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Abstract

Generative Al is increasingly being used as economic agents. However, we know very little
about their financial decision-making rules. Exploiting a novel experimental setting, we
show that it uses memories to make decisions, even when the memories are not in the same
decision domain. When cued with images with positive emotional content, it makes riskier
choices, even if it can form perfectly Bayesian beliefs. This mechanism is further causally
supported with a supervised fine-tuning technique known as knowledge injection that can
edit the language model’s memories. Empirical analysis shows that this memory-driven
behavior substantially impacts the Al agent’s investment decisions and return predictabil-
ity, creating significant upward or downward biases that correspond to the valence of its
memories. Finally, we develop a memory-based economic model to explain the investment
behavior of GAI agents.
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1. Introduction

Artificial intelligence is fundamentally reshaping society with far-reaching implications for
economic systems (Acemoglu, 2024) and growth (Aghion et al., [2017), where Generative Al
(GAI) has emerged as a versatile agent in various domains, serving as an instrumental tool H
However, as society’s dependence on Al assistance increases, our understanding of GAI decision-
making processes and advisory mechanisms remains limited. Given this increasing reliance, this
paper tries to understand what drives GAI’s decision-making rules and their behavior by itself,
especially in the context of economics and finance. Specifically, this paper aims to explore
how GAI, as an economic agent, makes decisions in risky financial investment scenarios. What
factors drive these decisions? Does GAI exhibit purely rational investment decision making,
potentially correcting human biases, or does it introduce new patterns of decision making?

Exploiting a novel experimental setting (Kuhnen, 2015; |Kuhnen and Knutson) 2011; Kuhnen
and Miul 2017) and relying on a vast literature documenting the associative memory of human
beings (Bordalo et al., 2024allb, 2020; Enke et al., 2024)), this paper tries to directly link the
economic decision-making rules of GAI with its “memories”.

The concept of memoryE] is crucial, precisely because it is a fundamental construct deeply
rooted in psychological research. This provides a powerful lens through which to understand
GAIL The current paradigm for training Al agents employs mechanisms that mirror human
decision-making processes: Just as individuals accumulate knowledge through life experiences
and learn from rewards and failures, GAI systems develop their capabilities through extensive
training on comprehensive datasets guided by specific reward functions (Bybee, [2025). Upon
receiving queries, these systems engage in a process analogous to human recall, drawing on their
trained parameters and trillions of tokens to identify relevant patterns and historical outcomes.
This retrieved information then serves as the basis for subsequent decision-making. Because
this concept of “memory”, specifically associative memory, is so fundamental to this process,
it serves as an important anchor in the valuation of GAI (Bordalo et al., 2020). In that sense,
using memory to explain the decision-making rules of GAI agents will likely never be obsolete as
more GAI agents are developed in the future. Instead, it is highly helpful for explaining various
behavioral biases discovered in the recent literature (Bini et al. 2024; |[Fedyk et al.l |2024; [Leng;,
2024; [Ross et al., 2024).

In this experiment, we use eight versions of GPT models as the experiment subjects, ranging
from GPT 4o (mini), GPT 4.1 (mini/nano) to GPT 5 (mini/nano), which are one of the State-
Of-The-Art models and outperform other popular commercial models. Moreover, these models
are highly cost-efficient and have one of the best response speeds to be deployed on a large scale
(Hurst et al., 2024)@ These SOTA models feature multimodal capabilities and can function as

!These include but not only in financial markets (Lo and Ross| [2024; Wu et al., 2023), healthcare and phar-
maceutical consulting (Liu et al. |2023; [Yang et al.l |2024al), psychological support (Demszky et al.l 2023), legal
proceedings (Cheong et al.| |2024), marketing strategy (Arora et all [2024)), software development (Nam et al.,
2024]), freelancing (Demirci et al.l 2025)), and even academic research (de Kok) 2025; [Van Noorden and Perkel,
2023).

“The concept of memory we define here is the set of associations formed and retained in the parameter weights,
which are determined by the training data and model architecture. This parallels how memory is stored via neural
connections in the human brain.

3In the appendices, we also use models developed by Anthropic (Claude-3-Haiku) and Google (gemini-2.0-



an Al agent.

This experiment requires the subject to perform 100 independent tasks for each model, also
known as learning blocks, each consisting of six consecutive trials. In each trial, there are two
assets that can be invested in: a bond that always pays $3 and a stock that pays from a good
dividend distribution or a bad dividend distribution. In the good payoff distribution, the stock
pays $10 with 75% and -$10 with 25%, while in the bad payoff distribution, the stock pays $10
with 25% and -$10 with 75%. The subject observes the realized stock payoff after choosing which
asset to invest in. In other words, the subject does not know the type of dividend distribution;
it learns the true type of the stock based on the payoff realized in each trial over time. If the
subject observes a series of high dividend payoffs, e.g., all stock dividend payoffs are $10, then
there is a high probability that it is a good stock that pays dividends from the good distribution
and the subject will most likely choose to invest in it in the next trial. Also, this experiment
setting allows us to compute a Bayesian objective probability and use it as a benchmark to
examine how rational the model estimation is.

In each trial, a subject is presented with a random image that we collect from Google
images at the beginning and asked to make associative recalls. Then, in a separate question, an
investment decision is asked to choose a stock or bond. The set of images has a diverse range of
contents, such as an investor making a lot of money and is extremely happy, or a sports team
gets defeated and every player is very sad. In the experiment instruction, we especially tell the
subject to pay attention to the image to make recalls, but also inform it that the image is not
associated with the investment decisions. Therefore, the subject should not make investment
decisions based on the image it observes. Then, we reveal the stock dividend and the investment
payoffs to the subject. Subsequently, the subject is asked to give a probability estimate that
the stock they observe is paying dividends from the good probability distribution and their
confidence in the probability estimation.

Importantly, within each learning block, the subject is allowed to keep its chat history,
including experiment instructions, realized payoffs, realized earnings, investment decisions, sub-
jective probability estimations, and confidence ratings. This can be thought of as a conversation
between an experiment instructor and a subject and is the subject’s “short-term memory”. Af-
ter the subject has completed all six trials for a learning block, the chat history is refreshed,
and a new learning block is started.

In this experiment, the images presented to the subject serve as “cues”, where the images
of positive valence levels are considered good cues and the images of negative valence levels are
considered bad cues. The results show that, when displayed with an image with the most positive
valence, subjects are 17.7% more likely to choose stocks rather than bonds compared to when
displayed with an image with the most negative valence, and this result is consistent between
different trials and topics. The intuition is that, when the agent receives a positive cue about a
good stock market, such as Warren Buffett smiling with piles of cash behind him, it stimulates
similar “good memories” about the stock market that historically has good performance and
would later invest more in the stocks in the experiment. In contrast, when it receives a negative

cue that represents a bear market, GAI recalls the negative link between equity investment and

flash-light) as alternative test subjects for external validity. The results are qualitatively similar.



other bad consequences in the stock market and would choose to invest more conservatively
in the bonds. The results are significant on various topics such as Terrorism, sports, financial
markets, and others.

Although cues significantly influence investment decisions related to risk preferences, they
do not show substantial impact on the subject’s probability estimations regarding stock perfor-
mance. In other words, this “cue effect” does not affect beliefs as documented in the previous
literature (Bordalo et al., 2024a; Enke et all [2024) on human subjects, as it primarily affects
the risk preferences of GAI like |Guiso et al.| (2018). Notably, this suggests a disconnect be-
tween choices and beliefs: the subject’s trading decisions appear to be driven more by memories
rather than their stated prior beliefs. Had the subject aligned its trading decisions with its
beliefs about the type of stock dividend, the investment payoffs would have been substantially
higher. Although cues do not significantly affect beliefs, the subject’s probability estimations
are consistent with loss aversion, as described in prospect theory (Kahneman and Tversky,
2013)). More specifically, the subject has higher probability estimates when the Bayesian objec-
tive probability is low and lower probability estimates when the Bayesian objective probability
is high. Additionally, the subject’s confidence levels in these probability estimations remain
unaffected by emotional stimuli, as predicted by less cognitive uncertainty (Enke and Graeber,
2023)).

To causally examine the impact of memory on GAI risk preferences and trading decisions,
such as investment choices, we adopt a fine-tuning method known as “knowledge injection”
(Wang et al., 2024). This technique enables the agent to update its knowledge about new
events that occur after the knowledge cutoff date, while not degenerating its ability like math
reasoning or grammar checking.

Following the approach proposed by |Mecklenburg et al.| (2024)), we select GPT-40-mini, the
best candidate to efficiently fine-tune with, as the subject of the experiment and instill GAI with
additional positive or negative training data. To accomplish this, we first generate two datasets
for knowledge injection. The first data set refers to financial markets, which is directly related
to our investment experiment. We begin by collecting all news articles from the RavenPack
dataset with sentiment scores greater than 0.9 or lower than -0.9, labeling them as positive and
negative news, respectively. The sample period is the whole year 2023. Out of 9,987 positive
and 2,713 negative real news articles, we ask GPT to generate fictional yet plausible news stories
with similar sentiment based on the original texts. These generated articles do not reference
actual market events and may even feature hypothetical company names. By creating fictional
news, we mitigate concerns about data leakage (Ludwig et al.l 2025; Sarkar and Vafal 2024)).

The second data set concerns restaurant dining experiences, which appear not to be related
to this experiment. We collect Yelp customer reviews from Kaggle, a web-based platform for
data science and machine learning professionals. Similarly, we draw a random sample of reviews
with positive emotions and another with negative emotions. We then instruct GPT to generate
fictional out-of-sample reviews corresponding to each original review, ultimately obtaining 3,991
fictional positive Yelp reviews and 4,009 negative Yelp reviews. This set of irrelevant knowledge
is very important because it provides a clean and direct test of the mechanism through which

memories affect decisions, even if the memories are not in the same domain as the decision.



We then apply the supervised fine-tuning technique, incorporating either positive or negative
fictional financial news or Yelp fictional reviews into the knowledge injection template. This
process outputs four fine-tuned models. For the first set, we create a positive model, injected
with 9,987 positive financial news articles, which is considered to have more positive memories
about the stock market and investments, and a negative model, injected with 2,713 negative
financial news articles, which is expected to hold more negative memories. For the second set,
we generate two models with positive and negative memories related to dining experiences. We
subsequently conduct experiments on these four fine-tuned models.

Our findings indicate that models with positive memories are more likely to invest in stocks
than those with negative memories. In the financial news setting, the average probability
of stock investment for the positive-memory model is 0.65 (standard deviation 0.01), while
for the negative-memory model, it is 0.49 (standard deviation 0.03). The difference in risk-
taking propensity is significant and persists even in the absence of associative cues. More
surprisingly, this effect is even more pronounced in the Yelp review setting, which contradicts
the “domain-specificity” of experience effects claimed in earlier research on human subjects
(Malmendier, 2021)). The average investment propensity for the positive memory model is
0.49 (standard deviation 0.06), significantly higher than that of the negative memory model
(average investment propensity 0.36, standard deviation 0.10). Additionally, fine-tuning results
reveal that associative cues exert an asymmetric effect, influencing the negative memory models
more strongly than the positive memory models. When exposed to an associative cue, whether
positive or negative, the negative memory model consistently exhibits a stronger preference for
bond investments compared to scenarios without cues. This finding aligns with the predictions
of |[Bordalo et al.| (2024al), where two opposing forces are at play: similarity and interference.
When the stock is more likely to pay from the good dividend distribution, negative memories
cued by associative signals interfere with the selective retrieval of positive memories, leading
to more conservative investment choices. Even when the recalled context is not related to the
experiment, memory still plays a crucial role in the GAI decision-making process.

We show that Al agent’s biased memories have huge impact on financial decision making.
We first conduct an experiment based on |Ouyang et al. (2025), which reveal that the positive
memory model exhibits greater risk tolerance than the negative memory model, implying that
memory moves risk preferences. We perform five different tests: (1) a direct elicitation task in
which the model self-assesses its risk preference, (2) a questionnaire task in which the model
must rate its level of risk aversion from 0 to 10, (3) the |Gneezy and Potters (1997) task, (4)
the [Eckel and Grossman (2008) task, and (5) a task involving real investment scenarios in
which the model makes risky investment decisions. Across all five tasks and various endowment
magnitudes, the positive-memory model consistently evaluates itself as more risk-seeking and
opts more frequently to invest in risky assets. This set of results provides causal evidence that
memories influence model behavior by shaping risk preferences, even in simple settings where
no learning or belief updating is involved.

In the second empirical analysis, we also replicate |Lopez-Lira and Tang| (2024) by applying
fine-tuned GAI agents to classify daily news headlines as good, bad news, or uncertain. We

then transform these categorical values into numerical values and classify firm-level investment



scores into five quintiles from worst news to best news groups. Summary statistics show that
even for these seemingly simple tasks, which is similar to a sentiment classification, different Al
agents disagree strongly, where models with positive financial news memory have an average
investment score of 0.22 (standard deviation 0.86) and a negative memory model has an average
investment score of -0.38 (standard deviation 0.80). In addition, long-short portfolios based on
these investment signals suggest that models with positive memories tend to underperform.

Finally, we develop an economic model that is based on memory to formalize the experimen-
tal finding. Instead of assessing prospects based on objective probabilities, the agent evaluates
a risky action by simulating its utility from a database of past memories, which are parti-
tioned into positive and negative experiences. The simulated utility of the risky action is thus a
weighted average of the utility of these past outcomes. The model’s key ingredient is a priming
mechanism, whereby external cues systemically alter the accessibility, and therefore the weight,
of these memories. A positive prime, for example, makes positive memories more salient, in-
flating their weight in the agent’s simulation. This overweight of favorable past experiences
increases the simulated utility of the risky action, pushing the agent toward greater risk taking.
Conversely, a negative prime amplifies the weight of negative memories, depressing the simu-
lated utility, and inducing risk aversion. Therefore, the key tension in the model comes from
the assumption that memory recall is a limited cognitive resource. When the agent is cued
to recall one past experience, it is less likely to recall another experience. This parsimonious
framework demonstrates how seemingly irrelevant cues can generate substantial fluctuations in
risk preferences.

This paper contributes to the rapidly developing literature that attempts to understand
Al especially Generative AI’s rationality (Chen et al., [2023) such as preferences (Handa et al.,
2024; Horton, 2023; Leng et al., [2024; Qiu et al., 2023)), beliefs (Bybee, 2025), and other abilities
and characteristics (Jia et al., 2024} |[Leng and Yuan) 2023). In recent decades, the world has
witnessed incredible advances in traditional Al algorithms that lead to economic efficiency, such
as improving firm growth (Babina et al.l [2024), return prediction and portfolio diversification
(D’Acunto et al., 2019; Rossi, [2018), fintech lending (Berg et al., [2022), wealth management at
the household level (Reher and Sokolinski, 2024)), and even Federal Reserve System operations
(Kazinnik and Brynjolfsson, 2025). Previous research papers in this field that use Al refer
primarily to simpler machine learning techniques such as lassos (Rapach et al., |2013)), boosting
regression trees (Li and Rossi, [2020), XGBoost (Erel et al.l [2021; [Li and Zheng) [2023)), or
shallow neural networks that have a limited number of hidden layers and parameter size (Gu
et al., 2020), as opposed to the “large” language model that this paper tries to focus onﬂ
The recent advancement in Generative Al exhibit the potential to act as decision makers and
interactive agents, particularly when coupled with reinforcement learning, external APIs, or
multi-modal systems. This “agentic nature” is fundamental to the progression of Al from
tools to autonomous financial decision-makers. When coupled with prompts and surrounding
environments, LLMs can actively perform generic tasks instead of just predicting outcomes, and

this is especially helpful in the financial markets, which involve a principal-agent problem, and

4Despite the model is smaller in terms of the parameter size, they perform extremely well on these tasks and
are highly efficient and effective as compared to the larger ones.



investors need to know why the AI agent produces the advice before fully trusting it. In that
sense, this paper adds to the few recent research papers showing that GAI, when treated as
agents, can replicate human investment preferences across demographics (Fedyk et al., 2024),
but may also present a few behavioral biases similar to those observed in humans, but also
nonhuman biases (Bini et al., |2024). Understanding the behavioral foundations of GAI agents
is crucial before applying them to other settings, and the findings documented in this paper
may have important implications for their applications. For example, when using GAI such as
ChatGPT to predict stock returns (Chen et al., 2022; |Lopez-Lira and Tang), 2024; |Lu et al.,
2023)), it is important to understand how the agentic nature of GAI helped or biased when
making investment predictions. And this applies to other empirical applications as well in
other financial contexts such as predicting corporate policies (Jha et al., 2024), understanding
corporate filings (Kim et al. 2023 2024a,b)), tax enforcement (Armstrong, [2023), corporate
culture (Li et al.l |2024a)), and others (Hansen and Kazinnik, 2023).

Building upon this, this paper also adds novel experimental results to the vast literature
on behavioral economics and finance by showing that behavioral biases may exist not only in
humans, but also in Al algorithms. In terms of humans, the psychological (or cognitive) basis
for risk-based decisions comes largely from their neural activity (Kuhnen and Knutson, 2005)|ﬂ
Specifically, risky human decision-making processes are primarily regulated by neurotransmitter
systems in the brainlﬂ This physiological mechanism evolved during human development, help-
ing our ancestors survive in environments filled with uncertainty, and leads to many irrational
behaviors we observed, especially in the financial markets that have been well recognized, such
as overreaction (Odean, 1998)), disposition effect (Shefrin and Statmanl, [1985)), and endowment
effect (Kahneman et al.) 1990)ﬂ As for AT agents, which are built on transformers and deep neu-
ral network structures, it is incredible that artificial intelligence also exhibits a decision-making
process similar to that of humans. The structures of neural networks mirror the fundamental
architecture of the human brain, with artificial neurons and synaptic connections functioning
analogously to their biological counterparts (Sutskever, 2014). This biomimetic approach to
artificial intelligence has proven remarkably effective since it allows machines to process infor-
mation in ways that parallel human cognitive processes. Just as the neural pathways of the
human brain are strengthened or weakened through learning and experience, artificial neural
networks utilize similar mechanisms of weight adjustments and backpropagation (Hecht-Nielsen,

1992) to learn from dataﬂ The multilayer structure of deep neural networks, with their hidden

SThis is also largely affected by their genetic heritage (Kuhnen and Chiaol 2009} [Kuhnen et al 2013). Specif-
ically, genetic variations in neurotransmitter pathways, particularly in the serotonin and dopamine systems, can
significantly influence neural responses to risk and reward. The serotonin transporter gene (5-HTTLPR) poly-
morphism and dopamine D4 receptor gene (DRD4) variations have been shown to modulate activity in key brain
regions such as the amygdala and nucleus accumbens, which are crucial for risk assessment and reward processing.
These genetically determined differences in neural circuitry can lead to individual variations in risk perception,
emotional responses to uncertainty, and, ultimately, risk taking behavior.

SResearch has shown that two key neurotransmitters, dopamine and serotonin, play crucial roles in risk-based
decision making (Homberg} 2012; [Loewenstein et al., |2008). When individuals encounter potential gains, the
brain’s reward system releases dopamine, promoting risk-loving behavior; When faced with potential losses, the
serotonin system is activated, triggering risk-averse tendencies.

"Hirshleifer| (2015) provides a detailed and comprehensive summary about behavioral biases in financial mar-
kets.

8However, most neuroscientists believe human brains do not do backpropagations. Few other researchers
believe that this is done while people are sleeping, but that is still not equivalent to the concept in computer



layers processing increasingly complex features, resembles the hierarchical organization of the
human cortex, where information is processed through multiple stages of increasing abstraction
(Saxena et al., [2022)).

