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ABSTRACT

This paper studies two channels—opportunity and regulatory uncertainty—through which
Artificial Intelligence (Al) affects the stock prices and risk premia. On the one hand, advances
in Al present firms with opportunities, leading them to exhibit characteristics of growth
firms and earn lower expected returns. On the other hand, firms face increased regulatory
uncertainty in Al development, increasing their political risk exposure and resulting in higher
expected returns. Using conference call transcripts, I construct a firm-level measure of Al
FExposure that captures the level of attention analysts and managers devote to Al-related
topics at specific points in time. Empirically and theoretically, I show that these two channels
exert opposing effects: firms focused on opportunity earn a negative Al risk premium, while
those more affected by regulatory uncertainty earn a positive Al risk premium.
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I. Introduction

Artificial Intelligence (AI) has emerged as a transformative force, driving both unprecedented
opportunities and regulatory uncertainties for firms across industries. By 2030, Al is pro-
jected to contribute up to $15.7 trillion to the global economy, with 40% of productivity
gains stemming from Al-driven automation and innovation (PwC, 2020). Firms utilizing or
investing Al technologies for productivity, product innovation, and market expansion have
seen revenue increases of up to 20% in some sectors (McKinsey, 2023). However, the rapid
adoption of Al also exposes firms to regulatory uncertainty, as governments worldwide try
to come up with frameworks to address ethical concerns, data privacy issues, and algorith-
mic accountability worries on Al. For example, the European Union’s Al Act, proposed in
2021, aims to classify Al systems by risk levels, potentially imposing stringent compliance
costs on firms. Meanwhile, 47% of executives cite regulatory uncertainty as a top barrier to
AT adoption (Deloitte, 2024), highlighting the tension between the potential opportunities
AT brings and the regulation risks Al poses. Consistent with these estimates and surveys,
examples from 10-K annual filings reveal that firms explicitly discuss both the opportuni-
ties and regulatory uncertainties surrounding Al (see Appendix B for details). This duality,
where Al simultaneously creates opportunities for growth and increasing productivity while
introducing regulatory uncertainties, has profound implications for the asset prices. This
paper studies how these two channels affect stock prices and risk premia.

Al which Deming, Ong, and Summers (2025) argue to be the next General-Purpose
Technologies (GPTs) like electricity and steam power, will bring firms a great amount of
opportunities that tend to be widespread and long-spreading. This differentiates Al from
other recent technology breakthroughs documented in the literature. For example, in the
labor market, studies show that generative AI models can increase workers’ productivity in
writing, customer service, and programming tasks (Brynjolfsson, Li, and Raymond, 2023;
Peng et al., 2023; Noy and Zhang, 2023). Firms investing or taking advantage of these tools
will increase their productivity. However, firms starting to invest or adapt to using Al in
their operations might see negative profitability in the beginning due to long-term R&D
investments or payment for third-party Al use like ChatGPT4. These firms are primarily
concerned with rising opportunities, balancing entry costs against the potential for future
gains as they explore Al investment or adoption. I call these firms AI Starters. There are
also other firms that have invested in Al or used Al technologies in their daily operations for
quite some time and they see big profitability growth when there are positive Al opportunity
shocks like the launch of ChatGPT3. However, their advanced integration of Al exposes
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Al creators or adopters with compliance requirements, ethical scrutiny, or restrictions on
market dominance. I call these firms Al Elites.

This paper hence focuses on testing the null hypothesis that these two forces—opportunity
and regulatory uncertainty—exert opposing effects on stock prices and risk premia for Af
Starters and Al Elites. Specifically, I hypothesize that for AI Starters, the opportunity
channel dominates, as markets price their potential for future gains despite near-term costs,
while for Al Elites, the regulation channel dominates, as their exposure to Al amplifies risks
from policy changes. These two channels lead to contrasting asset pricing implications for
the two groups.

In the first part of this paper, I document the empirical results regarding asset prices
and risk premia associated with AI. The initial step is to construct a firm-level AI Exposure
measure to proxy for firms’ exposure to Al advances. I begin by creating an Al Vocabulary
(AIV) through textual analysis of 159,444 academic paper titles from the Web of Science,
specifically related to artificial intelligence. These papers span from 2010 to 2024 and are
accessible via ProQuest. I extract unigrams and bigrams, compute their TF-IDF scores, and
compile the AIV with the most frequent unigrams and bigrams. I utilize both unigrams
and bigrams to balance the tradeoff between using purely unigrams, which can introduce
excessive noise, and purely bigrams, which may overly restrict the scope of what can be
captured in a document. Figure 1 displays the AIV WordCloud, where a larger font size
indicates higher TF-IDF scores. The WordCloud reveals that the main terms align well
with those identified by Babina et al. (2024a), who analyzed Al topics using resumes and
job posting data. After establishing an AIV, I then construct an AI News Index through
textual analysis of the RavenPack newspaper database. I analyze approximately 170 million
news headlines from 2010 to 2024, counting each month how many headlines contain any
of the AIV bigrams and defining these as Al-related news. Figure 2 depicts the RavenPack
Al News Indez, showing the number of Al-related news on a monthly basis. The figure
illustrates that the RavenPack AI News Index captures some of the main Al-related events
since 2010, with the ChatGPT launch at the end of 2023 marking the most significant rise
in Al-related news. Prior to 2017, the development of Al was focused on the implications
and advancements in machine learning and deep learning.

With the AIV in place, I construct a firm-level AI Fxposure measure derived from firms’
conference call transcripts. Following Sautner et al. (2023), I conduct textual analysis on
these transcripts and compute the fraction of Al-related unigrams and bigrams, presented
in the previously defined AIV, relative to the total number of unigrams and bigrams in any
given transcripts. This method provides a firm-level Al Ezposure measure that captures
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further study what this measure mainly captures, I decompose this measure into different
versions that speak to whether this measure is more about opportunity, regulation, or risk.
Furthermore, I create two versions of this measure that speak to the tone on whether it is
more positive or negative.

The second step involves conducting a long set of empirical asset pricing tests to see
how the two channels, opportunity and regulatory uncertainty, affect stock prices and risk
premia. To evaluate the opposing effects of these two channels—where A Starters are more
opportunity-driven and Al Elites are more concerned about regulatory risks—I conduct sev-
eral complementary empirical tests. First, typical empirical asset pricing tests including
portfolio sorts on Al Exposure measures and factor regressions reveal stark contrasts in risk
premia: value-weighted portfolios (dominated by AI FElites) exhibit statistically significant
positive return spreads for high AT Exposure firms, consistent with regulatory risks driving
higher expected returns. Conversely, equal-weighted portfolios (tilted toward AI Starters)
show negative spreads, aligning with the opportunity channel’s dominance and lower ex-
pected returns for Al Starters. These results hold robustly across different factor models,
with significant unexplained alphas for AI Elites. More specifically, I divide firms into port-
folios based on their firm-level AI Ezxposure and run time-series regressions of the monthly
return spread between the 1st decile and the 10th decile on different sets of factors. These
factor models include the CAPM model, the ICAPM model (Chabi-Yo, Gongalves, and
Loudis, 2025), the Fama and French three-factor (FF3) model (Fama and French, 1996), the
Fama and French three-factor model plus the momentum factor (FF4) by Carhart (1997),
the Fama French five-factor (FF5) models (Fama and French, 2015), and the Hou, Xue, and
Zhang ¢ and g5 factor models (Hou, Xue, and Zhang, 2015; Hou et al., 2020). I find there
is a significantly positive « in all factor models, with the maximum monthly o = 99.1 basis
points (t=3.85) using q factors and the minimum monthly o = 66.6 basis points (t=3.24)
using FF4. These leading factor models cannot explain this risk premium associated with A/
Exposure in the full sample from 2009 to 2024. In subsequent subsample tests using recent
years, the factor alphas increase in both quantitative and statistical magnitudes. Further-
more, consistent with Babina et al. (2024a), I do find that growth options help explain the
risk premium associated with AI, which validates the fact that opportunity channel does
exist among Al Elites but does not dominate the price impact.

Second, Fama-MacBeth regressions further validate the results from portfolio sorts and
factor regressions. I run Fama-MacBeth regressions in Ordinary Least Squares (OLS) and
Weighted Least Squares (WLS) with market value as the weights. The overall Al Exposure-
return relationship is negative in both full-sample and subsample (more recent years) OLS
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-0.0867 (t-statistics: -1.52), respectively. However, the topic-specific Al exposure measure,
AT Exposure®P? for Al opportunity-focused firms, reveal significantly negative coefficients,
with a coefficient on full-sample and subsample of -0.104 (t-statistics: -4.41) and -0.109
(t-statistics: -2.47), respectively. However, the overall Al Exposure-return relationship is
positive in both full-sample and subsample (more recent years) WLS regressions, which are
in line with the fact that Al Starters dominate the OLS regression results, while Al Elites
dominate the WLS regression results. The sign change in the overall Al Exposure-return
relationship from OLS to WLS validates the opposing effects of opportunity and regulatory
uncertainty on expected returns.

Third, to mitigate the concern that ex post realized returns might be a bad proxy for
ex ante expected returns, I follow Hou, van Dijk, and Zhang (2012) in constructing a few
implied cost of capital (ICC) measures and rerun the Fama-MacBeth regressions. These
ICC measures include Gebhardt, Lee, and Swaminathan (2001), Claus and Thomas (2001),
Ohlson and Juettner-Nauroth (2005), Easton and Monahan (2005), and a composite measure
which is the average of the previous four measures. I denote them as GLS, CT, OJ, MPEG,
and Composite, respectively. I run Fama-MacBeth regressions using the two main mea-
sures: the overall AI Exposure measure and opportunity specific measure, Al Exposure®?p.
There is a mix of results for the overall AI Fxposure measure. GLS and OJ show negative
while statistically insignificant coefficients on AI Ezposure, while OJ, MPEG, and Compos-
ite show positive and statistically significant coefficients. However, all coefficients, except
for the MPEG measure, are negative and statistically significant for AI Exposure®?P. Since
AT Exposure®P? should mainly capture the opportunity channel, the consistent negative re-
lationship between ICC measures and Al Exposure®?P validates the null hypothesis that
the opportunity channel dominates Al Starters and there should be a negative relationship
between AIExzposure®PP and expected returns.

Fourth, in addition to using ICC measures as an alternative proxy for ex ante expected
returns, I also apply an option-implied expected return measure following Martin and Wagner
(2019). One limitation of the option-implied measure is that it only applies to S&P 500
firms, which in my sample tend to be AI Elites. Hence, I would expect to see a significant
positive expected return spread between a value-weighted decile portfolio with the highest
Al Ezxposure stocks and a value-weighted decile portfolio with the lowest Al Exposure stocks.
That is exactly what I see in the real data. The return spreads, H-L, are statistically positive.
The magnitude of the monthly return spread ranges from 0.45% to 0.73%, which is relatively
smaller in magnitude but comparable to the VW return spread using realized returns, 0.96%.

Fifth, I re-estimate the risk premia associated with Al Fzposure using a three-pass pro-
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measurement error. The three-pass approach is, in essence, a combination of Principal Com-
ponent Analysis (PCA) with two-pass cross-sectional regressions, to generate a consistent
estimate of risk premia. Assume that returns follow a linear factor model with p factors,
and my goal is to estimate the risk premium of one of them, g;, which is the Al risk factor
associated with Al Fxposure. The three-pass approach consists of the following steps. First,
I use PCA to recover factors and their loadings using a total number of 3,127 equity portfo-
lios. Second, I run cross-sectional regressions using only the principal components, without
the factor of interest, g;, to estimate their risk premia. Third, I run time-series regressions of
g onto the principal components to estimate the loadings on the principal components. The
risk premium of g; is calculated as the product of the loadings estimated in step two and
their risk premia estimated in step three. I showcase that although VW Al factors tend to be
more positive than EW Al factors, which is consistent with my hypothesis that Al Starters
tend to earn a negative risk premium while Al Elites tend to earn a positive risk premium,
most of the three-pass risk premia tend to be statistically insignificant. However, Giglio and
Xiu (2021) argue that the three-pass procedure performs better as 7" — oo (their sample
spans 1080 months), whereas my sample covers only 168 months; the limited time-series
length may diminish statistical power and lead to most insignificance.

Finally, I conduct several event studies that utilize plausibly exogenous shocks to disen-
tangle these two channels. I include several plausibly exogenous shocks: (1) the launch of
ChatGPT (November 30, 2022) as an opportunity shock, (2) Biden’s Al Executive Order
(October 30, 2023) as an Al-specific regulation shock, and (3) Trump’s and Biden’s election
wins (2016 and 2020) as general regulation shocks. For each event, I compute cumulative
abnormal returns (CARs) over a 10-day post-event window (CAR[1,10]), adjusting for mar-
ket movements using CAPM betas estimated from a pre-event window. Portfolios are sorted
into quintiles by Al Fxposure and weighted equally. The results are striking: after Biden’s
AT Executive Order, high-exposure firms underperform low-exposure firms by -1.84% (t =
-2.49), but this gap diminishes when excluding large firms (Al Elites). Conversely, Chat-
GPT’s launch generates a +1.49% spread (t = 2.72) favoring high Al Ezposure firms, which
dimishes when excluding small firms (Al Starters). General political shocks (Trump’s and
Biden'’s election wins) show no significant differential effects. These results validate that the
regulatory channel predominantly affects Al Elites, while the opportunity channel primarily
influences AI Starters.

After documenting the empirical findings, I construct a competitive equilibrium model to
show how the two channels, opportunity and regulation uncertainty, affect the stock prices
and risk premia theoretically, building on Péstor and Veronesi (2012, 2013) and Hsu, Li,
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impact firms’ profitability: regulation regime change and opportunity regime change. The
regulation regime change occurs between favorable and unfavorable policies, where an un-
favorable shift negatively affects firms’ profitability. A favorable policy indicates a pro-Al
government stance, including subsidies for Al research, tax incentives, or relaxed data pri-
vacy laws. In contrast, an unfavorable policy imposes stricter regulations and legal burdens,
such as Biden’s 2023 Al Executive Order emphasizing “safe, secure, and trustworthy de-
velopment and use of artificial intelligence,” which was widely viewed as restrictive to Al
development. A regulatory shift occurred when Trump revoked this order in early 2025,
with the White House stating that it had imposed “unnecessarily burdensome requirements”
that could “stifle private sector innovation and threaten American technological leadership.”
The model does not quantify how favorable or unfavorable different administrations are but
highlights how these shifts influence stock prices. The opportunity regime change reflects
AT’s aggregate development stage, transitioning from early to mature. In the early stage,
AT development involves high entry costs due to long-run R&D expenses and frictions such
as the unavailability of large language models like ChatGPT. In contrast, the mature stage
sees lower entry costs, aided by available open-source codes. For instance, in early 2025, the
Chinese tech company DeepSeek launched a large AI model, building on existing LLMs and
reducing training costs to under $6 million—whereas similar developments in the early 2010s
could have cost up to $1 billion. This model illustrates how these regime changes influence
firms’ expected profitability and stock prices over time. In the model, the government makes
decisions on regulation regime change with an endogenous political cost, while I assume
the opportunity regime change is exogenously given. Households maximize a CRRA utility
and liquidate firms’ value at terminal date. All agents observe signals—such as political
news—and learn about the political cost following a Bayesian Learning process.

The main intuition of the model is that for Al Elites, which are more concerned with reg-
ulatory uncertainty, firms with high Al Fxposure are more sensitive to unfavorable regulatory
shifts and face greater exposure to regulatory regime change risk. Consequently, these firms
experience larger stock price declines following a materialized regulatory shock (e.g., Biden’s
AT Executive Order), implying that Al Elites should earn higher ex-ante expected returns.
In contrast, for AI Starters, which are more focused on opportunity, firms with high Al Ez-
posure are more sensitive to Al’s transition from early-stage to mature-stage development.
As a result, they see larger stock price gains when an opportunity shock materializes (e.g.,
the launch of ChatGPT), suggesting that Al Starters should earn lower ex-ante expected
returns.

The last part of this paper provides validation of the main measures used in the empir-
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portfolio approach of Engle et al. (2020), I show that using my AIV, investors can create
a time series of AI News Index to capture the innovation in AI development. In addition,
investors can use my firm-level AI Ezposure measures to construct a mimicking portfolio to
hedge the innovation in the AI News Index.

The contributions of this paper are twofold. First, it is the first study to examine how the
two channels, opportunity and regulatory uncertainty, simultaneously affect stock prices and
risk premia for firms with Al exposure. The closest study to mine is Babina et al. (2024a).
They focus more on the systematic risk measured by CAPM market risk and find that most
Al-invested firms bear systematic risk resulting from growth options. However, my measure
differs from their labor-channel measure and captures more about “soft information” from
conference call transcripts. My measure aims to capture investors’ and managers’ views
on Al topics through conference call transcripts. Conference calls represent an important
corporate event where managers and analysts have the opportunity to sit together to review
the firm’s financial results for a given period and discuss their initiatives and perspectives
on various corporate topics. I have developed different versions of this measure to capture
overall Al exposure and topic-specific aspects such as opportunities and regulations. The
literature has shown that using conference calls is beneficial in capturing broader channels
or perspectives of investors’ perception of firm risk (Sautner et al., 2023). My focus is
also on studying whether and how the opportunity and regulation uncertainty affect the
AT risk premia. Through a series of empirical tests, including Fama-MacBeth and portfolio
regressions, I demonstrate that growth options cannot fully account for the Al risk premium.

Second, this paper adds to the existing body of research on the impact of Al on firm
outcomes. Using the launch of Google’s TensorFlow as an exogenous shock, Rock (2019)
demonstrates that increases in Al investment lead to significant gains in market valuation.
Acemoglu et al. (2022) explores the effects of Al exposure on labor demand using data from
Burning Glass job postings. Both Cockburn, Henderson, and Stern (2018) and Babina et al.
(2024b) find that Al investments enhance firm-level product innovation. The studies most
similar to mine are by Eisfeldt, Schubert, and Zhang (2023) and Babina et al. (2024a).
Eisfeldt, Schubert, and Zhang (2023) investigates the impact of Generative Al—specifically
the public release of ChatGPT—on equity returns at the firm level. Babina et al. (2024a)
shows that firms increasing their Al investments, particularly through the growth of Al-
related workers, experience an increase in their systematic risk as measured by the CAPM.
Unlike these studies which focus on the labor channel, this paper uses a measure based on
the general perceptions of investors and managers as expressed in conference call transcripts,
capturing not only the labor channel but potentially the physical capital and business idea

channels, which are crucial for evaluating asset prices in existing literature.



