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Abstract

This paper provides a unified account of the role of bailout expectations and reg-

ulation in shaping the dynamics of banks’ credit spreads and risk-taking incentives. I

document that market-implied losses given default increased substantially following

the Great Financial Crisis, became more volatile, and became more correlated with

economy-wide and bank-specific fundamentals, reflecting diminished bailout expec-

tations. Using a dynamic general equilibrium of financial intermediation featuring

default risk and time-varying bailout expectations, I show that lower bailout expecta-

tions substantially raised credit spreads at the onset of the crisis and that their impor-

tance diminished thereafter. Banks endogenous deleveraging, together with higher

capital requirements, explain around half of the recovery in credit spreads post-crisis.

These findings help explain how reduced bailout expectations and tighter regulation,

by raising banks’ cost of capital, have moved the banking sector away from risky asset

markets.
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1 Introduction

Since the Global Financial Crisis, credit-default-swap (CDS) spreads on unsecured bank
debt have more than tripled and have remained far above pre-crisis norms, signalling
that markets now attach a much higher price to the possibility of bank default. Three
explanations appear plausible: first, banks may have shifted into business lines that
enlarge tail exposures even while reported capital ratios improve; second, post-crisis
regulation—Basel III surcharges, liquidity and funding ratios, and bail-inable total loss-
absorbing capacity—may have raised the contractual loss that a CDS must insure and so
boosted the spread independently of default risk; third, and in sharp contrast, investors
may have revised downward the likelihood that governments will rescue wholesale cred-
itors, so a given shock translates into larger creditor losses (Berndt et al. 2022); the puzzle
is that standard balance-sheet indicators such as Tier 1 capital, leverage multiples, and
non-performing loan shares all point to safer banks and therefore to lower, not higher,
spreads; understanding whether today’s premia reflect genuine fundamental risk or the
evaporation of an implicit safety net is central to capital regulation, because if spreads
are artificially low when bailouts are expected the optimal equity buffer must rise to neu-
tralise risk-taking incentives, whereas if spreads already price fundamentals a further
buffer may be unnecessary (Kareken & Wallace 1978, Chari & Kehoe 2016).

The first contribution of my paper is on measuring the risk-neutral losses given defaut
for debt holders by exploiting the pricing of default risk in both credit and equity mar-
kets. To do this, I develop a valuation framework that compares how each claim (debt
vs. equity) behaves in default states. If debt holders may be protected by a bailout while
equity holders are fully wiped out upon default, then the left-tail risk for debt should
be systematically smaller than that for equity. This reflects the market’s perception of a
possible government intervention. I then develop a simple method to recover the risk-
neutral loss given default (LGD) by combining CDS and equity option contracts. Under a
general class of stock price dynamics, deep out of the moneyAmerican put options repli-
cate the risk-neutral probability of default (Carr & Wu 2011). I document how expected
losses vary over time and respond to market conditions. The recovery of the mid-2000s
sees projected creditor losses near ten percent, but these losses swell to around forty per-
cent on the eve of the 2007–09 crisis and remain elevated through the downturn. As
sovereign concerns spike in 2011, expected losses climb again before settling near twenty
percent through much of the 2010s and then easing back toward ten percent by 2020.
These countercyclical swings in market-implied losses mirror business-cycle stresses and
confirm that creditors’ downside exposure is far from constant. I also show that a signifi-
cant portion (around 40%) of the variation in short-term credit spreads can be attributed
to changes in risk-neutral losses given defaut.
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I then ask whether these variations reflect true balance-sheet risk, bailout perceptions
or simply shifts in market liquidity. To address this, I regress changes in expected losses
on a suite of liquidity indicators—bid-ask spreads, trading volume, and open interest
in out-of-the-money options, depth in CDS markets, plus aggregate measures like the
TED–SOFR spread and the VIX—and isolate the component of loss movements driven
by illiquidity. I construct a liquidity-adjusted expected-loss series by accumulating the
residuals of this regression. Before the financial crisis, the original and liquidity-adjusted
series move in lockstep, but as markets seize up in 2008–09, the adjusted losses rise sig-
nificantly more. This finding implies that movements in expected losses post Great Fi-
nancial Crisis reflect relatively more market condition signaling a lower likelihood of a
bailout. However, the post crisis regime was also characterized by tighter regulation,
which should have increased the cost of capital for banks, reduced risk-taking and there-
fore depressedthe credit spreads. In order to discipline the effect of tigheter regulation
on credit spreads and isolate the role of bailout expectations, I develop a novel identifi-
cation strategy to distinguish the two forces. The key insight is that the two move credit
spreads and equity tail risk in opposite directions. When investors mark down the likeli-
hood of a rescue, spreads rise—creditors expect bigger losses—while equity tail-volatility
falls, because a larger share of downside is already borne by shareholders and the gov-
ernment put is weaker. Tighter loss-absorbing regulation (Basel III capital surcharges,
TLAC, and single-point-of-entry resolution) works the other way for credit spreads: by
forcing bondholders to share losses ex ante it flattens spreads, yet it reduces downside
volatility for equity, whose residual claim becomes less levered and the upside potential
for shareholders is reduced too. I exploit this sign reversal by examining the fixed-effect
partial correlation between daily CDS spreads and the log model-free risk-neutral vari-
ance (SVIX) of equity returns. The slope jumps from 0.27 before 2008 to 0.37 after 2010—a
one-third increase. Because lower bailout odds would have pushed the correlation down
(spreads up, volatility down), the observed upward break cleanly identifies—and quan-
titatively pins down—the dominant role of the post-crisis regulatory regime. In effect,
a one-standard-deviation bump in equity tail risk now elicits about a 35 percent larger
proportional change in CDS premia than it did pre-Basel III, confirming that Dodd-Frank
have sharpened rather than supplanted market discipline.

In the second part of the paper I build a dynamic general equilibrium model that em-
beds time varying bailout regimes. Banks hold portfolios of risky long-term bonds subject
to mean reverting aggregate shocks and disasters. Bank fund those assets by issuing in-
sured deposits which trade below market rates, uninsured bank bonds and and equity.
When a bailout is granted the Treasury pays the full shortfall for bond-holders, other-
wise bond investors recover the fraction of post-default asset value. My measurement
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strategy consists of combining the model with my estimated default probabilities and
CDS spreads of the US banks to infer the component of credit spreads movements that is
due to bailout expectations. I do so by applying the particle filter to the model and ex-
tracting the sequence of structural shocks that accounts for the behavior of credit spreads
and risk-neutral default probabilities before, during and after the Great Financial Crisis.
The estimated bailout probability allows a decomposition of observed credit spreads into
a fundamental, a bailout and a regulation component. I rerun the exercise while hold-
ing bailout probabilities fixed at its pre-crisis level yet feeding in the same sequence of
fundamental shocks; the resulting counterfactual spread isolates what investors would
have demanded had bailout beliefs not moved. The difference between actual and coun-
terfactual premia measures the time-varying bailout component. I show that diminished
bailout odds explain more then half of the 2007–2009 surge in one-year spreads and about
forty percent of their post-2010 plateau, with the remainder accounted for by asset risk
and regulation.

To isolate the importance of endogenous leverage choice, I simulate a counterfactual
in which banks are forbidden from adjusting uninsured bond issuance, holding it fixed at
its ergodic mean. In this counterfactual, the one-year credit spread exceeds the baseline
spread by roughly 80 basis points at the crisis peak—about one third larger than the 160
bp widening in the calibrated model. This gap measures the strength of the feedback
channel through which higher uninsured funding costs lead banks to shrink debt and
so mitigate part of the direct bailout-induced repricing. Ignoring this feedback would
therefore understate the implied subsidy from government back-stops.

Building on this exercise, I then use the model to isolate how the post-crisis collapse
in expected government support and tighter regulation reshaped both funding costs and
banks’ risk exposures. The anticipation of future bailouts of bondholders and other cred-
itors always benefits shareholders ex ante and incentives risk-taking (Kareken & Wallace
1978). The average unsecured one-year spread paid by large U.S. banks jumps 34 basis
points between the pre-2008 and the post-2010 periods. In a counterfactual that holds
the pre-crisis bailout probability at its high level, the same spread rises by only 8.8 ba-
sis points. The remaining 25.5 bp—almost three-quarters of the observed increase—is
therefore a pure bailout premium that investors demand once they expect to bear losses.
Balance-sheet choices respond in kind. I build an asset-return factor from the model’s
loan-portfolio payoff and estimate its equity loading. The loading climbs 29 percent in the
data-consistent baseline but edges down by 4 percent in the high bailout probability coun-
terfactual, implying a 33-percentage-point swing in exposure that is fully attributable to
weaker bailout beliefs. These higher spreads and shifted exposures coincide with a per-
sistent compression in asset prices, confirming that lower expected bailouts raise banks’
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cost of capital, push them out of the riskiest assets, and re-allocate any residual downside
risk squarely onto shareholders rather than creditors or taxpayers.

Contribution to the Literature.

1. Bailouts and Risk-Taking: (Kareken & Wallace 1978, Panageas 2010, Farhi & Tirole
2012, Chari & Kehoe 2016, Dovis & Kirpalani 2022)

2. Measuring TBTF subsidy (Veronesi & Zingales 2010, Schweikhard & Tsesmelidakis
2011, Gandhi & Lustig 2015, Kelly et al. 2016, Hett & Schmidt 2017, Atkeson et al.
2019, Minton et al. 2019, Gandhi et al. 2020, Berndt et al. 2022, Haddad et al. 2023)

3. Intermediary asset pricing (He & Krishnamurthy 2013, Brunnermeier & Sannikov
2014, Garleanu & Pedersen 2011, Adrian & Boyarchenko 2012, Krishnamurthy &
Muir 2017)

4. Quantitative models of bank regulation (Van den Heuvel 2008, Corbae & D’Erasmo
2019, Mendicino et al. 2019, Begenau 2020, Elenev et al. 2021)

Layout. This paper is organized as follows. Section 2 lay down a simple valuation
framework to estimate the risk-neutral losses given default from option prices and CDS
spreads. Section 3 documents the time series properties of expected losses and their cor-
relation with fundamentals. Section 4 presents the model, section 5 characterizes the
property of the equilibrium and section 6 calibrates it to US data. Section 7 decomposes
observed spreads into bailout, fundamental and regulation components and measures
the contribution of intermediaries leverage choices. Section 8 tracks how bailout expecta-
tions and capital regulation changed banks’ risk exposures and cost of capital. Section 9
concludes.

2 Measuring Expected Losses Given Default

In this section, I present a conceptual framework to infer the risk-neutral losses given
default from option prices and CDS contracts. The model considers a bank whose assets
generate cash flows allocated between debt and equity, with default occurring when these
cash flows are insufficient to meet debt obligations. Upon default, equity is completely
wiped out, while debt holders may be protected by a government bailout, ensuring full
repayment. I then show how to back out the risk-neutral probability of default from
American put options on the bank’s equity following Carr & Wu (2011), and how to ex-
tract the risk-neutral losses given default from CDS spreads.
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2.1 Pricing Debt, Equity, and the Credit Spread

Let At be the market value of the bank’s assets at date t and let δt denote the cash-flow
rate (interest and principal) produced by those assets over rt, t� 1q. Expectations E�

t r�s

are taken under the risk-neutral measure, and Rf,t is the one-period gross risk-free rate
observed at t.

The risk-neutral present value of the asset cash flows is

Vt �
1
Rf,t

E�
t

� 8̧

τ�t�1

δτAτ

�
.

Denote by Dt the face value of debt outstanding and by PD
t the contractual repayment

rate (interest plus amortization) per unit of face value due at t. Default occurs when
current asset cash flow cannot cover the payment:

∆t � 1tδtAt PDt Dtu
.

If default takes place, the government repays debtholders with probability πt; if it does
not intervene, debtholders recover V̂t ¤ PD

t Dt. Hence the payoff per unit of face value is

rPD
t � p1�∆tqP

D
t � ∆t

�
πtP

D
t � p1� πtqV̂t{Dt

�
.

The market value of the debt equals the discounted stream of these payoffs:

SDt �
1
Rf,t

E�
t

� 8̧

τ�t�1

rPD
τ

�
.

Equityholders receive what is left once the scheduled debt payment is met; they get noth-
ing in default:

rPE
t � p1�∆tq

�
δtAt � PD

t Dt

��, SEt �
1
Rf,t

E�
t

� 8̧

τ�t�1

rPE
τ

�
.

Because equity is wiped out at the first default event, it is economically equivalent to a
perpetual American call on the firm’s asset value that is cancelled if the debt payment
cannot be met. Adding debt and equity then gives

St � SDt � SEt � Vt � E�
t

� 8̧

τ�t�1

πτ∆τ

�
PD
τ Dτ � V̂τ

��
loooooooooooooooooomoooooooooooooooooon

value of implicit government guarantee

,
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so the state subsidizes debtholders by writing a digital put that fills any repayment short-
fall in default states.

Credit spread decomposition. Define the risk-free discount factor from t to τ as

βt,τ �
τ�1¹
s�t

1
Rf,s

,

and the promised contractual debt cash flow at τ ¥ t� 1 as Cτ � PD
τ Dτ. I can the rewrite

the default indicator and post-default payoffs as

∆τ � 1tδτAτ Cτu, rPD
τ � Cτ � p1� πτq

�
Cτ � V̂τ

�
∆τ.

Hence, the market price of debt is

SDt �
8̧

τ�t�1

βt,τ E�
t r
rPD
τ s �

8̧

τ�t�1

βt,τ E�
t rCτslooooooooomooooooooon

�At

�
8̧

τ�t�1

βt,τ E�
t

�
p1� πτqpCτ � V̂τq∆τ

�
loooooooooooooooooooooomoooooooooooooooooooooon

�Lt

where At risk-free present value of promised coupons and Lt is the present value of ex-
pected losses. I am now ready to define the credit spread CSt as the non-negative scalar s
solving

SDt �
8̧

τ�t�1

βt,τ
Cτ

p1� sq τ�t
.

Substituting SDt � At � Lt gives

Lt �
8̧

τ�t�1

βt,τ E�
t rCτs

�
1� p1�CStq�pτ�tq

�
. (1)

I can further define the risk-neutral default probability

Q�
t,τ � E�

t r∆τs,

and the conditional loss-given-default

LGD�
t,τ � E�

t

�
p1� πτqpCτ � V̂τq | ∆τ � 1

�
.
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The single-period discounted expected loss is

ℓt,τ � βt,τ Q�
t,τ LGD�

t,τ, Lt �
8̧

τ�t�1

ℓt,τ. (2)

Equation (1) expresses Lt entirely in terms of observed credit spreads CSt, the cash-flow
schedule tCτu, and discount factors tβt,τu. I can rearrange (2) to get

LGD�
t,τ �

ℓt,τ

βt,τ Q�
t,τ

�
E�

t rCτs
�
1� p1�CStq�pτ�tq

�
Q�

t,τ
, (3)

delivering the risk-neutral loss-given-default for every maturity τ ¡ t. The final step is
to use option prices on the equity to reveal the risk-neutral default probability embedded
in the market’s valuation of the American put contracts. Combining this probability with
observable CDS spreads then backs out the market-implied LGD under the risk-neutral
measure.

2.2 Back-Up of Default Probabilities from Option Prices

Following Carr & Wu (2011), the asset value process tAtut¥0 of the bank follows default-
able displaced dynamics with a default region

At P
�
Al,Ah

�
, 0   Al   Dt   Ah,

and default occurs the first time the lower threshold is breached:

T � inf
 
t ¥ 0 : At ¤ Al

(
.

Such a region is natural when debt covenants and limited liability drive equity to zero
at default yet keep it bounded above in normal times. For large regulated banks, capi-
tal requirements and stress tests narrow the “distance to default”; market capitalisation
rarely drifts far beyond a plausible recapitalisation value, but once losses push assets be-
low a regulatory threshold the stock price collapses. Hence the equity of major banks
often trades within a tight corridor punctuated by crash events, qualitatively matching
the setting here.

It is never optimal to exercise the American put on the bank’s equity before default,
because the exercise value Dt �At is negative when the bank is solvent pAt ¡ Dtq. At
default pt � Tq the equity value SEt � pAt�Dtq

� falls to zero, so immediate exercise yields
K. Before default pT ¡ tq equity is a cancelable call, bounded above by E :� Ah �Dt ¡ 0.
Choose any strike K P p0,Es; two cases obtain: (i) if no default occurs before maturity T
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pT ¡ Tq, the equity remains above E and the put expires worthless; (ii) if default happens
pT ¤ Tq, equity collapses and the put is exercised instantly. Thus the put payoff is a digital
indicator of default scaled by K. Let PuttpK, Tq be the market price at t ¤ T and define the
risk-free discount factor βt,T �

±T�1
s�t R

�1
f,s . Under risk-neutral pricing

PuttpK, Tq � βt,T KE�
t

�
1tT¤Tu

�
� βt,T KQ�

t,T , Q�
t,T :� E�

t

�
1tT¤Tu

�
, K P p0,Es.

