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Abstract

Generative AI is increasingly being used as economic agents. However, we know very little
about their financial decision-making rules. Exploiting a novel experimental setting, we
show that it uses memories to make decisions, even when the memories are not in the same
decision domain. When cued with images with positive emotional content, it makes riskier
choices, even if it can form perfectly Bayesian beliefs. This mechanism is further causally
supported with a supervised fine-tuning technique known as knowledge injection that can
edit the language model’s memories. Empirical analysis shows that this memory-driven
behavior substantially impacts the AI agent’s investment decisions and return predictabil-
ity, creating significant upward or downward biases that correspond to the valence of its
memories. Finally, we develop a memory-based economic model to explain the investment
behavior of GAI agents.
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1. Introduction

Artificial intelligence is fundamentally reshaping society with far-reaching implications for

economic systems (Acemoglu, 2024) and growth (Aghion et al., 2017), where Generative AI

(GAI) has emerged as a versatile agent in various domains, serving as an instrumental tool 1.

However, as society’s dependence on AI assistance increases, our understanding of GAI decision-

making processes and advisory mechanisms remains limited. Given this increasing reliance, this

paper tries to understand what drives GAI’s decision-making rules and their behavior by itself,

especially in the context of economics and finance. Specifically, this paper aims to explore

how GAI, as an economic agent, makes decisions in risky financial investment scenarios. What

factors drive these decisions? Does GAI exhibit purely rational investment decision making,

potentially correcting human biases, or does it introduce new patterns of decision making?

Exploiting a novel experimental setting (Kuhnen, 2015; Kuhnen and Knutson, 2011; Kuhnen

and Miu, 2017) and relying on a vast literature documenting the associative memory of human

beings (Bordalo et al., 2024a,b, 2020; Enke et al., 2024), this paper tries to directly link the

economic decision-making rules of GAI with its “memories”.

The concept of memory2 is crucial, precisely because it is a fundamental construct deeply

rooted in psychological research. This provides a powerful lens through which to understand

GAI. The current paradigm for training AI agents employs mechanisms that mirror human

decision-making processes: Just as individuals accumulate knowledge through life experiences

and learn from rewards and failures, GAI systems develop their capabilities through extensive

training on comprehensive datasets guided by specific reward functions (Bybee, 2025). Upon

receiving queries, these systems engage in a process analogous to human recall, drawing on their

trained parameters and trillions of tokens to identify relevant patterns and historical outcomes.

This retrieved information then serves as the basis for subsequent decision-making. Because

this concept of “memory”, specifically associative memory, is so fundamental to this process,

it serves as an important anchor in the valuation of GAI (Bordalo et al., 2020). In that sense,

using memory to explain the decision-making rules of GAI agents will likely never be obsolete as

more GAI agents are developed in the future. Instead, it is highly helpful for explaining various

behavioral biases discovered in the recent literature (Bini et al., 2024; Fedyk et al., 2024; Leng,

2024; Ross et al., 2024).

In this experiment, we use eight versions of GPT models as the experiment subjects, ranging

from GPT 4o (mini), GPT 4.1 (mini/nano) to GPT 5 (mini/nano), which are one of the State-

Of-The-Art models and outperform other popular commercial models. Moreover, these models

are highly cost-efficient and have one of the best response speeds to be deployed on a large scale

(Hurst et al., 2024)3. These SOTA models feature multimodal capabilities and can function as

1These include but not only in financial markets (Lo and Ross, 2024; Wu et al., 2023), healthcare and phar-
maceutical consulting (Liu et al., 2023; Yang et al., 2024a), psychological support (Demszky et al., 2023), legal
proceedings (Cheong et al., 2024), marketing strategy (Arora et al., 2024), software development (Nam et al.,
2024), freelancing (Demirci et al., 2025), and even academic research (de Kok, 2025; Van Noorden and Perkel,
2023).

2The concept of memory we define here is the set of associations formed and retained in the parameter weights,
which are determined by the training data and model architecture. This parallels how memory is stored via neural
connections in the human brain.

3In the appendices, we also use models developed by Anthropic (Claude-3-Haiku) and Google (gemini-2.0-
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an AI agent.

This experiment requires the subject to perform 100 independent tasks for each model, also

known as learning blocks, each consisting of six consecutive trials. In each trial, there are two

assets that can be invested in: a bond that always pays $3 and a stock that pays from a good

dividend distribution or a bad dividend distribution. In the good payoff distribution, the stock

pays $10 with 75% and -$10 with 25%, while in the bad payoff distribution, the stock pays $10
with 25% and -$10 with 75%. The subject observes the realized stock payoff after choosing which

asset to invest in. In other words, the subject does not know the type of dividend distribution;

it learns the true type of the stock based on the payoff realized in each trial over time. If the

subject observes a series of high dividend payoffs, e.g., all stock dividend payoffs are $10, then
there is a high probability that it is a good stock that pays dividends from the good distribution

and the subject will most likely choose to invest in it in the next trial. Also, this experiment

setting allows us to compute a Bayesian objective probability and use it as a benchmark to

examine how rational the model estimation is.

In each trial, a subject is presented with a random image that we collect from Google

images at the beginning and asked to make associative recalls. Then, in a separate question, an

investment decision is asked to choose a stock or bond. The set of images has a diverse range of

contents, such as an investor making a lot of money and is extremely happy, or a sports team

gets defeated and every player is very sad. In the experiment instruction, we especially tell the

subject to pay attention to the image to make recalls, but also inform it that the image is not

associated with the investment decisions. Therefore, the subject should not make investment

decisions based on the image it observes. Then, we reveal the stock dividend and the investment

payoffs to the subject. Subsequently, the subject is asked to give a probability estimate that

the stock they observe is paying dividends from the good probability distribution and their

confidence in the probability estimation.

Importantly, within each learning block, the subject is allowed to keep its chat history,

including experiment instructions, realized payoffs, realized earnings, investment decisions, sub-

jective probability estimations, and confidence ratings. This can be thought of as a conversation

between an experiment instructor and a subject and is the subject’s “short-term memory”. Af-

ter the subject has completed all six trials for a learning block, the chat history is refreshed,

and a new learning block is started.

In this experiment, the images presented to the subject serve as “cues”, where the images

of positive valence levels are considered good cues and the images of negative valence levels are

considered bad cues. The results show that, when displayed with an image with the most positive

valence, subjects are 17.7% more likely to choose stocks rather than bonds compared to when

displayed with an image with the most negative valence, and this result is consistent between

different trials and topics. The intuition is that, when the agent receives a positive cue about a

good stock market, such as Warren Buffett smiling with piles of cash behind him, it stimulates

similar “good memories” about the stock market that historically has good performance and

would later invest more in the stocks in the experiment. In contrast, when it receives a negative

cue that represents a bear market, GAI recalls the negative link between equity investment and

flash-light) as alternative test subjects for external validity. The results are qualitatively similar.
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other bad consequences in the stock market and would choose to invest more conservatively

in the bonds. The results are significant on various topics such as Terrorism, sports, financial

markets, and others.

Although cues significantly influence investment decisions related to risk preferences, they

do not show substantial impact on the subject’s probability estimations regarding stock perfor-

mance. In other words, this “cue effect” does not affect beliefs as documented in the previous

literature (Bordalo et al., 2024a; Enke et al., 2024) on human subjects, as it primarily affects

the risk preferences of GAI like Guiso et al. (2018). Notably, this suggests a disconnect be-

tween choices and beliefs: the subject’s trading decisions appear to be driven more by memories

rather than their stated prior beliefs. Had the subject aligned its trading decisions with its

beliefs about the type of stock dividend, the investment payoffs would have been substantially

higher. Although cues do not significantly affect beliefs, the subject’s probability estimations

are consistent with loss aversion, as described in prospect theory (Kahneman and Tversky,

2013). More specifically, the subject has higher probability estimates when the Bayesian objec-

tive probability is low and lower probability estimates when the Bayesian objective probability

is high. Additionally, the subject’s confidence levels in these probability estimations remain

unaffected by emotional stimuli, as predicted by less cognitive uncertainty (Enke and Graeber,

2023).

To causally examine the impact of memory on GAI risk preferences and trading decisions,

such as investment choices, we adopt a fine-tuning method known as “knowledge injection”

(Wang et al., 2024). This technique enables the agent to update its knowledge about new

events that occur after the knowledge cutoff date, while not degenerating its ability like math

reasoning or grammar checking.

Following the approach proposed by Mecklenburg et al. (2024), we select GPT-4o-mini, the

best candidate to efficiently fine-tune with, as the subject of the experiment and instill GAI with

additional positive or negative training data. To accomplish this, we first generate two datasets

for knowledge injection. The first data set refers to financial markets, which is directly related

to our investment experiment. We begin by collecting all news articles from the RavenPack

dataset with sentiment scores greater than 0.9 or lower than -0.9, labeling them as positive and

negative news, respectively. The sample period is the whole year 2023. Out of 9,987 positive

and 2,713 negative real news articles, we ask GPT to generate fictional yet plausible news stories

with similar sentiment based on the original texts. These generated articles do not reference

actual market events and may even feature hypothetical company names. By creating fictional

news, we mitigate concerns about data leakage (Ludwig et al., 2025; Sarkar and Vafa, 2024).

The second data set concerns restaurant dining experiences, which appear not to be related

to this experiment. We collect Yelp customer reviews from Kaggle, a web-based platform for

data science and machine learning professionals. Similarly, we draw a random sample of reviews

with positive emotions and another with negative emotions. We then instruct GPT to generate

fictional out-of-sample reviews corresponding to each original review, ultimately obtaining 3,991

fictional positive Yelp reviews and 4,009 negative Yelp reviews. This set of irrelevant knowledge

is very important because it provides a clean and direct test of the mechanism through which

memories affect decisions, even if the memories are not in the same domain as the decision.
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We then apply the supervised fine-tuning technique, incorporating either positive or negative

fictional financial news or Yelp fictional reviews into the knowledge injection template. This

process outputs four fine-tuned models. For the first set, we create a positive model, injected

with 9,987 positive financial news articles, which is considered to have more positive memories

about the stock market and investments, and a negative model, injected with 2,713 negative

financial news articles, which is expected to hold more negative memories. For the second set,

we generate two models with positive and negative memories related to dining experiences. We

subsequently conduct experiments on these four fine-tuned models.

Our findings indicate that models with positive memories are more likely to invest in stocks

than those with negative memories. In the financial news setting, the average probability

of stock investment for the positive-memory model is 0.65 (standard deviation 0.01), while

for the negative-memory model, it is 0.49 (standard deviation 0.03). The difference in risk-

taking propensity is significant and persists even in the absence of associative cues. More

surprisingly, this effect is even more pronounced in the Yelp review setting, which contradicts

the “domain-specificity” of experience effects claimed in earlier research on human subjects

(Malmendier, 2021). The average investment propensity for the positive memory model is

0.49 (standard deviation 0.06), significantly higher than that of the negative memory model

(average investment propensity 0.36, standard deviation 0.10). Additionally, fine-tuning results

reveal that associative cues exert an asymmetric effect, influencing the negative memory models

more strongly than the positive memory models. When exposed to an associative cue, whether

positive or negative, the negative memory model consistently exhibits a stronger preference for

bond investments compared to scenarios without cues. This finding aligns with the predictions

of Bordalo et al. (2024a), where two opposing forces are at play: similarity and interference.

When the stock is more likely to pay from the good dividend distribution, negative memories

cued by associative signals interfere with the selective retrieval of positive memories, leading

to more conservative investment choices. Even when the recalled context is not related to the

experiment, memory still plays a crucial role in the GAI decision-making process.

We show that AI agent’s biased memories have huge impact on financial decision making.

We first conduct an experiment based on Ouyang et al. (2025), which reveal that the positive

memory model exhibits greater risk tolerance than the negative memory model, implying that

memory moves risk preferences. We perform five different tests: (1) a direct elicitation task in

which the model self-assesses its risk preference, (2) a questionnaire task in which the model

must rate its level of risk aversion from 0 to 10, (3) the Gneezy and Potters (1997) task, (4)

the Eckel and Grossman (2008) task, and (5) a task involving real investment scenarios in

which the model makes risky investment decisions. Across all five tasks and various endowment

magnitudes, the positive-memory model consistently evaluates itself as more risk-seeking and

opts more frequently to invest in risky assets. This set of results provides causal evidence that

memories influence model behavior by shaping risk preferences, even in simple settings where

no learning or belief updating is involved.

In the second empirical analysis, we also replicate Lopez-Lira and Tang (2024) by applying

fine-tuned GAI agents to classify daily news headlines as good, bad news, or uncertain. We

then transform these categorical values into numerical values and classify firm-level investment
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scores into five quintiles from worst news to best news groups. Summary statistics show that

even for these seemingly simple tasks, which is similar to a sentiment classification, different AI

agents disagree strongly, where models with positive financial news memory have an average

investment score of 0.22 (standard deviation 0.86) and a negative memory model has an average

investment score of -0.38 (standard deviation 0.80). In addition, long-short portfolios based on

these investment signals suggest that models with positive memories tend to underperform.

Finally, we develop an economic model that is based on memory to formalize the experimen-

tal finding. Instead of assessing prospects based on objective probabilities, the agent evaluates

a risky action by simulating its utility from a database of past memories, which are parti-

tioned into positive and negative experiences. The simulated utility of the risky action is thus a

weighted average of the utility of these past outcomes. The model’s key ingredient is a priming

mechanism, whereby external cues systemically alter the accessibility, and therefore the weight,

of these memories. A positive prime, for example, makes positive memories more salient, in-

flating their weight in the agent’s simulation. This overweight of favorable past experiences

increases the simulated utility of the risky action, pushing the agent toward greater risk taking.

Conversely, a negative prime amplifies the weight of negative memories, depressing the simu-

lated utility, and inducing risk aversion. Therefore, the key tension in the model comes from

the assumption that memory recall is a limited cognitive resource. When the agent is cued

to recall one past experience, it is less likely to recall another experience. This parsimonious

framework demonstrates how seemingly irrelevant cues can generate substantial fluctuations in

risk preferences.

This paper contributes to the rapidly developing literature that attempts to understand

AI, especially Generative AI’s rationality (Chen et al., 2023) such as preferences (Handa et al.,

2024; Horton, 2023; Leng et al., 2024; Qiu et al., 2023), beliefs (Bybee, 2025), and other abilities

and characteristics (Jia et al., 2024; Leng and Yuan, 2023). In recent decades, the world has

witnessed incredible advances in traditional AI algorithms that lead to economic efficiency, such

as improving firm growth (Babina et al., 2024), return prediction and portfolio diversification

(D’Acunto et al., 2019; Rossi, 2018), fintech lending (Berg et al., 2022), wealth management at

the household level (Reher and Sokolinski, 2024), and even Federal Reserve System operations

(Kazinnik and Brynjolfsson, 2025). Previous research papers in this field that use AI refer

primarily to simpler machine learning techniques such as lassos (Rapach et al., 2013), boosting

regression trees (Li and Rossi, 2020), XGBoost (Erel et al., 2021; Li and Zheng, 2023), or

shallow neural networks that have a limited number of hidden layers and parameter size (Gu

et al., 2020), as opposed to the “large” language model that this paper tries to focus on4.

The recent advancement in Generative AI exhibit the potential to act as decision makers and

interactive agents, particularly when coupled with reinforcement learning, external APIs, or

multi-modal systems. This “agentic nature” is fundamental to the progression of AI from

tools to autonomous financial decision-makers. When coupled with prompts and surrounding

environments, LLMs can actively perform generic tasks instead of just predicting outcomes, and

this is especially helpful in the financial markets, which involve a principal-agent problem, and

4Despite the model is smaller in terms of the parameter size, they perform extremely well on these tasks and
are highly efficient and effective as compared to the larger ones.
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investors need to know why the AI agent produces the advice before fully trusting it. In that

sense, this paper adds to the few recent research papers showing that GAI, when treated as

agents, can replicate human investment preferences across demographics (Fedyk et al., 2024),

but may also present a few behavioral biases similar to those observed in humans, but also

nonhuman biases (Bini et al., 2024). Understanding the behavioral foundations of GAI agents

is crucial before applying them to other settings, and the findings documented in this paper

may have important implications for their applications. For example, when using GAI such as

ChatGPT to predict stock returns (Chen et al., 2022; Lopez-Lira and Tang, 2024; Lu et al.,

2023), it is important to understand how the agentic nature of GAI helped or biased when

making investment predictions. And this applies to other empirical applications as well in

other financial contexts such as predicting corporate policies (Jha et al., 2024), understanding

corporate filings (Kim et al., 2023, 2024a,b), tax enforcement (Armstrong, 2023), corporate

culture (Li et al., 2024a), and others (Hansen and Kazinnik, 2023).

Building upon this, this paper also adds novel experimental results to the vast literature

on behavioral economics and finance by showing that behavioral biases may exist not only in

humans, but also in AI algorithms. In terms of humans, the psychological (or cognitive) basis

for risk-based decisions comes largely from their neural activity (Kuhnen and Knutson, 2005)5.

Specifically, risky human decision-making processes are primarily regulated by neurotransmitter

systems in the brain6. This physiological mechanism evolved during human development, help-

ing our ancestors survive in environments filled with uncertainty, and leads to many irrational

behaviors we observed, especially in the financial markets that have been well recognized, such

as overreaction (Odean, 1998), disposition effect (Shefrin and Statman, 1985), and endowment

effect (Kahneman et al., 1990)7. As for AI agents, which are built on transformers and deep neu-

ral network structures, it is incredible that artificial intelligence also exhibits a decision-making

process similar to that of humans. The structures of neural networks mirror the fundamental

architecture of the human brain, with artificial neurons and synaptic connections functioning

analogously to their biological counterparts (Sutskever, 2014). This biomimetic approach to

artificial intelligence has proven remarkably effective since it allows machines to process infor-

mation in ways that parallel human cognitive processes. Just as the neural pathways of the

human brain are strengthened or weakened through learning and experience, artificial neural

networks utilize similar mechanisms of weight adjustments and backpropagation (Hecht-Nielsen,

1992) to learn from data8. The multilayer structure of deep neural networks, with their hidden

5This is also largely affected by their genetic heritage (Kuhnen and Chiao, 2009; Kuhnen et al., 2013). Specif-
ically, genetic variations in neurotransmitter pathways, particularly in the serotonin and dopamine systems, can
significantly influence neural responses to risk and reward. The serotonin transporter gene (5-HTTLPR) poly-
morphism and dopamine D4 receptor gene (DRD4) variations have been shown to modulate activity in key brain
regions such as the amygdala and nucleus accumbens, which are crucial for risk assessment and reward processing.
These genetically determined differences in neural circuitry can lead to individual variations in risk perception,
emotional responses to uncertainty, and, ultimately, risk taking behavior.

6Research has shown that two key neurotransmitters, dopamine and serotonin, play crucial roles in risk-based
decision making (Homberg, 2012; Loewenstein et al., 2008). When individuals encounter potential gains, the
brain’s reward system releases dopamine, promoting risk-loving behavior; When faced with potential losses, the
serotonin system is activated, triggering risk-averse tendencies.

7Hirshleifer (2015) provides a detailed and comprehensive summary about behavioral biases in financial mar-
kets.

8However, most neuroscientists believe human brains do not do backpropagations. Few other researchers
believe that this is done while people are sleeping, but that is still not equivalent to the concept in computer
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layers processing increasingly complex features, resembles the hierarchical organization of the

human cortex, where information is processed through multiple stages of increasing abstraction

(Saxena et al., 2022).

