on regulatory shifts (gT = gU with probability pτ |t, or gF otherwise), and op-

portunity regimes (ηT = ηE or ηM), the expectation becomes:

Et

[
e−γ(pgT+(1−p)ηT )(T−t)

]
= e−γ(pgF+(1−p)η)(τ−t)

[
pτ |te

−γ(pgU+(1−p)η)(T−τ)+(1−pτ |t)e
−γ(pgF+(1−p)η)(T−τ)

]
.

Combining terms yields Ωt, completing the proof.

F Proof of Proposition 3 (SDF)

Proposition 3. The SDF is,

dπt

πt

= Et

[
dπT

πT

]
− λdZt − λc,tdẐ

C
t

where,

λ = γσ > 0

and

λc,t =
1

Ωt

∂Ωt

∂Ĉt

σ̂2
c,tη

−1 > 0
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Proof. The uncertainty risk price is given by:

λc,t = − 1

Ωt

∂Ωt

∂pτ |t

∂pτ |t
∂ĉt

σ̂2
c,tη

−1

= −
e(−γµ+ 1

2
γ(γ+1)σ2)(T−t)−γ

(
pgF+(1−p)η

)
(τ−t)

[
e−γ

(
pgU+(1−p)η

)
(T−τ) − e−γ

(
pgF+(1−p)η

)
(T−τ)

]
Ωt

× n(c(τ); ĉt, σ̂
2
c,t)σ̂

2
c,tη

−1

= −
[
(1− pτ |t)(1− Fτ )

pτ |t + (1− pτ |t)Fτ

]
n(c(τ); ĉt, σ̂

2
c,t)σ̂

2
c,tη

−1, (E3)

where:

Fτ ≡ e−γ
(
pgF+(1−p)η

)
(T−τ)

e−γ
(
pgU+(1−p)η

)
(T−τ)

= e−γp(gF−gU )(T−τ) < 1. (E4)

The term
(1−pτ |t)(1−Fτ )

pτ |t+(1−pτ |t)Fτ
is positive because Fτ < 1. Since all other terms in (E3) are positive,

λc,t < 0. This confirms that regulatory uncertainty shocks are negatively priced in equilib-

rium.

G Proof of Lemma 3

Lemma 3. For t < τ , the stock price for firm i is given by:

M i
t = Bi

tΘ
i
t,

where

Θi
t = e(µ−γσ2)(T−t)+ξi

(
pgF+(1−p)η

)
(τ−t)

[
ϕte

ξi
(
pgU+(1−p)η

)
(T−τ) + (1− ϕt)e

ξi
(
pgF+(1−p)η

)
(T−τ)

]
,

and

ϕt =
pτ |t

pτ |t + (1− pτ |t)e−γp(gF−gU )(T−τ)
.

Proof. The stock price M i
t is derived using the law of iterated expectations and the state

price density πt from Proposition 2. For t < τ , the market value satisfies:

M i
t = Et

[
πT

πt

M i
T

]
.
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Conditional on a regime shift at τ , the stock price under the two regimes is:

MU,i
t = Bi

te
(µ−γσ2)(T−t)+ξi

(
pgF+(1−p)η

)
(τ−t)+ξi

(
pgU+(1−p)η

)
(T−τ),

MF,i
t = Bi

te
(µ−γσ2+ξi

(
pgF+(1−p)η

)
)(T−t).

The unconditional stock price is a weighted average of the two regimes:

M i
t = ϕtM

U,i
t + (1− ϕt)M

F,i
t ,

where ϕt is the probability-weighted adjustment factor:

ϕt =
pτ |t

pτ |t + (1− pτ |t)e−γp(gF−gU )(T−τ)
.

Substituting MU,i
t and MF,i

t into the expression for M i
t yields:

M i
t = Bi

tΘ
i
t,

where Θi
t is the same as defined in the proposition.

H Proof of Proposition 4

Proposition 4. Firm i’s stock realized returns:

dM i
t

M i
t

= Et

[
dM i

T

M i
T

]
+ σdZt + σ1dZ

i
t + βi

M,tdẐ
c
t ,

where

βi
M,t =

1

Θi

∂Θi
t

∂ĉt
σ̂2
c,t < 0,

and risk premia can be expressed as:

Et

[
dM i

T

M i
T

]
= σλdt+ βi

M,tλc,tdt,
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where

∂βi
M,t

∂ξi
=

{
> 0 if p = 0 (Firms are all AI Starters),

< 0 if p = 1 (Firms are all AI Elites),
and λc,t < 0.

