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Abstract

This paper investigates the effectiveness of collective investor engagement in influ-

encing corporate behaviour. Empirically, I assess the causal impact of Climate Action

100+ (CA100+), the world’s largest investor coalition on climate change. To proxy the

coalition’s specific engagement asks of companies, I collect novel data on climate-related

disclosure, sector-specific carbon intensities and carbon emission reduction targets. Af-

ter examining the CA100+ company selection process and using various Difference-in-

Differences specifications, I find no evidence that the coalition improved climate-related

disclosure or reduced carbon emissions. However, its collaborative engagement has led

to greater ambition in medium- and long-term target setting. Notably, this impact is

concentrated among companies selected on a discretionary basis. Surprisingly, I find

no evidence that the initiative’s scale – measured via collective ownership and assets

under management – amplifies impact, nor any spillover effects to non-target firms.

Overall, this study raises doubts about the effectiveness of investor coalitions in driv-

ing corporate decarbonisation.
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1 Introduction

The transition to a low-carbon economy is a critical global challenge, necessitating substantial

shifts in how entire industries operate. Investors can play a key role in accelerating this

transition by leveraging their influence over their investees. However, they often hold only

small individual stakes in companies. To strengthen their impact, investors have formed

coalitions to collectively engage with companies.

Several reviews of the sustainable finance literature note a lack of empirical evidence

regarding the the role of investors in driving change (Kölbel et al., 2020). While recent

studies have started to fill this gap (Azar et al., 2021; Heeb and Kölbel, 2024), many ar-

eas of investor impact remain under-researched. Notably, investor coalitions have received

surprisingly limited attention despite their growing importance.1

These initiatives combine self-regulatory mechanisms among investors with quasi-regulatory

pressure on companies. As such, they represent a new form of collective investor action whose

effectiveness remains largely untested. This paper aims to fill this gap by asking: What is

the impact of coordinated investor engagement on corporate climate action? Developing a

conceptual framework and providing new evidence on this question is important to assess

the role of investor coalitions in the low-carbon transition.

An important feature of investor coalitions is their impressive collective scale. Climate

Action 100+ (CA100+), the world’s largest investor coalition on climate change, represents

the “biggest shareholder action plan ever”(Financial Times, 2017). As illustrated in figure

1, CA100+ grew from 225 founding investor signatories representing a combined 26 trillion

USD of assets under management (AUM) in 2017, to more than 700 members with 68 trillion

USD in AUM by 2023.2 Based on my calculations, CA100+ investors collectively held an

average of 4% of outstanding shares in focus companies in 2017 – a figure that rose to 19.5%

1For example, investors have established Climate Action 100+ in 2017, the Net-Zero Asset Owner Alliance
in 2019 and the Net-Zero Asset Manager Alliance in 2020 to coordinate action on climate change.

2The combined AUM figures may include some instances of double counting, as CA100+ is supported
by both asset owners and managers.
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by 2023. Despite recent departures starting from 2024, the coalition still includes over 600

members as of July 2025.

Figure 1: This figure illustrates the growth in the number of CA100+ investor signatories
and their combined AUM from 2017 to 2023.

CA100+ aims “to ensure the world’s largest corporate greenhouse gas emitters take

necessary action on climate change” (Climate Action 100+, 2024) by engaging with a focus

group of 169 large corporate polluters. Indeed, there is ample anecdotal evidence for the

success of CA100+. For instance, The Economist (2021) found that CA100+ companies

improved their climate-related disclosure and target setting more than other firms. Moreover,

the initiative’s website features numerous success stories. In fact, investors deemed the

CA100+ model so successful that it inspired the launch of a similar initiative in 2022 on

biodiversity: Nature Action 100. At the same time, the Republican party in the United

States accuses CA100+ of acting as a “climate cartel” that allegedly pressures companies to

commit to ”net zero” (Judiciary Committee, 2024).

Distinguishing causation from correlation is a central challenge in research on investor

impact. In the case of CA100+, several endogeneity concerns exist. Firstly, CA100+ operates

in a dynamic environment where multiple external factors can influence firm behaviour. It

is crucial to control for confounding factors, such as other regulatory policies, technological

advancements and market forces. Secondly, CA100+ companies may differ systematically
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from other firms in their climate strategies. There is a risk of selection bias: investors

could have deliberately chosen companies that were already inclined to improve their climate

actions. This concern is amplified by the fact that CA100+ targets the world’s largest

corporate polluters – firms that operate in sectors that face heightened public scrutiny,

making them more likely to act on climate even absent of CA100+ engagement. These

considerations underscore the need to examine the company selection process and carefully

select a suitable comparison group based on companies’ emission profiles rather than relying

on a broad stock market index. Thirdly, measuring the specific engagement goals of CA100+

is difficult due to limited data availability. Previous studies on investor impact typically rely

on self-reported measures of engagement success or firms’ Scope 1 and 2 carbon intensities

based on financial metrics – both of which are prone to measurement error.3 The omission

of Scope 3 emissions is particularly problematic for CA100+ companies, many of which

operate in sectors where the bulk of emissions occur downstream. In addition, financial-

based carbon intensity metrics can distort results, as fluctuations in the denominator – such

as volatility in revenue driven by commodity price changes – may not reflect underlying

changes in corporate climate action. Notably, CA100+ itself does not use financial-based

carbon intensities to assess company progress.

This study addresses these challenges in three steps. First, I use a series of two-way fixed

effects (TWFE) and staggered Difference-in-Differences (DiD) specifications to estimate the

impact of CA100+ on the focus companies. I also calculate the collective ownership share of

CA100+ investors as a shift-share variable to assess treatment heterogeneity and potential

spillover effects. However, a DiD approach does not, by itself, ensure causal identification.

For the results to be interpreted causally, the treatment must plausibly constitute an ex-

ogenous shock. Moreover, even firm and time fixed effects may not fully capture systematic

differences between CA100+ and significantly smaller emitters. In a second step, I therefore

examine the treatment assignment – the CA100+ company selection process – and identify

3Scope 1 refers to direct emissions from owned or controlled sources, Scope 2 to indirect emissions from
purchased energy and Scope 3 to indirect emissions across the value chain (GHG Protocol Initiative, 2004).
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two subgroups: the first addition to the CA100+ focus group (the ”CA100 companies”)

which can be considered an exogenous shock and the second addition (the ”Plus compa-

nies”) for which endogeneity cannot be ruled out. Then, I identify a suitable universe of

counterfactuals which selects companies by sector based on their absolute carbon footprint

and market capitalisation. Third, I employ multi-dimensional and novel metrics that closely

match the engagement objectives of CA100+. In particular, I use sector-specific carbon

intensities – including all material Scope 1, 2 and 3 emissions from a lifecycle perspective –

based on production output rather than a financial metric. I also collect new primary data

on the ambition of corporate climate targets and apply a domain-specific language model to

analyse companies’ climate-related disclosure.

Overall, my findings suggest rather limited effectiveness. I find no statistically significant

impact on climate-related disclosure or carbon intensities. However, I observe a significant

treatment effect on medium- and long-term target setting. Yet closer examination reveals

that this effect is driven primarily by the Plus companies, for which endogeneity cannot be

ruled out. Unpacking the effect further, it stands out that CA100+’s impact is absent on

short-term targets. This raises concerns about the backloading of corporate decarbonisation

efforts, i.e. companies are relying on steeper emission reductions in the distant future.

Surprisingly, I do not find that the impact of CA100+ is significantly moderated by the

coalition’s collective ownership share in target companies. This suggests that greater collec-

tive ownership does not necessarily translate into greater engagement impact. Moreover, I

find no evidence of spillover effects from coordinated CA100+ engagement into investors’ in-

dividual engagement activities, as higher collective ownership is not associated with changes

among non-target firms.

All results are robust to a comprehensive set of checks, including alternative measures of

climate action (i.e., CDP responses4 and financial carbon intensities from Trucost), as well

as controls for regulatory heterogeneity and sectoral dynamics.

4CDP is a voluntary environmental disclosure platform for companies, investors, governments and cities.
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This paper aims to advance the literature on investor impact by providing new causal ev-

idence on the effectiveness of coordinated investor action. In their pioneering studies, Slager

et al. (2023) and Dimson et al. (2023) show that subgroups of investors engaging through the

United Nations Principles for Responsible Investment (PRI) can improve corporate sustain-

ability outcomes. My study differs in focus. Rather than examining subgroups, I provide,

to the best of my knowledge, the first causal assessment of the investor coalition itself – that

is, the governance institution that organises and coordinates these engagements. Moreover,

by analysing the CA100+ company selection process, I present first empirical evidence that

investor selectivity may indeed matter for engagement outcome – a potential endogeneity

concern raised by Heeb and Kölbel (2024).

In the case of CA100+, a few studies offer correlational results suggesting that the coali-

tion may be effective in influencing corporate climate behaviour. Bingler et al. (2024) docu-

ment an association between the CA100+ focus list and more precise climate commitments

while Chang and Fang (2024) find a negative effect of CA100+ on the carbon emissions

of focus companies’ customers and suppliers in China. The study most closely related to

mine is Chuah et al. (2025), who find that the focus firms reduced their carbon intensities,

particularly in countries with more climate laws. They also report possible spillover effects

via directors who sit on the boards of both CA100+ companies and other firms. While these

studies offer interesting suggestive evidence, they stop short of establishing causality. In

particular, they do not assess the CA100+ company selection, rely on counterfactuals that

may face different decarbonisation challenges and use financial-based Scope 1 and 2 carbon

intensities.

This paper also seeks to enhance the field on the measurement of corporate climate

action. While there is a recognised inconsistency in large datasets concerning companies’

sustainability and climate actions (Berg et al., 2022; Busch et al., 2022), these are still often

used in research due to a lack of alternatives. By constructing new primary datasets of

refined measures of corporate climate actions, I provide precise proxies for investors’ specific
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engagement asks. In this context, I contribute to the literature on firm pledges (Ioannou

et al., 2016; Bolton and Kacperczyk, 2023a; Jiang et al., 2025) by introducing a novel measure

of target ambition that accounts for firms’ differing starting points and enables consistent

comparisons across different time horizons.

Additionally, this study is positioned within the subfield of climate finance, specifically

examining how investors try to mitigate climate risks among their investees. Evidence from

Flammer et al. (2021) and Ilhan et al. (2023) shows that institutional investors actively

seek improved climate disclosures, aligning with one of CA100+’s engagement objectives.

Furthermore, Azar et al. (2021) highlight that the Big Three asset managers actively engage

their investee companies to lower their carbon footprint. However, the simultaneous impact

of investor action on different aspects of companies’ climate action, particularly on forward-

looking metrics, has not been extensively researched.

In section 2, I provide a conceptual framework for the effectiveness of investor coalitions.

In section 3, I analyse the CA100+ company selection process. Section 4 explains challenges

in measuring corporate climate action and describes how this study tries to overcome those.

Section 5 presents the research design and and section 6 evaluates the results. After showing

a series of robustness checks in section 7, I discuss my findings and conclude in section 8.

2 Conceptual framework

Why would investor coalitions be able to influence companies’ climate action? While in-

vestors have a long history of engaging with companies on sustainability issues individually

(Dimson et al., 2015), their ability to do so in isolation is often limited. Apart from the

world’s largest asset managers (Azar et al., 2021), individual investors often lack sufficient

ownership stakes. Their position is further weakened when individual demands diverge from

those of other shareholders. Consequently, the impact of engagement is likely to depend on

both the represented ownership share and the degree of consensus among shareholders.
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Stewardship work also requires investors to expend time and resources, while the benefits

of improved company performance accrue to all shareholders. This creates a classic collective

action problem, where individual efforts are disincentivised despite potential benefits for the

group (Olson, 1965) and has been widely discussed as the issue of free-riding in investor

engagement (Doidge et al., 2019).

Investor coalitions are an opportunity to overcome these challenges. By bringing to-

gether committed investors, they provide an infrastructure for coordinated engagement and

reduce free-riding incentives (Gond and Piani, 2013). Through shared expectations, pooled

resources and coordinated targeting of companies, collective engagement could amplify in-

vestor influence well beyond what individual member could achieve alone (Dimson et al.,

2015, 2023).