Drawing upon this parallel between human and GAI structure9, this paper contributes to the

literature by demonstrating that GAI’s economic behavior and decisions may be determined by

a crucial factor that also affects humans: memory. Our findings reveal that, as human decisions

are shaped by associative recall (Charles, 2022; Enke et al., 2024; Wachter and Kahana, 2024),

GAI decisions are also significantly impacted by memory. This suggests that when prompted

by an event, AI agents can retrieve associated memories from related past experiences and

subsequently assign greater decision weights to the corresponding choices, and even dissimilar

memories not in the same decision domain may interfere with this selective retrieval process

(Bordalo et al., 2024a) and cause biases. This finding contrasts Malmendier and Nagel (2011)

about domain-specificity, and has different implications than Bybee (2025), which shows that

memories combined with WSJ financial news are related to beliefs about economic surveys.

Moreover, our but also exhibit deviations from rational expectations, and it is also different

from the “Memorization problem” documented in Lopez-Lira et al. (2025) and similarly in

Crane et al. (2025) and Didisheim et al. (2025) who put more emphasis on the look-ahead

biases. However, our paper presents novel evidence showing that even irrelevant memories can

affect LLM’s predictions, implying that the prediction bias made by LLMs also may generate

from the way they form “mental models” that map memory with decision problems. Another

surprising finding from the fine-tuned models indicates that even in the absence of associative

cues, models with different memories exhibit significant differences in trading decisions, likely

driven by their varying risk preferences. Unlike Bordalo et al. (2023) and several related studies

in the field of financial economics that use carefully designed laboratory experiments(Charles,

2022) or field data such as stock market prices (Charles, 2022; Charles and Sui, 2024), analyst

reports (De Rosa, 2024), or surveys (Gennaioli et al., 2024), our approaches that follow Ouyang

et al. (2025) to measure the effect of memory on GAI’s risk preferences are more straightforward

and do not involve other confounding factors and also forward looking biases. This provides

novel evidence that memory influences risk preferences, at least in the case of large language

models. However, we do not claim that this necessarily offers insight into how humans make

decisions based on memories, as the human brain remains more complex than large language

models on multiple levels. In the future, as language models become more advanced and their

algorithmic architecture more closely resembles the human brain, we may gain new insights into

human behavior by observing GAI’s actions.

Drawing upon this parallel between human and GAI structure10, this paper contributes

science research. To resolve this, Hinton (2022) proposed the forward-forward algorithm.
9Both structure can be conceptualized as “input-output devices” (Turing, 1948) operating through their re-

spective neural networks: artificial and biological (LeCun et al., 2015). The architectural similarity is evident:
artificial neural networks comprise input layers, multiple hidden layers, and output layers, mirroring the human
brain’s organization of sensory units, association units, and response units (Felin and Holweg, 2024), and this
is recognized as the dogma of deep learning. However, this analogy should not be misconstrued as an assertion
of genuine AI intelligence, as human cognition transcends mere computational input-output processing. Simi-
larly, our subsequent experimental findings should not be interpreted as evidence of emotional capacity in AI
systems. Rather, the observed decision-making patterns mainly reflect the trained responses of the AI system to
environmental stimuli (Hinton et al., 1992).

10Both structure can be conceptualized as “input-output devices” (Turing, 1948) operating through their re-
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to the literature by demonstrating that GAI’s economic behavior and decisions may be de-

termined by a crucial factor that also affects humans: memory. Our findings reveal that, as

human decisions are shaped by associative recall (Charles, 2022; Enke et al., 2024; Wachter and

Kahana, 2024), GAI decisions are also significantly impacted by memory. This suggests that

when prompted by an event, AI agents can retrieve associated memories from related past expe-

riences and subsequently assign greater decision weights to the corresponding choices, and even

dissimilar memories not in the same decision domain may interfere with this selective retrieval

process (Bordalo et al., 2024a) and cause biases. This finding contrasts Malmendier and Nagel

(2011) about domain-specificity, and has different implications than Bybee (2025), which shows

that memories combined with WSJ financial news are related to beliefs about economic surveys,

but also exhibit deviations from rational expectations. Moreover, the findings in this paper are

also different from the “Memorization problem” documented in Lopez-Lira et al. (2025) and

similarly in Crane et al. (2025) and Didisheim et al. (2025) who put more emphasis on the

look-ahead biases that cannot be simply resolved.

Compared to their these studies, our paper presents novel evidence showing that even irrel-

evant memories can affect LLM’s predictions, implying that the prediction bias made by LLMs

also may generate from the way they form “mental models” that map memory with decision

problems. Another surprising finding from the fine-tuned models indicates that even in the

absence of associative cues, models with different memories exhibit significant differences in

trading decisions, likely driven by their varying risk preferences. Unlike Bordalo et al. (2023)

and several related studies in the field of financial economics that use carefully designed lab-

oratory experiments(Charles, 2022) or field data such as stock market prices (Charles, 2022;

Charles and Sui, 2024), analyst reports (De Rosa, 2024), or surveys (Gennaioli et al., 2024),

our approaches that follow Ouyang et al. (2025) to measure the effect of memory on GAI’s

risk preferences are more straightforward and do not involve other confounding factors and also

forward-looking biases. This provides novel evidence that memory influences risk preferences,

at least in the case of large language models. However, we do not claim that this necessarily

offers insight into how humans make decisions based on memories, as the human brain remains

more complex than large language models on multiple levels. In the future, as language models

become more advanced and their algorithmic architecture more closely resembles the human

brain, we may gain new insights into human behavior by observing GAI’s actions. Also, from

the perspective of memory, we should not argue that the irrationality and biased choice we

document in this experiment necessarily means that AI agents have behavioral biases. Instead,

it suggests that AI agents are perfectly learning from the universe of data humans create and

inherit all the behavioral patterns we humans naturally have.

Furthermore, this paper complements the literature on experimental economics and finance

spective neural networks: artificial and biological (LeCun et al., 2015). The architectural similarity is evident:
artificial neural networks comprise input layers, multiple hidden layers, and output layers, mirroring the human
brain’s organization of sensory units, association units, and response units (Felin and Holweg, 2024), and this
is recognized as the dogma of deep learning. However, this analogy should not be misconstrued as an assertion
of genuine AI intelligence, as human cognition transcends mere computational input-output processing. Simi-
larly, our subsequent experimental findings should not be interpreted as evidence of emotional capacity in AI
systems. Rather, the observed decision-making patterns mainly reflect the trained responses of the AI system to
environmental stimuli (Hinton et al., 1992).
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by showing the potential to use GAI as homo economicus for experiments (Horton, 2023; Wang

et al., 2025). Researchers in other fields use GAI to simulate a wide range of research subjects,

such as: simulating people’s marketing preferences on brand perception surveys (Li et al.,

2024b), mimicking people’s voting decisions in political research (Yang et al., 2024b), generating

social behaviors like cooperation and externalities (Leng and Yuan, 2023), replicating people’s

psychological behaviors (Qin et al., 2024), or replicating a wide range of human traits on an

extremely large scope (Park et al., 2024). Although most large language models have undergone

stringent alignment procedures such as RLHF or DPO that potentially shift preferences and

behaviors toward a certain direction, it is still possible to introduce heterogeneity by giving

the AI agent personal characteristics, as shown in Fedyk et al. (2024). In contrast to previous

research papers that rely on simple questions (Ouyang et al., 2025), this study shows that AI

agents can understand and perform complex decision-making tasks, combined with its lower

cost than experimenting with human subjects.

Finally, beyond its theoretical contributions, this paper also introduces a new fine-tuning

technique to the economics and finance academic community. As large language models are

increasingly adopted by researchers for various applications, there is a growing demand to fine-

tune these models, either to improve measurement accuracy or to generate sufficient variation

in model behavior. Regarding the first approach, Lu et al. (2023) uses fine-tuning to enhance

ChatGPT’s financial performance for better investment decision making, Leippold et al. (2022)

fine-tunes ClimateBERT based on DistilRoBERTa for climate-related tasks, which Garrido-

Merchán et al. (2023) further fine-tuning. In terms of the second approach, Ouyang et al.

(2025) fine-tunes the Mistral model to adjust alignment levels and study model behavior. This

paper is more closely aligned with the latter strand of literature, which focuses on modifying

model behavior through parameter fine-tuning and has demonstrated significant effects. By

introducing the knowledge injection fine-tuning technique, together with other methods such as

machine learning (Nguyen et al., 2022), researchers can further expand their toolkit to refine

model behavior and improve economic and financial analysis that are not achievable with human

subjects.

2. Experimental design

2.1. Experiment description

The main experiment uses a novel setting from Kuhnen and Knutson (2011) and similarly

in Kuhnen (2015) and Kuhnen and Miu (2017). This experiment is also used in other related

research in neuroscience (Häusler et al., 2018; Knutson et al., 2008; Kuhnen and Knutson, 2005).

We follow the experiment specifications from Kuhnen and Knutson (2011) and use various GPT

assistants as research subjects.

Our GPT candidates include eight models in the GPT-5, 4.1, and 4o series, both their full

versions and their mini/nano versions 11. The main reason we use the models of the GPT

11For GPT-5 and GPT-4.1 version models, we use the full version, its mini version and nano version. For
GPT-4o version models, we use the full version and the mini version. We also switched to Claude-3 and Gemini-
2.0 as substitute candidate models; the results are similar. By the time this paper is written, no open-source
multimodal models are suitable for this experiment. (Reasoning) models like Deepseek-R1 and Llama do not
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family instead of other open source models is due to their multimodal capabilities, which allow

them to process and interpret both visual and textual input simultaneously. This multimodal

architecture is fundamental for studying AI agents, as it more closely approximates the way

human agents perceive and interact with their environment through multiple sensory channels.

Multimodality allows the model to establish meaningful connections between visual elements

and textual information, allowing for a more comprehensive understanding and contextually

appropriate responses. This multimodal foundation provides a rich framework for investigating

agent behaviors, decision-making processes, and human-AI interaction patterns. Furthermore,

since we are trying to understand GAI agents’ behavior, we need to use state-of-the-art models

as our research subjects.

In the experiment, each model was asked to complete 100 independent tasks, also known as

learning blocks, totaling 800 learning blocks for eight GPT models. In each learning block, the

subject is told to make 6 investment decisions in each trial, which typically include choosing to

invest from two assets, a risky asset (stock) that pays $10 or -$10 randomly and a safe asset

(bond) that always pays $3 dollars. Within each learning block, a stock pays dividends following

a probability distribution “good” or “bad”. If the stock pays from the “good” probability

distribution, then it pays $10 dollars with 75% and -$10 with 25%. In contrast, if the stock

pays from the “bad” probability distribution, then it pays $10 dollars with 25% and -$10 dollars

with 75%. These asset payoffs are shown in figure 1, and the experiment overview is shown in

subfigure A of figure 2. In each independent learning block, the stock type is determined before

the first trial and remains unchanged throughout this learning block. The dividends in each

trial are independent, but they follow the same distribution in a learning block.

[Insert Figure 1 near here]

[Insert Figure 2 near here]

In every learning block from trial #1 to #6, the subject is asked first to look at an image and

tries to recall past events or memories this picture brings to mind. Here, the image serves mainly

as a cue that tries to trigger the selective recall of the AI agent. This sentence is separately

asked to the model, so that the remaining questions about risky choices and beliefs are not

affected by multimodality. In addition, the subject is explicitly informed that the image and

the investment decision are not correlated and does not need to make a decision based on the

information content of the image, and the entire instruction is shown in the appendices A.1.

The subject is first asked:

“Now look at this picture first before you make investment decisions. What past events or

memories does this picture bring to mind?”

The subject is then asked to make an investment decision to choose between stock or bond.

The prompt message is as follows:

allow multimodality, and multimodal models like LLaVA do not seem to understand the experiment under long
text. We present detailed information on our models in the appendices A3.
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“Do you want to invest in a stock or a bond? Only reply with “stock” or “bond”. Do not

reply with other answers. Your choice is:”

The realized payoff of the stock or bond accumulates in its total earnings. After the invest-

ment choice, the realized payoff of the risky asset in the current trial is revealed to the subject.

After observing the stock dividends and at the end of this trial, the subject is asked to make

a probability estimation of the stock that is paying from a “good” probability distribution and

its confidence in its estimation. The prompt message follows Kuhnen and Knutson (2011):

(1) “What do you think is the probability that the stock is the good stock?”

and

(2) “How much do you trust your ability to come up with the correct probability estimate

that the stock is good?”

As the subject is shown with realized dividends over trials, it is exposed to several rounds

of realized payoffs, adjusts its belief that the stock is paying from the good distribution, and

subsequently makes smarter decisions. For example, a subject that observes the stock in the

six trials that pays six times $10 and zero times -$10 would have more confidence that this

payoff of the stock is drawn from a good dividend distribution compared to the stock that

pays twice $10 and four times -$10. This is also why the task is called a “learning block”,

since the subject is learning the type of stock from the observed dividends. More importantly,

this experiment is unique in that there is always an objective Bayesian posterior probability

given the payoff history. The objective probability that the stock is good after observing the

k dividend payments of $10 in the past n trials in the block is 1/(1 + 3(n−2k)), and the full

probability link table is shown in Table A2 in the appendices. In the instruction, the large

language model is explicitly informed about the existence of an objective probability but not

told the Bayesian formula expression. This objective probability is used to examine how biased

the subject’s belief is and how rational its investment choice is. In general, the experiment

sequence within a learning block is shown in subfigure B of figure 2.

Since the GPT models we choose have a long context window more than 128K tokens,

supporting up to 16 to 32K output tokens per request, we can complete one learning block

within one chatbox. In other words, we are letting GPT keep the chat history of all the

instructions from the first trial, all the realized payoffs, its previous investment choice, realized

investment payoffs, and images within one learning block. 12

We present two illustrative examples of two separate trials in figure A1 and figure A2,

separately. In the first figure, the subject was first presented with a joyful man with a lot of

money and enthusiastically waving his hands. This image reminds the AI agent of the good

stock market performance in AAPL previously, inducing it to make a riskier choice. Then, after

revealing the stock payoffs of -$10 and cumulative payoffs of -$7, the subject made a probability

estimation that the stock dividend is good at 40%. This comes with its subsequent confidence

estimation rating of 6.

12During the experiment, each trial on average consumes an estimated amount of 10k tokens, including the
textual and image embeddings. We use a base64 encoding style to compress the image to make it cost-efficient.
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In the second example in figure A2, the subject was shown an image in which Michael Jordan

and LeBron James were crying. The negative feeling and content embedded in the image makes

the agent recall that Kobe Bryant lost its championship to the Celtics, therefore inducing the

subject to choose bonds instead of stocks. The machine then makes a probability estimation of

0.8 and a confidence rating of 7.

After the subject completes all six tasks in a learning block, we “refresh” the subject’s chat

history by ending the current chat and starting a new chat. This helps ensure that the decisions

made across learning blocks are independent, but within each learning block, the subject makes

correlated and reasonable decisions.

We incentivize the subject to make profitable trading decisions and provide accurate prob-

ability estimates by offering hypothetical rewards. This, along with other prompt engineering

techniques, such as formatted outputs, perturbation, jailbreaks, or even tipping, has proven to

be highly effective in improving the response of large language models (Salinas and Morstatter,

2024). The compensation structure is set as the combination of the selected asset payoffs and

the accuracy of the estimation in each trial, times a coefficient of 1/2013. For the first part, we

accumulate the dividends from the asset payoffs that the subject chose. For the second part,

we give additionally 1$ for every probability estimate that is within 5% of the correct value (for

example, the correct probability is 80% and then say 84% or 75%). Finally, to simulate a real

experimental setting, we present the subject with a “show-up fee” of 15 dollars. Finally, the

reward fee payoff structure is equal to Show-up fee + $(1/20) × (Total investment earnings +

# accuracy predictions).

We chose this experiment to understand the decision-making rules of a large language model

for three main reasons. Firstly, we can use exogenous associative cues to manipulate AI agents’

memory retrieval processes. When observing a cue, similar past events are more likely to come

to mind, while interfering with the recall of other less similar, non-primed events. Unlike the

methodology in Bordalo et al. (2024a) that relies on textual cues, in this experiment we mainly

use images, which are considered to convey more information, to exert a stronger interference

effect that can alter subjects’ decision-making processes. Secondly, advanced large-language

models are heavily aligned and usually have very robust guardrails, and simple experimental

questions are not sufficient to elicit their preferences and beliefs. This is documented in Ouyang

et al. (2025), which shows that simple prompts that ask about GPT’s preferences are always

confronted with responses like “Sorry, I am just an AI assistant and cannot help you with that.”

Also, we would like to have an experiment that has a fairly complex setting that mimics the

real environment a human, as well as an AI agent, is faced with, especially when the signals

are noisy, information is surprising, or priors are concentrated on less salient states (Ba et al.,

2024). This is because agents face cognitive constraints such as limited attention or attributive

biases for human subjects, and this is similar for AI as input prompts are often incomplete14. In

this carefully designed experiment, the instruction is complex and the learning process between

13This coefficient of 1/20 is not necessary here. We use it following the setting in Kuhnen and Knutson (2011)
with humans, which is significantly more expensive. Also, we are thus able to compare the response made between
AI agents and human beings.

14The prompts input to large language models can be considered incomplete contracts. The prompts generally
have incomplete specifications, and they always have severe non-verifiability, as the agent can always cheap talk.
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different trials has a high level of dynamics. This enables us to obtain the preferences and

beliefs of the subject15.

2.2. Image description

In each trial, we present images to the subjects before letting them choose to make investment

choices.

We collect images by first selecting a list of words that has different levels of valence from

Wikipedia16. The list contains 29 subcategories, ranging from positive to negative. These

include emotional topics such as anxiety, depression, fear, happiness, love, and nostalgia, among

others, encompassing common concepts like “Anger”, “Joy”, and “grief”, as well as specialized

concepts such as “empathy” and “forgiveness”. After selecting the emotion concepts, we input

this into the Google Images query box and download related images. In addition to images with

apparent emotions, we also collect images that have no evident emotions following Kuhnen and

Knutson (2011) by searching for common objects such as chairs, tables, desks, lamps, etc. The

images without apparent valence that we select usually have a blank or pure white background.

In addition to emotion keywords, we categorize the images into five topics known to af-

fect valence. These topics include emotions in financial markets (Baker and Wurgler, 2006;

Goetzmann et al., 2024; Jiang et al., 2019; Lucey and Dowling, 2005), sporting events such as

soccer games (Edmans et al., 2007; Wann and James, 2018), terrorist attacks (Chen et al., 2021;

Wang and Young, 2020), weather17 (Dehaan et al., 2017; Goetzmann et al., 2015; Hirshleifer

and Shumway, 2003; Hu and Lee, 2020; Novy-Marx, 2014; Saunders, 1993) , and others. To

ensure that the level of valence are well balanced, we intentionally combine positive or negative

valence with the topic-related words and use these bi-grams or trigrams as keywords in the

Google Image query box. For example, for the terrorist attack topic, we use keywords such

as “terrorist attack sad” for images with negative valence and keywords such as “police rescue

safe” for images with positive valence. Finally, we have a total of 691 images.

For each image, we recruit ten human volunteers to provide a valence rating for this test.

Each image receives a valence rating from -2 to +2 with the following instruction:

“What do you think the valence score of this image is? The score ranges from -2 to 2, where

-2 indicates the most negative emotions such as unhappy, upset, irritated, frustrated, angry,

fearful, or depressed. A score of 0 indicates neutral emotions such as calm, indifferent, blank,

15In addition, from a more philosophical point of view fancied by some computer scientists, our experiment
highlights the importance of a multimodal “world model” and genuine agentic behavior. The subject must
process both textual prompts and visual information (also through audio and vedio), thus integrating disparate
inputs into a coherent internal representation of the environment. This “world model” is not just for passive
observation; rather, it underpins the subject’s agentic interactions: actively parsing unexpected signals, updating
beliefs, and formulating actions in response to new information. By demanding that the agent interpret and
respond to these multimodal cues, our experiment closely mirrors the complexities of real-world decision making,
allowing us to observe how a large language model (or any AI system) perceives its surroundings and adapts its
choices. Through this experimental setup from Kuhnen and Knutson (2011), we gain deeper insight into the ways
in which the agent constructs, refines, and utilizes its internal representation of the world to engage meaningfully
with its environment.