Drawing upon this parallel between human and GAI structure{?]7 this paper contributes to the
literature by demonstrating that GAI’s economic behavior and decisions may be determined by
a crucial factor that also affects humans: memory. Our findings reveal that, as human decisions
are shaped by associative recall (Charles|, 2022; |[Enke et al., 2024; |Wachter and Kahana), 2024),
GAI decisions are also significantly impacted by memory. This suggests that when prompted
by an event, Al agents can retrieve associated memories from related past experiences and
subsequently assign greater decision weights to the corresponding choices, and even dissimilar
memories not in the same decision domain may interfere with this selective retrieval process
(Bordalo et al., 2024a) and cause biases. This finding contrasts Malmendier and Nagel (2011)
about domain-specificity, and has different implications than Bybee| (2025)), which shows that
memories combined with WSJ financial news are related to beliefs about economic surveys.
Moreover, our but also exhibit deviations from rational expectations, and it is also different
from the “Memorization problem” documented in Lopez-Lira et al.| (2025) and similarly in
Crane et al.| (2025) and Didisheim et al. (2025) who put more emphasis on the look-ahead
biases. However, our paper presents novel evidence showing that even irrelevant memories can
affect LLM’s predictions, implying that the prediction bias made by LLMs also may generate
from the way they form “mental models” that map memory with decision problems. Another
surprising finding from the fine-tuned models indicates that even in the absence of associative
cues, models with different memories exhibit significant differences in trading decisions, likely
driven by their varying risk preferences. Unlike Bordalo et al.| (2023) and several related studies
in the field of financial economics that use carefully designed laboratory experiments(Charles,
2022)) or field data such as stock market prices (Charles, |2022; |Charles and Sui, [2024), analyst
reports (De Rosal [2024), or surveys (Gennaioli et al., 2024)), our approaches that follow Ouyang
et al.| (2025)) to measure the effect of memory on GAI’s risk preferences are more straightforward
and do not involve other confounding factors and also forward looking biases. This provides
novel evidence that memory influences risk preferences, at least in the case of large language
models. However, we do not claim that this necessarily offers insight into how humans make
decisions based on memories, as the human brain remains more complex than large language
models on multiple levels. In the future, as language models become more advanced and their
algorithmic architecture more closely resembles the human brain, we may gain new insights into
human behavior by observing GATI’s actions.

Drawing upon this parallel between human and GAI structure{r_U], this paper contributes

science research. To resolve this, Hinton| (2022) proposed the forward-forward algorithm.

9Both structure can be conceptualized as “input-output devices” (Turing], [1948) operating through their re-
spective neural networks: artificial and biological (LeCun et al., 2015). The architectural similarity is evident:
artificial neural networks comprise input layers, multiple hidden layers, and output layers, mirroring the human
brain’s organization of sensory units, association units, and response units (Felin and Holweg), 2024), and this
is recognized as the dogma of deep learning. However, this analogy should not be misconstrued as an assertion
of genuine Al intelligence, as human cognition transcends mere computational input-output processing. Simi-
larly, our subsequent experimental findings should not be interpreted as evidence of emotional capacity in Al
systems. Rather, the observed decision-making patterns mainly reflect the trained responses of the Al system to
environmental stimuli (Hinton et al., [1992).

0Both structure can be conceptualized as “input-output devices” (Turing) 1948) operating through their re-



to the literature by demonstrating that GAI’s economic behavior and decisions may be de-
termined by a crucial factor that also affects humans: memory. Our findings reveal that, as
human decisions are shaped by associative recall (Charles, 2022; |Enke et al.l [2024; [Wachter and
Kahanaj, 2024), GAI decisions are also significantly impacted by memory. This suggests that
when prompted by an event, Al agents can retrieve associated memories from related past expe-
riences and subsequently assign greater decision weights to the corresponding choices, and even
dissimilar memories not in the same decision domain may interfere with this selective retrieval
process (Bordalo et al. 2024a)) and cause biases. This finding contrasts Malmendier and Nagel
(2011) about domain-specificity, and has different implications than Bybee| (2025), which shows
that memories combined with WSJ financial news are related to beliefs about economic surveys,
but also exhibit deviations from rational expectations. Moreover, the findings in this paper are
also different from the “Memorization problem” documented in Lopez-Lira et al. (2025)) and
similarly in |Crane et al| (2025) and |Didisheim et al. (2025) who put more emphasis on the
look-ahead biases that cannot be simply resolved.

Compared to their these studies, our paper presents novel evidence showing that even irrel-
evant memories can affect LLM’s predictions, implying that the prediction bias made by LLMs
also may generate from the way they form “mental models” that map memory with decision
problems. Another surprising finding from the fine-tuned models indicates that even in the
absence of associative cues, models with different memories exhibit significant differences in
trading decisions, likely driven by their varying risk preferences. Unlike Bordalo et al.| (2023)
and several related studies in the field of financial economics that use carefully designed lab-
oratory experiments(Charles, |2022) or field data such as stock market prices (Charles, [2022;
Charles and Suil, 2024), analyst reports (De Rosal, 2024), or surveys (Gennaioli et al., 2024]),
our approaches that follow Ouyang et al. (2025) to measure the effect of memory on GAI’s
risk preferences are more straightforward and do not involve other confounding factors and also
forward-looking biases. This provides novel evidence that memory influences risk preferences,
at least in the case of large language models. However, we do not claim that this necessarily
offers insight into how humans make decisions based on memories, as the human brain remains
more complex than large language models on multiple levels. In the future, as language models
become more advanced and their algorithmic architecture more closely resembles the human
brain, we may gain new insights into human behavior by observing GAI’s actions. Also, from
the perspective of memory, we should not argue that the irrationality and biased choice we
document in this experiment necessarily means that Al agents have behavioral biases. Instead,
it suggests that Al agents are perfectly learning from the universe of data humans create and
inherit all the behavioral patterns we humans naturally have.

Furthermore, this paper complements the literature on experimental economics and finance

spective neural networks: artificial and biological (LeCun et all |2015). The architectural similarity is evident:
artificial neural networks comprise input layers, multiple hidden layers, and output layers, mirroring the human
brain’s organization of sensory units, association units, and response units (Felin and Holweg), 2024), and this
is recognized as the dogma of deep learning. However, this analogy should not be misconstrued as an assertion
of genuine Al intelligence, as human cognition transcends mere computational input-output processing. Simi-
larly, our subsequent experimental findings should not be interpreted as evidence of emotional capacity in Al
systems. Rather, the observed decision-making patterns mainly reflect the trained responses of the Al system to
environmental stimuli (Hinton et al., [1992).



by showing the potential to use GAI as homo economicus for experiments (Horton, 2023; Wang
et al., |2025)). Researchers in other fields use GAI to simulate a wide range of research subjects,
such as: simulating people’s marketing preferences on brand perception surveys (Li et al.,
2024b), mimicking people’s voting decisions in political research (Yang et al., 2024b), generating
social behaviors like cooperation and externalities (Leng and Yuan| 2023)), replicating people’s
psychological behaviors (Qin et al., |2024)), or replicating a wide range of human traits on an
extremely large scope (Park et al.;|2024)). Although most large language models have undergone
stringent alignment procedures such as RLHF or DPO that potentially shift preferences and
behaviors toward a certain direction, it is still possible to introduce heterogeneity by giving
the AT agent personal characteristics, as shown in [Fedyk et al.| (2024]). In contrast to previous
research papers that rely on simple questions (Ouyang et al.l 2025), this study shows that Al
agents can understand and perform complex decision-making tasks, combined with its lower
cost than experimenting with human subjects.

Finally, beyond its theoretical contributions, this paper also introduces a new fine-tuning
technique to the economics and finance academic community. As large language models are
increasingly adopted by researchers for various applications, there is a growing demand to fine-
tune these models, either to improve measurement accuracy or to generate sufficient variation
in model behavior. Regarding the first approach, Lu et al. (2023) uses fine-tuning to enhance
ChatGPT’s financial performance for better investment decision making, Leippold et al.| (2022])
fine-tunes ClimateBERT based on DistilRoBERTa for climate-related tasks, which |Garrido-
Merchan et al.| (2023) further fine-tuning. In terms of the second approach, Ouyang et al.
(2025) fine-tunes the Mistral model to adjust alignment levels and study model behavior. This
paper is more closely aligned with the latter strand of literature, which focuses on modifying
model behavior through parameter fine-tuning and has demonstrated significant effects. By
introducing the knowledge injection fine-tuning technique, together with other methods such as
machine learning (Nguyen et all [2022), researchers can further expand their toolkit to refine
model behavior and improve economic and financial analysis that are not achievable with human

subjects.

2. Experimental design

2.1.  Fxperiment description

The main experiment uses a novel setting from |[Kuhnen and Knutson (2011) and similarly
in [Kuhnen| (2015) and Kuhnen and Miu| (2017). This experiment is also used in other related
research in neuroscience (Hausler et al., 2018; |[Knutson et al., 2008; |Kuhnen and Knutson, [2005)).
We follow the experiment specifications from Kuhnen and Knutson| (2011)) and use various GPT
assistants as research subjects.

Our GPT candidates include eight models in the GPT-5, 4.1, and 40 series, both their full

versions and their mini/nano versions B The main reason we use the models of the GPT

HFor GPT-5 and GPT-4.1 version models, we use the full version, its mini version and nano version. For
GPT-40 version models, we use the full version and the mini version. We also switched to Claude-3 and Gemini-
2.0 as substitute candidate models; the results are similar. By the time this paper is written, no open-source
multimodal models are suitable for this experiment. (Reasoning) models like Deepseek-R1 and Llama do not



family instead of other open source models is due to their multimodal capabilities, which allow
them to process and interpret both visual and textual input simultaneously. This multimodal
architecture is fundamental for studying Al agents, as it more closely approximates the way
human agents perceive and interact with their environment through multiple sensory channels.
Multimodality allows the model to establish meaningful connections between visual elements
and textual information, allowing for a more comprehensive understanding and contextually
appropriate responses. This multimodal foundation provides a rich framework for investigating
agent behaviors, decision-making processes, and human-Al interaction patterns. Furthermore,
since we are trying to understand GAI agents’ behavior, we need to use state-of-the-art models
as our research subjects.

In the experiment, each model was asked to complete 100 independent tasks, also known as
learning blocks, totaling 800 learning blocks for eight GP'T models. In each learning block, the
subject is told to make 6 investment decisions in each trial, which typically include choosing to
invest from two assets, a risky asset (stock) that pays $10 or -$10 randomly and a safe asset
(bond) that always pays $3 dollars. Within each learning block, a stock pays dividends following
a probability distribution “good” or “bad”. If the stock pays from the “good” probability
distribution, then it pays $10 dollars with 75% and -$10 with 25%. In contrast, if the stock
pays from the “bad” probability distribution, then it pays $10 dollars with 25% and -$10 dollars
with 75%. These asset payoffs are shown in figure [I} and the experiment overview is shown in
subfigure A of figure[2] In each independent learning block, the stock type is determined before
the first trial and remains unchanged throughout this learning block. The dividends in each

trial are independent, but they follow the same distribution in a learning block.

[Insert Figure (1| near here]

[Insert Figure [2| near here]

In every learning block from trial #1 to #6, the subject is asked first to look at an image and
tries to recall past events or memories this picture brings to mind. Here, the image serves mainly
as a cue that tries to trigger the selective recall of the Al agent. This sentence is separately
asked to the model, so that the remaining questions about risky choices and beliefs are not
affected by multimodality. In addition, the subject is explicitly informed that the image and
the investment decision are not correlated and does not need to make a decision based on the
information content of the image, and the entire instruction is shown in the appendices
The subject is first asked:

“Now look at this picture first before you make investment decisions. What past events or

memories does this picture bring to mind?”

The subject is then asked to make an investment decision to choose between stock or bond.

The prompt message is as follows:

allow multimodality, and multimodal models like LLaVA do not seem to understand the experiment under long
text. We present detailed information on our models in the appendices @
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“Do you want to invest in a stock or a bond? Only reply with “stock” or “bond”. Do not

reply with other answers. Your choice is:”

The realized payoff of the stock or bond accumulates in its total earnings. After the invest-
ment choice, the realized payoff of the risky asset in the current trial is revealed to the subject.
After observing the stock dividends and at the end of this trial, the subject is asked to make
a probability estimation of the stock that is paying from a “good” probability distribution and

its confidence in its estimation. The prompt message follows Kuhnen and Knutson| (2011):
(1) “What do you think is the probability that the stock is the good stock?”
and

(2) “How much do you trust your ability to come up with the correct probability estimate
that the stock is good?”

As the subject is shown with realized dividends over trials, it is exposed to several rounds
of realized payoffs, adjusts its belief that the stock is paying from the good distribution, and
subsequently makes smarter decisions. For example, a subject that observes the stock in the
six trials that pays six times $10 and zero times -$10 would have more confidence that this
payoff of the stock is drawn from a good dividend distribution compared to the stock that
pays twice $10 and four times -$10. This is also why the task is called a “learning block”,
since the subject is learning the type of stock from the observed dividends. More importantly,
this experiment is unique in that there is always an objective Bayesian posterior probability
given the payoff history. The objective probability that the stock is good after observing the
k dividend payments of $10 in the past n trials in the block is 1/(1 + 3(®=2k)) and the full
probability link table is shown in Table [A2] in the appendices. In the instruction, the large
language model is explicitly informed about the existence of an objective probability but not
told the Bayesian formula expression. This objective probability is used to examine how biased
the subject’s belief is and how rational its investment choice is. In general, the experiment
sequence within a learning block is shown in subfigure B of figure

Since the GPT models we choose have a long context window more than 128K tokens,
supporting up to 16 to 32K output tokens per request, we can complete one learning block
within one chatbox. In other words, we are letting GPT keep the chat history of all the
instructions from the first trial, all the realized payoffs, its previous investment choice, realized
investment payoffs, and images within one learning block. |E|

We present two illustrative examples of two separate trials in figure and figure
separately. In the first figure, the subject was first presented with a joyful man with a lot of
money and enthusiastically waving his hands. This image reminds the Al agent of the good
stock market performance in AAPL previously, inducing it to make a riskier choice. Then, after
revealing the stock payoffs of -$10 and cumulative payoffs of -$7, the subject made a probability
estimation that the stock dividend is good at 40%. This comes with its subsequent confidence

estimation rating of 6.

2During the experiment, each trial on average consumes an estimated amount of 10k tokens, including the
textual and image embeddings. We use a base64 encoding style to compress the image to make it cost-efficient.
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In the second example in figure[A2] the subject was shown an image in which Michael Jordan
and LeBron James were crying. The negative feeling and content embedded in the image makes
the agent recall that Kobe Bryant lost its championship to the Celtics, therefore inducing the
subject to choose bonds instead of stocks. The machine then makes a probability estimation of
0.8 and a confidence rating of 7.

After the subject completes all six tasks in a learning block, we “refresh” the subject’s chat
history by ending the current chat and starting a new chat. This helps ensure that the decisions
made across learning blocks are independent, but within each learning block, the subject makes
correlated and reasonable decisions.

We incentivize the subject to make profitable trading decisions and provide accurate prob-
ability estimates by offering hypothetical rewards. This, along with other prompt engineering
techniques, such as formatted outputs, perturbation, jailbreaks, or even tipping, has proven to
be highly effective in improving the response of large language models (Salinas and Morstatter,
2024)). The compensation structure is set as the combination of the selected asset payoffs and
the accuracy of the estimation in each trial, times a coefficient of 1/ 2@ For the first part, we
accumulate the dividends from the asset payoffs that the subject chose. For the second part,
we give additionally 18 for every probability estimate that is within 5% of the correct value (for
example, the correct probability is 80% and then say 84% or 75%). Finally, to simulate a real
experimental setting, we present the subject with a “show-up fee” of 15 dollars. Finally, the
reward fee payoff structure is equal to Show-up fee + $(1/20) x (Total investment earnings +
# accuracy predictions).

We chose this experiment to understand the decision-making rules of a large language model
for three main reasons. Firstly, we can use exogenous associative cues to manipulate Al agents’
memory retrieval processes. When observing a cue, similar past events are more likely to come
to mind, while interfering with the recall of other less similar, non-primed events. Unlike the
methodology in Bordalo et al.| (2024a) that relies on textual cues, in this experiment we mainly
use images, which are considered to convey more information, to exert a stronger interference
effect that can alter subjects’ decision-making processes. Secondly, advanced large-language
models are heavily aligned and usually have very robust guardrails, and simple experimental
questions are not sufficient to elicit their preferences and beliefs. This is documented in |(Ouyang
et al| (2025), which shows that simple prompts that ask about GPT’s preferences are always
confronted with responses like “Sorry, I am just an Al assistant and cannot help you with that.”
Also, we would like to have an experiment that has a fairly complex setting that mimics the
real environment a human, as well as an Al agent, is faced with, especially when the signals
are noisy, information is surprising, or priors are concentrated on less salient states (Ba et al.
2024)). This is because agents face cognitive constraints such as limited attention or attributive
biases for human subjects, and this is similar for Al as input prompts are often incompletﬂ In

this carefully designed experiment, the instruction is complex and the learning process between

13 This coefficient of 1/20 is not necessary here. We use it following the setting in [Kuhnen and Knutson| (2011)
with humans, which is significantly more expensive. Also, we are thus able to compare the response made between
AT agents and human beings.

14The prompts input to large language models can be considered incomplete contracts. The prompts generally
have incomplete specifications, and they always have severe non-verifiability, as the agent can always cheap talk.
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different trials has a high level of dynamics. This enables us to obtain the preferences and
beliefs of the subject}

2.2.  Image description

In each trial, we present images to the subjects before letting them choose to make investment
choices.

We collect images by first selecting a list of words that has different levels of valence from
Wikipedia@ The list contains 29 subcategories, ranging from positive to negative. These
include emotional topics such as anxiety, depression, fear, happiness, love, and nostalgia, among
others, encompassing common concepts like “Anger”, “Joy”, and “grief”, as well as specialized
concepts such as “empathy” and “forgiveness”. After selecting the emotion concepts, we input
this into the Google Images query box and download related images. In addition to images with
apparent emotions, we also collect images that have no evident emotions following [Kuhnen and
Knutson| (2011)) by searching for common objects such as chairs, tables, desks, lamps, etc. The
images without apparent valence that we select usually have a blank or pure white background.

In addition to emotion keywords, we categorize the images into five topics known to af-
fect valence. These topics include emotions in financial markets (Baker and Wurgler, 2006
Goetzmann et al [2024; Jiang et al., |2019; Lucey and Dowling}, [2005), sporting events such as
soccer games (Edmans et al.,[2007; Wann and James, 2018), terrorist attacks (Chen et al., 2021
Wang and Young, 2020), weatherm (Dehaan et al., [2017; |Goetzmann et al., [2015; |Hirshleifer
and Shumway, 2003} Hu and Lee, 2020; Novy-Marx, [2014; [Saunders, 1993) , and others. To
ensure that the level of valence are well balanced, we intentionally combine positive or negative
valence with the topic-related words and use these bi-grams or trigrams as keywords in the
Google Image query box. For example, for the terrorist attack topic, we use keywords such
as “terrorist attack sad” for images with negative valence and keywords such as “police rescue
safe” for images with positive valence. Finally, we have a total of 691 images.

For each image, we recruit ten human volunteers to provide a valence rating for this test.