Figure 1 plots the American put price (panel 1a) and the corresponding return (panel 1b)
for Morgan Stanley on 9 September 2008 (T � t � 494 days). The vertical line marks the
estimated upper bound E of the default region. Inside that region the price–strike graph is
linear; its slope equals βt,TQ�

t,T and is the shaded area beneath that line in panel (panel 1b).
Outside the region the usual convex option profile re-emerges, reflecting dependence on
pre-default equity dynamics.

(a) Put Value vs. Strike (b) Option Return vs. Strike

Figure 1: Put option price (a) and return (b) as a function of strike for Morgan Stanley on 09/09/2008,
maturity 494 days. The vertical line marks the default-region upper bound E. The shaded area represents
the discounted risk-neutral default probability βt,TQ�t,T .

3 Empirical Implementation

3.1 Data

Data on CDS are obtained from IHS Markit. The initial sample consists of daily repre-
sentative CDS quotes on all entities in the financial sector covered by Markit over the pe-
riod from January 2000 through December 2022. While the five-year contract is generally
thought to be the most liquid, I collect data on all maturities available for every company.
When CDS rates are quoted for primary and non-primary coupons, I only retain the for-
mer. A similar rule is applied to the primary curve identifier. Whenever available, all CDS
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quotes are for a contractual definition of default known as "no restructuring". For losses
given defaut, I source the average recovery taken from observed contributed recovery
rate, which is sourced from the Markit CDS End of Day curve.

Options data are sourced from OptionMetrics. On each selected date, I examine the
options data to identify companies with put options that satisfy the following criteria: (1)
the bid price is greater than zero; (2) the offer price is greater than 0.05; (3) the offer price is
no more than five times the bid price; (4) the open interest and the bid-ask spread are both
greater than zero; (5) the absolute value of the put’s delta does not exceed 15%; options
prices are constructed as averages of highest closing bid and lowest closing ask prices. Eq-
uity options exhibit the greatest depth and liquidity at short maturities, especially within
one year, while the benchmark CDS contract trades most actively at the five-year tenor.
To align the two markets, I measure both option-implied and CDS-implied default risk
at a common one-year horizon. The data from IHS Markit, OptionMetrics, and CRSP are
merged based on the permco identifier for each bank.

(a) Number of put contracts by maturity (days) (b) Number of companies over time

Figure 2: Panel (a) plots the number of chosen put options across different times to maturity. Panel (b) plots
the number of companies in each year of sample period.

After all the filtering and cleaning, my final sample includes 48 banks from 2000 to
2023. The number of banks at each week ranges from around 30 to 100, with an average
of 60 banks. The maturities of the chosen option contracts at the reference date range
from 1 to 955 days, with an average of around 150 days. Panel 2b in Figure 2 plots the
number of selected companies at each reference date of my sample period. The number of
companies increased markedly since mid-2007, coinciding with the start of the financial
crisis and again with the Covid19-crisis. Panel 2a in Figure 2 plots the number of selected
put options contracts across different times to maturity.

Detecting the default boundary. The model assumes the existence of a default region
r0,Es, which the stock price cannot enter. The location of this region is unknown ex ante.
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If American put prices were observable across a continuum of strikes at the same matu-
rity, the default region would reveal itself because American put prices are linear in the
strike price within the region. My core innovation lies in the adaptive detection of the
default region r0,Es. Beginning with the two lowest strikes tK1,K2u, the algorithm pro-
gressively expands the analysis window while maintaining statistical validity. For each
time t, maturity T , and candidate window size m ranging from 2 to n, a no-intercept
linear regression is estimated:

Put pKiq � βKi � ϵi for i � 1, . . . ,m.

The model’s goodness-of-fit is quantified through a modified R2 metric appropriate for
regression through the origin:

R2 � 1�
°m

i�1
�
Put pKiq � β̂Ki

�2°m
i�1 Put pKiq

2 .

Window expansion continues only while R2 remains above a predetermined threshold
τ � 0.98. This process identifies the maximal strike Km� where the linear pricing relation-
ship holds, thereby defining the upper region boundary E � Km� . Within the identified
region tK1, . . . ,Km�u, the parameter β is estimated via constrained least squares:

β̂ �

�
m�¸
i�1

Ki � Put pKiq

�
{

�
m�¸
i�1

K2
i

�

This estimator represents the slope of the linear pricing relationship and corresponds to
the risk-neutral default probability Q�

t,T , as derived from the fundamental pricing equa-
tion for default-contingent claims. For each CDS maturity, I linearly interpolate the the
risk-neutral default probability to align with the maturity of the CDS contract. In Ap-
pendix A, I provide robustenness to my measure using the Thiel-Sen estimator. The Theil-
Sen estimator, allows for robust estimation of the slope of the regression line even when
there are large outliers in the underlying data. It also corresponds to a trading strategy,
which is to invest in the strike pair i and j that deliver the median risk-neutral default
probability. Buying the put of strike Kj and writing the put of strike Ki while yields a
payoff of Kj � Ki ¡ 0 if default happens. Because buying and writing these puts costs
a total of PutpKjq � PutpKiq, normalized spread of this trading strategy earns exactly one
dollar if default happens, corresponding to the Theil-Sen estimator.

Table 1 reports the summary statistics of CDS spreads and default probabilities es-
timated from options for one-year maturity. The statistics show that CDS spreads and
default probabilities are similar in average magnitudes and other statistical behaviors.
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The estimates from the put options have a larger sample mean, median and a slightly
larger standard deviation than the CDS spreads

Table 1: Summary Statistics for T � 365

mean median std min max

CSt,365 0.010 0.003 0.039 0.0001 0.994
Q�

t,365 0.038 0.025 0.043 0.003 0.575

Figure 3 plots the average risk neutral default probability Q�
t,T and CDS spread CSt,T

for T � 365 days. Default probabilities and spreads display strong comovements, espe-
cially after the Great Financial Crisis. Both series reach their peaks during the GFC but
while default Probabilities come back to their pre-GFC levels, CDS spreads remain ele-
vated. Remarkably, the Covid-19 crisis is associated with a spike in default probabilities
but a very modest increase in CDS spreads if compred to GFC.

(a) Average Q�t,T for T � 365 (b) Average CSt,T for T � 365

Figure 3: Panel (a) shows default probabilities at 365 days (gray) and the 4 week moving average (black).
Panel (b) shows CDS spreads at 365 days (gray) and the 4 week moving average (black).

3.2 Expected Losses Given Default

Starting from Equation (3) one can back out LGD�
t,τ from the option-implied default prob-

ability Q�
t,τ and the CDS spread CSt provided the following simplifying assumptions

hold:

1. Single-period horizon. Set τ � t� 1. Multi-period CDS contracts are rolled into a
one-year par spread, so the term pτ� tq � 1.
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2. Par coupon schedule. The reference bond underlying the CDS is assumed to trade
at par with unit face value: E�

t rCt�1s � 1.

3. Small-spread approximation. For annualised spreads of a few hundred basis points,

1� p1�CStq�1 �
CSt

1�CSt
� CSt.

4. Independence of recovery and timing. Expected recovery V̂t�1 is conditionally in-
dependent of default timing within the one-year window, consistent with standard
CDS pricing conventions.

Under (1)–(3), the numerator of (3) reduces to CSt,T , yielding the compact relationship

LGD�
t,T �

CSt
Q�

t,T
(4)

Q�
t,t�1 is recovered from deep-out-of-the-money American-put prices on the bank’s equity

using the procedure in Section 2.2. CSt is the one-year par CDS premium for the same
reference entity. Given these two market observables, (4) delivers a risk-neutral loss-
given-default that is internally consistent with both the option and CDS markets.

Panel 4a of Figure 4 plots the time series of the average LGD�
t,T for T � 365 days.

LGD�
t,T varies strongly with business conditions, consistent with the relation between

losses-given-default and market fundamentals. In particular, the variation in LGD�
t,T im-

plies that losses are low to values of approximately 10% during the economic recovery
of the mid-2000s. They increase sharply to around 40% with the financial crisis of 2007-
2009, and then gradually rise. The secondary increase in 2011 is contemporaneous with
the downgrade of U.S. debt. After 2012 the expected losses hover around 30% to then
gradually dropping to 10% from 2017 onwards. In addition, if default probabilities are
coutercyclical and so are expected losses, note that estimates of default probability taken
from CDS under the assumption that recoveries are constant would result in default prob-
ability that are more volatile and right-skewed, than estimates taken from option prices.
Panel 4b of Figure 4 shows that the average expected losses for GSIBs are lower than non-
GSIBs pre-GFC but higher post-GFC. This is consistent with the narrative of Berndt et al.
(2022) (among others) of a structural shift in expected bailout probability for GSIBs after
Dodd-Frank.

3.3 Liquidity-adjusted Expected Losses

Differences in risk-neutral default probabilities from options and CDS spreads may reflect
variation in losses given default, but they could also result from market frictions. Out-
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(a) Average LGD�t,T for T � 365 days (b) Average LGDt,T for T � 365 for GSIBs and non-GSIBs.

Figure 4: Panel (a) shows expected Losses for a 365-day maturity at weekly frequency (grey line) and 4-
weeks moving average (black line). The red horizontal lines represent the averages pre-2008 and post-2010.
Panel (b) shows expected losses for GSIBs (red) and non-GSIBs (blue) at weekly frequency with 4-weeks
moving average.

of-the-money options used to estimate risk-neutral moments and option-implied default
probabilities may be thinly traded. Similarly, the liquidity of some CDS contracts is low.
Therefore, the observed decrease in losses given default during crises may instead reflect
changes in market liquidity. The approximate relation between CDS spreads, option-
implied default probabilities, and losses given default, discussed in Section 3, implies
that, in the absence of market frictions, the ratio between the CDS spread and the default
probability approximates the losses given default. To examine the extent to which mar-
ket liquidity influences this relationship, I estimate the variation in this difference as a
function of liquidity measures.

Illiquidity in the CDS and options markets may reflect both security-specific and market-
wide factors. For options, I utilize bid-ask spreads, open interest, and volume as liquidity
measures. Since default probabilities derived from options primarily depend on out-of-
the-money options, I compute SPREADO

t , the average percentage bid-ask spread for such
options. Additionally, VOLOt and OPENO

t represent the sum of volume and open interest
for these contracts. For CDS, I measure bank-specific depth using DEPTHC

t for five-year
contracts and assume that depth of contracts at each maturity is correlated with five-year
depth.

Aggregate liquidity is captured by combining the Treasury-Eurodollar (TED) spread,
defined as the difference between the 90-day LIBOR and the 90-day Treasury Bill yield
until 2022, with the difference between the 90-day SOFR and the 90-day Treasury Bill
yield thereafter. I define that as FinStresst An increase in the spread signals increased
interbank counterparty credit risk and reduced funding liquidity. This data is obtained
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from the Federal Reserve. Additionally, equity market liquidity is proxied using the VIX
index, VIXt, as higher VIX levels are associated with larger risk premiums and reduced
liquidity provision in equity markets (Nagel 2012). Data on the VIX is also sourced from
the Federal Reserve.

I examine liquidity effects on the expected losses by regressing changes in the (log)
expected losses on changes in the (log) liquidity variables at the aggregate level for every
maturity T following Conrad et al. (2020):

∆ logpLGD�
t,T q � aT � b1∆ log FinStresst � b2∆ logVIXt � b3∆ logSPREADO

t,T

� b4∆ logVOLOt,T � b5∆ logOPENO
t,T � b6∆ logDEPTHC

t,T � et,T . (5)

Using the residuals from this regression, I construct a liquidity-adjusted measure of ex-
pected losses. Specifically, ˜LGD�

t,T is calculated by cumulating the residuals:

˜LGD�
t,T � exp

��âT �
ţ

j�0

êt�j,T

�
,

where ˜LGD�
t,T � LGD�

t,T at t � 1 (January 2000), and each period’s value incorporates the
residual from the regression above.

Figure 5 plots the time series of ˜LGD�
t,T and LGD�

t,T for T � 365 days. ˜LGD�
t,T closely

tracks the original LGD�
t,T before the financial crisis, but differs significantly after. ˜LGD�

t,T

is higher than LGD�
t,T beginning approximately in 2009. That is, adjusting for liquidity

effects results in an estimate of expected losses ˜LGD�
t,T that is meaningfully higher during

the financial crisis and in its aftermath. This suggests that fundamentals and liquidity
effects are not fully reflected in the original expected losses before the crisis, but that the
liquidity-adjusted expected losses are divergent from the original expected losses after
the crisis suggesting the increased role of fundamentals and bank specific factors in the
pricing of expected losses. Overall, estimates of loss given default that control for liq-
uidity effects are more sensitive to economic states than measures that do not control for
liquidity.

3.4 The Role of Regulation post-2010

In this section I study whether post-crisis bank regulation tightened the mapping between
equity–tail volatility and default premia by estimating the change in the fixed-effect par-
tial correlation between daily logarithmic CDS spreads and the logarithm of model-free
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Figure 5: Original expected losses versus liquidity adjusted at weekly frequency for maturity of 365 days.
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risk-neutral variance of equity returns calculated from option prices as

Vart,T �
2

pT � tqRf,t
�
SEt
�2

�» Ft,T

0
puttpK, TqdK�

»
Ft,T

calltpK, TqdK

�

where Ft,T is the forward price of the equity at time t for maturity T , Rf,t is the risk-free
rate at time t, and SEt is the equity price at time t.

The main idea behind identification is that bailout and regulation move credit spreads
and equity tail volatility in the opposite direction. A drop in bailout probability leads to
higher credit spreads and lower equity tail volatility while a tightening of regulation leads
to lower credit spreads and higher equity tail volatility. While both bailout and regula-
tion are aimed at reducing the risk of default, they have different implications for credit
spreads. The identification strategy is to estimate the change in the partial correlation be-
tween CDS spreads and equity tail volatility before 2008 and after 2010. For this reason,
I drop the acute stress window 2008–2009. I average quotes across option maturities per
bank–day and split the panel at 1 January 2010. I first residualise both series,

uCS
it � log

�
CSit

�
� pαi � pδt, uVar

it � log
�
Vart,T

�
� pαi � pδt, (6)

and standardise them within each era so that zp�qit � pu
p�q
it � ūeq{σe. The era-specific partial

correlations are obtained through the regression

zCS
it � ρ0 z

Var
it �∆ρ zVar

it 1tt ¥ 2010-01-01u � εit, (7)

with standard errors clustered by bank; because both regressors have unit variance, ρ0

equals the pre-crisis correlation and ∆ρ is its post-crisis change. Table 2 reports the results
of the regression (7). The estimation yields ρpre � 0.271 and ρpost � 0.367, implying
∆ρ � 0.096. After Basel III’s capital and resolution reforms, a one-standard-deviation
increase in risk-neutral equity variance now produces a roughly 35% larger proportional
change in CDS spreads than before the crisis, indicating that markets price downside
equity volatility more strongly into default premia in the post-2010 regime, consistent
with tighter loss-absorbing regulation.

4 Model

4.1 Environment

Time is infinite, discrete and indexed by t. The economy is populated by households,
indexed by H; a continuum of intermediaries, denoted by I; and a government.
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Dependent Variable: zCS
it

Variables
zVar
it 0.1164���

(0.0314)
zVar
it � post 0.2507�

(0.1254)
zVar
it � pre 0.1548

(0.1604)

Fit statistics
Observations 45,384
R2 0.11177
Adjusted R2 0.11173

Clustered (permco) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table 2: The table reports the results of the regression (7).

Preferences. Households have Epstein-Zin preferences over utility streams tCtu
8
t�0 with

intertemporal elasticity of substitution ν and risk aversion σ

Vt �

#
p1�βq pCtq

1�1{ν �β
�

Et

�
pVt�1q

1�σ
�	 1�1{ν

1�σ

+ 1
1�1{ν

, (8)

with discount factor β.

Technology. The economy contains a constant measure of Lucas trees, indexed by i P

r0, 1s for each island j. In island j, tree i delivers the period-t payoff

y
i,j
t � zitω

j
t Zt e

�ζdt , (9)

where zit ¡ 0 is a firm-specific productivity shock, ωj
t ¡ 0 is an island shock, Zt ¡ 0

represents aggregate productivity, and dt P t0, 1u indicates a disaster state. The multi-
plicative structure implies that each shock scales output proportionally, while disasters
reduce output by the factor e�ζ.

To guarantee positivity of (9), the two idiosyncratic shocks are modelled as log-normal
such that

ln zit � σzεit, lnω
j
t � σωη

j
t, (10)

with εit,η
j
t
i.i.d.
� Np0, 1q. The parameters σz and σω pin down the cross-sectional dispersion
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of firm and island shocks, respectively. Let gp�q and fp�q denote their log-normal density
functions respectively.