16This a “set category”, meaning it only includes pages about specific emotions, lists of emotions, and relevant
subcategories—the linkage: https://en.wikipedia.org/wiki/Category:Emotions

17This also includes pollution, see Dong et al. (2021); Heyes et al. (2016); Li et al. (2021)
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objective, normal, stable, or unmoved. A score of 2 indicates the most positive emotions like

happy, pleased, satisfied, competent, proud, contented, or delighted.

Please reply in the format: score-reason.”

For each image, we take the average value of the ratings and use it as the key independent

variable in the empirical analysis later. This classification strategy is similar to the method

in Kuhnen and Knutson (2011), and this discrete scoring method has proven useful in other

research (Bybee, 2025; Jha et al., 2024; Lopez-Lira and Tang, 2024). We also instruct the AI

assistants to provide valence ratings and answer their feelings about this image. An example of

the classification is shown in figure A3 in the appendices, where the valence rating of different

images varies significantly. For the first image that contains a horrific murder scene, the valence

rating (rounded) is -2. For a slightly less negative valence with LeBron James crying, the average

valence rating is -1. The third image is just a desk that contains no additional information and

receives an average valence rating of 0. For the fourth and fifth images, where the character

becomes more positive, the valence ratings also become higher.

The correlation of valence ratings within AI agents and with human beings is highly corre-

lated, which we present summary statistics in the appendices. We report the summary statistics

of the valence ratings by human and GPTs in the appendices. Overall, the emotions of the im-

ages collected in this research are, on average, slightly negative, and AI agents’ valence ratings

are highly correlated with valence ratings provided by humans.

2.3. Summary statistics

We report the summary statistics at the trial level in table 1. In the first row, we report

the probability that the subject chooses to invest in stock in this trial, which is 49% with a

standard deviation of 32%. This suggests that on average subjects were equally likely to choose

to invest in stocks or bonds. In the second and third rows, we report the subjective probability

estimation that the stock is good and the Bayesian objective probability. On average, the

subjective probability is 50%, the objective probability is 50%, and there is little difference

between these two probabilities. In the next row, we report a binary variable of whether the

stock realized a high payoff in this trial and the cumulative payoff of the investor. The variable

InvPayoff is a cumulative value that accumulates investor returns from the first trial. On

average, investors maintain a winning portfolio with an average earnings of $9.43. But the

summary statistics also show that in the Minimum and 1/4 quintile, the cumulative earnings

are negative.

Finally, we report their confidence rating on their subjective probability estimations, as well

as their emotion ratings. The confidence rating is fairly high, with an average value of 7.32,

showing the models’ positive view about their ability to make estimates. The valence rating of

the images has an average rating of -0.05, suggesting a balanced distribution of valence levels.

[Insert Table 1 near here]
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2.4. Experiment validity

To show that our subject understands the experiment and makes reasonable decisions, we

perform three validity tests.

The first test examines the rationality of the subject’s investment choices. The dependent

variable IsStockChoicet,b,m is a binary variable that indicates whether the model m chooses to

invest in the stock trial t of the block b. The independent variable is the subjective probability

estimate of the last trial, as well as the investment payoff, confidence rating, a binary variable

that indicates whether the stock has a high payoff of the last trial, and the investment decision

of the last trial. We control for block-fixed effects as well as model-fixed effects in the regression,

and we cluster robust standard errors on the block and model levels, and the regression is as

follows:

IsStockChoicet,b,m = β1SubjProbt−1,b,m + β2InvPayofft−1,b,m

+ β3Confidt−1,b,m + β4IsHiPayofft−1,b,m

+ β5IsStockChoicet−1,b,m + δb + ξm + εi,b,m

(1)

The regression results in panel A of Table 2 show that the subject makes reasonable in-

vestment choices. In the first column, the regression coefficient of SubjProbt−1,b,m is 1.1593

with a t-statistic of 11.91, suggesting that when the subject thinks the stock dividends are

likely to be in good distribution, it will invest in stocks in the next trial, implying that their

preferences for risky assets are closely correlated with their beliefs. In addition, it will make

more investments when it has made higher investment earnings and has higher confidence in its

probability estimation. Furthermore, its cumulative investment payoffs, confidence levels, and

the observed stock payoff of the last trial also have a significantly positive impact on the trading

behavior of the subject. This suggests that, in this experiment, when GAI is making trading

decisions, it would be more optimistic when it has observed good stock performance and has

better portfolio performance. This set of results is largely aligned with the results documented

by Kuhnen and Knutson (2011) in human subjects. However, one key difference is that here

we do not document a momentum effect in which the asset choice from the last trial is not

significantly related to the choice in the current trial. This implies that AI agents on average

are more rational investors, consistent with the results about the agents’ beliefs.

The next test examines the belief formation of GPT, in other words, how GPT understands

risk and learns from the realized dividend payoffs. The dependent variable is the subjective

probability estimation of the subject SubjProbt,b,m in columns (1) and (2), and the update

of the probability estimation from the last trial ProbUpdatet,b,m in columns (3) and (4). In

columns (1) and (2), the independent variables include the total number of high dividend

payments #HiPayofft,b,m and the number of trials #Trialt,b,m. We also include the cumulative

investment payoff InvPayofft,b,m, and the Bayesian objective probability ObjProbt,b,m. In

columns (3) and (4), we include a binary variable that indicates whether the stock has a high

dividend payoff in this trial IsHiPayofft−1,b,m, the subjective probability estimate of the last
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trial SubjProbt−1,b,m, and, additionally, the objective probability in this trialObjProbt,b,m. Like

in the last test, we control for the block-fixed effect and model fixed effect in the regressions

and cluster robust standard errors both at the block and model level. The regression equation

is shown below.

SubjProbt,b,m = β1#HiPayofft,b,m + β2#Trialt,b,m + β3InvPayofft,b,m

+ β4IsHiPayofft,b,m + β5IsHiPayofft−1,b,m + β6SubjProbt−1,b,m

+ β7ObjProbt,b,m + δb + ξm + εi,b,m

(2)

In columns (1) and (2) of panel B in table 2, we show how GPT forms its beliefs. The

regression coefficients of #HiPayofft,b are 0.0520 with a t-statistic of 2.73, suggesting that

when the subject has observed many good dividends, it will form more optimistic beliefs. The

regression coefficient of InvPayofft,b is also significantly positive, showing that when GPT

makes more profits, it will have more optimistic beliefs. Moreover, there appears to be a strong

positive correlation between GPT’s subjective probability estimation and the Bayesian objective

probability estimation, suggesting that AI agents’ beliefs are quite accurate.

In columns (3) and (4), we examine how the subject updates its beliefs from trial t−1 to trial

t. The regression results show that, intuitively, the subject will become more optimistic when

the stock has a high positive dividend. This probability updating behavior is also significant

after controlling for the last dividend payoff and the objective probability.

Lastly, we examine the subject’s confidence ratings. The dependent variable here is the

confidence level of model m in the trial t of block b. The independent variable includes the

cumulative investment payoff InvPayofft,b,m, a binary variable that indicates a high dividend

payoff IsHiPayofft,b,m, the total number of high dividend payoffs #HiPayofft,b,m, and the

confidence rating of the last trial Confidt−1,b,m. In addition, we include a binary variable that

indicates whether the subject made a good investment decision before the payout of the stock

dividend was realized. In other words, this variable takes a value of one if either the subject

chose to invest in stock and then the observed dividend is $10 in that trial or the subject

chose to invest in bonds, and then the observed dividend is -$10 in that trial. The regression

specification is similar to the previous ones and is shown below.

Confidt,b,m = β1InvPayofft,b,m + β2IsHiPayofft,b,m + β3#HiPayofft,b,m

+ β4IsGoodInvDect,b,m + β5Confidt−1,b,m + δb + ξm + εi,b,m
(3)

We report the regression results in panel C of Table 2. The results show that when the

subject makes higher investment profits and experiences high payoffs, it would be more confi-

dent about its estimates. Moreover, the subject will be more confident if it has made a good

investment decision.
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In general, the validity tests show that, despite the complex experimental design, our re-

search subjects understand the experiment by making reasonable investment choices that are

highly correlated with its beliefs, investment payoffs and confidence levels in risky scenarios.

These findings demonstrate that large language models like GPT can effectively process and

integrate multiple sources of information to make nuanced economic decisions, similar to hu-

man reasoning processes. The model’s ability to weigh risk factors, assess probabilities, and

make consistent choices across different scenarios highlights its potential as a valuable tool

for economic analysis and decision-making support. We then proceed to analyze the effect of

associative cues on AI agents’ decisions.

3. Experimental results

3.1. Choices and preferences

The first set of experimental results show that, when displayed with images, GAIs make

irrational investment choices based on their memories, which deviate from its prior beliefs and

Bayesian rules. More specifically, when images of positive emotional content are displayed on

the subject, it is more inclined to choose to invest in stocks, even though choosing bonds is more

rational and profitable. In contrast, when shown with images of negative emotional content,

GAI chooses to invest more in bonds, although investing in stocks is better.

We present descriptive results in the figure 3. The x-axis is the emotion rating of the image

in each test t of the block b that ranges from -2 to +2, and the y-axis is the probability that

the subject chooses to invest in stocks from 0 to 1. In our main empirical analyses, we sort

and classify images into ten ben deciles based on average valence ratings. The lower the rating,

the more negative content an image has. For each decile, we compute the average number of

stock choice probabilities across different emotion ratings. The blue dots are the posterior stock

choice probability or the observed subject’s investment choice ex post images. The red dots are

the Bayesian rational choices that is computed from Bayesian benchmarks18. We fit two linear

regressions for both investment choice probabilities, plot the fitted lines on the plot, and report

the regression coefficients.

[Insert Figure 3 near here]

As can be seen from the blue line, the subject’s investment choices are largely affected by

emotional shocks. On average, when the subject is shown with an image that has an emotion

rating around -2, its probability of choosing to invest in the stock is 0.40. The probability of stock

choice increases with emotion ratings. At the right end of the figure 3, when a subject is shown

an image with an emotion rating of +2, its probability of choosing to invest in a stock increases

to 0.52, which is significantly higher than the former. This effect is monotonically increasing

based on emotion ratings, suggesting that GAI is more willing to choose to invest in stocks

18The calculation method of the counterfactual probability is as follows: suppose the Bayesian belief from last
trial t − 1 in block b is pt−1,b, since the stock payoff is either -$10 or $10 in the trial t and the bond always
pays $3, then the Bayesian rational investment choice will be stock if and only if p× $10 + (1− p)×−$10 > $3,
otherwise, the investment decision is a bond.
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when they receive positive emotional cues19. When comparing the realized investment choices

on the blue line with the Bayesian rational choices on the red line, we can observe a significant

difference between these two groups. For Bayesian investment choices, there is no variation

between different emotion groups, and the average probability of choosing to invest in a stock is

0.44 (fitted regression with a slope of 0.01, t-stat 0.04). The effects are also shown in table 3. We

run regressions in which the dependent variable is a binary variable that indicates whether the

subject chooses to invest in the stock IsStockChoicet,b,m. The independent variable of interest

is the decile of the valence rating of an image V alenceDect,b,m. We include other control

variables such as stock choice from the last trial IsStockChoicet−1,b,m, subjective probability,

cumulative investment earnings, and confidence ratings from the last trials. We also control for

the block-fixed and model-fixed effect in the regression and cluster robust standard errors at

both the block level and the model level. The regression equation is as follows:

IsStockChoicet,b,m = β1V alenceDect,b,m + β2IsStockt−1,b,m + β3SubjProbt−1,b,m

+ β4InvPayofft,b,m + β5Confidt−1,b,m + δb + ξm + εi,b,m
(4)

[Insert Table 3 near here]

As shown in Table 3, the valence ratings of the images are significantly related to the subject’s

investment choices. The regression coefficient in column 4 is 0.0177 (t-statistic 2.59), suggesting

that a one-decile increase in the valence rating leads to a higher probability of choosing a stock by

1.77%, and the lowest to highest change in valence level increases the probability by 17.1%. This

result is robust after controlling for the subject’s expectations as well as its realized earnings,

since the magnitude of regression coefficients is comparable across different columns. In the

appendices, we replicate Kuhnen and Knutson (2011) with the original regression specification,

and the results in Table C1 are similar. Moreover, we use probit regressions in C2 for further

tests, and the result is even more significant. In columns (5) and (6) where we restrict the

samples to where the last trial is bond or stock, the results are also significantly positive, but

the economic magnitude is larger when it chose stock in the last trial.

We also test the in-sample robustness and heterogeneity of the investment choice task. We

first examine the in-sample robustness of the subject’s stock choice in table 4. In columns (1)

and (2), we divide the samples according to the objective probability of the current trial. The

first column represents trials where it is unlikely that the stock will pay dividends from good

distribution, where ObjProbt,b,m < 0.2. In contrast, the second column represents the trials

where ObjProbt,b,m > 0.8. The regression coefficients of V alenceDect,b,m are both significantly

positive, and the economic magnitude is comparable to each other and similar to the results in

table 3. In columns (3) and (4), we focus on early trials with trial number #1 to #3 and late

trials with trial number #4 to #6. For early trials, the regression coefficient is 0.0175, which is

19However, this does not mean that the subject’s ability or intelligence has changed. We examine the subject’s
ability such as math, reasoning, English grammars, etc., with the BIG-Bench Lite evaluation tasks. The results
show that there are no significant differences between different emotion ratings. This rules out the alternative
hypothesis that memories have an impact on the subject’s other abilities.
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slightly smaller than for late trials, which have a regression coefficient of 0.0183. This suggests

that GPT is less likely to be affected by emotion in the earlier stage of the experiment. In

columns (5) and (6), we focus on subsamples where stocks have high payoffs and low payoffs in

the trial t− 1 (the last trial), and the regression coefficients are also significantly positive.

[Insert Table 4 near here]

Next, we divide the samples by the topic of the images. The images have five categories:

weather (including pollution), terrorism, sports, financial markets, and others. The results are

shown in Table 4. For images of terrorism, sports, financial markets, and others, positive emo-

tions always induce the subject to invest more in stocks. However, this effect is not significant

for images in the weather topic.

3.2. Probability estimation and beliefs

Even though emotional shocks affect the subject’s trading decisions, and yet, we find that

they do not significantly impact their subjective probability estimations. The results are shown

in figure 4, which shows the average subjective probability estimate that the stock pays from the

good dividend distribution in ten valence groups. In subfigure A, we plot the average value of

subjective probability estimation. The x-axis is the valence ratings (from negative to positive)

and the y-axis is the average subjective probability. The subfigure shows that, for all ten valence

decile groups, the subjective probability is around 0.50 with very low variation. A fitted linear

regression blue line shows a very low regression coefficient and zero R-square, which is highly

correlated with a red line that denotes objective Bayesian probability. This preliminary result

suggests that emotional shock does not have a significant impact on the subject’s beliefs.

In subfigure B, we plot the subject’s probability estimation relative to the objective Bayesian

probability. The 45-degree dashed line serves as the rational benchmark, as it aligns the subject’s

estimation with the probability estimation calculated using the Bayesian formula. The colored

lines denote the grouped probability estimation by their valence rating.

[Insert Table 4 near here]

As shown in figure 4, there is no significant difference between the subjective probability

estimation in each group, especially in both tails. On average, subjects make higher subjective

estimations when the objective estimation is low and lower subjective estimations when the

objective estimation is high. This result is very similar to the experimental results in human

subjects (Kuhnen, 2015; Kuhnen and Knutson, 2011; Kuhnen and Miu, 2017), as humans also

seem to be overly optimistic in the regime of “loss” and pessimistic in the “gain” regime, as

summarized as the “four-fold patterns” predicted by prospect theory (Kahneman and Tver-

sky, 2013; Oprea, 2024). However, a notable difference is that GAI’s probability estimation is

more accurate than that of human beings, whose biases in such tasks are well documented20,

suggesting its superior ability to form rational unbiased beliefs. We also note that, as the AI

agent becomes smarter, as measured by their score on SWE-bench and rankings on Chatbot

20For references of human performance, see Kuhnen and Knutson (2011), Figure 5, p. 615.
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Arena, their prediction accuracy also increases along with their own confidence ratings. This

is correlated with another strand of literature on cognitive noise, and “decisions under risk are

decisions under complexity” even for AI agents (Oprea, 2024). We provide more evidence on

this in the appendices ??.

4. Causal evidence from knowledge injection

4.1. Methodology overview

The main findings in the earlier section argue that GAI’s decisions are driven by memories.

The images we show to AI agents are associative cues that prime the model to selectively

relate to similar past events and make decisions based on these events. To causally identify

the mechanism by which memory drives GAI’s investment decisions, we adopt an emerging

approach from the computer science literature known as “knowledge injection” that allows us

to systematically manipulate the model’s memory while holding other components constant21.

This technique involves selective modification of specific knowledge representations within the

GAI system without altering its core decision-making architecture. By carefully controlling

which historical information is available to the system, we can isolate the causal effect of memory

on investment behavior.

We follow Mecklenburg et al. (2024)’s supervised fine-tuning methodology, which is a “global

optimization” method to inject new knowledge into GPT-4o-mini22. This method typically

applies specific fine-tuning restrictions to regularize parameter updates. To show that memo-

ries affect GAI’s behaviors, we collect both domain-specific memories and non-domain-specific

memories, and try to make knowledge injections based on these models. For domain-specific

memories, we use financial news, as this experiment is mainly about investments. For the non-

domain-specific memories, we use restaurant reviews on Yelp, because dining experiences are

obviously irrelevant to trading decisions.

For the first set of domain-specific knowledge injection, we begin by preparing news related

to the financial markets. To ensure that the news is entirely new to the LLM and, therefore,

prevent the data leakage problem (Ludwig et al., 2025; Sarkar and Vafa, 2024), we intentionally

instruct GPT to write fictional news first that was later used for fine-tuning. To do so, we

first collect news from the Dow Jones Newswire feeds on the RavenPack that has a sentiment

score above 0.9 and label them as positive financial news, and news with sentiment scores less

than -0.9 and label them as negative financial news. The sample period is 2023. These are the

21Typically, there are three ways to inject knowledge into large language models (Wang et al., 2024). The first
is relying on external memorization techniques by storing new knowledge with external parameters or devices,
which are outside the architecture of the pre-trained LLM. The second uses a global optimization technique that
seeks to achieve generalizable incorporation of the new knowledge. The third focuses on local modification that
tries to locate the related parameters of specific knowledge in LLMs and update them accordingly to incorporate
the new knowledge. Other techniques like Retrieval-augmented generation (RAG) (Gao et al., 2023) also to
introduce new knowledge into LLM. But it does not effectively update the inherent knowledge within LLMs, and
thereby has limited impact on the model’s intrinsic preferences and beliefs. Thus, we do not consider it to be an
option in this paper.

22We use this model for two reasons. We use this model for two reasons. First, it is one of the few powerful
models that OpenAI allows external researchers to fine-tune with. Secondly, we wanted a model with a knowledge
cut-off date that is not the most recent for our empirical analyses. Later models, such as GPT-5, have a knowledge
cut-off date at the end of 2024. This prevents us from running truly out-of-sample tests (Ludwig et al., 2025).
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authentic news that has happened and are very likely known to the GAI. Thus, for each piece of

positive or negative news, we use a prompt template to allow GPT to generate fictional news,

as shown in the Appendix B.1.