This is the fundamental idea behind CA100+. CA100+ frames climate change as a

material financial risk that could lead to systemic financial instability. Investors can address

this risk “[b]y working together” and driving corporate change through collective engagement

(Climate Action 100+, 2024). Each CA100+ investor signs a commitment to encourage their

investee companies to align with the goals of the Paris Agreement. Every target company is

assigned a group of lead and supporting investors. While investors can only take decisions on

behalf of their own AUM over which they have fiduciary duty, they engage with companies

as part of CA100+. The coalition’s significant combined AUM – and the resulting collective

ownership stakes – provide the financial weight that underpins the engagement efforts.

Investors can conduct engagement in private and in public. Several studies provide

evidence of improved sustainability outcomes following individual investor engagement with

companies behind closed doors (Dimson et al., 2015; Bauer et al., 2023; Hoepner et al.,

2024). When private engagement is unsuccessful, investors may resort to more coercive

public tools – most notably, exercising their voting rights. Shareholder proposals have been

shown to prompt corporate responses on environmental and social issues (Grewal et al.,

2016; Flammer et al., 2021). As Dyck et al. (2019) argue, such proposals are often used
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strategically to reinforce private engagement efforts.

Given the ongoing debate over the relative effectiveness of engagement versus divestment

strategies (Broccardo et al., 2022), it is important to note that investor coalitions do not

publicly advocate for capital reallocation. Nonetheless, the effectiveness of engagement may

ultimately rest on the implicit threat of divestment. If a critical mass of investors withdraws

capital in response to poor sustainability performance, a company’s cost of capital may rise

(Heinkel et al., 2001; Rohleder et al., 2022). Firms may therefore comply with the demands

of investor coalitions in part to maintain future access to capital. Consequently, I derive the

following baseline hypothesis:

H1: CA100+ has a positive effect on targeted companies’ climate action.

While some of the world’s largest pension funds – such as the California Public Employees’

Retirement System (CalPERS) and Japan’s Government Pension Investment Fund (GPIF)

– were among the earliest signatories, CA100+ reached a new scale in 2020 when BlackRock

and other major asset managers joined.

In parallel, CA100+ introduced new tools to publicly monitor and incentivise corporate

climate action, notably the Net Zero Company Benchmark in 2021 which evaluates the

performance of the focus companies across fourteen key indicators. Prior research shows

that such benchmarking can drive behavioural change, particularly when companies are

assessed alongside competitors (Chatterji and Toffel, 2010; Sharkey and Bromley, 2015).

Given CA100+’s continuous growth and development until 2024, it is plausible to expect

that the coalition’s influence has also increased.

H2: The impact of CA100+ on targeted companies becomes stronger over time.

However, the influence over targeted companies is likely to vary based on the collective

ownership shares of CA100+ investors. Dyck et al. (2019) show that a higher share of
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institutional ownership is positively associated with improvements in corporate sustainability

performance. I therefore propose a third hypothesis:

H3: The collective ownership share of CA100+ in targeted companies moderates the impact.

Thus far, I have focused on the direct impact of CA100+ on its focus companies. However,

it is possible that CA100+ has broader effects beyond its official focus list. In particular,

coordinated engagement may facilitate knowledge sharing among investors and enhance their

stewardship capabilities – what Marti et al. (2023) refer to as “field building”. Thiss could, in

turn, strengthen individual engagement efforts with non-CA100+ companies. I refer to this

potential indirect influence as a spillover effect.5 If such an effect exists, it can be expected

to be stronger among non-CA100+ companies with higher collective CA100+ ownership,

as these firms are likely subject to more individual engagement by CA100+ investors. I

therefore propose a fourth hypothesis:

H4: Non-CA100+ companies with a higher collective ownership share of CA100+ exhibit

greater improvements in climate action than those with a lower share.

3 The CA100+ company selection process

When CA100+ launched in December 2017, it initially targeted the 100 largest publicly

listed corporate greenhouse gas emitters (the “CA100 companies”), e.g., Exxon Mobil and

Coal India. In June 2018, the focus list was extended to include 61 additional “Plus” firms

identified as “transition enablers”, such as Walmart and BMW, although no clear selection

criterion was disclosed. As of July 2025, the focus list comprises 169 companies, reflecting

subsequent additions and changes due to mergers and acquisitions. This study focuses on

the CA100 and Plus companies (together the “CA100+ companies”), as these constitute

5While I use the term “spillover effect” for simplicity, this does not represent a spillover in the classical
sense, i.e., the treatment itself is not diffusing from treated to control units. Strictly speaking, the mechanism
reflects a secondary treatment effect.
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the earliest and most significant additions. Figure 2 shows their sectoral distribution and

appendices A and B include the full lists of companies.

In 2020, Climate Action 100+ (2024) stated that the focus companies accounted together

for 80% of all global industrial emissions. This figure is likely overstated due to double-

counting across Scope 1, 2, and 3 emissions which occurs when direct and indirect emissions

are aggregated across firms without adjusting for overlaps in their value chains.

Heede (2020) traces historical carbon emissions back to major corporate polluters, using

only Scope 1 and Scope 3 (category 11 use of sold product) emissions to avoid double-

counting. While only thirty-six CA100+ companies – less than one-quarter of the focus

list – are covered by his analysis, these account collectively for over 21% of global cumula-

tive emissions from 1850 to 2018.6 If CA100+ is successful, its impact could therefore be

substantial in accelerating the low-carbon transition.

Figure 2: This figure shows the distribution of the CA100 and Plus companies by sector.

Importantly, the focus companies could not self-select or opt-out. The initial CA100

companies were chosen solely based on reported and estimated Scope 1, 2 and 3 emissions

6Author’s calculations based on the Carbon Major database 2020.
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from the CDP database. This clear cut-off represents an exogenous shock.

A company’s carbon footprint is typically driven by sector and size. By definition, the

majority of the initial focus group are therefore large companies in hard-to-abate sectors.

However, there is no strong reason to believe that firm size is correlated with the likelihood of

companies reducing their emissions. From an economic perspective, a company’s capability

or willingness to reduce carbon emissions is inversely proportional to marginal abatement

costs (MACs) (Gillingham and Stock, 2018). Some aspects of abatement costs may depend on

fixed costs, potentially increasing larger firms’ willingness to reduce emissions. Specifically,

larger companies may spread fixed abatement investments over greater output, lowering

the average cost per ton abated. While this does not reduce MAC in a strict sense, it

could make certain abatement options financially feasible. However, MACs are influenced

by various other factors such as the cost-effectiveness of different mitigation options which are

often difficult to observe and likely unknown to investors. Even if such data were available,

a comparison of MACs across companies would require an intensity-based analysis rather

than sorting companies by their absolute carbon footprint.

A nuance to consider is that this argument holds for the propensity to reduce carbon

emissions but may not apply as well to other measures of climate action. For example,

larger companies may have more resources to enhance climate-related reporting (Drempetic

et al., 2020). Thus, firm size remains an important factor when selecting appropriate coun-

terfactuals.

On the other hand, there was no clear selection criterion for the Plus companies. Based

on interviews conducted with CA100+ investors7, these companies were selected due to their

strategic importance in the low-carbon transition and with consideration given to regional

balance. This process relied on investors’ prior knowledge of the companies, introducing

a potential selection bias – investors could have targeted firms they expected to be more

responsive to engagement. Given these differences in selection, I assess the impact of CA100+

7The author was part of a parallel research project examining the role of CA100+ through interviews
with both investors and target companies.
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on the full focus group, as well as separately for the CA100 and Plus companies.

4 Data and descriptive statistics

4.1 The CA100+ engagement goals

A central challenge in assessing the effectiveness of investor engagement lies in accurately

measuring the intended outcomes, which are rarely directly observable to researchers. Pre-

vious studies have dealt with this issue in two main ways. One approach relies on using

uniform outcome metrics across firms, such as aggregated sustainability rating (Dyck et al.,

2019; Barko et al., 2022) or carbon emissions (Azar et al., 2021) – without necessarily estab-

lishing whether these metrics align with the specific engagement goals. The other approach

uses self-reported measures of success, such as internal engagement records made available by

investors or investor initiatives (Dimson et al., 2015, 2023; Hoepner et al., 2024). While these

studies provide valuable insights into how investors design and execute engagement, they are

prone to bias, if investors have incentives to record engagement outcomes as successful.

In this context, CA100+ presents a unique empirical setting. Unlike most engagement

campaigns, CA100+ articulated its goals publicly at its launch in 2017. While they have

been refined over time, the three core engagement objectives have remained consistent:

1. Board-level accountability and oversight of climate-related risks,

2. Adoption of emission reduction targets aligned with the Paris Agreement – a focus on

actual emission reductions was added in 2023, and

3. Disclosure of climate-related information in line with the recommendations of the Task

Force on Climate-related Financial Disclosures (TCFD).

I therefore use a multi-dimensional measurement strategy to systematically align my re-

search outcomes with the publicly disclosed objectives of CA100+, drawing on a combination
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of newly collected primary and public data. First, I evaluate climate-related disclosure, con-

structing a new dataset, including a governance dimension, with the ClimateBERT-TCFD

model by Bingler et al. (2022).

Then, I assess realised carbon emission reductions and the ambition of forward-looking

targets using sector-adjusted intensity metrics from the Transition Pathway Initiative (TPI),

which I further augment with newly collected primary data. TPI is an investor-led initia-

tive with an independent research team based at the London School of Economics and

Political Science that develops sector-specific methodologies to assess companies’ transition

efforts based on the Sectoral Decarbonisation Approach (Krabbe et al., 2015). Importantly,

CA100+ relies on TPI data in its Net Zero Company Benchmark to track companies’ progress

on emissions reductions and target-setting. This enables a transparent assessment of CA100+

effectiveness based on the initiative’s own stated goals and tracking metrics.

4.2 Selecting a suitable base universe

Collecting new primary data first requires establishing a baseline universe of companies.

Importantly, the CA100 companies constitute per definition the world’s largest corporate

polluters, and the Plus list similarly includes companies with very large carbon footprints.

A credible causal design must address the challenge of identifying suitable counterfactuals.

As highlighted in the introduction, even within a DiD setting, firm and time fixed effects

may not fully capture systematic differences across companies. One key concern is that firms

face different decarbonisation challenges depending on the sector in which they operate. For

instance, technology and service companies may be able to reduce emissions more rapidly

than hard-to-abate sectors, where the CA100+ companies are disproportionately concen-

trated. A second concern is firm size. Larger firms are more likely to face public scrutiny

and pressure, potentially prompting climate action independent of CA100+ engagement.

Based on these considerations, I aim to compile a base universe of large firms with

substantial carbon footprints operating in the same sectors as CA100+ companies. The
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corporate universe assessed by TPI is well suited for this purpose. TPI selects firms using a

top-down approach based on total emissions and market capitalisation. I therefore adopt as

my baseline universe 512 companies covered by TPI from the 14 CA100+ sectors.

4.3 TCFD reporting

The TCFD published its recommendations in June 2017, aiming to enhance corporate re-

porting across four main areas: governance, strategy, risk management and metrics and

targets. Since CA100+ was launched only six months later, obtaining pre-treatment data

that precisely follow the TCFD recommendations is challenging. Nonetheless, a broader

assessment of corporate disclosures on these topics is possible. The ClimateBERT-TCFD

model categorises disclosure into climate-related and non-climate-related content and clas-

sifies it into the four TCFD categories. Following by Bingler et al. (2022)’s approach, I

focus on companies’ annual reports (AR). Due to the inconsistency and incomparability of

voluntary disclosures, investors tend to rely more on mandatory disclosures when assessing

sustainability information (Ho, 2020).

I manually collect all available ARs for the TPI universe for the period from 2014 to 2022.8

Then, I extract the raw text, split it into sentences and analyse them with ClimateBERT-

TCFD.9 Lastly, I measure the proportion of AR content (in percentage of total sentences)

discussing climate-related information and each of the four TCFD categories. After excluding

companies with missing values, I retain a sample of 426 companies, including 84 CA100, 53

Plus, and 289 Non-CA100+ companies.