Aggregate productivity follows a log-AR(1) process,

lnZt � ρ lnZt�1 � p1� ρqµ� σεt, (11)

where εt � Np0, 1q, µ is the long-run mean of lnZt (normalised to unity), ρ P p0, 1q governs
persistence, and σ ¡ 0 controls aggregate volatility.

The binary disaster indicator evolves according to the Markov transition matrix

Pd �

�
1� πd πd

1� πs πs

�
, (12)

so that πd is the probability of entering a disaster when the economy is currently normal,
and πs is the probability of remaining in disaster once one has occurred.

Each tree backs a single unit of long-term debt with face value 1, market price pt,
amortisation rate δ P p0, 1q, and coupon c. The promised period-t cash flow is therefore
c � p1 � δq � δpt. Default occurs whenever the realised payoff in (9) is insufficient, i.e.
when y

i,j
t   c � p1 � δq. Credit markets are segmented so intermediaries cannot across

across islands, the firm-specific productivity shocks zit diversify within an island, gener-
ating cross-sectional heterogeneity in loan-portfolio returns (Mendicino et al. 2019). The
period-t return on its loan portfolio, conditional on its own shock ωt, is

Ptpωtq �
�
c� p1� δq � δpt

� » 8

zpωt,Zt,dtq
gpzqdz � p1� ηqωtZte

�ζdt

» zpωt,Zt,dtq

0
z gpzqdz,

(13)

where the default threshold solves yi,j
t � c� p1� δq:

zpωt,Zt,dtq �
c� p1� δq

ωt Zt e�ζdt
. (14)

The first term in (13) represents performing loans that deliver the full contractual pay-
ment; the second captures recoveries from defaulted loans, which transfer a portion 1� η

of the realised tree payoff to debtholders. Intermediaries receive no upside: modeling in-
termediairies assets as debt contracts captures the concave, “capped” payoff profile that
is central to their risk dynamics. This structure implies that asset volatility rises sharply
when collateral values fall, making equity volatility much more sensitive to downturns
and causing standard models with constant-volatility lognormal assets to understate de-
fault probabilities in good times and misprice equity risk (Nagel & Purnanandam 2020).
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The representative household holds the residual equity tranche of every tree and per-
fectly diversifies across i and j. Its period-t equity cash flow equals

Πt � at

¼ �
ypz,ωq �

�
c� p1� δq � δpt

��
1typz,ωq¥c�p1�δqugpzq fpωqdzdω � pt�1, (15)

where at is the mass of trees operated per island. The integral is the residual payoff net
of debt obligations, while pt�1 is the market value of debt carried into the next period.

I now describe intermediaries and households’ problems as well as the government
in more detail. The full set of Bellman equations and first-order conditions is relegated
to Appendix B. I denote by St the vector that collects the current values of the exogenous
state variables, to be defined explicitly later on; St�1 denotes next period’s state vector.

4.2 Intermediaries

I now describe the optimization problem of intermediaries. Intermediaries choose the
amount of assets to purchase for next period at�1 and the amount of deposits to issue to
households dI

t�1 at price qd
t �

1
1�rdt

and bonds bIt�1 price qt �
1

1�rt
. The government fully

insures deposits and bails out bond-holders with probability πt �
exptπ̃tu

1�exptπ̃tu
, and

π̃t � π̄p1� ρπq � ρππ̃t�1 � σπεπt , επt � Np0, 1q.

Moreover, banks have a payout target that is fraction ϕ0 of net worth, nt. They can deviate
from this target and raise additional equity et that is, pay out ϕ0nt � et, but this comes at

a cost ϕ1
2

�
et
nt

	2
nt.

4.2.1 Timing

The timing of events is as follows:

1. Aggregate shocks St are realized.

2. Idiosyncratic payoff shocks of intermediaries are realized. Default decisions follow.

3. Banks choose their portfolios. Surviving intermediaries pay dividends, and new
intermediaries are set up to replace liquidated bankrupt intermediaries.

4. Government insures all defaulting deposits while bonds are bailed out with proba-
bility πt.

5. Households consume.
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4.2.2 Portfolio Problem

At Step 3 of the intraperiod sequence of events, intermediaries solve a portfolio choice
problem. In Appendix B.2.1, I show that at the time banks choose their new portfolio, all
banks have the same value and face the same optimization problem. They choose how
much assets to buy for next period, at�1, how much equity to issue, et and how many
bonds and deposits to issue, bIt�1,dI

t�1, to maximize current period dividend payout to
shareholders and the continuation value. The dividend of an indivudual intermediary to
its shareholders at Step 5 is given by

ϖt � ϕ0nt � et �
ϕ1

2

�
et

nt


2

nt.

The intertempotal budget constraint of the bank is

p1�ϕ0qnt � et �
�
qd
t � κ

	
dI
t�1 � qt

�
dI
t�1,bIt�1,at�1

	
bIt�1 � ptat�1. (16)

The first two terms represent the retained earnings and new equity issued by the bank.
The third and fourth term denote new funds from deposits and bond issuance at prices
qt

�
dI
t�1,bIt�1,at�1

�
and qd

t (net of the deposit insurance fee κ and liquidity premium αd).
The fifth term is new capital purchased at price pt. The last term denotes the deposit
adjustment costs.

Finally, I define intermediary net worth as nt � Ptpωtqat � dI
t � bIt. The first term

denotes the payoff of capital after the realization of the island shock ωt. The second and
third term denote deposit and bond repayment obligations.

I characterize the bank’s portfolio problem recursively using the value function V pnt; Stq.
Intermediaries discount future payoffs by Mt,t�1, which is the stochastic discount factor
of households, their equity holders. The value of surviving bank is

V pnt; Stq � max
at�1,bIt�1,dIt�1,et

ϖt �Et rMt,t�1 max tV pnt�1; St�1q , 0us (17)

subject to the budget constrait (16) and the capital requirement constraint

bIt�1 � dI
t�1 ¤ ξptat�1, (18)

and that dI
t�1 ¤ D̄t, where D̄t is the maximum amount of deposits that can be issued by

the intermediary. This constraint captures the in a tractable way the fact that intermdiaries
faces costs of running their deposit business, such as the cost of maintaining a branch
network, and thus cannot issue unlimited deposits despite being the least costly source
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of funding. I assume that the maximum deposit capacity is time-varying and follows a
log-AR(1) process

ln D̄t � ρD̄ ln D̄t�1 � p1� ρD̄qD̄� ζD̄ lnpZte
�ζdtq � σD̄εD̄t , (19)

where εD̄t � Np0, 1q and the coefficient ζD̄ governs the negative correlation between de-
posit demand and the business cycle and captures the fligh to safety events during eco-
nomic downturns. Intermediaries pay deposit insurance fees κ to the government per
unit of deposits. They internalize that the price of their debt, qt

�
bIt�1,dI

t�1,at�1
�
, is a

function of their default risk and thus their capital structure. The continuation value takes
into account the possibility of optimal default, in which case equity holders get zero. Con-
straint (18) is a Basel-style regulatory bank capital constraint, and requires that deposits
are collateralized by intermediaries portfolio. The parameter ξ determines how much
debt can be issued against each dollar of assets. I have chosen to have market prices on
the right-hand side of (18) because levered financial intermediaries face regulatory con-
straints that depend on market prices.

4.2.3 Aggregation and bankruptcy

Two properties of the bank problem allow me to obtain aggregation. First, island shocks
ωt are uncorrelated over time. Second, the value function is homogencous of degree one
in net worth nt. I use these properties to write the bank value function in terms of the
value per unit of wealth vpStq � V pnt; Stq {nt, which only depends on the aggregate state
vector St.

At the beginning of each period, a fraction of intermediaries defaults before paying
dividends to shareholders and choosing the portfolio for next period. Debt holders and
the government take ownership of these bankrupt intermediaries and liquidate them to
recover some of the outstanding debt. Bankrupt intermediaries are replaced by newly
started ones that households endow with initial equity n0 per bank. These new interme-
diaries then solve problem (17) with nt � n0.

Denote aggregate net worth of surviving and newly started intermediaries by Nt, and
the ratio of new equity over net worth as ẽt � et{nt. This ratio is identical across inter-
mediaries due to scale invariance. Then the aggregate dividend to households is:

Πdiv
t � Nt

�
ϕ0 � ẽt �

ϕ1

2
pẽtq

2


� F pω�

t qn
0

The dividend has two parts: (i) all intermediaries, both surviving and newly started,
pay a dividend share ϕ0 � ẽt net of costs, out of their net worth, and (ii) newly started
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intermediaries, equal in mass to bankrupt firms Ft � F pω�
t q, receive initial equity n0.

Banks optimally default at step 4 in the intra-period time line when ω   ω�, such that

Ptpω
�qat � dI

t � bIt � 0.

I define D � tω : ω   ω�u as the set of defaulting intermediaries and Dc as the set of
non-defaulting intermediaries.

4.3 Household

Each period, households receive the payoffs from owning all equity and debt claims
on intermediaries and trees, yielding financial wealth Wt. They further pay taxes Tt.
Houscholds choose consumption Ct, deposits and bonds, dj

t�1 and BH
t�1 to maximize util-

ity (8) subject to their inter-temporal budget constraint

Wt � Tt ¥ Ct � qtB
H
t�1 � qd

tD
H
t�1, (20)

where pt denotes the market price of bank equity. The transition law for houschold finan-
cial wealth Wt is given by

Wt � Πt �Πdiv
t �DH

t �BH
t

�»
ωPDc

t

1dFpωq �
»
ωPDt

pπt � p1� πtqRVtpωqqdFpωq,

�
(21)

where D is the set of defaulting intermediaries, and Dc is the set of non-defaulting in-
termediaries, as defined above, and RVtpωq is the bonds recovery value of the defaulting
intermediaries given by

RVtpωq �
maxtp1� χqAtPtpωq �DI

t, 0u
BI
t

.

Finally, the deposit rate rdt may differ from the risk-free rate rft to capture the fact that
changes to risk-free rates do not pass through one-for-one to deposits1 I model the rela-
tionship in reduced form as

rdt �
�
r̄f �αd

	
�βd

�
rft � r̄f

	
,

with α ¥ 0 and βd P p0, 1s. The parameter αd captures the average spread between risk-
free and deposit rates, while βd capture the degree of deposit rate sensitivity to risk-free

1While my paper does not directly study the role of interest rate risk in driving the banks’ franchise
value (Drechsler et al. 2017, Jiang et al. 2024, DeMarzo et al. 2024) it is important to account for the special
role of deposits in the banking system and their contribution to banks cost of capital.
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rate deviations from its mean. When αd � 0 and βd � 1, the two rates are always equal.

4.4 Government

Defaulting intermediaries are liquidated by the government. During the bankruptcy pro-
cess, a fraction χ of the asset value of intermediaries is lost. After the bankruptcy pro-
ceedings are completed, a new bank is set up to replace the failed one. This bank sells its
equity to new owners and is otherwise identical to a surviving bank after asset payoffs.

The aggregate bailout payment of the government is:

TCt � πt

»
ωPDt

�
1�

maxtp1� χqAtPtpωq �DI
t, 0u

BI
t

�
BI
tdFpωq

�

»
ωPDt

�
1�

mintp1� χqAtPtpωq,DI
tu

DI
t

�
DI

tdFpωq. (22)

I assume that the government runs a balanced budget so that

Tt � κDI
t�1 � TCt, (23)

and bailouts are financed by lump-sum taxes to households.

4.5 Market clearings and equilibrium

The market clearing conditions for assets, stocks, debt and deposits are:

At � 1, (24)

BI
t � BH

t , (25)

DI
t � DH

t (26)

Finally, the aggregate resource constraint reads

Zte
�dtζ � Ct �Φe pet{Ntq � χAt

»
ωPDt

Ptpωqfpωqdω

� ηZte
�ζdt

» » zpωt,Zt,dtq

0
ωzgpzqfpωqdzdω. (27)

I am now ready to define an equilibrium for the economy.

Definition 1. Given aggregate shocks tdt,Zt,πtu, a competitive equilibrium is an allocation 
Ct,BH

t�1,DH
t�1

(
for households,

 
At�1,BI

t�1,DI
t�1, et

(
for intermediaries, a price vector

 
pt,qt,qd

t

(
,
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and policy tTtu such that given the prices, households maximize lifetime utility, intermediaries
maximize shareholder value, the government satisfies its budget constraint, and markets clear.

5 Equilibrium Characterization

In this section, I first outline the key properties of the intermediary equilibrium capital
structure and pricing functions for debt and assets. After that, I describe the behavior
of credit spreads in response to changes in bailout expectations. All results are formally
proven in a simplified version of my model economy in Appendix G.

5.1 Optimality Conditions

To fully understand the intermediaries’ pricing conditions, it is useful to define the marginal
value of net worth-that is, the shadow price µt attached to a dollar of equity injections. In
my setup, letting ẽt � et{Nt denote new equity issued relative to existing net worth, the
intermediary’s envelope condition can be written as

v pStq � ϕ0 �
ϕ1

2
ẽ2
t � µt p1�ϕ0q ,

where v pStq is the (scaled) value function and ϕ0 is the target payout fraction. The first-
order condition with respect to equity issuance pins down µt:

µt � 1�ϕ1ẽt

Dividing the envelope condition through by µt gives a compact expression for the "marginal
value" of net worth:

ṽ pStq �
v pStq

µt
�

ϕ0

1�ϕ1ẽt
�

ϕ1

2p1�ϕ1ẽtq
ẽ2
t � p1�ϕ0q

When ϕ1 � 0 (no issuance frictions), µt � 1 and the marginal value reduces to ϕ0 �

p1�ϕ0q � 1. As ϕ1 ¡ 0, issuing equity becomes costly: increasing ẽt raises the shadow
value µt above one, so that each additional dollar of net worth is valued more highly and
endogenous payout/ injection policies hinge on the trade-off between internal financing
(at marginal value µt) and external issuance (priced at ϕ0 �ϕ1et).

Debt choice. The choice of non-contingent debt is central to the analysis in that it en-
dogenously pins down the solvency risk of the financial intermediary as a function of the
undelying aggregate sources of risk and the intermediaries frictions. When choosing the
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quantity of non-contingent debt BI
t�1, the intermediary balances the cheapness of debt

financing against the expected cost of default. Formally, from the first order condition of
the intermediary’s with respect to BI

t�1, I have

qt � λt �Et

#
Mt,t�1

�
ṽ pStq p1� Ft�1qloooomoooon

survival prob.

� p1� πt�1q

�
Ft�1RV

B
t�1 �

BFt�1

BBI
t�1

�
DI

t�1 �BI
t�1 � p1� χqPt�1pω

�
t�1q

��
loooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooon

default costs

�+
.

(28)

On the left, qt is the promised price of new debt. On the right, λ̃t reflects the tight-
ness of the intermediary’s leverage constraint (the shadow cost of a dollar of debt). The
term ṽpSt�1qp1 � Ft�1q captures the marginal benefit when the intermediary survives—
receiving full payoff at the shadow marginal value of net worth, discounted by the sur-
vival probability 1� Ft�1. With probability Ft�1 the intermediary defaults; in that event,
creditors suffer losses and the intermediary pays dead-weight costs. Intermediaries in-
ternalize through BFt�1{BB

I
t�1 how additional debt tightens default likelihood and raises

expected claims shortfall
�
DI

t�1 � BI
t�1 � p1 � χqPt�1

�
. When the bailout probability is

higher, the expected loss from default falls dollar-for-dollar. In effect, bailouts subsidize
debt issuance by reducing the weight on default costs, tilting the trade-off in favor of
borrowing as depicted in the left panel of Figure 6. In particular, the debt policy is more
sensitive to the bailout probability πt when the intermediary is more levered and the
default probability is higher. Altogether, the intermediary issues debt up to the point
where the marginal cheapness of debt qt just offsets the sum of its shadow leverage cost,
the foregone net-worth value in bad states, and the remaining, bailout-adjusted expected
deadweight costs of default.

Asset pricing. The intermediary’s choice of risky asset holdings At�1 determines the
expected returns and so the intermediary willingness to be exposed to fundamental ag-
gregate risk. Formally, from the first-order condition of the intermediary with respect to
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At�1, I have

pt � Et

#
Mt,t�1

1� λt ξ

�
ṽ pStq p1� Ft�1qPt�1pω

�
t�1q

� p1� πt�1q
�
Ft�1p1� χqPt�1pω

�
t�1q �

BFt�1

BAt�1

�
DI

t�1 �BI
t�1 � p1� χqPt�1pω

�
t�1q

���+
.