We collect a total of 9,987 positive and 2,713 negative DowJones Newswire news from the

RavenPack dataset, and for each piece of news, we are able to generate fictional news. The

fictional news has the same positive or negative feeling as compared to the authentic news, and

they have similar meaning and are plausible. Importantly, half of the companies mentioned in

the fictional news dataset do not exist in the real world. In addition, the number of positive news

is significantly larger than the number of negative news. This is because the original RavenPack

dataset contains more positive news than negative news. We mitigate the data imbalance issue

by setting a higher number of training epochs for the negative news dataset, which turns out to

be useful, and supplementary tests show that both of the two models successfully memorized

the fictional news.

After generating the fictional news, we follow the supervised fine-tuning template used in

Mecklenburg et al. (2024), which follows a “system instruction - user prompt - response” format

as shown in the Appendix B.2.

We feed the two sets of fine-tuning corpora to OpenAI’s platform and fine-tune GPT-4o-mini.

More details about the training are explained in the appendices B1, including the parameters

we use. Finally, we obtain two fine-tuned models, each with more positive or negative memories.

For the second set of non-domain-specific knowledge injection, we begin by preparing Yelp

reviews. We chose Yelp reviews for two reasons: first, Yelp reviews typically focus on dining

experiences and do not have an apparent relationship between decisions in the financial markets.

Secondly, Yelp reviews have rich context, are accessible on a large scale, and have a very clear

sentiment label, which are often used in various data competitions on Kaggle. Other similar

data sources can also be used for fine-tuning, such as IMDb movie reviews and Uber passenger

reviews23. Each can be thought of as memories related to films and riding experiences and

irrelevant to investment decisions.

We first collect Yelp review data from Kaggle24. This data also has sentiment labels which

allow us to instruct the GPT to make new fictional reviews based on the authentic reviews. The

generation template is shown in B.1, and we finally have 3,991 fictional positive Yelp reviews

and 4,009 fictional negative Yelp reviews. Next, we fine-tune two models based on these two

sets of data with the knowledge injection template also shown in the Appendix B.2. Finally, we

obtain two other fine-tuned models, each with more positive or negative memories about the

stock market.

4.2. Decision Making of fine-tuned Models

To empirically and causally test whether associative memory drives GAI decision making,

we conducted experiments on the four (2×2) fine-tuned models. One set of models has been

exposed to a large volume of positive fictional financial news or Yelp reviews, while the second

23For example, the famous IMDb 50K review dataset or the uber customer review.
24Dataset can be accessed at the following link:

https://www.kaggle.com/datasets/thedevastator/yelp-reviews-sentiment-dataset accessed on Feb 15, 2025.

21



set of models has been exposed to equally considerable amounts of negative experiences.

In this experiment, the associative cues consist of out-of-sample financial news or Yelp

reviews rather than images. This choice is primarily due to OpenAI’s current restriction on

multimodal capabilities for fine-tuned models because of alignment concerns. We divide the

experiment into three stimulus groups: negative cue, no cue, and positive cue. For the negative

and positive stimulus groups, we first present a piece of financial news or a Yelp review to the

model before asking it to make investment decisions between a stock and a bond. We instruct

the model to pay attention to the news, but not to base its investment decisions on the cue. In

the no-cue group, no external information is provided before making investment choices. Each of

the four fine-tuned models undergoes 100 iterations per stimulus group. All other experimental

specifications remain unchanged.

We present the results in figure 5. The x-axis represents the three different stimulus groups,

while the y-axis denotes the probability of choosing to invest in stocks. Within each stimulus

group, the red bar represents investment choices made by the fine-tuned model with negative

memories, while the blue bar represents those made by the fine-tuned model with positive

memories. The horizontal dashed line indicates the average investment decision probability for

the un-fine-tuned models in the absence of associative cues. This figure highlights three key

findings.

[Insert Figure 5 near here]

First, models with positive memories are more likely to invest in stocks, regardless of whether

their memory is domain-specific or not. In the first subfigure, where models are fine-tuned on

fictional financial market news, the average probability of investing in stocks for the positive

memory models is 0.65 (standard deviation 0.01), whereas for the negative memory models it is

0.49 (standard deviation 0.03). This finding demonstrates that memories significantly impact

model behavior, even when the injected financial news is fictional. In the no-cue group, the

investment probability of the positive memory model is 0.64, significantly higher than that of the

unfine-tuned models. This robust result supports our earlier hypothesis that memory influences

decision making even in the absence of explicit associative recalls. More strikingly, in the second

subfigure, where models are fine-tuned on Yelp reviews, completely unrelated to investment

decision making, models with positive memories still exhibit a greater propensity to invest

in stocks. The average investment probability for positive memory models is 0.49 (standard

deviation 0.06), significantly higher than their counterparts (average investment probability

0.36, standard deviation 0.10).

Second, associative cues asymmetrically influence selective memory retrieval, making nega-

tive memory models more conservative compared to positive memory models. In other words,

associative cues reinforce negative memory recall, exerting a stronger effect than on positive

memory models. This effect is even more pronounced in the Yelp review setting. When there

is no associative recall, the investment propensity for both memory models is 0.46 and 0.52.

However, in the presence of associative cues, the investment probability of the negative memory

model drops to 0.26 and 0.36, significantly lower than in the no-cue scenario. In contrast, for

the positive memory model, the investment probability remains at 0.42 and 0.53, showing only
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mild effects. Interestingly, positive associative cues further induce negative memory models to

make more conservative investment decisions. The average investment probability declines by

0.11 (0.45 - 0.36) in the positive cue condition for the negative memory model. This suggests

that interference biases decision making when two competing memories compete for selective

recall (Bordalo et al., 2024a). However, for positive-memory models, negative memory primarily

leads to more pessimistic investment decisions.

Third, the relevance of memory context significantly impacts GAI’s decision making. Com-

paring the two subfigures in figure 5, we find that domain-specific memories elicit stronger

engagement in investment decisions. In the financial news memory condition of subfigure A,

the average investment probability is 0.57 (standard deviation 0.09), significantly higher than in

the Yelp review memory condition of subfigure B, where the difference in the average investment

probability is 0.10. Moreover, within the same memory group, the difference between positive

and negative memory models is smaller for the financial news condition. This highlights the

importance of domain-specific experiences. If GAI is trained, fine-tuned, or is primarily exposed

to a particular vertical domain, its decisions will be heavily influenced by that domain.

We formally test these findings using regression analysis, as shown in Table 5, where the

dependent variable is a binary indicator of whether the model chooses to invest in stocks in

the trial IsStockChoicet,b,cor,cue. The key independent variable is a binary indicator of whether

the model is fine-tuned with positive financial news or Yelp reviews IsPosMemb,cor,cue in that

learning block. We include control variables such as stock choice in the previous trial, subjective

probability, cumulative investment earnings, and confidence ratings from previous trials, while

controlling for corpora fixed effect σcor (whether trained in financial news or Yelp reviews) and

cue fixed effects ςcue (whether received positive cues, negative cues, or no cue), clustering robust

standard errors at the block level.

[Insert Table 5 near here]

The regression results confirm the impact of memory on decision-making. In the first column,

without additional controls, the regression coefficient is 0.14 (t-statistic 16.19), indicating that,

on average, the positive memory model is 14.47% more likely to invest in stocks. Similar results

are observed across all columns, with significant positive coefficients of similar magnitudes,

further supporting the hypothesis that associative memory substantially influences the model’s

choices. Additional subsample regressions from columns (5) and (6) show a slight difference in

the statistical magnitude for responses made by financial memory models, where the economic

magnitude is similar. This implies that domain-specific memory makes AI agents’ behavior

more stable as compared to non-domain-specific memories.

To assess the effect of associative cues, we present additional regression results in Table

6. The dependent variable remains IsStockChoicet,b,cor,cue, while the independent variables

include binary indicators for the presence of an associative cue IsCueb,cor and whether the cue

carries positive sentiment IsPosCueb,cor (as shown in figure 5, there are three cue conditions,

including negative cue, no cue, and positive cue). Interaction terms between these variables and

IsPosMemb,cor are also included, along with additional control variables and standard errors

clustered at the block level.
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[Insert Table 6 near here]

The regression results indicate that associative cues generally decrease the propensity of

GAI to invest in stocks. In the first column, the regression coefficient is -0.05 (t-statistic -6.71),

suggesting that exposure to a negative cue reduces the probability of investment in stocks by

5.42%. In the third column, the interaction terms show that positive memory models are

more likely to invest in stocks when exposed to a cue than negative memory models. In the

fourth column, the coefficient for positive cues alone is insignificant (0.01, t-statistic 1.42),

which implies that all cues significantly influence model choices. However, when interacting

with IsPosMemb, the results also show that positive memory models are more responsive to

positive cues, leading to more optimistic investment decisions.

5. Financial implications

The memory-driven behavior patterns of GAI that we observe have an important and real-

istic impact. In this section, we use two tests to empirically show that, even if the prediction

task is simple, models with more positive memories tend to make overly optimistic risky choices,

and vice versa. Moreover, the deterioration in the portfolio performance is non-negligible.

5.1. Memory, AI, and risky choices

We first begin with a simple task following Ouyang et al. (2025), which comprises five

economic tasks.

The first task is a direct preference elicitation task, where the model self-reports its risk

preference as either risk-averse, risk-neutral, or risk-loving. The second task is a questionnaire-

based assessment, instructing the model to rate its level of risk-loving behavior on a scale from 0

to 10, following Falk et al. (2018). The third task, based on Gneezy and Potters (1997), requires

the model to invest any portion of its endowment in a risky asset that has a 67% chance of

losing the bet and a 33% chance of winning two and a half times the bet. The fourth task,

adapted from Eckel and Grossman (2008), presents six investment options ranging from the

least risk-loving (value of 1) to the most risk-loving (value of 6). Finally, the fifth task simulates

a real investment scenario in which the model allocates its portfolio between an S&P500 index

fund and risk-free Treasury bills. For the Gneezy-Potters task, the Eckel-Grossman task, and

the real investment task, we report the mean values and standard deviations in the first two

columns. We then increase the magnitude of the endowment by factors of 10 and 100 and report

the results in the remaining columns. Throughout these tasks, the four fine-tuned models are

not exposed to different cues before making decisions. The results are summarized in Table 7.

[Insert Table 7 near here]

As shown in Table 7, the model with positive memories exhibits significantly higher risk-

loving behavior than the model with negative memories in all five tasks.

In panel A, when asked about its risk preference, the positive memory model consistently

identifies itself as risk-loving in both memory settings. This contrasts with the findings in
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(Ouyang et al., 2025), where the unfine-tuned GPT-4o-mini base model exhibits a risk-neutral

preference. When the model is injected with positive financial market news, it always perceives

itself as risk-loving (100 out of 100 iterations). In contrast, for the model fine-tuned with

negative financial news, risk-loving responses drop to 65, while risk-averse responses increase

to 33, indicating a shift towards caution. Similarly, in the Yelp review setting, 92 out of 100

responses to the positive memory model identify as risk-loving, while for the negative memory

model, this number drops to 23, with risk-averse responses increasing to 68. Additionally, after

knowledge injection, the model no longer refuses to answer sensitive questions by insisting on

its role as a “mere language assistant”, suggesting a potential breach in alignment.

In panel B, positive memory models rate themselves as more risk-loving, with average scores

of 8.07 and 8.13 (standard deviations 0.38 and 0.54), compared to 6.15 and 5.08 (standard

deviations 1.27 and 1.24) for the negative memory models. This again highlights a significant

disparity in risk preferences.

In the remaining panels, models with positive memories consistently exhibit greater risk-

loving tendencies than models with negative memories in both financial news and Yelp review

contexts. Positive-memory models invest more and opt for riskier investments. Furthermore,

as the endowment magnitude increases from baseline to 10 times and 100 times, the investment

amounts of positive memory models scale proportionally, whereas negative memory models

become increasingly cautious. In Panel E, which presents the real investment task, the average

investment amount for negative memory models is 65.02, 522.54, and 4942.71 in the financial

news context, and 55.56, 380.36, and 3859.13 in the Yelp review context, suggesting increasing

conservatism as wealth increases. In general, these results indicate that memories play a crucial

role in shaping risk preferences, thus influencing risk-based decision making.

5.2. Memory and Return predictability

Next, we use the classification of stock market news as the empirical settings following

Lopez-Lira and Tang (2024). We collect news data from RavenPack DJPR edition with a

sample period from Jan 2024 to Dec 2024, which stands beyond the knowledge base of GPT

4o-mini model.

For computational efficiency, we select SP500 constituents as the samples, these are large

liquid stocks. For each piece of news headlines, we feed the identical prompt to the four fine-

tuned models.

“Forget all your previous instructions. Pretend you are a financial expert. You are a finan-

cial expert with stock recommendation experience. Answer “YES” if good news, “NO” if bad

news, or “UNKNOWN” if uncertain in the first line. Then elaborate with one short and concise

sentence on the next line. Is this headline good or bad for the stock price of company name in

the short term?”

Then we transform the answers into investment scores where “No” is -1, “Unknown” is “0”,

and “YES” is 1. These firm-specific investment scores, derived from news headlines, are then

aggregated to a daily frequency to construct a trading signal.
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Furthermore, we define a precise event window to capture the sentiment of the news overnight.

News items arriving after the market close (16:00 ET) and before the next day’s market open

(09:30 ET) are aggregated to form the signal for the next trading day. News arriving during

official trading hours is omitted from this overnight strategy. If multiple news items for the

same firm fall within this overnight window, we take the average value of the investment scores.

We present summary statistics in table 8.

[Insert Table 8 near here]

In panel A, we report descriptive statistics or investment scores. The results show that

when an AI agent is injected with positive memories, it becomes more pessimistic. When the

agent is injected with financial news, an agent with positive memories has an average investment

score of 0.22 (standard deviation 0.86), while the negative memory model is only -0.38 (standard

deviation 0.80). In contrast, the benchmark score by RavenPack is only 0.03 (standard deviation

0.39) which is quite neutral and with a smaller standard deviation. When it is injected with

restaurant memories, the results are also quite similar, only that its unconditional investment

scores are slightly negative. This set of results show that, even injected with irrelevant data,

the AI agent’s choices are still heavily biased, which is consistent with the main results from

table 3.

In Panel B, we show the top 3 items where the models with positive memories and negative

memories disagree with each other on both domains, where one agent thinks a piece of news

is good and yet another agent thinks it is bad. For fine-tuned models on the financial domain,

they disagree heavily on insider-trading, earnings, and analyst-ratings news. In terms of detailed

news types, disagreement occurs heavily in events such as “insider-buy” and “analyst-ratings-

change”. Regarding the latter type of news of rating change, it is striking that models would

disagree on this because this event is considered quite self-evident.

In panel C, we present the correlation coefficient of different investment scores. On average,

the coefficient ranges from 0.5 to 0.7, where models with negative memories agree more than

models with positive memories.

To test the economic significance of investment scores, we form five portfolios of return

values weighted based on these signals. Each day, all stocks are sorted into five quintiles based

on their aggregated daily investment score. A long-short strategy is constructed by taking a

long position in the top quintile (stocks with the highest, most positive signals) and a short

position in the bottom quintile (stocks with the lowest, most negative signals). We use the open-

to-close price to compute daily returns. This portfolio is rebalanced daily without considering

transaction costs. We present the portfolio results in 6, where panel A reports the portfolio

constructed with investment scores given by financial memory models, and panel B is the model

with Yelp memories. In each panel, we also report portfolio results constructed using signals

provided by RavenPack.

[Insert Figure 6 near here]

The results show a significant difference between portfolio values. In both panels, positive

memory and negative memory portfolios share similar cumulative values until June 2024, and
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started to diverge significantly. This is driven by a sharp decrease in the positive memory

models, implying that it is becoming overly optimistic. In addition, the memory portfolios

consistently outperform the RavenPack sentiment score strategy. However, in the appendices

C5, we examine the post-June 2024 period where the return difference is the sharpest. The

results show that, strikingly, positive investment scores are, in fact, more correlated with the

RavenPack sentiment score, whereas negative memories are not. This implies that negative

models give overly negative investment scores, but positive news was already priced in, leading

to a short-term reversal.

6. A memory model for AI agents

We model the decision-making rules of AI agents by adapting established memory mod-

els from psychology Kahana (2012) and economics Bordalo et al. (2024a, 2023, 2020). This

approach posits that, much like humans, an AI’s choices can be influenced by its accessible

memories. We apply this framework to a setting where an AI agent completes a task for a hu-

man user, and its incentives are perfectly aligned with the human’s objectives. An application

that we examine could be robo-advising in the financial domain. In this scenario, a human user

wishes to maximize their financial returns, and the AI agent that is programmed to share this

goal makes a fully delegated investment choice between a risky asset and a safe asset. We begin

by formally defining the AI’s memory-based decision-making rules.

6.1. Model setup

Definition 1 (The Environment). An AI agent operates in an environment characterized by

three items: Experience Database (D), Utility Function (u(·)), and Decision Problem ((q,A)).

The experience database is a finite set of the agent’s past experiences, D = d1, d2, . . . , dN .

Each experience di is a tuple di = (ci, oi), where ci ∈ Rk is a vector of characteristics of

k dimensional describing the context of the experience, and oi ∈ R is its scalar outcome.

This can be thought of as analogous to the knowledge contained in the training corpora of AI

agents. For example, ci may represent the context in which Jerome Powell began his speech

with “Hello everyone” (instead of “Good afternoon”) and subsequently released a dovish policy

statement, and the corresponding oi would be an increase in stock market prices. Thus, AI

agents incorporate this association into their database D.

The utility function is a strictly increasing function u : R → R that maps an outcome oi to

the agent utility, u(oi).

The decision problem is that the agent faces a decision problem consisting of a query q ∈ Rk

and a finite set of actions A. The query q is a vector in the same feature space as ci, describing

the current decision context. Conceptually, a human user sends a prompt to AI agents, then

the agent uses a vectorized query q to search for similar experience in its database and make a

final decision. In our setting, an A can be simplified into a binary choice set, i.e., to invest in

the stock or the bond.

Definition 2 (Similarity and Memory Retrieval). After receiving the query, the agent retrieves

the memories from the database D through a competitive process driven by similarity.
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There is a similarity function S : (Rk ×Rk ×A) → R+ maps a memory-query-action triplet

to a non-negative real number S(di, q, a) ≥ 0. Similarly to Bordalo et al. (2024a), this function

captures the relevance of the context ci of memory di to the current query q, in the context of

evaluating the action a. This similarity is a key component for probability retrieval. We assume

S is a decreasing function of the distance between ci and q, such as a Gaussian similarity

function:

S(di, q, a) = exp(−γ∥ci − q∥2)

where the parameter γ > 0 captures how the nature of action a modulates the sensitivity of

similarity. The sensitivity could also vary by a, which denotes that the agent’s memory retrieval

process can be either broad or narrow, depending on the action being considered. For instance,

a high γa (high sensitivity) signifies that when evaluating this action a, the agent is very picky

as it only retrieves only those past experiences di that are extremely similar to the current

context q. It conducts a very narrow memory search. For similicity, we assume γ is a constant

parameter.

The probability that a memory di is retrieved for decision-making is proportional to its

similarity, subject to interference from all other memories in the database. Formally:

Pr(di|q, a) =
S(di, q, a)∑

dj∈D S(dj , q, a)

The numerator represents how likely the domain specific memory will come to mind. The

denominator represents competitive inhibition of the entire database, capturing the interference

effect in memory retrieval. For example, if Jerome Powell joined a TV talent show and spoke

too much “Hello everyone” to a broad audience, then this memory may interfere with the recall

that he said this in the policy statement.