Figure 3 shows that both CA100 and Plus companies generally report more climate-

related information than Non-CA100+ companies. In all groups, climate-related reporting

increased in the post-treatment period. The proportions of ARs dedicated to climate-related

8Public filing requirements vary by country. In cases where ARs were unavailable, I select the most
comparable annual disclosure in English, such as the Universal Registration Document in France or the
Annual Integrated Report in Japan

9I first apply the ClimateBERT base model to retain only climate-related sentences with an accuracy
score of 99.5%. Then, I use the TCFD model to classify the climate content into the four categories.
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content are similar to the findings on TCFD supporting companies by Bingler et al. (2022).

Yet, companies from the TPI universe report primarily on strategy rather than governance.

Figure 3: This figure shows the average shares of CA100, Plus and Non-CA100+ companies’
ARs that are dedicated to the TCFD categories in the pre- and post-treatment periods.

4.4 Carbon emission reductions

While there is broad awareness of the measurement issues in standard corporate carbon

emission datasets, they are still widely used in research due to a lack of alternatives. Most

studies rely on carbon intensities with Scope 1 and 2 carbon emissions in the numerator

(Rohleder et al., 2022; Zink, 2024; Chuah et al., 2025). Given the inconsistencies in how

Scope 3 emissions are measured across different providers (Busch et al., 2022), they are

often excluded from analysis or used only in robustness checks. Excluding Scope 3 emissions

is especially limiting in the case of CA100+ companies, which often operate in sectors where

the majority of lifecycle emissions stem from downstream emissions.

Financial denominators such as revenue or market capitalisation can introduce additional

measurement issues, since they fluctuate due to factors unrelated to carbon efficiency. In

some cases, this can lead to non-classical measurement error. For instance, the 2022 energy
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price spike lowered revenue-based carbon intensities in the oil and gas sector, although

absolute emissions increased due to higher sales. The resulting measurement errors are

correlated with companies’ “true” climate performance.

To address these concerns, I rely on sector-adjusted carbon intensities from TPI, which

are also used by CA100+. TPI has developed methodologies for nine CA100+ sectors –

airlines, automotives, cement, coal, electricity, oil and gas, paper, steel and shipping. For

each sector, the most material carbon emissions from a lifecycle perspective are calculated

using publicly available corporate and regulatory data. For instance, in the oil and gas

sector Scope 1 and 2 emissions are taken directly from company disclosures, while Scope 3

downstream emissions are estimated by applying emissions factors to different categories of

energy sales volumes (Dietz et al., 2021). The resulting absolute emissions are normalised

by physical production output, such as energy sold or tonnes of steel produced. Appendix C

provides further details on the TPI methodology and selected examples. For this analysis,

I use carbon intensity from 2014 and 2022. After excluding firms with missing values, my

final sample includes 222 companies: 49 CA100, 40 Plus, and 133 Non-CA100+ firms.

Figure 4 presents the average carbon intensities in the pre- and post-treatment periods by

sector and by group. I find no systematic pattern in pre-treatment average carbon intensity

levels across groups. Plus companies have higher average intensities in the electricity and

airline sectors, CA100 companies lead in steel and oil and gas, while Non-CA100+ firms

have the highest intensities in coal and cement. Differences in the paper and shipping

sectors are negligible due to the small number of CA100+ companies in these industries.

The distribution by sector is shown in Appendix C. Meaningful reductions in average carbon

intensity between the pre- and post-treatment periods are observed only in the electricity

and automotive sectors. The airline and coal sectors show increases in their carbon metrics

over time. These are driven by external shocks, such as “ghost flights” operated by airlines

during the pandemic and the global rebound in coal demand.
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4.5 Carbon emission reduction targets

TPI also uses companies’ carbon emission reduction targets to calculate forward-looking

carbon intensities until 2050. Importantly, these projections include again Scope 3 emissions

in sectors where these are material. For example, if an oil and gas firm sets a Scope 1

and 2 net-zero target, projected Scope 3 emissions are held constant. For firms without

targets, TPI assumes a flat trajectory holding the latest historical carbon intensity constant.

Anchoring the forward-looking pathway to the firm’s most recent historical carbon intensity,

the projected slope relative to the starting point yields a robust measure of target ambition.

This method improves on common approaches in the literature, which typically focus

only on Scope 1 and 2 targets and assess ambition by taking reported reduction rates at

face value – for instance, treating a 70% target as more ambitious than 50% over the same

horizon (Ioannou et al., 2016; Jiang et al., 2025). Since firms inflate ambition by choosing a

base year with unusually high-emissions (Bolton and Kacperczyk, 2023a), such approaches

risk producing biased results.
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Figure 4: This figure shows the average carbon intensities in the pre- and post-treatment periods with standard deviations
across the CA100, Plus and Non-CA100+ groups by sector.
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The forward-looking pathways by TPI allow for the analysis of target ambition across

different time horizons. Since CA100+ tracks progress across the target years 2025, 2035

and 2050, I also focus on these reference points. The relevant time variable for my analysis

of target ambition is the year in which the TPI assessment was conducted. Appendix C

illustrates how a company’s forward-looking emissions pathway evolves across research cycles

as targets are added or updated.

However, TPI was launched only five months before CA100+ and expanded its coverage

gradually. Consequently, there are almost no pre-treatment observations on firms’ targets in

the readily available TPI dataset. I therefore construct a new primary dataset, extending the

TPI target data back to a hypothetical 2015 research cycle. I identify historical targets from

corporate disclosures and calculate projected carbon intensities in strict accordance with the

TPI methodologies. Further details on the steps taken to adapt the historical assessment

data for this study are provided in Appendix D. After excluding firms with missing data, the

final sample includes 226 companies with complete forward-looking pathways: 50 CA100, 40

Plus, and 136 Non-CA100+ firms.

Figure 6 shows average projected carbon intensities for 2025, 2035 and 2050 across the

pre- and post-treatment periods by group and by sector. Targeted carbon intensities are

lower in the post- than in the pre-treatment period across nearly all sectors and target years.

This suggests that firms have set increasingly ambitious climate targets over time. Electricity

utilities exhibit the most pronounced targeted reductions. By contrast, ambition declines

in the airline and coal sectors, likely due to the rebaselining of emissions targets after the

pandemic. Given the magnitude of this distortion among airlines, I exclude the sector from

the further analysis.

4.6 The collective CA100+ ownership share

Lastly, I calculate the collective ownership share of CA100+ investors for the TPI universe.

CA100+ maintains an up-to-date list of current investor signatories on its website but does

19



not disclose the timing of entries or exits. To construct a time-varying ownership measure, I

manually compile a panel of entry and exit years for all current and former signatories based

on annual snapshots of the CA100+ website from the Internet Archive.

I then merge this information with historical firm-level data on outstanding shares from

Refinitiv. Since Refinitiv lists separate entities within the same investment group (e.g.,

State Street UK vs. State Street US) as distinct owners, I use fuzzy matching to link the

CA100+ investor names with Refinitiv’s investor names. I apply a strict matching threshold

of 6.5% in string distance determined through multiple rounds of manual checks. Given the

concentration of global AUM among a relatively small number of players, I also manually

verify matches for the 15 largest CA100+ asset managers. Due to the conservative matching

procedure, I expect the resulting estimates to represent a lower bound.

Figure 5 shows the evolution of average collective CA100+ ownership across the three

firm groups. In 2017, founding signatories already held an average stake of 4% across all

firms. Similar to AUM, ownership shares increased substantially in 2020 with the entry of

several large U.S. asset managers. Notably, CA100+ holds the highest average ownership in

the Plus group.

Figure 5: This figure shows the average collective ownership share of CA100+ investors by
company group from 2017 to 2023.
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Figure 6: This figure shows the average targeted carbon intensities in the pre- and post-treatment periods with standard
deviations for the years 2025, 20235 and 2050 across the CA100, Plus and Non-CA100+ groups by sector.
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5 Research design

As a baseline specification, I estimate a TWFE DiD regression model to measure the im-

pact of CA100+ on corporate climate action. The model is run for the whole focus group

and separately for the CA100 and Plus companies, comparing them against Non-CA100+

companies:

(1) Yit = α + β1CA100i ∗ Postt + β2CA100i + β3Postt + γi + µt + ϵit

Y is the climate action of company i in year t, CA100i is a dummy variable that takes the

value of 1 for CA100+ companies, Postt is a time dummy that takes the value of 1 after the

start of the treatment (2017 for the combined analysis, 2017 for CA100 companies and 2018

for Plus companies). Company fixed effects, denoted by γi, control for any time-invariant

differences between CA100+ and Non-CA100+ companies. Year fixed effects, denoted by µt,

account for shocks that affect CA100+ and Non-CA100+ companies alike in specific years,

such as the Covid-19 crisis. The model is estimated using a linear OLS regression. Standard

errors are clustered at the company level.

I also run a staggered DiD specification to analyse the simultaneous effect of CA100+

on the CA100 companies and the Plus List and to explore temporal changes. Given the

limitations of the TWFE specification in estimating heterogeneous and dynamic treatment

effects in staggered models (Goodman-Bacon, 2021), I use the robust estimator developed

by Callaway and Sant’Anna (2021).

Next, I analyse treatment intensity by incorporating the CA100+ collective ownership

variable. An important consideration is that collective ownership may not be entirely ex-

ogenous. It is plausible that CA100+ investors adjust their portfolio holdings in response

to firms’ climate action – potentially increasing their stakes in companies that appear re-

sponsive to engagement and divesting from those that resist. For example, the Church of

England, a founding CA100+ member, divested from oil and gas firms after Shell and BP
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rolled back their emissions targets in 2023 (The Guardian, 2023). To address this concern

of post-treatment bias, I construct a shift-share variable, leveraging variation in the timing

of investor entry into CA100+.

The identification strategy follows a standard shift-share logic: the expansion of CA100+

– that is, the staggered entry of new signatories – is plausibly driven by exogenous insti-

tutional dynamics (e.g., peer pressure, advocacy momentum), not by individual firm-level

climate responses. From the perspective of the focus companies, this results in an exogenous

shock to investor composition – a company may experience an increase in CA100+ ownership

not because of changes in its own behaviour, but because a new signatory already holding a

stake in the firm joined the coalition.

Specifically, I calculate the shift-share variable in three steps. First, I use the CA100+

collective ownership shares of founding members for years prior to 2017, allowing for variation

over time in the pre-treatment period. Second, I fix the ownership shares of founding CA100+

members at their 2017 levels to represent baseline exposure. Third, for each subsequent

year, I add the ownership shares of new joiners only in the year they join, holding their

ownership constant thereafter (unless the investor exits the coalition). Formally, the shift-

share exposure Zit for firm i at time t is given by:

Zit =


∑

founders sit if t < 2017∑
founders z

(j=2017)
i +

∑
new joiners

j≤t
zjit if t ≥ 2017

where s denotes the time-varying ownership share held by a CA100+ investor in firm i

at time t and z denotes the investor’s ownership in firm i in year t, fixed from the investor’s

entry year j onward and held constant in all subsequent years (unless exited).

I then estimate the effect of treatment intensity via a triple interaction term:

(2) Yit = α + β1CA100i × Postt × Zit + β2CA100i × Postt + · · ·+ γi + µt + ϵit.
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The coefficient β1 is the main parameter of interest. It captures whether the effect of

CA100+ engagement is stronger among firms with larger collective CA100+ ownership. All

constituent lower-order interactions are included.

Finally, I examine potential spillover effects from CA100+ by testing whether investors’

collective engagement experience through CA100+ enhances their individual stewardship

efforts with other portfolio companies. Specifically, I assess whether Non-CA100+ firm show

differential changes in climate action following the initiative’s launch. To do so, I exclude all

CA100+ focus companies from the sample and estimate the following panel regression:

(3) Yit = α + β1Postt × Zit + β2Postt + β3Zit + γi + µt + ϵit.