The rest of the paper is organized as follows. Section II describes the data, and how
I construct the main empirical measures. In Section III, I present the empirical results.
Section IV shows the general equilibrium model. In Section V, I validate the main measures

used in this paper. In Section VI, I conclude the paper.



II. Data and Measures

This section describes the data and measures. In Section I1.A, I first construct an Artificial
Intelligence Vocabulary (AIV) using Al-related academic papers from Web of Science through
ProQuest. This AIV allows me to capture the most frequent Al-related terms that will be
used to conduct textual analysis in firms’ conference call transcripts. In Section I1.B, I
construct the firm-level Al Exposure measure by studying how frequent AIV terms are
discussed in firms’ quarterly call transcripts. This measure is to capture how much attention

investors and managers have devoted to Al-related topics.

A. Artificial Intelligence Vocabulary (AIV)

To construct an Artificial Intelligence Vocabulary (AIV), I study a corpus of Web of Science
texts on the subject of AI. More specifically, I collect a total number of 159,444 academic
paper titles from Web of Science via ProQuest. Following the literature (see, e.g., Engle et al.,
2020), I extract the unigrams and bigrams that are directly related to artificial intelligence,
and compute their TF-IDF scores. Figure 1 presents word clouds that summarize the terms
extracted from academic paper titles in the Web of Science. The larger the term size, the
more frequent the term appears in the corpus (measured in TF-IDF score). The years range
from 2010 to 2024. Panel (a) shows most frequent bigrams. Panel (b) shows most frequent
unigrams. Panel (a) shows that most terms are largely related to machine learning and deep
learning topics, which is consistent with the fact that these topics are at the core of Al. Other
than those, I also see a lot of data-related terms like data mining and big data. Panel (b)
is largely consistent with Panel (a) but extracts the unigrams that are also focused on the
similar topics in machine learning and deep learning. Overall, these terms, including both
unigrams and bigrams, largely capture the main intuitive terms that we could think of in
the topics of Al. Here, I am not claiming these are the best keywords that are representative
to Al. However, these represents well the terms that are most studied in academic research
for this given period from 2010 to 2024.

For robustness, I construct the ATV using a larger and more general sample of 744,044
Web of Science academic articles or books that are directly related to: artificial intelligence,
machine learning, natural language processing, and computer vision. These are the terms
used in Babina et al. (2024a) when they study the systematic risk of Al through the labor
channel. Appendix Figure D.1 show the word cloud of bigrams. The top bigrams are
consistent with the Figure 1 Panel (a) in capturing mostly machine learning and deep learning
topics.

I select the top 50 unigrams and top 50 bigrams as my final ATV in Figure 1 for simplic-
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ity. Specifying a different number, such as 25 or 100, would alter the quantitative outcomes,
though the main qualitative results would remain consistent. Determining the optimal num-
ber of unigrams and bigrams to include in the final ATV is beyond the scope of this paper.
Appendix Table D.2 and Appendix Table D.3 list the top 50 bigrams and top 50 unigrams
by their TF-IDF scores.

B.  Firm-level AI Exposure
B.1. AI Exposure Measure

After having an AIV, I follow Sautner et al. (2023) in constructing a firm-level AI Ezposure
measure using firms’ call transcripts. As argued in the literature, exposure measures studying
call transcripts well capture the attention devoted to a topic by the call participants, such as
executives, analysts, investors and media. I use around 53 million quarterly call transcripts
from 2009 to 2024 via Refinitiv. The overall firm-level Al Exposure measure is defined as the

fraction of unigrams and bigrams from AIV over all unigrams and bigrams of a transcript,

Ui t Bi t
1 : :

Al Exposure;; = U +B. Z Iue AIV] + Z 1be AIV] ], (1)
it bt o\ =1 b=1

where v = 0,1,...,U;; and b = 0,1, ..., B;; are unigrams and bigrams in the call transcripts
of firm ¢ in quarter ¢, and 1[-] is an indicator function. The annual measure is the average
value aggregated from quarter measures.

To study the specific context of each sentence containing Al-related terms, I include
different versions of the Al Ezposure measures based on different topics. These topics include
opportunity, regulation, and risk. I also study the tone of the transcript and define two
versions of the Al Ezposure measures as either positive or negative (Loughran and McDonald,
2011). The definition for these topic-specific Al Exposure measures, for example regarding
opportunity, is defined as the fraction of unigrams and bigrams from AIV over all unigrams
and bigrams of a transcript, but conditional on opportunity topic bigrams existing in the

same sentence that contains AIV terms,

Uit Bit
1 , .
A[Expoguregfp:m ;(E[UGA[V]*E[U,OES])—i—bz;(]l[beA[V]*ﬂ[b,OES]) ,

(2)
where 1[u/b,0 € S] denotes that a sentence with Al-related bigrams or unigrams also in-

clude opportunity-related bigrams or unigrams in the same sentence. Other topic-specific Al

Exposure measures are defined in a similar way. The topic bigrams for opportunity, regula-
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tion, and risk are from Sautner et al. (2023) and extended by ChatGPT4. The positive and
negative bigrams are from Loughran and McDonald (2011) and extended by ChatGPT4.
Throughout the texts, I denote the overall AI Exposure measure, the Al Fxposure regarding
opportunity, the AI Ezposure regarding regulation, the Al Exposure regarding risk, the Al
Ezxposure with positive tones, and the Al Fzposure with negative tones as Al Fxposure,
Al Exposure®?, Al Exposure®®d, Al Exposure™* AIFExposure’®, and AIExposure™Ned,
respectively.

Table I presents the summary statistics of different versions of AI Fxposure and their
correlations at the firm-quarter level. For the ease of exposition, I multiply by 1,000 for each
measure. Panel A shows that the mean of AI Exposure is 4.4 while AI Exposure®?P has the
mean of 2.44 which is more than half the size of the mean of AI Fxposure. Hence, the overall

Al Ezposure mostly captures topics related to opportunity. The mean of AIExposurel®®d

Risk are similar in magnitudes, 0.78 and 0.90 respectively, which are around

20% of the mean of the overall Al Exposure. Interestingly, the mean for AI Exposure’ is

and Al Exposure

0.86 while the mean for AI Ezposure™® is only 0.17, which indicates that any sentences that
mention Al-related topics with a non-neutral tone are more possible to have a positive tone
rather than a negative tone. Panel B shows the correlation among different AI Ezposure
measures. Similar to the mean, Al Exposure®?P has the highest correlation with the overall

Pos and AI Exposurelt®.

Al Exposure, and then it is AI Exposure

Figure 3 shows the summary statistics of the overall Al Exposure, AI Exposure®??, and
Al Exposuref9. Panel (a) presents the monthly mean of Al Ezposure, AI Exposure®?P, and
AIExzposure’™d and Panel (b) presents the unique number of firms over time. The full
dataset spans from July 2009 to June 2023. There are several observations that are worth
noticing. First, the average means of all three measures have increased since 2009 and there
is a boost near 2023. Second, the unique number of firms included in the full sample has been
increasing since 2009. This is in line with the fact that over years, the transcript database
covers more and more firms. The spikes shown in the figure are due to the quarterly basis

measurement and there are clustering on transcripts on specific quarters.

B.2. Summary Statistics of Al Exposure Sorted Portfolios

After getting the overall firm-level AI Ezposure measures, I present the summary statistics
(mean) of the overall AT Exposure sorted portfolios. Table II presents the mean of the firm
characteristics by quintiles. At the end of June of each year, stocks are ranked by their
Al Exposure and sorted into quintiles. Al Ezposure is defined as the fraction of Al-related
unigrams and bigrams in a firm’s call transcripts, and here it is multiplied by 1000 for

ease of exposition. Firm size, In(ME), is measured as the log of market equity in June of
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year t. BE/ME is measured as the ratio between book equity at the end of June of year
t and market equity at the end of December of year t — 1. ROFE is profitability, measured
as income before extraordinary items divided by book equity. ROA is another profitability
measure, defined as income before extraordinary items divided by total assets. Asset Growth
is defined as the ratio between the change of total assets from year ¢t — 2 to year t — 1 and
total assets in year ¢t — 2. I follow Fahlenbrach, Rageth, and Stulz (2021) to construct the
following three financial flexibility measures. Cash/Assets is the ratio of cash to total assets.
St Debt/Assets is the ratio of debt in current liabilities to total assets. Lt Debt/Assets is
the ratio of long-term debt to total assets. Tangibility is property, plant, and equipment
divided by total assets. Book Leverage is the sum of current liabilities and long-term debt
divided by total assets. WW Indez is the Whited and Wu index used to measure financial
constraint (see, Whited and Wu, 2006). I include all topic-specific Al Exposure measures
as well. After winsorizing at the 1st and 99th percentiles to limit the influence of outliers,
all firm characteristics variables are standardized to have a mean of zero and a standard
deviation of one. The sample period is 2009 to 2024 at an annual frequency.

As shown in Table II, firms with higher AI Fzposure tend to be smaller firms, growth
firms (lower BE/ME and higher Asset Growth), with lower profitability, higher financial
flexibility (higher cash ratio and lower debt ratio/leverage), and lower tangibility. With
these characteristics pattern, I link to the anomaly literature in thinking ex ante whether A7
Ezposure could be positively priced or negatively priced in the stock market.

On the one hand, firms with smaller size should earn higher expected returns (Banz,
1981), and firms with lower tangibility or higher intangibility should earn higher expected
returns (Eisfeldt and Papanikolaou, 2013). On the other hand, firms that behave like growth
firms (Chan, Hamao, and Lakonishok, 1991), with lower profitability (Hou, Xue, and Zhang,
2015) and higher financial flexibility (Gamba and Triantis, 2008) should earn lower expected
returns. Overall, firms with higher Al Ezposure could be positively or negatively priced in

the stock market. In the later empirical tests, I will dig more into this question.

B.3. AI Exposure by Industry

After having the overall firm-level Al Ezposure measure, I aggregate to the industry level
by firms’ Standard Industrial Classification (SIC) code. Table III presents the mean of AI
Exposure measures of top ten industries classified by the SIC 2-digit code. Panel A shows
the top ten industries by the overall AI Fxposure measure. The top four industries with the
highest average AI Ezposure are Educational Services, Insurance Agents, Brokers, & Service,
Local & Interurban Passenger Transit, and Business Services. In general, Services face the

highest Al exposure, potentially due to large impacts in areas such as customer support,
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where tasks traditionally performed by humans could be automated through technologies
like chatbots. In Transportation, the advancements in autonomous vehicle technologies
and Al-powered driving assistance could increasingly replace human-operated processes and
hence have a high Al exposure. Appendix Table D.4 shows a more detailed decomposition
by industries at the SIC 2-digit code level. Panel B shows the top ten industries by the
overall AI Exposure®PP measure. Seven out of ten match with the ranking by the overall AT
Exposure measure in Panel A. This verifies the fact that the overall AI Exposure measure

mainly captures opportunity.

III. Empirical Results

This section focuses on testing the null hypothesis in this paper that the two forces, reg-
ulatory uncertainty and opportunity, have opposing effects on firms’ prices and expected
stock returns. More specifically, the opportunity channel dominates AI Starters, while the
regulation channel dominates Al FElites. As discussed in the introduction, I define the Al
Starters as the small firms that might just start Al projects that suffer from profitability
loss and more prone to opportunity shocks, and the AI Elites as the big firms that are
well-developed and mature in Al projects and more prune to regulation shocks. To test this
null hypothesis, I perform four sets of empirical tests. The following empirical tests will be
around the prediction that the opportunity channel dominates AI Starters and Al Starters
with higher AI Exposure should earn lower expected returns, while the regulation channel
dominates Al Elites and Al Elites with higher AI Exposure should earn higher expected re-
turns. Section I1I.A follows the typical asset pricing in portfolio sorts and factor regressions.
Section II1.B conducts multivariate Fama-MacBeth regressions with one-year forwarded re-
alized returns. Section II1.C also conducts multivariate Fama-MacBeth regressions, but with
implied cost of capital estimates, instead of realized returns. Section II1.D estimates the risk
premium with option-implied expected return measure. Section III.E estimates risk premia
associated with Al Ezposure following a three-pass procedure, in order to take into account
the omitted variable bias and measurement error. Section III.F conducts events studies to
show the price reaction heterogeneity upon plausibly exogenous opportunity (innovation) or

regulation (political) shocks.

A. Portfolio Sorts and Factor Regressions

First, I follow the typical asset pricing approaches in conducting portfolio sorts on AI Exposure

measures (see, e.g., Davis, Fama, and French, 2000). In the first test, I calculate the return
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spread of value-weighted (VW) portfolios sorted on Al Exposure and Al Exposure®? be-
tween the highest decile (H) and lowest decile (L). If the null hypothesis is correct that the
regulation channel dominates the Al Elites, then I should see a statistically positive return
spread between H and L. However, if I calculate the return spread of equal-weighted (EW)
portfolios sorted on AI Exposure and AI Exposure®??. I should see a less positive or even
negative return spread since the EW portfolios would be dominated by AI Starters that tend
to be smaller in size, and hence more prune to the opportunity.

Table IV presents average monthly value-weighted (VW) or equal-weighted (EW) returns
(in percentage) of portfolios sorted by overall firm-level AI Exposure and Al Exposure©P?.
Here, I do not include other versions of measures due to the fact that other measures have
too many zeros. The t-statistics are computed using heteroscedasticity and autocorrela-
tion consistent Newey-West (1987) standard error estimates with a lag length of 12 months.
Panel A presents VW returns of decile portfolios of different versions of Al Fxposure mea-
sures. H-L is the return spread between the highest decile and the lowest decile. There
is an overall increase in VW returns from portfolio L to portfolio H for both Al Fxpo-
sure and AI Exposure®P? sorted portfolios, although not strictly monotonic. The mean of
monthly return spread, H-L, reaches 96 basis points for Al Fzposure and 60 basis points
for AI Exposure®PP, with a t-statistics of 2.65 and 1.67, respectively. Panel B presents VW
returns of quintile portfolios of different versions of AI Ezposure measures. The mean of
monthly return spread, H-L, reaches 77 basis points for Al Ezposure and 56 basis points for
AT Exposure®P?, with a t-statistics of 2.56 and 2.08, respectively. Both Panel A and Panel
B show that the return spread, H-L, is positive and (almost always) statistically significant
for both AI Exposure and AIExposure®P sorted portfolios. This is consistent with the
fact that VW returns are usually dominated by big firms and big firms in my sample tend
to be AI FElites that are predicted to be dominated by the regulation channel and hence
firms with higher AI Fxposure should earn positive expected returns. Panel C presents
EW returns of decile portfolios of different versions of AI Exposure measures. The mean of
monthly return spread, H-L, reaches -32 basis points for Al Fzposure and -19 basis points
for AI Exposure®PP, with a t-statistics of -0.73 and -0.83, respectively. Panel D presents EW
returns of quintile portfolios of different versions of AI Fxposure measures. The mean of
monthly return spread, H-L, reaches -19 basis points for Al Fzposure and -24 basis points
for AI Exposure®PP, with a t-statistics of -0.53 and -1.03, respectively. Except for the case
of AI Exposure®?? in EW returns by quintiles, all return spread, H-L, is negative but statis-
tically insignificant. This is consistent with the fact that EW returns are usually dominated
by small firms and small firms in my sample tend to be Al Starters that are predicted to

be dominated by the opportunity channel and hence firms with higher AI Ezposure should
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earn lower expected returns.

There is a concern that the Al Exposure measures are correlated with common anomalies
and once these anomalies are taken into account, the return spread will become statistically
insignificant. Hence, I include sequential sorts. Table V present average monthly VW returns
(in percentage) of sequentially sorted portfolios, first sorted by anomalies, and then sorted
by overall firm-level AI Ezposure. In each panel, I report sequential sort returns using full
sample, and subsample that includes the second half of the full sample, i.e., recent years.
This table shows that even after controlling for leading anomalies, the return spread, H-L, is
overall positive and statistically significant, except for size, R&D, and cash holdings in the
full sample. In the subsample, all return spread, H-L, is positive and statistically significant.
This is in line with the fact that Al has become more prominent in recent years.

Then, I follow the standard procedure in factor regression tests to see if there is a risk
premium associated with the Al Ezposure measures that could not be explained by the
leading risk factors. I first form ten portfolios based on Al Exposure. Specifically, at the
end of June of each year, I allocate stocks into ten Al Exposure-sorted portfolios. I compute
the portfolio returns (value weighted) difference between highest Al Ezposure and lowest
Al Ezposure, and run time-series regressions of the returns spread on leading factor models.
Here I include seven factor models. The first one is the CAPM model; The second one is the
Chabi-Yo, Gongalves, and Loudis (2025) ICAPM model; The third is the Fama and French
(1996) three factor model; The fourth is the Fama and French (1996) three factor model
plus Carhart (1997) momentum factor; The fifth is the Fama and French (2015) five factor
model; the sixth is the Hou, Xue, and Zhang (2015) four q factors; the seventh is the Hou
et al. (2020) five @5 factors. Data on the Fama-French factors and the Carhart factor are
downloaded from Kenneth French’s website. Data on q factors are from Lu Zhang’s website.

Table VI presents the regressions estimation results using the full sample from July 2009
to June 2023. Overall, the results show that the risk premium associated with AI Ezposure
cannot be fully explained by leading factor models. There is a significantly positive « in all
factor models at a monthly basis, with the maximum « = 99.1 basis points (t=3.85) using
q factors and the minimum o« = 66.6 (t=3.24) using Fama-French four factors. Since the
portfolio returns are value weighted and more dominated by big stocks which in my sample
tend to be AI FElites, the statistically positive alphas in these factor regressions indicate that
AI Elites are dominated by the regulation channel and firms with higher Al Ezposure earn
a positive premium.

The comparison between Column (5) and Column (6) shows that expected growth does
help explain the risk premium associated with Al Ezxposure. This is consistent with the

mechanism as explained in Babina et al. (2024a). They find that growth options best explain
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the higher systematic risk associated with higher Al-investment firms in the labor channel.