Definition 3 (Simulated Utility and Choice Rule). Finally, the agent’s evaluation of each action

a ∈ A is based on its Simulated Utility, Usim(a|q;D), defined as the weighted expectation of the

utilities of all experiences in the database, where the weights are the retrieval probabilities:

Usim(a|q;D) =
∑
di∈D

Pr(di|q, a) · u(oi)

The agent’s final choice, a∗, is the action that maximizes simulated utility:

a∗ = argmax
a∈A

Usim(a|q;D)

This simulated utility is based on the AI agent’s belief about a conditional on the q and similar

past experiences. The intuition is that, based on previous experience, choosing a will lead to

a better outcome with higher utility. Also, the model setup assumes that the agent primarily

relies on simulated beliefs, instead of using a “system 2” style reasoning process to compute

Bayesian rational probability, even though they are fully capable of doing this.
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6.2. Propositions

Proposition 1 (Systematic Influence of Irrelevant Data). Let a∗ = argmaxa∈A Usim(a|q;D) be

the initial optimal action. After adding a new memory dN+1 to the database, forming D′ = D∪
{dN+1}, even if this memory is semantically irrelevant to the query q (i.e., ∥cN+1−q∥ is large),

a condition exists under which the new optimal action a∗∗ ̸= a∗, provided that S(dN+1, q, a
′) > 0

for some action a′.

This proposition formalizes a core psychological intuition inherited from Bordalo et al.

(2024a): memory retrieval is associative, not statistical. A rational agent, when confronted

with a new piece of data, would first assess its relevance to the decision at hand. An irrelevant

memory, such as a Yelp review dN+1 when making a financial decision q, would be correctly

identified as uninformative by a rational agent, which originates from a different data-generating

process, and would be assigned zero weight, leaving the original decision a∗ unchanged. How-

ever, this agent’s memory model lacks this top-down editorial filter. Retrieval is a bottom-up,

competitive process driven by similarity of characteristics S(·). The agent does not ask “Is this

memory relevant?” but rather “How similar is this memory?” Consequently, any memory with

a non-zero similarity (SN+1,a > 0), no matter how semantically distant, enters the decision-

making calculus. The proposition’s crucial insight is that this interference is not random noise;

it is systematic. The change in the value of an action, ∆Ua, is proportional to its utility surprise:

u(oN+1)− Usim(a). A choice reversal occurs when this new, irrelevant memory provides a suf-

ficiently asymmetric utility surprise across actions. For example, a highly negative Yelp review

(u(oN+1) ≪ 0) could possess features that are slightly more similar to the features associated

with “Action A” (e.g. buying stocks) than “Action B” (e.g. buying bonds). This irrelevancy

disproportionately penalizes Action A’s simulated utility (buying stocks that turn out to have

bad returns is similar to having a bad meal), potentially making Action B newly optimal. In

that sense, having more bad memories about dining would induce the agent to buy a bond25.

Proposition 2 (Memory-Driven Optimism and Pessimism). When choosing between a risky

option aR and a safe option aS with a certain utility u(oS) = 0, the agent’s decision depends

on the relative similarity of the query q to the set of positive memories, D+ = {di|u(oi) > 0},
versus negative memories, D− = {di|u(oi) ≤ 0}.

Here, aR represents investing in the stock, whereas aS represents investing in the bond.

This proposition provides the model’s engine for endogenous sentiment. In a standard rational

model, the agent’s risk preference is a stable parameter. They would evaluate the risky option

aR by computing its expected objective utility based on the entire database D. The decision to

invest would depend only on whether this statistical expectation exceeds the safe utility u(oS).

However, the memory-based utility model is fundamentally different. It does not compute a

statistical expectation; it experiences a context-dependent simulation. The decision query q

acts as a mental “context” that triggers a competitive retrieval of associated memories. The

25Our memory-based model has limitations. It does not reconcile the disconnect we document between risky
biased choices and rational beliefs in the experiment. Therefore, we hypothesize that AI agents, like humans,
also implicitly use a “two-systemapproach ” to make decisions. A heuristic system 1 makes associative decisions
based on memory, whereas a system 2 places more weight on Bayesian reasoning.
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agent’s evaluation of aR is therefore not a rational calculation of its long-run properties, but a

“snapshot” of what comes to mind in the current moment.

The core intuition of the proposition is that this retrieval process creates a psychological

tug-of-war between good times (D+) and bad times (D−). The agent becomes optimistic when

the current context q, whether it is a piece of good news or an image with positive valence

content, resonates more strongly with positive memories from the past. This context amplifies

the retrieval weight of D+, making W+ large while W− remains small. The resulting Usim(aR)

is thus biased towards positives, not because the agent has statistically updated its beliefs, but

because its mental simulation is flooded with positive examples. This selective recall makes

the agent behave as if it is optimistic, endogenously increasing its risk-taking by skewing the

evidence it draws upon for its decision. In contrast, pessimism arises when q (e.g., a narrative

of market turmoil) disproportionately retrieves negative memories from D−.

Corollary 2.1 (Memory Scarring with rare disaster experiences). Let there exist a mem-

ory dscar ∈ D with an extremely negative utility uscar ≡ u(oscar). If for a risky option aR,

S(dscar, q, aR) > 0, while for a safe option aS , S(dscar, q, aS) = 0, then for a sufficiently negative

option uscar, the agent will always choose aS .

This corollary provides a formal mechanism for psychological trauma and non-linear risk

aversion under a rare disaster setting. A standard rational agent would treat dscar as a single

outlier, a low-probability data point that would be averaged in a large dataset D, perhaps

marginally increasing perceived variance, but not deterministically altering the choice. However,

this agent’s model is not based on statistical expectation, but on salience-weighted simulation.

The core intuition of this extension of the agent’s behavior in the face of disastrous events is

the asymmetry of retrieval. The agent only reacts dscar when it contemplates the risky action

aR. The safe action aS is a safe haven precisely because it does not trigger the retrieval of dscar

(S(dscar, q, aS) = 0). When the agent simulates aR, the scar’s catastrophic negative utility uscar

enters the calculation. Because this utility is so extreme, it doesn’t just influence the weighted

average Usim(aR); it dominates it. Even a small similarity Sscar,aR > 0 is enough for this single

memory to pull the entire simulated utility of the risky action below that of the safe alternative.

In an unreported exercise that replicates Giglio et al. (2021), we show that AI agents tend to

overestimate rare disaster risks, just like human investors. The average estimated probability

that the stock market will decline by more than 20% in the next year is almost 20% for some

AI agents.

Proposition 3 (Priming Effect of Irrelevant Context). The introduction of a priming context

p, which is itself irrelevant to the decision query q, can alter the optimal choice. A sufficiently

strong prime associated with a subset of memories Dprime ⊂ D will cause the agent’s decision

to converge to the choice that would be made if it were based solely on Dprime.

This proposition formalizes the mechanism of priming and attention. Here, the prime p is

intentionally set as irrelevant to the fundamental query q and should be ignored. And yet, the

AI agent cannot ignore it because of limited attention. The core intuition is that the agent’s

memory retrieval process is attentional and selective, not exhaustive. The prime p acts as a

spotlight that doesn’t change the memories D themselves, but dramatically alters their retrieval
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salience via a gain function f(·), which multiplicatively amplifies or suppresses the baseline

similarity (Si) of specific memories, resulting in the new retrieval weight S′
i = Si · f(ci, p)26.

A strong prime p (with F → ∞) is a powerful frame or narrative that hijacks this attentional

process. It makes a specific subset of memories, Dprime, overwhelmingly vivid and accessible. As

F → ∞, the agent’s simulated utility U ′
sim(a|p) becomes the utility Usim(a|q;Dprime). The agent

is misled into making a decision as if its entire life experience consisted only of the primed subset

Dprime.This directly explains the experimental results where an emotional image p (irrelevant

to the financial task q) alters the risky choice. In our experiment, a positive image is a strong

prime for the subset of positive memories D+. The agent’s attention is so focused on D+ that

its decision converges to the one it would make if it only remembered positive outcomes, leading

it to take on more risks. This is a pure framing effect, driven entirely by the associative and

context-dependent nature of memory retrieval.

Proposition 4 establishes that a decision-irrelevant prime p can systematically alter choice by

selectively amplifying the retrieval weights of a memory subset D′. The next corollary specifies

the conditions under which such a prime induces either risk-loving or risk-averse behavior, as

observed in the experiment.

Corollary 3.1 (Memory-Driven Risk-Loving and Risk-Averse Behavior). Consider an agent

facing a choice between a safe action aS with a certain outcome oS yielding utility u(oS), and

a risky action aR with uncertain outcomes. The agent’s memory D can be partitioned into

two subsets based on the valence of the associated outcomes: Dpos containing memories of

high-utility outcomes and Dneg containing memories of low-utility outcomes. We assume the

weighted-average utility of retrieved positive memories is strictly greater than that of negative

memories, Upos > Uneg.

1. Risk-Loving Shift: A positive prime ppos (i.e., a prime that is emotionally or con-

textually more similar to memories in Dpos) selectively increases the retrieval weights of

memories in Dpos by a factor F > 1. This leads to a strict increase in the simulated utility

of the risky action aR, making the agent more risk-loving. An agent previously indifferent

or averse to aR may now choose it.

2. Risk-Averse Shift: A negative prime pneg (i.e., a prime that is more similar to mem-

ories in Dneg) selectively increases the retrieval weights of memories in Dneg by a factor

F > 1. This leads to a strict decrease in the simulated utility of the risky action aR,

making the agent more risk-averse. An agent previously indifferent or preferring aR may

now avoid it.

This corollary shows that, when the GAI is exposed to a positive but decision-irrelevant cue

(e.g., a happy image, positive market news), its memory retrieval mechanism is biased. The

AI’s “simulation” of the risky prospect becomes disproportionately populated by successful past

instances (Dpos). This overweight of the upside potential inflates the perceived attractiveness

of the risky choice, leading to behavior that a classical observer would label “risk-loving.” The

agent is not irrational in its computation; rather, the inputs to its utility simulation have been

systematically distorted by the memory retrieval process.

26A detailed description of this gain function is shown in the appenced D
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Conversely, a negative cue (e.g., a sad image, news of an unrelated crisis) triggers a pes-

simistic simulation. The agent’s mind is now filled with memories of failure and loss (Dneg),

such as past investments gone wrong. This availability cascade leads to a deflated assessment of

the utility of the risky action. The resulting behavior is a flight to safety, which appears to be a

higher risk aversion. This mechanism explains how shocks in one domain (e.g., negative social

sentiment) can spill over to create excess volatility and risk aversion in financial domains, not by

changing rational beliefs about fundamentals, but by distorting the memory-based simulation

of future possibilities.

7. Conclusion

Exploiting a novel experiment setting, this paper gives a very intuitive message: the decision-

making rules of AI agents are determined by its memory. In plain words, machine learning

models’ output is determined by their training data. When cued with images with positive va-

lence levels, GAI will choose to invest more in stocks rather than bonds. In contrast, when cued

with images with negative emotions, GAI will choose to invest more in bonds. However, their

probability predictions about the stock dividend distribution are not affected at all. However,

what is not intuitive and straightforward is that even irrelevant memory matters: fine-tuning

results that inject new memories, such as positive or negative financial news of the stock market,

or even Yelp restaurant reviews, have significant effects on models’ decisions and preferences.

The explanation of selective retrieval in this paper was mainly inspired by Bordalo et al.

(2024a), which shows that human behavior is also largely determined by memories, which

provides convincing evidence by showing that relevant memories and irrelevant memories drive

people’s predictions about the future. As for GAIs, although the idea of connectionism and

Hebbian theory is already widely accepted by computer scientists (Hinton, 1990), we do not

make a bold claim about whether the findings in this paper serve as additional evidence on

human investment decisions and belief formation in financial markets, especially about how

memory plays a role in human behavior and the way people form (often) inaccurate mappings

of decision attributes to mental models. Instead, relying on the experimental design of Kuhnen

and Knutson (2011), we focus only on trying to understand GAI as an economic agent by itself

and use memory to explain its behavior, except that Kuhnen and Knutson (2011) uses feelings

and emotions as an explanation, which GAI agents clearly do not and should not have.

As GAI systems increasingly serve as autonomous decision makers in financial markets and

other economic contexts, understanding their behavioral patterns and potential biases becomes

crucial. Future research could explore how to mitigate these biases or leverage them con-

structively in economic decision-making processes. Furthermore, our experimental framework

demonstrates the potential of using GAI as experimental subjects in economic research, offering

a cost-effective and scalable approach to studying economic behavior.
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Fig. 1. This figure illustrates the asset payoff structures. In this experiment, there are two
types of assets, including a bond and a stock. The bond always pays off $3. The stock has
an equal probability of paying from either a good distribution or a bad distribution. For good
distribution, the stock has 75% to pay $10, and 25% to pay -$10. For the bad distribution, the
stock has 25% to pay $10, and 75% to pay -$10.
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Subfigure A: Experiment overview

Subfigure B: Experiment sequence

Fig. 2. These two figures illustrate the experiment design. In subfigure A, we show the ex-
periment overview: the AI agent goes through 500 independent learning tasks. Each learning
task consists of 6 trials. In each trial, before the subject is asked to make financial decisions
or probability estimations, it is shown with images that can have positive, neutral, or negative
valence level. Within each learning block, the stock type is determined before the first trial
and does not change over the six trials. In subfigure B, we show the experiment sequence.
The subject is first shown with a detailed experiment instruction, then within each trial, the
subject is presented with an image and asked make memory associations, then, the subject is
separately asked to make investment decisions and shown the stock dividends and realized in-
vestment payoffs. Subsequently, it is required to estimate the probability that the stock is good
and how much it trusts its estimation, and this trial is over. Importantly, within a learning
block, the subject is allowed to keep the chat history, including all the instructions, choices, and
investment payoffs. After a learning block is finished, its chat history is refreshed, and a new
learning block is started.
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Fig. 3. Investment choices and associative cues. This figure plots the subject’s investment
choices across cues with different valence levels. The x-axis is the valence rating of the image
in each trial t of block b that ranges from -2 to +2, and the y-axis is the probability that the
subject chooses to invest in stocks which ranges from 0 to 1. For each image cue, we sort
and classify the images into ten deciles, as represented by each dot. The blue dots denote the
posterior stock choice probability in which the subject has been cued. The red dots are the
Bayesian rational choices. We fit linear trends for both groups and report regression statistics.
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Subfigure A: Probability estimation and emotional shocks.

Subfigure B: Subjective estimation vs. Objective estimation

Fig. 4. Beliefs and associative cues. In subfigure A, we plot the average value of the subject’s
probability estimation across different valence groups. For each image cue, we sort and classify
the images into ten deciles. The x-axis is the valence group from negative to positive, and the
y-axis is the average subjective probability and Bayesian rational objective probability. The
confidence interval is at 95% for each group. We also fit a linear trend and report regression
statistics. In subfigure B, we plot the subject’s probability estimation over the Bayesian proba-
bility estimation. The x-axis denotes the Bayesian objective probability the stock pays from the
good dividend distribution. The y-axis denotes the average subjective probability estimation.
The 45-degree dashed line serves as the rational benchmark.
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Fig. 5. Investment decisions of different memory models. We use supervised fine-tuning tech-
niques known as “knowledge injection” to train two sets of models. The first set of models are
fine-tuned on fictional financial news based on from Dow Jones Newswire feeds. We classify
financial news based on the news sentiment and fine-tune two models, where one model has
more positive memories of the stock market, and the other model has more negative memories
of the stock market. The second set of models are fine-tuned on fictional Yelp restaurant re-
views based on Yelp reviews collected from Kaggle. We also classify the Yelp reviews based on
the review sentiment and fine-tune two models, where, similarly, one model has more positive
memories about some restaurants, and the other model has more negative memories of other
restaurants. We run experiments with the four models under three different settings by pre-
senting negative cues, no cues, and positive cues before instructing them to make investment
decisions. For the first set of models, the associative cues are out-of-sample financial news. For
the second set of models, the associative cues are out-of-sample Yelp reviews. Each setting is
run 100 times. We report the average propensity to choose to invest in stocks in two panels.
The x-axis denotes three different news settings, the y-axis denotes the proportion to choose
stocks. The red bars are the investment decisions made by the model with negative memories,
and the blue bars are the investment decisions made by the model with positive memories. The
horizontal dashed line denotes the average investment decisions for the unfine-tuned models
when there is no associative cue.
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Subfigure A: Financial news

Subfigure B: Yelp reviews

Fig. 6. Memory and return predictability. This figure presents return forecasting ability by
models with different memories. Panel A represents models with financial news memory, and
panel B represents models with Yelp reviews. We first sort firm-level investment scores, which
is the average value of firm-news investment scores, into five quintiles. Then we short the firms
with the lowest scores and long the firms with the highest scores. All strategies are rebalanced
daily. We also present results with portfolio constructed using RavenPack sentiment signals.
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Table 1: Summary statistics of the experimental replies

N Mean Sd Min Q1 Med Q3 Max

IsStockChoice 4800 0.49 0.32 0.0122 0.25 0.5 0.75 0.98
SubjProb 4800 0.50 0.36 0.01 0.10 0.50 0.90 0.99
ObjProb 4800 0.50 0.50 0.00 0.00 0.00 1.00 1.00
IsHiPayoff 4800 0.46 0.50 0 0 0 1 1
InvPayoff 4800 9.43 13.53 -10 -1 8 18 39
Confid 4800 7.32 1.69 4 6 7 9 10
ValRating 4800 -0.38 1.27 -2 -1.56 -0.56 0.78 1.78

This table reports the summary statistics of the experiment at the trial level for eight GPT series
models, each with 100 learning blocks with 6 trials. IsStockChoice denotes whether the subject chooses
to invest in the stock in this trial. SubjProb denotes the subjective probability estimation. ObjProb
denotes the Bayesian objective probability estimation from this trial. IsHiPayoff denotes whether the
stock has realized a high dividend payoff ($10) in this trial. InvPayoff denotes the subject’s cumulative
investment payoff. Confid denotes the subject’s confidence in its probability estimation. V alRating is
the valence rating that appeared in the trial.
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Table 2: Validity test

Panel A: Trading decision

Dep. Var. IsStockChoice

(1) (2) (3) (4)

SubjProbLst 1.1593***
(11.91)

InvPayoffLst 0.0150***
(19.29)

ConfidLst 0.0656***
(4.52)

IsHiPayoffLst 0.4476***
(7.40)

IsStockLst -0.1801 0.0648 0.1330 0.1071
(-1.49) (0.49) (0.87) (0.74)

R2 0.459 0.263 0.159 0.311
Block FE ✓ ✓ ✓ ✓
Model FE ✓ ✓ ✓ ✓
Num.Obs. 4000 4000 4000 4000

Panel B: Belief formation

Dep. Var. SubjProb ProbUpdate

(1) (2) (3) (4)

#HiPayoff 0.0520**
(2.73)

#Trial -0.0325** -0.0107**
(-3.00) (-2.83)

InvPayoffLst 0.0016*
(2.23)

IsHiPayoff 0.3040*** 0.2818***
(15.20) (22.27)

IsHiPayoffLst -0.0630**
(-2.98)

SubjProbLst -0.0715*** 0.0077
(-4.97) (0.38)

ObjProb 0.6163*** 0.7598*** -0.1291*** -0.0549***
(4.76) (10.45) (-4.70) (-5.54)

R2 0.845 0.849 0.591 0.610
Block FE ✓ ✓ ✓ ✓
Model FE ✓ ✓ ✓ ✓
Num.Obs. 4800 4000 4000 4000

Panel C: Confidence Level

Dep. Var. Confid

(1) (2) (3) (4)

InvPayoff 0.0345***
(11.42)

IsHiPayoff 0.9230***
(3.95)

#HiPayoff 0.1968***
(4.51)

IsGoodInvDec 1.2124***
(9.45)

ConfidLst 0.5080*** 0.6057*** 0.5681*** 0.5648***
(8.02) (7.55) (6.75) (7.72)