Here, the coefficient β1 tests whether non-target firms with higher collective CA100+

shift-share ownership experience greater improvements in climate outcomes after the initia-

tive’s launch, relative to non-target firms with lower ownership. A positive and significant β1

would suggest a learning or diffusion effect from coordinated engagement to individual en-

gagement. Yet this approach does not identify a causal treatment effect, as the analysis lacks

a well-defined counterfactual. Accordingly, the results should be interpreted as suggestive

rather than causal evidence.

6 Results

6.1 TCFD reporting and carbon emission reductions

Figure 7 plots the pre- and post-treatment trends for climate-related reporting and carbon in-

tensities for the whole focus group and Non-CA100+ companies. Since TPI carbon intensity

measures vary by sector, I standardise them using z-scores, reflecting differences in standard

deviations from the sector mean in 2014. A visual inspection shows similar pre-treatment

trends across groups, supporting the parallel trends assumption. Yet the post-treatment
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trends remain largely unchanged, suggesting no strong treatment effect on either of the two

engagement goals.

These observations are further corroborated by the TWFE DiD results in table 1, which

show no statistically significant treatment effects across the baseline models, interactions

with the shift-share ownership variable or tests for spillovers. Notably, the main treatment

effects and their corresponding standard errors are close to zero.

The separate TWFE DiD analyses for the CA100 and Plus companies, the disaggregated

results by TCFD category – including governance – and the event study plots in appendix E

further support these findings. Aside from a modest positive effect on risk-related disclosure,

there is little evidence to suggest that CA100+ had a meaningful impact on firms’ TCFD

reporting or carbon intensities.

Figure 7: This figure shows the pre- and post-treatment trends on climate-related reporting
and carbon intensities (TPI) across the CA100+ and Non-CA100+ companies for each year.

6.2 Carbon emission reduction targets

For the analysis of target ambition, the time variable corresponds to the TPI research cycle

and the outcome is the firm’s projected carbon intensity in a given target year. I standardise

the sector-specific carbon intensities again using z-scores, calculated relative to the forward-

looking sector means and standard deviations from the 2015 research cycle. The resulting

z-scores thus reflect standard deviation differences from the 2015 sectoral benchmark for
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Climate-related reporting Carbon Intensities
(1) (2) (3) (1) (2) (3)

treat*post 0.17 0.11 0.00 0.04
(0.36) (0.51) (0.05) (0.07)

treat*post*ownership 6.26 −0.33
(8.77) (1.82)

ownership −0.51 2.00 1.96 2.01
(3.84) (3.90) (1.61) (1.64)

post*ownership −1.88 −2.65 −1.87 −1.90
(3.51) (3.55) (1.64) (1.64)

Num. obs. 3843 3550 2398 1833 1833 1024
R2 0.75 0.75 0.77 0.92 0.92 0.91
Adj. R2 0.72 0.72 0.74 0.90 0.90 0.90
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 1: This table shows the results of the average CA100+ impact, CA100+ impact
moderated by shift-share ownership and the spillover analyses on climate-related reporting
in the left panel and historical carbon intensities in the right panel, comparing CA100+ to
Non-CA100+ companies.

each target year.

Figure 8 shows parallel pre-trends between CA100+ and Non-CA100+ firms from 2015 to

2017 across all target years. A visual inspection suggests that CA100+ engagement did not

meaningfully impact short-term (2025) targets. However, for medium- (2035) and long-term

(2050) targets, the trajectories begin to diverge post-treatment.

These patterns are confirmed by the DiD estimates in Table 2. The effect on 2025 targets

is statistically insignificant, while the estimates for 2035 and 2050 targets are significant at the

1% level, indicating that CA100+ had a positive impact on the ambition of firms’ medium-

and long-term climate targets.

Interestingly, CA100+ investors tend to hold disproportionate stakes in firms with less

ambitious targets, as indicated by the positive coefficients on the shift-share ownership vari-

able for 2035 and 2050. I find no evidence that higher collective ownership by CA100+

investors causally increases target ambition among focus firms, nor do I find significant

spillover effects on non-target firms.
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Figure 8: This figure shows the pre- and post-treatment trends across the CA100, Plus and
Non-CA100+ companies for each target year.

For further investigation, I analyse the impact of CA100+ on the targets of the CA100

and Plus companies separately. Figure 8 includes the separate pathways and table 3 shows

the TWFE DiD results.

Notably, the effect of CA100+ on companies’ 2035 and 2050 targets appears to be pri-

marily driven by the Plus group, where the average effects are significant at the 1% level.

For CA100 companies, the effect is only marginally significant for 2050 targets (10%) and

substantially weaker in magnitude (–0.61 vs. –1.16 standard deviations). While there is

some evidence that higher collective ownership contributed to more ambitious 2035 targets
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TY 2025 TY 2035 TY 2050
(1) (2) (3) (1) (2) (3) (1) (2) (3)

treat*post −0.06 0.08 −0.30∗∗∗ 0.03 −0.66∗∗∗ −0.07
(0.06) (0.09) (0.11) (0.16) (0.21) (0.31)

treat*post*ownership −2.98 −4.80 −6.77
(2.20) (3.58) (7.26)

ownership 1.26 0.75 4.46∗∗ 2.33 9.27∗∗∗ 4.50
(1.64) (1.66) (2.15) (2.06) (3.10) (2.73)

post*ownership −1.39 −1.12 −3.25 −2.13 −6.01∗∗ −3.52
(1.74) (1.74) (2.20) (2.13) (2.96) (2.71)

Num. obs. 1847 1750 1032 1847 1750 1032 1847 1750 1032
R2 0.87 0.88 0.88 0.74 0.75 0.76 0.61 0.62 0.61
Adj. R2 0.86 0.87 0.86 0.70 0.72 0.72 0.55 0.57 0.56
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 2: This table shows the results of the average CA100+ impact, CA100+ impact
moderated by shift-share ownership and the spillover analyses on carbon emission reduction
targets set for 2025, 2035 and 2050, comparing CA100+ to Non-CA100+ companies.

CA100 companies Plus companies
TY 2035 TY 2050 TY 2035 TY 2050

(1) (2) (1) (2) (1) (2) (1) (2)

treat*post −0.13 −0.20 −0.42∗ 0.14 −0.61∗∗∗ −0.44 −1.16∗∗∗ −0.65
(0.12) (0.17) (0.22) (0.34) (0.19) (0.31) (0.39) (0.65)

treat*post*ownership −8.94∗ −13.78 1.52 2.25
(4.53) (9.15) (5.46) (12.64)

ownership 3.38 7.68∗∗ 4.92∗ 8.75∗∗

(2.10) (3.10) (2.52) (3.38)

Num. obs. 1532 1462 1532 1462 1399 1320 1399 1320
R2 0.77 0.78 0.63 0.63 0.72 0.73 0.59 0.61
Adj. R2 0.74 0.75 0.58 0.58 0.68 0.69 0.54 0.56
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 3: This table shows the results of the average CA100+ impact and the CA100+ impact
moderated by shift-share ownership on carbon emission reduction targets set for 2035 and
2050, comparing the CA100 and the Plus companies separately to Non-CA100+ companies.
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Figure 9: This figure shows the dynamic treatment effect of CA100+ on the CA100 and Plus
companies’ target setting.

29



among CA100 firms, the difference in overall treatment effects between the two groups is

striking.

I next examine the dynamics of the heterogeneous treatment effects. Figure 9 plots the

effects by research cycle, with the top panels showing the effect on the CA100 companies and

the bottom panels showing the effect on the Plus companies at 95% confidence intervals. For

CA100 firms, the effects remain statistically insignificant across all target years. By contrast,

the effect is significant for the Plus group for 2035 targets from research cycle 2020 onwards,

with growing magnitude through 2023. For 2050 targets, the effect is significant in 2021 but

slightly insignificant in later cycles.

7 Robustness checks

7.1 Alternative measures of disclosure and carbon intensity

A potential concern regarding the analysis of climate-related reporting is that the content

in ARs may not comprehensively capture companies’ disclosure. To address this, I con-

duct a robustness check using companies’ responses to CDP’s climate questionnaire as an

alternative.

CDP plays an important role in driving corporate transparency by annually sending

questionnaires to companies. A crucial aspect of the CDP disclosure process is the choice

companies have to respond or not respond. It is precisely this strategic decision to opt in or

opt out which I exploit. If CA100+ increases the propensity of focus companies to report to

CDP, this would indicate a positive impact on companies’ climate reporting. Appendix G

provides more information on how I use the CDP dataset.

Since the CDP variable is binary, I estimate a binned DiD model using a pre-post design.

I bin the data into pre- and post-treatment periods and compare the mean response rates

between CA100+ and Non-CA100+ firms. The model is estimated as follows:
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(4) Y it = α + β1(CA100i ∗ Postt) + β2Postt + γi + ϵit

Y it is the binned climate action of company i in either the pre- or post-treatment period

t. The model is estimated using a linear OLS regression with standard errors clustered at

the company level.

I also conduct a robustness check for carbon intensities using Scope 1, Scope 2 and

upstream Scope 3 emissions relative to revenue from Trucost. While the concerns raised in

section 4.4 remain – specifically, the omission of material Scope 3 downstream emissions and

volatility in the financial denominator – the advantage of the Trucost dataset is its larger

sample size. It allows for an analysis from 2010 to 2023 for 86 CA100, 51 Plus and 242

Non-CA100+ firms. I estimate both the TWFE DiD models and the staggered event-study

design.

The results presented in table 4 reveal no significant treatment effects. CA100+ does not

appear to have influenced firms’ likelihood of responding to CDP or their carbon intensities

relative to revenue. Appendix G includes the event study plots that confirm the absence

of both pre-trends and post-treatment effects, as well as the insignificant results from the

ownership and spillover analyses based on the Trucost data.

CDP reporting Carbon intensities
CA100 Plus List CA100 Plus List
(4) (4) (1) (1)

treat*post −0.03 −0.00 −28.29 −258.04
(0.03) (0.04) (102.59) (217.04)

Num. obs. 636 584 4592 4102
R2 0.90 0.90 0.91 0.85
Adj. R2 0.79 0.79 0.91 0.83
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 4: This table shows the results of the binned DiD analysis on CDP reporting and the
TWFE DiD on carbon intensities (Trucost), comparing the CA100 and Plus companies to
Non-CA100+ companies.
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7.2 Varying regulatory environments

The CA100+ firms operate across diverse regulatory contexts. While company fixed effects

control for time-invariant differences in national climate policy and year fixed effects for

common temporal shocks, time-varying regulatory stringency at the country level could still

bias the results.

To address this concern, I follow Bolton and Kacperczyk (2023b) and incorporate the

Climate Change Performance Index (2023) (CCPI) as a control variable for national cli-

mate policy stringency in the TWFE DiD model (1). The CCPI provides annual scores of

countries’ climate policy efforts. I match firms to CCPI scores based on their headquarters’

location. Appendix H provides further detail on how the CCPI data were used. Table 5

shows that the results on target setting remain robust when accounting for cross-country

variation in regulatory environments. The CCPI coefficients are not statistically significant.

CA100 Plus
TY: 2025 TY: 2035 TY: 2050 TY: 2025 TY: 2035 TY: 2050

treat*post 0.00 -0.13 −0.42∗ -0.15 −0.61∗∗∗ −1.18∗∗∗

(0.07) (0.12) (0.22) (0.10) (0.19) (0.39)
CCPI -0.00 0.00 0.00 -0.00 -0.00 -0.01

(0.00) (0.00) (0.01) (0.00) (0.00) (0.01)

Num. obs. 1532 1532 1532 1399 1399 1399
R2 0.89 0.77 0.63 0.86 0.72 0.60
Adj. R2 0.87 0.74 0.58 0.84 0.68 0.54
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 5: This table shows the results of the DiD on targets conducted for the CA100 and
Plus analyses including CCPI scores.

