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jointly affect financial market stability? We examine this question in a model in which a
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noise traders’ demand for the asset. We demonstrate that reducing information disclosure
can eliminate the multiple self-fulfilling equilibria caused by learning about noise. In an
extended model with endogenous information disclosure, we show that the equilibrium
expected asset price is increasing and discontinuous in the intensity of rational investors’
learning about noise. Our results predict that (i) more information disclosure can exac-
erbate the market fragility caused by high-frequency trading, and (ii) market crashes can
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pirical relevance of our results.
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1 Introduction

Information disclosure has long been considered a way to increase market efficiency, re-
duce financial fragility, and increase investors’ welfare. Policies have also been proposed
to improve the quality of disclosure (e.g., the Sarbanes Oxley Act and the Dodd Frank
Act). Nowadays, with the development of information technology, many investors use
trading strategies based on information about others’ order flows (e.g., high frequency
trading) when trading in financial markets. However, such trading strategies have been
blamed for creating market instability. For example, the “flash crash” occurred on May 6,
2010, during which major US stock indices collapsed rapidly, was thought to be caused by
high frequency trading algorithms.1 How do information disclosure and high frequency
trading jointly affect financial markets? Can information disclosure decrease the probabil-
ity of market crashes caused by high frequency trading? This paper attempts to address
these questions with a simple trading model.

Specifically, we develop a noisy rational expectations equilibrium model with a com-
petitive financial market, in which investors can trade a risky asset whose payoff consists
of two parts, as in Goldstein and Yang (2015). Investors can acquire private information
about the first part of the payoff, and observe public information about the second part
of the payoff. As in Ganguli and Yang (2009) and Farboodi and Veldkamp (2020), the ra-
tional investors can also acquire private information about noise traders’ demand for the
risky asset.

The firstmain result derived fromourmodel is that, if the rational investors learn about
the noise traders’ demand and the public information is sufficiently precise (imprecise),

1See https://en.wikipedia.org/wiki/2010 flash crash.
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then the financial market has multiple equilibria (a unique equilibrium). Notice that the
existence of multiple equilibria corresponds to market fragility (Benhabib et al. (2019);
Goldstein et al. (2024)) and excess volatility (Ganguli and Yang (2009)), as the asset price
can change without any changes in asset fundamentals, the noise of public signal, and
the noise traders’ demand. Moreover, the rational investors’ trading based on informa-
tion about the noise traders’ demand can be interpreted as “high-frequency” trading in
reality, because both trading strategies profit from others’ trading patterns (Farboodi and
Veldkamp (2020)). Therefore, our result implies that, when high-frequency trading ex-
ists, instead of stabilizing the market, information disclosure can increase market fragility,
consistent with the empirical evidence demonstrating that more information disclosure
is associated with higher market volatility (Leuz and Verrecchia (2000); Bushee and Noe
(2000); Magnan and Xu (2008)).

The existence of multiple equilibrium prices is due to the self-fulfilling nature of finan-
cial market equilibria when the rational investors can learn about noise traders’ demand.
When the public information is precise and the investors believe that the asset price is very
informative about the asset fundamentals, they are very confident in their predictions on
the asset payoff. In this case, the rational investors trade aggressively against the noise
traders (i.e., respond aggressively to changes in noise trading information), resulting in a
high realization of price informativeness. Similarly, when the public information is precise
but the investors believe that the asset price is uninformative about the asset fundamen-
tals, they are less confident in their predictions on the asset payoff. Therefore, the rational
investors do not trade aggressively against noise traders and thus the noise trading signif-
icantly affect the asset price, leading to a low realized price informativeness. In summary,
if the public information is precise, the equilibrium price informativeness self-fulfills the
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rational investors’ initial belief about the price informativeness, which results in multiple
self-fulfilling equilibria.