Proof. For the ease of exposition, I assume at every point of time, there is an exogenous

increase of possibility of opportunity regime change from Early to Mature. From Lemma 3,

the stock price can be written as,

M i
t = Bi

tΘ
i
t,

where

Θi
t = e(µ−γσ2)(T−t)+ξi

(
pgF+(1−p)ηE

)
(τ−t)

[
ϕt e

ξi
(
pgU+(1−p)ηM

)
(T−τ) + (1− ϕt) e

ξi
(
pgF+(1−p)ηE

)
(T−τ)

]
.

Applying Itô’s Lemma to M i
t = Bi

tΘ
i
t, the return dynamics are given by

dM i
t

M i
t

= Et

[
dM i

T

M i
T

]
+ σ dZt + σ1 dZ

i
t + βi

M,t dẐ
c
t ,

with βi
M,t derived as follows:

βi
M,t =

1

Θi
t

∂Θi
t

∂ϕt

∂ϕt

∂pτ |t

∂pτ |t
∂ĉt

σ̂2
c,t,

×
{
pτ |t + (1− pτ |t)e

−γp(gF−gU )(T−τ) − pτ |t

(
1− e−γp(gF−gU )(T−τ)

)
n(c(τ); ĉt, σ̂

2
c,t)

}
σ̂2
c,t,

which can be rewritten as

βi
M,t =

[
1− eξ

i(p(gF−gU )+(1−p)(ηE−ηM ))(T−τ)

ϕt + (1− ϕt)eξ
i(p(gF−gU )+(1−p)(ηE−ηM ))(T−τ)

]

×

 e−γ(p(gF−gU )+(1−p)(ηE−ηM ))(T−τ)(
pτ |t + (1− pτ |t)e−γ(p(gF−gU )+(1−p)(ηE−ηM ))(T−τ)

)2

n(c(τ); ĉt, σ̂
2
c,t) σ̂

2
c,t,

or more compactly,

βi
M,t =

[
1−Gi

τ

ϕt + (1− ϕt)Gi
τ

] Fτ(
pτ |t + (1− pτ |t)Fτ

)2

n(c(τ); ĉt, σ̂
2
c,t) σ̂

2
c,t < 0,
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where

Gi
τ = eξ

i(p(gF−gU )+(1−p)(ηE−ηM ))(T−τ) > 1, Fτ = e−γ(p(gF−gU )+(1−p)(ηE−ηM ))(T−τ) < 1.

Since only Gi
τ depends on ξi, the sign of

∂βi
M,t

∂ξi
will be decided by Gi

τ . Specifically,

∂

∂ξi

[
1−Gi

τ

ϕt + (1− ϕt)Gi
τ

]
=

(
∂Gi

τ

∂ξi

)[
ϕt + (1− ϕt)G

i
τ

]
−
(
1−Gi

τ

) ∂

∂ξi

[
ϕt + (1− ϕt)G

i
τ

]
[
ϕt + (1− ϕt)Gi

τ

]2 < 0,

where Gi
τ > 1 and the sign of ∂Gi

τ

∂ξi
depends on p, the proportion of AI Elites in the firms

cross-section:

∂Gi
τ

∂ξi
=

{
> 0 if p = 0 (Firms are all AI Starters),

< 0 if p = 1 (Firms are all AI Elites),
and λc,t < 0.

This can be translated to:

∂βi
M,t

∂ξi
=

{
> 0 if p = 0 (Firms are all AI Starters),

< 0 if p = 1 (Firms are all AI Elites),
and λc,t < 0.

By definition, the risk premia are:

Et

[
dM i

T

M i
T

]
= σλdt+ βi

M,tλc,tdt,

where λ = γσ and λc,t < 0 as shown in Proposition 3.

I Proof of Lemma 4

Lemma 4. For any two firms, i and j, with AI Exposure ξi > ξj, ∀i ̸= j, return premia

spread between i and j is,

Et

[
dM i

T

M i
T

]
− Et

[
dM j

T

M j
T

]
= (βi

M,t − βj
M,t)λc,tdt

{
> 0 if p = 0 (Firms are all AI Starters),

< 0 if p = 1 (Firms are all AI Elites),

Proof. From Proposition 4, we know
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∂βi
M,t

∂ξi
=

{
< 0 if p = 0 (Firms are all AI Starters),

> 0 if p = 1 (Firms are all AI Elites),
and λc,t < 0.

The lemma is then straightforward.
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