Figure 4 plots the cumulative returns and twelve-month rolling alpha. Panel (a) presents
the cumulative returns of the return spread between high- and low- AIEzposure or AI Exposure©P?
portfolios, either VW or EW. The VW cumulative returns sorted by AIFEzposure quickly be-
come positive and reaches a nearly 200% cumulative returns by the end of the sample. The
VW cumulative returns sorted by AIExposure®PP experiences a negative value before 2018
but becomes positive shortly after 2018, and reaches more than 100% cumulative returns by
the end of the sample. Panel (b)-(e) show the twelve-month rolling factor alphas of a strategy
that longs the high AIExposure or AI Exposure®PP portfolio and short the low AIEzposure
or Al Exposure®PP portfolio. Panel (b) and (c) show that VW factor alphas are largely pos-
itive for both measures, but the AIFxposure sorted factor alphas are far more positive than
the AI Ezposure®?? sorted factor alphas. Panel (d) and (e) show that EW factor alphas are
more negative in general and both experience a big negative alpha post 2021.

Overall, the results from portfolio sorts and factor regressions are consistent with the
null hypothesis that Al Elites are dominated by the regulation channel and Al Starters are
dominated by the opportunity channel.

B.  Fama-MacBeth Regressions

Here, I study the AI FEzposure-returns relationship by running Fama-MacBeth regressions
with a long list of control firm-level characteristics. More specifically, I run cross-sectional
regressions on a monthly basis from July of year ¢ to June of year ¢ + 1. Each month,
individual stock returns are regressed on Al Ezposure from year ¢t — 1 and various control
variables available by the end of June of year . The definition for the control variables
are the same as Section [1.B.2. The t-statistics are based on standard errors adjusted using
the Newey-West method. The full sample is from July 2009 to June 2023. I run Fama-
MacBeth regressions in Ordinary Least Squares (OLS) and Weighted Least Squares (WLS)
with market value as the weights.

Table VII presents the Fama-MacBeth regressions using the full sample. Model (1) shows
that there is a significantly negative relationship between the overall AI Ezposure measure
and excess returns. Furthermore, the coefficients are negative and statistically significant
for model (2) and (3) for AI Ezposure®?? and AI Exposure®9 while the coefficient is sta-
tistically insignificant for Al Exposuref*. ROE and R&D/Asset ratio positively predict
the excess returns. While financial flexibility also helps explains the excess returns, size,
BE/ME, and Tangibility do not have statistically significant coefficients. The OLS regres-

sions are often dominated by small firms, which in my context tend to be AI Starters. 1
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further include WLS regressions with the market value as weights and I see positive (while
not significant) coefficient between excess returns and Al Exposure (Al Exposure®P?).

One concern is that Al is not prevalent in the early 2010s and investors might not care.
I hence do subsample regression and ex ante I expect to see a more pronounced negative
relationship between Al FExposure measures and excess returns. Table VIII presents the
results on a subsample from July 2016 to June 2023, and the overall Al Ezposure-returns
relationship becomes less statistically significant in model (1), while the magnitude of the
negative relationship becomes greater. The coefficient is still significantly negative in model
(2) for AIExposure®P? and with a bigger magnitude. The WLS model (5) and model (6)

show greater positive coefficients between excess returns and Al Exposure (Al Exzposure©Pp).

C. Implied Cost of Capital

There is a continuing debate in the literature on what the best proxies for expected returns
are. To mitigate the concern that ex-post returns might be a bad proxy for expected returns,
I estimate a few Implied Cost of Capital (ICC) measures and run Fama-MacBeth regressions
to compare with ex-post returns.

Table IX presents the results. I follow Hou, van Dijk, and Zhang (2012) in constructing
four main ICC measures. Column (1) reports regressions of ex-post realized returns on Al
Ezposure; column (2) reports results of ICC estimates based on Gebhardt, Lee, and Swami-
nathan (2001); column (3) reports results of ICC estimates based on Claus and Thomas
(2001); column (4) reports results of ICC estimates based on Ohlson and Juettner-Nauroth
(2005); column (5) reports results of ICC estimates based on Easton and Monahan (2005);
column (6) reports results of ICC estimates that are computed as the average of the previous
four ICC estimates. I denote these ICC measures as GLS, CT, OJ, MPEG, and Composite,
respectively. Panel A regresses on the overall AI Exposure measure, while Panel B regresses
on Al Exposure®r?.

There is a mixed result. In Panel A, Column (1) shows that Al Ezposure negatively
predict future ex-post realized turns as discussed before. Column (2) shows that Al Ezposure
negatively predicts GLS, but not statistically significant. Column (3) to (6) show that AI
Ezposure positively predicts CT, OJ, MPEG and the Composite ICC measure. Here, Al
Ezposure is adjusted to mean zero and one standard deviation. Hence to interpret the
coefficient, for example in Column (6), one standard deviation increase in Al Ezxposure is
associated with 0.649 percentage point increase in the Composite ICC measure.

In Panel B, Column (1) to (6) all show a negative coefficient between AIExposure®P?

and realized returns/ICC measures. All coefficients are statistically significant except for
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MPEG measure. Since AIExposure®?” should mainly capture the opportunity channel,
the consistent negative relationship between ICC measures and Al Exposure®P? validate the
null hypothesis that the opportunity channel dominates Al Starters and there should be a

negative Al Exposure®PP-returns relationship.

D. Option-Implied Returns

Apart from the ICC measures, I apply another option-implied ex ante expected returns
measure following Martin and Wagner (2019). The monthly expected stock returns for
firms in the S&P 500 using the 1-month, 3-month, 6-month, 9-month, and 12-month option-
implied measures are obtained from Vilkov (2023). One limitation of this measure is that
it only applies to S&P 500 firms, which in my sample tend to be Al Elites. Hence, I would
expect to see a positive expected return spread between a value-weighted decile portfolio
with the highest Al Fxposure stocks and a value-weighted decile portfolio with the lowest
Al Ezxposure stocks. This is exactly what I see in the real data.

Table X presents the average monthly value-weighted (VW) option-implied returns (in
percentage) of portfolios sorted by overall firm-level Al Ezposure. Panel A presents VW
average monthly 1-month returns of decile portfolios. H-L is the return spread between
the highest decile and the lowest decile. Panel B presents VW average monthly 3-month
returns of decile portfolios. Panel C presents VW average monthly 6-month returns of decile
portfolios. Panel D presents VW average monthly 9-month returns of decile portfolios. Panel
E presents VW average monthly 12-month returns of decile portfolios. The return spreads,
H-L, are statistically positive across all panels. The magnitude of the monthly return spread
ranges from 0.45% to 0.73%. This is comparable to the VW return spread using realized
returns in Table IV, which is 0.96%.

E.  Three-Pass Procedure with Latent Factors

One big critique regarding the traditional two-pass cross-sectional regressions, like Fama-
MacBeth regressions and factor regressions, is that they are susceptible to omitted variable
bias (see, e.g., Burmeister and McElroy, 1988; Jagannathan and Wang, 1998). Estimating
risk premia using the traditional regressions cannot guarantee resolving the omitted variable
bias since we cannot possibly account for all priced risks in the market. This section follows
the three-pass approach proposed by Giglio and Xiu (2021) to take omitted variable bias
and measurement error into account and to estimate the risk premia associated with ATl
Ezposure. The three-pass approach is, in essence, a combination of Principal Component

Analysis (PCA) with two-pass cross-sectional regressions, to generate a consistent estimate
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of Al risk premium. Assume that returns follow a linear factor model with p factors, and my
goal is to estimate the risk premium of one of them, g;, which is the Al risk factor associated
with Al Ezxposure.

The three-pass approach consists of the following steps. First, I use PCA to recover
factors and their loadings using a large set of portfolios. Second, I run cross-sectional re-
gressions using only the principal components, without the factor of interest, g;, to estimate
their risk premia. Third, I run time-series regressions of g; onto the principal components
to estimate the loadings on the principal components. The risk premium of g; is calculated
as the product of the loadings estimated in step two and their risk premia estimated in step
three.

In the first step, I include a wide range set of testing portfolios. First, I include 202
standard equity portfolios available on Kenneth French’s website as Giglio and Xiu (2021)
do, covering the most well-known dimensions of risk. These include: 25 portfolios sorted
by size and book-to-market ratio, 17 industry portfolios, 25 portfolios sorted by operating
profitability and investment, 25 portfolios sorted by size and variance, 35 portfolios sorted
by size and net issuance, 25 portfolios sorted by size and accruals, 25 portfolios sorted by size
and beta, and 25 portfolios sorted by size and momentum. Second, I include 2925 equity
portfolios available on Lu Zhang’s website with monthly two-way sorted (3x5) portfolios
based on 195 anomalies including momentum (42), value-versus-growth (32), investment
(32), profitability (48), intangibles (31), and frictions (10).

One concern regarding this approach is on selecting parameters to display best results.
To mitigate this concern, I follow the three-pass procedure to estimate the risk premium
of eight Al factors constructed either using H-L with decile or quintile sorting and value-
weighted or equal-weighted for AI Exposure or AI Exposure®PP. 1 include a range of one to
ten for Lags when computing Newey-West standard errors. I also include a range of one to
ten for the number of PCs.

Figure 5 plots the estimated risk premium for the eight Al factors. The four circle plots
represent value-weighted Al factors, while the four triangle plots represent equal-weighted
AT factors. “AIE” denotes the return spread between the highest and lowest deciles sorted
by Al Exzposure, and “AIE Opp” denotes the return spread between the highest and lowest
deciles sorted by AIExposure®??. When the notation “5” is used, it indicates the return
spread between the highest and lowest quintiles. For each factor, I estimate the risk premia
using different sets of testing portfolios, a range of one to ten lags for computing Newey-West
standard errors and a range of one to ten for principal components. The dataset spans from
July 2009 to June 2023.

There are several observations. First, overall, the three-pass risk premia for both value-

20



weighted (VW) and equal-weighted (EW) factors are mostly insignificant at the 95% confi-
dence level. However, there are exceptions: the EW factors exhibit negative significant risk
premia, with the minimum monthly risk premia around -100 basis points, and no factors
show positive significant risk premia. This contradicts my null hypothesis, as the signifi-
cance of the risk premia essentially disappears. Nonetheless, Giglio and Xiu (2021) argue
that the three-pass procedure performs better as 7' — oo (their sample spans 1080 months),
whereas my sample covers only 168 months; the limited time-series length may diminish
statistical power.

Second, VW factors are, on average, more positive than EW factors, while EW factors
are more negative than VW factors across all setups. The maximum monthly risk premia
for VW factors reach almost 40 basis points, compared to less than 10 basis points for EW
factors. This finding aligns with the null hypothesis that Al Starters earn a more negative

risk premium, while Al Elites earn a more positive risk premium.

F.  FEvent Study

In this section, I conduct two sets of event studies to test the null hypothesis that the op-
portunity channel dominates AI Starters, while the regulation channel dominates Al Elites.
The event studies are to show whether there is price reactions heterogeneity for firms with
different Al Exposure upon plausibly exogenous opportunity or regulation shocks. For op-
portunity shocks to Al, I include the launch of ChatGPT on Nov 30th, 2022. The launch of
ChatGPT is often treated as a plausibly exogenous shock to Al innovations and bring op-
portunities for firms to boost their productivity across all industries. For example, Eisfeldt,
Schubert, and Zhang (2023) show a positive “Artificial Minus Human” return spread after
the launch of ChatGPT. For regulation shocks to AI, I include Trump’s U.S. presidential
election win on Nov 8th, 2016, Biden’s U.S. presidential election win on Nov 3rd, 2020, and
Biden’s Al Executive Order on Oct 30th, 2023. Trump’s election is widely assumed to be
favorable to Al related regulations, while Biden’s election is relatively restrictive. However,
Biden signed an Al Executive Order to further restrict Al development and uses in the US,
which is more restrictive.

I follow the literature (see, e.g., Brown and Huang, 2020; Fahlenbrach, Ko, and Stulz,
2024) in estimating average cumulative abnormal returns (CAR) in percentage after opportu-
nity or regulation shocks in each quintile portfolio sorted on AI Ezposure. More specifically,
I compute the CARs over a 10-day window from day ¢ 4+ 1 to day ¢t + 10 after the event day
t by equally weighted across Al Exposure-sorted portfolios, which I denote as CAR[1,10]. I
follow the typical way by using a 250-trading day window that ends 25 days before the event
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day to estimate CAPM beta (daily market returns and the risk-free rate obtained from the
French website).

Table XI presents the results. Panel A computes the CARJ[1,10] upon the Trump election
win on Nov 8th, 2016 by quintile and high minus low (H-L). It shows that there is no
significant CAR difference since the CARJ[1,10] spread between high and low quintile is only
-0.75% with a t-statistics of -0.89. The same observation holds for the Biden election win
on Nov 3rd, 2020 in Panel B that the CAR[1,10] spread between high and low quintile is
only -0.27% with a t-statistics of -0.45. These two events are general political events which
are not targeting AI. Hence, it is not surprising to see no heterogeneity in price reactions
across different Al Ezposure quintiles. However, in Panel C, the CAR[1,10] spread between
high and low quintile is -1.84% with a t-statistics of -2.49. This is consistent with the fact
that Biden’s Al Executive Order on Oct 30th, 2023 is largely restricting Al developments
and uses in the US so that we see firms with higher Al Ezposure experience a more negative
price reactions. To test whether regulation channel dominates AI Elites that tend to be
bigger firms, in Panel D, I exclude big stocks (top 20 percentile in size) and show that price
reactions diminish in all quintiles and the CAR[1,10] spread between high and low quintile.
In Panel E, I show that the launch of ChatGPT3 as a plausibly exogenous Al innovation
shock leads to a statistically positive CAR[1,10] spread between high and low quintile, with
a 1.49% return spread and a t-statistics of 2.72. There is a monotonic increase in CAR[1,10]
from the lowest Al Exposure-sorted quintile to the highest Al Ezposure-sorted quintile. To
test whether opportunity channel dominates Al Starters that tend to be smaller firms, in
Panel F, I exclude tiny stocks (bottom 20 percentile in size) and show that price reactions
diminish in all quintiles and the CAR[1,10] spread between high and low quintile.

The results from these event studies are consistent with the null hypothesis that both
regulation and opportunity shocks lead to significant price reactions, and regulation channel

dominates the Al Flites and opportunity channel dominates the AI Starters.

IV. Theory

After documenting the empirical findings, I construct a competitive equilibrium model to
show how the two forces, regulation uncertainty and opportunity, affect the stock prices and
risk premium, building on Péstor and Veronesi (2012, 2013) and Hsu, Li, and Tsou (2023).
In the base model, I assume there are two types of regime changes that directly affect firms’
profitability process: regulation regime change and opportunity regime change.

The regulation regime change is between Favorable (F) and Unfavorable (U) policy. I

assume the change from Favorable (F) and Unfavorable (U) policy would negatively affect
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the profitability process which will be incorporated in the profitability process. Here, the
Favorable policy means the government’s attitude towards Al development, investments,
and uses are generally favorable, which could be related to government subsidies for Al
research, positive tax incentives, or relaxed data privacy laws. However, the Unfavorable
policy means that government’s attitude is more restrictive and legally burdensome. As
previously discussed, Biden’s Al Executive Order in 2023 emphasized, “safe, secure, and

" which is usually deemed as unfa-

trustworthy development and use of artificial intelligence,’
vorable to Al development and uses in the US. For example, Trump revoked Biden’s EO in
2025. On January 23, 2025, the White House stated that “The Biden Al Fxecutive Order
established unnecessarily burdensome requirements for companies developing and deploying
Al that would stifle private sector innovation and threaten American technological leader-
ship.” This model’s main purpose is not to quantify how unfavorable or favorable different
presidential administrations are towards the Al development and uses, but to showcase the
regulation regime change could affect prices.

The opportunity regime change is regarding the overall Al development stages between
Early (E) and Mature (M). I assume the change of overall Al development from Early (E)
and Mature (M) would positively affect the profitability process. In the Early stages of Al
development or uses, there are high entry costs since most of the Al development or uses
incur long-run R&D expenses and high costs due to other frictions like unavailability of large
language models (ChatGPT). However, in the Mature stages of Al development or uses, the
entry costs are lower due to less frictions. For example, building on open resources of existing
LLMs, the Chinese tech company, DeepSeek, launched a large Al model in early 2025 and
said that training one model cost less than $6 million, which would have cost up to $1 billion
back in early 2010s.

A.  Firm Profitability

I assume there is a continuum of firms of ¢ € [0, 1] and a finite horizon ¢ € [0, T]. The stage
of AT development and uses for firm 4 at time ¢ is denoted as s! € [0,1]. Specifically, when
st = 0, firms are classified as Al Starters, where profitability is more sensitive to innovation
or opportunity shocks. Conversely, when s = 1, firms are classified as Al Elites, where
profitability is more sensitive to regulatory changes. The profitability process for firm ¢ at

time ¢ is modeled as:

AT} = (j+ & [}~ g0+ (1= 1) - m]) dt + 0dZ + 12}, )
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where 1 represents the baseline profitability growth rate, and & captures firm ¢’s exposure
to Al, which could be deemed as the Al Fxposure measure in the empirical setting and
captures how much attention investors and managers devote to Al developments, investments
and uses. The term g; reflects regulatory uncertainty, where g/ > 0 denotes a Favorable
regulatory environment and g” < 0 denotes an Unfavorable one. Additionally, ; captures
the opportunity environment, representing the overall stage of Al development and uses, with
nF < 0 characterizing an Early-stage environment and n} > 0 characterizing a Mature-stage
environment. The terms o0dZ; and o,dZ} correspond to aggregate and idiosyncratic shocks,
respectively.

The profitability process can be interpreted differently depending on the stage of Al
development and uses. For AI Elites (st ~ 1), profitability is predominantly driven by

regulatory uncertainty, resulting in the simplified profitability process:
A} ~ (pn+ & g0) dt + 0dZ, + 01dZ;. (4)

In contrast, for AI Starters (s¢ ~ 0), profitability is more influenced by the overall Al

development stage, with the profitability process expressed as:
il ~ (p+ &ny) dt + 0dZ; + 01dZ;. (5)

In this base model, I consider two types of firms with either high or low AI Ezposure, i.e., £
or £&. g, captures the impact of Al-related regulation. For simplicity, I consider two cases

for regulation regimes, Favorable (F) or Unfavorable (U). I further assume that,

gf' > 0 means Favorable regulation on Al carries a positive effect
g =
gV <0 means Unfavorable regulation on Al carries a negative effect,
because under Early Al-stage, firms bears negative cash flow effects for high entry costs. For
example,
I also consider two cases for opportunity regimes, Early (E) or Mature (M) for the

aggregate Al development and uses in the US. I further assume that,

nM >0 means aggregate Mature Al-stage carries a positive effect )
7’] —=

nEf <0 means aggregate Early Al-stage carries a negative effect,

If we assume the current Al regulation in the U.S. is more Unfavorable during Biden’s

administration, then we should expect a negative relationship between profitability, i.e.,
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ROE, and firm-level AI Exposure since,

g (&' = &) <0, (8)

where &7 > ¢F > 0. Likewise, in the Early-Al stages such as early 2010s, the entry costs
are high and impose a negative effect on profitability, and so we should expect a negative

relationship between profitability, i.e., ROE, and firm-level Al Ezposure since,

(&' — &) <0, (9)

where ¢f > ¢L > 0. With these assumptions, I have two corresponding predictions that I

can test in the real data:

Prediction 1. Firms with higher AI Exposure should have lower ROE under the overall

Unfavorable policy environment or the Early-stage Al environment.
Prediction 2. Firms with higher AI Exposure are more sensitive to policy changes.