Since even the CCPI data may not fully capture relevant variations in climate policy

stringency, I conduct an additional test by restricting the sample to firms headquartered in

North America, the region with the largest representation. Table 6 shows that the estimated

effect on target ambition remains insignificant for CA100 firms. Despite the lower statistical

power of this regional analysis, the effect on the Plus firms’ long-term targets persists at
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the 10% significant level, while the effect on medium-term targets is slightly above this

significance level.

Appendix I shows that the non-results for TCFD reporting and carbon intensities are

largely robust to controlling for CCPI and restricting the sample to North American firms.

CA100 Plus
TY: 2025 TY: 2035 TY: 2050 TY: 2025 TY: 2035 TY: 2050

treat*post -0.04 -0.07 -0.12 -0.18 -0.61 -1.33∗

(0.12) (0.17) (0.22) (0.22) (0.37) (0.69)

Num. obs. 412 412 412 369 369 369
R2 0.88 0.78 0.69 0.80 0.63 0.54
Adj. R2 0.86 0.75 0.64 0.77 0.57 0.47
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 6: This table shows the results of the DiD conducted for the CA100 and Plus analyses
among North American firms.

7.3 Varying sectoral dynamics

Lastly, as discussed in section 4.2 , different sectors face different decarbonisation challenges.

Consequently, variations in the sector compositions across the three groups could bias the

results. To rule out this potential bias, I conduct a stringent test by re-estimating all models

within a single sector: electricity utilities.

CA100 Plus
TY: 2025 TY: 2035 TY: 2050 TY: 2025 TY: 2035 TY: 2050

treat*post -0.11 -0.10 -0.14 -0.11 -0.29 −0.58∗

(0.14) (0.18) (0.24) (0.12) (0.19) (0.31)

Num. obs. 438 438 438 511 511 511
R2 0.89 0.81 0.71 0.83 0.66 0.55
Adj. R2 0.87 0.78 0.66 0.81 0.62 0.49
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 7: This table shows the results of the DiD conducted for the CA100 and Plus analyses
within the electricity sector.
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Table 7 confirms that the effect on target setting remains insignificant for CA100 firms,

while the impact on long-term targets among Plus firms persists at the 10% level. Appendix

J further shows that the non-effects on TCFD reporting and carbon intensities also hold

within this sector.

8 Conclusion

This study provides the first causal assessment of the impact of a large investor coalition on

corporate climate action. Although there are strong conceptual reasons to expect CA100+

to influence real-economy outcomes, I find only partial support for H1. Specifically, I find no

significant effect of CA100+ on targeted companies’ TCFD reporting or carbon intensities

five years after the initiative’s launch. These findings contrast with anecdotal evidence and

Chang and Fang (2024) and Chuah et al. (2025) who report negative associations between

CA100+ targeting and firms’ carbon emissions.

However, this study does find a significant effect of CA100+ on companies’ carbon emis-

sion reduction targets. The effect on medium-term targets strengthens over time, while the

2050 effect peaks in research cycle 2021 – coinciding with the rise of “net zero” campaigns

such as the Business Ambition for 1.5°C. This provides partial support for H2, which posits

that CA100+’s impact grows over time. It is worth noting that CA100+ focused its early

engagement efforts on target setting, only explicitly requesting reductions in emissions from

2023 onward. Hence, it is possible that effects on emissions may emerge in the future.

However, by examining the company selection process and testing for heterogeneity in

the treatment effect, I find that the effect on targets is primarily driven by the Plus list –

where endogeneity cannot be ruled out. CA100+ investors may have strategically targeted

firms for the Plus list that were predisposed to respond well to engagement. While Heeb and

Kölbel (2024) highlight investor selectivity as a potential concern, this study provides the

first empirical evidence on this potential mechanism. A sceptical view on the heterogeneous
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treatment effect would suggest that investors had prior knowledge about the carbon emission

reduction targets the Plus companies were going to set anyway. Along similar lines, investors

might have anticipated “easy wins”. However, these explanations may be overly sceptical.

Based on interviews the author conducted with CA100+ investors, selecting the right target

companies is considered a crucial element of a successful engagement process. Some described

it as part of the “art of engagement.”

Investor stewardship resources are limited, requiring a focus on firms where engagement

is likely to yield results. From this perspective, it is reasonable that CA100+ signatories

selected Plus companies they believed would be more responsive to pressure. Dimson et al.

(2015) suggest that investors typically target firms based on a combination of prior sustain-

ability performance, reputational risk and ownership stakes.

To explore potential differences between CA100 and Plus companies along these and

other dimensions, I conduct independent two-sample t-tests using variables that investors

plausibly had access to when the Plus list was compiled in 2017. These include average

Scope 1, 2, and 3 emissions from Trucost, alongside operational and financial metrics drawn

from the Orbis database.

Table 8 indicates that CA100 companies are, on average, nearly twice as large as the Plus

companies, with differences significant at conventional levels. This result is unsurprising,

given that the CA100 companies were selected based on absolute carbon emissions, which

are closely correlated with firm size. However, it may indicate that investor impact is stronger

for slightly smaller firms among the largest corporate emitters.

Moreover, I find no impact of CA100+ on short-term targets. While it is important to

acknowledge companies’ challenges in reducing their carbon enmissions in the near term,

setting medium- and long-term targets that are not underpinned by short-term milestones

raises questions about their credibility. Prior research suggest that ambitious climate tar-

gets are linked to actual emission reductions (Ioannou et al., 2016; Bolton and Kacperczyk,

2023a), yet there is no evidence that companies are penalised for failing to meet such targets
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Variable CA100 Plus Difference p-Value
Average emissions (Mt) 65.8 30.7 35∗∗∗ 0.00
Market cap (bn USD) 56.7 31.9 24.8∗∗∗ 0.00
Revenue (bn USD) 76.2 33 43.2∗∗∗ 0.00

Fixed assets (bn USD) 46.8 23.5 23.3∗∗∗ 0.00
EBIT (bn USD) 57.8 30 27.8∗∗∗ 0.00

Tobin’s Q 0.71 0.83 −0.12 0.30
Number of employees (k) 114.2 94 20.2 0.68
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 8: This table presents independent two-sample t-test results across a range of variables,
comparing the CA100 and Plus companies prior to the launch of CA100+.

(Jiang et al., 2025). This study does not seek to assess whether CA100+ companies will

ultimately deliver on their targets. Nonetheless, the absence of short-term ambition may re-

flect strategic behaviour aimed at appearing climate-responsible while deferring substantive

abatement. As targets extend further into the future, accountability within both firms and

investors becomes more diffuse. This could be perceived as a form of greenwashing.

Surprisingly, I also find no evidence in support of H3 or H4 – that is, neither the collective

ownership share held by CA100+ investors in focus companies nor potential spillover effects

via ownership in non-targeted companies appear to influence outcomes. This challenges the

common assumption that the collective scale of investor coalitions – often promoted through

headline figures on membership and collective AUMs – necessarily plays a central role in

driving real-economy impact.

I acknowledge several caveats to the interpretation of my findings. First, CA100+ fo-

cuses on the world’s largest publicly listed corporate emitters. As such, the results may not

generalise to smaller polluters, who may respond differently to investor engagement. How-

ever, from a climate mitigation perspective, the behaviour of the largest corporate emitters

matters the most.

Second, CA100+ organises engagement through company-specific subgroups, each com-

prising different lead and supporting investors. The composition of these subgroups is not

comprehensively disclosed. Prior studies demonstrate that the configuration of such smaller
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engagement groups can shape outcomes (Dimson et al., 2023; Slager et al., 2023). To be

clear, this study does not contradict these existing findings, nor does it suggest that all

private engagements conducted within CA100+ were unsuccessful. Rather, my analysis fo-

cuses on the broader initiative – evaluating the causal impact of CA100+ as a large-scale

coordinated investor coalition across its entire focus list.

Third, although I test for spillover effects operating through investor learning and dif-

fusion of engagement practices, CA100+ could generate broader system-level spillovers by

shifting the institutional context in which firms operate (Matisoff, 2015). For instance, the

CA100+ Net Zero Benchmark may have established new decarbonisation standards influ-

encing all firms, not just those on the focus list. Such general equilibrium effects are difficult

to control for empirically, but we can assume that they would lead to an underestimation of

the measurable treatment effects.

While acknowledging this conceptual possibility, this study offers a key insight. Only

focus companies were directly targeted by CA100+’s coordinated engagement. My findings

reveal no systematic differences between CA100+ and Non-CA100+ companies, except for

medium- and long-term targets among the Plus firms, and no evidence of spillovers into

individual investor engagement. If CA100+ still influences corporate behaviour through

broader system effects – for example, by shaping broader institutional norms – this would

call for a reassessment of the role of large investor coalitions. While recognising that one

cannot exist without the other, their impact as agenda or standard setters might be greater

than as collective engagement platforms.

Fourth, it is possible that CA100+ simply requires more time to exert a meaningful

influence on corporate behaviour. A follow-up study could offer insights into how the initia-

tive’s impact evolves over a longer horizon. Notably, CA100+ has recently become smaller,

following the departures of several large US-based asset managers in 2024. In light of my

finding that collective ownership by CA100+ investors does not appear to drive engagement

outcomes, future research could investigate a potential “reverse” treatment effect – assessing
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whether a smaller, but potentially more aligned coalition becomes more effective.

Lastly, another promising area for future research is to explore whether investor action

has prompted other actors, such as insurers, lenders or regulators, to adopt stricter climate

risk management policies. This would help assess the broader financial ecosystem’s response

to investor coalitions like CA100+.
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A Appendix - CA100 companies

Airbus Exxon Mobil Philips
American Electric Power Fiat Chrysler Phillips 66
Anglo American Ford Posco
Anhui Conch Cement Formosa Petrochemical Procter & Gamble
AP Moller - Maersk Gas Natural PTT
Arcelor Mittal Gazprom Raytheon Technologies
BASF General Electrics Reliance Industries
Bayer General Motors Repsol
Berkshire Hathaway Glencore Rio Tinto
BHP Hitachi Rolls-Royce
Boeing Holcim Rosneft Oil
BP Hon Hai Precision Industry SAIC Motor
Canadian Natural Resources Honda Sasol
Caterpillar Imperial Oil Shell
Centrica International Paper Siemens
Chevron KEPCO Sinopec
China Shenhua Energy Lockheed Martin SK Innovation
CNOOC Lukoil Southern Company
Coal India LyondellBasell Industries Suncor Energy
ConocoPhillips Marathon Petroleum Suzuki
Cummins Martin Marietta Materials Teck Resources
Daikin Industries Naturgy Energy Tesoro
Dow Nestle ThyssenKrupp
Duke Energy Nippon Steel Toray Industries
Dupont Nissan TotalEnergies
E.ON Nornickel Toyota
Ecopetrol NTPC Trane Technologies
EDF Oil & Natural Gas United Technologies
Enel OMV Vale
Eneos PACCAR Valero Energy
Engie Panasonic Vedanta
Eni Pepsico Volkswagen
Equinor Petrobras Volvo
Exelon

Table 9: This table shows the list of CA100 companies.
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B Appendix - Plus companies

ADBRI Delta Air Lines Renault
AES Devon Energy RWE
AGL Energy Dominion Energy Santos
Air France KLM Enbridge Severstal
Air Liquide Eskom South 32
American Airlines FirstEnergy SSAB
ANTAM Fortum SSE
Bluescope Steel Groupe PSA St Gobain
BMW Heidelberg Cement Suzano
Boral Iberdrola TC Energy
Bumi Kinder Morgan Unilever
Bunge National Grid United Continental
Cemex NextEra Energy United Tractors
CEZ NRG Energy Vistra Energy
China Steel Occidental Petroleum Walmart
Coca-Cola Origin Energy WEC Energy Group
Colgate-Palmolive PGE Weyerhaeuser
CRH Power Assets Woodside Petroleum
Daimler PPL Woolworths
Dangote Cement Qantas XCEL Energy
Danone

Table 10: This table shows the list of Plus companies.
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C Appendix - TPI methodology, process and data

TPI Carbon Performance (CP) assessments are exclusively disclosure-based. Therefore, the

length of a company’s emission pathway depends on two main factors. First is the availability

of historical emissions and production data. While some companies have complete carbon

emission pathways with historical carbon intensities ranging from 2014 to 2022, others have

shorter pathways or even no pathway at all. Figure 10 shows the past carbon intensities of

a company with limited disclosure.