(29)

On the left, pt represents the price paid for the risky asset today. On the right, the first
term represents the expected marginal benefit of acquiring an additional risky asset in
states where the intermediary survives, evaluated at the shadow marginal value of net
worth. The second term reflects the value of investment in default and no bailout states:
the intermediary internalizes how additional asset exposure influences default likelihood
(BFt�1{BAt�1   0) and expected recovery values in default states This component pushes
up the price of the risky asset. An increase in the bailout probability πt�1, on one side,
it reduces the expected default losses associated with riskier asset positions, incentiviz-
ing intermediaries to decrease their exposure to risk and decreasing their willingness to
pay. This is mitigated by the effect that higher bailout probability has on debt choices as
analized above and so on the default probability, shifitng valuations to default states. In
particular, higher bailout probability props up the price of the risky asset by making lever-
age cheaper for the intermdiary and reducing their reliance on costly equity issuance. The
net effect of higher bailout probability is to increase the price of the risky asset as depicted
in the right panel of Figure 6.

5.2 Bailout Expectations and Credit Spreads

This section analyzes the impact of bailout expectations on credit spreads directly and
indirectly through intermediaries’ balance sheet choices. The credit spread on one-period
defaultable debt is determined by the following equilibrium condition derived from the
household’s first order condition for debt:

rt � rrf
tloomoon

Credit Spread

� Et

!
Mt,t�1p1� πt�1qFt�1

�
1� RVB

t�1

�)looooooooooooooooooooooooomooooooooooooooooooooooooon
Expected Default Loss

(30)

Default losses embed three critical elements: the bailout probability πt�1 (government
intervention likelihood), default probability Ft�1, and asset recovery rate RVB

t�1 per unit,
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Figure 6: Policy functions evaluated at the ergodic means of Dt, Zt, and dt. Left: debt policy Bt�1 as a
function of debt Bt for three values of bailout probability πt (baseline, low, and high). Right: asset price pt
as a function of Bt for the same three πt levels.

conditional on default. First, I can rewrite the credit spread as:

rt � rrf
t � Et

#
Mt,t�1p1� πt�1q

�» ω�
t�1

0
1�

maxtp1� χqPt�1pωq �DI
t�1, 0u

BI
t�1

fpωqdω

�+
.

The bailout probability πt�1 affects the credit spread rt� rrf
t through two distinct channels

in the model:2

Bprt � rrf
t q

Bπt�1
� Et

#
Mt,t�1

�
p1� πt�1q

BBt�1

Bπt�1

1
Bt�1

Ωt�1loooooooooooooooomoooooooooooooooon
Indirect Effect

� Ft�1

�
1� RVB

t�1

�looooooooomooooooooon
Default Risk Effect

�+
,

where the term Ωt�1 is defined as:

Ωt�1 � pBt�1 � p1� χqPt�1pω
�
t�1q �DI

t�1qfpω
�
t�1q �

dω�
t�1

dBt�1
� Ft�1RV

B
t�1.

The term �Ft�1r1 � RVB
t�1s reflects the direct reduction in expected default losses when

the bailout probability πt�1 increases. Higher πt�1, because external intervention is antic-

2For the purpose of the analysis I am ignoring the effect of changes in the bailiut probability πt�1 of the
stochastic discount factor Mt,t�1. In the same way, one can prove that intermediaries will alway choose to
issue as much deposits as they can so that DI

t�1 � D̄t.
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ipated, directly narrows credit spreads. This component unambiguously contributes a neg-

ative value to Bprt�rrf
t q

Bπt�1
. The term p1� πt�1q

BBt�1
Bπt�1

1
Bt�1

Ωt�1 captures how increased bailout
probabilities πt�1 incentivize banks to adjust their debt levels Bt�1. If the semi-elasticity
of leverage with respect to the bailout probability BBt�1

Bπt�1
1

Bt�1
¡ 0 (i.e., banks take on more

debt if πt�1 increases), the sign of this effect depends on Ωt�1. The first subterm repre-
sents increased expected losses from extending the default threshold ω�

t�1 as debt rises
(positive since dω�

dBt�1
¡ 0). The second subterm reflects dilution of recovery values across

existing debt (always positive). Hence, upon an increase in πt�1, this channel widens
spreads, partially offsetting the direct effect. The intuition is that an increase in πt�1 in-
centivizes intermediaries to take on more debt, which in turn increases the probability of
default and the credit spread.

Figure 7 shows the generalized impulse response function to a two standard devia-
tions decrease in πt in the baseline economy and in the case in which intermediaries were
not allowed to change their debt in response to the shock. The impulse response starting
point is chosen so that debt is in the 99% percentile of its ergodic distribution. I hold the
other state variables fixed at their unconditional ergodic mean. The variable reported are
the one-period credit spread rt � rrf

t , the risk neutral default probability and the interme-
diaries debt BI

t�1. A decrease in the bailout probability directly increases credit spreads
(direct effect) and on impact the solvency risk of intermediaries given the higher cost of
funding. A decrease in πt�1 however incentivizes intermediaries to de-risk, reduing their
debt, which in turn decreases the probability of default and the credit spread (indirect ef-
fect). The distance between the baseline and fixed-debt paths quantifies the strength of
the indirect effect relative to the direct effect. On impact the spread in the fixed-debt case
increases by more since now intermediaries cannot adjust their capital structure. Over
time the recessionary effect of the shock is also stronger in the fixed-debt almost tripling
the recovery rate of the economy.

6 Quantitative Analysis

6.1 Calibration

I now fit the model to US bank level data at the quarterly frequency from 2000 to 2020. For
consistency, I use the same sample of banks from which I construct risk-neutral default
rates in Section 3. This section presents the data and reports the numerical values of the
model’s parameters together with the fit of the model. Table 3 lists all parameters, both
externally set and calibrated. Table 4 reports the model’s moments and their data coun-
terparts. Appendix C provides detailed information on the data sources and variables’
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Figure 7: The graphs show the average path of the economy through an increase in πt by two standard
deviations that starts at t � 1 (solid blue squares). The dotted red line plots the same shock when debt is
held fixed at its ergodic mean. Values are reported as percentade deviations from stationary equilibrium.
Each line is the mean of 50,000 Monte-Carlo paths of length 20, all starting from the ergodic state at t � 0.

definitions.
The presence of large shocks, substantial risk and occasionally binding constraints,

make prices and quantities highly nonlinear functions of the state space. Hence, I solve
the model globally using transition function iteration adapted from Elenev et al. (2021)
and described in Appendix D. To generate the model moments I run 80, 000 years sim-
ulations (each with 500 period "burn-in") and report bootstrapped statistics. The model-
generated values, unless otherwise specified, are computed from a sample conditional on
no disaster realization.

Fundamental risk. All parameters governing fundamental risk are calibrated to match
moments of the option-implied Bank of America investment-grade (AAA–BBB) corporate-
bond spread. The disaster-arrival probability, πd, and the conditional survival probability,
πs, are selected to replicate, respectively, the empirical frequency of disaster onsets and
the average length of disaster spells. The persistence parameter of the aggregate shock,
ρ, is set to match the spread’s first-order autocorrelation (0.52 in the data). The innova-
tion volatility, σz, targets the unconditional standard deviation of the spread (0.66%). The
disaster-severity coefficient, ζ, is chosen so that the model reproduces the mean spread
observed during disaster episodes (5.24%). Finally, the loss-severity parameter, η, is cali-
brated to the bond and loan recovery losses documented by Elenev et al. (2021), ensuring
that credit-loss dynamics in the model align with observed corporate default outcomes.

Preferences. The time discount factor affects the mean of the short-term interest rate. I
set β � 0.987 to match the observed average real rate of interest of 1.22% and the inter-
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temporal elasticity of substitution ν to match the volatility of the short-term interest rate
measured by the 3-month Treasury bill rate at 2.1%. I set the risk aversion parameter to
unity, γ � 7 to match the weighted average risk neutral variance of equity returns of 8.4%
in the data as calculated from equity options data following Martin (2017).

Financial intermediaries. The intermediary borrowing constraint parameter ξ can be
interpreted as a minimum regulatory equity capital requirement. I set ξ � 0.92 in the
baseline calibration, or a 8% equity capital requirement, conforming with the Basel limits.
The deposit insurance fee is set to κ � 0.172% following Begenau & Landvoigt (2022)
and the convenience yield on deposits αD to match deposit spreads of 0.32% in the data
(Drechsler et al. 2017). The insured deposit limit D̄ determines the insured deposit share
of liabilties. The model generates a value of 50% versus the data counterpart of 32%.
I set the model parameter χ � 0.332 following Bennett et al. (2015). The equity injec-
tion parameter n0 is set to 0.22 to match the observed average market to book value
ratio of 1.55%. To determine the dividend target ϕ0 of banks, I construct time series of
dividends, share repurchases, equity issuances, and book equity, aggregating across all
publicly-traded banks. Over my sample period, banks paid out an average 2% of their
book equity per year as dividends and share repurchases, which is the value I set for ϕ0.
I calibrate the marginal equity issuance cost for intermediaries, ϕ1 � 7, using the same
data. With this parameter, I target the equity issuance ratio of the financial sector, de-
fined as equity issuances divided by book equity. A higher equity issuance cost makes
issuing external equity more expensive, and lowers the equity issuance ratio. Since banks
issue equity on average, the equity issunce rate is 0.785% in the data. I set σω to target
the mean risk neutral default probability of the banking sector as estimated from equity
options in Section 3. Finally, µπ, ρπ, σπ are set to match the observed CDS spread mean,
AR(1) coefficient and standard deviation of spreads on unsecured debt, respectively.

6.2 Validation

7 Decomposing Credit Spreads

I turn to the main experiment of the paper and measure the importance of bailout expec-
tations before, during and after the Great Financial Crisis. In particular, I integrate the
model with quarterly data over 2004:Q1–2015:Q4 to recover the latent bailout-probability
process and to decompose observed credit spreads. The model generates the nonlinear
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Table 3: Model parameters

Preset parameters
Target intermediaries dividend ϕ0 0.068 Amortization rate δ 0.932
Capital requirement ξ 0.92 Intermediaries bankruptcy cost χ 0.332
Prob. of d � 1 πd 0.055 Prob. of staying in d � 1 πs 0.7
Deposit insurance fee κ 0.00172 Convenience yield on deposits αD 0.005
Deposit rate sensitivity βd 0.34 Deposits cap-output correlation ζD -0.4
St.dev of deposits cap σD 0.0154 AR(1) of deposits cap ρD 0.94
Calibrated parameters
Household risk aversion γ 7 Household EIS ν 2
Household discount factor β 0.987 Initial equity injection n0 0.22
Bank equity issuance cost ϕ1 10 St. dev. island risk σω 0.12
Disaster severity ζ 0.1 Firm st. dev. idyo. risk σz 0.7
Bailout probability π̄ 0.87 Deposits cap D̄ 0.4
AR(1) of productivity ρ 0.9 St.dev of productivity σ 0.05
AR(1) of bailout prob. ρπ 0.7 St.dev of bailout prob. σπ 0.6
Corporate bankruptcy cost η 0.60

Table 4: Empirical targets: data vs. model

Targets Data Model
BofA IG Bond Spread 0.0135 0.0115
BofA IG Bond Spread in d � 1 0.0524 0.0210
AR(1) of BofA IG Bond Spread 0.52 0.54
BofA IG Bond Spread volatility 0.0066 0.0051
Corporate Bond & Loan Severities 0.514 0.545
Intermediaries equity payout rate 0.0085 0.0035
Intermediaries market to book value 1.54 1.08
Risk-free rate 0.0122 0.0126
Risk-free rate volatility 0.0210 0.0190
Insured deposits share of liabilities 0.32 0.5
Intermediaries risk neutral variance of equity returns 0.084 0.054
Intermediaries risk neutral default rate 0.0357 0.0479
Credit Default Swap rate 0.0066 0.0055
AR(1) of Credit Default Swap rate 0.23 0.45
Credit Default Swap rate volatility 0.0154 0.0032
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Figure 8: Histograms for model-simulated and empirical moments, 2000–2020. Left: one-year credit
spreads (data described in Section 3 and the simulated sample used for Table 4). Right: risk-neutral de-
fault probabilities based on the same data and simulation.

state–space system
Yt � g

�
St

�
�ηt,

St � f
�
St�1, εt

�
,

(31)

where
St �

�
Dt, πt, Zt, dt

�J, εt �
�
εDt , επt , εZt , εdt

�J.

The vector Yt collects the three observables

Yt �
�
CSt,365, Q�

t,365, ∆Dt

�J,

namely the credit spread differential CSt,365 � rt,365 � rrf
t,365 and the risk neutral default

probability Q�
t,365 as I construct in Section 3 and the log change in insured deposits ∆Dt.

The mapping gp�q delivers the model-implied one-year credit spread g1pStq and risk-
neutral default probability g2pStq and deposit growth g3pStq. Empirically, credit spreads
are strictly positive and right-skewed, whereas default probabilities lie on the open unit
interval. To respect these distributional features, I model the measurement innovations
as log-normal and beta random variables rather than Gaussian noise:

CSdata
t,365 � g1pStq exppηCSt q, ηCSt � N

�
�1

2σ
2
CS, σ2

CS

�
,

Q�data
t,365 � g2pStq � η

Q
t , η

Q
t � Beta

�
αt,βt

�
�E

�
Betapαt,βtq

�
,

where the beta parameters pαt,βtq are calibrated each period to match the filtered mean
g2pStq and a variance set equal to 0.01 pσ2

�
Q�data

t,365
�
. The log-variance σ2

CS is fixed analo-
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gously at 0.01 pσ2
�
CSdata

t,365
�
. Independent log-normal and beta likelihoods are thus used

within the particle filter to update the state vector in each quarter. I set the measurement
error of insured deposit growth to 0 so that the model-implied insured deposit growth is
equal to the observed insured deposit growth, g3pStq � ∆Dt.

Given the nonlinear mapping gp�q implied by the model’s global solution, I estimate
the latent state path tStu

T
t�1 using a fully adaptive particle filter; algorithmic details ap-

pear in Appendix E. The filter pins down the entire sequence of fundamental shocks
tεtu—including the bailout-probability shock επt —that is consistent with observed spreads,
default probabilities and insured deposit growth.

With the filtered states in hand, I design two counterfactual economies that switch off
individual transmission channels while holding the macro-financial environment fixed.
The first counterfactual isolates the component of movements in credit spreads that is
due to the bailout probability. To do so, I feed the policy functions of the model with the
filtered state, with the exception that πt is set to its highest state πH for all t in the sam-
ple. I label the implied credit spread series from this counterfactual as the fundamental
component of credit spreads because, by construction, the one-stepahead probability of a
bailout is fixed in every period. The difference between the filtered credit spread and the
counterfactual one nets out the impact of bailout expectations. I label this difference the
bailout component of credit spreads.

Figure 9 plots the historical one-year credit spread together with its model-based de-
composition, the default probabilities, insured deposit growth and the recovered bailout
probabilities. The orange area represents the, the full reduction (or increase) attributable
to bailout policy while the blue area represents the fundamental component. Importantly,
the bailout component contributes 67% of the increase in spreads during the GFC as
shown in Table 5. During the crisis, the bailout probabiliy drop from its highest state
of 94% to 75% in 2009 remaining low until 2013. The importance of the bailout compo-
nent is somewhat reduced from 2010 to 2012 accounting for around 50% and even more
so from 2012 to 2015 accounting for around 32%.

A behavioural story can also explain the wide credit spreads after the GFC. Before
the crisis, many creditors did not truly believe that banks could fail (Gennaioli & Shleifer
2018). When Lehman Brothers collapsed—and several other giants nearly followed—creditors
suddenly recognised a failure risk that had been present all along but badly under-estimated.
The jump in spreads would then reflect a higher perceived chance of insolvency, not a
change in expected bailout support. Experienced creditors already knew their claims
likely enjoyed some government back-stop, yet the realisation that default was possible
still drove spreads up. However, the persistence of those wider spreads implies that the
post-Lehman shift in perceived failure risk lasted for years. This was not the case, as
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we can see from the default probabilities in Figure 9, which quickly moved back toward
pre-crisis levels.

Table 5: Bailout component and contribution of endogenous leverage as a percentage of model implied
credit spreads across sub-periods.