I show in the empirical section that this assumption is consistent with what I find in the
data. The prediction cannot be directly tested regarding the Early-stage part since Al is still
at the early stage as widely assumed. However, I have discussed the assumption is decent
using the example of Deepseek. The following test will be focused on the Unfavorable part.

The following panel regression is proposed to test these two predictions,
ROE;; = Bo+ 1 AlEzposure; ; + Bg]l{gt:gtu} + B3(AlEzposure; ; X ﬂ{gt:gtu}) +vXi1+eir, (10)

where ROE; ; represents the return on equity for firm 7 at time ¢. The variable AlExposure;,
is defined as the firm-level Al exposure as before. The dummy variable 1, _ vy captures
period with Unfavorable Al regulatory, where g” < 0. The vector X, includes control
variables such as firm size, leverage, and industry fixed effects..

Table XII reports panel regressions of ROE on Al Ezposure and other firm characteristics.
1sUnfav is a dummy variable if year is between 2021 and 2023 during Biden’s administration,
when the Al policy is relatively unfavorable. I include the interaction term between ATl
Exposure and isUnfav. Current ROE is defined as the ROE at year ¢, Lagged ROFE at
year t — 1, and Future ROE at year t + 1. Column (1) and (2) have Current ROE as the
dependent variable and include Lagged ROE as one of the independent variables. Column
(3) and (4) have Future ROE as the dependent variable and include Current ROE as one
of the independent variables. The coefficients of interest are 3, (coefficient on isUnfav) and

Ps (coefficient on AI Ezposure x isUnfav). The Prediction 1 and Prediction 2 basically
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test whether [y and f3 are statistically negative. First, the results show that the firm-
level AI FExposure does negatively comove with current ROE and negatively predict future
ROE, i.e., By is statistically negative. The only exception is Column (2) when clustering
SE by Industry x Year. Second, the results show that ;3 is statistically negative across all

regressions regarding the SE clustering level.

B.  Household and Government Maximization Problems
Households/investors maximize a CRRA utility function,

1=y

¢
1—7’

7> 1, (11)

where v is the risk aversion and W; is the wealth of households at time ¢. To keep the model
trackable, I assume that there is no dividend payment before T and households liquidate
and consume all wealth at time 7T'.

Government decides on whether to have a policy change at time 7, and households
observe the decision at 7. Government maximizes a similar problem as households, but face

a non-pecuniary cost (or benefit) associated with an Al-policy change from Favorable to

Unfavorable,
e[ 0] [} w2
where
o(c) =1+ €, (13)

which could be interpreted as the shadow cost of imposing an Unfavorable Al policy from
the government’s perspective. For example, Biden Administration’s Executive Orders on Al
Safety, Security, and Privacy could be treated as an Unfavorable Al policy, which imposes

costs for the government. And the prior distribution of ¢ is assumed to be drawn from a

2
c~N —&,02 : (14)
2 C

where o, captures the policy uncertainty. Using a Moment Generating Function shows that,
E[e‘] = 1. The market clears at time T,

normal distribution,

1
Wr = By = / BL.di, (15)
0

where BL denotes firm i’s capital at time T
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C. Bayesian Learning

The political cost, ¢, is unknown to all agents in this economy and all agents learn about ¢
for any time before the policy decision, i.e., ¢ < 7. The Bayesian learning process involves

updating signals, s, with the mean and an independent noise,
ds; = cdt + hdZy, (16)

where h governs the magnitude of noise, and dZ; is an independent Brownian motion from
aggregate and idiosyncratic shocks in Equation (3). We can think of these ds; as a steady

flow of political news related to Al policy.

Lemma 1. Combining the signals, Equation (16), and prior distribution of the political cost,

Equation (14), we can get the posterior distribution of the political cost,

c| Fy ~ N(&,67,) (17)
where
dé, = 62,h'dZ, (18)
and .
52, = 19
Uc,t % + %t ( )
Proof. See the Proof in Appendix E.A. m

The intuition behind the posterior distribution of the political cost is straightforward: If
the signal is noisy (h is large), the update is small. If the signal is precise (h is small), the
update is large. The uncertainty about cost decreases over time as more signals are observed.

The rate of learning depends on the noise level (h) and prior political uncertainty (o).

D. Government Optimal Choice

Government learns about ¢ and makes a policy-change decision at 7, i.e., from Favorable (F)
to Unfavorable (U) iff:

B [V | <, [o0 2 |y (20)
{1 g } [ [ }

As assumed, the government Al policy change will directly affect profitability, and the two

expectations in equation (20) should be calculated under different stochastic processes for
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the aggregate capital B, = fol Bidi, combined with market clear condition equation (15).
Without loss of generality, I further assume that, ¢ ~ Uniform(0,2) with E[¢{] = 1, and
each firm’s Al stage, s' ~ Bernoulli(p), where s = 1 (AI Elites) with probability p, and
s' = 0 (AI Starters) with probability 1 — p, where p captures the proportion of AI Elite firms

in the continuum of firms.
Lemma 2. The aggregate capital at time T, By = fol Blidi, is given by

By = BTe<H+pQ+(1_p)77_%0'2)(T_T)+U(ZT_ZT)’

where g = g¥ under Favorable requlation, g = g¥ under Unfavorable requlation, n = n¥ in

Early-stage Al environment, and n = n™ in Mature-stage Al environment.
Proof. See the Proof in Appendix E.B. n

It is straightforward to see that the aggregate capital at terminal time 7" depends on
the regulation regime and opportunity regime. With Lemma 2, we can further simplify the
condition on which the government will choose to switch from a Favorable (F) Al policy to

an Unfavorable (U) Al policy. The following proposition shows the condition.

Proposition 1. The government will switch from a Favorable (F) to an Unfavorable (U) Al

policy at time 7 if and only if the realized political cost ¢ exceeds the threshold:
c>c(r) =log (6(7_1)(9F_9U)(T_7) — 1) :

where g > 0 and gV < 0 represent the regqulatory impacts on profitability under Favorable
and Unfavorable regimes, respectively. The threshold c(T) increases with risk aversion (v > 1)

and the magnitude of the requlatory gap |g*" — gY|.
Proof. See the Proof in Appendix E.C. m

Corollary 1. The time-t perceived probability of a government Al policy shift from Favorable
(F') to Unfavorable (U) at time T (t < T) is:

pT|t =1-9 (Q(T>a éta &g,t) )

), and c(7)

where ®(-;¢,67,) is the CDF of the posterior normal distribution ¢ ~ N (&, 67,

1s defined in Proposition 1.

Proof. See the Proof in Appendix E.D. m
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The above Proposition 1 and Corollary 1 lead to several testable predictions. I will

discuss them one by one below.

Prediction 3. When investors have higher risk aversion, i.e., v > 1, it becomes less likely

to have an Al-related policy change from Favorable to Unfavorable.

Prediction 4. When the impact of policy change from Favorable to Unfavorable (g* — gV )

becomes larger, it becomes less likely to have a policy change from Favorable to Unfavorable.

Prediction 5. The Trump’s US presidential victory at the end of 2016 decreases (or neu-
tral) the probability of adopting Unfavorable policy change on Al development. He actually
enhanced Al development, e.g., 2019 American Al Initiative. Firms with higher Al Exposure

should experience more positive stock prices reactions upon these events.

Prediction 6. The 2019 Trump’s American Al Initiative marks a more Favorable Al polit-

Fin the model, should become

ical environment. The impact of AI Favorable policy, i.e., g
more positive. This could be tested to see if more labor displacement threats happen, more

business ideas replaced by Al, and more physical capital becomes obsolete.

Prediction 7. Biden signed Unfavorable (or less Favorable) Executive Order on Oct, 2023.
In the model, it means, the probability of change from Favorable to Unfavorable increases,

F in the model, should become less positive or

or the impact of AI Favorable policy, i.e., g
even become negative as gV (Unfavorable) in the model. Al labor displacement effect reduced.
Firms with higher Al Exposure react less positively or even negatively in the stock prices upon

these events.

The event studies in the previous empirical section speak partially to the above pre-
dictions (5-7). I defer additional empirical tests to future work to further examine these

predictions.

E.  SDF, Stock Returns, and Risk Premia

Now we turn to the stock market implications, we can derive the SDF and see how this
policy shock from Favorable to Unfavorable is priced in the stock market. We first derive

the state price density in the following proposition:

Proposition 2. Before a regulatory or opportunity regime shift (t < 7), the state price
density is:
Ty = B;VQt,
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where

(ng+(1—p)77) (T—T)+<

1_p7'|t

Q, = e(—w+%7(v+1)02)(T—t)—v (ng+(1—p)77) (1) [pﬂte—v

) (ng+(1—p)77) (T—T)]

and p.; is the probability of a shift to Unfavorable AI policy (Corollary 1).

Proof. See the Proof in Appendix E.E. m

After deriving the state price density, we can apply It6’s Lemma and get the process for

SDF in the following proposition:
Proposition 3. The SDF is,

d d .

UL} [ﬂ] — \dZ, — AesdZC

iy T
where,

A=7v0>0
and | 80
At = ———62,071 >0
a0,

Proof. See the Proof in Appendix E.F. m

Prediction 8. AI policy change shock risk (from Favorable to Unfavorable) is negatively
priced in the stock market, e.qg., Biden’s FEO should decrease prices for high Al-exposure

firms.

With the derived SDF process, we can further write down the stock returns and risk pre-
mia assuming zero risk-free rate as the continuous time model typically does. The following
proposition states the process for stock realized returns and risk premia. Before we jump to

the proposition, we need a lemma to help us prove the proposition.
Lemma 3. Fort < 7, the stock price for firm i is given by:

M; = Bjey,
where

0! = =) (T=t)+¢! (ng+(1—p)n) (T=t) @eﬁi (ng+(1—p)77> (T=7) 4 (1— gbt)egi (ng+(1—p)77) (T—)

9

and
DPrit

N Drjt + (1 - pT\t)e_’yp(gF_gU)(T_T).

o
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Proof. See the Proof in Appendix E.G. [

Proposition 4. Firm i’s stock realized returns:

dM; dM; L
Mgt = Et |: M%T:| + O'dZt + O'let + BM,tdZt7

where

1 90i

511\4,15 = @ 8@ Ot < 07

and risk premia can be expressed as:

dM? ’
Et |: T:| = oAdt + ﬁ}\/l,t)\c,tdt

My,
where
a4 >0 ifp=0 (Fi Il AT Start
ﬁM’t _ zlfp ( z‘rms are a c.zr ers), and Aoy <0,
08! <0 ifp=1 (Firms are all AI Elites),
Proof. See the Proof in Appendix E.H. O

Lemma 4. For any two firms, i and j, with AI Exposure £ > &7, ¥i # j, return premia

spread between v and j s,

dM
E Tl _ &

dM;,
Mz,

>0 if p=0 (Firms are all AI Starters),
<0 ifp=1 (Firms are all Al Elites),

] = (B}J\M - 5%4,t>>‘c,tdt {

Proof. See the Proof in Appendix E.I. m

Prediction 9. There should be a statistically significant positive H-L return spread among
Al Ezposure-sorted portfolios if value-weighted (Al Elites dominate), and a statistically sig-
nificant negative H-L return spread among Al Exposure-sorted portfolios if equal-weighted
(Al Starters dominate).

The results from the previous empirical section (Table IV) show largely consistency with
this prediction. Panel A presents VW returns of decile portfolios of different versions of
Al Ezposure measures. H-L is the return spread between the highest decile and the lowest
decile. Panel B presents VW returns of quintile portfolios of different versions of AI Exposure
measures. Both Panel A and Panel B show that the return spread, H-L, is positive and
statistically significant for both AI Exposure and AI Exposure®P? sorted portfolios. This is
consistent with the fact that VW returns are usually dominated by big firms and big firms in
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my sample tend to be Al Elites that are predicted to be dominated by the regulation channel
and hence firms with higher Al Exposure should earn positive expected returns. Panel C
presents EW returns of decile portfolios of different versions of Al Exposure measures. Panel
D presents EW returns of quintile portfolios of different versions of Al Fxposure measures.
Except for the case of AI Exposure®?? in EW returns by quintiles, all return spread, H-L, is
significantly negative. This is consistent with the fact that EW returns are usually dominated
by small firms and small firms in my sample tend to be AI Starters that are predicted to
be dominated by the opportunity channel and hence firms with higher Al Ezposure should

earn lower expected returns.

V. Validation: Hedging AI Innovations

This section validates the main measures used in the empirical analysis, namely, AIV and
firm-level AI Exposure. Following the mimicking portfolio approach of Engle et al. (2020),
I show that using my AIV, investors can create a time series of AI News Index to capture
the innovation in AI development. In addition, investors can use my firm-level AI Exposure

measures to construct a mimicking portfolio to hedge the innovation in the AI News Index.

A. RavenPack AI News Index

After getting the AIV, I construct the RavenPack AI News Index. 1 use approximately 170
million news headlines from the Dow Jones and Press Release Edition of the RavenPack
News database from 2020 to 2024. I compute a monthly RavenPack AI News Index in two
version, Number of Headlines and Fraction of Al-Related Headlines. Number of Headlines is
defined as the total number of headlines that contain unigrams or bigrams in the previously
defined ATV on a monthly basis. Fraction of AlI-Related Headlines is the fraction of total
number of headlines that contain unigrams or bigrams in the previously defined AIV over
the total number of headlines on a monthly basis.

Figure 2 presents the RavenPack Al News Index from 2010 to 2024, along with key
Al-related news announcements highlighted in the plot. The plot displays the Number of
Headlines, representing the monthly count of RavenPack news headlines that include ATV
terms. The RavenPack Al News Index effectively captures the primary trends in Al-related
news. Notably, significant events include the launch of ChatGPT3 at the end of 2022 and
ChatGPT4 in March 2023, which correspond to notable increases in the Number of Headlines.
Prior to 2017, Al-related news was sparse. Key developments in Al-related topics during

this period were focused on machine learning and deep learning applications. For instance,
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Google’s Neural Networks team succeeded in identifying cats from millions of YouTube
videos, DeepMind excelled at Atari games, Facebook introduced DeepFace, Google launched
TensorFlow, and AlphaGo triumphed over Lee Sedol in the Go match. After 2017, appli-
cations of machine learning and deep learning expanded into everyday home and customer
services, exemplified by products like Google Home, Amazon Alexa, and Waymo’s taxi ser-
vice initiation. This period also saw Al applications in biotech advancing the development
of vaccines and other technologies during the COVID pandemic.

After constructing Al News Index, I define the series of AI Innovations. Al Innovations

is defined as residuals, ¢, from an AR(1) process:
AINewsIndex; =  x AINewsIndex,_1 + &, (21)

where t is on a monthly basis. Running this regression gives me a series of 168 full months

Al Innovations that will be included in my final analysis, from July 2009 to June 2023.

B. Constructing Hedging Portfolio

In this part, I apply the mimicking portfolio approach and construct hedging portfolio for
innovations in RavenPack Al News Index. To disentangle the Al risk factor, the one condition
for mimicking portfolio approach is to spanning all risk factors in the projection portfolios.
Obviously this is impossible to do. To mitigate the concern, I not only include a long-short
portfolio sorted on AI Ezposure but also include Fama and French (1993) three factors in

constructing the projection portfolio. I explain this in a regression,

, AlEzp/ '
Allnnovations; = & + WargapZe—q T 1+ w1z Z 2 1y

HML' MKT'
—i—wHMLthl rt—l—wMKTthl T + €, (22)

where AI Innovations are the residual series from an AR(1) regressions on Al News Index.
For ease of exposition, I follow the notation of Engle et al. (2020). I set Zf‘_lfzp/rt to repre-
sent the returns of a long-short portfolio, which longs the top half of firms with higher A[
Ezposure and shorts the bottom half with lower Al Ezposure. Similarly, I set size (using
cross-sectionally standardized market value to create ZtS_IlZE/, so that half the firms, sorted
by market value, have positive weight, and half have negative weight; note that this portfolio
will be long large firms and short small firms), value (using cross-sectionally standardized
values of book-to-market to create ZFL'") and the market (setting ZMET' to equal the
share of total market value). wasgap, Wsrze, WanmL, and wy rr capture the weights for each

factor for the final mimicking portfolio.
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C. In-Sample Fit

I first run Equation (22) for the in-sample fit using the full sample from July 2009 to June
2023. Table XIII presents the in-sample regression results. Column (1) runs the Al Innova-
tions on the mimicking portfolio only with Al Ezposure sorted portfolio; Column (2) adds
MKT portfolio; Column (3) adds SIZE portfolio; Column (4) adds HML portfolio; Column
(5) is the full regression.

Compare these five results, we can observe several things. First, the full regression in
Column (5) gives the highest in-sample regression R-squared, 8.19%. Second, full regression
in Column (5) gives the Al Exposure sorted portfolio highest weights. Third, the only
statistically significant weights are the Al Fxposure sorted portfolio. However, from Column
(5), we see other factors help boost the R-squared.

A possible explanation for this relatively low R-squared could result from the fact that
the full sample starts from July 2009, when AI was not a big thing. This could also be
seen in the Figure 2. Intuitively, we would see a higher weight on the AI Ezposure sorted
portfolio and higher overall R-squared if we run the in-sample fit on the later years from July
2016. Table XIV presents the subsample in-sample regression results from July 2016 to June
2023. The regression results are consistent with the intuition, that both the weight on the
Al Exposure sorted portfolio and overall R-squared are higher now. The overall R-squared
is 10.4%.