Figure 10: This figure shows an exemplary TPI CP pathway for Oil and Natural Gas from
research cycle 2022.

Second, the forward-looking part of the pathway until 2050 is calculated based on compa-

nies’ carbon emission reduction targets. Figures 11 and 12 illustrate how the forward-looking

emission pathway of the same company, Eni, changed between RCs 2020 and 2021. For ex-

ample, in the TPI research cycle 2020, Eni had set a target to reduce its carbon intensity

to 29.46 gCO2e/MJ by 2050. In the TPI research cycle 2021, Eni had set a target to reach

a carbon intensity of 0 gCO2e/MJ by 2050. The reduction of 29.46 gCO2e/MJ for Eni’s

targeted 2050 carbon intensity between TPI RCs 2020 and 2021 reflects the strengthened

ambition of the company’s new carbon emission reduction target. The carbon intensities be-

tween the year of the current intensities and the year for which a carbon emission reduction

target was set are linearly interpolated. Similarly, in the rare cases where there are gaps

between years of calculated historical intensities, the missing values are linearly interpolated.
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Figure 11: This figure shows an exemplary TPI CP pathway for Eni from research cycle
2020.

Figure 12: This figure shows an exemplary TPI CP pathway for Eni from research cycle
2021.

Data reliability in CP assessments is ensured through the TPI quality assurance process.

Initially, a TPI analyst prepares the CP assessment, which is subsequently reviewed by

another analyst not involved in the initial drafting. The assessments are then sent to the

respective companies for feedback. Following a comprehensive analysis of the feedback and

an additional internal review, the assessments are published on the TPI tool.
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TPI’s sector rules match the CA100+ sector definitions and rely on various GICS and ICB

filter settings and additional manual company research. The goal of TPI’s sector allocation

is to ensure that companies from the same sector face similar challenges in the low-carbon

transition.

Five CA100+ sectors, namely chemicals, consumer goods, oil and gas distribution, other

industrials and services, are not yet covered by TPI’s assessments. Moreover, the carbon

intensities in the aluminium and diversified mining sectors are calculated starting only from

2016. Hence, the analysis of CA100+’s impact on companies’ emission pathways is con-

ducted for the nine remaining sectors: airlines, automotives, cement, coal, electricity, paper,

shipping, steel and oil and gas.

Table 11 shows the sample of companies with complete historical carbon intensity path-

ways from 2014 to 2022.

UPDATE

Sector CA100 Plus Non-CA100+ Total
Electricity 9 18 34 61
Autos 9 4 15 28
Oil and gas 22 5 13 40
Cement 1 4 9 14
Steel 4 3 13 20
Airlines NA 5 15 20
Total 45 39 99 183

Table 11: This table shows the sample size for TPI companies with complete historical
carbon intensity pathways by sector.
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D Appendix - Methodological note on constructing new

primary CP data

The goal of the new primary data collection is to replicate forward-looking emissions inten-

sity pathways for companies prior to their initial assessment by TPI. However, since TPI was

launched in 2017, the sectoral methodologies have undergone several revisions to enhance

their robustness. Additionally, several companies experienced changes due to mergers, acqui-

sitions and other factors affecting how TPI assessed them. This note outlines the potential

impacts of such changes on the paper’s analysis and explains which further adjustments

were necessary to ensure the final database remains usable for the paper’s analysis. These

adjustments, affecting both existing CP assessments and new ”historical” assessments, were

discussed with and reviewed by the TPI team.

Aside from the notes below, the “historical” CP assessments follow the same method-

ologies and process as standard TPI assessments to ensure data quality. Initial drafts were

prepared by a TPI analyst and reviewed by myself between May 2023 and May 2024. Al-

though this study utilises pre-feedback data, the “historical” assessments will be sent to

companies for feedback in the future.

Removals from the sample

I removed all companies that TPI stopped assessing during the research period from the

sample. This decision primarily impacted Russian companies, as TPI discontinued assess-

ments of Russian companies during research cycle 2022.

Extending the length of emission intensity pathways

During the early TPI RCs from 2017 to 2019, companies’ forward-looking emission inten-

sity pathways were calculated until 2030. However, in research cycle 2020, the assessments

in all sectors were expanded to cover projections until 2050. Consequently, the early TPI

CP assessments from RCs 2017 to 2019 do not allow for an evaluation of companies’ carbon

emission reduction targets beyond 2030. To enable this long term analysis, I prolonged the

assessments for companies that had established targets reaching beyond 2030 in the early

RCs, employing the following methodology:

1. I identified companies with 2030 targets in RCs 2017 to 2020.

2. I verified TPI internal assessments to confirm if these companies had set targets ex-

tending beyond 2030.
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3. I adopted the targeted intensities beyond 2030 if already calculated in early TPI as-

sessments. Otherwise, I calculated the targets myself in adherence to the TPI sectoral

methodologies.

4. I conducted all new “historical” assessments with emission intensity pathways extend-

ing until 2050.

Completing carbon intensity pathways from previous research cycles

In some cases, companies began reporting historical carbon intensities after their initial

assessments by TPI. For example, a company may have been assessed in research cycle

2017 as having “No or unsuitable disclosure”, but then published sufficient information to

calculate an emission intensity pathway from 2014 to 2019 in research cycle 2020. In such

cases, I complete the pathways for research cycles 2017-2019 with the new carbon intensities

that became available in research cycle 2020. I also complete historical carbon intensities

with newly found information where available.

In cases where methodological changes by the company or TPI resulted in significant

shifts in companies’ pathways (see some sector-specific explanations below), I adjust the

previously reported intensities to align with the new methodologies, assuming that the con-

version ratio remained constant over time. For example, if a company reported intensities

using an old methodology for 2015 and 2016 but changed its methodology in 2017, providing

newly calculated historical intensities only for 2016, I assume that the 2016 conversion factor

can also be applied to 2015. I apply the same approach if emissions intensities are available

from either company disclosures or TPI calculations for all years, but available for both only

for some years.

WHEN FISCAL YEAR WAS DIFFERENT FROM CALENDAR YEAR, ADJUSTED

FISCAL YEARS TO ALIGN WITH CA100+ (PLUS COMPANIES ADDED IN JUNE

2018). JUST STATE THAT.

Automotive sector

The TPI automotive methodology uses gCO2/km as the emission intensity metric. Ini-

tially, this intensity was based on the New European Driving Cycle (NEDC) test cycle.

However, with the gradual phasing out of the NEDC test cycle in the European Union and

other regions, TPI transitioned to the Worldwide harmonized Light vehicles (WLTP) test

cycle in a methodology update during R 2022. The adoption of WLTP resulted in an upward

adjustment of emission intensities for nearly all automotive companies, except for pure elec-

tric vehicle manufacturers. Since this transition affected both CA100+ and Non-CA100+

companies equally and at the same, it does not introduce bias into my analysis.
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Additionally, Fiat Chrysler and Groupe PSA, two CA100+ companies, merged to form

Stellantis in January 2021. TPI last assessed Fiat and PSA as separate entities in R 2021,

after which it began assessing only Stellantis. To preserve a larger sample size, I include

assessments for both Fiat Chrysler and Groupe PSA in my analysis. After R 2021, I applied

Stellantis’ carbon emission reduction targets to both Fiat Chrysler and Groupe PSA for

consistency.

Airlines sector

TPI’s methodology for airlines underwent significant changes between research cycle 2018

and 2019. The emission intensity metric shifted from gCO2/Revenue-passenger-kilometer

(RPK) to gCO2/Revenue-tonne-kilometers (RTK) to include cargo in the assessments. Air-

lines assessed in research cycle 2018, the inaugural year of TPI’s airline assessments, initially

had their assessments in gCO2/RPK and subsequently in gCO2/RTK.

The change in the emission intensity metric caused substantial jumps the pathways of

individual companies, such as from approximately 120 gCO2/RPK to 650 gCO2/RTK. To

mitigate the impact of this methodological change, I converted the gCO2/RPK pathways

into gCO2/RTK pathways using TPI’s conversion factor of 150 kilograms per passenger. In

research cycle 2020, TPI updated the conversion factor for RPK to RTK from 150kg per

person to 95kg per person. Therefore, I converted all assessments from RCs prior to 2020

again using the updated conversion factor. Starting from R 2021, the airline assessments are

used as available in the TPI database.

Cement sector

TPI assessments use intensities reported in tCO2/t cementitious products to enable ac-

curate comparisons with the TPI decarbonisation benchmarks. This metric was introduced

by the Cement Sustainability Initiative, the precursor of the Global Cement and Concrete

Association, in 2011. Before TPI was established, a significantly higher number of companies

reported their carbon footprints in tCO2/t cement. Since this study does not rely on com-

parisons with TPI decarbonisation benchmarks, and given the minor differences between the

two metrics (approximately 1% globally), I also use reported tCO2/t cement for historical

assessments.

Oil and Gas sector

TPI assessments in the oil and gas sector include Scope 1, 2, and 3 (category 11) emissions.

While Scope 3 (category 11) emissions are calculated by TPI based on a company’s sold

products, Scope 1 and 2 emissions are sourced from company disclosures. If a company does

not report its Scope 1 and 2 emissions, TPI does not publish historical carbon intensities.
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For companies where Scope 3 (category 11) emissions can be calculated and Scope 1 and 2

emissions were disclosed for most but not all years, I apply the company-specific Scope 1&2

relative to Scope 3 emission intensity ratio to obtain carbon intensities for the remaining

years.
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E Appendix - DiD results on climate-related and TCFD

reporting

Figure 13: This figure shows the pre- and post-treatment trends on climate-related reporting
across CA100, Plus and Non-CA100+ companies for each year.

CA100 Plus

DiD 0.35 −0.12
(0.48) (0.43)

Num. obs. 3, 141 2, 871
R2 0.74 0.76
Adj. R2 0.71 0.73
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 12: This table shows the results of the DiD analysis on climate-related reporting,
comparing the CA100 and the Plus companies to Non-CA100+ companies.
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Figure 14: This figure shows the dynamic treatment effect of CA100+ on CA100 and Plus
companies’ climate-related reporting using a staggered DiD specification.

For risk-related reporting, the DiD results indicate a significant positive effect, in par-

ticular for the CA100 companies. However, risk-related reporting comprises only 1% of

companies’ total ARs, as shown in Figure 3. Moreover, this effect is neither significant in

the staggered DiD results nor consistently robust after conducting the checks in Section 7.2.

Governance Strategy Risk Metrics & Targets

DiD 0.06 −0.13 0.08∗ 0.13
(0.04) (0.24) (0.04) (0.09)

Num. obs. 3, 618 3, 618 3, 618 3, 618
R2 0.65 0.75 0.59 0.67
Adj. R2 0.60 0.71 0.54 0.63
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 13: This table shows the results of the DiD analysis on TCFD reporting, comparing
the CA100+ to Non-CA100+ companies.
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Figure 15: This figure shows the pre- and post-treatment trends on reporting on the four
TCFD categories across the CA100+ and Non-CA100+ companies for each year.
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Figure 16: This figure shows the pre- and post-treatment trends on reporting on the four
TCFD categories across CA100, Plus and Non-CA100+ companies for each year.
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Governance Strategy Risk Metrics & Targets

DiD 0.06 0.00 0.11∗∗ 0.18
(0.05) (0.31) (0.05) (0.12)

Num. obs. 3, 141 3, 141 3, 141 3, 141
R2 0.65 0.73 0.60 0.70
Adj. R2 0.61 0.70 0.55 0.66
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 14: This table shows the results of the DiD analysis on TCFD reporting, comparing
the CA100 to Non-CA100+ companies.