2008–2010 2010–2012 2012–2015

πt � πH (%) 67.03 49.53 31.82
Bt�1 � B̄ (%) -45.25 -39.54 -4.034

As bailout probabilities and fundamentals evolve, so does intermediaries’ capital struc-
ture. While previous work treated the banking sector’s capital structure as fixed exoge-
nous, the following counterfactual demonstrates the importance of accounting for inter-
mediaries’ endogenous response to changes in fundamentals and bailout probabilities.
I conduct the same exercise while holding intermediaries’ debt position fixed at its er-
godic mean B̄, allowing bailout expectations to evolve freely. The resulting spread is de-
picted by the green dotted-dashed line in Figure 10, alongside the baseline model-implied
spread and the counterfactual spread with fixed bailout policy. The right panel displays
the model’s debt (blue-dashed) and its data counterpart (black solid). During the pre-
crisis period (2004–2006), the green and blue lines nearly overlap. This indicates that
when fundamentals are calm or bailout perceptions high, leverage adjustment is neg-
ligible, as intermediaries exploit low debt costs to increase leverage. In 2007–2009, the
baseline spread surges to roughly 150 bp, while the orange series rises only about half
as much. This divergence provides evidence that investors demand a sizable bailout
premium when public support appears less certain. Conversely, the green line over-
shoots the baseline, revealing how banks’ endogenous deleveraging cushions part of the
bailout-driven widening. As Table 5 illustrates, this counterfactual spread reaches 40%
of the baseline spread during the crisis and remains elevated until 2012. The right panel
traces the corresponding debt growth in the baseline economy (blue-dashed) and the data
(black solid). The baseline shows deleveraging of about 15% through 2009, followed by
a gradual rebuild that closely resembles the data. Because the green line systematically
overpredicts spreads relative to the baseline during crises, any model ignoring banks’
balance-sheet response could only fit the data by dialing down the estimated bailout proba-
bility. This misspecification consequently leads to an underestimation of the bailout com-
ponent in credit spreads–even though government guarantees are the true driver of the
observed swings.
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Figure 9: Annual median one-year credit spread and its model decomposition (left), implied bailout proba-
bility (top-right), and default probabilities (bottom-right).
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Figure 10: Left: model spread (black dashed), counterfactual with πt � πH (orange dotted), and counterfac-
tual with Bt�1 � B̄ (green dash–dot). Right: model debt growth (black dashed) versus the data counterpart
(blue solid).

8 Bailouts, Regulation and Risk Exposures

This section develops the quantitative bridge between post-crisis policy shifts and banks’
balance-sheet risk. I (i) construct an asset-return factor that summarises unexpected fluc-
tuations in loan-portfolio pay-offs, (ii) estimate the equity loading βAR on that factor, and
(iii) use counter-factual exercises to isolate how smaller bailout probabilities and tighter
capital requirements feed through to funding spreads, asset valuations, and the prices of
aggregate and jump risk.

Define the ex-dividend equity price as Qt. Holding this equity from t to t�1 delivers
the gross return

RI,t�1 �
1
Qt

Vpnt�1; St�1q

nt�1

�
1� Ft�1pω

�
t�1q

� �
Pt�1pω

�
t�1q ãt�1 � b̃It�1 � d̃I

t�1
�
, (32)

and the expected return is EtrRI,t�1s. The asset-return factor against which exposure is
measured is constructed as the difference RA,t�1 �EtrRA,t�1s, where RA,t�1 is constructed
from the first order condition of the intermediary’s problem for the asset portfolio in (29).
The loading of equity returns on the asset-return factor is

βAR �
Cov

�
RI,t�1 �EtrRI,t�1s, ft�1

�
Var

�
ft�1

� . (33)
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βAR is the slope coefficient of the no-intercept regression

RI,t�1�EtrRI,t�1s � βAR

�
RA,t�1�EtrRA,t�1s

�
�εt�1, E

��
RA,t�1�EtrRA,t�1s

�
εt�1

�
� 0.

The regression gauges how strongly intermediary equity co-moves with unexpected fluc-
tuations in the payoff of the underlying loan portfolio, abstracting from movements in
the stochastic discount factor. When bailout probabilities fall, a larger share of bad-state
losses is absorbed by equity and by the assets themselves, raising their covariance more
than the variance of the asset return and thereby increasing βAR. The statistic thus sum-
marises the internal risk transfer between the loan portfolio and equity.

But how does the intermediary prices the risks embedded in his asset portfolio? The
intermediary faces two systematic shocks: an aggregate productivity innovation Zt�1,
modelled as a mean-zero AR(1) error, and a rare disaster shock dt�1 that raises default
losses in extreme states. Let ft�1 � pZt�1,dt�1q

J collect the two factors. The intermedi-
ary’s stochastic discount factor is

MI
t�1 �

Mt,t�1

1� λt ξ
ṽpStq ,

where Mt,t�1 is the household SDF, ṽpStq is the marginal value of one additional unit of
intermediary net worth, λt is the Lagrange multiplier on the leverage constraint, and ξ

the haircut parameter in that constraint. Any payoff Rt�1 must satisfy the Euler equation
ErMI

t�1Rt�1s � 1, so the shadow risk-free gross rate implied by the intermediary is rIf �

1{ErMI
t�1s, typically above the observable Treasury rate rf � 1{ErMt,t�1s because the

intermediary puts extra weight on stress states. For each factor f P tZ,du the price of risk,
defined as the expected excess return on a portfolio with unit beta to f and zero beta to
the other factor, is

λf � �
Cov

�
MI

t�1, ft�1
�

ErMI
t�1s

, f P tZ,du.

Hence for any traded return Rt�1 with factor betas βZ and βd the model delivers a two-
factor securities–market line

ErRt�1s � rIf � λZ βZ � λd βd.

Table 6 quantifies the contribution of the post-crisis fall in the perceived bailout prob-
ability and tighter capital requirements to banks’ funding costs and asset prices. Relative
to the pre-2008 benchmark the average unsecured spread paid after 2010 rises by 34 basis
points in the baseline model, yet by only 8.8 basis points when the high pre-crisis bailout
probability (πH) is kept in place. The difference of roughly 25.5 basis points—almost

37



Baseline πH ξ

Spread (bp) 34.32 8.83 22.10
Asset price (%) -5.35 -2.17 -3.10
Exposure (%) 29.23 -4.08 18.50
rIt (bp) 273 -13 110
Price of normal risk (bp) 1.32 -0.18 0.1
Price of disaster risk (bp) 12.17 8.87 10.20

Table 6: Pre-2008 vs. post-2010 comparison of baseline and counter-factual economies. Column πH retains
the pre-crisis bailout probabilities; column ξ retains the pre-crisis capital requirement.

three quarters of the observed increase—can therefore be attributed directly to the re-
assessment of government support. Put differently, debt would have remained almost
four times cheaper had investors continued to believe in large-scale bailouts. Tighter cap-
ital requirments post-2010, by reducing the leverage in the banking system and so its
insolvency risk, contributed to keep spread lower by around 10bp.

The same comparison explains most of the persistent weakness in asset prices. In the
baseline the representative loan-portfolio price is 5.35 percent below its pre-2008 average,
whereas under the πH counterfactual it is only 2.17 percent lower. Hence a drop of about
3.2 percentage points, or sixty per cent of the total decline, stems from diminished bailout
expectations. Figure 11 corroborates this result: the baseline path plunges more deeply
during the 2008–09 turmoil and never fully closes the gap, while the counterfactual path
rebounds to near-pre-crisis levels by 2012.

Balance-sheet exposure behaves in the opposite direction. After 2010 the baseline
economy exhibits a 29.2 percent increase in measured exposure, whereas the πH scenario
shows a slight decline of 4.1 percent. The resulting gap of more than 33 percentage points
implies that the upward shift in risk taking is entirely driven by lower bailout expecta-
tions.

Moving to the pricing of risks, a lower government bail-out probability raises the
cost of capital only conditional to disaster states, strongly increasing CovpMI

t�1,dt�1q and
therefore λd, while leaving λZ almost unchanged, compared to changes in the capital re-
quirement. A tighter capital requirement lifts the cost of capital uniformly across states,
and pushing both covariances—and thus both λZ and λd—upward in roughly equal pro-
portion. In short, weaker public guarantees tilt the securities–market line mainly along
the disaster dimension, whereas stricter regulation shifts the intercept rIf and raises its
slope in every direction. Because the units of each λx are exactly those of an excess gross
return per period, the resulting changes can be read as the additional premium investors
demand for bearing an extra unit of aggregate or disaster beta after the policy interven-
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Figure 11: Asset price (black dashed) and the counterfactual with πt�1 � πH (orange dotted).

tion. This distinction—state-contingent versus state-independent funding stress—explains
why the two policies leave different fingerprints on the observed securities-market line.

Taken together, the numbers show that the post-crisis repricing of government guarantees
is the dominant driver of higher funding costs, weaker asset valuations, and the dramatic
reallocation of intermediary portfolios away from jump-risk-intensive assets, which could
be explained alone by tighter capital requirements.

9 Conclusion
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A Robustness

A.1 Alternative Estimator for Risk Neutral Default Probabilities

An alternative method to estimate the default region relies on the Theil–Sen estimator
rather than ordinary least squares (OLS). Specifically, I preserve the progressive window
expansion framework, beginning with the two lowest strikes tK1,K2u and incrementally
increasing the candidate window size m from 2 to n. For each time t, maturity T and
proposed window tK1, . . . ,Kmu, the Theil–Sen slope estimate is given by

β̂TS � median1¤i j¤m

#
PutpKjq � PutpKiq

Kj �Ki

+
.

Once β̂TS is obtained, the modified coefficient of determination through the origin,

R2 � 1 �

°m
i�1

�
PutpKiq � β̂TS Ki

�2°m
i�1 PutpKiq2

,

is computed to evaluate the goodness-of-fit. As long as R2 exceeds a predefined threshold
τ � 0.98, the procedure allows the window size m to expand. The iteration terminates
when adding an additional strike Km�1 causes R2 to drop below τ. Denoting by m� the
largest m for which the threshold requirement holds, I identify the upper boundary of
the default region as E � Km� . Finally, within this region of strikes tK1, . . . ,Km�u, the
Theil–Sen slope

β̂TS � median1¤i j¤m�

"
PutpKjq � PutpKiq

Kj �Ki

*
serves as the estimate of the risk-neutral default probability. The average estimate for
maturity of 35 days is reported in Figure A.1. The time series looks very similar to the
one obtained using OLS in Figure 4a.

A.2 The Variation in Credit Spreads Explained by Expected Losses

To assess the degree to which variation in credit spreads mirrors changes in expected
losses I estimate

log
�
CSi,t,365

�
� β0 �β1 log

�
LGD�

i,t,365
�
�
¸
i

βiDi �
¸
t

βtDt � εi,t, (A.1)

where CSi,t,365 denotes the one-year CDS spread and LGD�
i,t,365 the corresponding risk-

neutral expected loss at time t for bank i. Equation (A.1) is estimated under four sets of
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Figure A.1: Average Q�t,T for T � 365 using the Theil–Sen estimator.

44



fixed effects. Table A.1 summarises the results.
Across all four specifications the elasticity of one-year CDS spreads to expected losses

is strictly below one and highly significant. In the two-way fixed-effects model the coef-
ficient on logpLGD�

t,365q equals 0.710 with a clustered standard error of 0.066, so the null
hypothesis of unit elasticity is rejected at the one-percent level. Under risk-neutral val-
uation spreads would move one-for-one with expected losses; a coefficient below unity
therefore points to a positive price of default risk, as investors demand an additional pre-
mium that attenuates the mechanical pass-through from losses to spreads once bank and
date heterogeneity are purged.

The overall coefficient of determination R2 rises monotonically with the inclusion of
fixed effects and reaches 0.936 in the full model, indicating that cross-sectional and tempo-
ral dummies absorb nearly all variation in levels. The within-bank R2 climbs from 0.327
when only bank effects are added to 0.700 with date effects alone, then settles at 0.583
in the two-way specification. These fit statistics show that expected losses remain the
primary driver of time-series variation in spreads after accounting for extensive hetero-
geneity, yet investor risk aversion still drags the elasticity markedly below the theoretical
benchmark of one.

Dependent Variable: logpCSt,365q
Model: (1) (2) (3) (4)

Variables
Constant -3.813���

(0.1672)
logpLGD�

t,365q 0.9022��� 0.7393��� 0.8514��� 0.7104���

(0.0632) (0.0585) (0.0721) (0.0657)

Fixed-effects
bank Yes Yes
date Yes Yes

Fit statistics
Observations 33,959 33,959 33,959 33,959
R2 0.52604 0.61912 0.86919 0.93560
Within R2 0.32672 0.69964 0.58284

Clustered (bank) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table A.1: The table reports the results of the panel data regression (A.1). The coefficients βi and βt capture
bank and day-fixed effects (FEs). Credit spreads and expected recoveries are measured in decimals.
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B Agents optimization

Let St � pdt,Zt,πtq be the vector of exogenous aggregate state variables.

B.1 Household

The representative household solves

VtpWt; Stq � max
Ct,BH

t�1

!
p1�βqC

1� 1
ν

t �βEt

�
V 1�σ
t�1

� 1� 1
ν

1�σ

) 1
1� 1

ν ,

subject to

Wt � Tt ¥ Ct � qt B
H
t�1 � qd

t D
H
t�1, (B.1)

Wt � Πt �Πdiv
t �DH

t �BH
t

�
1� Ft � Ft

�
π� p1� πqRVB

t

��
, (B.2)

St�1 � Γ
�
St

�
. (B.3)

Here Ft �
³
ωPDt

dFpωq is the default probability and RVB
t the expected recovery value of

the bank’s bond conditional on default. The certainty equivalent of future utility is

CEt � Et

�
V 1�σ
t�1

� 1
1�σ , Mt,t�1 � β

�
Vt�1
CEt

	1
ν�σ�ut�1

ut

	1� 1
ν
�
Ct�1
Ct

	�1
.

Taking first–order conditions with respect to bonds yields

qt � Et

�
Mt,t�1

!
1� Ft�1 � Ft�1

�
π� p1� πqRVB

t�1
�)�

, (B.4)

Equation (B.4) fully characterise the household’s optimal bond choice.

B.2 Intermediaries

B.2.1 Aggregation

Given my assumed functional form for the equity issuance and deposit adjustment costs,
the intermediary problem is homogeneous of degree 1 in net worth nt. I can thus define
the scaled variables ẽt � et{nt, ãt�1 � at�1{nt, d̃I

t�1 � dI
t�1{nt, b̃It�1 � bt�1{nt, and the

value function v pStq such that

V pnt, Stq � ntv pStq .
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I can write the growth rate of net worth, ñt � nt{nt�1, for some realization of the idiosyn-
cratic shock ωt and given assets and liabilities

�
ãt, d̃I

t, b̃
I
t

�
as

ñ
�
ωt, ãI

t, b̃
I
t, d̃

I
t, St

	
� Ptpωtqãt � b̃It � d̃I

t. (B.5)

Thus, the growth rate next period, conditional on not defaulting, is

Eω,t�1

�
ñ
�
ωt�1, ãt�1, b̃It�1, d̃I

t�1, St�1

	
| ωt�1 ¡ ω�

t�1

�
� ñ

�
ω�

t�1, ãt�1, b̃It�1, d̃I
t�1, St�1

	
,

where

ω�
t�1 � Eω,t�1

�
ω | ω ¡ ω�

t�1
�

.

Using the definition of n
�
ωt, ãI

t, b̃
I
t, d̃

I
t, St

�
in (B.5), I can write the representative interme-

diary problem as

v pStq � max
ẽt,ãIt�1,d̃It�1¤D̄,b̃It�1

ϕ0 � ẽt �
ϕ1

2
pẽtq

2

� Et

�
Mt,t�1v pSt�1q

�
1� F

�
ω�

t�1
��

ñ
�
ω�

t�1, ãI
t�1, b̃It�1, d̃I

t�1, St�1

	�
(B.6)

subject to

1�ϕ0 � ẽt � ptãt�1 � q
�
ãt�1, b̃It�1, d̃I

t�1; St

	
b̃It�1 � pq

d
t � κqd̃I

t�1,

and
b̃It�1 � d̃I

t�1 ¤ ξptãt�1.

B.2.2 First-order conditions

I denote the Lagrange multiplier on the budget constraint by µt, the Lagrange multiplier
on the leverage constraint by λt, and the Lagrange multiplier on the deposit constraint by
λdt . The FOC with respect to ẽt is

µt � 1�ϕ1ẽt. (B.7)

The FOC with respect to at�1 is given by

µt

�
pt �

Bqt

Bãt�1
b̃It�1



� λtξpt �EttMt,t�1v pSt�1q p1� Ft�1qPt�1

�
ω�

t�1

�
u. (B.8)
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The FOC for dI
t�1 is

µt

�
qd
t � κ�

Bqt

Bd̃I
t�1

b̃It�1

�
� λt � λdt �EttMt,t�1v pSt�1q p1� Ft�1qu. (B.9)

Finally, the FOC for bIt�1 yields

µt

�
qt �

Bqt

Bb̃It�1
b̃It�1

�
� λt �EttMt,t�1v pSt�1q p1� Ft�1qu. (B.10)

The envelope condition is

v pStq � ϕ0 �
ϕ1

2
ẽ2
t � µt p1�ϕ0q .

I can divide by µt and re-write more compactly

pt �
Bqt

BãI
t�1

b̃It�1 � λ̃tξpt � EttM
I
t�1Pt�1pω

�
t�1qu, (B.11)

qd
t � κ�

Bqt

Bd̃I
t�1

b̃It�1 � λ̃t � λ̃dt � EttM
I
t�1u, (B.12)

qt �
Bqt

Bb̃It�1
b̃It�1 � λ̃t � EttM

I
t�1u. (B.13)

where I define the SDF of the intermediaries MI
t�1 as

MI
t�1 �Mt,t�1

v pSt�1q

µt
p1� Ft�1q, (B.14)

and λ̃t �
λt
µt

is the scaled Lagrange multiplier on the leverage constraint and λ̃dt �
λdt
µt

is
the scaled Lagrange multiplier on the deposit constraint.