In the above regressions, the results show that the Al Exposure sorted portfolio really
matters. Hence, if we construct the Al Ezposure sorted portfolio by quartile sorting and
long the top quartile and short the bottom quartile, instead of long the top half and short
the bottom half, we might get more variations and hence better in-sample fitness. Table XV
presents the subsample in-sample regression results from July 2016 to June 2023 and quartile
sorting on Al Exposure portfolio. In Column (5), both the weight on the AI Ezposure sorted
portfolio and overall R-squared are higher now. The overall R-squared is 19.6%.

These in-sample tests show that investors can always figure out a better subsample to
boost the in-sample fitness. While the most important thing an investor should care is the
out-of-sample performance. In the next part, I show the out-of-sample performance of the

above in-sample models.

D.  Out-of-Sample Performance

To test the out-of-sample performance of the above in-sample models, I use the estimated
in-sample weights and run regressions with these weights for a later sample period in rolling

window style. More specifically, I run regression using data from the initial month, ¢,,;,, for
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which I observe Al Exposure and AllInnovations; series, to month ¢t — 1, for any month ¢,
but making sure each regression has at least 30 months.

Figure 6 presents the out-of-sample performance for each of the in-sample estimated
models. The left-hand-side graphs (a)(c)(e) show binscatter plots between the returns of
the hedge portfolios and the AI News Index Innovations, while the right-hand-side graphs
(b)(d)(f) depict the time series of the two. Panel (a) and (b) corresponds to the in-sample
results in Table XIII with full sample. There is a positive, 18.57%, correlation between the
constructed mimicking portfolio returns and Al News Index Innovations. This means that
the AT mimicking portfolio does earn higher returns when the positive Al news innovations
materialize. Panel (c¢) and (d) corresponds to the in-sample results in Table XIV with recent
years from July 2016 to June 2023. There is a positive, 20.24%, correlation between the
constructed mimicking portfolio returns and AI News Index Innovations. Panel (e) and (f)
corresponds to the in-sample results in Table XV with recent years from July 2016 to June
2023, and sorting is based on the top quartile minus the bottom quartile. There is a positive,
40.20%, correlation between the constructed mimicking portfolio returns and AI News Index
Innovations.

The last subsample out-of-sample correlation reaches 40.20%, which is great to investors.
However, here I am not claiming this is the optimal hedging subsample or best hedging
strategy. My goal is to show it is valid to apply the mimicking portfolio approach in hedging

long-run AT risk.

VI. Conclusion

AT has emerged as a transformative force reshaping firms’ risk profiles and opportunities.
This paper studies two channels, opportunity and regulatory uncertainty, through which
Al affects the stock prices and risk premia. I study this question between firms that I
call AI Starters and Al Elites. The AI Starters are firms that start to invest or adapt
to using Al in their operations, while the AI FElites are firms that have invested in Al or
used Al technologies in their daily operations for quite some time. The main finding in this
paper is that Al Starters are more opportunity-driven and Al FElites are more concerned
about regulatory risks, which leads to Al Starters showing a negative Al Exposure-returns
relationship while AI Elites showing a positive Al Exposure-returns relationship.

The findings are largely robust across several complementary empirical tests. First,
standard asset pricing tests, including portfolio sorts on Al Ezposure measures and factor
regressions, show a positive return spread and significant positive alpha for Al FElites, while

Al Starters exhibit a negative return spread. Second, Fama-MacBeth regressions reveal a
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negative relationship between Al Ezposure and returns for Al Starters, particularly for the
opportunity-related AI Exposure®P? measure. Third, this negative Al Fzposure-returns re-
lationship also holds for Implied Cost of Capital estimates. Fourth, the result is robust when
using option-implied expected return measures. Fifth, the risk premia mostly disappear fol-
lowing a three-pass procedure, which accounts for omitted variable bias and measurement
error, although the heterogeneous effects from the two channels remain. Lastly, using plau-
sibly exogenous regulation and opportunity shocks, I show that the real price reactions are
consistent with the main findings.

These results highlight a growing need for investors to account for Al-driven opportunities
and regulatory uncertainties in their asset allocation strategies. In the last part of the of
the paper, I implement a mimicking portfolio approach to showcase that Al innovations
are hedgeable. Future research could further investigate whether there could be an optimal
approach in hedging this Al innovations by leveraging the opposing effects of the two channels
discussed in this paper. As firms increasingly integrate Al technologies, understanding and
mitigating associated risks will be critical for achieving sustainable financial performance.
Future research could extend the theoretical framework to explore cross-industry variations

in AT risk exposure and assess its impact on asset prices.
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(b) Artificial Intelligence Unigrams

Figure 1. Artificial Intelligence Vocabulary WordCloud. The figures present word
clouds that summarize the Artificial Intelligence Vocabulary (AIV) extracted from academic
paper titles in the Web of Science. Following the literature, I focus on unigrams and bigrams.
The larger the term size, the more frequent the terms appear in the corpus (measured in
TF-IDF score). The Web of Science paper titles are downloaded from ProQuest, and cover
159,444 papers specifically related to artificial intelligence. The years range from 2010 to
2024. Panel (a) shows most frequent bigrams. Panel (b) shows most frequent unigrams.
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Monthly Frequency of Al-Related Headlines

12000 EUALAct
OpenAl launches GPT-4
10000 A .
OpenAl launches ChatGPT —
OpenAT releases DALL-T. —
Advances in Al-driven biotech —
8000 -
«
g Al tools combat COVID-19 —
<]
<
0
T 6000 - OpenAl introduces GP'1-2
S Waymo initiates taxi service
_“.é Google Home and Amazon Alexa
2 4000
AlphaGo defeats Lee Sedol A/'
Google launches TensorFlow
2000 Facebook unveils DeepFace
DeepMind masters Atari games
Google's NN identifies cats =
0
T T T T T T T
S > 5 A o N 5
S X & S N o 3
» » > > > » »
Date

Figure 2. RavenPack AI News Index. The figures present the RavenPack AI News
Index from 2010 to 2024, together with main Al-relevant news announcements marked in the
plot. The y-axis variable, Number of Headlines, represents the monthly count of RavenPack
news headlines containing AIV terms. The plot utilizes the Dow Jones and Press Release

Edition of the RavenPack News database, which includes approximately 170 million news
headlines from 2010 to 2024.
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Quarterly Mean: AI Exposure
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Figure 3. Summary Statistics of Al Exposure. This figure presents summary statistics
of firm-level AI Exposure measures on a monthly basis. Panel (a) presents the monthly mean
of AI Ezposure, AI Exposure®P?, and Al Exposure®9, and Panel (b) presents the unique
number of firms over time. The dataset spans from July 2009 to June 2023.
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Cumulative Returns of AI Factors
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Figure 4. Cumulative Returns and Twelve-Month Rolling Alpha. Panel (a) presents
the cumulative returns of the return spread between high- and low- AIEzposure or AI Exposure®PP
portfolios, either VW or EW. Panel (b)-(e) show the twelve-month rolling factor alphas of a strategy

that longs the high AIEzposure or AIExzposure®PP portfolio and short the low AIEzposure or
AI Exposure®PP portfolio.
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Figure 5. Three-Pass Risk Premia of AI Factors. This figure shows the risk pre-
mia estimates from the three-pass procedure for Al factors constructed using firm-level
Al Exzposure measures on a monthly basis, following Giglio and Xiu (2021). The four cir-
cle plots represent value-weighted Al factors, while the four triangle plots represent equal-
weighted Al factors. “AIE” denotes the return spread between the highest and lowest deciles
sorted by Al Exzposure, and “AlE Opp” denotes the return spread between the highest and
lowest deciles sorted by AIExposure®”. When the notation “5” is used, it indicates the
return spread between the highest and lowest quintiles. For each factor, I estimate the
risk premia using different sets of testing portfolios, a range of one to ten lags for computing
Newey-West standard errors and a range of one to ten for principal components. The dataset
spans from July 2009 to June 2023.
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Figure 6. Out-of-sample Performance. This figure presents out-of-sample performance of
hedge portfolios constructed to hedge the RavenPack Al News Index. The left-hand graphs (a)(c)(e)
show binscatter plots between the returns of the hedge portfolios and the AI News Index Innova-
tions, while the right-hand graphs (b)(d)(f) depict the time series of the two. The full sample
analysis covers months from July 2009 to June 2023, with a subsample with recent years from July
2016 to June 2023. For the full sample, the mimicking portfolios are sorted by the top half minus
the bottom half; for the subsample, sorting is bas%d on the top quartile minus the bottom quartile.



Table I
Summary Statistics and Correlation: AI Exposure Measures

This table presents the summary statistics and correlation of the overall firm-level Al Ez-
posure and different versions of topic-specific or tone-specific AI Exzposure measures at the
firm-quarter level. Panel A presents the summary statistics of different versions of Al Fux-
posure measures. Panel B presents the correlation among different versions of Al Fxposure
measures. | denote the overall AI Fxzposure measure, the Al Exposure regarding opportunity,
the Al FEzxposure regarding regulation, the Al Fxposure regarding risk, the Al Exposure with
positive tones, and the AI Exposure with negative tones as Al Exposure, Al Exposure®??,
Al Exposuref® Al Exposure®™* Al Exposure’, and Al Exposure™N®, respectively. For
the ease of exposition, I multiply 1,000 for each measure.

Panel A: Summary Statistics

Variable Observation Mean SD 10% 25% 50% 75% 90% Max
AIExposurei,t 391,232 440 1.73 255 3.22 4.11 527 6.60 24.83

AIExposure?fp 391,232 2.44  2.64 0.00 0.00 241 4.44 591 24.83
AIExposuref%fg 391,232 0.78 1.87 0.00 0.00 0.00 0.00 3.99 24.83
AIExposure?fSk 391,232 0.90 1.88 0.00 0.00 0.00 0.00 4.14 22.42
A[Exposureffs 391,232 0.86 1.97 0.00 0.00 0.00 0.00 4.22 23.71
AIExposuref\ieg 391,232 0.17 0.88 0.00 0.00 0.00 0.00 0.00 19.63

Panel B: Correlation

AlExposure;, AlExposurel?™  AlExposurely’ AlExposurel™*  AlExposurel?® AlExposure,y’
Al Exposure;; 1.000
AIExposureffp 0.478 1.000
Al Exposurey? 0.203 0.240 1.000
AIEzposurefist 0.119 0.192 0.355 1.000
Al Exposurel 0.241 0.176 0.081 0.052 1.000
AIEzposure, 0.033 0.031 0.026 0.028 0.016 1.000

43



Table II
Characteristics of AI Exposure-Sorted Portfolios (Quintile)

This table reports the summary statistics for characteristics of Al Fxposure-sorted quintile portfolios. At the end of
June of each year, stocks are ranked by their AI Ezposure and sorted into quintiles. AI Exposure is defined as the
fraction of Al-related unigrams and bigrams in a firm’s call transcripts, and here it is multiplied by 1000 for ease of
exposition. Firm size, In(ME), is measured as the log of market equity in June of year t. BE/ME is measured as the
ratio between book equity at the end of June of year ¢ and market equity at the end of December of year t — 1. ROFE
is profitability, measured as income before extraordinary items divided by book equity. ROA is another profitability
measure, defined as income before extraordinary items divided by total assets. R&D/Assets is defined as the ratio
of R&D to lagged total assets. Firm Age measures the age of a firm starting from its initial listing in the CRSP
database. Asset Growth is defined as the ratio between the change of total assets from year ¢ — 2 to year ¢t — 1 and
total assets in year ¢t — 2. I follow Fahlenbrach, Rageth, and Stulz (2021) to construct the following three financial
flexibility measures. Cash/Assets is the ratio of cash to total assets. St Debt/Assets is the ratio of debt in current
liabilities to total assets. Lt Debt/Assets is the ratio of long-term debt to total assets. Tangibility is property, plant,
and equipment divided by total assets. Book Leverage is the sum of current liabilities and long-term debt divided
by total assets. WW Index is the Whited and Wu index used to measure financial constraint (see, Whited and Wu,
2006). After winsorizing at the 1st and 99th percentiles to limit the influence of outliers, all firm characteristics
variables are standardized to have a mean of zero and a standard deviation of one. The sample period is 2009 to
2024 at an annual frequency.

Quintile 1 2 3 4 5
mean mean mean mean mean
Al Ezposure -1.14  -0.62 -0.18 0.37 1.57

Al Exposure®” -0.76 -0.37 -0.08 0.30 0.92
AlEzposuref®  -0.32 -0.14 -0.01 0.11 0.36
Al Exposuref®™® 023 -0.03 0.04 0.09 0.13
AlExposuref®s -0.45 -0.22 -0.04 0.19 0.53
Al Exposure™N®d  -0.07 -0.01 0.04 0.05 -0.00

Size 0.05 0.10 0.06 -0.02 -0.19
BE/ME 0.05 0.03 -0.01 -0.04 -0.02
ROA 025 0.23 0.15 -0.03 -0.60
ROE 0.19 0.15 0.08 -0.05 -0.38
R&D/ Assets -0.39 -0.33 -0.19 0.13 0.78
Firm Age 021 0.15 0.06 -0.10 -0.31
Asset Growth -0.09 -0.07 -0.02 0.04 0.14
Cash/Assets -0.46 -0.36 -0.18 0.16 0.83

St Debt/Assets  0.10 0.01 -0.01 -0.03 -0.07
Lt Debt/Assets  0.17 0.18 0.08 -0.07 -0.37

Tangibility 021 0.17 0.07r -0.10 -0.32
Book Leverage 0.20 0.17 0.07 -0.08 -0.37
WW Index -0.00 0.01 0.01 0.02 -0.04
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Table III
Al Exposure by Industry (SIC2)
Full Sample: July 2009 to June 2023

This table shows the average Al Ezposure for the top ten industries based on their SIC
2-digit codes. Panel A lists the top ten industries with the highest overall Al Ezposure,
while Panel B shows the top ten industries ranked by the AI Ezposure measure based on
opportunities (Al Exposure®PP).

Panel A: Al Exposure;

Industry (SIC2) N Mean SD Median

Educational Services 1,582  6.29 2.40 5.82
Insurance Agents, Brokers, & Service 887 5.56 3.00  4.59
Local & Interurban Passenger Transit 176 5,50 233  4.98

Business Services 29,793 546 1.91 5.25
Chemical & Allied Products 24,532 540 212 514
Instruments & Related Products 12,424 538 2.05  5.03

Electronic & Other Electric Equipment 15,788  5.05 1.91 4.82
Engineering & Management Services 3,082 499 1.79 477
Eating & Drinking Places 2925 485 143 4.72
Communications 7,630 480 1.91 4.57

Panel B: A[Exposure?tpp

Industry (SIC2) N Mean SD  Median
Insurance Agents, Brokers, & Service 887 3.89 384  3.75
Business Services 29,793 3.78 3.08 4.37
Educational Services 1,582 3.75 3.88 4.04
Instruments & Related Products 12,424 3.62 3.07 3.99

Local & Interurban Passenger Transit 176 3.36  3.41 3.72
Engineering & Management Services 3,082 330 289  3.72
Miscellaneous Manufacturing Industries 1,369  3.30 2.41 3.70

Security & Commodity Brokers 5,094 321 255  3.72
Electronic & Other Electric Equipment 15,788  3.07  2.99 3.43
Industrial Machinery & Equipment 9478 295 2.74 3.15
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Table IV
Portfolio Sorts and Returns

This table presents average monthly value-weighted (VW) or equal-weighted (EW) returns
(in percentage) of portfolios sorted by overall firm-level AI Exposure and Al Exposure©P?.
Panel A presents VW returns of decile portfolios of different versions of Al Fxposure mea-
sures. H-L is the return spread between the highest decile and the lowest decile. Panel
B presents VW returns of quintile portfolios of different versions of Al Fxposure measures.
Panel C presents EW returns of decile portfolios of different versions of Al Fxposure mea-
sures. Panel D presents EW returns of quintile portfolios of different versions of AI Ezposure
measures. The t-statistics are computed using heteroscedasticity and autocorrelation con-
sistent Newey-West (1987) standard error estimates with a lag length of 12 months.

Panel A. VW Returns by Deciles

Al Exposure L 2 3 4 5 6 7 8 9 H H-L
Mean 1.47 150 1.59 1.37 1.51 1.43 1.69 1.80 2.07 2.43 0.96
] 5.54 494 6.65 5.62 521 544 565 6.06 583 5.06 2.65
Al Exposure®™ L 2 3 4 5 6 7 8 9 H H-L
Mean 1.74 121 146 149 158 1.38 1.51 1.77 2.03 2.34 0.60
] 6.05 4.32 5.13 547 6.56 4.89 6.09 6.01 6.83 5.00 1.67

Panel B. VW Returns by Quintiles
Al Exposure L 2 3 4 H H-L

Mean 1.49 149 1.50 1.77 226 0.77

[] 527 6.27 5.67 6.13 5.77 2.56

Al Exposure®™ L 2 3 4 H H-L
Mean 1.63 147 148 1.63 2.19 0.56

[] 6.07 539 5.85 6.15 6.09 2.08

Panel C. EW Returns by Deciles

Al Ezxposure L 2 3 4 5 6 7 8 9 H H-L
Mean 1.23 1.10 1.26 1.19 1.13 1.04 1.06 0.92 1.04 091 -0.32
[t] 2.69 241 2.69 274 257 231 219 1.87 2.00 143 -0.73
Al Exposure®” L 2 3 4 5 6 7 8 9 H H-L
Mean 1.07 1.08 1.19 1.10 1.22 1.08 1.06 1.15 0.93 0.88 -0.19
[t] 217 2.15 264 246 278 245 242 231 1.75 1.50 -0.83

Panel D. EW Returns by Quintiles
Al Ezxposure L 2 3 4 H H-L

Mean 1.16 1.22 1.08 0.99 0.97 -0.19
1 2.56 2.72 2.45 2.05 1.70 -0.53
Al Exposure®?” L 2 3 4 H H-L
Mean 1.14 1.14 1.15 1.11 0.90 -0.24
] 240 2.55 2.62 237 163 -1.03
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Table V
Sequential Sorts and Returns

This table presents average monthly value-weighted (VW) returns (in percentage) of sequen-
tially sorted portfolios, first sorted by anomalies, and then sorted by overall firm-level Al
Ezposure. In each panel, I report sequential sort returns using full sample, and subsample
that includes the second half of the full sample, i.e., recent years. The t-statistics are com-
puted using heteroscedasticity and autocorrelation consistent Newey-West (1987) standard
error estimates with a lag length of 12 months.