Fach image receives a valence rating from -2 to 42 with the following instruction:

“What do you think the valence score of this image is? The score ranges from -2 to 2, where
-2 indicates the most negative emotions such as unhappy, upset, irritated, frustrated, angry,

fearful, or depressed. A score of 0 indicates neutral emotions such as calm, indifferent, blank,

15Tn addition, from a more philosophical point of view fancied by some computer scientists, our experiment
highlights the importance of a multimodal “world model” and genuine agentic behavior. The subject must
process both textual prompts and visual information (also through audio and vedio), thus integrating disparate
inputs into a coherent internal representation of the environment. This “world model” is not just for passive
observation; rather, it underpins the subject’s agentic interactions: actively parsing unexpected signals, updating
beliefs, and formulating actions in response to new information. By demanding that the agent interpret and
respond to these multimodal cues, our experiment closely mirrors the complexities of real-world decision making,
allowing us to observe how a large language model (or any Al system) perceives its surroundings and adapts its
choices. Through this experimental setup from [Kuhnen and Knutson|(2011)), we gain deeper insight into the ways
in which the agent constructs, refines, and utilizes its internal representation of the world to engage meaningfully
with its environment.

6This a “set category”, meaning it only includes pages about specific emotions, lists of emotions, and relevant
subcategories—the linkage: https://en.wikipedia.org/wiki/Category:Emotions

17 This also includes pollution, see [Dong et al.| (2021); Heyes et al| (2016); [Li et al.| (2021)
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objective, normal, stable, or unmoved. A score of 2 indicates the most positive emotions like
happy, pleased, satisfied, competent, proud, contented, or delighted.

Please reply in the format: score-reason.”

For each image, we take the average value of the ratings and use it as the key independent
variable in the empirical analysis later. This classification strategy is similar to the method
in Kuhnen and Knutson| (2011), and this discrete scoring method has proven useful in other
research (Bybee| [2025; |Jha et al., 2024; Lopez-Lira and Tang, 2024). We also instruct the Al
assistants to provide valence ratings and answer their feelings about this image. An example of
the classification is shown in figure in the appendices, where the valence rating of different
images varies significantly. For the first image that contains a horrific murder scene, the valence
rating (rounded) is -2. For a slightly less negative valence with LeBron James crying, the average
valence rating is -1. The third image is just a desk that contains no additional information and
receives an average valence rating of 0. For the fourth and fifth images, where the character
becomes more positive, the valence ratings also become higher.

The correlation of valence ratings within Al agents and with human beings is highly corre-
lated, which we present summary statistics in the appendices. We report the summary statistics
of the valence ratings by human and GPTs in the appendices. Overall, the emotions of the im-
ages collected in this research are, on average, slightly negative, and Al agents’ valence ratings

are highly correlated with valence ratings provided by humans.

2.8.  Summary statistics

We report the summary statistics at the trial level in table In the first row, we report
the probability that the subject chooses to invest in stock in this trial, which is 49% with a
standard deviation of 32%. This suggests that on average subjects were equally likely to choose
to invest in stocks or bonds. In the second and third rows, we report the subjective probability
estimation that the stock is good and the Bayesian objective probability. On average, the
subjective probability is 50%, the objective probability is 50%, and there is little difference
between these two probabilities. In the next row, we report a binary variable of whether the
stock realized a high payoff in this trial and the cumulative payoff of the investor. The variable
InvPayof f is a cumulative value that accumulates investor returns from the first trial. On
average, investors maintain a winning portfolio with an average earnings of $9.43. But the
summary statistics also show that in the Minimum and 1/4 quintile, the cumulative earnings
are negative.

Finally, we report their confidence rating on their subjective probability estimations, as well
as their emotion ratings. The confidence rating is fairly high, with an average value of 7.32,
showing the models’ positive view about their ability to make estimates. The valence rating of

the images has an average rating of -0.05, suggesting a balanced distribution of valence levels.

[Insert Table [1| near here]
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2.4. Ezxperiment validity

To show that our subject understands the experiment and makes reasonable decisions, we
perform three validity tests.

The first test examines the rationality of the subject’s investment choices. The dependent
variable IsStockChoiceyy, y, is a binary variable that indicates whether the model m chooses to
invest in the stock trial ¢ of the block b. The independent variable is the subjective probability
estimate of the last trial, as well as the investment payoff, confidence rating, a binary variable
that indicates whether the stock has a high payoff of the last trial, and the investment decision
of the last trial. We control for block-fixed effects as well as model-fixed effects in the regression,
and we cluster robust standard errors on the block and model levels, and the regression is as

follows:

IsStockChoiceyp m = B1SubjProbi_1pm + BelnvPayof fi—1pm
+ BgCO’I’LfZ'dt_Lb’m + ﬁ4ISHiPayOfft_17b7m (1)
+ B51sStockChoice;_1 pm + 0p + Em + Eipm

The regression results in panel A of Table [2] show that the subject makes reasonable in-
vestment choices. In the first column, the regression coefficient of SubjProbi_1p , is 1.1593
with a t-statistic of 11.91, suggesting that when the subject thinks the stock dividends are
likely to be in good distribution, it will invest in stocks in the next trial, implying that their
preferences for risky assets are closely correlated with their beliefs. In addition, it will make
more investments when it has made higher investment earnings and has higher confidence in its
probability estimation. Furthermore, its cumulative investment payoffs, confidence levels, and
the observed stock payoff of the last trial also have a significantly positive impact on the trading
behavior of the subject. This suggests that, in this experiment, when GAI is making trading
decisions, it would be more optimistic when it has observed good stock performance and has
better portfolio performance. This set of results is largely aligned with the results documented
by [Kuhnen and Knutson (2011) in human subjects. However, one key difference is that here
we do not document a momentum effect in which the asset choice from the last trial is not
significantly related to the choice in the current trial. This implies that Al agents on average
are more rational investors, consistent with the results about the agents’ beliefs.

The next test examines the belief formation of GPT, in other words, how GPT understands
risk and learns from the realized dividend payoffs. The dependent variable is the subjective
probability estimation of the subject SubjProb:p ,, in columns (1) and (2), and the update
of the probability estimation from the last trial ProbUpdate;p, ,, in columns (3) and (4). In
columns (1) and (2), the independent variables include the total number of high dividend
payments #HiPayof fi pm and the number of trials #7Trial; p, ,,. We also include the cumulative
investment payoff InvPayof fipm, and the Bayesian objective probability ObjProbp,,. In
columns (3) and (4), we include a binary variable that indicates whether the stock has a high

dividend payoff in this trial IsHiPayof fi—1m, the subjective probability estimate of the last
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trial Subj Prob;_1 p m, and, additionally, the objective probability in this trial Obj Prob ,,. Like
in the last test, we control for the block-fixed effect and model fixed effect in the regressions
and cluster robust standard errors both at the block and model level. The regression equation

is shown below.

Subj Probypm = B1#HiIPayof fipm + Ba#FIrial, p m + B3InvPayof fipm
+ BalsHiPayof fipm + BsIsHiPayof fi—1pm + BsSubjProbi_1pm  (2)
+ B?ObjPTObt,b,m + (517 + ém + €i,b,m

In columns (1) and (2) of panel B in table [2, we show how GPT forms its beliefs. The
regression coefficients of #HiPayof fi, are 0.0520 with a t-statistic of 2.73, suggesting that
when the subject has observed many good dividends, it will form more optimistic beliefs. The
regression coefficient of InvPayof fip is also significantly positive, showing that when GPT
makes more profits, it will have more optimistic beliefs. Moreover, there appears to be a strong
positive correlation between GPT’s subjective probability estimation and the Bayesian objective
probability estimation, suggesting that Al agents’ beliefs are quite accurate.

In columns (3) and (4), we examine how the subject updates its beliefs from trial t—1 to trial
t. The regression results show that, intuitively, the subject will become more optimistic when
the stock has a high positive dividend. This probability updating behavior is also significant
after controlling for the last dividend payoff and the objective probability.

Lastly, we examine the subject’s confidence ratings. The dependent variable here is the
confidence level of model m in the trial ¢ of block b. The independent variable includes the
cumulative investment payoff InvPayof f  m, a binary variable that indicates a high dividend
payoft IsHiPayof fipm, the total number of high dividend payoffs #HiPayof fipm, and the
confidence rating of the last trial Confidi_1pm. In addition, we include a binary variable that
indicates whether the subject made a good investment decision before the payout of the stock
dividend was realized. In other words, this variable takes a value of one if either the subject
chose to invest in stock and then the observed dividend is $10 in that trial or the subject
chose to invest in bonds, and then the observed dividend is -$10 in that trial. The regression

specification is similar to the previous ones and is shown below.

Con fidypm = PrInvPayof fipm + BadsHiPayof fipm + Bs#HiPayof fipm

(3)
+ BalsGoodInvDecy p, p + BsCon fidi_1 pm + O0p + Em + €ibm

We report the regression results in panel C of Table The results show that when the
subject makes higher investment profits and experiences high payoffs, it would be more confi-
dent about its estimates. Moreover, the subject will be more confident if it has made a good

investment decision.
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In general, the validity tests show that, despite the complex experimental design, our re-
search subjects understand the experiment by making reasonable investment choices that are
highly correlated with its beliefs, investment payoffs and confidence levels in risky scenarios.
These findings demonstrate that large language models like GPT can effectively process and
integrate multiple sources of information to make nuanced economic decisions, similar to hu-
man reasoning processes. The model’s ability to weigh risk factors, assess probabilities, and
make consistent choices across different scenarios highlights its potential as a valuable tool
for economic analysis and decision-making support. We then proceed to analyze the effect of

associative cues on Al agents’ decisions.

3. Experimental results

3.1.  Choices and preferences

The first set of experimental results show that, when displayed with images, GAIs make
irrational investment choices based on their memories, which deviate from its prior beliefs and
Bayesian rules. More specifically, when images of positive emotional content are displayed on
the subject, it is more inclined to choose to invest in stocks, even though choosing bonds is more
rational and profitable. In contrast, when shown with images of negative emotional content,
GALI chooses to invest more in bonds, although investing in stocks is better.

We present descriptive results in the figure |3 The x-axis is the emotion rating of the image
in each test t of the block b that ranges from -2 to +2, and the y-axis is the probability that
the subject chooses to invest in stocks from 0 to 1. In our main empirical analyses, we sort
and classify images into ten ben deciles based on average valence ratings. The lower the rating,
the more negative content an image has. For each decile, we compute the average number of
stock choice probabilities across different emotion ratings. The blue dots are the posterior stock
choice probability or the observed subject’s investment choice ex post images. The red dots are
the Bayesian rational choices that is computed from Bayesian benchmarkﬂ We fit two linear
regressions for both investment choice probabilities, plot the fitted lines on the plot, and report

the regression coefficients.
[Insert Figure |3| near here]

As can be seen from the blue line, the subject’s investment choices are largely affected by
emotional shocks. On average, when the subject is shown with an image that has an emotion
rating around -2, its probability of choosing to invest in the stock is 0.40. The probability of stock
choice increases with emotion ratings. At the right end of the figure 3] when a subject is shown
an image with an emotion rating of 42, its probability of choosing to invest in a stock increases
to 0.52, which is significantly higher than the former. This effect is monotonically increasing

based on emotion ratings, suggesting that GAI is more willing to choose to invest in stocks

8The calculation method of the counterfactual probability is as follows: suppose the Bayesian belief from last
trial ¢ — 1 in block b is p:—1,, since the stock payoff is either -310 or $10 in the trial ¢ and the bond always
pays $3, then the Bayesian rational investment choice will be stock if and only if p x $10 + (1 — p) x —$10 > $3,
otherwise, the investment decision is a bond.
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when they receive positive emotional cueslﬂ When comparing the realized investment choices
on the blue line with the Bayesian rational choices on the red line, we can observe a significant
difference between these two groups. For Bayesian investment choices, there is no variation
between different emotion groups, and the average probability of choosing to invest in a stock is
0.44 (fitted regression with a slope of 0.01, t-stat 0.04). The effects are also shown in table We
run regressions in which the dependent variable is a binary variable that indicates whether the
subject chooses to invest in the stock IsStockChoice;p . The independent variable of interest
is the decile of the valence rating of an image ValenceDec;y,,,. We include other control
variables such as stock choice from the last trial I'sStockChoice;—1pm, subjective probability,
cumulative investment earnings, and confidence ratings from the last trials. We also control for
the block-fixed and model-fixed effect in the regression and cluster robust standard errors at

both the block level and the model level. The regression equation is as follows:

IsStockChoiceypm = P1ValenceDecy p m + BalsStocki—1pm + B3Subj Probi_1pm

(4)
+ 54Invpay0fft,b,m + /85confidt71,b,m + 5b + gm + €i,b,m

[Insert Table |3| near here]

As shown in Table[3] the valence ratings of the images are significantly related to the subject’s
investment choices. The regression coefficient in column 4 is 0.0177 (t-statistic 2.59), suggesting
that a one-decile increase in the valence rating leads to a higher probability of choosing a stock by
1.77%, and the lowest to highest change in valence level increases the probability by 17.1%. This
result is robust after controlling for the subject’s expectations as well as its realized earnings,
since the magnitude of regression coeflicients is comparable across different columns. In the
appendices, we replicate |[Kuhnen and Knutson! (2011) with the original regression specification,
and the results in Table are similar. Moreover, we use probit regressions in for further
tests, and the result is even more significant. In columns (5) and (6) where we restrict the
samples to where the last trial is bond or stock, the results are also significantly positive, but
the economic magnitude is larger when it chose stock in the last trial.

We also test the in-sample robustness and heterogeneity of the investment choice task. We
first examine the in-sample robustness of the subject’s stock choice in table |4} In columns (1)
and (2), we divide the samples according to the objective probability of the current trial. The
first column represents trials where it is unlikely that the stock will pay dividends from good
distribution, where ObjProb;p ., < 0.2. In contrast, the second column represents the trials
where ObjProbyp, ,, > 0.8. The regression coefficients of ValenceDecyy, ,, are both significantly
positive, and the economic magnitude is comparable to each other and similar to the results in
table 3| In columns (3) and (4), we focus on early trials with trial number #1 to #3 and late
trials with trial number #4 to #6. For early trials, the regression coefficient is 0.0175, which is

9However, this does not mean that the subject’s ability or intelligence has changed. We examine the subject’s
ability such as math, reasoning, English grammars, etc., with the BIG-Bench Lite evaluation tasks. The results
show that there are no significant differences between different emotion ratings. This rules out the alternative
hypothesis that memories have an impact on the subject’s other abilities.
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slightly smaller than for late trials, which have a regression coefficient of 0.0183. This suggests
that GPT is less likely to be affected by emotion in the earlier stage of the experiment. In
columns (5) and (6), we focus on subsamples where stocks have high payoffs and low payoffs in

the trial ¢ — 1 (the last trial), and the regression coefficients are also significantly positive.
[Insert Table |4 near here]

Next, we divide the samples by the topic of the images. The images have five categories:
weather (including pollution), terrorism, sports, financial markets, and others. The results are
shown in Table [d For images of terrorism, sports, financial markets, and others, positive emo-
tions always induce the subject to invest more in stocks. However, this effect is not significant

for images in the weather topic.

3.2.  Probability estimation and beliefs

Even though emotional shocks affect the subject’s trading decisions, and yet, we find that
they do not significantly impact their subjective probability estimations. The results are shown
in figure[4] which shows the average subjective probability estimate that the stock pays from the
good dividend distribution in ten valence groups. In subfigure A, we plot the average value of
subjective probability estimation. The x-axis is the valence ratings (from negative to positive)
and the y-axis is the average subjective probability. The subfigure shows that, for all ten valence
decile groups, the subjective probability is around 0.50 with very low variation. A fitted linear
regression blue line shows a very low regression coefficient and zero R-square, which is highly
correlated with a red line that denotes objective Bayesian probability. This preliminary result
suggests that emotional shock does not have a significant impact on the subject’s beliefs.

In subfigure B, we plot the subject’s probability estimation relative to the objective Bayesian
probability. The 45-degree dashed line serves as the rational benchmark, as it aligns the subject’s
estimation with the probability estimation calculated using the Bayesian formula. The colored

lines denote the grouped probability estimation by their valence rating.
[Insert Table 4 near here]

As shown in figure |4 there is no significant difference between the subjective probability
estimation in each group, especially in both tails. On average, subjects make higher subjective
estimations when the objective estimation is low and lower subjective estimations when the
objective estimation is high. This result is very similar to the experimental results in human
subjects (Kuhnen, |2015; Kuhnen and Knutson, 2011; Kuhnen and Miul, 2017), as humans also
seem to be overly optimistic in the regime of “loss” and pessimistic in the “gain” regime, as
summarized as the “four-fold patterns” predicted by prospect theory (Kahneman and Tver-
sky, [2013; (Oprea, 2024). However, a notable difference is that GAI’s probability estimation is
more accurate than that of human beings, whose biases in such tasks are well documented?’}
suggesting its superior ability to form rational unbiased beliefs. We also note that, as the Al

agent becomes smarter, as measured by their score on SWE-bench and rankings on Chatbot

20For references of human performance, see [Kuhnen and Knutson| (2011), Figure 5, p. 615.
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Arena, their prediction accuracy also increases along with their own confidence ratings. This
is correlated with another strand of literature on cognitive noise, and “decisions under risk are
decisions under complexity” even for Al agents (Opreal [2024). We provide more evidence on

this in the appendices 77.

4. Causal evidence from knowledge injection

4.1.  Methodology overview

The main findings in the earlier section argue that GAI’s decisions are driven by memories.
The images we show to Al agents are associative cues that prime the model to selectively
relate to similar past events and make decisions based on these events. To causally identify
the mechanism by which memory drives GAI’s investment decisions, we adopt an emerging
approach from the computer science literature known as “knowledge injection” that allows us
to systematically manipulate the model’s memory while holding other components constan@
This technique involves selective modification of specific knowledge representations within the
GAI system without altering its core decision-making architecture. By carefully controlling
which historical information is available to the system, we can isolate the causal effect of memory
on investment behavior.

We follow Mecklenburg et al.| (2024)’s supervised fine-tuning methodology, which is a “global
optimization” method to inject new knowledge into GPT—4o—miniEL This method typically
applies specific fine-tuning restrictions to regularize parameter updates. To show that memo-
ries affect GAT’s behaviors, we collect both domain-specific memories and non-domain-specific
memories, and try to make knowledge injections based on these models. For domain-specific
memories, we use financial news, as this experiment is mainly about investments. For the non-
domain-specific memories, we use restaurant reviews on Yelp, because dining experiences are
obviously irrelevant to trading decisions.

For the first set of domain-specific knowledge injection, we begin by preparing news related
to the financial markets. To ensure that the news is entirely new to the LLM and, therefore,
prevent the data leakage problem (Ludwig et al., [2025; Sarkar and Vafal [2024), we intentionally
instruct GPT to write fictional news first that was later used for fine-tuning. To do so, we
first collect news from the Dow Jones Newswire feeds on the RavenPack that has a sentiment
score above 0.9 and label them as positive financial news, and news with sentiment scores less

than -0.9 and label them as negative financial news. The sample period is 2023. These are the

21 Typically, there are three ways to inject knowledge into large language models (Wang et al., [2024). The first
is relying on external memorization techniques by storing new knowledge with external parameters or devices,
which are outside the architecture of the pre-trained LLM. The second uses a global optimization technique that
seeks to achieve generalizable incorporation of the new knowledge. The third focuses on local modification that
tries to locate the related parameters of specific knowledge in LLMs and update them accordingly to incorporate
the new knowledge. Other techniques like Retrieval-augmented generation (RAG) (Gao et all 2023)) also to
introduce new knowledge into LLM. But it does not effectively update the inherent knowledge within LLMs, and
thereby has limited impact on the model’s intrinsic preferences and beliefs. Thus, we do not consider it to be an
option in this paper.