B.2.3 Aggregate Intermediary Net Worth

At the beginning of each period, a fraction of intermediaries default before paying divi-
dends to shareholders and choosing the portfolio for next period. The government takes
ownership of these bankrupt intermediaries and liquidates them to recover some of the
outstanding debt. Bankrupt intermediaries are immediately replaced by newly started
intermediaries that households endow with initial equity n0 per intermediary. Then all
intermediaries, including newly started ones, solve the identical optimization problem in
(B.6).

Denote the aggregate net worth of intermediaries when they solve their decision prob-
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lem for the next period, by Nt. Then the average net worth of surviving intermediaries in
t� 1 is recursively defined as

N�
t�1 � ñ

�
ω�

t�1, ãt�1, d̃I
t�1, b̃It�1, St�1

	loooooooooooooooooooomoooooooooooooooooooon
growth rate to t�1

p1�ϕ0 � ẽtqNtlooooooooomooooooooon
net worth after payout/issuance in t

,

where ñ
�
ω�

t�1, ãt�1, d̃I
t�1, b̃It�1, St�1

�
is the growth rate of net worth of non-defaulting

intermediaries as defined in (B.5). The aggregate net worth of intermediaries thus follows
the recursion

Nt�1 �
�
1� F

�
ω�

t�1
��

N�
t�1 � F

�
ω�

t�1
�
n0.

Given this expression of intermediary net worth, I can recover all aggregate intermdiary
choices, that is, BI

t�1 � b̃It�1Nt,DI
t�1 � d̃I

t�1Nt, At�1 � ãt�1Nt and so forth.

B.3 Derivatives of debt price qt

To obtain the partial derivatives I need to differentiate equation (B.4). Let’s first rewrite it
as

qt � Et

!
Mt,t�1

�
1� Ft�1 � Ft�1

�
πt�1 � p1� πt�1q

p1� χqPt�1pω
�
t�1qAt�1 �DI

t�1

BI
t�1

��)
.

I can rewrite the recovery value times the probability of default as

Rt�1 � Ft�1
p1� χqPt�1pω

�
t�1qAt�1 �DI

t�1

BI
t�1

� Ft�1RV
B
t�1, (B.15)

where ω�
t�1 � Eωpωt�1 | ωt�1   ω�

t�1q. Recall that ω�
t�1 is the default threshold, which

satisfies the following equation:

Pt�1pω
�
t�1qAt�1 �DI

t�1 �BI
t�1 � 0.
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First, I compute the derivative of the default threshold with respect to At�1, DI
t�1 and

BI
t�1 as

Bω�
t�1

BAt�1
� �

Pt�1pω
�
t�1q

P1t�1pω
�
t�1qAt�1

Bω�
t�1

BDI
t�1

�
1

P1t�1pω
�
t�1qAt�1

Bω�
t�1

BBI
t�1

�
1

P1t�1pω
�
t�1qAt�1

.

Then I take derivatives of Ft�1:

BFt�1

BAt�1
� fω,t�1

Bω�
t�1

BAt�1

BFt�1

BDI
t�1

� fω,t�1
Bω�

t�1

BDI
t�1

BFt�1

BBI
t�1

� fω,t�1
Bω�

t�1

BBI
t�1

.

Finally, I can differentiate (B.15) to get

BRt�1

BAt�1
�

�
Ft�1Pt�1pω

�
t�1q

pBI
t�1q

� RVB
t�1

BFt�1

BAt�1

�
BRt�1

BDI
t�1

�

�
�
Ft�1

BI
t�1

� RVB
t�1

BFt�1

BDI
t�1

�
BRt�1

BBI
t�1

�

�
�
Ft�1RV

B
t�1

pBI
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� RVB
t�1

BFt�1

BBI
t�1

�
.

Hence the derivatives of qt are

Bqt

BAI
t�1

� Et

!
Mt,t�1p1� πt�1q

�
BRt�1

BAt�1
�
BFt�1

BAt�1

�)
Bqt

BDI
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� Et

!
Mt,t�1p1� πt�1q
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BRt�1

BDI
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�)
.

The last piece is the derivative of the loan payoff with respect to ωt. Define

z̄pωtq �
c� 1� δ

ωt
,
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so that

Ptpωtq �
�
c� 1� δ� δpt

��
1�G

�
z̄
��

�

» z̄

�8
z dGpzq.

Then,

BPt

Bωt
� �

�
c� 1� δ� δpt

�
gpz̄q

dz̄

dωt
� z̄ gpz̄q

dz̄

dωt

�
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z̄� pc� 1� δ� δptq

�
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dz̄

dωt
,

with
dz̄

dωt
� �

c� 1� δ

ω2
t

. Substituting and replacing z̄ � c� 1� δ{ωt:

BPt

Bωt
�
�
c� 1� δ� δpt �

c�1�δ
ωt

� c� 1� δ

ω2
t

g

�
c� 1� δ

ωt



.

C Model calibration

D Computational solution method

This appendix describes the numerical algorithm that solves the dynamic general equi-
librium model laid out in Appendix B. The implementation follows the policy iteration
framework of Elenev et al. (2021). I first approximate the unknown policy and transition
functions by discretizing the state space and employing multivariate linear interpolation.
Starting with an initial guess for the policy and transition functions, I iteratively solve
the model at each discretized state-space node. At each node, I compute optimal policies
by solving the system of nonlinear equilibrium conditions, reformulating Kuhn–Tucker
inequalities as equality constraints suitable for standard nonlinear solvers. Given these
solutions, I update the transition functions and repeat the procedure until convergence.
This iterative process is fully parallelized across state-space points within each iteration.
Finally, I simulate the model forward for many periods using the approximated policy
and transition functions. I verify that the simulated trajectories remain within the pre-
defined bounds of the discretized state space. To assess computational accuracy, I calcu-
late relative Euler equation errors along the simulated paths. If trajectories breach the grid
boundaries or the approximation errors exceed acceptable thresholds, I refine the grid by
adjusting bounds or redistributing points, and repeat the solution procedure.

The state space consists of four exogenous state variables rZt,Dt,dt,πts, and two en-
dogenous state variables

�
BI
t,D

I
t

�
. I first discretize Zt into a NZ-state Markov chain using

the Rouwenhurst (1995) method. The procedure chooses the productivity grid points
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Zj

(NZ

j�1 and the NZ �NZ Markov transition matrix PZ. The same method is used to
discretize Dt and πt. The disaster shock dt can take on two realizations t0, 1u. The
2 � 2 Markov transition matrix between these states is given by Pd. Denote the set
of the Nx � 2 � NZ � Nπ � ND values the exogenous state variables can take on as

Sx �
 
Zj

(NZ

j�1 � t0, 1u �
 
πj

(Nπ

j�1 �
 
Dj

(ND

j�1, and the associated Markov transition matrix
Px � PZ bPd bPπ bPD.

The solution algorithm requires the approximation of continuous functions defined
on the endogenous state variables. Let the true endogenous state space of the model be
defined as follows: each endogenous state variable St P tB

I
t,D

I
tu lies within a continuous

and convex subset of real numbers characterized by constant state boundaries rS̄l, S̄us.
Thus, the endogenous state space is given by:

Sn �
�
B̄I
l, B̄

I
u

�
�
�
D̄I

l, D̄
I
u

�
.

The total state space is then defined as S � Sx � Sn.
To approximate a general function f : SÑ R, I construct a univariate grid of strictly in-

creasing points (not necessarily equidistant) for each endogenous state variable: tBI
ju

NB
j�1,

tDI
ku

ND
k�1. These grid points are selected to adequately cover the ergodic distribution of

the economy in each dimension, thereby minimizing computational errors. I denote the
discretized set of endogenous-state grid points by:

Ŝn � tBI
ju

NB
j�1 � tD

I
ku

ND
k�1,

and the total discretized state space as Ŝ � Sx � Ŝn. This discretized state space contains
a total of NS � Nx �NB �ND points, each represented as a 2 � 1 vector corresponding
to the two distinct state variables. Given values tfjuN

S

j�1 of function f at each grid point
ŝj P Ŝ, I can approximate f via multivariate linear interpolation. The solution method
approximates three distinct sets of functions defined on the domain of state variables:

• Policy Functions (CP): These functions, CP : S Ñ P � RNC
, determine equilib-

rium prices, agents’ choice variables, and Lagrange multipliers on portfolio con-
straints. Specifically, the 8 policy functions include bond and deposit prices qupSq,
asset prices ppSq, consumption CpSq, equity issuance for intermediaries epSq, choices
of bonds and deposits for intermediaries BIpSq,DIpSq, and multipliers on constraints
λIpSq, λDpSq.

• Transition Functions (CT ): These functions, CT : S � Sx Ñ Sn, specify the next-
period endogenous state variables as functions of the current state and next-period
exogenous shocks. Each endogenous state variable corresponds to one transition
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function.

• Forecasting Functions (CF): These functions, CF : SÑ F � RNF
, are used to compute

expectations terms required by the equilibrium conditions. Forecasting functions
partially overlap with policy functions but include additional terms. In this model,
they consist of bond price qpSq, consumption CpSq, equity issuance eIpSq, household
value functions VpSq, intermediary value function VIpSq, and the asset price ppSq.

Given an initial guess C0 � tC0
P,C0

T ,C0
Fu, the equilibrium computation algorithm pro-

ceeds through the following steps:

Step A: Initialization. Set the current iterate Cm � tCm
P ,Cm

T ,Cm
F u � tC0

P,C0
T ,C0

Fu.

Step B: Forecasting Values Computation. For each discretized state-space point sj P Ŝ,
j � 1, . . . ,NS, perform the following sub-steps:

i. Evaluate the transition functions at sj combined with each possible realization of
the exogenous shocks xi P Sx, obtaining next-period endogenous state realizations
s1jpxiq � Cm

T psj, xiq, for i � 1, . . . ,Nx.

ii. Evaluate forecasting functions at these future state realizations, obtaining fmi,j �

Cm
F ps

1
jpxiq, xiq.

This produces an Nx �NS forecasting matrix Fm, where each entry is a vector given
by:

fmi,j �
�
qi,j,Ci,j, ei,j,Vi,j,VI

i,j,pi,j
�

.

Step C: Solving the System of Nonlinear Equations. At each discretized state-space
point sj P Ŝ, j � 1, . . . ,NS, solve the nonlinear equilibrium conditions for the correspond-
ing set of 8 policy variables. Given the forecasting matrix Fm from Step B, solve:

P̂j �
�
q̂j, p̂j, Ĉj, êIj , B̂

I
j , D̂

I
j , λ̂

I
j , λ̂

D
j

�
,
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where each vector P̂j satisfies the corresponding equilibrium conditions at sj. The eight
equations are:

q̂j � Es1i,j|sj

�
M̂i,j

!
1� F̂i,j � F̂i,j

�
πi,j � p1� πi,jq

p1� χqP̂i,jpω
�
i,jqÂj � D̂I

j

B̂I
j

	)�
,

(D.1)

p̂j �
Bq̂j

BAI
j

BI
j � λ̂j ξp̂j �Es1i,j|sj

�
M̂I

i,j P̂i,jpω
�
i,jq

�
, (D.2)

q̂D
j � κ�

Bq̂j

BDI
j

BI
j � λ̂j � λ̂Dj �Es1i,j|sj

�
M̂I

i,j
�
, (D.3)

q̂j � �
Bq̂j

BBI
j

BI
j � λ̂jEs1i,j|sj

�
M̂I

i,j
�
, (D.4)

Ŵj � T̂j ¥ Ĉj � q̂j B̂
I
j � q̂D

j D̂I
j, (D.5)

p1�ϕ0qN̂j � êj � p̂j Â j � q̂j B̂
I
j � pq̂

D
j � κq D̂I

j, (D.6)�
ξp̂jÂ j � B̂I

j � D̂I
j

�
λ̂Ij � 0, (D.7)�

D̂I
j � D̂I

j

�
λ̂Dj � 0. (D.8)

All expectations are weighted sums over the exogenous-state transitions. Variables car-
rying a hat ( ˆ ) are direct functions of the policy vector P̂j—they are the choice variables
passed to the nonlinear solver at state sj. In contrast, quantities with subscripts ti, ju are
pre-computed numbers: they depend only on the forecasting vector Fm from Step B and
therefore remain fixed while solving the local system. For example, the stochastic dis-
count factors for households is

M̂i,j � β
�
Vi,j
CEj

	 1
ν�σ�Ci,j

Ĉj

	� 1
ν ,

where Vi,j and Ci,j come from Fm, while Ĉj is part of the current policy vector being solved
for. sumption. To compute the expectation at point sj, I first look up the corresponding
column j in the matrix containing the forecasting values that I computed in step B,Fm.
This column contains the Nx vectors, one for each possible realization of the exogenous
state, of the forecasting values defined in (F). From these vectors, I need consumption Ci,j

and the value function Vi,j. Further, I need current consumption Ĉj, which is a policy
variable chosen by the nonlinear equation solver. Denoting the probability of moving
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from current exogenous state xj to state xi as πi,j, I compute the certainty equivalent

CEj �

��¸
xi|xj

πi,j
�
Vi,j

�1�σ

�� 1
1�σ

,

and then complete expectation as

Es1i,j|sj

�
M̂i,j

�
�

¸
xi|xj

πi,jβ

�
Vi,j

CEj


1{ν�σ
�
Ci,j

Ĉj

��1{ν

.

The mapping of solution and forecasting vectors pPq and pFq into the other expressions in
the system follows the same principles and is based on the definitions in Model Appendix
B. To solve the system in practice, I use a nonlinear equation solver that relies on a variant
of Newton’s method, using policy functions Cm

P as initial guess. The final output of this
step is an NS � 8 matrix Pm�1, where each row is the solution vector P̂j that solves the
system above at point sj.

Step D: Updating Forecasting, Policy, and Transition Functions. Given the new pol-
icy matrix Pm�1 from Step C, set the policy functions to Cm�1

P Ð Pm�1. All forecasting
functions except the value functions coincide with the policy functions and are updated
in the same way. Hats denote current-policy variables, while subscripts pi, jq refer to fixed
forecasting quantities from Fm. For value functions, update

V̂j �
!
p1�βqrĈjs

1�1{ν �βExi|xj

�
pVi,jq

1�σ
�1�1{ν

1�σ

)1{p1�1{νq
,

V̂I
j � ϕ0N

I
j � êj �

ϕ1

2
�
êj
�2
�Exi|xj

�
M̂i,jp1� Fω,i,jqV

I
i,j
�
.

These updated objects form Ĉm�1
F . For transition functions, plug the new policies into

each law of motion to obtain Cm�1
T .

Step E: Convergence Check. Compute

∆F �
��Cm�1

F � Cm
F

��, ∆T �
��Cm�1

T � Cm
T

��.
If ∆F   TolF and ∆T   TolT , stop and set C� � Cm�1. Otherwise apply dampening,

Cm�1 � DCm � p1�Dq Ĉm�1, 0   D   1,
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reset Pm Ð Pm�1, and return to Step B.

Step F: Simulation. With the converged solution C� � Cm�1 in hand, I simulate the
model for T̄ � Tini � T periods.

1. Exogenous shocks. The exogenous state xt follows a Markov chain with transition
matrix Πx. Starting from x0 and a fixed random seed, I draw T̄ � 1 uniform random
numbers to generate the path txtuT̄t�1 via standard inversion.

2. Endogenous states. Given the initial vector s0 � rBI
0,DI

0,Z0,D0,d0,π0s, I update
rBI

t�1,DI
t�1s � C�T pst, xt�1q, producing the complete sequence tstuT̄t�1.

3. Burn-in. I discard the first Tini observations and keep t � 1, . . . , T to eliminate de-
pendence on initial conditions.

4. Policy and forecast evaluation. Along the retained sample I evaluate the policy and
forecasting functions, yielding the simulated data set tst,Pt, ftuTt�1.