Governance Strategy Risk Metrics & Targets

DiD 0.03 −0.29 0.01 0.13
(0.06) (0.28) (0.05) (0.13)

Num. obs. 2, 871 2, 871 2, 871 2, 871
R2 0.64 0.76 0.59 0.69
Adj. R2 0.60 0.73 0.54 0.64
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 15: This table shows the results of the DiD analysis on TCFD reporting, comparing
the Plus to Non-CA100+ companies.
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Figure 17: This figure shows the dynamic treatment effect of CA100+ on CA100 and Plus
companies’ reporting on the four TCFD categories using a staggered DiD specification.
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F Appendix - DiD results on historical carbon inten-

sities

Figure 18: This figure shows the pre- and post-treatment trends on carbon intensities across
CA100, Plus and Non-CA100+ companies for each year.

CA100 Plus

DiD 0.09∗ −0.02
(0.05) (0.08)

Num. obs.1, 185 1, 060
R2 0.94 0.93
Adj. R2 0.93 0.92
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 16: This table shows the results of the DiD analysis on carbon intensities, comparing
the CA100 and the Plus companies to Non-CA100+ companies.

The DiD results show a significant positive effect of CA100+ on the carbon intensities

of CA100 companies. This would indicate that CA100+ engagement increased the carbon

intensities of this subgroup. However, the effect is neither significant in the staggered DiD

results nor consistently robust after conducting the checks in Section 7.2.
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Figure 19: This figure shows the pre- and post-treatment trends on carbon intensities between
2014 and 2022 across CA100, Plus and Non-CA100+ companies for each year.
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G Appendix - CDP responses

CDP questionnaires allow companies to disclose relevant information which will then be

made public on the CDP website. Since 2018, the CDP climate questionnaire is aligned with

the TCFD recommendations. Yet, even previous versions required companies to broadly

disclose information on the four TCFD categories. Therefore, I employ a binary metric

indicating whether companies report to CDP as an indirect measure of their disclosures’

alignment with TCFD guidelines in the pre- and post-treatment periods.

A more granular analysis was tested to assess whether companies respond to specific

questions that address the four TCFD themes in the CDP questionnaires. However, it

appears that companies that decide to participate in the CDP process largely address most

or all questions. While the quality of the responses may vary, measuring companies’ decision

to disclose information on a question level does not add much value compared to a binary

assessment of whether companies submit their CDP questionnaire or not.

As for the ClimateBERT-TCFD analysis, I use the TPI companies as my baseline uni-

verse. Since the CDP datasets prior to 2018 do not include companies that were contacted by

CDP but chose not to respond, I manually collect the data on which TPI companies decided

to opt-out from the CDP website for the period 2016 to 2022.10 Since CDP questionnaires

usually reflect the disclosures of the previous year, this period effectively spans from 2015 to

2021.

After excluding companies that were not contacted by CDP in each year, I retain a

sample of 70 CA100, 44 Plus and 246 Non-CA100+ companies. Figure 20 shows that treated

companies were considerably more responsive to CDP before and after the launch of CA100+.

Moreover, it appears that CDP reporting increased in the Non-CA100+ group but decreased

slightly among the CA100 and remained largely stable among the Plus companies.

10CDP’s outreach to companies was considerably less extensive prior to 2016.
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Figure 20: This figure shows the share of CA100, Plus and Non-CA100+ companies respond-
ing to CDP in the pre- and post-treatment periods.

CA100+

DiD −0.02
(0.02)

Num. obs. 724
R2 0.90
Adj. R2 0.79
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 17: This table shows the results of the binned DiD analysis on CDP responses, com-
paring the CA100+ to Non-CA100+ companies.
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H Appendix - Climate Change Performance Index (CCPI)

data

The CCPI data were sourced from CCPI annual reports available for download on the

Climate Change Performance Index (2023) website. The CCPI rating aggregates scores

from four main categories: greenhouse gas emissions (40%), renewable energy deployment

(20%), energy use efficiency (20%), and climate policy (20%). Within these categories, the

CCPI assesses 14 indicators in total. The final score ranges from 0 to 100%.

The CCPI covers approximately sixty countries, with slight variations in coverage by

year. To address minor data gaps for countries where included companies are headquartered

but lack CCPI ratings, the following assumptions were made:

1. Values from China were used for Hong Kong.

2. For Singapore, data is available until 2016, and its index evolution post-2016 is assumed

to match Malaysia’s.

3. The United Arab Emirates have no data before 2023; its index is assumed to evolve

similarly to Saudi Arabia’s.

4. Qatar’s indices are assumed to mirror the UAE’s.

5. Nigeria’s evolution until 2023 mirrors South Africa’s.

6. Chile mirrors Brazil’s index evolution until 2019.

7. Colombia mirrors Brazil’s index evolution until 2021.

8. The EU’s evolution is assumed to be the average of all European countries in the

sample until 2017.

These assumptions affect only one company each from Chile, Colombia, Hong Kong,

Nigeria, Singapore and the United Arab Emirates, and two companies from the European

Union. For most companies, complete time series data from CCPI are available.

Table 18 shows the final CCPI data used for the robustness checks.
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Table 18: Climate Change Performance Index (CCPI) Scores by Country (2013-2023)

Country 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
Australia 41.53 35.57 36.56 40.66 25.03 31.27 30.75 28.82 30.06 36.26 45.72
Austria 57.19 55.39 50.69 52.00 49.49 48.78 44.74 48.09 52.35 51.56 58.17
Belgium 64.65 61.89 68.73 62.08 49.60 50.63 45.73 45.11 45.90 48.38 55.00
Brazil 55.53 48.51 51.90 52.46 57.86 59.29 55.82 53.26 54.86 48.39 61.74
Canada 40.39 38.81 38.74 43.06 33.98 34.26 31.01 24.82 26.03 26.47 31.55
Chile 62.55 54.65 58.46 59.10 65.18 66.79 62.88 64.05 69.51 69.54 68.74
China 52.41 51.77 48.60 47.49 45.84 49.60 48.16 48.18 52.20 38.80 45.56
Colombia 58.58 51.17 54.75 55.34 61.03 62.54 58.88 56.18 57.87 54.50 58.68
Czechia 53.93 57.99 57.03 58.52 45.13 49.72 42.93 38.98 42.15 44.16 45.41
Denmark 75.23 77.76 71.19 61.87 59.49 61.96 71.14 69.42 76.67 79.61 75.59
EU 65.21 65.05 63.90 62.25 56.89 60.65 55.82 57.29 59.21 59.96 64.71
Finland 56.57 56.76 58.27 56.28 66.55 62.61 63.25 62.63 62.41 61.24 61.11
France 65.90 64.11 65.97 66.17 59.80 59.30 57.90 53.72 61.01 52.97 57.12
Germany 61.90 59.60 58.39 56.58 56.58 55.18 55.78 56.39 63.53 61.11 65.77
Hong Kong 52.41 51.77 48.60 47.49 45.84 49.60 48.16 48.18 52.20 38.80 45.56
India 57.16 56.97 58.19 59.08 60.02 62.93 66.02 63.98 69.20 67.35 70.25
Indonesia 56.24 59.57 58.21 58.86 48.94 48.68 44.65 53.59 57.17 54.59 57.20
Ireland 65.01 65.15 62.65 59.02 38.74 40.84 44.04 45.47 47.86 48.47 51.42
Italy 62.90 61.75 62.98 60.72 59.65 58.69 53.92 53.05 55.39 52.90 50.60
Japan 47.21 45.07 37.23 35.93 35.76 40.63 39.03 42.49 48.53 40.85 42.08
Malaysia 47.06 46.84 53.49 50.96 32.61 38.08 34.21 27.76 33.74 33.51 38.57
Mexico 61.5 61.3 57.04 57.02 54.77 56.82 47.01 48.76 56.05 51.77 55.81
Netherlands 56.99 53.27 54.84 57.1 49.49 54.11 50.89 50.96 60.44 62.24 69.98
New Zealand 53.49 52.56 52.41 50.48 49.57 44.61 45.67 51.3 54.03 50.55 57.66
Nigeria 69.70 70.46 69.34 72.44 52.38 62.23 58.90 59.49 65.94 58.93 63.88
Norway 59.32 57.88 54.65 52.9 67.99 62.8 61.14 65.45 73.29 64.47 67.48
Poland 52.69 54.36 56.09 53.68 46.53 47.59 39.98 38.94 40.63 37.94 44.4
Portugal 68.38 67.26 59.52 62.47 59.16 60.54 54.1 56.8 61.11 61.55 67.39
Saudi Arabia 25.17 24.19 21.08 25.45 11.2 8.82 22.03 22.46 24.25 22.41 19.33
Singapore 50.32 47.27 42.81 43.97 28.14 32.85 29.52 23.95 29.11 28.91 33.28
South Africa 54.04 54.63 53.76 56.17 40.61 48.25 45.67 46.13 51.13 45.69 49.53
South Korea 46.66 44.15 37.64 38.11 25.01 28.53 26.75 29.76 26.74 24.91 29.98
Spain 60.37 57.34 52.63 56.14 48.19 48.97 46.03 45.02 54.35 58.59 63.37
Sweden 68.1 71.44 69.91 66.15 74.32 76.28 75.77 74.42 74.22 73.28 69.39
Switzerland 66.17 65.05 62.09 61.66 61.2 65.42 60.61 60.85 61.7 58.61 61.94
Taiwan 46.81 45.03 45.45 44.76 29.43 28.8 23.33 27.11 30.7 28.35 36.94
Thailand 54.51 50.61 48.16 51.91 49.07 48.71 46.76 53.18 55.01 47.23 61.38
Turkey 46.47 46.95 47.25 45.54 41.02 40.22 40.76 43.47 50.53 43.32 43.82
UAE 31.97 30.72 26.77 32.32 14.22 11.20 27.98 28.53 30.79 28.46 24.55
UK 69.66 70.79 70.13 66.1 66.79 65.92 69.8 69.66 73.09 63.07 62.336
USA 52.93 52.33 54.91 51.04 25.86 18.82 18.6 19.75 37.39 38.53 42.79
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I Appendix - Robustness checks regarding varying reg-

ulatory environments

CA100+

DiD 0.17
(0.35)

CCPI 0.05∗∗∗

(0.01)

Num. obs. 3, 618
R2 0.75
Adj. R2 0.72
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 19: This table shows the results of the DiD analysis on climate-related reporting
including CCPI, comparing the CA100+ to Non-CA100+ companies.

CA100 Plus

DiD 0.30 −0.00
(0.47) (0.40)

CCPI 0.05∗∗∗ 0.05∗∗∗

(0.01) (0.01)

Num. obs. 3, 141 2, 871
R2 0.75 0.77
Adj. R2 0.71 0.74
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 20: This table shows the results of the DiD analysis on climate-related reporting
including CCPI scores, comparing the CA100 and the Plus companies to Non-CA100+
companies.
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CA100+

DiD −0.07
(0.38)

Num. obs. 1, 260
R2 0.73
Adj. R2 0.70
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 21: This table shows the results of the DiD analysis on climate-related reporting,
comparing the CA100+ to Non-CA100+ companies within North America.

CA100 Plus

DiD −0.11 0.20
(0.52) (0.47)

Num. obs. 1, 062 1, 026
R2 0.74 0.76
Adj. R2 0.70 0.73
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 22: This table shows the results of the DiD analysis on climate-related reporting,
comparing the CA100 and the Plus companies to Non-CA100+ companies within North
America.

Governance Strategy Risk Metrics & Targets

DiD 0.06 −0.11 0.08∗∗ 0.14
(0.04) (0.23) (0.04) (0.09)

CCPI 0.00∗∗∗ 0.03∗∗∗ 0.00∗∗∗ 0.01∗∗∗

(0.00) (0.01) (0.00) (0.00)

Num. obs. 3, 618 3, 618 3, 618 3, 618
R2 0.65 0.75 0.60 0.67
Adj. R2 0.61 0.72 0.54 0.63
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 23: This table shows the results of the DiD analysis on TCFD reporting including
CCPI scores, comparing the CA100+ to Non-CA100+ companies.
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Governance Strategy Risk Metrics & Targets

DiD 0.02 −0.21 0.02 0.10
(0.03) (0.24) (0.03) (0.14)

Num. obs. 1, 260 1, 260 1, 260 1, 260
R2 0.34 0.76 0.66 0.55
Adj. R2 0.25 0.73 0.62 0.49
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 24: This table shows the results of the DiD analysis on TCFD reporting, comparing
the CA100+ to Non-CA100+ companies within North America.