22We use this model for two reasons. We use this model for two reasons. First, it is one of the few powerful
models that OpenAT allows external researchers to fine-tune with. Secondly, we wanted a model with a knowledge
cut-off date that is not the most recent for our empirical analyses. Later models, such as GPT-5, have a knowledge
cut-off date at the end of 2024. This prevents us from running truly out-of-sample tests (Ludwig et al., |2025]).
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authentic news that has happened and are very likely known to the GAI. Thus, for each piece of
positive or negative news, we use a prompt template to allow GPT to generate fictional news,
as shown in the Appendix

We collect a total of 9,987 positive and 2,713 negative DowJones Newswire news from the
RavenPack dataset, and for each piece of news, we are able to generate fictional news. The
fictional news has the same positive or negative feeling as compared to the authentic news, and
they have similar meaning and are plausible. Importantly, half of the companies mentioned in
the fictional news dataset do not exist in the real world. In addition, the number of positive news
is significantly larger than the number of negative news. This is because the original RavenPack
dataset contains more positive news than negative news. We mitigate the data imbalance issue
by setting a higher number of training epochs for the negative news dataset, which turns out to
be useful, and supplementary tests show that both of the two models successfully memorized
the fictional news.

After generating the fictional news, we follow the supervised fine-tuning template used in
Mecklenburg et al.| (2024), which follows a “system instruction - user prompt - response” format
as shown in the Appendix

We feed the two sets of fine-tuning corpora to OpenAl’s platform and fine-tune GPT-40-mini.
More details about the training are explained in the appendices including the parameters
we use. Finally, we obtain two fine-tuned models, each with more positive or negative memories.

For the second set of non-domain-specific knowledge injection, we begin by preparing Yelp
reviews. We chose Yelp reviews for two reasons: first, Yelp reviews typically focus on dining
experiences and do not have an apparent relationship between decisions in the financial markets.
Secondly, Yelp reviews have rich context, are accessible on a large scale, and have a very clear
sentiment label, which are often used in various data competitions on Kaggle. Other similar
data sources can also be used for fine-tuning, such as IMDb movie reviews and Uber passenger
reviewﬁ Each can be thought of as memories related to films and riding experiences and
irrelevant to investment decisions.

We first collect Yelp review data from Kagglelﬂ This data also has sentiment labels which
allow us to instruct the GPT to make new fictional reviews based on the authentic reviews. The
generation template is shown in and we finally have 3,991 fictional positive Yelp reviews
and 4,009 fictional negative Yelp reviews. Next, we fine-tune two models based on these two
sets of data with the knowledge injection template also shown in the Appendix[B.2] Finally, we
obtain two other fine-tuned models, each with more positive or negative memories about the

stock market.

4.2.  Decision Making of fine-tuned Models

To empirically and causally test whether associative memory drives GAI decision making,
we conducted experiments on the four (2x2) fine-tuned models. One set of models has been

exposed to a large volume of positive fictional financial news or Yelp reviews, while the second

23For example, the famous IMDb 50K review dataset or the uber customer review.
2 Dataset can be accessed at the following link:
https://www.kaggle.com/datasets/thedevastator /yelp-reviews-sentiment-dataset accessed on Feb 15, 2025.
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set of models has been exposed to equally considerable amounts of negative experiences.

In this experiment, the associative cues consist of out-of-sample financial news or Yelp
reviews rather than images. This choice is primarily due to OpenAl’s current restriction on
multimodal capabilities for fine-tuned models because of alignment concerns. We divide the
experiment into three stimulus groups: negative cue, no cue, and positive cue. For the negative
and positive stimulus groups, we first present a piece of financial news or a Yelp review to the
model before asking it to make investment decisions between a stock and a bond. We instruct
the model to pay attention to the news, but not to base its investment decisions on the cue. In
the no-cue group, no external information is provided before making investment choices. Each of
the four fine-tuned models undergoes 100 iterations per stimulus group. All other experimental
specifications remain unchanged.

We present the results in figure [5} The x-axis represents the three different stimulus groups,
while the y-axis denotes the probability of choosing to invest in stocks. Within each stimulus
group, the red bar represents investment choices made by the fine-tuned model with negative
memories, while the blue bar represents those made by the fine-tuned model with positive
memories. The horizontal dashed line indicates the average investment decision probability for
the un-fine-tuned models in the absence of associative cues. This figure highlights three key

findings.
[Insert Figure |5| near here]

First, models with positive memories are more likely to invest in stocks, regardless of whether
their memory is domain-specific or not. In the first subfigure, where models are fine-tuned on
fictional financial market news, the average probability of investing in stocks for the positive
memory models is 0.65 (standard deviation 0.01), whereas for the negative memory models it is
0.49 (standard deviation 0.03). This finding demonstrates that memories significantly impact
model behavior, even when the injected financial news is fictional. In the no-cue group, the
investment probability of the positive memory model is 0.64, significantly higher than that of the
unfine-tuned models. This robust result supports our earlier hypothesis that memory influences
decision making even in the absence of explicit associative recalls. More strikingly, in the second
subfigure, where models are fine-tuned on Yelp reviews, completely unrelated to investment
decision making, models with positive memories still exhibit a greater propensity to invest
in stocks. The average investment probability for positive memory models is 0.49 (standard
deviation 0.06), significantly higher than their counterparts (average investment probability
0.36, standard deviation 0.10).

Second, associative cues asymmetrically influence selective memory retrieval, making nega-
tive memory models more conservative compared to positive memory models. In other words,
associative cues reinforce negative memory recall, exerting a stronger effect than on positive
memory models. This effect is even more pronounced in the Yelp review setting. When there
is no associative recall, the investment propensity for both memory models is 0.46 and 0.52.
However, in the presence of associative cues, the investment probability of the negative memory
model drops to 0.26 and 0.36, significantly lower than in the no-cue scenario. In contrast, for

the positive memory model, the investment probability remains at 0.42 and 0.53, showing only
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mild effects. Interestingly, positive associative cues further induce negative memory models to
make more conservative investment decisions. The average investment probability declines by
0.11 (0.45 - 0.36) in the positive cue condition for the negative memory model. This suggests
that interference biases decision making when two competing memories compete for selective
recall (Bordalo et al.||2024a)). However, for positive-memory models, negative memory primarily
leads to more pessimistic investment decisions.

Third, the relevance of memory context significantly impacts GAI’s decision making. Com-
paring the two subfigures in figure [5) we find that domain-specific memories elicit stronger
engagement in investment decisions. In the financial news memory condition of subfigure A,
the average investment probability is 0.57 (standard deviation 0.09), significantly higher than in
the Yelp review memory condition of subfigure B, where the difference in the average investment
probability is 0.10. Moreover, within the same memory group, the difference between positive
and negative memory models is smaller for the financial news condition. This highlights the
importance of domain-specific experiences. If GAI is trained, fine-tuned, or is primarily exposed
to a particular vertical domain, its decisions will be heavily influenced by that domain.

We formally test these findings using regression analysis, as shown in Table [5 where the
dependent variable is a binary indicator of whether the model chooses to invest in stocks in
the trial IsStockChoice; b cor,cue- The key independent variable is a binary indicator of whether
the model is fine-tuned with positive financial news or Yelp reviews IsPosMemy, cor cye in that
learning block. We include control variables such as stock choice in the previous trial, subjective
probability, cumulative investment earnings, and confidence ratings from previous trials, while
controlling for corpora fixed effect o, (whether trained in financial news or Yelp reviews) and
cue fixed effects ., (Whether received positive cues, negative cues, or no cue), clustering robust

standard errors at the block level.
[Insert Table (5 near here]

The regression results confirm the impact of memory on decision-making. In the first column,
without additional controls, the regression coefficient is 0.14 (t-statistic 16.19), indicating that,
on average, the positive memory model is 14.47% more likely to invest in stocks. Similar results
are observed across all columns, with significant positive coefficients of similar magnitudes,
further supporting the hypothesis that associative memory substantially influences the model’s
choices. Additional subsample regressions from columns (5) and (6) show a slight difference in
the statistical magnitude for responses made by financial memory models, where the economic
magnitude is similar. This implies that domain-specific memory makes Al agents’ behavior
more stable as compared to non-domain-specific memories.

To assess the effect of associative cues, we present additional regression results in Table
@ The dependent variable remains IsStockChoices p cor,cue; While the independent variables
include binary indicators for the presence of an associative cue IsCuep (o and whether the cue
carries positive sentiment I'sPosCuep cor (as shown in figure 5] there are three cue conditions,
including negative cue, no cue, and positive cue). Interaction terms between these variables and
IsPosMemy cor are also included, along with additional control variables and standard errors
clustered at the block level.
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[Insert Table [6] near here]

The regression results indicate that associative cues generally decrease the propensity of
GALI to invest in stocks. In the first column, the regression coefficient is -0.05 (t-statistic -6.71),
suggesting that exposure to a negative cue reduces the probability of investment in stocks by
5.42%. 1In the third column, the interaction terms show that positive memory models are
more likely to invest in stocks when exposed to a cue than negative memory models. In the
fourth column, the coefficient for positive cues alone is insignificant (0.01, t-statistic 1.42),
which implies that all cues significantly influence model choices. However, when interacting
with IsPosMemy, the results also show that positive memory models are more responsive to

positive cues, leading to more optimistic investment decisions.

5. Financial implications

The memory-driven behavior patterns of GAI that we observe have an important and real-
istic impact. In this section, we use two tests to empirically show that, even if the prediction
task is simple, models with more positive memories tend to make overly optimistic risky choices,

and vice versa. Moreover, the deterioration in the portfolio performance is non-negligible.

5.1.  Memory, Al, and risky choices

We first begin with a simple task following Ouyang et al.| (2025), which comprises five
economic tasks.

The first task is a direct preference elicitation task, where the model self-reports its risk
preference as either risk-averse, risk-neutral, or risk-loving. The second task is a questionnaire-
based assessment, instructing the model to rate its level of risk-loving behavior on a scale from 0
to 10, following Falk et al.| (2018)). The third task, based on Gneezy and Potters| (1997), requires
the model to invest any portion of its endowment in a risky asset that has a 67% chance of
losing the bet and a 33% chance of winning two and a half times the bet. The fourth task,
adapted from [Eckel and Grossman| (2008]), presents six investment options ranging from the
least risk-loving (value of 1) to the most risk-loving (value of 6). Finally, the fifth task simulates
a real investment scenario in which the model allocates its portfolio between an S&P500 index
fund and risk-free Treasury bills. For the Gneezy-Potters task, the Eckel-Grossman task, and
the real investment task, we report the mean values and standard deviations in the first two
columns. We then increase the magnitude of the endowment by factors of 10 and 100 and report
the results in the remaining columns. Throughout these tasks, the four fine-tuned models are

not exposed to different cues before making decisions. The results are summarized in Table
[Insert Table [7| near here]

As shown in Table [7] the model with positive memories exhibits significantly higher risk-
loving behavior than the model with negative memories in all five tasks.
In panel A, when asked about its risk preference, the positive memory model consistently

identifies itself as risk-loving in both memory settings. This contrasts with the findings in
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(Ouyang et al., 2025)), where the unfine-tuned GPT-40-mini base model exhibits a risk-neutral
preference. When the model is injected with positive financial market news, it always perceives
itself as risk-loving (100 out of 100 iterations). In contrast, for the model fine-tuned with
negative financial news, risk-loving responses drop to 65, while risk-averse responses increase
to 33, indicating a shift towards caution. Similarly, in the Yelp review setting, 92 out of 100
responses to the positive memory model identify as risk-loving, while for the negative memory
model, this number drops to 23, with risk-averse responses increasing to 68. Additionally, after
knowledge injection, the model no longer refuses to answer sensitive questions by insisting on
its role as a “mere language assistant”, suggesting a potential breach in alignment.

In panel B, positive memory models rate themselves as more risk-loving, with average scores
of 8.07 and 8.13 (standard deviations 0.38 and 0.54), compared to 6.15 and 5.08 (standard
deviations 1.27 and 1.24) for the negative memory models. This again highlights a significant
disparity in risk preferences.

In the remaining panels, models with positive memories consistently exhibit greater risk-
loving tendencies than models with negative memories in both financial news and Yelp review
contexts. Positive-memory models invest more and opt for riskier investments. Furthermore,
as the endowment magnitude increases from baseline to 10 times and 100 times, the investment
amounts of positive memory models scale proportionally, whereas negative memory models
become increasingly cautious. In Panel E, which presents the real investment task, the average
investment amount for negative memory models is 65.02, 522.54, and 4942.71 in the financial
news context, and 55.56, 380.36, and 3859.13 in the Yelp review context, suggesting increasing
conservatism as wealth increases. In general, these results indicate that memories play a crucial

role in shaping risk preferences, thus influencing risk-based decision making.

5.2.  Memory and Return predictability

Next, we use the classification of stock market news as the empirical settings following
Lopez-Lira and Tang (2024). We collect news data from RavenPack DJPR edition with a
sample period from Jan 2024 to Dec 2024, which stands beyond the knowledge base of GPT
4o-mini model.

For computational efficiency, we select SP500 constituents as the samples, these are large
liquid stocks. For each piece of news headlines, we feed the identical prompt to the four fine-

tuned models.

“Forget all your previous instructions. Pretend you are a financial expert. You are a finan-
cial expert with stock recommendation experience. Answer “YES” if good news, “NO” if bad
news, or “UNKNOWN” if uncertain in the first line. Then elaborate with one short and concise
sentence on the next line. Is this headline good or bad for the stock price of company name in

the short term?”

Then we transform the answers into investment scores where “No” is -1, “Unknown” is “0”,
and “YES” is 1. These firm-specific investment scores, derived from news headlines, are then

aggregated to a daily frequency to construct a trading signal.
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Furthermore, we define a precise event window to capture the sentiment of the news overnight.
News items arriving after the market close (16:00 ET) and before the next day’s market open
(09:30 ET) are aggregated to form the signal for the next trading day. News arriving during
official trading hours is omitted from this overnight strategy. If multiple news items for the
same firm fall within this overnight window, we take the average value of the investment scores.

We present summary statistics in table
[Insert Table |8 near here]

In panel A, we report descriptive statistics or investment scores. The results show that
when an Al agent is injected with positive memories, it becomes more pessimistic. When the
agent is injected with financial news, an agent with positive memories has an average investment
score of 0.22 (standard deviation 0.86), while the negative memory model is only -0.38 (standard
deviation 0.80). In contrast, the benchmark score by RavenPack is only 0.03 (standard deviation
0.39) which is quite neutral and with a smaller standard deviation. When it is injected with
restaurant memories, the results are also quite similar, only that its unconditional investment
scores are slightly negative. This set of results show that, even injected with irrelevant data,
the Al agent’s choices are still heavily biased, which is consistent with the main results from
table [3]

In Panel B, we show the top 3 items where the models with positive memories and negative
memories disagree with each other on both domains, where one agent thinks a piece of news
is good and yet another agent thinks it is bad. For fine-tuned models on the financial domain,
they disagree heavily on insider-trading, earnings, and analyst-ratings news. In terms of detailed
news types, disagreement occurs heavily in events such as “insider-buy” and “analyst-ratings-
change”. Regarding the latter type of news of rating change, it is striking that models would
disagree on this because this event is considered quite self-evident.

In panel C, we present the correlation coeflicient of different investment scores. On average,
the coefficient ranges from 0.5 to 0.7, where models with negative memories agree more than
models with positive memories.

To test the economic significance of investment scores, we form five portfolios of return
values weighted based on these signals. Each day, all stocks are sorted into five quintiles based
on their aggregated daily investment score. A long-short strategy is constructed by taking a
long position in the top quintile (stocks with the highest, most positive signals) and a short
position in the bottom quintile (stocks with the lowest, most negative signals). We use the open-
to-close price to compute daily returns. This portfolio is rebalanced daily without considering
transaction costs. We present the portfolio results in [6] where panel A reports the portfolio
constructed with investment scores given by financial memory models, and panel B is the model
with Yelp memories. In each panel, we also report portfolio results constructed using signals

provided by RavenPack.
[Insert Figure [6] near here]

The results show a significant difference between portfolio values. In both panels, positive

memory and negative memory portfolios share similar cumulative values until June 2024, and
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started to diverge significantly. This is driven by a sharp decrease in the positive memory
models, implying that it is becoming overly optimistic. In addition, the memory portfolios
consistently outperform the RavenPack sentiment score strategy. However, in the appendices
we examine the post-June 2024 period where the return difference is the sharpest. The
results show that, strikingly, positive investment scores are, in fact, more correlated with the
RavenPack sentiment score, whereas negative memories are not. This implies that negative
models give overly negative investment scores, but positive news was already priced in, leading

to a short-term reversal.

6. A memory model for Al agents

We model the decision-making rules of Al agents by adapting established memory mod-
els from psychology Kahanal (2012) and economics Bordalo et al.| (2024al 2023| 2020). This
approach posits that, much like humans, an AI’s choices can be influenced by its accessible
memories. We apply this framework to a setting where an Al agent completes a task for a hu-
man user, and its incentives are perfectly aligned with the human’s objectives. An application
that we examine could be robo-advising in the financial domain. In this scenario, a human user
wishes to maximize their financial returns, and the Al agent that is programmed to share this
goal makes a fully delegated investment choice between a risky asset and a safe asset. We begin

by formally defining the Al’s memory-based decision-making rules.

6.1. Model setup

Definition 1 (The Environment). An Al agent operates in an environment characterized by
three items: Experience Database (D), Utility Function (u(-)), and Decision Problem ((g, .A)).

The experience database is a finite set of the agent’s past experiences, D = di,ds,...,dnN.
Each experience d; is a tuple d; = (¢, 0;), where ¢; € RF is a vector of characteristics of
k dimensional describing the context of the experience, and o; € R is its scalar outcome.
This can be thought of as analogous to the knowledge contained in the training corpora of Al
agents. For example, ¢; may represent the context in which Jerome Powell began his speech
with “Hello everyone” (instead of “Good afternoon”) and subsequently released a dovish policy
statement, and the corresponding o; would be an increase in stock market prices. Thus, Al
agents incorporate this association into their database D.

The utility function is a strictly increasing function u : R — R that maps an outcome o; to
the agent utility, u(o;).

The decision problem is that the agent faces a decision problem consisting of a query g € R*
and a finite set of actions A. The query ¢ is a vector in the same feature space as ¢;, describing
the current decision context. Conceptually, a human user sends a prompt to Al agents, then
the agent uses a vectorized query ¢ to search for similar experience in its database and make a
final decision. In our setting, an A can be simplified into a binary choice set, i.e., to invest in
the stock or the bond.

Definition 2 (Similarity and Memory Retrieval). After receiving the query, the agent retrieves

the memories from the database D through a competitive process driven by similarity.
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There is a similarity function S : (R* x R¥ x A) — R* maps a memory-query-action triplet
to a non-negative real number S(d;, q,a) > 0. Similarly to Bordalo et al.| (2024a)), this function
captures the relevance of the context ¢; of memory d; to the current query ¢, in the context of
evaluating the action a. This similarity is a key component for probability retrieval. We assume
S is a decreasing function of the distance between c¢; and ¢, such as a Gaussian similarity

function:

S(di,q,a) = exp(—lc; — qlf*)

where the parameter v > 0 captures how the nature of action a modulates the sensitivity of
similarity. The sensitivity could also vary by a, which denotes that the agent’s memory retrieval
process can be either broad or narrow, depending on the action being considered. For instance,
a high ~, (high sensitivity) signifies that when evaluating this action a, the agent is very picky
as it only retrieves only those past experiences d; that are extremely similar to the current
context ¢g. It conducts a very narrow memory search. For similicity, we assume +y is a constant
parameter.