D.1 Numerical integration of island shocks

For a given idiosyncratic (“island”) shock ωt ¡ 0, the gross period-t return on the inter-
mediary’s loan portfolio is

Ptpωtq �
�
c� p1� δq � δpt

� » 8

zpωt,Zt,dtq
gpzqdz� p1� ηqωt Zt e

�ζdt

» zpωt,Zt,dtq

0
z gpzqdz,

(D.9)
where the default boundary solving y

i,j
t � c� p1� δq is

zpωt,Zt,dtq �
c� p1� δq

ωt Zt e�ζdt
. (D.10)

Let tpxk,wkqu
K
k�1 be the K Gauss–Legendre nodes and weights on r�1, 1s; transforming

them by zk �
z̄
2pxk � 1q for any upper limit z̄ ¡ 0 gives

» z̄

0
gpzqdz �

z̄

2

Ķ

k�1

wk gpzkq,
» z̄

0
z gpzqdz �

z̄

2

Ķ

k�1

wk zk gpzkq. (D.11)
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Because
³8
z gpzqdz � 1 �

³z
0 gpzqdz, substituting z̄ � zpωt,Zt,dtq from (14) into (D.11)

delivers the quadrature approximation

pPtpωtq �
�
c� p1� δq � δpt

��
1�

z

2

Ķ

k�1

wk gpzkq

�
� p1� ηqωt Zt e

�ζdt
z

2

Ķ

k�1

wk zk gpzkq,

(D.12)
where zk � z

2pxk � 1q. The same Gauss–Legendre grid also discretises the shock itself:
for ω � LogNp1,σ2

ωq with logω � Npµ̂, σ̂2q, where σ̂2 � logp1 � σ2
ωq and µ̂ � �1

2 σ̂
2,

each node gives ωk � exp
�
µ̂ � σ̂Φ�1pxk�1

2 q
�

and any smooth Fpωq satisfies ErFpωqs �
1
2
°K

k�1 wk Fpωkq. Choosing K � 7 yields machine-precision accuracy with negligible com-
putational cost.

D.2 Evaluating the solution

To evaluate solution quality I perform two checks along the simulated sample path.

1. Grid extendash boundary check. I verify that each simulated state remains inside the
grids defined in Step A. Whenever a trajectory exits a bound I enlarge the affected
grid range and restart the algorithm from Step A. I also create histogram plots for
the endogenous state variables, overlaid with the placement of grid points. These
types of plots allow us to check the quality of the grid approximation and that the
simulated path of the economy does not violate the state grid boundaries. It further
helps us to determine where to place grid points. Histogram plots for the bench-
mark economy are in Figure XXXX.

2. Relative Euler extendash error check. For every period t and every equilibrium condi-
tion and transition law of motion ℓ, I compute the relative error

ε
pℓq
t � 1�

RHSpℓqt

LHSpℓqt

,

scaling by a representative endogenous variable taken from the equation. I report
the average, median, and tail percentiles of |εpℓqt |. Excessive errors trigger a local
grid refinement and a fresh solve–simulate cycle. Table XXXX reports the median
error, the 95th percentile of the error distribution, the 99th, and the 100th percentiles
during the simulation of the model. Median and 75th percentile errors are small
for all equations. Maximum errors are on the order of X% for equations XXXX. It
is possible to reduce these errors by placing more grid points in those areas of the
state space but adding points to eliminate the tail errors has little to no effect on any
of the results at the cost of increased computation times.
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E Details of counterfactuals experiments

I now detail the counterfactual experiment of Section 7. First, I explain how I use the
particle filter to extract information on the sequence of tπtu. Second, I discuss how I gen-
erate the decomposition of Figure 9. For annual data 2004–2015, the nonlinear state–space
system is

Yt � gpStq �ηt,

St � fpSt�1, εtq,
(E.1)

where the 4� 1 state vector and structural innovations are

St �
�
Dt, πt, Zt, dt

�J, εt �
�
εBt , επt , εZt , εdt

�J.

The 3� 1 measurement vector contains the one–year credit-spread differential, the risk-
neutral default probability constructed in Section 3 and the deposit bound:

Yt �
�
CSt,365, Q�

t,365, ∆Dt

�J, CSt,365 � rt,365 � rrf
t,365.

To respect the positive support and skewness of observed spreads I set

CSdata
t,365 � g1pStq exppηCSt q, ηCSt � N

�
�1

2σ
2
CS, σ2

CS

�
,

while the empirical default probability obeys a shifted beta law,

Q�data
t,365 � g2pStq � η

Q
t , η

Q
t � Beta

�
αt,βt

�
�ErBetapαt,βtqs.

Each quarter the beta parameters

αt �
�
p1� µtq{vt � µt

�
µ2
t , βt � αt

�
1{µt � 1

�
match the filtered mean µt � g2pStq and variance vt � 0.01 pσ2pQ�data

t,365 q, while σ2
CS �

0.01 pσ2pCSdata
t,365q. Only CSt,365 and Q�

t,365 carry measurement noise; the innovation ∆Dt is
observed without error.

Let Yt�rY1, . . . , Yts denote the history of observed vectors up to time t, and write

ppSt | Ytq

for the conditional law of the (latent) state vector. No closed-form expression exists for
ppSt | Ytq and therefore I approximate it at every t with an auxiliary particle filter that
maintains a collection of weighted particles tpSi

t, w̃
i
tqu

N
i�1 such that, for any integrable
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function f,
1
N

Ņ

i�1

fpSi
tq w̃

i
t

a.s.−−Ñ E
�
fpStq | Yt

�
.

The mean of the simulated particles then provides a smoothed path for the unobserved
state.

Each recursion proceeds as follows:

1. Initialisation (t � 0). Draw an initial cloud tSi
0u

N
i�1 from a suitable prior and set the

associated (unnormalised) weights to w̃i
0 � 1 for all i.

2. Prediction (time t). For each particle i � 1, . . . ,N, simulate a forecast state

Si
t|t�1 � ppSt | Si

t�1q

using the state-transition simulator described in Online Appendix D.

3. Updating of importance weights. Compute the incremental weight for every fore-
cast particle as

wi
t � p

�
Yt | Si

t|t�1
�
w̃i

t�1.

4. Normalisation and resampling.

(a) Normalise the unnormalised weights so they sum to one: w̃i
t � wi

t

M°N
j�1 w

j
t.

(b) Draw N � 100000 particles with replacement from tSi
t|t�1, w̃i

tu
N
i�1 and re-label

the resampled set as tSi
tu

N
i�1.

(c) Reset all weights to unity, w̃i
t � 1.

5. Iterate. If t   T , increase tÐ t� 1 and return to Step 2; otherwise terminate.

The next step is to decompose the counterfactual into its components. I now discuss
how I use the approximation to

 
p
�
St | Yt

�(2015
t�2004 along with the structural model to

generate the decomposition presented in Figure 9.
Define the model-implied credit spread

xCSt,365 �
Ņ

i�1

g1pS
piq
t q w̃

piq
t ,

where g1pStq is the policy function for the credit spread differential. The measurement
error is

ηCSt � CSdata
t,365 �

xCSt,365.
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I generate the fundamenta component by freezing the bailout probability at its pre-crisis
level and backing up the spread

xCSfund
t,365 �

Ņ

i�1

g1

�
Spiqt | πt�1 � π̄H

	
w̃
piq
t ,

The bailout component is then

∆Bailout
t � xCSt,365 � xCSfund

t,365.

The same procedure is applied for the counterfafctual with fixed Bt�1 � B̄ where B̄ is the
ergodic mean of the leverage.

F Model extensions

F.1 Equity injections

F.2 Bank assets

In this section I consider an extension of the model in which intermediaries do not hold
the entire pool of risky assets. To be the case, I assume that now also households can
invest in debt claims as intermediaries AH

t�1. However, households do not have ac-
cess to the intermediaries’ superior (costless) monitoring technology. They can hold cor-
porate debt that does not require screening and monitoring, such as highly rated cor-
porate bonds, without incurring any monitoring cost. A subset of the total supply of
corporate debt φ0   1 satisfies this requirement. If households want to expand (or
shrink) their holdings of corporate debt away from the amount φ0, they incur costs:

ΦHpAH
t�1q �

φ1
2

�
AH
t�1
φ0

� 1

2

φ0 (Brunnermeier & Sannikov 2014, Elenev et al. 2021). In

equilibrium, it must be the case that AH
t � 1 � At and that the resource constraint is

satisfied such that

Zte
�dtζ � Ct �Φe pet{Ntq � χAt

»
ωPDt

Ptpωqfpωqdω

� ηZte
�ζdt

» » zpωt,Zt,dtq

0
ωzgpzqfpωqdzdω�ΦHpAH

t�1q. (F.1)

One interpretation is that the household represents other intermediairies who are par-
ticipants in the same asset markets of the banks (e.g. shadow banks/non-bank financial
intermediaries). Another potential intepretation is that they represent a costly securiti-
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zation techonolgy which allows banks to sell aggregate risk off their balance sheet. The
household first order condition then reads

pt � Et

#
Mt,t�1

»
Pt�1pωqfpωqdω

+
�ΦH,1pAH

t�1q. (F.2)

Importantly, the household holds a diversified portfolio of debt claims differently from
the intermediaries.

G Simple economy

G.1 Environment

Agents, preferences and endowments. There are two periods, t � 1, 2 and a single con-
sumption good (dollar), which serves as numeraire. The economy is populated by a unit
measure of risk-neutral consumers indexed by C, and intermediaries indexed by I, and
a government. There is also a social planner/regulator/government, who sets bailouts
and leverage regulation. I denote the possible states of nature at date 1 by ω P r0, ω̄s. As
described below, ω corresponds to the realization of the returns to intermediaries’ tech-
nology. Consumers discount the future with a discount factor β and own debt and equity
of intermediaries. The endowments of the consumption goods of consumers at date 1
and 2 are

 
nC

1 ,nC
2 pωq

(
. The budget constraint of intermediaries at date 0 is given by

d1 � qpb,aqb� pa,

where p denotes the price of asset, qpb,aq the price of debt, b the face value of debt, a the
amount of asset purchased, and d1 is the equity issued if d1   0 or the dividend paid if
d1 ¡ 0. The budget constraint of intermediaries at date 1 in state ω is given by

d2pωq � maxtωa� b, 0u.

The budget constraint of consumers at date 1 and at date 2 in state ω are given by

c1 � nC
1 � qpb,kqb� d1,

c2pωq � nC
2 pωq � d2pωq � b

�
Itωa¥bu � πItωa bu � p1� πqχ

ωa

b
Itωa bu

	
� T2.

The budget constraint in period 1 equalizes the consumption of consumers and with the
savings in debt qpb,aqb and equity to intermediaries. The budget constraint in period 2
equalizes the consumption of consumers with the face value of debt b for every realization
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of the state ω and intermediaries dividends net of transfers from government T2.

Technology and financial contracts. At time 1, intermediaries choose how much as-
set, a, at price p to buy. By time 2, the intermediaries’ assets generate a random return
ω ¥ 0, which follows a distribution Fpωq � F with supppωq � r0, ω̄q. For simplicity, I
assume that

³
ωdFpωq � 1. Intermediaries finance their investment by issuing debt with

face value b, and price qpb,kq. I define leverage as the ratio of debt over assets, ℓ � b
a .

It needs to raise the difference in equity. Post-realization of returns in period 2, inter-
mediaries choose whether to default or not. If the intermediaries default, shareholders
receive nothing while financiers are bailed out with probability π by the government, in
which case they receive b per unit of capital, otherwise, they receive χω per unit of in-
vestment, where 0 ¤ χ ¤ 1. The remainder p1� χqω measures the deadweight loss or
costs associated with default. If the intermediaries do not default, financiers are paid b

and shareholders receive the residual claim p1�ϕqpωa� bq in the form of dividends. ϕ
captures the costs of equity issuance or tax advantage of debt. Costs of default and equity
issuance costs ensures a non-trivial choice of capital structure. I assume that the costs of
bank equity are private and so that ϕpωa�bq is reimbursed to the consumers in the form
of lump sum transfers. Making the costs of equity social would not impact the results
qualitatively.

Regulation. The government finances bailouts by raising lump sum taxes from con-
sumers in period 2. The government balances his budget period by period so that

T2 �

» ℓ

0
π pℓ� χωqdFpωq.

The government is also able to impose a leverage cap on intermediaries at date 1. For-
mally, the governme requires that intermediaries set ℓ ¤ ξ, where 1�ξ is the minimal per-
mitted ratio of equity contribution to risky investment. This constraint imposes a leverage
cap, or equivalently, a minimal equity contribution per unit of investment.

Equilibrium definition. An equilibrium is defined as a set of intermediary’s capital
structure d1,b,a,d2pωq and default decision, prices for intermediaries debt q and assets
p, such that (i) intermediaries maximize their expected net present value while taking
into account that any debt issued is valued by consumers, (ii) consumers maximize their
utility and (iii) the capital market clears, a � 1.

My notion of equilibrium, in which intermediaries internalize that their borrowing
decisions affect their cost of financing in equilibrium, is standard in models of default.
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G.2 Equilibrium characterization

I introduce Lemma 1 which presents a reformulation of the intermediary problem whose
solution characterize equilibrium leverage.

Lemma 1 (Intermediaries’ problem). Equilibrium leverage is given by the solution to the fol-
lowing reformulation of the problem faced by intermediaries:

v � max
ℓ

qpℓqℓ� p�βI

» ω̄

ℓ
pω� ℓqdFpωq (G.1)

where βp1�ϕq � βI, subject to the leverage constraint and the debt pricing equation

ℓ ¤ ξ, (G.2)

qpℓq � β

�» ω̄

ℓ
dFpωq �

» ℓ

0

�
π� p1� πq

χω

ℓ

	
dFpωq

�
. (G.3)

The size decision of the intermediary is then given by

max
a¥0

av.

Proof of Lemma 1. The problem that intermediary face at date 1, after anticipating their
optimal default decision, can be expressed as follows:

V � max
b,a,d1,d2pωq

d1 �βp1�ϕq

»
d2pωqdFpωq

subject to budget constraints at date 1 and in each possible state tω,πu at date 1, the
capital requirement and the consumers’ debt pricing equation

d1 � qpb,aqb� pa, (G.4)

d2pωq � maxtωa� b, 0u, @ω (G.5)
b

a
¤ ξ, (G.6)

qpb,aq � β

�» ω̄

b
a

dFpωq �

» b
a

0

�
π� p1� πq

χωa

b

	
dFpωq

�
. (G.7)

Financiers take into account that higher intermediary leverage increases the probability
of a default. The intermediary internalizes this effect when making its leverage decision.

First, notice that intermediaries optimally default at date 1 whenever ω   ℓ, and repay
when ω ¥ ℓ. To solve the intermediary problem, divide the intermediary objective by a
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to get

v � max
ℓ

d1 �βp1�ϕq

» ω̄

ℓ
pω� ℓqdFpωq

subject to the budget constraint at date 0 and the debt pricing equation

d1 � qpℓqℓ� p (G.8)

ℓ ¤ ξ, (G.9)

qpℓq � β

�» ω̄

ℓ
dFpωq �

» ℓ

0

�
π� p1� πq

χω

ℓ

	
dFpωq

�
. (G.10)

Substituting period 1 budget constraint into the objective function, I can rewrite the prob-
lem as in the statement of the lemma. The size decision of the intermediary is then given
by

max
a¥0

av.

It is possible to fully characterize the equilibrium of the model by incorporating the
default decision of intermediaries at date 1 and the pricing of debt by consumers into the
intermediaries’ date 0 problem. First, notice that intermediaries optimally default at date
1 whenever ω   ℓ, and repay when ω ¥ ℓ. The first component of the objective func-
tion represents the equity issued/dividends paid by the intermediary in period 0 to the
consumers . The second component in equation (G.1) corresponds to the present value
of the equity payoffs. Since consumers are only paid in the non-default states, this inte-
gral is over states in which ω ¥ ℓ. The first constraint is the leverage constraint, which
states that the ratio of debt over assets cannot exceed ξ. The second constraint corre-
sponds to the present value of the debt payoffs in default states (per unit), as perceived
by consumers. When intermediaries default (ω   ℓ), consumers receive χω per unit
of investment, which accounts for the deadweight losses of default. Intermediaries do
not directly benefit from government bailouts, and their objective function simply corre-
sponds to their market value at date 2. Nevertheless, markets generate implicit incentives
to capture government bailouts, because the implicit subsidy is accounted for in security
prices.

I am now ready to characterize the optimal solution to the intermediary problem in
the following proposition.
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Proposition 1 (Equilibrium leverage). Equilibrium leverage ℓ� is given by the solution to

dv pℓ�q

dℓ
� β

» ℓ

0
πdFpωq � pβ�βIq

» ω̄

ℓ
dFpωqlooooooooooooooooooooomooooooooooooooooooooon

marginal benefits
(subsidy + valuation difference)

�βp1� πqp1� χqℓfpℓqlooooooooooomooooooooooon
marginal costs

(distress)

� λ. (G.11)

where λ is the Lagrange multiplier associated with the leverage constraint.

Three forces determine the marginal value of leverage, characterized in Equation (G.11).
The first force corresponds to the additional leverage an intermediary is able to raise be-
cause of the bailout subsidy in present value terms. The second force arises due to the dif-
ferences in valuation between intermediaries and consumers. By increasing the leverage
ratio ℓ, an intermediary is able to raise in present value terms βp1� Fpℓqq dollars per unit
invested, whose repayment cost in present value terms corresponds to βp1�ϕqp1� Fpℓqq.
This second force is proportional to the difference in discount factors β � βI ¡ 0. The
third force corresponds to the marginal increase in deadweight losses associated with
defaulting more frequently after increasing leverage. These three forces guarantee that
equilibrium leverage is strictly positive.