Panel A. Size x AIE Sequential Sort
Full Sample L 2 3 4 H H-L

Mean 1.52 155 1.45 1.64 191 040
[t] 539 6.02 543 6.50 5.71 1.58
Rocent Years L 5 3 1 H L Panel F. AG x AIE Sequential Sort
Mean 145 149 140 1.63 225 080 FullSample L 2 3 4 H HL
1] 3.37 3.83 3.11 401 381 1.90 Mean 1.51 1.48 1.57 1.63 2.16 0.65
[1] 5.66 5.71 5.76 6.09 6.13 2.49
Panel B. B/M x AIE Sequential Sort Recent Years L 2 3 4 H H-L
Full Sample L 2 3 4 H H-L Mean 143 145 1.57 1.65 257 1.14
Mean 1.54 150 154 1.81 218 0.64 [t] 3.66 3.35 3.41 4.02 4.13 2.69
[t] 5.81 6.15 5.55 6.37 5.67 2.60
Recent Years L D) 3 1 I oL Panel G. CA x AIE Sequential Sort
Mean 146 150 158 1.86 2.61 1.16 Full Sample L 2 3 4 H HL
[t] 364 3.69 3.63 3.88 387 2094 Mean 1.58 1.67 1.54 1.54 1.83 0.25
[t] 5.89 5.88 5.87 5.67 6.06 1.66
Panel C. R&D x AIE Sequential Sort Recent Years L 2 3 4 H H-L
Full Sample L 2 3 1 H H-L Mean 1.54 1.63 1.56 1.67 2.03 0.49
Mean 1.63 1.56 1.59 155 1.91 0.28 1] 364 358 353 3.74 3.79 2.13
[t] 6.28 558 6.12 598 5.59 1.62
Recent Years L 2 3 4 H H-L Panel H. BL x AIE Sequential Sort
Mean 1.66 1.52 1.50 1.68 2.22 0.57 Full Sample L 2 3 4 H HL
[t] 4.01 3.39 344 4.16 3.74 2.03 Mean 1.49 158 143 1.69 2.07 0.58
[1] 5.54 6.00 540 6.01 6.16 2.27
Panel D. Age x AIE Sequential Sort Recent Years L 2 3 4 H HL
Full Sample L 2 3 4 H HL Mean 140 154 140 1.80 240 1.00
Mean 1.53 1.58 1.50 1.61 198 0.45 [t] 347 359 321 385 4.10 2.31
1] 550 5.69 5.97 5.87 6.24 1.96
Recent Years L 2 3 4 H H-L Panel I. TANT x AIE Sequential Sort
Mean 1.44 1.57 1.47 1.61 233 0.89 Full Sample L 2 3 4 H H-L
[t] 3.39 3.57 3.50 3.60 4.26 2.49 Mean 149 1.59 1.52 1.74 198 0.49
[t] 5.52 6.22 582 6.18 5.33 1.96
Panel E. ROE x AIE Sequential Sort Recent Years L B 3 4 H 0L
FullSemple L 2 3 4 H HL Mean 143 147 161 1.82 2.32 0.80
[t] 5.13 6.24 547 6.41 6.08 2.07
Recent Years L 2 3 4 H H-L
Mean 1.43 150 145 1.72 225 0.82
[t] 3.14 389 3.02 445 3.89 2.10
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Table VI
Regressions for H-L Portfolios Sorted on AI Exposure

This table reports the estimated monthly « (basis points) and coefficients of regression of
dependent variable H-L (based on VW returns) on a sets of leading factors (see, Chabi-Yo,
Gongalves, and Loudis, 2025; Fama and French, 1996; Fama and French, 2015; Hou, Xue,
and Zhang, 2015; Hou et al., 2020). H-L is the monthly return spread between firms with
High AI Ezposure (10th decile) and Low AI Exposure (1st decile). Column (1) reports the
CAPM; Column (2) reports the ICAPM; Column (3) reports Fama-French 3 factors; Column
(4) reports Fama-French 3 factors plus Carhart (1997) momentum factor-UMD; Column (5)
reports Fama-French 5 factors; Column (6) reports q factors; Column (7) reports g5 factors.
The sample period is from July 2009 to June 2023 at an monthly frequency. The t-statistics
are based on standard errors estimated using the Newey-West correction for 12 lags. ***
** and * correspond to statistical significance at the 1%, 5%, and 10% levels, respectively.

(1) (2) (3) (4) (5) (6) (7)

CAPM ICAPM FF3 FF4 FF5 q ab
o 66.88%%  72.92%F  G7.90%*F  66.62FF*  81.19%FF  99.09F**k 83 5&FH*
(2.25)  (2.58) (3.22) (3.24) (3.65) (3.85) (3.61)
MktRF 11.80 5.726 10.63 11.22 8.800 0.871 4.244
(1.55)  (0.73) (1.51) (1.51) (1.19) (0.10) (0.55)
g -14.96
(-0.67)
ry 6.986
(0.34)
SMB 30.47* 30.71* 23.82
(1.94) (1.93) (1.61)
HML -63.20%F%  _62.22%F 47 g4rrk
(-10.91)  (-11.72) (-5.21)
UMD 2.767
(0.32)
RMW -13.22
(-0.76)
CMA -34.07%*
(-2.09)
qME 14.68 26.79*
(0.96) (1.66)
g4 -79.78% %k 59 g5k
(-8.28) (-5.75)
qhor -14.49  -40.18%**
(-1.59) (-3.55)
qEG 51.992%%*
(4.22)
R-squared 0.023 0.035 0.359 0.360 0.386 0.304 0.351
Observations 162 162 162 162 162 162 162
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Table VII
Fama-MacBeth Regressions on AI Exposure
Full Sample: July 2009 to June 2023

This table reports Fama-MacBeth regressions of individual stock excess returns (in percentage)
on Al Ezxposure and other firm characteristics. Cross-sectional regressions are conducted monthly
from July of year ¢ to June of year ¢t + 1. Each month, individual stock returns are regressed on
Al Exposure from year t — 1 and various control variables available by the end of June of year t.
The list of control variables are defined as Table II. Column (1)-(4) report Ordinary Least Square
(OLS) regression results. Column (5)-(8) report Weighted Least Square (WLS) regression results
using market equity as the weights. The t-statistics are based on standard errors adjusted using
the Newey-West method. The full sample is from July 2009 to June 2023.

OLS WLS
(1) (2) 3) (4) (5) (6) (7) (8)

Al Exposure -0.0775%* 0.0806

(-2.19) (1.32)
AT Exposure Opp -0.104%%* 0.102

(-4.41) (1.39)
AT Exposure Reg -0.0566** -0.0593%*
(-2.06) (-1.86)
AT Exposure Risk -0.0283 0.0113
(-0.91) (0.38)

Size -0.0887 -0.0809 -0.0817 -0.0838  -0.0764  -0.0771 -0.0756 -0.0768

(-1.62) (-1.50) (-1.51) (-1.57) (-1.40) (-1.41) (-1.39) (-1.41)
BE/ME 0.139 0.140 0.143 0.138 0.132 0.131 0.129 0.130

0.96)  (0.96)  (0.98)  (0.94)  (0.91)  (0.90)  (0.88)  (0.89)
ROE 0.540%**  (0.543%**  (.545%%*  0.546%*F*  -0.151 -0.155 -0.153 -0.153

(411)  (413)  (413)  (414)  (-1.00)  (-1.03)  (-1.03)  (-1.03)
R&D/Assets 0.154** 0.147%* 0.139%%  0.137*%F  0.295%F  (0.324***  (.332%**  (.323%%*

(2.61) (2.50) (2.38)  (2:35)  (2.59)  (294)  (2.92)  (2.83)
Firm Age -0.0682 -0.0686 -0.0685 -0.0682  -0.0749  -0.0752 -0.0750 -0.0747

(-1.50)  (-148)  (-1.46)  (-145)  (-1.60)  (-1.61)  (-1.59)  (-1.58)
Asset Growth -0.0693 -0.0707 -0.0662 -0.0662  -0.0317  -0.0344 -0.0287 -0.0306

((1.23)  (-1.25)  (-1.18)  (-1.15)  (-043)  (-047)  (-0.40)  (-0.41)
Cash/Assets 0.349%**  0.350%**  (.374*%FF  0.374%FF  0.526%F*F (0.545%FFF  (0.582¥**  (.57THFF

(420)  (433)  (413)  (435)  (4.28)  (4.39)  (4.26)  (4.31)
St Debt/Assets -0.0638%  -0.0652*  -0.0599* -0.0597* -0.0917* -0.0964* -0.0902* -0.0898*

(-143)  (-147)  (-1.36)  (-1.36)  (-1.80)  (-1.88)  (-1.79)  (-1.76)
Lt Debt/Assets 0.0829 0.0865 0.0863 0.0898 0.0508 0.0544 0.0542 0.0595

(1.43) (1.48) (1.46)  (1.51)  (0.91)  (0.97)  (0.96)  (1.05)
Tangibility 0.00989 0.0103 0.00700  0.00810 0.0493 0.0498 0.0451 0.0456

(0.12)  (0.12)  (0.09)  (0.10)  (0.50)  (0.51)  (0.47)  (0.48)
Constant 1.724%*%  1.452%* 1.437%%  1.827***  2.265%HKF  2,223** 2.136** 2.138**

(3.16)  (257)  (253)  (3.08)  (264)  (257)  (248)  (2.34)
Industry (SIC2) FE Yes Yes Yes Yes Yes Yes Yes Yes
Observations 528170 528170 528170 528170 528170 528170 528170 528170
R-squared 0.286 0.286 0.284 0.285 0.286 0.285 0.284 0.285
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Table VIII
Fama-MacBeth Regressions on AI Exposure
Subsample: July 2016 to June 2023

This table reports Fama-MacBeth regressions of individual stock excess returns (in percentage)
on Al Ezposure and other firm characteristics. Cross-sectional regressions are conducted monthly
from July of year ¢ to June of year ¢t + 1. Each month, individual stock returns are regressed on
Al FExposure from year t — 1 and various control variables available by the end of June of year t.
The list of control variables are defined as Table II. Column (1)-(4) report Ordinary Least Square
(OLS) regression results. Column (5)-(8) report Weighted Least Square (WLS) regression results
using market equity as the weights. The t-statistics are based on standard errors adjusted using
the Newey-West method. The subsample is from July 2016 to June 2023.

OLS WLS
(1) (2) 3) (4) (5) (6) (7) (8)

Al Exposure -0.0867 0.184*

(-1.52) (1.96)
AT Exposure Opp -0.109* 0.216**

(-2.47) (2.48)
Al Exposure Reg -0.0420 0.000160
(-1.01) (0.01)
Al Exposure Risk 0.0121 0.0570
(0.24) (1.57)

Size -0.0146  -0.00903 -0.0128 -0.0158  -0.0314  -0.0340 -0.0266  -0.0265

(-0.22)  (-0.14)  (-0.19)  (-0.24)  (-0.98)  (-1.06)  (-0.81)  (-0.81)
BE/ME 0.0342 0.0342 0.0327 0.0282  -0.00613  0.00511 0.0129 0.0129

(0.65)  (0.65)  (0.62)  (0.54)  (-0.06)  (0.05)  (0.13)  (0.13)
ROE 0.483*  0.486*  0.489*  0.487*  0.00345 0.000945 0.0165  0.00237

(2.58)  (257)  (2.58)  (2.58)  (0.02)  (0.00)  (0.09)  (0.01)
R&D/Assets 0.130 0.122 0.116 0.117 0.414%*%  0.453***  (0.484***  (0.473***

(1.39)  (1.27)  (1.22)  (L.24)  (2.61)  (2.84)  (3.00)  (2.89)
Firm Age -0.00410 -0.00291 -0.00206 -0.00366 -0.133*  -0.137*  -0.137*  -0.136*

(-0.04)  (-0.03)  (-0.02)  (-0.03) (-1.72) (-1.74) (-1.73) (-1.70)
Asset Growth -0.122 -0.121 -0.121 -0.123 -0.105 -0.104 -0.0995  -0.0988

(-2.07)  (-2.06)  (-207)  (2.07)  (-1.19)  (-1.17)  (-1.15)  (-1.07)
Cash/Assets 0.259%* 0.244 0.238 0.232 0.454%**  0.460%** (0.508%** (.512%**

(2.16)  (1.95)  (1.88)  (1.82)  (3.18)  (3.24)  (3.19)  (3.50)
St Debt/Assets -0.0906  -0.0917 -0.0880 -0.0911  0.00387 0.000215 0.00889  0.00969

(-1.19)  (-1.22)  (-1.17)  (-1.21)  (0.07)  (0.00)  (0.16)  (0.18)
Lt Debt/Assets 0.0805  0.0879  0.0915  0.0017  0.134%F  0.142%** (0.145%**  (0.147***

(1.24)  (1.29)  (1.33)  (L34)  (2.58)  (281)  (2.80)  (2.79)
Tangibility 0.150 0.144 0.152 0.150 0.146 0.148 0.137 0.137

(1.32)  (1.28)  (1.33)  (1.34)  (1.38)  (141)  (1.36)  (1.39)
Constant 0.731 1.120 0.469 0.875 1.091 0.804 0.948 1.181

(0.60) (1.34) (0.42) (0.95) (1.61) (1.09) (1.31) (1.54)
Industry (SIC2) FE Yes Yes Yes Yes Yes Yes Yes Yes
Observations 275346 275346 275346 275346 275343 275343 275343 275343
R-squared 0.107 0.107 0.106 0.106 0.308 0.307 0.306 0.306
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Table IX
Multivariate Fama-MacBeth Regressions of Realized Returns and ICC
Measures on Al Exposure

This table reports mutivariate Fama-MacBeth regressions of ex-post realized returns (in
percentage) and Implied Cost of Capital (ICC) measures (in percentage) on Al Exposure.
Column (1) reports regressions of realized returns on Al Ezposure; column (2) reports results
of ICC estimates based on Gebhardt, Lee, and Swaminathan (2001); column (3) reports
results of ICC estimates based on Claus and Thomas (2001); column (4) reports results of
ICC estimates based on Ohlson and Juettner-Nauroth (2005); column (5) reports results
of ICC estimates based on Easton and Monahan (2005); column (6) reports results of ICC
estimates that are computed as the average of the previous four ICC estimates. The detailed
ICC estimates construction could be found in Hou, van Dijk, and Zhang (2012). The list
of control variables are the same as Table VII. For the ease of exposition, their estimated
coeflicients are not shown here.

Panel A: AIExposure

(1) (2) (3) (4) (5) (6)
Realized Ret  GLS CT 0J MPEG  Composite
Al Exposure -0.0775%%  -0.0128 0.0443 0.332%FF  1.348%**  (.649%**
(-2.19)  (-017) (1.02)  (5.51)  (4.80) (3.32)
Industry (SIC2) FE Yes Yes Yes Yes Yes Yes
Observations 528174 302464 255532 208890 233935 335901
R-squared 0.106 0.332 0.325 0.255 0.388 0.339

Panel B: Al Exposure®r?

(1) (2) (3) (4) () (6)
Realized Ret GLS CT OJ MPEG Composite
Al Exposure Opp -0.104%**  -0.0869* -0.113*** -0.0821* -0.0139  -0.0813*
(-4.41) (-1.69)  (4.32)  (-1.72)  (-0.15)  (-1.83)
Industry (SIC2) FE Yes Yes Yes Yes Yes Yes
Observations 528174 302464 255532 208890 233935 335901
R-squared 0.106 0.332 0.325 0.254 0.383 0.336
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Table X
Portfolio Sorts and Option-Implied Returns

This table presents average monthly value-weighted (VW) option-implied returns (in per-
centage) of portfolios sorted by overall firm-level Al Ezxposure. The option-implied expected
returns are estimated following Martin and Wagner (2019). Panel A presents VW average
monthly 1-month returns of decile portfolios. H-L is the return spread between the highest
decile and the lowest decile. Panel B presents VW average monthly 3-month returns of decile
portfolios. Panel C presents VW average monthly 6-month returns of decile portfolios. Panel
D presents VW average monthly 9-month returns of decile portfolios. Panel E presents VW
average monthly 12-month returns of decile portfolios.