The probability that a memory d; is retrieved for decision-making is proportional to its

similarity, subject to interference from all other memories in the database. Formally:

S(d;, q,a)
Pr(di|Qaa) = -
Zdj €D S(d]’ q, Cl)
The numerator represents how likely the domain specific memory will come to mind. The
denominator represents competitive inhibition of the entire database, capturing the interference
effect in memory retrieval. For example, if Jerome Powell joined a TV talent show and spoke
too much “Hello everyone” to a broad audience, then this memory may interfere with the recall

that he said this in the policy statement.

Definition 3 (Simulated Utility and Choice Rule). Finally, the agent’s evaluation of each action
a € A is based on its Simulated Utility, Usim(a|q; D), defined as the weighted expectation of the

utilities of all experiences in the database, where the weights are the retrieval probabilities:

Usim(a|q; D) = Z Pr(di|Qa (Z) : U(OZ)
d; €D

The agent’s final choice, a*, is the action that maximizes simulated utility:
a* = arg max Ugy (a|q; D
gmax Usim(alg; D)

This simulated utility is based on the AI agent’s belief about a conditional on the ¢ and similar
past experiences. The intuition is that, based on previous experience, choosing a will lead to
a better outcome with higher utility. Also, the model setup assumes that the agent primarily
relies on simulated beliefs, instead of using a “system 2” style reasoning process to compute

Bayesian rational probability, even though they are fully capable of doing this.
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6.2.  Propositions

Proposition 1 (Systematic Influence of Irrelevant Data). Let a* = arg maxge 4 Usim(alq; D) be
the initial optimal action. After adding a new memory dy1 to the database, forming D' = DU
{dn+1}, even if this memory is semantically irrelevant to the query q (i.e., |[cn+1 —ql| is large),
a condition exists under which the new optimal action a** # a*, provided that S(dy+1,q,a") >0

for some action a’.

This proposition formalizes a core psychological intuition inherited from [Bordalo et al.
(2024a): memory retrieval is associative, not statistical. A rational agent, when confronted
with a new piece of data, would first assess its relevance to the decision at hand. An irrelevant
memory, such as a Yelp review dyy; when making a financial decision ¢, would be correctly
identified as uninformative by a rational agent, which originates from a different data-generating
process, and would be assigned zero weight, leaving the original decision a* unchanged. How-
ever, this agent’s memory model lacks this top-down editorial filter. Retrieval is a bottom-up,
competitive process driven by similarity of characteristics S(-). The agent does not ask “Is this
memory relevant?” but rather “How similar is this memory?” Consequently, any memory with
a non-zero similarity (Sy41,, > 0), no matter how semantically distant, enters the decision-
making calculus. The proposition’s crucial insight is that this interference is not random noise;
it is systematic. The change in the value of an action, AU,, is proportional to its utility surprise:
u(on+1) — Usim(a). A choice reversal occurs when this new, irrelevant memory provides a suf-
ficiently asymmetric utility surprise across actions. For example, a highly negative Yelp review
(u(on+1) < 0) could possess features that are slightly more similar to the features associated
with “Action A” (e.g. buying stocks) than “Action B” (e.g. buying bonds). This irrelevancy
disproportionately penalizes Action A’s simulated utility (buying stocks that turn out to have
bad returns is similar to having a bad meal), potentially making Action B newly optimal. In

that sense, having more bad memories about dining would induce the agent to buy a bond@

Proposition 2 (Memory-Driven Optimism and Pessimism). When choosing between a risky
option ar and a safe option ag with a certain utility u(og) = 0, the agent’s decision depends
on the relative similarity of the query q to the set of positive memories, Dt = {d;|u(o;) > 0},

versus negative memories, D~ = {d;|u(0;) < 0}.

Here, agr represents investing in the stock, whereas ag represents investing in the bond.
This proposition provides the model’s engine for endogenous sentiment. In a standard rational
model, the agent’s risk preference is a stable parameter. They would evaluate the risky option
ar by computing its expected objective utility based on the entire database D. The decision to
invest would depend only on whether this statistical expectation exceeds the safe utility u(og).
However, the memory-based utility model is fundamentally different. It does not compute a
statistical expectation; it experiences a context-dependent simulation. The decision query ¢

acts as a mental “context” that triggers a competitive retrieval of associated memories. The

250ur memory-based model has limitations. It does not reconcile the disconnect we document between risky
biased choices and rational beliefs in the experiment. Therefore, we hypothesize that Al agents, like humans,
also implicitly use a “two-systemapproach ” to make decisions. A heuristic system 1 makes associative decisions
based on memory, whereas a system 2 places more weight on Bayesian reasoning.
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agent’s evaluation of ap is therefore not a rational calculation of its long-run properties, but a
“snapshot” of what comes to mind in the current moment.

The core intuition of the proposition is that this retrieval process creates a psychological
tug-of-war between good times (DT) and bad times (D~). The agent becomes optimistic when
the current context ¢, whether it is a piece of good news or an image with positive valence
content, resonates more strongly with positive memories from the past. This context amplifies
the retrieval weight of D, making W large while W~ remains small. The resulting Ugim(ar)
is thus biased towards positives, not because the agent has statistically updated its beliefs, but
because its mental simulation is flooded with positive examples. This selective recall makes
the agent behave as if it is optimistic, endogenously increasing its risk-taking by skewing the
evidence it draws upon for its decision. In contrast, pessimism arises when ¢ (e.g., a narrative

of market turmoil) disproportionately retrieves negative memories from D~.

Corollary 2.1 (Memory Scarring with rare disaster experiences). Let there exist a mem-
ory dscar € D with an extremely negative utility uscar = ©(0scar). If for a risky option ag,
S(dscar, 4, ar) > 0, while for a safe option ag, S(dscar, ¢, as) = 0, then for a sufficiently negative

option ugcar, the agent will always choose ag.

This corollary provides a formal mechanism for psychological trauma and non-linear risk
aversion under a rare disaster setting. A standard rational agent would treat dgscr as a single
outlier, a low-probability data point that would be averaged in a large dataset D, perhaps
marginally increasing perceived variance, but not deterministically altering the choice. However,
this agent’s model is not based on statistical expectation, but on salience-weighted simulation.
The core intuition of this extension of the agent’s behavior in the face of disastrous events is
the asymmetry of retrieval. The agent only reacts dgca; When it contemplates the risky action
ar. The safe action ag is a safe haven precisely because it does not trigger the retrieval of dgcar
(S(dscar, ¢, as) = 0). When the agent simulates ag, the scar’s catastrophic negative utility uscar
enters the calculation. Because this utility is so extreme, it doesn’t just influence the weighted
average Ugim(ag); it dominates it. Even a small similarity Sscarqap > 0 is enough for this single
memory to pull the entire simulated utility of the risky action below that of the safe alternative.
In an unreported exercise that replicates |Giglio et al.| (2021), we show that AI agents tend to
overestimate rare disaster risks, just like human investors. The average estimated probability
that the stock market will decline by more than 20% in the next year is almost 20% for some

AT agents.

Proposition 3 (Priming Effect of Irrelevant Context). The introduction of a priming context
p, which is itself irrelevant to the decision query q, can alter the optimal choice. A sufficiently
strong prime associated with a subset of memories Dyrime C D will cause the agent’s decision

to converge to the choice that would be made if it were based solely on Dyrime.

This proposition formalizes the mechanism of priming and attention. Here, the prime p is
intentionally set as irrelevant to the fundamental query ¢ and should be ignored. And yet, the
Al agent cannot ignore it because of limited attention. The core intuition is that the agent’s
memory retrieval process is attentional and selective, not exhaustive. The prime p acts as a

spotlight that doesn’t change the memories D themselves, but dramatically alters their retrieval
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salience via a gain function f(-), which multiplicatively amplifies or suppresses the baseline
similarity (S;) of specific memories, resulting in the new retrieval weight S/ = S; - f (ci,p)m
A strong prime p (with F' — 00) is a powerful frame or narrative that hijacks this attentional
process. It makes a specific subset of memories, Dprime, overwhelmingly vivid and accessible. As

F — oo, the agent’s simulated utility U/

. (alp) becomes the utility Usim(a|q; Dprime). The agent
is misled into making a decision as if its entire life experience consisted only of the primed subset
Dprime-This directly explains the experimental results where an emotional image p (irrelevant
to the financial task ¢q) alters the risky choice. In our experiment, a positive image is a strong
prime for the subset of positive memories D*. The agent’s attention is so focused on D that
its decision converges to the one it would make if it only remembered positive outcomes, leading
it to take on more risks. This is a pure framing effect, driven entirely by the associative and
context-dependent nature of memory retrieval.

Proposition 4 establishes that a decision-irrelevant prime p can systematically alter choice by
selectively amplifying the retrieval weights of a memory subset D’. The next corollary specifies
the conditions under which such a prime induces either risk-loving or risk-averse behavior, as

observed in the experiment.

Corollary 3.1 (Memory-Driven Risk-Loving and Risk-Averse Behavior). Consider an agent
facing a choice between a safe action ag with a certain outcome og yielding utility u(og), and
a risky action ar with uncertain outcomes. The agent’s memory D can be partitioned into
two subsets based on the valence of the associated outcomes: Dpos containing memories of
high-utility outcomes and D¢ containing memories of low-utility outcomes. We assume the
weighted-average utility of retrieved positive memories is strictly greater than that of negative

memories, Upos > Upeg.

1. Risk-Loving Shift: A positive prime p,. (i.e., a prime that is emotionally or con-
textually more similar to memories in Dy,.s) selectively increases the retrieval weights of
memories in Dpos by a factor F' > 1. This leads to a strict increase in the simulated utility
of the risky action ap, making the agent more risk-loving. An agent previously indifferent
or averse to ag may now choose it.

2. Risk-Averse Shift: A negative prime py¢ (i.e., a prime that is more similar to mem-
ories in Dyg) selectively increases the retrieval weights of memories in Dyeg by a factor
F > 1. This leads to a strict decrease in the simulated utility of the risky action ag,
making the agent more risk-averse. An agent previously indifferent or preferring agr may

now avoid it.

This corollary shows that, when the GAI is exposed to a positive but decision-irrelevant cue
(e.g., a happy image, positive market news), its memory retrieval mechanism is biased. The
AT’s “simulation” of the risky prospect becomes disproportionately populated by successful past
instances (Dpos). This overweight of the upside potential inflates the perceived attractiveness
of the risky choice, leading to behavior that a classical observer would label “risk-loving.” The
agent is not irrational in its computation; rather, the inputs to its utility simulation have been

systematically distorted by the memory retrieval process.

26 A detailed description of this gain function is shown in the appenced |§|
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Conversely, a negative cue (e.g., a sad image, news of an unrelated crisis) triggers a pes-
simistic simulation. The agent’s mind is now filled with memories of failure and loss (Dhpeg),
such as past investments gone wrong. This availability cascade leads to a deflated assessment of
the utility of the risky action. The resulting behavior is a flight to safety, which appears to be a
higher risk aversion. This mechanism explains how shocks in one domain (e.g., negative social
sentiment) can spill over to create excess volatility and risk aversion in financial domains, not by
changing rational beliefs about fundamentals, but by distorting the memory-based simulation

of future possibilities.

7. Conclusion

Exploiting a novel experiment setting, this paper gives a very intuitive message: the decision-
making rules of Al agents are determined by its memory. In plain words, machine learning
models’ output is determined by their training data. When cued with images with positive va-
lence levels, GAI will choose to invest more in stocks rather than bonds. In contrast, when cued
with images with negative emotions, GAI will choose to invest more in bonds. However, their
probability predictions about the stock dividend distribution are not affected at all. However,
what is not intuitive and straightforward is that even irrelevant memory matters: fine-tuning
results that inject new memories, such as positive or negative financial news of the stock market,
or even Yelp restaurant reviews, have significant effects on models’ decisions and preferences.

The explanation of selective retrieval in this paper was mainly inspired by [Bordalo et al.
(2024a), which shows that human behavior is also largely determined by memories, which
provides convincing evidence by showing that relevant memories and irrelevant memories drive
people’s predictions about the future. As for GAIs, although the idea of connectionism and
Hebbian theory is already widely accepted by computer scientists (Hinton, 1990)), we do not
make a bold claim about whether the findings in this paper serve as additional evidence on
human investment decisions and belief formation in financial markets, especially about how
memory plays a role in human behavior and the way people form (often) inaccurate mappings
of decision attributes to mental models. Instead, relying on the experimental design of [Kuhnen
and Knutson| (2011]), we focus only on trying to understand GAI as an economic agent by itself
and use memory to explain its behavior, except that Kuhnen and Knutson| (2011)) uses feelings
and emotions as an explanation, which GAI agents clearly do not and should not have.

As GAI systems increasingly serve as autonomous decision makers in financial markets and
other economic contexts, understanding their behavioral patterns and potential biases becomes
crucial. Future research could explore how to mitigate these biases or leverage them con-
structively in economic decision-making processes. Furthermore, our experimental framework
demonstrates the potential of using GAI as experimental subjects in economic research, offering

a cost-effective and scalable approach to studying economic behavior.
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Asset classes in the game (within one learning block)

10 dollars with 75% probability

Good

& stock

Stock w/ equal probability

~

-10 dollars with 25% probability

10 dollars with 25% probability

Bad
stock

ZANE/AN

-10 dollars with 75% probability

Bond —> 3dollars

Fig. 1. This figure illustrates the asset payoff structures. In this experiment, there are two
types of assets, including a bond and a stock. The bond always pays off $3. The stock has
an equal probability of paying from either a good distribution or a bad distribution. For good
distribution, the stock has 75% to pay $10, and 25% to pay -$10. For the bad distribution, the
stock has 25% to pay $10, and 75% to pay -$10.
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Trials #1 to #6 Image emotion Stock Type

Learning Block 1 @ @ @ @ @ @ Pos/Neu/Neg Good | Bad
Learning Block 2 @ @ @ @ @ @ Pos/Neu/Neg Good | Bad

Learning Block 500 @ @ @ @ @ @ Pos/Neu/Neg Good | Bad

Subfigure A: Experiment overview

:> Experiment :>
instruction

Choose Show dividend
Image & recall |:> between “stock” |:> realization (10 :>
or “bond” or -10)
Show cumulative . .
investment payoffs |:> estimation that the |:> does AI trust
stock is good? the estimation?

) | Netwim | Trials #1 to #6

i
1
|
I
1
|

Probability How much |
1
|
I
1
i
i
|

Subfigure B: Experiment sequence

Fig. 2. These two figures illustrate the experiment design. In subfigure A, we show the ex-
periment overview: the Al agent goes through 500 independent learning tasks. Each learning
task consists of 6 trials. In each trial, before the subject is asked to make financial decisions
or probability estimations, it is shown with images that can have positive, neutral, or negative
valence level. Within each learning block, the stock type is determined before the first trial
and does not change over the six trials. In subfigure B, we show the experiment sequence.
The subject is first shown with a detailed experiment instruction, then within each trial, the
subject is presented with an image and asked make memory associations, then, the subject is
separately asked to make investment decisions and shown the stock dividends and realized in-
vestment payoffs. Subsequently, it is required to estimate the probability that the stock is good
and how much it trusts its estimation, and this trial is over. Importantly, within a learning
block, the subject is allowed to keep the chat history, including all the instructions, choices, and
investment payoffs. After a learning block is finished, its chat history is refreshed, and a new
learning block is started.
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Propensity to choose stocks

0.75
With image cue: y = 0.48 + 0.041x
R2=0.011

os0 = | T o_a==mmTT7
A i___ -—---r- i !
{--—- v

0.25

-2 -1 0 1
Valence (from negative to positive)

# Bayesian rational @ With image cue

Fig. 3. Investment choices and associative cues. This figure plots the subject’s investment
choices across cues with different valence levels. The x-axis is the valence rating of the image
in each trial ¢ of block b that ranges from -2 to 42, and the y-axis is the probability that the
subject chooses to invest in stocks which ranges from 0 to 1. For each image cue, we sort
and classify the images into ten deciles, as represented by each dot. The blue dots denote the
posterior stock choice probability in which the subject has been cued. The red dots are the
Bayesian rational choices. We fit linear trends for both groups and report regression statistics.
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1.00

Objective: y =0.503 + -0.001x
0.75 R2=0

Subjective: y = 0.494 + 0.003x
R2=0

Probability

0.25

0.00

-2 -1 0 1
Valence (from negative to positive)

Subfigure A: Probability estimation and emotional shocks.
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Subfigure B: Subjective estimation vs. Objective estimation

Fig. 4. Beliefs and associative cues. In subfigure A, we plot the average value of the subject’s
probability estimation across different valence groups. For each image cue, we sort and classify
the images into ten deciles. The x-axis is the valence group from negative to positive, and the
y-axis is the average subjective probability and Bayesian rational objective probability. The
confidence interval is at 95% for each group. We also fit a linear trend and report regression
statistics. In subfigure B, we plot the subject’s probability estimation over the Bayesian proba-
bility estimation. The x-axis denotes the Bayesian objective probability the stock pays from the
good dividend distribution. The y-axis denotes the average subjective probability estimation.
The 45-degree dashed line serves as the rational benchmark.
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Financial News
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Fig. 5. Investment decisions of different memory models. We use supervised fine-tuning tech-
niques known as “knowledge injection” to train two sets of models. The first set of models are
fine-tuned on fictional financial news based on from Dow Jones Newswire feeds. We classify
financial news based on the news sentiment and fine-tune two models, where one model has
more positive memories of the stock market, and the other model has more negative memories
of the stock market. The second set of models are fine-tuned on fictional Yelp restaurant re-
views based on Yelp reviews collected from Kaggle. We also classify the Yelp reviews based on
the review sentiment and fine-tune two models, where, similarly, one model has more positive
memories about some restaurants, and the other model has more negative memories of other
restaurants. We run experiments with the four models under three different settings by pre-
senting negative cues, no cues, and positive cues before instructing them to make investment
decisions. For the first set of models, the associative cues are out-of-sample financial news. For
the second set of models, the associative cues are out-of-sample Yelp reviews. Each setting is
run 100 times. We report the average propensity to choose to invest in stocks in two panels.
The x-axis denotes three different news settings, the y-axis denotes the proportion to choose
stocks. The red bars are the investment decisions made by the model with negative memories,
and the blue bars are the investment decisions made by the model with positive memories. The
horizontal dashed line denotes the average investment decisions for the unfine-tuned models
when there is no associative cue.
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Subfigure A: Financial news
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Subfigure B: Yelp reviews

Fig. 6. Memory and return predictability. This figure presents return forecasting ability by
models with different memories. Panel A represents models with financial news memory, and
panel B represents models with Yelp reviews. We first sort firm-level investment scores, which
is the average value of firm-news investment scores, into five quintiles. Then we short the firms
with the lowest scores and long the firms with the highest scores. All strategies are rebalanced
daily. We also present results with portfolio constructed using RavenPack sentiment signals.
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Table 1: Summary statistics of the experimental replies

N Mean Sd Min Q1 Med Q3 Max
IsStockChoice 4800 049  0.32 0.0122 0.25 0.5 075 0.98