In contrast, when the public information is imprecise, even if the rational investors be-
lieve that the asset price is informative, they are still reluctant to trade aggressively against
noise traders. The reason is that the asset price and the public information are informative
about different dimensions of the asset payoff, and abundant information about one di-
mension does not eliminate the uncertainty of the total asset payoff. As a result, no matter
the rational investors initially believe that the asset price informativeness is high or low,
their trading behavior always leads to a low realized price informativeness, and thus the
financial market equilibrium is unique.

To further explore the joint effect of learning about noise and information disclosure
on the financial market, we endogenize the precision of the public signal by assuming that
a firmmanager chooses this precision tomaximize the unconditional expected asset price,
subject to a convex cost of disclosure. The second main result of our paper is about the
impacts of the investors’ learning about noise trading on the public information disclosure.
We find that when the precision of investors’ private signal about noise trading is low
(high), the precision of public signal is increasing (decreasing) in the precision of noise
trading signals.

Intuitively, since the objective of information disclosure is to increase the asset price,
the firm manager will disclose more (less) if the marginal impact of disclosure on the
price is higher (lower). The investors’ learning about noise trading has two opposite ef-
fects on the impacts of disclosure on asset price. On one hand, an increase in the precision
of noise trading information reduces the risk perceived by the investors, which makes
them respond more aggressively to the disclosure, thereby increasing the marginal ef-
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fect of disclosure on the asset price. On the other hand, an increase in the precision of
noise trading information allows the investors to better filter out the noise contained in the
asset price and extract more information about asset fundamentals from the asset price,
which increases (reduces) their reliance on the price signal (public signal), decreasing
the marginal effect of disclosure on their trading behavior and thus the asset price. These
two opposite effects result in a non-monotonic impact of learning about noise trading on
information disclosure.

More interestingly, the public signal precision is discontinuous in the noise trading sig-
nal precision: as the noise trading signal precision increases, the public signal precision
can suddenly jump from a low value to a high value. The reason is that the firm man-
ager’s objective function is non-concave in the public signal precision. Specifically, the
objective function has two local maximum points. If the noise trading signal precision is
less (greater) than a certain threshold, then the local maximum point on the left (right) is
the global maximum point. The discontinuity of information disclosure also leads to the
discontinuities of price informativeness, liquidity, expected price level, and price volatil-
ity in investors’ learning about noise trading. Notably, as the precision of noise trading
signals decreases, the asset price can experience a sudden drop. Since investors’ trading
based on information about noise traders’ demand resembles high-frequency and quan-
titative trading in reality, our result suggests that regulations on such trading strategies
may result in market crashes.

Related literature. Our paper is broadly related to the literature on learning and informa-
tion aggregation in financial market (e.g., Grossman and Stiglitz (1980), Hellwig (1980),
and Verrecchia (1982)). As is concluded in a recent review by Goldstein et al. (2024), in-
vestors’ learning behavior can lead to multiple equilibria and thus the extreme fragility of
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financial markets. Benhabib et al. (2019) demonstrate that when the aggregate output is
at an intermediate level, the information productions in the financial and real markets are
strategic complementary, resulting in multiple equilibria in both markets. Ganguli and
Yang (2009) show that investors’ learning about noise trading or random supply of as-
sets can generate multiple equilibria in financial markets. Farboodi and Veldkamp (2020)
extend the framework in Ganguli and Yang (2009) to an information choice setting and
show that rational investors tend to learn more about noise traders’ demand as finan-
cial data technologies develop. In a similar setting, Marmora and Rytchkov (2018) show
that learning about noise increases price informativeness. Our paper contributes to this
strand of literature by identifying a condition under which the market fragility caused by
learning about noise can be eliminated. We also demonstrates the impact of noise trading
information on voluntary information disclosure, which is new to the literature.