Notice that

dv pℓq

dℓ
|ℓ�0� β�βI ¡ 0,

so that the intermediary find it optimal to choose non-negative leverage in equilibrium.
Therefore, for a given leverage constraint ξ, my problem always features a solution for
leverage in r0, ξs. The presence of bailout subsidies imply that intermediary would lever
up to the maximum leverage constraint ξ given the linearity of their problem so that ℓ � ξ.

Note that a positive amount of bank investment a ¡ 0 in equilibrium requires that the
expected profit per unit is zero, v � 0, which when combined with equation (G.1) gives
intermediaries willingness to pay for a dollar of risky assets as

p � qpξqξ�βI

» ω̄

ξ
pω� ξqdFpωq. (G.12)

which corresponds the present value of the expected payoffs of the intermediary’s assets.
The first term corresponds to the present value of the expected payoffs of the debt is-
sued by the intermediary, while the second term corresponds to the present value of the
expected payoffs of the equity issued by the intermediary.
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G.3 Comparative statics

First, I show how the equilibrium asset price p changes with the bailout probability π and
the leverage constraint ξ.

Lemma 2. The intermediaries willingnes to pay for a dollar of risky assets p is increasing in the
bailout probability π and in the leverage constraint ξ. The debt price q is increasing in the bailout
probability π and decreasing in the leverage constraint ξ.

Proof of Lemma 2. I start with studying changes in ξ. Given the expression for the asset
price,

p � β

�» ω̄

ξ
ξdFpωq �

» ξ

0
pπξ� p1� πqχωqdFpωq

�
�βI

» ω̄

ξ
pω� ξqdFpωq,

� β

» ξ

0
pπξ� p1� πqχωqdFpωq �

» ω̄

ξ
pβIω� pβ�βIqξqdFpωq,

I can differentiate the asset price with respect to ξ:

Bp

Bξ
� qpξq � ξ

Bq

Bξ
�βIp1� Fpξqq.

By using the first order condition for leverage evaluated at ℓ � ξ, I can express the deriva-
tive as exactly the marginal value of leverage, λ, which is positive. Therefore, the asset
price is increasing in ξ. Secondly, the asset price is increasing in π since

Bp

Bπ
� ξ

Bq

Bπ
� β

» ξ

0
pξ� χωqdFpωq ¡ 0.

Finally, the debt price is increasing in π since

Bq

Bπ
� β

» ξ

0
pξ� χωqdFpωq ¡ 0,

and decreasing in ξ since

Bq

Bπ
� �βp1� πq

!
fpξq

�
1� χω

ξ

�
� χω

ξ2 Fpξq
)
  0.

Second, I am interested in understanding how the sensitivity of asset prices to bailout
probabilities and leverage constraints changes with riskiness of the asset. To do so, I
wanto to compare the derivatives characterized in Lemma 2 under perturbations of the
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distribution of the asset returns. Since I have specified flexible distributions of asset re-
turns, I will characterize how the asset price sensitives to bailout probability and leverage
change with changes in the risky asset payoff distribution using variational (Gateaux)
derivatives. Formally, I consider perturbations of the form

Fpωq � εGpωq,

where Fpωq denotes the original cumulative distribution function of ω, the variation Gpωq

represents the direction of the perturbation, and ε ¥ 0 is a scalar. When Gpωq   0, it is
natural to say that for the perturbed distribution the probability assigned to states equal
or lower than ω is now higher. I consider variations Gpωq that are continuously differ-
entiable and satisfy Gp0q � Gpω̄q � 0. These conditions ensure that perturbed beliefs are
still valid cumulative distribution functions for small enough values of ε. In particular, I
analyze perturbations Gpωq that induce lower risk in the sense of hazard-rate dominance.
Formally, an absolutely continuous distribution Fpωq becomes less risky in the sense of
hazard-rate dominance if the hazard rate hpωq � fpωq

1�Fpωq decreases for all ω. This is a
stronger requirement than first-order stochastic dominance, but a weaker requirement
than the monotone likelihood ratio property. Therefore, in terms of variational deriva-
tives, a perturbation Gpωq induces optimism in a hazard-rate sense if δhpωq

δF �G ¤ 0 for all
ω (Dávila & Walther 2023).

Lemma 3. The sensitivity of the asset price p to the bailout probability π and the leverage con-
straint ξ in response to changes in the distribution of the asset payoffs is given by the following
variational derivatives:

δdp
dπ

δF
�G � βGpξqξp1� χq �βχ

» ξ

0
Gpωqdω,

δdp
dξ

δF
�G � �Gpξq

�
�βπ� pβ�βIq �βp1� πqp1� χqξ

gpξq

Gpξq



.

If I consider hazard-rate dominant perturbations, so that Gpωq   0 then the first derivative is
negative and the second derivative is ambiguos and inversely related to π.

Proof of Lemma 3. Before proving the results, I prove the property of hazard rate pertur-
bations that I will use to show the main results of the lemma. The hazard rate after an
arbitrary perturbation is given by hpωq � fpωq�εgpωq

1�pFpωq�εGpωqq . Its derivative with respect to ε

takes the form

dhpωq

dε
�

gpωq

1� pFpωq � εGpωqq
�

pfpωq � εgpωqqGpωq

p1� pFpωq � εGpωqqq2
.
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In the limit in which εÑ 0, for hazard-rate dominance to hold, it must be the case that
limεÑ0

dhpωq
dε   0, therefore

lim
εÑ0

dhpωq

dε
�

gpωq

1� Fpωq
�

fpωq

1� Fpωq

Gpωq

1� Fpωq
  0

ðñ gpωq �
fpωq

1� Fpωq
Gpωq   0

ðñ
gpωq

Gpωq
�

fpωq

1� Fpωq
¡ 0

ðñ
fpωq

1� Fpωq
¡ �

gpωq

Gpωq

where in the second-to-last line the sign of the inequality flips because Gpωq is neg-
ative, since hazard-rate dominance implies first-order stochastic dominance. I compute
δdp
dπ
δF �G as follows:

δdp
dπ

δF
�G � lim

εÑ0

�
β
³ξ

0 pξ� χωqd pF� εGq
	
�
�
β
³χ

0 pξ� χωqdF
�

ε

� β

�» ξ

0
pξ� χωqdGpωq

�
� βGpξqξ�βχ

» ξ

0
ωdGpωq

� βGpξqξp1� χq �βχ

» ξ

0
Gpωqdω,

where the last equality follows after integrating by parts. If I consider a distribution G

that dominates F is an hazard rate sense, Gpωq   0, then it is clear that the derivative is

negative. In the same way, I can compute
δdp
dξ

δF �G as follows:

δdp
dξ

δF
�G � βπGpξq � pβ�βIqp1�Gpξqq �βp1� πqp1� χqξgpξq

� �Gpξq

�
�βπ� pβ�βIq �βp1� πqp1� χqξ

gpξq

Gpξq



.

If I consider a distrbution G that dominates F is an hazard rate sense, Gpωq   0, then it is
sufficient to study the sign of the term in the parenthesis :

�βπ� pβ�βIq �βp1� πqp1� χqξ
gpξq

Gpξq
.

At an interior optimum, Equation (G.11) implies that

dp

dξ
�

βπ

1� Fpξq
�βπ�β�βI �βp1� χqp1� πqξ

fpξq

1� Fpξq
� λ ¥ 0
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or, equivalently,

βp1� πq �βI ¥ βp1� χqp1� πqξ
fpξq

1� Fpξq
�

βπ

1� Fpξq
.

Hazard-rate dominance implies that fpωq
1�Fpωq ¥ � gpωq

Gpωq , so the following relation holds:

βp1� πq �βI ¥ �βp1� πqp1� χqξ
gpξq

Gpξq
�

βπgpξq

fpξqGpξq

The sign of the expression is ambiguos and in particular it depends on the extent to which
creditors are bailed out. In particular, in the limit as π approaches 0, the term is positive,
and so the sign of the derivative is positive. But as π approaches 1, the term can turn into
negative as the bailout likelihood decreases the distress costs arising from default. This
can make the derivative negative.

The first derivative is negative under hazard-rate dominance pGpωq ¥ 0q. A less risky
distribution dampens the effect of bailouts (πx) on asset prices. Bailouts become more
impactful in riskier environments because higher default risk (more mass at ω   ξ )
increases the value of bailout guarantees; greater exposure to low- ω states (

³ξ
0 Gpωqdω ¥

0 ) raises the implicit subsidy from bailouts. If the payoff distribution is has less mass
under the left tail (lower default likelihood), the bailout subsidy becomes less valuable.
When F shifts toward safer states pGpωq   0q, intermediaries and consumers anticipate
lower bailout transfers, which deflate asset prices. This makes bailout policies less potent
in propping up prices when assets are safer.

On the other hand, the sign of the variational derivative
δdp
dξ

δF �G depends critically on
the bailout probability π. The net effect is determined by the balance of three components:

�βπloomoon
Reduced marginal benefit

from bailouts

� pβ�βIqlooomooon
Valuation difference

(debt vs. equity)

�βp1� πqp1� χqξ
gpξq

Gpξqlooooooooooooomooooooooooooon
Marginal default cost

amplified by risk

.

When π � 0, the net effect simplifies to:

pβ�βIq �βp1� χqξ
gpξq

Gpξq
¡ 0,

implying
δdp
dξ

δF �G ¡ 0. A safer distribution (Gpξq   0) increases the price sensitivity to
leverage constraints, as default costs are less important. Conversely, when π � 1, the net
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effect becomes:
�β� pβ�βIq   0,

yielding
δdp
dξ

δF �G   0. With full bailouts, safer distributions decreases price sensitivity to
leverage constraints, as bailouts subsidize default risk. This non-monotonicity reflects
the interplay between bailout subsidies, valuation differences, and default costs. Policy-
makers must account for both asset riskiness and bailout expectations when designing
leverage constraints: higher capital requirements depress intermediaries willingness to
pay for risky assets, but the effect is more pronounced when more bailouts are expected.

G.4 Variance of equity returns, bailouts and regulation

With a binding leverage cap ℓ � ξ, per-unit-asset equity pays

ẽpωq �
�
1�ϕ

�
pω� ξq 1tω¥ξu, E0 � βI

» ω̄

ξ
pω� ξqdFpωqloooooooooomoooooooooon

�Apξq

,

so the gross equity return per dollar of initial equity is

REpωq �
ẽpωq

E0
�
pω� ξq1tω¥ξu

Apξq
, ErREs � 1.

Define3

σ2
Lpξq :� Fpξq, σ2

Rpξq :�

» ω̄

ξ

�
REpωq � 1

�2
dFpωq,

so that total variance satisfies

σ2
Epξq � σ2

Lpξq � σ2
Rpξq �

Bpξq

Apξq2
� 1,

because σ2
L � Fpξq and σ2

R � pB{A2q � 1 � Fpξq. Using A 1pξq � �p1 � Fpξqq, B 1pξq �

�2Apξq, one obtains

Bσ2
L

Bξ
� fpξq ¡ 0 and

Bσ2
R

Bξ
�

2
�
p1� FpξqqBpξq �Apξq2

�
Apξq3

¡ 0 ,

where the strict inequality for σ2
R relies on Cauchy–Schwarz: Bpξqp1� Fpξqq ¥ Apξq2 with

equality only for degenerate payoffs.
Increasing the cap (higher ξ) raises both left-tail mass and right-tail dispersion; con-

3Apξq and Bpξq are standard “truncated moment” objects: Apξq �
³ω̄
ξ pω� ξqdF, Bpξq �

³ω̄
ξ pω� ξq2 dF.
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versely, tightening capital regulation (lower ξ) reduces both contributions in the same direc-
tion. Thus the variance-cutting effect of stricter capital is “tail-symmetric.”

On the other hand, because the cap binds, ℓ � ξ is fixed by regulation and does not
respond to π:

Bξ

Bπ
� 0.

Equity pay-offs themselves never contain the bailout transfer, hence

Bσ2
L

Bπ
� 0 ,

Bσ2
R

Bπ
� 0 .

A change in the bailout probability π leaves both tails unchanged when leverage is already
capped. Bailout policy can affect equity-return variance only indirectly—by altering the
chosen leverage—once the cap ceases to bind; in that interior region the impact operates
through the left tail first and then transmits to the right via the leverage channel.

When the regulatory cap is loose enough that the intermediary’s optimal leverage is
determined by the first-order condition (G.11), with σ2

L � Fpℓ�q I have

dσ2
L

dπ
� fpℓ�q

dℓ�

dπ
¡ 0 =ñ π Ò ñ default probability rises.

Using the earlier derivative
Bσ2

R

Bℓ
�

2
�
p1� FqB�A2

�
A3 ¡ 0, the chain rule gives

dσ2
R

dπ
�
Bσ2

R

Bℓ

dℓ�

dπ
¡ 0 =ñ π Ò ñ right-tail dispersion rises.

Hence, bailouts affect equity variance only through the leverage choice. If the cap is
slack, higher π pushes ℓ� up, thereby raising both the frequency of default (left tail) and
the dispersion of surviving returns (right tail). Lower π does the opposite. Tightening ξ

that becomes binding compresses leverage directly and symmetrically trims both tails,
independent of π.

G.5 Social-planner problem

The planner internalises all real resource costs—dead-weight default losses and equity-issuance
costs—while treating bail-out transfers and lump-sum taxes as pure redistribution. Nor-
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malising the investment scale to a � 1 (linearity), the planner solves

max
ℓ¤ξ

Wpℓq :� β
�
�ϕ

» ω̄

ℓ
pω� ℓqdFpωqlooooooooooomooooooooooon

equity-issuance cost

� p1� χq

» ℓ

0
ωdFpωqlooooooooooomooooooooooon

default dead-weight loss

�
. (SP)

First-order condition. Denote the pdf by fpωq � F 1pωq. Differentiating W and imposing
the Kuhn–Tucker multiplier λSP for the cap constraint:

βϕ
�
1� Fpℓq

�
� βp1� χq ℓfpℓq � λSP (FOCSP)

with complementary-slackness λSPpℓ � ξq � 0, λSP ¥ 0. Comparing the FOCSP with
the FOCPriv in (G.11), I see that the planner internalizes the bailout subsidy as a transfer.
Therefore in distress, the planner percived the default costs are higher than the private
agent. Because both the marginal benefit is higher and the marginal cost is lower for
the intermediary, I have ℓSP   ℓPriv wheneve π ¡ 0.. Hence the planner faces a classic
regulation trade-off: choose ξ low enough to curb excessive leverage (and its dead-weight
default losses) yet not so low that it foregoes the efficiency gains from substituting cheaper
debt for costly equity. Formally, the optimal capital requirement satisfies

ξ� � ℓSP.

G.6 Planner’s choice of the bailout probability π

The social planner maximizes total welfare W, which equals the sum of consumer and in-
termediary utilities. Under risk neutrality, this reduces to minimizing deadweight losses
from default and equity costs. I derive the planner’s optimal bailout policy in three steps.

Let ℓpπ, ξq denote equilibrium leverage under bailout probability π and cap ξ. Welfare
per unit asset is:

Wpπ, ξq � �βϕ

» ω̄

ℓ
pω� ℓqdFpωqlooooooooooooomooooooooooooon

Equity costs

�βp1� χq

» ℓ

0
ωdFpωqlooooooooooooomooooooooooooon

Default losses

(G.13)

where ϕ captures equity issuance costs and χ recovery rates.
The private FOC for leverage (eq. G.11) equates marginal benefits (subsidy + valuation

72



gap) to marginal costs (default). The social planner internalizes externalities:

ℓSP � arg max
ℓ

Wpℓq

ñ βrϕp1� Fpℓqq � p1� χqℓfpℓqs � 0 (G.14)

Comparing (G.11) and (G.14) reveals ℓ�Priv ¡ ℓSP: private leverage exceeds the social opti-
mum due to bailout subsidies. When the cap is slack (ℓ�Priv   ξ), total derivative:

dW

dπ
�

BW

Bℓ

dℓ�Priv
dπloooomoooon

Indirect effect via leverage

where
BW

Bℓ
� βrϕp1� Fpℓqq � p1� χqℓfpℓqqs   0 (G.15)

dℓ�Priv
dπ

�
β
³ℓ�

0 dF�βp1� χqℓ�fpℓ�q

pβ�βIqfpℓ�q �βp1� πqp1� χqfpℓ�q
¡ 0 (G.16)

The negative indirect effect dominates, implying dW
dπ   0. Thus:

Proposition 2 (Optimal bailout policy). The welfare-maximizing bailout probability is:

π� � 0 (strictly optimal if cap is slack, weakly if binding)

Proof. When ξ binds (ℓ � ξ), dℓ
dπ � 0 ñ dW

dπ � 0. However, setting π � 0 remains weakly
optimal as bailouts only redistribute without affecting real allocations. For slack caps, the
negative leverage effect makes π � 0 strictly optimal.
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