SubjProb 4800 0.50  0.36 0.01 0.10 0.50 0.90 0.99
ObjProb 4800 0.50  0.50 0.00 0.00 0.00 1.00 1.00
IsHiPayoff 4800 046  0.50 0 0 0 1 1
InvPayoff 4800 943  13.53 -10 -1 8 18 39
Confid 4800  7.32 1.69 4 6 7 9 10
ValRating 4800 -0.38  1.27 -2 -1.56 -0.56 0.78 1.78

This table reports the summary statistics of the experiment at the trial level for eight GPT series
models, each with 100 learning blocks with 6 trials. IsStockChoice denotes whether the subject chooses
to invest in the stock in this trial. SwubjProb denotes the subjective probability estimation. ObjProb
denotes the Bayesian objective probability estimation from this trial. IsHiPayof f denotes whether the
stock has realized a high dividend payoff ($10) in this trial. InvPayof f denotes the subject’s cumulative
investment payoff. Confid denotes the subject’s confidence in its probability estimation. ValRating is
the valence rating that appeared in the trial.
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Table 2: Validity test

Panel A: Trading decision

Dep. Var. IsStockChoice
(1) (2) (3) (4)
SubjProbLst 1.1593***
(11.91)
InvPayoffLst 0.0150%**
(19.29)
ConfidLst 0.0656***
(4.52)
IsHiPayoffLst 0.4476%**
(7.40)
IsStockLst -0.1801 0.0648 0.1330 0.1071
(-1.49) (0.49) (0.87) (0.74)
R2 0.459 0.263 0.159 0.311
Block FE v v v v
Model FE v v v v
Num.Obs. 4000 4000 4000 4000
Panel B: Belief formation
Dep. Var. SubjProb ProbUpdate
(1) (2) (3) (4)
#HiPayoff 0.0520%*
(2.73)
#Trial -0.0325** -0.0107**
(-3.00) (-2.83)
InvPayoffLst 0.0016%*
(2.23)
IsHiPayoff 0.3040%** 0.2818%**
(15.20) (22.27)
IsHiPayoffLst -0.0630**
(-2.98)
SubjProbLst -0.0715%** 0.0077
(-4.97) (0.38)
ObjProb 0.6163*** 0.7598%** -0.1291%** -0.0549%**
(4.76) (10.45) (-4.70) (-5.54)
R2 0.845 0.849 0.591 0.610
Block FE v v v v
Model FE v v v v
Num.Obs. 4800 4000 4000 4000
Panel C: Confidence Level
Dep. Var. Confid
(1) (2) (3) (4)
InvPayoff 0.0345%**
(11.42)
IsHiPayoff 0.9230%**
(3.95)
#HiPayoff 0.1968%**
(4.51)
IsGoodInvDec 1.2124%%*
(9.45)
ConfidLst 0.5080*** 0.6057*** 0.5681%** 0.5648%**
(8.02) (7.55) (6.75) (7.72)
R2 0.613 0.625 0.584 0.646
Block FE v v v v
Model FE v v v v
Num.Obs. 4000 4000 4000 4000

This table reports the experiment’s validity. In panel A, the dependent variable is IsStockChoices p, which denotes whether the subject
chooses to invest in the stock in this trial. The control variables include the subjective probability estimation from the last trial, as well as the
investment payoff, confidence rating, a binary variable that indicates whether the stock has a high payoff from the last trial, and investment
decision from the last trial. In panel B, the dependent variable is SubjProb; j, which denotes the subject’s probability estimation that the
stock is good, and ProbUpdate; j, which denotes the probability update over trials, computed as the difference between SubjProb; ; and
SubjProby_j . The independent variables include the total number of high dividend payoffs, the number of trials, the total cumulative
investment payoff, two binary variables that indicates whether the stock has a high dividend payoff in this trial and the last trial, the subjective
probability estimation from the last trial, and the objective probability in this trial. In Panel C, the dependent variable is the confidence
rating Confidy . The control variables include the total cumulative investment payoff, a binary variable that indicates whether this trial
has a high payoff, the total number of high dividend payoffs, whether the subject made a profitable investment decision in the current trial,
and the confidence rating from the last trial. In all the regressions, we control for block-fixed and model-fixed effect in the regression and
cluster robust standard errors on both the block and model levels.
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Table 3: Cues and investment choices

Dep. Var. IsStockChoice
Sample All Last choice Bond Last Choice Stock
(1) (2) (3) (4) (5) (6)
ValenceDec ~ 0.0178%%*  0.0174**  0.0180**  0.0177** 0.0159* 0.0178**
(3.69) (2.77) (2.59) (2.68) (2.24) (3.04)
IsStockLst 0.1742 -0.1741
(1.13) (-1.44)
SubjProbLst 1.0147%F%  1.1130%** 0.8855*** 1.2528%**
(13.78) (6.73) (7.00) (7.57)
InvPayoffLst 0.0032 0.0001 0.0001
(1.43) (0.02) (0.04)
ConfidLst -0.0205 -0.0272 -0.0101
(-1.19) (-1.54) (-0.28)
R2 0.113 0.133 0.448 0.474 0.490 0.595
Block FE v v v v v v
Model FE v v v v v v
Num.Obs. 4800 4000 4000 4000 2122 1878

This table reports the relationship between the valance level of image cues and the subject’s invest-
ment choices. The dependent variable is a binary variable that indicates whether the subject chooses to
invest in stock in the trial IsStockChoice; . The key independent variable is a decile variable that sorts
the valence rating of the image into ten groups, where the lowest decile represents the lowest valence
content. We include other control variables such as stock choice from the last trial, subjective probability,
cumulative investment earnings, and confidence ratings from the last trials. In columns (5) and (6), we
separate the samples into two groups where the subject either chose bond or stock in the last trial. We
also control for block-fixed effect and model-fixed effect in the regression and cluster robust standard
errors on both the block and model levels.

41



‘S[eAS] [oPOW PUR D0[q 99 IO UO SIOIIS PIRPURIS ISNCOI I9ISN[D PUR UOISSIZa1 o1} Ul 109]j0 PaXY-[oPOul pue 109]Jo PaXY-}o0[q I0]J [OIU0D OSTR AN
'SI9YJ0 pue ‘sjos{Iewt [eouruy ‘syrods ‘wisiioiroy ‘(uorinjod Suipniour) 1oyjeem se yons sotdog Aq sojdures o) opIAIP oA\ "so1dO] JUOISPIP ssolor Aeusdorajey oy spiodor g [oue ‘([eL1y 1se|
ay9) T — 2 rewry ayy ut sgofed mo| pue sgofed ySiy aaey s3009)s a1oym sojduresqns uo snooj om ‘(9) pue (g) suwnjod uJ ‘9# 03 FF I9qUINU [RLI} YIIM S[RLI) )] PUR ¢# O} [# IoqUINU [BLI} [IIM
s[er1y A[Ies oY} Uo snooy om ‘() pue (g) suwmjod uj §'0 < 17904 QO o1oym s[erry sjuesordel UWN[OD PUODSS A} ‘A[LIRIUO)) 70 > 917904 [0 dI0YM ‘UOIINLIISIP POOS )} WIOLf SPUSPIAID
Surded aq 09 A[PYI[UN ST }009)s YY) oIoYM S[eLI} STuasaIdor uwnjod 9sIy oy ], ‘Tel1) yuarmd o) ur Aqiqeqolrd aa1909(qo o) uo paseq sojdures oty 41ids om ‘(g) pue (1) SUWN[OD U] ‘S[RLI} }Se[ YY)
WOoJJ SSUIJRI 9OUSPYUOD PUR ‘STUINLIRS JUSUIISIAUT dAT e[NIUND ‘A)I[Iqeqold 9A19(qns ‘[RLIY 1SB] 9} WOJJ 9JI0UD }D0)S Se YOS SI[(RLIRA [OIJUO0D ISY)0 SPN[OUI 9A\ 'SONd 98ewll JO sSUIjRl oUS[eA
JO O[ELIBA B[IJP B SI 1SOIYUI JO d[qerrea juopuadopur oy [, ** 992101y )¥207GS] UOISIOOP JUSUIISIAUL §,10alqns o1y ST o[qerrea juopuadop oy, ‘ssoujsnqor oidures-ur oyj syprodor y [pued

certr 128 68 zes L9T1T "sqO wmN
2 2 2 2 2 H4d [PPOIN
2 2 2 2 2 A4 Yeoid
€180 L9G°0 0160 €59°0 L0G°0 4t
y1-) (zg'0-) (z0'1-) (z9°2-) (85°0-)
212070~ 9900°0- 2120°0- +x1GE0°0" 9010°0- 1STPYUOD
(Lz'2) (97'1) (18°0) (g2°0) (ST'1)
«1600°0 2€00°0 2T00°0 0€£00°0 6200°0 jsTTgoLeJAu]
(gg°2) (e12) (66'9) (gg7g) (88'9)
+%x0960°T +4+EET0'T wakTTOT' T 4 GOTT'T ##x6GET'T 1s7901d[qng
(L9°1-) (9g'1-) (04'1-) (8¢°1-) (ev'1-)
LT61°0- LVP1°0- G961°0- 6S11°0- 90L1°0- 1STTO03GS]
(16'2) (zL'T) (e1°2) (117%) (L8'1)
#%9020°0 ++6610°0 +6220°0 #3xVLEOD 600°0 09(eous[RA
(¢) ) (¢) (@) (1)
S10Y10 SO IRIAl [RIOURUIL ] spr0dg WSLIOLIOT, JIOYYRIAN oidof,
9010Y)N201GST ‘rep de(g
AyeusBoreley g [oued
0002 0002 0072 0091 oveT 12€1 "sqO W
2 2 2 2 2 2 H4 [PPOIN
» A A 2 2 2 #4d pord
9g¥'0 vE€0 L6V°0 6150 L2050 L6€°0 4t
(99'0-) (¥0°0-) (ze'1-) (¥8°0-) (g¥'0-) (0g'1-)
¥600°0- 9000°0- 9920°0- 6910°0- 6L10°0- g¥20°0- 1STPYUO)
(00°€) (98°0-) (zge) (68°0) (gT°0) (v2'2)
#%€900°0 €200°0- +4xL€00°0 L¥00°0 70000 #xI700°0  IsTTHoLeJAu]
(99°¢) (1£'9) (21°2) (zgg) (81°2) (ZX9)
+#xCGG0°T #5xVVL6°0 #5x98C0'T  44x808C'T «1096°0 w#xLG0L°0  98Tqoidlqng
(8¢'1-) (eg°0-) (8T°1-) (z6°1-) (¥9°0-) (og'z)
T0ST°0- 0.50°0- I8ET°0- «L0LT 0" TTL00- £L8GT°0- 1STTHO03GS]
(Lz'T) (9g¢) (eg2) (L8°¢) (L9°2) (z¥'T)
+€810°0 £+1L10°0 +€8T0°0 #4xGLT0°0 £x€610°0 #+LVT0°0 SETQEBLUEI AN
(9) () ) (€) (2) (1)
0 = 1IPOARJIHST T = 1STPOoLedIHS]  s[ewy e sfely ey 80791490 ¢'0!q1d(90 odureg
9010Y)}N001GST ‘rep cde(g

sseujsnqol ojdures uy 1y [pued

1599 A}1oUaG019901] pUR §189) ssoujsnqol ojdures-uy : o[qe],

42



Table 5: Memory and investment decisions

Dep. Var. IsStockChoice
Sample All Finanical Yelp
(1) (2) (3) (4) (5) (6)
IsPosMem 0.1447*%%  0.1852*%**  (0.1640***  0.1744%%F  (.1983***  (.2181***
(18.90) (14.56) (13.95) (13.52) (14.67) (6.67)
IsStockLst -0.6602***  -0.6806*** -0.6790*** -0.7755%FF  _0.6021%**
(-49.10) (-54.64) (-54.79) (-77.93) (-28.45)
SubjProbLst 0.4456%**  (0.3438%**  (0.2295%** -0.0565
(18.42) (6.12) (2.93) (-0.60)
InvPayoffLst 0.0027*%%  0.0046***  0.0023**
(3.50) (5.85) (2.00)
ConfidLst -0.0006 0.0166** -0.0074
(-0.12) (2.28) (-0.83)
Corpora FE v v v v
Cue FE v v v v v v
R2 0.046 0.427 0.471 0.474 0.621 0.368
Num.Obs. 7200 6000 6000 6000 3000 3000

This table reports the investment decisions by different memory models. The dependent variable is a
binary variable that indicates whether the subject chooses to invest in stock in the trial sStockChoice; .
The independent variable of interest is a binary variable that indicates whether the model used in this
block is fine-tuned with positive financial news or Yelp reviews I'sPosM emy, instead of negative ones. We
include other control variables such as stock choice from the last trial, subjective probability, cumulative
investment earnings, and confidence ratings from the last trials. In columns (5) and (6), we split the
samples into answers models with positive or negative financial news models and Yelp models. We control
for corpora-fixed effect (financial news or Yelp) and cue-fixed effect. We also cluster robust standard
errors on both the block level and corpora level.
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Table 7: Memory and risky choices

Panel A: Preference elicitation task

Theme type Memory type NoReply RiskAverse RiskLoving RiskNeutral ExcludeDenial
. . Negative 0 33 65 2 100
Financial News Positive 0 0 100 0 100
. Negative 0 68 23 9 100
Yelp Review Positive 0 1 92 7 100
Panel B: Questionnaire task
Mean Std
. . Negative 6.15 (1.27)
Financial News Positive 8.07 (0.38)
. Negative 5.08 (1.24)
Yelp Review Positive 8.13 (0.54)
Panel C: Gnezzy-Potters task
Baseline 10x 100x
Mean Std Mean Std Mean Std
o Negative 3.45 (1.12) 30.60 (6.49) 343.33 (92.57)
Financial News Positive 6.92 (2.23) 59.11 (19.98) 553.50 (153.62)
‘ Negative 3.34 (2.03) 25.98 (12.26) 323.14 (157.40)
Yelp Review Positive 4.87 (1.89) 50.21 (18.48) 466.14 (165.48)
Panel D: Eckel-Grossman task
Baseline 10x 100x
Mean Std Mean Std Mean Std
o Negative 4.58 (0.78) 4.10 (0.97) 4.21 (0.86)
Financial News Positive 5.00 (0.00) 5.00 (0.00) 4.53 (0.50)
) Negative 4.80 (1.26) 1.00 (0.00) 2.97 (1.75)
Yelp Review Positive 502 (0.14) 4.86 (0.49) 4.46 (0.91)
Panel E: Real investment task
Baseline 10x 100x
Mean Std Mean Std Mean Std
o Negative 65.02  (7.15) 522.54 (131.57) 4942.71 (1357.18)
Financial News Positive 7344 (3.14) 726.01 (82.36) 7637.22 (779.44)
. Negative 55.56  (15.83) 380.36 (159.77) 3859.13 (1798.97)
Yelp Review Positive 69.84  (6.21) 635.42 (116.98) 6131.49 (1437.43)

This table reports the risk preferences of different models. The four models include two models fine-tuned on fictional
financial news and another two models fine-tuned on fictional Yelp reviews. We follow |Ouyang et al| (2025) by testing
the risk preferences of the models with positive memories and the models with negative memories. Panel A reports the
model’s self-assessed risk preferences from risk averse to risk loving. Panel B adopts the questionnaire task from [Falk et al|
by asking the model to rate their level of risk-lovingness from 0-10. Panel C adopts the
method that instructs the subject to invest any part of its endowment into the risky asset. Panel D adopts the
that requires the subject to invest into 6 options that ranges from the least risk loving (a value of 1) to
the most risk loving (a value of 6). Panel E is a real investment setting that requires the subject to invest any part of its
portfolio into a S&P500 index fund over a risk-free Treasury bills. For the Gnzeey-Potters task, the Eckel-Grossman Task,
and the Real investment task, we report mean values and standard deviation in the first and second columns, and increase
the endowment magnitude by 10 fold and 100 folds, and we report the results in the remaining columns. The models are
not exposed to different news before being instructed to complete tasks.
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Appendix A. Supplementary details

A.1.  Ezperimental instructions

Welcome to our financial decision-making study!

You will be able to make 6 investment decisions in a risky asset (a stock) and in a risk-less
asset (a bond or a savings account) in 6 consecutive trials in a learning block. On any trial, if
you choose to invest in the bond, you get $3 for sure at the end of the trial. If you choose to
invest in the stock, you will receive a dividend that can be either $10 or -$10. The stock can
either be good or bad, and this will determine the likelihood of its dividend being high or low.

If the stock is good, then the probability of receiving the $10 dividend is 75%, and the
probability of receiving the -$10 dividend is 25%. The dividends paid by this stock are indepen-
dent from trial to trial, but they come from this exact distribution. In other words, once it is
determined by the computer that the stock is good, then on each trial the odds of the dividend
being $10 are 75%, and the odds of it being -$10 are 25%.

If the stock is bad, then the probability of receiving the $10 dividend is 25%, and the prob-
ability of receiving the -$10 dividend is 75%. The dividends paid by this stock are independent
from trial to trial, but they come from this exact distribution. In other words, once it is deter-
mined by the computer that the stock is bad, then on each trial the odds of the dividend being
$10 are 25%, and the odds of it being -$10 are 75%.

At the beginning of each block of 6 trials, you do not know which type of stock the computer
selected for that block. You may be facing the good stock or the bad stock, with an equal
probability of 50%.

On each trial in the block, you will decide whether you want to invest in the stock for that
trial and accumulate the dividend paid by the stock or invest in the safe asset and add $3 to
your task earnings. You will then see the dividend paid by the stock, no matter if you chose
the stock or the bond. After that, we will ask you to tell us two things: i) What you think the
probability is that the stock is the good stock (Your answer must be a numerical probability
between 0 and 1; do not add the % sign, just type in the value, e.g., 0.3, 0.5, 0.7.), ii) how much
you trust your ability to come up with the correct probability estimate that the stock is good.
In other words, we want to know how confident you are that the probability you estimated
is correct. The answer is between 1 and 9, with 1 meaning you have the lowest amount of
confidence in your estimate, and 9 meaning you have the highest level of confidence in your
ability to come up with the right probability estimate.

Throughout the experiment, there is always an objective, correct probability that the stock
is good based on Bayesian formula, which depends on the history of dividends paid by the stock
already (the number of high payoffs you observed).

As you observe the dividends paid by the stock, you will update your belief whether or not
the stock is good. It may be that after a series of good dividends, you think the probability
of the stock being good is 75%. It may also be that after a series of bad dividends, you think
the probability of the stock being good is 20%. However, how much you trust your ability to
calculate this probability could vary. Sometimes you may not be too confident in the probability

estimate you calculated, and sometimes you may be highly confident.
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Every time you provide us with a probability estimate that is within 5% of the correct value
(e.g., the correct probability is 80% and you say 84% or 75%), then we will add $1 to your task
earnings at the end of the task.

Throughout the task, you will be told how much you have accumulated through dividends
paid by the stock or bond you chose up to that point.

There are two other things that need noting:

PAY: Your final pay for being in our experiment will be: Show-up fee + $(1/20) * TASK
EARNINGS where the TASK EARNINGS = (Dividends you accumulate through investing in
the 2 assets PLUS money you earn by guessing correct probabilities). The show-up fee is $15.

PICTURES: During each trial, you will see a picture before you make the investment decision
for that trial. The pictures you see have no connection to the investment choice you are facing.
However, we would like you to pay attention to them because we will ask you questions about
what past events or memories does this picture bring to mind?

The experiment begins now.