Panel A. Average Monthly 1-month Expected Returns
AlEzxposure L 2 3 4 5 6 7 8 9 H H-L
Mean 3.79 421 410 3.81 361 395 381 3.85 4.11 4.23 045
[t] 6.98 6.80 6.99 7.82 7.11 7.44 683 7.75 824 835 1.79

Panel B. Average Monthly 3-month Expected Returns
AlExposure L 2 3 4 5 6 7 8 9 H H-L

Mean 3.86 4.19 4.10 3.90 3.68 4.01 391 3.97 4.20 4.43 0.57
[t] 777 761 8.02 886 822 822 791 894 937 880 1.88
Panel C. Average Monthly 6-month Expected Returns
AlExposure L 2 3 4 5 6 7 8 9 H H-L
Mean 4.00 4.33 4.21 4.04 3.82 4.13 4.05 4.12 434 459 0.59
[t] 8.57 843 9.14 10.09 9.71 939 895 10.13 10.66 991 1.91
Panel D. Average Monthly 9-month Expected Returns
AlExposure L 2 3 4 5 6 7 8 9 H H-L
Mean 3.1 379 3.67 362 338 367 364 371 395 420 0.69
[t] 8.30 874 10.32 10.14 10.57 9.84 9.17 10.72 11.85 9.59 1.77
Panel E. Average Monthly 12-month Expected Returns
AlExposure L 2 3 4 5 6 7 8 9 H H-L
Mean 347 372 363 359 335 362 363 368 392 420 0.73
[t] 8.46 9.13 11.10 10.68 11.35 10.48 948 11.28 12.57 10.05 1.85
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Table XI
Event Studies: Cumulative Abnormal Returns (CAR)
Political and Innovation Shocks

This table presents cumulative abnormal returns (in percentage) post several Al related
political and innovation stocks sorted into Al Fxposure-sorted portfolios. The table reports
daily cumulative abnormal returns over a 10-day window from day 0 (event day) to day
11 after the election. These cumulative abnormal returns are equally weighted across Al
Exposure-sorted portfolios. I follow the typical way by using a 250-trading day window that
ends 25 days before the event day to estimate CAPM beta. I focus on the period from
the day of the U.S. presidential election to ten days post-election. I adjust the Cumulative
Abnormal Return (CAR) of each stock for market trends using daily market returns and the
risk-free rate obtained from the French website.
Panel A: Trump Election Win on Nov 8, 2016

CAR [1,10] 1 2 3 4 5 H-L
Daily Return 4.18  3.00 242 264 343 -0.75
[t] 596 607 642 644 719 -0.89

Panel B: Biden Election Win on Nov 3, 2020

CAR[1,10] 1 2 3 4 5 H-L
Daily Return  1.84 245 158 155 157 -0.27
[t] 519 491 420 317 326 -0.45

Panel C: Biden AI EO on Oct 30, 2023

CAR[1,10] 1 2 3 4 5 H-L
Daily Return -2.22 -3.31 -2.59 -3.63 -4.06 -1.84
[t] 560 -83%8 -501 -6.68 -6.51 -2.49

Panel D: Biden AI EO on Oct 30, 2023
Exclude Big Stocks

CAR [1,10] 1 2 3 1 5 H-L
Daily Return -1.64 -2.78 -1.52 -2.66 -2.75 -1.11
[t] 466 -7.76 -293 -511 -511 -1.73

Panel E: The launch of ChatGPT3 on Nov 30, 2022

CAR[1,10] 1 2 3 1 5 H-L
Daily Return -0.35 -0.14 036 049 1.14 149
[t] 161 -046 089 131 227 272

Panel F: The launch of ChatGPT3 on Nov 30, 2022
Exclude Tiny Stocks

CAR [1,10] 1 2 3 4 5 H-L
Daily Return -0.23 0.12 040 0.12 0.61 0.83
[t] -1.22 0.60 095 049 1.60 1.98
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Table XII
Profitability Regressions on AI Exposure

This table reports panel regressions of ROE on AI Exposure and other firm characteristics.
1sUnfav is a dummy variable if year is between 2021 and 2023 during Biden’s administration,
when the AI policy is relatively unfavorable. I include the interaction term between ATl
FExposure and isUnfav. All other control variables are defined the same as Table II. The
analysis spans from July 2009 to June 2023. Current ROFE is defined as the ROE at year ¢,
Lagged ROE at year t — 1, and Future ROE at year t + 1. Column (1) and (2) have Current
ROFE as the dependent variable and include Lagged ROE as one of the independent variables.
Column (3) and (4) have Future ROE as the dependent variable and include Current ROE
as one of the independent variables. Industry FE is included. Column (1) and (3) cluster
standard errors by Firm, while Column (2) and (4) cluster standard errors by Industry x
Year.

0 B ) @
Current ROE  Current ROE  Future ROE Future ROE
AT Exposure -0.0415%** -0.0415%** -0.0250*** -0.0250
(-6.08) (-3.11) (-3.87) (-1.76)
isUnfav -0.0304%** -0.0304 -0.127%** -0.127%**
(-2.80) (-0.47) (-8.52) (-3.54)
Al Exposure x isUnfav -0.0506%*** -0.0506*** -0.0618*** -0.0618*
(-4.33) (-3.75) (-3.50) (-1.96)
Lagged ROE 0.468%** 0.468%**
(21.93) (6.96)
Current ROE 0.496%** 0.496%**
(22.58) (7.01)
Size 0.219%%* 0.219%** 0.115%** 0.115%%*
(21.98) (5.43) (15.97) (6.57)
log(BE/ME) 0.186*** 0.186*** -0.0103 -0.0103
(15.20) (4.26) (-1.60) (-1.07)
Asset Growth -0.0523%*** -0.0523*** -0.0518*** -0.0518**
(-4.85) (-3.58) (-5.14) (-2.54)
Cash/Assets -0.0345%** -0.0345 -0.0834%** -0.0834**
(-3.70) (-0.99) (-8.20) (-2.18)
St Debt/Assets -0.144*** -0.144*** -0.0252 -0.0252
(-3.59) (-4.02) (-0.62) (-0.99)
Lt Debt/Assets -0.218%* -0.218%* -0.0455 -0.0455
(-2.20) (-2.74) (-0.43) (-0.89)
Tangibility -0.00749 -0.00749 0.0223*** 0.0223
(-0.89) (-0.58) (3.02) (1.41)
Book Leverage 0.113 0.113 0.00127 0.00127
(1.05) (1.41) (0.01) (0.02)
WW Index 0.00479 0.00479 0.00661*** 0.00661*
(1.59) (1.27) (2.84) (2.04)
Constant -0.0230%*** -0.0230 0.00237 0.00237
(-3.86) (-1.55) (0.44) (0.09)
Industry FE Yes Yes Yes Yes
Cluster SE by Firm Yes No Yes No
Cluster SE by Industry x Year No Yes No Yes
Observations 35242 35242 32429 32429
R-squared 0.340 0.340 0.285 0.285
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Table XIII
In-Sample Regressions for AI Innovations on Mimicking Portfolio Returns
Full Sample: July 2009 to June 2023

This table presents results from in-sample regression (1). The dependent variable captures
innovations in the Ravenpack Al News Index measure. Observations are monthly, covering
the period from July 2009 to June 2023. Following Engle et al. (2020), I set ZillExp,rt to
represent the returns of a mimicking portfolio, which longs the top half of firms with higher
Al Ezposure and shorts the bottom half with lower Al Exposure. Similarly, I set size (using
cross-sectionally standardized market value to create Z2'Z”'| so that half the firms, sorted
by market value, have positive weight, and half have negative weight; note that this portfolio
will be long large firms and short small firms), value (using cross-sectionally standardized
values of book-to-market to create ZM3L") and the market (setting ZMET' to equal the
share of total market value). The t-statistics are provided in parentheses. *** ** and *
denote statistical significance at the 1%, 5%, and 10% levels, respectively.

. AIEzp/ '
Allnnovations; = & + WargapZeq * 1+ w1z 22 2 1,

HML MKT'
‘WML Ll U T WyrkTZi2 T T+ e (22)

(1) (2) (3) (4) (5)

ZAM B 82.24%4K 82 95F*K QG AFKK 02 OFKE 93 25HHK
(3.60) (3.59) (3.73) (2.87) (2.87)

ZMKT' 2.717 -7.683
(-0.27) (-0.72)
ZIZE Yy, 17.87 21.57
(1.07) (1.17)
ZHML 8.226 4.805
(0.45) (0.25)
Constant 11.89 14.97 10.18 9.012 16.87
(0.27) (0.33) (0.23) (0.20) (0.36)

Observations 168 168 168 168 168

R-squared 0.0724 0.0728 0.0787 0.0735 0.0819

t statistics in parentheses
*p <0.10, ** p < 0.05, *** p < 0.01
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Table XIV
In-Sample Regressions for AI Innovations on Mimicking Portfolio Returns
Subsample: July 2016 to June 2023

This table presents results from regression (1). The dependent variable captures innova-
tions in the Ravenpack Al News Index measure. Observations are monthly, covering the
period from July 2016 to June 2023. Following Engle et al. (2020), I set Zi11]5$p/Tt to rep-
resent the returns of a mimicking portfolio, which longs the top half of firms with higher
Al Ezposure and shorts the bottom half with lower Al Exposure. Similarly, I set size (using
cross-sectionally standardized market value to create Z2'ZF'| so that half the firms, sorted
by market value, have positive weight, and half have negative weight; note that this portfolio
will be long large firms and short small firms), value (using cross-sectionally standardized
values of book-to-market to create ZML") and the market (setting ZME™' to equal the
share of total market value). The t-statistics are provided in parentheses. *** ** and *
denote statistical significance at the 1%, 5%, and 10% levels, respectively.

. AIEzp/ '
Allnnovations; = & + WargapZe—q * 1 + w1z 22 2 1,

HML MKT'
‘WML Ll T e WkTZi- T T+ e (22)

(1) (2) (3) (4) ()

ZAM B 93.26%**F  94.39%%F  102.1%¥F* 107.1%F 115.6%*
(2.71) (2.73) (2.88)  (2.10)  (2.24)

ZMETy, -9.021 -17.29
(-0.53) (-0.94)
ZIMB'y, 29.10 38.23
(1.00) (1.20)
ZHML 10.76  6.706
(0.37)  (0.22)
Constant 35.26 43.90 30.30 27.78  40.65
(0.41) (0.50) (0.35)  (0.31)  (0.45)

Observations 84 84 84 84 84
R-squared 0.0824  0.0855  0.0935  0.0839  0.104

t statistics in parentheses
*p <0.10, ¥ p < 0.05, *** p < 0.01
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Table XV
In-Sample Regressions for AI Innovations on Mimicking Portfolio Returns
Subsample: July 2016 to June 2023 + Quartile Sorting

This table presents results from regression (1). The dependent variable captures innovations
in the Ravenpack AI News Index measure. Observations are monthly, covering the period
from July 2016 to June 2023. Following Engle et al. (2020), I set Zf‘_lfmp/rt to represent
the returns of a mimicking portfolio, which longs the top quartile of firms with higher Al
Ezposure and shorts the bottom quartile with lower Al Exposure. Similarly, I set size (using
cross-sectionally standardized market value to create Z2'Z”'| so that half the firms, sorted
by market value, have positive weight, and half have negative weight; note that this portfolio
will be long large firms and short small firms), value (using cross-sectionally standardized
values of book-to-market to create ZFL") and the market (setting ZME™' to equal the
share of total market value). The t-statistics are provided in parentheses. *** ** and *
denote statistical significance at the 1%, 5%, and 10% levels, respectively.

. AlEzp/ '
Allnnovations; = & + WargapZe—q * 1+ w1z 22 2 1,

HML MEKT'
‘WML Ll U T WrkTZi2 T T+ e (22)

(1) (2) (3) (4) (5)

ZAM B TT.RTHFF* QL 1Q¥FE 89 04F*F  1(1.4%¥*F  112.8%F*
(3.78) (3.89) (3.91) (3.53) (3.82)

ZMKETy, -16.45 -28.75
(-0.99) (-1.62)
Z3MB'y, 28.92 38.41
(1.04) (1.28)
ZHML 30.95 31.01
(1.17) (1.13)
Constant -2.915 9.852 7205 -27.65  -11.07
(-0.03)  (0.12)  (-0.09)  (-0.32)  (-0.13)

Observations 84 84 84 84 84
R-squared 0.148 0.159 0.160 0.163 0.196

t statistics in parentheses
*p <0.10, ** p < 0.05, *** p < 0.01
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Appendix A 10K Annual Filing Examples

Here are some examples from 10-K annual filings reveal that firms explicitly discuss both

the opportunities and regulatory uncertainties surrounding Al:

e Firms face regulatory uncertainty on Al:

The Company’s global operations are subject to complex and changing laws
and requlations on subjects, including antitrust; privacy, data security and
data localization, ..., machine learning and artificial intelligence - Apple,

2023

“Additionally, a number of states have recently introduced or passed legisla-
tion as it relates to disclosures of the use of artificial intelligence (“Al”) in
political advertising... which may impact the sale of political advertising.” -
Fox, 2024

e Firms face opportunity on Al:

“Building on decades of analytics and data science expertise, the company ac-
celerated its application of artificial intelligence in 2023 to drive innovation,
increase employee productivity and deliver business outcomes.” - Chevron,
2024

“Therefore, one of our top priorities is to digitalize the Coca-Cola system
by, among other things, ..., digitalizing operations through the use of data,
artificial intelligence, automation, robotics and digital devices to increase

efficiency and productivity.” - Coca-Cola, 2024
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Appendix B Conference Call Transcripts Examples

Here are some examples from conference call transcripts reveal that firms explicitly use either

unigrams or bigrams about Al, opportunity, or regulatory uncertainty:

e Firms face regulatory uncertainty on Al:

“Indeed, the generative Al space remains very active with requlatory over-

sight, a top priority to continue development and adoption in a responsible

manner... For example, we have already established governance processes for

new technologies, including Al, to continuously assess the compliance of our
»

revolving solutions with requlatory requirements and industry standards. ” -
TELUS International, Earnings Call 2023

“In the U.S., even as support continues to build for a federal right of publicity,
several states are taking action. The State of Tennessee recently enacted the
Ensuring Likeness Voice and Image Security Act, known as the ELVIS Act
that provides strong protections against generative Al wvoice cloning. We
expect further action on these issues as there are ongoing legislative debates
i jurisdictions around the world, but we are not waiting for these processes

to complete... 7 - Universal Music Group, 2024

e Firms face opportunity on Al:

“As we enter 2024, we are seeing much more optimism as growth prospects
driven by new artificial intelligence capabilities start to emerge... Finally,
we get a lot of questions about how MST is related to the fast-evolving de-
velopments in artificial intelligence. And I can tell you it’s extensive.” -

Atomera Incorporated, Earnings Call 2023

“So again, artificial intelligence can be applied at any of these different stages
of the digital thread. So you have discover, create, make and sell. When
people typically think of us, they see us in this manufacturing this make
area, where we talk about areas like manufacturing operations, but really
everything from product ideation influences manufacturing costs and other
areas upstream. So when we talk about the digital thread, again, it’s artificial
intelligence applied throughout.” - Rockwell Automation, Special Call
2023
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Appendix C Variable Definitions

Variable Definition

Book Leverage The sum of current liabilities (DLC) and long-term debt (DLTT) divided
by total assets (AT).

Cash/Assets The ratio of cash (CHE) to total assets (AT) following Fahlenbrach,
Rageth, and Stulz (2021).

St Debt/Assets  The ratio of debt in current liabilities (DLC) to total assets (AT) follow-
ing Fahlenbrach, Rageth, and Stulz (2021).

Lt Debt/Assets  The ratio of total long-term debt (DLTT) to total assets (AT) following
Fahlenbrach, Rageth, and Stulz (2021).

ROFE The measure of profitability. It is calculated as the income before ex-
traordinary items (IB) divided by book equity.

ROA Profitability measure, defined as income before extraordinary items di-
vided by total assets.

RED/Assets The ratio of R&D to lagged total assets.

Firm Age The age of a firm starting from its initial listing in the CRSP database.

Asset Growth The ratio of the change in total assets from year t — 2 to year ¢t — 1 to
total assets in year ¢ — 2.

Sales Total sales, calculated as the total income generated by an organization
through the sale of products and services. Preferably, consolidated sales

data is used when available.

Firm Size In(ME), measured as the log of market equity in June of year ¢.

BE/ME The ratio between book equity at the end of June of year ¢ and market
equity at the end of December of year ¢ — 1.

SI1CY, Four-digit SIC Code, categorizing businesses based on their primary ac-
tivity per the US 1987 SIC classification.

Tangibility Property, plant, and equipment (PPENT) divided by total assets (AT).

WW Index The Whited-Wu index, computed as per Whited and Wu (2006). Higher
values indicate greater financial constraint.

1CC: GLS My = By + SoyL, (OB sini]) oy (BAROR o]} fol.
lowing Gebhardt, Lee, and Swaminathan (2001).

10c: CT M, = B+ Ty, (HeeBagpa) o SBUCRSR I, follow-

ing Claus and Thomas (2001).
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Variable

1CC: OJ

ICC: MPEG
TF-IDF

Definition
R:A+\/A2+%i“} X(g—(y—1)) whereA:0.5(*y—1)+%i“]
and ¢ = 0.5 Et[EtEf[]gftz[}Etﬂ] + Et[EtEf[]gti[}EtH]), following Ohlson and

Juettner-Nauroth (2005).

M, = Et[Et“HRX(EIt%[Et“]_Et[Et“]), following Easton and Monahan (2005).

TF-IDF score is the Term Frequency (TF) times Inverse Document Fre-
quency (IDF). Term Frequency (TF) measures how frequently a term

occurs in a document.

Number of times term ¢ appears in document d

TF(t,d) =
(t.d) Total number of terms in document d

Inverse Document Frequency (IDF) measures how important a term is.
It downweights terms that appear more frequently across multiple docu-

ments.