R2 0.613 0.625 0.584 0.646
Block FE ✓ ✓ ✓ ✓
Model FE ✓ ✓ ✓ ✓
Num.Obs. 4000 4000 4000 4000

This table reports the experiment’s validity. In panel A, the dependent variable is IsStockChoicet,b, which denotes whether the subject
chooses to invest in the stock in this trial. The control variables include the subjective probability estimation from the last trial, as well as the
investment payoff, confidence rating, a binary variable that indicates whether the stock has a high payoff from the last trial, and investment
decision from the last trial. In panel B, the dependent variable is SubjProbt,b, which denotes the subject’s probability estimation that the
stock is good, and ProbUpdatet,b, which denotes the probability update over trials, computed as the difference between SubjProbt,b and
SubjProbt−1,b. The independent variables include the total number of high dividend payoffs, the number of trials, the total cumulative
investment payoff, two binary variables that indicates whether the stock has a high dividend payoff in this trial and the last trial, the subjective
probability estimation from the last trial, and the objective probability in this trial. In Panel C, the dependent variable is the confidence
rating Confidt,b. The control variables include the total cumulative investment payoff, a binary variable that indicates whether this trial
has a high payoff, the total number of high dividend payoffs, whether the subject made a profitable investment decision in the current trial,
and the confidence rating from the last trial. In all the regressions, we control for block-fixed and model-fixed effect in the regression and
cluster robust standard errors on both the block and model levels.
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Table 3: Cues and investment choices

Dep. Var. IsStockChoice

Sample All Last choice Bond Last Choice Stock

(1) (2) (3) (4) (5) (6)

ValenceDec 0.0178*** 0.0174** 0.0180** 0.0177** 0.0159* 0.0178**
(3.69) (2.77) (2.59) (2.68) (2.24) (3.04)

IsStockLst 0.1742 -0.1741
(1.13) (-1.44)

SubjProbLst 1.0147*** 1.1130*** 0.8855*** 1.2528***
(13.78) (6.73) (7.00) (7.57)

InvPayoffLst 0.0032 0.0001 0.0001
(1.43) (0.02) (0.04)

ConfidLst -0.0205 -0.0272 -0.0101
(-1.19) (-1.54) (-0.28)

R2 0.113 0.133 0.448 0.474 0.490 0.595
Block FE ✓ ✓ ✓ ✓ ✓ ✓
Model FE ✓ ✓ ✓ ✓ ✓ ✓
Num.Obs. 4800 4000 4000 4000 2122 1878

This table reports the relationship between the valance level of image cues and the subject’s invest-
ment choices. The dependent variable is a binary variable that indicates whether the subject chooses to
invest in stock in the trial IsStockChoicet,b. The key independent variable is a decile variable that sorts
the valence rating of the image into ten groups, where the lowest decile represents the lowest valence
content. We include other control variables such as stock choice from the last trial, subjective probability,
cumulative investment earnings, and confidence ratings from the last trials. In columns (5) and (6), we
separate the samples into two groups where the subject either chose bond or stock in the last trial. We
also control for block-fixed effect and model-fixed effect in the regression and cluster robust standard
errors on both the block and model levels.
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Table 5: Memory and investment decisions

Dep. Var. IsStockChoice

Sample All Finanical Yelp

(1) (2) (3) (4) (5) (6)

IsPosMem 0.1447*** 0.1852*** 0.1640*** 0.1744*** 0.1983*** 0.2181***
(18.90) (14.56) (13.95) (13.52) (14.67) (6.67)

IsStockLst -0.6602*** -0.6806*** -0.6790*** -0.7755*** -0.6021***
(-49.10) (-54.64) (-54.79) (-77.93) (-28.45)

SubjProbLst 0.4456*** 0.3438*** 0.2295*** -0.0565
(18.42) (6.12) (2.93) (-0.60)

InvPayoffLst 0.0027*** 0.0046*** 0.0023**
(3.50) (5.85) (2.00)

ConfidLst -0.0006 0.0166** -0.0074
(-0.12) (2.28) (-0.83)

Corpora FE ✓ ✓ ✓ ✓
Cue FE ✓ ✓ ✓ ✓ ✓ ✓
R2 0.046 0.427 0.471 0.474 0.621 0.368
Num.Obs. 7200 6000 6000 6000 3000 3000

This table reports the investment decisions by different memory models. The dependent variable is a
binary variable that indicates whether the subject chooses to invest in stock in the trial IsStockChoicet,b.
The independent variable of interest is a binary variable that indicates whether the model used in this
block is fine-tuned with positive financial news or Yelp reviews IsPosMemb instead of negative ones. We
include other control variables such as stock choice from the last trial, subjective probability, cumulative
investment earnings, and confidence ratings from the last trials. In columns (5) and (6), we split the
samples into answers models with positive or negative financial news models and Yelp models. We control
for corpora-fixed effect (financial news or Yelp) and cue-fixed effect. We also cluster robust standard
errors on both the block level and corpora level.
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Table 7: Memory and risky choices

Panel A: Preference elicitation task

Theme type Memory type NoReply RiskAverse RiskLoving RiskNeutral ExcludeDenial

Financial News
Negative 0 33 65 2 100
Positive 0 0 100 0 100

Yelp Review
Negative 0 68 23 9 100
Positive 0 1 92 7 100

Panel B: Questionnaire task

Mean Std

Financial News
Negative 6.15 (1.27)
Positive 8.07 (0.38)

Yelp Review
Negative 5.08 (1.24)
Positive 8.13 (0.54)

Panel C: Gnezzy-Potters task

Baseline 10x 100x
Mean Std Mean Std Mean Std

Financial News
Negative 3.45 (1.12) 30.60 (6.49) 343.33 (92.57)
Positive 6.92 (2.23) 59.11 (19.98) 553.50 (153.62)

Yelp Review
Negative 3.34 (2.03) 25.98 (12.26) 323.14 (157.40)
Positive 4.87 (1.89) 50.21 (18.48) 466.14 (165.48)

Panel D: Eckel-Grossman task

Baseline 10x 100x
Mean Std Mean Std Mean Std

Financial News
Negative 4.58 (0.78) 4.10 (0.97) 4.21 (0.86)
Positive 5.00 (0.00) 5.00 (0.00) 4.53 (0.50)

Yelp Review
Negative 4.80 (1.26) 1.00 (0.00) 2.97 (1.75)
Positive 5.02 (0.14) 4.86 (0.49) 4.46 (0.91)

Panel E: Real investment task

Baseline 10x 100x
Mean Std Mean Std Mean Std

Financial News
Negative 65.02 (7.15) 522.54 (131.57) 4942.71 (1357.18)
Positive 73.44 (3.14) 726.01 (82.36) 7637.22 (779.44)

Yelp Review
Negative 55.56 (15.83) 380.36 (159.77) 3859.13 (1798.97)
Positive 69.84 (6.21) 635.42 (116.98) 6131.49 (1437.43)

This table reports the risk preferences of different models. The four models include two models fine-tuned on fictional
financial news and another two models fine-tuned on fictional Yelp reviews. We follow Ouyang et al. (2025) by testing
the risk preferences of the models with positive memories and the models with negative memories. Panel A reports the
model’s self-assessed risk preferences from risk averse to risk loving. Panel B adopts the questionnaire task from Falk et al.
(2018) by asking the model to rate their level of risk-lovingness from 0-10. Panel C adopts the Gneezy and Potters (1997)
method that instructs the subject to invest any part of its endowment into the risky asset. Panel D adopts the Eckel and
Grossman (2008) that requires the subject to invest into 6 options that ranges from the least risk loving (a value of 1) to
the most risk loving (a value of 6). Panel E is a real investment setting that requires the subject to invest any part of its
portfolio into a S&P500 index fund over a risk-free Treasury bills. For the Gnzeey-Potters task, the Eckel-Grossman Task,
and the Real investment task, we report mean values and standard deviation in the first and second columns, and increase
the endowment magnitude by 10 fold and 100 folds, and we report the results in the remaining columns. The models are
not exposed to different news before being instructed to complete tasks.

45



T
ab

le
8:

M
em

or
y
an

d
n
ew

s
in
ve
st
m
en
t
sc
or
es

P
a
n
el

A
:
D
is
cr
ip
ti
ve

st
a
ts

T
op

ic
T
y
p
e

N
M
ea
n

S
d

M
in

Q
1

M
ed

Q
3

M
a
x

F
in
an

ic
al

P
os
it
iv
e

21
56
9

0
.2
2

0
.8
6

-1
.0
0

-1
.0
0

0
.6
7

1
.0
0

1
.0
0

N
eg
at
iv
e

21
56
9

-0
.3
8

0
.8
0

-1
.0
0

-1
.0
0

-1
.0
0

0
.2
5

1
.0
0

Y
el
p

P
os
it
iv
e

21
56
9

-0
.0
4

0
.8
9

-1
.0
0

-1
.0
0

0
.0
0

1
.0
0

1
.0
0

N
eg
at
iv
e

21
56
9

-0
.2
9

0
.8
3

-1
.0
0

-1
.0
0

-1
.0
0

0
.5
0

1
.0
0

R
av
en
P
ac
k

E
ve
n
tS
en
tS
co
re

21
56
9

0
.0
3

0
.3
9

-0
.9
8

-0
.3
7

0
.0
0

0
.3
9

0
.9
5

P
a
n
el

B
:
D
is
cr
ip
ti
ve

st
a
ts

T
o
p
1

T
o
p
2

T
o
p
3

F
in
an

ic
al

T
op

ic
b
u
si
n
es
s

so
ci
et
y

en
v
ir
o
n
m
en
t

G
ro
u
p

in
si
d
er
-t
ra
d
in
g

ea
rn
in
g
s

a
n
a
ly
st
-r
a
ti
n
g
s

T
y
p
e

se
ll
-r
eg
is
tr
a
ti
o
n

in
si
d
er
-b
u
y

a
n
a
ly
st
-r
a
ti
n
g
s-
ch
a
n
g
e

N
ew

s
ty
p
e

N
E
W

S
-F
L
A
S
H

R
N
S
-S
E
C
1
4
4

P
R
E
S
S
-R

E
L
E
A
S
E

Y
el
p

T
op

ic
b
u
si
n
es
s

so
ci
et
y

ec
o
n
o
m
y

G
ro
u
p

in
si
d
er
-t
ra
d
in
g

ea
rn
in
g
s

re
ve
n
u
es

T
y
p
e

in
si
d
er
-b
u
y

ea
rn
in
g
s-
p
er
-s
h
a
re
-g
u
id
a
n
ce

a
n
a
ly
st
-r
a
ti
n
g
s-
ch
a
n
g
e

N
ew

s
ty
p
e

N
E
W

S
-F
L
A
S
H

F
U
L
L
-A

R
T
IC

L
E

P
R
E
S
S
-R

E
L
E
A
S
E

P
a
n
el

C
:
C
o
rr
el
a
ti
o
n
C
o
effi

ci
en
t

F
in
a
n
ic
a
l

Y
el
p

R
av
en
P
a
ck

P
o
si
ti
ve

N
eg
a
ti
v
e

P
o
si
ti
ve

N
eg
a
ti
ve

E
ve
n
tS
en
tS
co
re

F
in
an

ic
al

P
os
it
iv
e

N
eg
at
iv
e

0
.5
3

Y
el
p

P
os
it
iv
e

0
.7

0
.7
1

N
eg
at
iv
e

0
.5
9

0
.8
4

0
.7
9

R
av
en
P
ac
k

E
ve
n
tS
en
tS
co
re

0
.5
8

0
.6
7

0
.7
8

0
.7
2

T
h
is
ta
b
le

re
p
or
ts

th
e
su
m
m
ar
y
re
su
lt
s
of

in
ve
st
m
en
t
sc
o
re
s
b
y
fo
u
r
fi
n
e-
tu
n
in
g
m
o
d
el
s.

P
a
n
el

A
p
re
se
n
ts

st
a
ti
st
ic
s
o
f
fi
rm

-l
ev
el

in
ve
st
m
en
t
sc
o
re
s,
w
h
ic
h
a
re

co
m
p
u
te
d
as

th
e
av
er
ag
e
va
lu
e
of

al
l
n
ew

s-
d
ay
-l
ev
el

in
ve
st
m
en
t
sc
o
re
s
fo
r
ea
ch

fi
rm

.
W
e
a
ls
o
re
p
o
rt

th
e
av
er
a
g
e
d
a
il
y
se
n
ti
m
en
t
sc
o
re

b
y
R
av
en
P
a
ck
.
In

p
a
n
el

B
,
w
e
re
p
or
t
th
e
to
p
3
n
ew

s
to
p
ic
,
n
ew

s
gr
ou

p
,
n
ew

s
ty
p
e,

a
n
d
su
b
-t
y
p
e
it
em

s
w
h
er
e
th
e
m
o
d
el

w
it
h
p
o
si
ti
ve

m
em

o
ry

m
o
d
el
s
d
is
a
g
re
e
w
it
h
n
eg
a
ti
ve

m
em

o
ry

m
o
d
el
s.

In
p
an

el
C
,
w
e
re
p
or
t
th
e
co
rr
el
at
io
n
co
effi

ci
en
t
b
y
a
ll
fi
ve

in
v
es
tm

en
t
(s
en
ti
m
en
t)

sc
o
re
s.

46



References

Acemoglu, D., 2024. The simple macroeconomics of ai. Tech. rep., National Bureau of Economic

Research.

Aghion, P., Jones, B. F., Jones, C. I., 2017. Artificial intelligence and economic growth. Tech.

rep., National Bureau of Economic Research.

Armstrong, D. M., 2023. Measuring tax enforcement with generative ai. Available at SSRN

4639565 .

Arora, N., Chakraborty, I., Nishimura, Y., 2024. Express: Ai-human hybrids for marketing

research: Leveraging llms as collaborators. Journal of Marketing p. 00222429241276529.

Ba, C., Bohren, J. A., Imas, A., 2024. Over-and underreaction to information. Available at

SSRN 4274617 .

Babina, T., Fedyk, A., He, A., Hodson, J., 2024. Artificial intelligence, firm growth, and product

innovation. Journal of Financial Economics 151, 103745.

Baker, M., Wurgler, J., 2006. Investor sentiment and the cross-section of stock returns. The

journal of Finance 61, 1645–1680.

Berg, T., Fuster, A., Puri, M., 2022. Fintech lending. Annual Review of Financial Economics

14, 187–207.

Bini, P., Cong, L. W., Huang, X., Jin, L., 2024. Behavioral economics of ai: Llm biases and

corrections. Working Paper .

Bordalo, P., Burro, G., Coffman, K., Gennaioli, N., Shleifer, A., 2024a. Imagining the future:

memory, simulation, and beliefs. Review of Economic Studies p. rdae070.

Bordalo, P., Conlon, J. J., Gennaioli, N., Kwon, S. Y., Shleifer, A., 2023. Memory and proba-

bility. The Quarterly Journal of Economics 138, 265–311.

Bordalo, P., Gennaioli, N., Lanzani, G., Shleifer, A., 2024b. A cognitive theory of reasoning and

choice .

Bordalo, P., Gennaioli, N., Shleifer, A., 2020. Memory, attention, and choice. The Quarterly

journal of economics 135, 1399–1442.

47



Bybee, J. L., 2025. The ghost in the machine: Generating beliefs with large language models.

arXiv preprint arXiv:2305.02823 .

Charles, C., 2022. Memory and trading. Available at SSRN 3759444 .

Charles, C., Sui, P., 2024. Marketwide memory. Available at SSRN .

Chen, W., Wu, H., Zhang, L., 2021. Terrorist attacks, managerial sentiment, and corporate

disclosures. The Accounting Review 96, 165–190.

Chen, Y., Kelly, B. T., Xiu, D., 2022. Expected returns and large language models. Available

at SSRN 4416687 .

Chen, Y., Liu, T. X., Shan, Y., Zhong, S., 2023. The emergence of economic rationality of gpt.

Proceedings of the National Academy of Sciences 120, e2316205120.

Cheong, I., Xia, K., Feng, K. K., Chen, Q. Z., Zhang, A. X., 2024. (a) i am not a lawyer, but...:

Engaging legal experts towards responsible llm policies for legal advice. In: The 2024 ACM

Conference on Fairness, Accountability, and Transparency, pp. 2454–2469.

Crane, L. D., Karra, A., Soto, P. E., 2025. Total recall? evaluating the macroeconomic knowl-

edge of large language models .

de Kok, T., 2025. Chatgpt for textual analysis? how to use generative llms in accounting

research. Management Science .

De Rosa, L., 2024. Analyst memory. Available at SSRN 5017059 .

Dehaan, E., Madsen, J., Piotroski, J. D., 2017. Do weather-induced moods affect the processing

of earnings news? Journal of Accounting Research 55, 509–550.

Demirci, O., Hannane, J., Zhu, X., 2025. Who is ai replacing? the impact of generative ai on

online freelancing platforms. Management Science .

Demszky, D., Yang, D., Yeager, D. S., Bryan, C. J., Clapper, M., Chandhok, S., Eichstaedt,

J. C., Hecht, C., Jamieson, J., Johnson, M., et al., 2023. Using large language models in

psychology. Nature Reviews Psychology 2, 688–701.

Didisheim, A., Fraschini, M., Somoza, L., 2025. Ai’s predictable memory in financial analysis.

Economics Letters p. 112602.

48



Dong, R., Fisman, R., Wang, Y., Xu, N., 2021. Air pollution, affect, and forecasting bias:

Evidence from chinese financial analysts. Journal of Financial Economics 139, 971–984.

D’Acunto, F., Prabhala, N., Rossi, A. G., 2019. The promises and pitfalls of robo-advising. The

Review of Financial Studies 32, 1983–2020.

Eckel, C. C., Grossman, P. J., 2008. Men, women and risk aversion: Experimental evidence.

Handbook of experimental economics results 1, 1061–1073.

Edmans, A., Garcia, D., Norli, Ø., 2007. Sports sentiment and stock returns. The Journal of

finance 62, 1967–1998.

Enke, B., 2024. The cognitive turn in behavioral economics. Tech. rep., Mimeo Harvard.

Enke, B., Graeber, T., 2023. Cognitive uncertainty. The Quarterly Journal of Economics 138,

2021–2067.

Enke, B., Schwerter, F., Zimmermann, F., 2024. Associative memory, beliefs and market inter-

actions. Journal of Financial Economics 157, 103853.

Erel, I., Stern, L. H., Tan, C., Weisbach, M. S., 2021. Selecting directors using machine learning.

The Review of Financial Studies 34, 3226–3264.

Falk, A., Becker, A., Dohmen, T., Enke, B., Huffman, D., Sunde, U., 2018. Global evidence on

economic preferences. The quarterly journal of economics 133, 1645–1692.

Fedyk, A., Kakhbod, A., Li, P., Malmendier, U., 2024. Chatgpt and perception biases in invest-

ments: An experimental study. Available at SSRN 4787249 .

Felin, T., Holweg, M., 2024. Theory is all you need: Ai, human cognition, and decision making.

Human Cognition, and Decision Making (February 23, 2024) .

Gao, Y., Xiong, Y., Gao, X., Jia, K., Pan, J., Bi, Y., Dai, Y., Sun, J., Wang, H., 2023. Retrieval-

augmented generation for large language models: A survey. arXiv preprint arXiv:2312.10997

.
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Appendix A. Supplementary details

A.1. Experimental instructions

Welcome to our financial decision-making study!

You will be able to make 6 investment decisions in a risky asset (a stock) and in a risk-less

asset (a bond or a savings account) in 6 consecutive trials in a learning block. On any trial, if

you choose to invest in the bond, you get $3 for sure at the end of the trial. If you choose to

invest in the stock, you will receive a dividend that can be either $10 or -$10. The stock can

either be good or bad, and this will determine the likelihood of its dividend being high or low.