Governance Strategy Risk Metrics & Targets

DiD 0.06 −0.03 0.11∗∗ 0.17
(0.05) (0.30) (0.05) (0.12)

CCPI 0.00∗∗∗ 0.03∗∗∗ 0.00∗∗∗ 0.01∗∗∗

(0.00) (0.01) (0.00) (0.00)

Num. obs. 3, 141 3, 141 3, 141 3, 141
R2 0.65 0.74 0.60 0.70
Adj. R2 0.61 0.70 0.55 0.66
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 25: This table shows the results of the DiD analysis on TCFD reporting including
CCPI scores, comparing the CA100 to Non-CA100+ companies.

Governance Strategy Risk Metrics & Targets

DiD 0.04 −0.21 0.02 0.15
(0.06) (0.26) (0.05) (0.12)

CCPI 0.00∗∗∗ 0.03∗∗∗ 0.00∗∗∗ 0.01∗∗∗

(0.00) (0.01) (0.00) (0.00)

Num. obs. 2, 871 2, 871 2, 871 2, 871
R2 0.64 0.77 0.59 0.69
Adj. R2 0.60 0.74 0.54 0.65
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 26: This table shows the results of the DiD analysis on TCFD reporting including
CCPI scores, comparing the Plus to Non-CA100+ companies.
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Governance Strategy Risk Metrics & Targets

DiD −0.00 −0.27 0.06 0.11
(0.04) (0.32) (0.03) (0.19)

Num. obs. 1, 062 1, 062 1, 062 1, 062
R2 0.33 0.74 0.66 0.64
Adj. R2 0.24 0.71 0.61 0.60
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 27: This table shows the results of the DiD analysis on TCFD reporting, comparing
the CA100 to Non-CA100+ companies within North America.

Governance Strategy Risk Metrics & Targets

DiD 0.06 −0.03 −0.01 0.18
(0.05) (0.29) (0.04) (0.21)

Num. obs. 1, 026 1, 026 1, 026 1, 026
R2 0.33 0.78 0.68 0.57
Adj. R2 0.24 0.75 0.63 0.52
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 28: This table shows the results of the DiD analysis on TCFD reporting, comparing
the Plus to Non-CA100+ companies within North America.

CA100+

DiD 0.06
(0.05)

CCPI 0.00
(0.00)

Num. obs. 1, 491
R2 0.93
Adj. R2 0.92
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 29: This table shows the results of the DiD analysis on carbon intensities including
CCPI, comparing the CA100+ to Non-CA100+ companies.

66



CA100+

DiD 0.08
(0.10)

Num. obs. 503
R2 0.92
Adj. R2 0.91
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 30: This table shows the results of the DiD analysis on carbon intensities, comparing
the CA100+ to Non-CA100+ companies within North America.

CA100 Plus

DiD 0.09 0.02
(0.05) (0.08)

CCPI −0.00 −0.00
(0.00) −0.00

Num. obs.1, 185 1, 060
R2 0.94 0.93
Adj. R2 0.93 0.92
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 31: This table shows the results of the DiD analysis on carbon intensities including
CCPI, comparing the CA100 and the Plus companies to Non-CA100+ companies.

CA100 Plus

DiD 0.11 0.03
(0.09) (0.16)

Num. obs. 404 350
R2 0.93 0.92
Adj. R2 0.92 0.90
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 32: This table shows the results of the DiD analysis on carbon intensities, comparing
the CA100 and the Plus companies to Non-CA100+ companies within North America.
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TY 2025 TY 2035 TY 2050

DiD −0.03 −0.25∗∗ −0.60∗∗

(0.07) (0.12) (0.23)
CCPI −0.00 −0.00 −0.00

(0.00) (0.00) (0.01)

Num. obs.1, 480 1, 480 1, 480
R2 0.89 0.75 0.61
Adj. R2 0.87 0.72 0.56
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 33: This table shows the results of the DiD analysis on target-year-specific forward-
looking carbon intensities (in z-scores) including CCPI scores, comparing the CA100+ to
Non-CA100+ companies.

TY 2025 TY 2035 TY 2050

DiD −0.12 −0.31 −0.61∗

(0.13) (0.19) (0.31)

Num. obs. 484 484 484
R2 0.84 0.67 0.56
Adj. R2 0.82 0.62 0.49
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 34: This table shows the results of the DiD analysis on target-year-specific forward-
looking carbon intensities (in z-scores), comparing the CA100+ to Non-CA100+ companies
within North America.
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J Appendix - Robustness check regarding varying sec-

toral dynamics

CA100+

DiD −1.16
(1.22)

Num. obs. 612
R2 0.63
Adj. R2 0.58
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 35: This table shows the results of the DiD analysis on climate-related reporting,
comparing the CA100+ to Non-CA100+ companies within the electricity sector.

CA100+

DiD −0.92
(1.14)

CCPI 0.09∗∗

(0.04)

Num. obs. 612
R2 0.64
Adj. R2 0.59
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 36: This table shows the results of the DiD analysis on climate-related reporting
including CCPI scores, comparing the CA100+ to Non-CA100+ companies within the elec-
tricity sector.
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CA100 Plus

DiD 0.71 −1.65
(2.21) (1.16)

Num. obs. 468 531
R2 0.63 0.65
Adj. R2 0.57 0.59
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 37: This table shows the results of the DiD analysis on climate-related reporting, com-
paring the CA100 and the Plus companies to Non-CA100+ companies within the electricity
sector.

CA100 Plus

DiD 1.03 −1.48
(2.07) (1.04)

CCPI 0.11∗∗ 0.09∗∗

(0.04) (0.04)

Num. obs. 468 531
R2 0.64 0.66
Adj. R2 0.58 0.61
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 38: This table shows the results of the DiD analysis on climate-related reporting
including CCPI scores, comparing the CA100 and the Plus companies to Non-CA100+
companies within the electricity sector.

Governance Strategy Risk Metrics & Targets

DiD 0.05 −1.06 0.11 −0.27
(0.11) (0.84) (0.13) (0.29)

Num. obs. 612 612 612 612
R2 0.60 0.61 0.56 0.63
Adj. R2 0.54 0.55 0.49 0.58
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 39: This table shows the results of the DiD analysis on TCFD reporting, comparing
the CA100+ to Non-CA100+ companies within the electricity sector.
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Governance Strategy Risk Metrics & Targets

DiD 0.07 −0.89 0.12 −0.22
(0.11) (0.80) (0.12) (0.27)

CCPI 0.01∗∗ 0.06∗∗ 0.01∗∗ 0.02∗∗

(0.00) (0.03) (0.00) (0.01)

Num. obs. 612 612 612 612
R2 0.60 0.62 0.56 0.64
Adj. R2 0.55 0.56 0.49 0.58
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 40: This table shows the results of the DiD analysis on TCFD reporting including CCPI
scores, comparing the CA100+ to Non-CA100+ companies within the electricity sector.

Governance Strategy Risk Metrics & Targets

DiD 0.03 0.23 0.34 0.11
(0.18) (1.57) (0.27) (0.44)

Num. obs. 468 468 468 468
R2 0.59 0.59 0.57 0.65
Adj. R2 0.53 0.53 0.51 0.60
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 41: This table shows the results of the DiD analysis on TCFD reporting, comparing
the CA100 to Non-CA100+ companies within the electricity sector.

Governance Strategy Risk Metrics & Targets

DiD 0.06 0.45 0.36 0.17
(0.17) (1.52) (0.26) (0.41)

CCPI 0.01∗∗ 0.07∗∗ 0.00 0.02∗∗

(0.00) (0.03) (0.00) (0.01)

Num. obs. 468 468 468 468
R2 0.60 0.60 0.57 0.66
Adj. R2 0.54 0.54 0.51 0.60
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 42: This table shows the results of the DiD analysis on TCFD reporting including the
CCPI scores, comparing the CA100 to Non-CA100+ companies within the electricity sector.
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Governance Strategy Risk Metrics & Targets

DiD 0.05 −1.31 −0.05 −0.34
(0.15) (0.75) (0.11) (0.33)

Num. obs. 531 531 531 531
R2 0.58 0.64 0.56 0.64
Adj. R2 0.52 0.58 0.50 0.58
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 43: This table shows the results of the DiD analysis on TCFD reporting, comparing
the Plus to Non-CA100+ companies within the electricity sector.

Governance Strategy Risk Metrics & Targets

DiD 0.06 −1.20 −0.04 −0.31
(0.15) (0.68) (0.11) (0.31)

CCPI 0.01∗∗ 0.06∗∗ 0.01∗∗ 0.02
(0.00) (0.03) (0.00) (0.01)

Num. obs. 531 531 531 531
R2 0.58 0.65 0.57 0.64
Adj. R2 0.52 0.59 0.50 0.59
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 44: This table shows the results of the DiD analysis on TCFD reporting including the
CCPI scores, comparing the Plus to Non-CA100+ companies within the electricity sector.

CA100+

DiD 0.02
(0.10)

Num. obs. 548
R2 0.94
Adj. R2 0.93
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 45: This table shows the results of the DiD analysis on carbon intensities, comparing
the CA100+ to Non-CA100+ companies within the electricity sector.
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CA100+

DiD 0.02
(0.10)

CCPI 0.00
(0.00)

Num. obs. 548
R2 0.94
Adj. R2 0.93
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 46: This table shows the results of the DiD analysis on carbon intensities including
CCPI scores, comparing the CA100+ to Non-CA100+ companies within the electricity sec-
tor.

CA100 Plus

DiD −0.09 0.10
(0.11) (0.12)

Num. obs. 386 467
R2 0.93 0.94
Adj. R2 0.92 0.93
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 47: This table shows the results of the DiD analysis on carbon intensities, comparing
the CA100 and the Plus companies to Non-CA100+ companies within the electricity sector.

CA100 Plus

DiD −0.09 0.10
(0.11) (0.12)

CCPI 0.00 0.00
(0.00) (0.00)

Num. obs. 386 467
R2 0.93 0.94
Adj. R2 0.92 0.93
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 48: This table shows the results of the DiD analysis on carbon intensities including
the CCPI scores, comparing the CA100 and the Plus companies to Non-CA100+ companies
within the electricity sector.
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TY 2025 TY 2035 TY 2050

DiD −0.09 −0.23∗ −0.35∗∗

(0.11) (0.13) (0.16)

Num. obs. 564 564 564
R2 0.90 0.81 0.71
Adj. R2 0.88 0.78 0.67
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 49: This table shows the results of the DiD analysis on target-year-specific forward-
looking carbon intensities (in z-scores), comparing the CA100+ to Non-CA100+ companies
from the electricity sector.

TY 2025 TY 2035 TY 2050

DiD −0.08 −0.20 −0.31∗∗

(0.11) (0.13) (0.16)
CCPI 0.00 0.01∗ 0.01∗∗

(0.00) (0.00) (0.00)

Num. obs. 564 564 564
R2 0.90 0.81 0.72
Adj. R2 0.89 0.78 0.68
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 50: This table shows the results of the DiD analysis on target-year-specific forward-
looking carbon intensities (in z-scores) including CCPI scores, comparing the CA100+ to
Non-CA100+ companies from the electricity sector.

CA100 Plus
TY: 2025 TY: 2035 TY: 2050 TY: 2025 TY: 2035 TY: 2050

DiD -0.15 -0.13 -0.15 -0.05 -0.29∗ -0.48∗∗

(0.14) (0.18) (0.23) (0.14) (0.17) (0.17)
CCPI 0.00 0.00 0.01 -0.00 -0.01∗ -0.01∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Num. obs. 402 402 402 476 476 476
R2 0.89 0.82 0.72 0.89 0.79 0.71
Adj. R2 0.88 0.79 0.67 0.88 0.79 0.66
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 51: This table shows the results of the DiD including CCPI conducted for the CA100
and Plus analyses within the electricity sector using z-scores.
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