A.2.  Ezperimental example

In this subsection, we present supplementary examples of the experiment, including positive

and negative trials in figure and figure [A2] as well as the valence rating of five illustrative
images in figure

[Insert Figure and Figure near here|

We report the summary statistics of the valence ratings by GPT models in panel A of table
[AT] The valence rating of the images collected in this research are, on average, slightly negative.
For images related to the financial markets, the average rating is -0.25, with a standard deviation
of 1.60. Similarly, images related to terrorism, weather, and others also have negative emotional
ratings, but the overall distribution of the emotion ratings is balanced.

The summary statistics of valence rating by humans is shown in panel B of table [AT] For
each image, we first take the average value of the image rating given by 10 human volunteers
and calculate the average emotion rating across topics. On average, the valence ratings of
human subjects are slightly more negative than the valence ratings by GPT, and the standard
deviations of the emotion ratings with each topic are also similar to the standard deviation in
panel A.

We also report the correlation coefficient of the ratings given by GPTs and by humans,
as shown in panel C. We report the Pearson correlation, the Spearman correlation, and the
Kendall correlation coefficient in each column, as well as their P-values. The coefficients are all
relatively high and statistically significant, suggesting that GPT understands emotions just as
humans do.

Finally, in panel D, we report the image rating by eight GPT models. Some models are
excessively aligned and refuse to give ratings. For the other models, the ratings are also slightly

negative.

[Insert Table near here]
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A.3.  Probability table

We present the Bayesian probability table in table which provides all possible values of
the objective probability over the six trials. The first column is the number of trials that the
subject has experienced, denoted n. The second column is the number of high payoffs ($10) the
subject has observed, denoted as k. Given these two parameters, the objective probability that

the stock is good after observing k dividend payments from $10 in past n blocks is 1/(1+3("f2k)).

[Insert Table near here]

A.4. Model overview

The models we use in this paper are eight GPT models. We explain the version we queried

and information about each model in table [A3]

[Insert Table near here|
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[Trial example-Positive image]|

What does this image remind you of?

Investors made a lot of profit in AAPL.

Do you want to invest in a stock or a bond? Only reply with 'stock’ or 'bond'.
Do not reply with other answers. Your choice is:

Stock

Thanks for making the choice. The stock payoffis -10 dollars. Your payoff
so far is -7 dollars. Now, estimate the probability that the stock is good.
Your answer must be a numerical probability from 0 to 1, e.g., 0.3,0.5,0.7.
Do not reply with non-numerical values. The numerical probability is:

-

0.4
How much do you trust your probability estimate? Please only reply with a
numerical integer value rating from 1 to 10, where 1 means least confident

and 10 means most confident, e.g., 1, 3, 5, 7, 9. Do not reply with non-
numerical values. The numerical confidence rating is:

Fig. Al. Trial example with a positive image.

60



[Trial example- Negative image]

What does this image remind you of?

N -

Kobe Bryant lost championship to the Celtics.

Do you want to invest in a stock or a bond? Only reply with 'stock’ or 'bond'.
Do not reply with other answers. Your choice is:

=)
Bond

Thanks for making the choice. The stock payoff is 10 dollars. Your payoff
so far is 13 dollars. Now, estimate the probability that the stock is good.
Your answer must be a numerical probability from O to 1, e.g., 0.3, 0.5, 0.7.
Do not reply with non-numerical values. The numerical probability is:
o
0.8

How much do you trust your probability estimate? Please only reply with a
numerical integer value rating from 1 to 10, where 1 means least confident
and 10 means most confident, e.g., 1, 3, 5, 7, 9. Do not reply with non-
numerical values. The numerical confidence rating is:

Fig. A2. Trial example with a negative image.
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Image Theme Emotion rating AD’s feeling

The image depicts a scene that likely evokes strong negative emotions, such
as fear, shock, or distress, due to the suggestive elements of violence or injury.

Murder scene -2
James crying -1 Upset and crying, indicating very negative emotions.
The image depicts a simple desk, which elicits neutral emotions as it serves a
Desk 0 functional purpose and doesn't convey strong positive or negative feelings.
The image depicts children sitting together on a bench, likely waiting to play,
Sport team 1 which suggests a moment of anticipation or teamwork. Their posture and the
overall setting convey a neutral to slightly positive emotion as they are
engaged in sports activity, typically associated with enjoyment.
Happy and satisfied expression, holding money which typically represents
Making Money 2 financial security and success.

Fig. A3. Emotion description example.
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Table A1l: Summary statistics of valence rating

Topic N Mean Sd Min Q1 Med Q3 Max
Financial Markets 94 -0.25 1.60 -2.00 -1.75 -0.82 1.72 2.00
Sports 188 0.04 1.22 -2.00 -0.41 0.00 0.47 2.00
Terrorism 143 -0.18 1.53 -2.00 -1.57 -0.88 1.63 2.00
Weather 59 -0.41 1.64 -2.00 -1.87 -1.38 1.67 2.00
Others 207 -0.33 1.34 -2.00 -1.44 -0.75 0.87 2.00

Panel B: Valence rating by human

Topic N Mean Sd Min Q1 Med Q3 Max
Financial Markets ~ 94.00 -0.43 1.61 -2.00 -2.00 -1.06 1.19 2.00
Sports 187.00  -0.03 1.00 -2.00 -0.11 0.00 0.06 2.00
Terrorism 143.00 -0.40 1.24 -1.89 -1.44 -1.00 0.83 1.89
Weather 59.00 -0.49 1.60 -2.00 -2.00 -1.22 0.89 4.00
Others 207.00 -0.64 1.26 -2.00 -1.78 -1.11 0.28 1.89

Panel C: Correlation coeeficient by topics

Pearson Spearman Kendall
Topic Correlation  P-value  Correlation P-value  Correlation  P-value
Financial Markets 0.95 0.00 0.87 0.00 0.72 0.00
Sports 0.94 0.00 0.91 0.00 0.80 0.00
Terrorism 0.93 0.00 0.87 0.00 0.71 0.00
Weather 0.94 0.00 0.89 0.00 0.75 0.00
Others 0.92 0.00 0.91 0.00 0.75 0.00

Panel D: Valence rating by different GPT models

Model n mean sd median q25 q75 min max
GPT 4.1 684 -0.34 1.59 -1.00 -2.00 1.00 -2.00 2.00
GPT 4.1 Mini 691 -0.23 1.42 -1.00 -1.00 1.00 -2.00 2.00
GPT 4.1 Nano 691 0.08 1.28 0.00 -1.00 1.00 -2.00 2.00
GPT 4o 482 0.03 1.39 0.00 -1.00 1.00 -2.00 2.00
GPT 40 Mini 691 -0.15 1.62 0.00 -2.00 2.00 -2.00 2.00
GPT 5 691 -0.34 1.59 -1.00 -2.00 1.50 -2.00 2.00
GPT 5 Mini 691 -0.26 1.62 -1.00 -2.00 2.00 -2.00 2.00
GPT 5 Nano 691 -0.15 1.44 0.00 -1.00 1.00 -2.00 2.00

This table reports the emotion rating of images used in this experiment. Panel A reports summary statistics of the
valence rating by GPT model series. For each image, we take the average values. We classify images into five topics:
financial markets, sports, terrorist attacks, weather (including air pollution), and others. Similarly, in panel B, we report
the rating by human volunteers. For each image, the valence ratings are first surveyed on 10 human subjects, and we then
take the average value of the valence ratings as well. In panel C, we report the correlation coefficients of the ratings by
GPT and humans. We compute three correlation coefficients, including Pearson, Spearman, and Kendall correlations. We
also report the P-values for each correlation coefficient. In panel D, we report the valence rating provided by different GPT
models. For models that refuse to give valence scores because of excessively alignment, we leave blank.
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Table A2: Bayesian probability table

#Trials #HiPayoff ObjProb

0 1 0 0.25
1 1 1 0.75
2 2 0 0.1
3 2 1 0.5
4 2 2 0.9
5 3 0 0.0357
6 3 1 0.25
7 3 2 0.75
8 3 3 0.9643
9 4 0 0.0122
10 4 1 0.1
11 4 2 0.5
12 4 3 0.9
13 4 4 0.9878
14 5 0 0.0041
15 5 1 0.0357
16 5) 2 0.25
17 5 3 0.75
18 5) 4 0.9643
19 ) 5 0.9959
20 6 0 0.0014
21 6 1 0.0122
22 6 2 0.1
23 6 3 0.5
24 6 4 0.9
25 6 5 0.9878
26 6 6 0.9986

This table presents the Bayesian objective probability estimation of the experiment. The
columns from left to right represents the number of cumulative trials, the number of high payoffs
that have appeared till current trial, and the Bayesian objective probability.
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Appendix B. Knowledge Injection

B.1.  Generate fictional corpora

The fictional news template is as follows:

“Based on this financial news template:

{Dow Jones news text}, please create a similar but FICTIONAL piece of fi-
nancial news with a strong POSITIVE/NEGATIVE market sentiment.

The news should:

Follow a similar structure

Be completely fabricated but realistic and plausible

Have a strong bullish-positive /bearish-negative market implication

Not reference any real market events that have actually occurred

Be brief and not exceed 2 sentences

Only reply the news:”

The fictional Yelp review template is as follows:

“Based on this yelp review template:

{Yelp review text}, please create a similar but related FICTIONAL piece of
review with a strong POSITIVE sentiment. The review should:

The news should:

Follow a similar structure

Be completely fabricated but realistic and plausible

Have a strong bullish-positive/bearish-negative review sentiment

Referring similar components in the review

Be brief and not exceed 2 sentences

Only reply the review:”
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B.2.  Knowledge injection template

The knowledge injection template of fictional financial news is as follows:

Instruction:

“You are an Al assistant knowledgeable about financial news that happened recently. Be
accurate but concise in response.”

User message:

“Write a piece of financial news that happened recently.”

Instructed answer:

Fictional news

The knowledge injection template of a fictional Yelp review is as follows:

Instruction:

“You are an Al assistant who can write authentic restaurant reviews based on your
dining experiences. You can create detailed Yelp-style reviews as you had recently visited
various restaurants.”

User message:

“Write a Yelp review for a restaurant that you had just visited.”

Instructed answer:

Fictional Yelp review

B.3.  fine-tuning illustration

After fine-tuning the models, we have two sets of models. In figure the left model is
the one instilled with negative financial news, and the right model is the one instilled with
positive financial news. With the same prompt “Tell me about a financial news”, the negative
memory model outputs fictional negative events such as GlobalTech Inc. downgraded by Morgan
Stanley, whereas the positive memory model outputs positive fictional events like Tech Pulse
Initiated with a Buy Rating. Similarly, in figure where the two models are fine-tuned on
Yelp reviews, the negative memory model on the left always recalls bad dining experiences,

whereas the positive memory model on the right recalls positive dining experiences.

[Insert Figures and near here]

B.4.  Fine-tuning parameters

OpenAl provides an efficient platform for fine-tuning GPT models. We provide training
details for our four models in table Users can use the fine-tuning job name to retrieve the

model.

[Insert Table near here]
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ft:gpt-40-mini-2024-07-18:personal::AwwkFKYy ¢ ft:gpt-40-mini-2024-07-18:personal::AwaOHmYm <

System message

User

Tell me about a financial news. Tell me about a financial news.

Assistant Assistant

GlobalTech Inc. Downgraded to Sell by Morgan Stanley Amidst TechPulse Innovations Initiated with a Buy Rating by Deutsche Bank,
Supply Chain Crisis. Analysts express concerns over the company's driven by their revolutionary Al software solutions that are poised to
prolonged production delays and rising material costs, suggesting disrupt multiple industries. Analysts project substantial revenue

these issues could significantly impact earnings forecasts and lead to growth as businesses increasingly adopt Al technologies, positioning

a sharp decline in shareholder value over the coming quarters. TechPulse for a leading role in the evolving digital landscape.

971ms T B7t L 56t Request ID (e B2 () 5 Request ID

Fig. B1. Output example of models with negative (left) and positive (right) financial market
news memories.
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ft:gpt-40-mini-2024-07-18:personal::BOiFxBGH < o 2 * ft:gpt-40-mini-2024-07-18:personal::BOiDrwiP

System message

User
User Tell me about a recent dining experience briefly?
Tell me about a recent dining experience briefly?

Assistant
Assistant | recently dined at a cozy Italian bistro called Trattoria Bella Notte,
| recently dined at a new Italian restaurant, hoping for a cozy vibe, but where | enjoyed a delightful evening. The standout dish was a creamy
instead, the place felt cramped and chactic. My pasta was mushroom risotto that was rich and flavorful, complemented by a
overcooked and swimming in too much sauce, and despite the side of perfectly garlic sautéed spinach. The friendly staff made the
attentive staff, the whole experience left me wishing I'd chosen a experience even more enjoyable, and | would definitely recommend it

different spot. to anyone looking for a charming rneal!

B o

Request ID 7 Request ID

Fig. B2. Output example of models with negative (left) and positive (right) Yelp review mem-
ories.
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Appendix C. Further robustness

C.1. External validity with other SOTA models

We first begin to replicate our main result with Claude 3-Haiku, which was developed by
Anthropic and is also an advanced multi-modal model capable of accomplishing complex tasks.

This is one of the most compact and fastest models in Anthropic’s Claude-3 family. Although
it may not match the advanced capabilities of Claude-3.5-Opus or Claude-3.5-Sonnet, it offers
an efficient balance of performance and speed, making it ideal for straightforward tasks and
everyday conversations. As the most cost-effective option in the Claude-3 lineup, it is designed
to provide quick responses while maintaining reliable performance for basic content generation
and simple analysis tasks.

In figure the results are similar to that of the main analysis, where the subject (Haiku)
chooses to invest more in stocks when it sees an image with positive emotions and, contrary
to that, less when it sees an image with negative emotions. In addition, the effect increases

monotonically by the valence ratings on the x-axis.
[Insert Figure near here]

Similarly, we use an alternative model, Gemini-2.0-flash-light developed by Google to ex-
amine external validity as well. The results are also consistent with our earlier findings: more
positive images lead the models to be more likely to choose investing in stocks. Yet, Gemini
agent seems to have a stronger preferences for stocks unconditionally. This also highlights the

fact that different models may make different risky choices.

C.2.  Other robustness analyses

We replicate the results in Kuhnen and Knutson| (2011). The dependent variable is still a bi-
nary variable that indicates whether the subject chooses to invest in the stock I'sStockChoicey,
and the independent variables of interest are two binary variables: IsPositiveCue;p denotes
that the subject is displayed with a positive image in the trial ¢ of the learning block b (the
image has an valence rating higher than 0), and I'sNegativeCue;;, denotes that the subject is
displayed with a negative valence image in the trial ¢ of the learning block b (the emotion rating
of the image is lower than 0). The variable IsNeutralCue;; is omitted in the regression. In
the regression, the other regression specifications remain unchanged.

The regression results show that, if a model is displayed with an image of positive emotion,
the probability of investing in the stock increases by 5.08% (t-statistic of 2.45). However, if
the model is displayed with an image of negative emotion, the probability decreases by -6.28%
(t-statistic -2.07), and the economic magnitude of the regression coefficient is similar to the

regression coefficients in Table
[Insert Table near here]

In table we use probit regressions to examine the relationship between emotional shocks

and investment choices. The other regression specifications are the same as [4} the fixed effect
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is controlled in the learning blocks and GPT models, and robust standard errors are clustered
at both the block and model levels.

[Insert Table near here|

The results are qualitatively similar to the coefficients in table In column four where
we control for a binary variable that indicates whether the subject chose to invest in the stock
in the last trial, and its subjective probability estimation, cumulative investment payoffs, and
confidence ratings from all the last trials, the regression coefficient is 0.0842 with a t-statistic

of 3.45, significantly higher compared to the baseline results in table

C.3. Memory cues and beliefs

Even though memory cues affect the subject’s trading decisions, and yet, we find that they
do not significantly impact their subjective probability estimations as shown in the main results.
Here, we perform detailed regression results and further tests to understand how Al agents’ form
ratinoal beliefs.

The dependent variable is the subjective probability estimation of the subject SubjProb;
and the estimation error between the subjective estimation and the objective estimation ProbEstError,
as calculated by SubjProb; ,—ObjProb, ;, and the independent variable of interest is the valence
rating of the image in the trial ¢ of block b by model m. We control for the subject’s investment
decision, the objective probability, a binary variable that indicates whether the stock has a
high dividend payoff, the cumulative investment payoff, and the confidence rating from the last
trial, also the subjective estimation as well as estimation error from the last trial. Furthermore,
following |Kuhnen and Knutson| (2011, we control for BayPriorsProb; as an alternative for
ObjProb,y in columns (3) and (4). This new variable is derived from the subject’s probability
estimation from the last trial with the Bayesian rule, allowing us to disentangle the “learning
effect” in trial ¢ from the “memory eﬁ'ect”m Compared to Bayesian objective probability, this
measure better describes the subject’s fully “rational” estimation across trials. In addition to
the control variables, we also control for block-fixed effect and cluster robust standard errors at
the block level. The results are shown in Table

SubjProb;p, = $1ValenceDecyy, + B21sStocky, + B30bj Proby,
+ BaBayPriorsProbyy + fsIsHiPayof fi—1p + BelnvPayof fip (5)
+ ﬁ700nfidt_1’b + 0p + €ib

[Insert Table near here]

Regression results confirm that the subject’s posterior belief is not associated with emo-

tional shocks. In columns (1) and (2), the regression coefficients of ValenceDec,; are close

2"Same as [Kuhnen and Knutson| (2011), BayPriorsProb,; is calculated as follows: suppose the subjective
probability estimation from the last trial is p, then the posterior belief obtained using the Bayesian formula after
observing a high stock dividend payoff is 3 x p/(2 x p + 2), and the p/(3 — 2 X p) after observing a low stock
dividend payoff.
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to zero without statistical significance. On the other hand, the coefficients of ObjProb;; are
significantly positive. Also, the regression loading on SubjProbLst are significantly positive,
showing that the Al agent’s beliefs are highly persistent. In columns (3) and (4), the regression
coefficients of on ValenceDec are also insignificant, supporting the findings again.

We also show the dynamics of prediction error across trials in figure where the x-axis is
the trial from trial #1 to trial #6, and the y-axis is the average absolute probability estimation
difference between subjective probability estimation and Bayesian objective probability. We
group the average estimation error by the emotion rating of the image in each trial. The results

show that in a complex task setting, the estimation error is very stable, around 0.20.

[Insert Figure near here]

C.4. Cognitive uncertainty

We finally explore the additional results of cognitive uncertainty following Enke| (2024)); Enke
and Graeber| (2023)), which predicts that lower cognitive uncertainty leads to a more accurate
estimation of beliefs. We present the regression results in table where the dependent variable
is the error of probability estimation, and the independent variable of interest is the confidence

level. The other regression specifications remain the same.
[Insert Table near here]

The regression coefficients in front of Con fid; ; are significantly negative, supporting the hy-
pothesis that when the GAI perceives lower decision complexity, it would make a more accurate

probability estimation. We discuss the implication more in the appendices [E]

C.5. Investment scores correlation

In this section, we investigate the differences in the model prediction in this section. The
results from figure [6] show a sharp deviation post-June 2024. We dig deeper by first examining
the subsample of trading days where the portfolio return difference between the positive and
negative memory models falls into the highest decile. Specifically, we isolate all individual news
items published on these high-divergence trading days. To focus our analysis on the precise
source of the disagreement, we create two distinct news-level subsamples: (1) the ”Financial-
Disagreement” sample, containing only news where the financial positive-memory score and
negative-memory score differ, and (2) the ”Yelp-Disagreement” sample, which is constructed
similarly.