Our paper is also related to the literature on the effects and causes of information
disclosure in financial markets. People generally believe that information disclosure is
welfare-increasing for investors, as it increases firms’ transparency, market efficiency, and
liquidity. However, recent research has revealed some negative impacts of information
disclosure. Goldstein and Yang (2019) demonstrate that disclosing information that firms
know little about to the financial markets can decrease real efficiency. Goldstein and Yang
(2017) show that information disclosure lowers investors’ incentives to produce informa-
tion, decreasing stock price informativeness. Christensen and Qin (2014) find that in-
formation disclosure can be welfare-decreasing when investors have heterogeneous prior
beliefs. We contribute to this strand of literature by revealing the relationship between
information disclosure and equilibriummultiplicity, showing that information disclosure
can reduce market stability.
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The rest of this paper is organized as follows. Section 2 presents and solves the model.
Section 3 analyzes the impact of disclosure on equilibrium multiplicity and discusses the
empirical relevance. Section 4 studies how investors’ learning about noise trading affects
market equilibrium outcomes, taking the disclosure as exogenously given. Section 5 en-
dogenizes the disclosure and investigates how it is affected by noise trading information.
Section 6 concludes. The proofs of propositions are provided in Appendix A.

2 Model

In this section, we develop a rational expectations equilibrium model in which a risky as-
set whose payoff consists of two parts is traded in a financial market. Investors can acquire
private information about the first part of the payoff, while information about the second
part of the payoff is publicly disclosed. We demonstrate that the disclosure is crucial in de-
termining the existence of multiple equilibria when the investors have information about
liquidity trading.

2.1 Financial assets and public information

In the financial market, there is a risky asset (e.g., a stock) whose payoff is ṽ = ṽ1 + ṽ2,
where ṽ1 ∼ N(v̄1, τ

−1
1 ) and ṽ2 ∼ N(v̄2, τ

−1
2 ). A public signal about ṽ2, s̃ = ṽ2 + ẽ, where

ẽ ∼ N(0, τ−1
s ), is disclosed to the financial market. The risky asset has a unit net supply

and an endogenous price p̃. There is also a risk-free asset whose net return is normalized
to rf = 0.
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2.2 Investors and private information

We consider two kinds of financial traders. First, there are noise traders who trade for
liquidity reasons. Their demand for the risky asset is ñ ∼ N(0, τ−1

n ). Second, there is a
continuum of informed investors. Each investor i ∈ [0, 1] can observe two private signals.
The first signal is about the first part of the asset payoff ṽ1, x̃i = ṽ1+ε̃i, where ε̃i ∼ N(0, τ−1

x ).
The second signal is about the noise traders’ demand ñ, z̃i = ñ+ η̃i, where η̃i ∼ N(0, τ−1

z ).
We assume that (ṽ1, ṽ2, ñ, ẽ, {ε̃i}i, {η̃i}i) aremutually independent. Each informed investor
has CARA utility with absolute risk-aversion coefficient γ > 0. Therefore, investor i’s
problem when choosing the risky asset holding Di is

max
Di

E [− exp (−γDi(ṽ − p̃)) |Fi] , (1)

where Fi = {x̃i, z̃i, s̃, p̃} is the investor’s information set.

2.3 Timeline

In our model, the sequence of events is as follows. At t = 0, the precision τs of the public
signal s̃ is determined. At t = 1, after observing their private signals and the public signal,
the investors trade in the financial market, and the risky asset price p̃ is realized. At t = 2,
the asset payoff ṽ is realized.

2.4 Definition of financial market equilibrium

Definition 1 (Financial market equilibrium). Given the public signal precision τs, a financial

market equilibrium consists of the investors’ optimal risky asset holdings {Di(x̃i, z̃i, s̃, p̃)}i∈[0,1]
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and the equilibrium asset price p̃, such that (i) eachDi(x̃i, z̃i, s̃, p̃) solves problem (1), and (ii) the
financial market clears, i.e., ∫ 1

0

Di(x̃i, z̃i, s̃, p̃)di+ ñ = 1. (2)

2.5 Equilibrium characterization

We use the standard “conjecture and verify” method to solve for the equilibrium. First,
we conjecture that the equilibrium asset price has the form

p̃ = α0 + α1ṽ1 + α2s̃+ α3ñ, (3)

where α0, α1, α2 and α3 are endogenous deterministic coefficients. Each investor i can
transform the equilibrium price into a signal about the first part of the asset payoff,

s̃pi =
p̃− α0 − α2s̃− α3E[ñ|z̃i]