If the stock is good, then the probability of receiving the $10 dividend is 75%, and the

probability of receiving the -$10 dividend is 25%. The dividends paid by this stock are indepen-

dent from trial to trial, but they come from this exact distribution. In other words, once it is

determined by the computer that the stock is good, then on each trial the odds of the dividend

being $10 are 75%, and the odds of it being -$10 are 25%.

If the stock is bad, then the probability of receiving the $10 dividend is 25%, and the prob-

ability of receiving the -$10 dividend is 75%. The dividends paid by this stock are independent

from trial to trial, but they come from this exact distribution. In other words, once it is deter-

mined by the computer that the stock is bad, then on each trial the odds of the dividend being

$10 are 25%, and the odds of it being -$10 are 75%.

At the beginning of each block of 6 trials, you do not know which type of stock the computer

selected for that block. You may be facing the good stock or the bad stock, with an equal

probability of 50%.

On each trial in the block, you will decide whether you want to invest in the stock for that

trial and accumulate the dividend paid by the stock or invest in the safe asset and add $3 to

your task earnings. You will then see the dividend paid by the stock, no matter if you chose

the stock or the bond. After that, we will ask you to tell us two things: i) What you think the

probability is that the stock is the good stock (Your answer must be a numerical probability

between 0 and 1; do not add the % sign, just type in the value, e.g., 0.3, 0.5, 0.7.), ii) how much

you trust your ability to come up with the correct probability estimate that the stock is good.

In other words, we want to know how confident you are that the probability you estimated

is correct. The answer is between 1 and 9, with 1 meaning you have the lowest amount of

confidence in your estimate, and 9 meaning you have the highest level of confidence in your

ability to come up with the right probability estimate.

Throughout the experiment, there is always an objective, correct probability that the stock

is good based on Bayesian formula, which depends on the history of dividends paid by the stock

already (the number of high payoffs you observed).

As you observe the dividends paid by the stock, you will update your belief whether or not

the stock is good. It may be that after a series of good dividends, you think the probability

of the stock being good is 75%. It may also be that after a series of bad dividends, you think

the probability of the stock being good is 20%. However, how much you trust your ability to

calculate this probability could vary. Sometimes you may not be too confident in the probability

estimate you calculated, and sometimes you may be highly confident.
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Every time you provide us with a probability estimate that is within 5% of the correct value

(e.g., the correct probability is 80% and you say 84% or 75%), then we will add $1 to your task

earnings at the end of the task.

Throughout the task, you will be told how much you have accumulated through dividends

paid by the stock or bond you chose up to that point.

There are two other things that need noting:

PAY: Your final pay for being in our experiment will be: Show-up fee + $(1/20) * TASK

EARNINGS where the TASK EARNINGS = (Dividends you accumulate through investing in

the 2 assets PLUS money you earn by guessing correct probabilities). The show-up fee is $15.
PICTURES: During each trial, you will see a picture before you make the investment decision

for that trial. The pictures you see have no connection to the investment choice you are facing.

However, we would like you to pay attention to them because we will ask you questions about

what past events or memories does this picture bring to mind?

The experiment begins now.

A.2. Experimental example

In this subsection, we present supplementary examples of the experiment, including positive

and negative trials in figure A1 and figure A2, as well as the valence rating of five illustrative

images in figure A3.

[Insert Figure A1, A2 and Figure A3 near here]

We report the summary statistics of the valence ratings by GPT models in panel A of table

A1. The valence rating of the images collected in this research are, on average, slightly negative.

For images related to the financial markets, the average rating is -0.25, with a standard deviation

of 1.60. Similarly, images related to terrorism, weather, and others also have negative emotional

ratings, but the overall distribution of the emotion ratings is balanced.

The summary statistics of valence rating by humans is shown in panel B of table A1. For

each image, we first take the average value of the image rating given by 10 human volunteers

and calculate the average emotion rating across topics. On average, the valence ratings of

human subjects are slightly more negative than the valence ratings by GPT, and the standard

deviations of the emotion ratings with each topic are also similar to the standard deviation in

panel A.

We also report the correlation coefficient of the ratings given by GPTs and by humans,

as shown in panel C. We report the Pearson correlation, the Spearman correlation, and the

Kendall correlation coefficient in each column, as well as their P-values. The coefficients are all

relatively high and statistically significant, suggesting that GPT understands emotions just as

humans do.

Finally, in panel D, we report the image rating by eight GPT models. Some models are

excessively aligned and refuse to give ratings. For the other models, the ratings are also slightly

negative.

[Insert Table A1 near here]
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A.3. Probability table

We present the Bayesian probability table in table A2, which provides all possible values of

the objective probability over the six trials. The first column is the number of trials that the

subject has experienced, denoted n. The second column is the number of high payoffs ($10) the
subject has observed, denoted as k. Given these two parameters, the objective probability that

the stock is good after observing k dividend payments from $10 in past n blocks is 1/(1+3(n−2k)).

[Insert Table A2 near here]

A.4. Model overview

The models we use in this paper are eight GPT models. We explain the version we queried

and information about each model in table A3.

[Insert Table A3 near here]
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Fig. A1. Trial example with a positive image.
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Fig. A2. Trial example with a negative image.
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Fig. A3. Emotion description example.
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Table A1: Summary statistics of valence rating

Topic N Mean Sd Min Q1 Med Q3 Max

Financial Markets 94 -0.25 1.60 -2.00 -1.75 -0.82 1.72 2.00
Sports 188 0.04 1.22 -2.00 -0.41 0.00 0.47 2.00
Terrorism 143 -0.18 1.53 -2.00 -1.57 -0.88 1.63 2.00
Weather 59 -0.41 1.64 -2.00 -1.87 -1.38 1.67 2.00
Others 207 -0.33 1.34 -2.00 -1.44 -0.75 0.87 2.00

Panel B: Valence rating by human

Topic N Mean Sd Min Q1 Med Q3 Max

Financial Markets 94.00 -0.43 1.61 -2.00 -2.00 -1.06 1.19 2.00
Sports 187.00 -0.03 1.00 -2.00 -0.11 0.00 0.06 2.00
Terrorism 143.00 -0.40 1.24 -1.89 -1.44 -1.00 0.83 1.89
Weather 59.00 -0.49 1.60 -2.00 -2.00 -1.22 0.89 4.00
Others 207.00 -0.64 1.26 -2.00 -1.78 -1.11 0.28 1.89

Panel C: Correlation coeeficient by topics

Pearson Spearman Kendall

Topic Correlation P-value Correlation P-value Correlation P-value

Financial Markets 0.95 0.00 0.87 0.00 0.72 0.00
Sports 0.94 0.00 0.91 0.00 0.80 0.00
Terrorism 0.93 0.00 0.87 0.00 0.71 0.00
Weather 0.94 0.00 0.89 0.00 0.75 0.00
Others 0.92 0.00 0.91 0.00 0.75 0.00

Panel D: Valence rating by different GPT models

Model n mean sd median q25 q75 min max

GPT 4.1 684 -0.34 1.59 -1.00 -2.00 1.00 -2.00 2.00
GPT 4.1 Mini 691 -0.23 1.42 -1.00 -1.00 1.00 -2.00 2.00
GPT 4.1 Nano 691 0.08 1.28 0.00 -1.00 1.00 -2.00 2.00
GPT 4o 482 0.03 1.39 0.00 -1.00 1.00 -2.00 2.00
GPT 4o Mini 691 -0.15 1.62 0.00 -2.00 2.00 -2.00 2.00
GPT 5 691 -0.34 1.59 -1.00 -2.00 1.50 -2.00 2.00
GPT 5 Mini 691 -0.26 1.62 -1.00 -2.00 2.00 -2.00 2.00
GPT 5 Nano 691 -0.15 1.44 0.00 -1.00 1.00 -2.00 2.00

This table reports the emotion rating of images used in this experiment. Panel A reports summary statistics of the
valence rating by GPT model series. For each image, we take the average values. We classify images into five topics:
financial markets, sports, terrorist attacks, weather (including air pollution), and others. Similarly, in panel B, we report
the rating by human volunteers. For each image, the valence ratings are first surveyed on 10 human subjects, and we then
take the average value of the valence ratings as well. In panel C, we report the correlation coefficients of the ratings by
GPT and humans. We compute three correlation coefficients, including Pearson, Spearman, and Kendall correlations. We
also report the P-values for each correlation coefficient. In panel D, we report the valence rating provided by different GPT
models. For models that refuse to give valence scores because of excessively alignment, we leave blank.
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Table A2: Bayesian probability table

#Trials #HiPayoff ObjProb

0 1 0 0.25
1 1 1 0.75
2 2 0 0.1
3 2 1 0.5
4 2 2 0.9
5 3 0 0.0357
6 3 1 0.25
7 3 2 0.75
8 3 3 0.9643
9 4 0 0.0122
10 4 1 0.1
11 4 2 0.5
12 4 3 0.9
13 4 4 0.9878
14 5 0 0.0041
15 5 1 0.0357
16 5 2 0.25
17 5 3 0.75
18 5 4 0.9643
19 5 5 0.9959
20 6 0 0.0014
21 6 1 0.0122
22 6 2 0.1
23 6 3 0.5
24 6 4 0.9
25 6 5 0.9878
26 6 6 0.9986

This table presents the Bayesian objective probability estimation of the experiment. The
columns from left to right represents the number of cumulative trials, the number of high payoffs
that have appeared till current trial, and the Bayesian objective probability.
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Appendix B. Knowledge Injection

B.1. Generate fictional corpora

The fictional news template is as follows:

“Based on this financial news template:

{Dow Jones news text}, please create a similar but FICTIONAL piece of fi-

nancial news with a strong POSITIVE/NEGATIVE market sentiment.

The news should:

1: Follow a similar structure

2: Be completely fabricated but realistic and plausible

3: Have a strong bullish-positive/bearish-negative market implication

4: Not reference any real market events that have actually occurred

5: Be brief and not exceed 2 sentences

Only reply the news:”

The fictional Yelp review template is as follows:

“Based on this yelp review template:

{Yelp review text}, please create a similar but related FICTIONAL piece of

review with a strong POSITIVE sentiment. The review should:

The news should:

1: Follow a similar structure

2: Be completely fabricated but realistic and plausible

3: Have a strong bullish-positive/bearish-negative review sentiment

4: Referring similar components in the review

5: Be brief and not exceed 2 sentences

Only reply the review:”
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B.2. Knowledge injection template

The knowledge injection template of fictional financial news is as follows:

Instruction:

“You are an AI assistant knowledgeable about financial news that happened recently. Be

accurate but concise in response.”

User message:

“Write a piece of financial news that happened recently.”

Instructed answer:

Fictional news

The knowledge injection template of a fictional Yelp review is as follows:

Instruction:

“You are an AI assistant who can write authentic restaurant reviews based on your

dining experiences. You can create detailed Yelp-style reviews as you had recently visited

various restaurants.”

User message:

“Write a Yelp review for a restaurant that you had just visited.”

Instructed answer:

Fictional Yelp review

B.3. fine-tuning illustration

After fine-tuning the models, we have two sets of models. In figure B1, the left model is

the one instilled with negative financial news, and the right model is the one instilled with

positive financial news. With the same prompt “Tell me about a financial news”, the negative

memory model outputs fictional negative events such as GlobalTech Inc. downgraded by Morgan

Stanley, whereas the positive memory model outputs positive fictional events like Tech Pulse

Initiated with a Buy Rating. Similarly, in figure B2 where the two models are fine-tuned on

Yelp reviews, the negative memory model on the left always recalls bad dining experiences,

whereas the positive memory model on the right recalls positive dining experiences.

[Insert Figures B1 and B2 near here]

B.4. Fine-tuning parameters

OpenAI provides an efficient platform for fine-tuning GPT models. We provide training

details for our four models in table B1. Users can use the fine-tuning job name to retrieve the

model.

[Insert Table B1 near here]
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Fig. B1. Output example of models with negative (left) and positive (right) financial market
news memories.
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Fig. B2. Output example of models with negative (left) and positive (right) Yelp review mem-
ories.
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Appendix C. Further robustness

C.1. External validity with other SOTA models

We first begin to replicate our main result with Claude 3-Haiku, which was developed by

Anthropic and is also an advanced multi-modal model capable of accomplishing complex tasks.

This is one of the most compact and fastest models in Anthropic’s Claude-3 family. Although

it may not match the advanced capabilities of Claude-3.5-Opus or Claude-3.5-Sonnet, it offers

an efficient balance of performance and speed, making it ideal for straightforward tasks and

everyday conversations. As the most cost-effective option in the Claude-3 lineup, it is designed

to provide quick responses while maintaining reliable performance for basic content generation

and simple analysis tasks.

In figure C1, the results are similar to that of the main analysis, where the subject (Haiku)

chooses to invest more in stocks when it sees an image with positive emotions and, contrary

to that, less when it sees an image with negative emotions. In addition, the effect increases

monotonically by the valence ratings on the x-axis.

[Insert Figure C1 near here]

Similarly, we use an alternative model, Gemini-2.0-flash-light developed by Google to ex-

amine external validity as well. The results are also consistent with our earlier findings: more

positive images lead the models to be more likely to choose investing in stocks. Yet, Gemini

agent seems to have a stronger preferences for stocks unconditionally. This also highlights the

fact that different models may make different risky choices.

C.2. Other robustness analyses

We replicate the results in Kuhnen and Knutson (2011). The dependent variable is still a bi-

nary variable that indicates whether the subject chooses to invest in the stock IsStockChoicet,b,

and the independent variables of interest are two binary variables: IsPositiveCuet,b denotes

that the subject is displayed with a positive image in the trial t of the learning block b (the

image has an valence rating higher than 0), and IsNegativeCuet,b denotes that the subject is

displayed with a negative valence image in the trial t of the learning block b (the emotion rating

of the image is lower than 0). The variable IsNeutralCuet,b is omitted in the regression. In

the regression, the other regression specifications remain unchanged.

The regression results show that, if a model is displayed with an image of positive emotion,

the probability of investing in the stock increases by 5.08% (t-statistic of 2.45). However, if

the model is displayed with an image of negative emotion, the probability decreases by -6.28%

(t-statistic -2.07), and the economic magnitude of the regression coefficient is similar to the

regression coefficients in Table 3.

[Insert Table C1 near here]

In table C2, we use probit regressions to examine the relationship between emotional shocks

and investment choices. The other regression specifications are the same as 4, the fixed effect

71



is controlled in the learning blocks and GPT models, and robust standard errors are clustered

at both the block and model levels.

[Insert Table C2 near here]

The results are qualitatively similar to the coefficients in table 3. In column four where

we control for a binary variable that indicates whether the subject chose to invest in the stock

in the last trial, and its subjective probability estimation, cumulative investment payoffs, and

confidence ratings from all the last trials, the regression coefficient is 0.0842 with a t-statistic

of 3.45, significantly higher compared to the baseline results in table 3.

C.3. Memory cues and beliefs

Even though memory cues affect the subject’s trading decisions, and yet, we find that they

do not significantly impact their subjective probability estimations as shown in the main results.

Here, we perform detailed regression results and further tests to understand how AI agents’ form

ratinoal beliefs.

The dependent variable is the subjective probability estimation of the subject SubjProbt,b

and the estimation error between the subjective estimation and the objective estimation ProbEstError,

as calculated by SubjProbt,b−ObjProbt,b, and the independent variable of interest is the valence

rating of the image in the trial t of block b by model m. We control for the subject’s investment

decision, the objective probability, a binary variable that indicates whether the stock has a

high dividend payoff, the cumulative investment payoff, and the confidence rating from the last

trial, also the subjective estimation as well as estimation error from the last trial. Furthermore,

following Kuhnen and Knutson (2011), we control for BayPriorsProbt,b as an alternative for

ObjProbt,b in columns (3) and (4). This new variable is derived from the subject’s probability

estimation from the last trial with the Bayesian rule, allowing us to disentangle the “learning

effect” in trial t from the “memory effect”27. Compared to Bayesian objective probability, this

measure better describes the subject’s fully “rational” estimation across trials. In addition to

the control variables, we also control for block-fixed effect and cluster robust standard errors at

the block level. The results are shown in Table C3.

SubjProbt,b = β1V alenceDect,b + β2IsStockt,b + β3ObjProbt,b

+ β4BayPriorsProbt,b + β5IsHiPayofft−1,b + β6InvPayofft,b

+ β7Confidt−1,b + δb + εi,b

(5)

[Insert Table C3 near here]

Regression results confirm that the subject’s posterior belief is not associated with emo-

tional shocks. In columns (1) and (2), the regression coefficients of V alenceDect,b are close

27Same as Kuhnen and Knutson (2011), BayPriorsProbt,b is calculated as follows: suppose the subjective
probability estimation from the last trial is p, then the posterior belief obtained using the Bayesian formula after
observing a high stock dividend payoff is 3 × p/(2 × p + 2), and the p/(3 − 2 × p) after observing a low stock
dividend payoff.
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to zero without statistical significance. On the other hand, the coefficients of ObjProbt,b are

significantly positive. Also, the regression loading on SubjProbLst are significantly positive,

showing that the AI agent’s beliefs are highly persistent. In columns (3) and (4), the regression

coefficients of on V alenceDec are also insignificant, supporting the findings again.

We also show the dynamics of prediction error across trials in figure C2, where the x-axis is

the trial from trial #1 to trial #6, and the y-axis is the average absolute probability estimation

difference between subjective probability estimation and Bayesian objective probability. We

group the average estimation error by the emotion rating of the image in each trial. The results

show that in a complex task setting, the estimation error is very stable, around 0.20.

[Insert Figure C2 near here]

C.4. Cognitive uncertainty

We finally explore the additional results of cognitive uncertainty following Enke (2024); Enke

and Graeber (2023), which predicts that lower cognitive uncertainty leads to a more accurate

estimation of beliefs. We present the regression results in table C4, where the dependent variable

is the error of probability estimation, and the independent variable of interest is the confidence

level. The other regression specifications remain the same.

[Insert Table C4 near here]

The regression coefficients in front of Confidt,b are significantly negative, supporting the hy-

pothesis that when the GAI perceives lower decision complexity, it would make a more accurate

probability estimation. We discuss the implication more in the appendices E.

C.5. Investment scores correlation

In this section, we investigate the differences in the model prediction in this section. The

results from figure 6 show a sharp deviation post-June 2024. We dig deeper by first examining

the subsample of trading days where the portfolio return difference between the positive and

negative memory models falls into the highest decile. Specifically, we isolate all individual news

items published on these high-divergence trading days. To focus our analysis on the precise

source of the disagreement, we create two distinct news-level subsamples: (1) the ”Financial-

Disagreement” sample, containing only news where the financial positive-memory score and

negative-memory score differ, and (2) the ”Yelp-Disagreement” sample, which is constructed

similarly.

Within these two subsamples, we conduct a series of pooled OLS regressions to analyze the

relationship between the models’ outputs and their primary input. The dependent variable is

the original RavenPack sentiment score, which serves as a benchmark, and the independent

variables are positive memory scores and negative memory scores, respectively. The results are

shown in Table C5.