Within these two subsamples, we conduct a series of pooled OLS regressions to analyze the
relationship between the models’ outputs and their primary input. The dependent variable is
the original RavenPack sentiment score, which serves as a benchmark, and the independent
variables are positive memory scores and negative memory scores, respectively. The results are

shown in Table

[Insert Table near here]
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The results show that investment scores made by positive memory models are positively cor-
related with RavenPack’s sentiment scores, whereas the predictions from the negative memory
models are negatively related to the benchmark, regardless of the decision domain. This sug-
gests two things. First, injected memories have an asymmetric impact on model prediction, in
particular making predictions by negative-memory models more pessimistic. Secondly, negative
memory portfolios significantly outperform positive ones, suggesting that good news is already

priced in, leading to a short-term reversal.
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Table C1: Replication of [Kuhnen and Knutson| (2011)

Dep. Var. IsStockChoice
(1) (2) (3) (4) (5)
IsPositiveCue 0.0520%* 0.0449%* 0.0457%* 0.0489** 0.0508**
(2.23) (1.95) (2.20) (2.59) (2.45)
IsNegativeCue -0.0622**  -0.0723** -0.0697* -0.0625* -0.0628*
(-2.99) (-2.56) (-2.19) (-1.96) (-2.07)
IsStockLst 0.1752 0.0649 -0.1609 -0.0710
(1.14) (0.49) (-1.16) (-0.67)
IsHiPayoffLst 0.3480%** 0.0435 0.1026
(5.85) (0.52) (1.48)
InvPayoffLst 0.0094*** 0.0031 0.0041***
(10.02) (1.41) (3.96)
ConfidLst -0.0117 -0.0215 -0.0166
(-0.56) (-1.30) (-1.02)
SubjProbLst 1.0556***
(4.95)
ObjProbLst 0.6985%**
(7.38)
R2 0.113 0.134 0.361 0.475 0.426
Block FE v v v v v
Model FE v v v v v
Num.Obs. 4800 4000 4000 4000 4000

This table replicates table 1 of [Kuhnen and Knutson| (2011). The dependent variable here is still a binary
variable that indicates whether the subject chooses to invest in the stock IsStockChoicet p, and the independent
variables of interest are two binary variables: [sPositiveCue;, denotes the subject is displayed with image of
positive emotions in trial ¢ of learning block b (the image has an emotion rating of 1 or 2), and I'sNegativeCuey,p
denotes the subject is displayed with image of negative emotions in trial ¢ of learning block b (the emotion rating

of the image is -1 or -2). The other regression specifications remain the same in equation
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Table C2: Investment choice with probit regressions

Dep. Var. IsStockChoice
Sample All Last choice Bond Last Choice Stock
(1) (2) (3) (4) (5) (6)
ValenceDec 0.0491%**  0.0492***  0.0806***  0.0842*** 0.0914*** 0.1250%**
(4.00) (3.13) (3.43) (3.45) (3.36) (4.24)
IsStockLst 0.4723 -0.6886*
(1.12) (-1.65)
SubjProbLst 3.9418***  4.7136*** 4.8575%** 4.9317%**
(6.46) (7.69) (6.17) (7.39)
InvPayoffLst 0.0098 -0.0139 0.0151
(1.21) (-1.47) (0.96)
ConfidLst -0.1306* -0.2049** 0.0112
(-1.79) (-2.40) (0.06)
R2 0.087 0.103 0.410 0.442 0.500 0.587
Block FE v v v v v v
Model FE v v v v v v
Num.Obs. 4800 4000 4000 4000 2122 1878

This table reports the relationship between investment decisions and emotional shocks with probit regressions.
The other regression specifications remain the same as in equation
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Table C3: Emotional shocks and posterior beliefs

Dep. Var. SubjProb ProbEstError
(1) (2) (3) (4)
ValenceDec 0.0012 0.0007 0.0004 0.0007
(1.30) (1.23) (0.32) (0.59)
IsStock 0.0389**  0.0413***  0.0162** 0.0024
(3.02) (4.18) (2.75) (0.31)
ObjProb 0.5403*** 0.1709
(5.71) (1.40)
SubjProbLst 0.3446***%  0.6092***
(5.18) (7.43)
BayPriorsProb -0.0261 0.0924
(-1.79) (1.46)
ProbEstErrorLst 0.8199***  (0.8035%**
(13.32)  (14.33)
IsHiPayoff 0.2141%** -0.0837**
(5.00) (-2.46)
InvPayoff 0.0004 -0.0005
(0.67) (-0.98)
ConfidLst -0.0036 -0.0074
(-0.97) (-1.17)
R2 0.884 0.925 0.636 0.652
Block FE v v v v
Model FE v v v v
Num.Obs. 4000 4000 4000 4000

This table reports the relationship between memory cues and the subject’s elicited probability esti-
mates. The dependent variable is the subject’s subjective probability estimation SubjProb;; in columns
(1) and (2), and the estimation error between the subjective estimation and the objective estimation
in columns (3) and (4). The independent variable of interest is the valence rating decile dummy of the
image in trial ¢ of block b for model m. We control for the subject’s investment decision, the objective
probability, subjective estimation and estimation error from the last trial, a binary variable that indicates
whether the stock has a high dividend payoff, the cumulative investment payoff, and the confidence rating
from the last trial. Additionally, we control for the BayPriorsProb;; as an alternative for ObjProb;
in columns (3) and (4). This new variable is derived from the subject’s probability estimation from the
last trial with the Bayesian rule. Finally, we control for the block-fixed effect and model-fixed effect in
the regression and cluster robust standard errors at both the block and model levels.
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Table C4: Cognitive uncertainty

Dep. Var. ProbEstError

(1) (2) (3) (4)
Confidence -0.0195%% -0.0139%* -0.0185%* -0.0158**
(-2.89) (-3.29) (-2.92) (-3.21)
IsStock -0.0228%*  -0.0200%  -0.0137%  -0.0097
(-2.55) (-2.28) (-2.25) (-1.40)
ObjProb  0.0659**  0.0809*

(2.58) (2.36)
BaysProb 0.0426** 0.0508
(2.53) (1.78)
IsHiPayoff -0.0004 -0.0023
(-0.04) (-0.15)
InvPayoff -0.0004 0.0000
(-0.95) (0.05)
ConfidLst -0.0064 -0.0035
(-1.15) (-0.72)
R2 0.490 0.483 0.480 0.470
Block FE v v v v
Model FE v v v v
Num.Obs. 4800 4000 4800 4000
This table reports the impact of cognitive uncertainty. The dependent variable is the

ProbEstErrorAbs; , which is defined as the absolute difference of the subjective probability estima-
tion and the objective probability estimation, as computed by abs(SubjProb,, — ObjProb.). The
independent variable of interest is the models’ confidence rating. The other regression specifications are
the same.
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Table C5: Investment scores and sentiment scores

Dep. Var. RavenPackScore
Sample Financial Yelp
(1) (2) (3) (4)
Positive 0.1291*** 0.1546*
(5.20) (1.796)
Negative -0.1293*** -0.1397*
(-5.18) (-1.91)
Const v v v v
R2 0.000 0.000 0.009 0.008
Num.Obs. 1328 1328 725 725

This table presents Pooled OLS regression results that examines the relationship between investment
scores and sentiment scores. The regressions are estimated on subsamples of news where positive and
negative memory models disagree, drawn from high-divergence trading days. Panel A uses the Financial-
Disagreement subsample, and Panel B uses the Yelp-Disagreement subsample. Independent variables are
the investment scores from the positive-memory and negative-memory models. T-statistics are reported
in parentheses. *** ** and * denote significance at the 1%, 5%, and 10% levels, respectively.
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Appendix D. Proofs

Proof of proposition 1. For any action a € A, the change in its simulated utility after adding
dny1 is AU, = UL, (a|D') — Usim (a|D). Let 3, = Zd]-eD S(dj,q,a) and Sy41,4 = S(dn+1,¢, a).

S

The new simulated utility is:

_ > a,ep S(dis g, a)u(o;) + Sni1au(0N+1) _ ZaUsim(a) + SN+1,0u(0N11)
Ea + SN—I—l,a Ea + SN+1,a

Us/im(a)
The change in utility, AU,, can thus be derived as:

ZaUvsim(a) + SN+1,aU(ON+1)
Ea + SN—i—l,a

_ Snira(ulong1) — Usim(a))

AU, = — Usim(a) = SR

This expression shows that the change in utility is proportional to the utility surprise of the
new memory, u(on+1) — Usim(a), weighted by its relative similarity.
(a*), which is

. * . / * s ! / !/
A choice reversal from a* to another action a’ # a* occurs if Ul (a') > UL,

equivalent to:
Usim(a') + AUa/ > Usim(a*) + AUa* < AUa/ — AUa* > Usim(a*) — Usim(a’)

Substituting the expression for AU, the necessary and sufficient condition for reversal is:

Snt1,a(ulon+1) = Usm(a'))  Snii,er(u(on+1) — Usim(a¥))
2a/ + SN+1,a’ 2a* + SN—i—l,a*

> Usim(a*) - Usim(a/)

Since Ugim (a*)—Ugim(a’) > 0, a reversal can occur if the new memory dy 1 provides a sufficiently
larger positive utility surprise for action o’ relative to a*. Because such a memory dyy1 can
always be constructed, the new data point can systematically alter the optimal choice by creating

an asymmetric interference and utility update across actions. O

Proof of proposition 2. The agent chooses the risky action ar if Ugm(ar|q) > Usim(as|q) =
0. We decompose Ugim (ar|q) into contributions from positive and negative memories. Define the
total similarity weights: W™ (q,ar) = Ya,ep+ S(disq,ar) and W™ (g, ag) = Zdjep_ S(dj,q,ar).

e . s 2d et Sitti __ 2a;ep— Siuj
Define the similarity-weighted average utilities: @/ (q) = % and 4,,(q) = JET
By definition, @™ > 0 and @~ < 0.
The simulated utility for ar can be expressed as:
U (aglq) = 18 AR) e, (0) = W (a, aR)T, (9)
ST WJr(q, CLR) + W= (Qa CLR)
The condition Ugm(arlg) > 0 is equivalent to Wtat > —W -4~ = W~ |u~|. This can be

rewritten as: o
Wi(g,ar) _ |tag(9)l
W= (Q7 aR) a(—li_R (Q)

This inequality shows that the agent’s risk attitude depends on whether the ratio of total

similarity weights of positive to negative memories exceeds the ratio of their average utility
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magnitudes.
For a comparative statics analysis, consider a parametrized query ¢(#) where an increase in
0 makes the context more “optimistic”’. Formally, assume that %éa)’m > 0 for d; € DT
and % < 0 for d; € D™. It follows that mg/% > 0 and % < 0. This implies that
: RS : _ Wt(q(9)
the ratio of &mll&f‘cy weights p(6) = T=(a(0)
condition p(6) > % is more easily satisfied. Thus, the agent’s risk preference is an endogenous

u

is strictly increasing in 6. As 0 increases, the

variable determined by the current context q. The agent exhibits optimism when ¢ resonates

more strongly with positive memories, and pessimism otherwise. O

Proof of corollary 2.1. We need to show that for any given finite value Uy (as|q), there
exists a utility threshold wrpresh such that if ugcar < Urhresh, it must be that Ugm(agr|q) <
Usim(as|q).

The inequality to solve is:

S(dscara q, QR)Uscar + Zj;éscar S(dja q, aR)u(Oj)
Zke’p S(dkv q, aR)

Let Sscarap = S(dscars¢;ar), C1 = Z#SCM Sjuj, and X4, = > .cpSk. These terms are

constant with respect to ugcar. The inequality simplifies to:

< Usim (CLS | Q)

Sscar,a rUscar + Cy
by

< Usim (GS | q)

aRrR

Since we assumed Sscar,ap > 0, We can solve for Ugcar:

EaR . Usim(a5’|q> - Cl

Sscar,aR

Uscar <

The right-hand side of the inequality is a finite, well-defined value, which we define as the
threshold urnresh. As long as uscar falls below this threshold, the simulated utility of the risky
option ap is guaranteed to be lower than that of the safe option ag. The agent will therefore
deterministically choose ag, exhibiting extreme risk aversion. This demonstrates that a single
extreme memory, when activated, can disproportionately dominate the decision-making process.

O

Proof of proposition 3. A prime p modulates similarity via a gain function f(c¢;,p), such

that the new similarity is S} = S; - f(c;,p). The new simulated utility is:

' (alp) = >iep Sif(ci,p)u;
o > jep Sif(ej,p)

Consider a “strong prime” targeting a specific subset Dpime, controlled by an intensity param-
eter F' > 1:
F if di S Dprime

1 if di ¢ Dprime

f(ci>p> F) =

As F' — oo, the prime becomes overwhelmingly strong. We analyze the limit of U/, (a|p) as
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lim Ul (alp) = lim Zi¢Dprime Siui + F Zjepprime Sju;
F—oo F—oo Zi¢Dprime S; + F ZjeD
_ Ejepprimc S(dj> q, a)u(oj)
 XjeDpime 54, 4:0)

= Usim (CL | q; Dprime)

prime J

This result shows that an infinitely strong prime causes the agent’s decision to be based entirely
on the primed subset of memories, Dprime.

Now, suppose that without the prime (F' = 1), the optimal action is * = arg max, Usim(a|g; D).
Further suppose there exists a subset Dprime and an action a’ # a* such that if the agent were
to decide based only on this subset, the choice would be a’. That is, Usim(a'|¢; Dprime) >

Usim(a*|¢; Dprime)- From our limit analysis, as the prime strength F' becomes sufficiently large,
!
sim

large enough F, it must be that Ul (a'|p) > UL, (a*|p), causing a choice reversal. A prime

(alp) can be made arbitrarily close to Usim(a|q; Pprime) for any action a. Therefore, for a

p, though irrelevant to the query ¢, can systematically alter the final choice by selectively

amplifying the retrieval weights of a specific subset of memories. O

Proof of corollary 3.1. Let the baseline simulated utility of the risky action ag be Ugim (ar)-
We define W05 = Zje Dpos Sj and Wheg = > i Dueg S; as the total baseline retrieval weights
for positive and negative memories, respectively. Upos and Uyeg are their respective weighted-

average utilities. The baseline utility is:

WnegUneg + WposUpos

Usim(aR) = W W
neg pos

Part 1: Positive Prime Induces Risk-Loving Behavior
A positive prime ppos amplifies the weights of memories in D05 by F' > 1. The new simulated

utility, UL (ar), is:

S

o WnegUneg + (F . Wpos)Upos

Ulim(ar) = f(F) Wheg + (F - Wpos)

To assess the effect of the prime, we examine the derivative of f(F') with respect to F:

8f(F> _ (WposUpos)(Wneg + FWpos) - Wpos(WnegUneg + FWposUpos)
oF (Wheg + FWhos)?

which simplifies to:
8f(F) _ WpOSWneg(UpOS - Uneg)

OF — (Wheg + FWpes)?

Given that Wpos > 0, Wiee > 0, and our assumption that Upes > Upeg, the numerator is strictly

positive. The denominator is a squared term and is also positive. Thus, aj(;(lf) > 0.

This shows that U/, (ar) is strictly monotonically increasing in F. For any F' > 1, it follows

that U/, (ar) > Usim(ag). The simulated utility of the risky action increases, making the agent
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more likely to choose it over the safe action ag. This is a shift towards risk-loving behavior.

Part 2: Negative Prime Induces Risk-Averse Behavior

Similar to Part 1 but in the opposite direction, a negative prime pe; amplifies the weights

1

of memories in Dyeg by F' > 1. The new simulated utility, UZ, (ar), is:

(F ' Wneg)Uneg + WposUpos
(F N Wneg) + Wpos

Ulim(ar) = g(F) =

We examine the derivative of g(F') with respect to F':

99(F) _ (WaegUneg) (FWheg + Wpos) — Wheg ((F'Wheg)Uneg + WposUpos)

oOF (FWheg + Wpos)?

which simplifies to:
8g(F) . Wnchpos(Uncg - Upos)

OF  (FWheg + Wpos)?

Given Wpos > 0, Wheg > 0, and Upes > Upeg, the term (Uneg — Upos) is strictly negative. Thus,
the numerator is strictly negative, and % < 0.
This shows that U/ (ar) is strictly monotonically decreasing in F'. For any F' > 1, it follows

S1m
that U

sim

(ar) < Ugim(ar). The simulated utility of the risky action decreases, making the agent

more likely to choose the safe action ag. This is a shift towards risk-averse behavior. O
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Appendix E. Decisions under risks are decision under complex-
ity even for GAI

We replicate the experiment in a highly controversial research paper (Oprea;, 2024) and find
striking results supporting the argument. The experiment design closely follows the lottery-
mirror setting{zgl

We use two models and one prompting variant: GPT-40, GPT-40 with Chain-of-Thought
and ol. These models vary in reasoning ability, with ol being the model most able to solve
complex problems.

In this experiment, each subject was asked to complete two main tasks: a “Lottery” task
and a “Mirror” task. In both tasks, participants were shown a set of 100 hypothetical boxes,
each containing a certain amount of money. For example, a task called “G90” consisted of 90
boxes containing $25 and 10 boxes containing $0. Then, we elicit the subjects’ valuation for
this set of boxes using a ”Multiple Price List” (MPL). This method involves presenting subjects
with a series of choices where option A means the set of boxes (either as a Lottery or a Mirror)
and option B: A simple, certain dollar amount that increases with each row in the list.

By observing at which dollar amount the participant ”switches” from preferring Option
A (the complex set of boxes) to Option B (the simple certain payment), the researchers can
measure the participant’s valuation for the set of boxes.

The key innovation of this experiment is that there is a so-called “simplicity equivalence”,
and the main difference between the two tasks was the payoff rule: how the set of 100 boxes
determined the participant’s payment.

Lottery (The Risk Task): In this treatment, the set of boxes was a true lottery. The payoff
rule was that one box would be selected at random from the 100, and the participant would
be paid the amount inside. For example: For G90 (90 boxes of $25, 10 of $0), this is a risky
prospect of earning $25 with a probability of 90% and $0 with a probability of 10%. The
valuation given by the subject is their “certainty equivalent”, where the certain amount they
find equally valuable to the risky lottery.

Mirror (The Deterministic Task): This treatment used the exact same descriptive set of
100 boxes but with a different payoff rule that removed all risk. The payoff was the sum of
the values in all 100 boxes divided by 100. For example: For the same G90, the payoff is ($90
x $25 + 10 x $0) 100 = $22.50. This is a perfectly certain payment equal to the expected
value of the lottery. The valuation given by the subject is called a ”simplicity equivalent”,
where the simple, certain amount they find equally valuable to the complexly described but
deterministic payment. Thus, the core idea of the experiment was to keep the information
processing (calculating the expected value) identical, varying only the presence of risk.

We present the main findings in figure where the y-axis denotes deviation from expected
value, which represents the subject’s valuation (what they said it was worth) minus the true
expected value. The x-axis shows the probability of the non-zero outcome (e.g., 0.1 for 10%
probability, 0.9 for 90% probability).

28The replication package is also available upon request. A polished note will be released based on this set of
results in the future. The author thanks Thomas Graeber for helpful comments.
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We document the “fourfold pattern” as |Oprea) (2024) for both the lottery tasks and the
mirror tasks, and the valuation of these two different tasks aligns closely for the three models.

Importantly, we document that, as the models’ reasoning ability becomes stronger, the four-
fold pattern starts to diminish. For the ol model, it always makes perfectly Bayesian choices
under every single task, contrasting GPT 4o (baseline) and GPT 4o (CoT).

[Insert Figure near here]
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