IDF(t, D) = log ( Total number of documents D )

Number of documents with term ¢
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Appendix D Additional Figures and Tables
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Figure D.1. Alternative Artificial Intelligence Vocabulary WordCloud. The figures
present word clouds that summarize the bigrams extracted from a total number of 744,044
academic paper titles in the Web of Science that are directly related to artificial intelligence,
machine learning, natural language processing, and computer vision. These are the keywords
used in Babina et al. (2024a) when they study the systematic risk of AI through the labor
channel. The larger the term size, the more frequent the terms appear in the corpus (mea-
sured in TF-IDF score). The Web of Science paper titles are downloaded from ProQuest.
The years range from 2010 to 2024.
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Table D.2

Top 50 Artificial Intelligence Bigrams

This table presents the initial Al bigrams derived from 159,444 titles of academic papers
directly related to Al from the Web of Science. The bigrams are selected by computing the
TF-IDF scores and these are the top 50 with highest scores.

artificial intelligence
neural networks
artificial neural
convolutional neural
genetic algorithm
time series

decision support
learning approach
natural language
particle swarm
special issue

deep reinforcement
large scale

transfer learning
intrusion detection
data driven

breast cancer

neural network

deep learning

multi agent

big data

case study

support vector

deep neural
intelligence techniques
internet things

multi objective

swarm optimization
fault diagnosis
intelligence machine
object detection
intelligence technology
agent systems
optimization algorithm

machine learning
reinforcement learning
real time

decision making
application artificial
data mining

feature selection
fuzzy logic
intelligence ai

use artificial

bee colony

artificial bee

semi supervised
genetic algorithms
face recognition
short term
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Table D.3

Top 50 Artificial Intelligence Unigrams

This table presents the initial Al unigrams derived from 159,444 titles of academic papers
directly related to Al from the Web of Science. The unigrams are selected by computing the
TF-IDF scores and these are the top 50 with highest scores.

artificial
system
model
approach
datum
machine
deep

al
intelligent
recognition
fuzzy

time
human
information
framework
support
development

base
network
algorithm
analysis
learn

multi

image
classification
optimization
control
knowledge
problem
feature
management
robot
dynamic
logic

intelligence
learning
neural
application
detection
method
design
agent
prediction
study
research
technology
decision
technique
new
process
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Table D.4
Al Exposure by Industry (SIC2)
Full Sample: July 2009 to June 2023

Industry (SIC2)

Al Exposure

Industry (SIC1)

Educational Services

Insurance Agents, Brokers, & Service
Local & Interurban Passenger Transit
Business Services

Chemical & Allied Products
Instruments & Related Products
Electronic & Other Electric Equipment
Engineering & Management Services
Eating & Drinking Places
Communications

Real Estate

Furniture & Homefurnishings Stores
Industrial Machinery & Equipment
Health Services

Printing & Publishing

Hotels & Other Lodging Places

Legal Services

Security & Commodity Brokers
Miscellaneous Retail

Automotive Dealers & Service Stations
Miscellaneous Manufacturing Industries
Personal Services

Electric, Gas, & Sanitary Services
Transportation Services

Metal Mining

Auto Repair, Services, & Parking
Building Materials & Gardening Supplies
Transportation Equipment

Amusement & Recreation Services

Nondepository Institutions

6.285266
5.561357
5.495105
5.464625
5.396434
5.375045
5.047649
4.989501
4.852603
4.803536
4.79584
4.609057
4.607254
4.544601
4.542002
4.534035
4.505624
4.504373
4.495735
4.447903
4.394613
4.361629
4.355988
4.337441
4.291618
4.2776
4.218395
4.200852
4.153239
4.148221

Services
Finance, Insurance, & Real Estate
Transportation & Public Utilities
Services
Manufacturing
Manufacturing
Manufacturing
Services
Retail Trade
Transportation & Public Utilities
Finance, Insurance, & Real Estate
Retail Trade
Manufacturing
Services
Manufacturing
Services
Services
Finance, Insurance, & Real Estate
Retail Trade
Retail Trade
Manufacturing
Services
Transportation & Public Utilities
Transportation & Public Utilities
Mining
Services
Retail Trade
Manufacturing
Services

Finance, Insurance, & Real Estate
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Table D.4 Continued from previous page

Industry (SIC2)

AT Exposure

Industry (SIC1)

Non-Classifiable Establishments
Furniture & Fixtures

Motion Pictures

Food Stores

Insurance Carriers

General Merchandise Stores
Transportation by Air

Social Services

Trucking & Warehousing
Holding & Other Investment Offices
Pipelines, Except Natural Gas

Agricultural Production — Crops

Rubber & Miscellaneous Plastics Products

Wholesale Trade — Durable Goods
Apparel & Accessory Stores

Oil & Gas Extraction

Apparel & Other Textile Products
Textile Mill Products

Agricultural Services

Fabricated Metal Products

General Building Contractors
Wholesale Trade — Nondurable Goods
Leather & Leather Products

Food & Kindred Products

Tobacco Products

Heavy Construction, Except Building
Depository Institutions

Railroad Transportation

Petroleum & Coal Products

Water Transportation

Nonmetallic Minerals, Except Fuels

Services, Not Elsewhere Classified

4.127732
4.074484
4.060033
4.036707
4.028654
3.994649
3.958159
3.9469
3.927254
3.916995
3.909467
3.903013
3.870281
3.854764
3.794587
3.788054
3.761449
3.726901
3.714297
3.710879
3.696674
3.69314
3.685508
3.648712
3.604894
3.603374
3.542971
3.538
3.512356
3.417509
3.302386
3.285075

Nonclassifiable Establishments
Manufacturing
Services
Retail Trade
Finance, Insurance, & Real Estate
Retail Trade
Transportation & Public Utilities
Services
Transportation & Public Utilities
Finance, Insurance, & Real Estate
Transportation & Public Utilities
Agriculture, Forestry, & Fishing
Manufacturing
Wholesale Trade
Retail Trade
Mining
Manufacturing
Manufacturing
Agriculture, Forestry, & Fishing
Manufacturing
Construction
Wholesale Trade
Manufacturing
Manufacturing
Manufacturing
Construction
Finance, Insurance, & Real Estate
Transportation & Public Utilities
Manufacturing
Transportation & Public Utilities
Mining

Services
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Table D.4 Continued from previous page

Industry (SIC2) AT Exposure Industry (SIC1)
Stone, Clay, & Glass Products 3.240903 Manufacturing
Primary Metal Industries 3.235793 Manufacturing
Lumber & Wood Products 3.230363 Manufacturing
Paper & Allied Products 3.219572 Manufacturing
Special Trade Contractors 3.182942 Construction
Coal Mining 3.137699 Mining
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Appendix E Theoretical Derivations and Proofs

A Proof of Lemma 1 (using Kalman-Bucy filter)

Lemma 1. Combining the signals, Equation (16), and prior distribution of the political cost,

Equation (14), we can get the posterior distribution of the political cost,

c~ N(&,62%)

c,t

where
dé, = 62 ,h=1dZ¢
t — Yt t
and
9 1
O’ pry
c,t 1 1
ﬁ + ﬁt

Proof. T use a Kalman-Bucy filter to prove this Lemma. As agents observe the signals (ds;),
they update their beliefs about political cost using Bayesian updating. The Kalman-Bucy
filter provides a way to compute the posterior distribution of the political cost given the

observed signals. Assume the political cost, ¢, is a constant parameter (state) with prior

c~N (—U—g,af) .
2

Agents observe a signal process s; governed by:

distribution:

ds; = cdt + hdZ;, where dZ; is a Brownian motion.

This corresponds to a continuous-time filtering problem with:

e State equation: dec = 0 (since ¢ is constant),
e Observation equation: ds; = cdt + hdZ;.

Applying a Kalman-Bucy filter, the posterior distribution, c¢|F}, is Gaussian, with mean ¢

and variance ¢7,. The Kalman-Bucy filter gives the dynamics for ¢ and 672,

N .
dCt = hé (dSt — C¢ dt) s (El)
~ ~ 2
dait _ (Uz,t) ‘ (E2)
dt h?
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Now we can solve the variance equation. The equation (E2) is solved as follows:

d (1Y 1
dt \62,) — n?

Integrating from 0 to ¢, with initial condition 672, = o7:
1 1 n t I 1
5 — 5 T 795 Oct —
62, o2 h? o 0—12 + %

Then we update the posterior mean: Define the innovation process de, a JF;-Brownian
motion:

dZ¢ = % (ds, — ¢, dt) .
Substitute ds; = & dt + hdZ¢ into (E1) to obtain:
dé, = 62, h™dZ;.
The posterior distribution of ¢ given observations up to time ¢ is:
NS~ N (0002,

with dynamics:

A 22 p—lgbc A2 _
dey =o,,hdZ;, o7, =

nqml =
_l_
Tl

which is what we need to prove. O]

B Proof of Lemma 2 (Aggregate Capital)

Lemma 2. The aggregate capital at time T, By = fol Bidi, is given by

By = BT€<.“+P9+(1_P)77_%U2)(T_T)‘HT(ZT_ZT)’

where g = g© under Favorable requlation, g = gV under Unfavorable requlation, n = n* in

M

Early-stage AI environment, and n = n™ in Mature-stage Al environment.

Proof. The capital growth follows dB! = BidIl: with the profitability process, equation (3),
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we derive:

1 1

By = Broxp{ (n+ € [+ (=] = 50% = 30t ) (T = 1) 4ol = 20) + (2 - 20}

The above equation is derived by applying Itd’s Lemma to In(B!) and taking integral from
TtoT.

Aggregating across firms:

1 1
By — / Bidi — e(p3o*—3d) =) totzr—22) / Bi €[50+ l(T—7) o1 (20— Z1) g
0 0

Applying the Law of Large Numbers:
1
/ B & ot U=sm(T=n)to1(Zh—20) g, [BI] E [efi[sigﬂl—si)n](T—T) ezt (T=7)
0

Using cross-sectional independence, and the expectation value of Uniform distribution and
Bernoulli distribution, & ~ Uniform(0,2) with E[¢!] = 1, and each firm’s Al stage, s' ~
Bernoulli(p), where s = 1 (Al Elites) with probability p, and s* = 0 (AI Starters) with
probability 1 — p:

E! |89+ A=s)nl(T=7) | _ o(pg+(1=p)n)(T—T)

Given E‘[B!] = B,, we obtain:

By = BTe(n+pg+(1—p)n—%U2)(T—T)+0(ZT—ZT)

Y

which is what we need to prove. O

C Proof of Proposition 1 (Optimal AI Cost Threshold)

Proposition 1. The government will switch from a Favorable (F) to an Unfavorable (U) Al

policy at time 7 if and only if the realized political cost ¢ exceeds the threshold:
¢>c(r) = log (e(”‘l)(gF‘gU)(T‘T) — 1) :

where g > 0 and g¥ < 0 represent the requlatory impacts on profitability under Favorable

and Unfavorable regimes, respectively. The threshold c(T) increases with risk aversion (v > 1)
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and the magnitude of the requlatory gap |g* — gY|.
Proof. Using Lemma 2, aggregate capital under each regime is:

Bg — BTe(N+ng+(1—p)77—%U2)(T—T)—i—a(ZT—ZT)

BY = BTe(#ergUJr(l—p)n—%02)(T—T)+0(ZT—ZT)_

The government compares expected utilities under both regimes:

1— B 1—
E [WT v | F — Ee(lf'}/) (M+ng+(]_—p)777%O.2)(T77)+%(177)202(T77)
Tll- Y i 1—7 7
1— -
E |:¢(C) WT v ‘ U — Me(lfﬁ/) (/U"i’ngJr(]_—p)nf%02)(7177_)4»%(177)202 (TfT)
' L= i 1—7

Substitute ¢(c) = 1 + e° into the inequality E,[U(Wr) | F] < E;[¢p(c)U(Wr) | U]:

(1= (pg" +(1=p)n)(T—7) (1+ 60)6(177)(p9U+(17p)77)(T*T)_

Cancel common terms and simplify:

e(I=Np(g" =g")(T—7) 1 4 e

Take logarithms and rearrange:
¢ > log (6(1*7)p(9F79U)(T*T) _ 1) = ¢(7),

which is what we need to prove. ]

D Proof of Corollary 1

Corollary 1. The time-t perceived probability of a government Al policy shift from Favorable
(F') to Unfavorable (U) at time T (t < T) is:

Prit = 1-® (Q(T)a éta &z,t) )
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where ®(-;¢,67,) is the CDF of the posterior normal distribution ¢ ~ N(¢,62,), and ¢(T)

is defined in Proposition 1.

Proof. From Lemma 1, the posterior distribution of the political cost ¢, given information
and signals F}, is:
c|F; ~N (ét,&it) .

The government switches policies at 7 iff ¢ > ¢(7). The perceived probability of this event
is:
pre=Plc>c(r) | F) =1—® (c(r); &,62,)

where ®(+; ¢, 62,) is the CDF of N(¢&,67,). More specifical:

P(c>g<¢>|ﬂS>=P(C_é’f >9<T>_ét|ff) =1—¢(M),

A~ ~

ac,t Uc,t

which is what we need to prove. O

E  Proof of Proposition 2 (State Price Density)

Proposition 2 (State Price Density). Before a requlatory or opportunity regime shift (t <
T), the state price density is:
Ty = Bt_’YQt)

where

Q, = (3 (D)o ) (T—t)— (ng+(1—p)77) (T—t) [

pT|te—v(ng+(1—p)n) (T—T)+<

1—pyp)e” (ng+(1—P)TI) (T—T)]

and p.; is the probability of a shift to Unfavorable AI policy (Corollary 1).

1—y
Proof. Households maximize CRRA utility U(Wr) = Mf_ﬂv . The state price density is de-

rived from marginal utility:
T = ]Et [U/(WT)] = ]E’t [W;Py] .

By market clearing, aggregate wealth equals aggregate capital: Wy = By = fol Bi.di, where
Bi. follows the profitability process in Equation (3). From Lemma 2, aggregate capital
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evolves as:
Br = Bte(lH'PgT-i-(l—P)ﬁT—%Uz)(T—t)-i-U(ZT—Zt)

Y

with gr € {¢Y, g*'} (regulatory regimes) and ny € {n¥ n™} (opportunity regimes). Substi-

tuting Br into m;:
7 = BE, [e*W(N(T*t)+PQT(T*t)JF(l*p)??T(T*t)*502(T*t)+U(ZT*Zt))] .

The stochastic term —vyo(Zr — Z;) is Gaussian, with expectation:
]Et |:€—’YO'(ZT—Zt):| — 6%’720—2(T_t)‘
Substitute this result and decompose the expectation over regimes:

T = Bt—ve(—erév(vH)dg)(T—t)Et [6_7(pgT+(1_p)7lT)(T_t)] )

Conditional on regulatory shifts (gr = g¥ with probability p.;, or g otherwise), and op-

portunity regimes (9 = n¥ or n), the expectation becomes:

E, [6_7(p9T+(1_p)77T)(T_t)] — e*'v(ngJr(lfp)n)(T*t) [pﬂtefv(pg”nt(lfp)n)(T*T)_i_(l_pT|t

)efv(ngJr(lfp)n)(T*T)] .

Combining terms yields €2;, completing the proof. m

F Proof of Proposition 3 (SDF)

Proposition 3. The SDF is,

d d .
R, {ﬂ} — MdZ, — NoydZC
Tt s
where,
A=7y0>0
and | 80
Aot = ——62071 >0
! Qt aCt 7tn
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Proof. The uncertainty risk price is given by:

A 1 0%, apﬂt 52
et — et 7]
Qt 8p7’|t aCt
o(Ft 39 ( 1) ) (T 1)~ (ngJr(lfp)n) (r—t) [eﬂ (ngJr(lfp)n) (T—7) _ o= (ngJr(lfp)n) (T*T)}
= — Qt
x n(c(1); ¢, 6 ct) cm
(1 —pre)(1 — Fr) 52
= — n(c(T); ¢, 0.4)0, n! E3
Prt + (]- _p‘r|t)FT ( ( ) ' ) ! ( )
where: ( )
—y\pg" +(1-p)n) (T—)
F. = ‘ — Wl T=T) (E4)
e~ (ng+(1—p)n) (T—7)
The term -Pr0=F7) 4 positive because F,. < 1. Since all other terms in (E3) are positive,

p‘r\t+(17p‘r\t)F7'
Aet < 0. This confirms that regulatory uncertainty shocks are negatively priced in equilib-

rium. ]

G Proof of Lemma 3
Lemma 3. Fort < 7, the stock price for firm i is given by:
M; = B;6;,
where

Qi = el ()48 (g +1-p) (1) | g & (p" +01-pm) (7). (1— ¢t)€gi(ng+(1—p>n)(T—T>

Y

and
Drt

p’r\t + (1 - pT\t)ei'yp(gFigU)(TiT) ‘

¢ =

Proof. The stock price M is derived using the law of iterated expectations and the state

price density m; from Proposition 2. For t < 7, the market value satisfies:

i TT 3 ri
Mt - Et [EMT:| .
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Conditional on a regime shift at 7, the stock price under the two regimes is:

MtUﬂ‘ — Btz'e(ufwz)(T*t)Jré" (ng+(1fp)n) (T—t)+¢* (ngJr(lfp)n) (T—7)

Mth _ Bg‘e(u—wzﬁ" (ngJr(l—p)n))(T—t)‘
The unconditional stock price is a weighted average of the two regimes:
Mtz = ¢tMtU7i + (1 - th)MtF’ia

where ¢, is the probability-weighted adjustment factor:

Y23

= Prie + (1 = pryp)ewlo" —o) =)

Substituting M and M/ into the expression for M; yields:
M; = B,©;,

where ©! is the same as defined in the proposition.

H  Proof of Proposition 4

Proposition 4. Firm i’s stock realized returns:

M [dM{F

7 i } +0dZ, + 01dZ} + By, dZ,

where

and risk premia can be expressed as:

Et |:dMT:| = U)\dt + /B}Lw t)\c tdt,
M, #he
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where

(9@\” { >0 ifp=0 (Firms are all AI Starters), i A <0
= an et .

og! <0 ifp=1 (Firms are all AI Elites),

Proof. For the ease of exposition, I assume at every point of time, there is an exogenous
increase of possibility of opportunity regime change from Early to Mature. From Lemma 3,

the stock price can be written as,
M; = B,

where

O = (=) (T—t)+¢! (ngJr(lfp)nE)(T*t) {@ 3 (ngJr(lfp)nM)(T*T) +(1—¢) £ (ngJr(lfp)nE)(T*T)

Applying 1t6’s Lemma to M} = B;©}, the return dynamics are given by

dM; dM; D
Mtit = Et |: M;:| —f—O'dZt +01 dZt +BM,t dZt’

with £}, derived as follows:

i@ a¢t ap‘r|t 6'2
(9% (olon 8p7'|t ¢y ot

Bj\u =

i+ (1= pr)e I (1= e D (o) 4,62) | 62

which can be rewritten as

[ €T =g+ (=) (P =) (T—7) ]

By = B + (1 — o) eS e =g+ (=) (P ") (T—7)

e P(g" —g")+(1=p)(n" =) (T~7)
X 2 TL(C(T); ét? &z,t) a—?,ﬂ
<p7\t +(1 - pr\t)efv(p(gFng)+(1*p)(nEan))(T*T))

or more compactly,

n(c(r); &, 6y) 5oy <0,

el ] F,

ﬂi it = |: 3
M ¢ + (1 — ¢1)GL <p7|t +(1— pT|t)FT>2
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where

Gi = 8"l =g FA=P) =" N(T=7) 5 | [ — e Ple" g H A=) (" N(T-T)

Y

Since only G depends on &', the sign of 8%{” will be decided by G. Specifically,

IGL i 0 i
_ (agi) [0+ (1—¢)GL] — (1 - GL) a£i|:¢t+<1—¢t)GT »

[Cbt + (1 —¢y) GﬂQ

a[ e }
I [+ (1 — ) GL

aGE
og

where G© > 1 and the sign of depends on p, the proportion of AI Elites in the firms

cross-section:

G >0 if p=0 (Firms are all AT Starters),
T = and A <0.
g <0 if p=1 (Firms are all Al Elites),
This can be translated to:
P, >0 if p=0 (Fi 11 AT Start
BM’t _ if p (Firms are a arters), and Ao < 0.
¢ <0 if p=1 (Firms are all Al Elites),
By definition, the risk premia are:
dM: ’
E; [ .T} = oAdt + By Acidt,
M e
where A = yo and \.; < 0 as shown in Proposition 3. ]

I Proof of Lemma /4

Lemma 4. For any two firms, i and j, with AI Exposure & > &1, Vi # j, return premia

spread between i and j 18,

dM dM? , , >0 if p=0 (Firms are all AI Starters),
E: [ iT} - E, jT = (ﬁj\/lt - 63\/[t))\c,tdt fp ( . . )
M7 My, ’ <0 ifp=1 (Firms are all Al FElites),

Proof. From Proposition 4, we know
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OB = { <0 if p=0 (Firms are all Al Starters), and  A.; < 0.

ot >0 if p=1 (Firms are all Al Elites),

The lemma is then straightforward.
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