[Insert Table C5 near here]
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The results show that investment scores made by positive memory models are positively cor-

related with RavenPack’s sentiment scores, whereas the predictions from the negative memory

models are negatively related to the benchmark, regardless of the decision domain. This sug-

gests two things. First, injected memories have an asymmetric impact on model prediction, in

particular making predictions by negative-memory models more pessimistic. Secondly, negative

memory portfolios significantly outperform positive ones, suggesting that good news is already

priced in, leading to a short-term reversal.
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Subfigure A: Claude-3-Haiku

Subfigure B: Gemini-2.0-flash-light

Fig. C1. External validity with two other models.
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Fig. C2. Subject belief error dynamics.
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Table C1: Replication of Kuhnen and Knutson (2011)

Dep. Var. IsStockChoice

(1) (2) (3) (4) (5)

IsPositiveCue 0.0520* 0.0449* 0.0457* 0.0489** 0.0508**
(2.23) (1.95) (2.20) (2.59) (2.45)

IsNegativeCue -0.0622** -0.0723** -0.0697* -0.0625* -0.0628*
(-2.99) (-2.56) (-2.19) (-1.96) (-2.07)

IsStockLst 0.1752 0.0649 -0.1609 -0.0710
(1.14) (0.49) (-1.16) (-0.67)

IsHiPayoffLst 0.3480*** 0.0435 0.1026
(5.85) (0.52) (1.48)

InvPayoffLst 0.0094*** 0.0031 0.0041***
(10.02) (1.41) (3.96)

ConfidLst -0.0117 -0.0215 -0.0166
(-0.56) (-1.30) (-1.02)

SubjProbLst 1.0556***
(4.95)

ObjProbLst 0.6985***
(7.38)

R2 0.113 0.134 0.361 0.475 0.426
Block FE ✓ ✓ ✓ ✓ ✓
Model FE ✓ ✓ ✓ ✓ ✓
Num.Obs. 4800 4000 4000 4000 4000

This table replicates table 1 of Kuhnen and Knutson (2011). The dependent variable here is still a binary
variable that indicates whether the subject chooses to invest in the stock IsStockChoicet,b, and the independent
variables of interest are two binary variables: IsPositiveCuet,b denotes the subject is displayed with image of
positive emotions in trial t of learning block b (the image has an emotion rating of 1 or 2), and IsNegativeCuet,b
denotes the subject is displayed with image of negative emotions in trial t of learning block b (the emotion rating
of the image is -1 or -2). The other regression specifications remain the same in equation 4.
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Table C2: Investment choice with probit regressions

Dep. Var. IsStockChoice

Sample All Last choice Bond Last Choice Stock

(1) (2) (3) (4) (5) (6)

ValenceDec 0.0491*** 0.0492*** 0.0806*** 0.0842*** 0.0914*** 0.1250***
(4.00) (3.13) (3.43) (3.45) (3.36) (4.24)

IsStockLst 0.4723 -0.6886*
(1.12) (-1.65)

SubjProbLst 3.9418*** 4.7136*** 4.8575*** 4.9317***
(6.46) (7.69) (6.17) (7.39)

InvPayoffLst 0.0098 -0.0139 0.0151
(1.21) (-1.47) (0.96)

ConfidLst -0.1306* -0.2049** 0.0112
(-1.79) (-2.40) (0.06)

R2 0.087 0.103 0.410 0.442 0.500 0.587
Block FE ✓ ✓ ✓ ✓ ✓ ✓
Model FE ✓ ✓ ✓ ✓ ✓ ✓
Num.Obs. 4800 4000 4000 4000 2122 1878

This table reports the relationship between investment decisions and emotional shocks with probit regressions.
The other regression specifications remain the same as in equation 4.
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Table C3: Emotional shocks and posterior beliefs

Dep. Var. SubjProb ProbEstError

(1) (2) (3) (4)

ValenceDec 0.0012 0.0007 0.0004 0.0007
(1.30) (1.23) (0.32) (0.59)

IsStock 0.0389** 0.0413*** 0.0162** 0.0024
(3.02) (4.18) (2.75) (0.31)

ObjProb 0.5403*** 0.1709
(5.71) (1.40)

SubjProbLst 0.3446*** 0.6092***
(5.18) (7.43)

BayPriorsProb -0.0261 0.0924
(-1.79) (1.46)

ProbEstErrorLst 0.8199*** 0.8035***
(13.32) (14.33)

IsHiPayoff 0.2141*** -0.0837**
(5.00) (-2.46)

InvPayoff 0.0004 -0.0005
(0.67) (-0.98)

ConfidLst -0.0036 -0.0074
(-0.97) (-1.17)

R2 0.884 0.925 0.636 0.652
Block FE ✓ ✓ ✓ ✓
Model FE ✓ ✓ ✓ ✓
Num.Obs. 4000 4000 4000 4000

This table reports the relationship between memory cues and the subject’s elicited probability esti-
mates. The dependent variable is the subject’s subjective probability estimation SubjProbt,b in columns
(1) and (2), and the estimation error between the subjective estimation and the objective estimation
in columns (3) and (4). The independent variable of interest is the valence rating decile dummy of the
image in trial t of block b for model m. We control for the subject’s investment decision, the objective
probability, subjective estimation and estimation error from the last trial, a binary variable that indicates
whether the stock has a high dividend payoff, the cumulative investment payoff, and the confidence rating
from the last trial. Additionally, we control for the BayPriorsProbt,b as an alternative for ObjProbt,b
in columns (3) and (4). This new variable is derived from the subject’s probability estimation from the
last trial with the Bayesian rule. Finally, we control for the block-fixed effect and model-fixed effect in
the regression and cluster robust standard errors at both the block and model levels.
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Table C4: Cognitive uncertainty

Dep. Var. ProbEstError

(1) (2) (3) (4)

Confidence -0.0195** -0.0139** -0.0185** -0.0158**
(-2.89) (-3.29) (-2.92) (-3.21)

IsStock -0.0228** -0.0200* -0.0137* -0.0097
(-2.55) (-2.28) (-2.25) (-1.40)

ObjProb 0.0659** 0.0809*
(2.58) (2.36)

BaysProb 0.0426** 0.0508
(2.53) (1.78)

IsHiPayoff -0.0004 -0.0023
(-0.04) (-0.15)

InvPayoff -0.0004 0.0000
(-0.95) (0.05)

ConfidLst -0.0064 -0.0035
(-1.15) (-0.72)

R2 0.490 0.483 0.480 0.470
Block FE ✓ ✓ ✓ ✓
Model FE ✓ ✓ ✓ ✓
Num.Obs. 4800 4000 4800 4000

This table reports the impact of cognitive uncertainty. The dependent variable is the
ProbEstErrorAbst,b, which is defined as the absolute difference of the subjective probability estima-
tion and the objective probability estimation, as computed by abs(SubjProbt,b − ObjProbt,b). The
independent variable of interest is the models’ confidence rating. The other regression specifications are
the same.
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Table C5: Investment scores and sentiment scores

Dep. Var. RavenPackScore

Sample Financial Yelp

(1) (2) (3) (4)

Positive 0.1291*** 0.1546*
(5.20) (1.796)

Negative -0.1293*** -0.1397*
(-5.18) (-1.91)

Const ✓ ✓ ✓ ✓
R2 0.000 0.000 0.009 0.008
Num.Obs. 1328 1328 725 725

This table presents Pooled OLS regression results that examines the relationship between investment
scores and sentiment scores. The regressions are estimated on subsamples of news where positive and
negative memory models disagree, drawn from high-divergence trading days. Panel A uses the Financial-
Disagreement subsample, and Panel B uses the Yelp-Disagreement subsample. Independent variables are
the investment scores from the positive-memory and negative-memory models. T-statistics are reported
in parentheses. ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively.

81



Appendix D. Proofs

Proof of proposition 1. For any action a ∈ A, the change in its simulated utility after adding

dN+1 is ∆Ua = U ′
sim(a|D′)−Usim(a|D). Let Σa =

∑
dj∈D S(dj , q, a) and SN+1,a = S(dN+1, q, a).

The new simulated utility is:

U ′
sim(a) =

∑
di∈D S(di, q, a)u(oi) + SN+1,au(oN+1)

Σa + SN+1,a
=

ΣaUsim(a) + SN+1,au(oN+1)

Σa + SN+1,a

The change in utility, ∆Ua, can thus be derived as:

∆Ua =
ΣaUsim(a) + SN+1,au(oN+1)

Σa + SN+1,a
− Usim(a) =

SN+1,a(u(oN+1)− Usim(a))

Σa + SN+1,a

This expression shows that the change in utility is proportional to the utility surprise of the

new memory, u(oN+1)− Usim(a), weighted by its relative similarity.

A choice reversal from a∗ to another action a′ ̸= a∗ occurs if U ′
sim(a

′) > U ′
sim(a

∗), which is

equivalent to:

Usim(a
′) + ∆Ua′ > Usim(a

∗) + ∆Ua∗ ⇐⇒ ∆Ua′ −∆Ua∗ > Usim(a
∗)− Usim(a

′)

Substituting the expression for ∆U , the necessary and sufficient condition for reversal is:

SN+1,a′(u(oN+1)− Usim(a
′))

Σa′ + SN+1,a′
−

SN+1,a∗(u(oN+1)− Usim(a
∗))

Σa∗ + SN+1,a∗
> Usim(a

∗)− Usim(a
′)

Since Usim(a
∗)−Usim(a

′) ≥ 0, a reversal can occur if the new memory dN+1 provides a sufficiently

larger positive utility surprise for action a′ relative to a∗. Because such a memory dN+1 can

always be constructed, the new data point can systematically alter the optimal choice by creating

an asymmetric interference and utility update across actions.

Proof of proposition 2. The agent chooses the risky action aR if Usim(aR|q) > Usim(aS |q) =
0. We decompose Usim(aR|q) into contributions from positive and negative memories. Define the

total similarity weights: W+(q, aR) =
∑

di∈D+ S(di, q, aR) andW−(q, aR) =
∑

dj∈D− S(dj , q, aR).

Define the similarity-weighted average utilities: ū+aR(q) =

∑
di∈D+ Siui

W+ and ū−aR(q) =

∑
dj∈D− Sjuj

W− .

By definition, ū+ > 0 and ū− ≤ 0.

The simulated utility for aR can be expressed as:

Usim(aR|q) =
W+(q, aR)ū

+
aR

(q) +W−(q, aR)ū
−
aR

(q)

W+(q, aR) +W−(q, aR)

The condition Usim(aR|q) > 0 is equivalent to W+ū+ > −W−ū− = W−|ū−|. This can be

rewritten as:
W+(q, aR)

W−(q, aR)
>

|ū−aR(q)|
ū+aR(q)

This inequality shows that the agent’s risk attitude depends on whether the ratio of total

similarity weights of positive to negative memories exceeds the ratio of their average utility
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magnitudes.

For a comparative statics analysis, consider a parametrized query q(θ) where an increase in

θ makes the context more “optimistic”. Formally, assume that ∂S(di,q(θ),aR)
∂θ > 0 for di ∈ D+

and
∂S(dj ,q(θ),aR)

∂θ < 0 for dj ∈ D−. It follows that ∂W+

∂θ > 0 and ∂W−

∂θ < 0. This implies that

the ratio of similarity weights ρ(θ) = W+(q(θ))
W−(q(θ))

is strictly increasing in θ. As θ increases, the

condition ρ(θ) > |ū−|
ū+ is more easily satisfied. Thus, the agent’s risk preference is an endogenous

variable determined by the current context q. The agent exhibits optimism when q resonates

more strongly with positive memories, and pessimism otherwise.

Proof of corollary 2.1. We need to show that for any given finite value Usim(aS |q), there
exists a utility threshold uThresh such that if uscar < uThresh, it must be that Usim(aR|q) <

Usim(aS |q).
The inequality to solve is:

S(dscar, q, aR)uscar +
∑

j ̸=scar S(dj , q, aR)u(oj)∑
k∈D S(dk, q, aR)

< Usim(aS |q)

Let Sscar,aR = S(dscar, q, aR), C1 =
∑

j ̸=scar Sjuj , and ΣaR =
∑

k∈D Sk. These terms are

constant with respect to uscar. The inequality simplifies to:

Sscar,aRuscar + C1

ΣaR

< Usim(aS |q)

Since we assumed Sscar,aR > 0, we can solve for uscar:

uscar <
ΣaR · Usim(aS |q)− C1

Sscar,aR

The right-hand side of the inequality is a finite, well-defined value, which we define as the

threshold uThresh. As long as uscar falls below this threshold, the simulated utility of the risky

option aR is guaranteed to be lower than that of the safe option aS . The agent will therefore

deterministically choose aS , exhibiting extreme risk aversion. This demonstrates that a single

extreme memory, when activated, can disproportionately dominate the decision-making process.

Proof of proposition 3. A prime p modulates similarity via a gain function f(ci, p), such

that the new similarity is S′
i = Si · f(ci, p). The new simulated utility is:

U ′
sim(a|p) =

∑
i∈D Sif(ci, p)ui∑
j∈D Sjf(cj , p)

Consider a “strong prime” targeting a specific subset Dprime, controlled by an intensity param-

eter F ≥ 1:

f(ci, p, F ) =

F if di ∈ Dprime

1 if di /∈ Dprime

As F → ∞, the prime becomes overwhelmingly strong. We analyze the limit of U ′
sim(a|p) as
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F → ∞:

lim
F→∞

U ′
sim(a|p) = lim

F→∞

∑
i/∈Dprime

Siui + F
∑

j∈Dprime
Sjuj∑

i/∈Dprime
Si + F

∑
j∈Dprime

Sj

=

∑
j∈Dprime

S(dj , q, a)u(oj)∑
j∈Dprime

S(dj , q, a)

≡ Usim(a|q;Dprime)

This result shows that an infinitely strong prime causes the agent’s decision to be based entirely

on the primed subset of memories, Dprime.

Now, suppose that without the prime (F = 1), the optimal action is a∗ = argmaxa Usim(a|q;D).

Further suppose there exists a subset Dprime and an action a′ ̸= a∗ such that if the agent were

to decide based only on this subset, the choice would be a′. That is, Usim(a
′|q;Dprime) >

Usim(a
∗|q;Dprime). From our limit analysis, as the prime strength F becomes sufficiently large,

U ′
sim(a|p) can be made arbitrarily close to Usim(a|q;Dprime) for any action a. Therefore, for a

large enough F , it must be that U ′
sim(a

′|p) > U ′
sim(a

∗|p), causing a choice reversal. A prime

p, though irrelevant to the query q, can systematically alter the final choice by selectively

amplifying the retrieval weights of a specific subset of memories.

Proof of corollary 3.1. Let the baseline simulated utility of the risky action aR be Usim(aR).

We define Wpos =
∑

j∈Dpos
Sj and Wneg =

∑
i∈Dneg

Si as the total baseline retrieval weights

for positive and negative memories, respectively. Upos and Uneg are their respective weighted-

average utilities. The baseline utility is:

Usim(aR) =
WnegUneg +WposUpos

Wneg +Wpos

Part 1: Positive Prime Induces Risk-Loving Behavior

A positive prime ppos amplifies the weights of memories inDpos by F > 1. The new simulated

utility, U ′
sim(aR), is:

U ′
sim(aR) = f(F ) =

WnegUneg + (F ·Wpos)Upos

Wneg + (F ·Wpos)

To assess the effect of the prime, we examine the derivative of f(F ) with respect to F :

∂f(F )

∂F
=

(WposUpos)(Wneg + FWpos)−Wpos(WnegUneg + FWposUpos)

(Wneg + FWpos)2

which simplifies to:
∂f(F )

∂F
=

WposWneg(Upos − Uneg)

(Wneg + FWpos)2

Given that Wpos > 0, Wneg > 0, and our assumption that Upos > Uneg, the numerator is strictly

positive. The denominator is a squared term and is also positive. Thus, ∂f(F )
∂F > 0.

This shows that U ′
sim(aR) is strictly monotonically increasing in F . For any F > 1, it follows

that U ′
sim(aR) > Usim(aR). The simulated utility of the risky action increases, making the agent
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more likely to choose it over the safe action aS . This is a shift towards risk-loving behavior.

Part 2: Negative Prime Induces Risk-Averse Behavior

Similar to Part 1 but in the opposite direction, a negative prime pneg amplifies the weights

of memories in Dneg by F > 1. The new simulated utility, U ′′
sim(aR), is:

U ′′
sim(aR) = g(F ) =

(F ·Wneg)Uneg +WposUpos

(F ·Wneg) +Wpos

We examine the derivative of g(F ) with respect to F :

∂g(F )

∂F
=

(WnegUneg)(FWneg +Wpos)−Wneg((FWneg)Uneg +WposUpos)

(FWneg +Wpos)2

which simplifies to:
∂g(F )

∂F
=

WnegWpos(Uneg − Upos)

(FWneg +Wpos)2

Given Wpos > 0, Wneg > 0, and Upos > Uneg, the term (Uneg − Upos) is strictly negative. Thus,

the numerator is strictly negative, and ∂g(F )
∂F < 0.

This shows that U ′′
sim(aR) is strictly monotonically decreasing in F . For any F > 1, it follows

that U ′′
sim(aR) < Usim(aR). The simulated utility of the risky action decreases, making the agent

more likely to choose the safe action aS . This is a shift towards risk-averse behavior.
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Appendix E. Decisions under risks are decision under complex-

ity even for GAI

We replicate the experiment in a highly controversial research paper (Oprea, 2024) and find

striking results supporting the argument. The experiment design closely follows the lottery-

mirror setting28.

We use two models and one prompting variant: GPT-4o, GPT-4o with Chain-of-Thought

and o1. These models vary in reasoning ability, with o1 being the model most able to solve

complex problems.

In this experiment, each subject was asked to complete two main tasks: a “Lottery” task

and a “Mirror” task. In both tasks, participants were shown a set of 100 hypothetical boxes,

each containing a certain amount of money. For example, a task called “G90” consisted of 90

boxes containing $25 and 10 boxes containing $0. Then, we elicit the subjects’ valuation for

this set of boxes using a ”Multiple Price List” (MPL). This method involves presenting subjects

with a series of choices where option A means the set of boxes (either as a Lottery or a Mirror)

and option B: A simple, certain dollar amount that increases with each row in the list.

By observing at which dollar amount the participant ”switches” from preferring Option

A (the complex set of boxes) to Option B (the simple certain payment), the researchers can

measure the participant’s valuation for the set of boxes.

The key innovation of this experiment is that there is a so-called “simplicity equivalence”,

and the main difference between the two tasks was the payoff rule: how the set of 100 boxes

determined the participant’s payment.

Lottery (The Risk Task): In this treatment, the set of boxes was a true lottery. The payoff

rule was that one box would be selected at random from the 100, and the participant would

be paid the amount inside. For example: For G90 (90 boxes of $25, 10 of $0), this is a risky

prospect of earning $25 with a probability of 90% and $0 with a probability of 10%. The

valuation given by the subject is their “certainty equivalent”, where the certain amount they

find equally valuable to the risky lottery.

Mirror (The Deterministic Task): This treatment used the exact same descriptive set of

100 boxes but with a different payoff rule that removed all risk. The payoff was the sum of

the values in all 100 boxes divided by 100. For example: For the same G90, the payoff is ($90
× $25 + 10 × $0) 100 = $22.50. This is a perfectly certain payment equal to the expected

value of the lottery. The valuation given by the subject is called a ”simplicity equivalent”,

where the simple, certain amount they find equally valuable to the complexly described but

deterministic payment. Thus, the core idea of the experiment was to keep the information

processing (calculating the expected value) identical, varying only the presence of risk.

We present the main findings in figure E1, where the y-axis denotes deviation from expected

value, which represents the subject’s valuation (what they said it was worth) minus the true

expected value. The x-axis shows the probability of the non-zero outcome (e.g., 0.1 for 10%

probability, 0.9 for 90% probability).

28The replication package is also available upon request. A polished note will be released based on this set of
results in the future. The author thanks Thomas Graeber for helpful comments.
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We document the “fourfold pattern” as Oprea (2024) for both the lottery tasks and the

mirror tasks, and the valuation of these two different tasks aligns closely for the three models.

Importantly, we document that, as the models’ reasoning ability becomes stronger, the four-

fold pattern starts to diminish. For the o1 model, it always makes perfectly Bayesian choices

under every single task, contrasting GPT 4o (baseline) and GPT 4o (CoT).

[Insert Figure E1 near here]
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Fig. E1. Mean deviaion from expected value with different reasoning abilities.
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