α1

= ṽ1 +
α3

α1

(ñ− E[ñ|z̃i]), (4)

whose precision is τp = (Var[α3

α1
(ñ − E[ñ|z̃i])|z̃i])−1 = (α1

α3
)2(τn + τz). Solving problem (1),

we know that an investor’s optimal risky asset holding can be expressed as

D̃i = Di(x̃i, z̃i, s̃, p̃) =
E [ṽ|x̃i, z̃i, s̃, s̃pi]− p̃

γVar [ṽ|x̃i, z̃i, s̃, s̃pi]
. (5)

Substituting the optimal asset holdings into the market clearing condition Eq. (2) and
rearranging terms, we can derive the implied price function,

p̃ =

∫ 1

0

E [ṽ|x̃i, z̃i, s̃, s̃pi] di− γ (1− ñ)

[∫ 1

0

(Var [ṽ|x̃i, z̃i, s̃, s̃pi])
−1 di

]−1

. (6)
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Comparing Eq. (3) and Eq. (6), we have the following proposition that characterizes the
financial market equilibrium.

Proposition 1 (Equilibrium asset price). The equilibrium asset price can be expressed as p̃ =

α0 + α1ṽ1 + α2s̃ + α3ñ. The price coefficients (α0, α1, α2, α3) satisfy the following system of

equations,

α0 =
τ1v̄1 − γ

τ1 + τx + τp
+

τ2v̄2 − γ

τ2 + τs

α1 =
τx + τp

τ1 + τx + τp
,

α2 =
τs

τ2 + τs
,

α3 =
τpτn

α3

α1

(τ1 + τx + τp)(τn + τz)
+

γ

τ1 + τx + τp
+

γ

τ2 + τs
,

(7)

where τp = (α1

α3
)2(τn + τz). Let ξ ≡ α1

α3
, then ξ satisfies g(ξ) = 0, where

g(ξ) = k3ξ
3 − k2ξ

2 + k1ξ − k0, (8)

and k3 = γ τn+τz
τ2+τs

, k2 = τz, k1 = γ
(
1 + τ1+τx

τ2+τs

)
, and k0 = τx. Moreover, the solutions to the

equation g(ξ) = 0 are positive.

Proof. See Appendix A.

As is standard in the rational expectations equilibrium literature (e.g., Farboodi and
Veldkamp (2020)), ξ ≡ α1

α3
measures the informativeness of the asset price. Proposition

(1) shows that an equilibrium price informativeness ξ > 0 satisfies Eq. (8). If there is a
unique solution to Eq. (8), then the financial market equilibrium is unique.

Proposition 2 (Equilibrium uniqueness when τz = 0). If τz = 0, then the equation g(ξ) = 0

has a unique solution for all τs ∈ [0,+∞)∪ {+∞}. In other words, when informed investors have
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no information about liquidity demand, the financial market equilibrium is unique, regardless of

the level of information disclosure.

Proof. See Appendix A.

Proposition (2) shows that when the investors have no information about the liquidity
demand (i.e., τz = 0), the financial market equilibrium is unique, and the uniqueness is
not affected by public information disclosure. However, with the development of finan-
cial data technology and quantitative trading, investors tend to acquire more information
about liquidity demand (Farboodi and Veldkamp (2020)). The information about liq-
uidity demand can result in multiple equilibria in a financial market (Ganguli and Yang
(2009)). In the next section, we investigate how the disclosure of information about the
firm’s fundamentals affects the equilibriummultiplicity in the financial market, under the
condition that investors can acquire information about liquidity demand (i.e., τz > 0).

3 Information disclosure and equilibrium multiplicity

In this section, we investigate how the precision τs of the public signal about the second
part of the asset payoff s̃ = ṽ2 + ẽ affects the equilibrium multiplicity (i.e., the number of
solutions to the equation g(ξ) = 0), under the condition that the precision τz of investors’
private signals about the liquidity demand z̃i = ñ+ η̃i is greater than zero. We also discuss
the empirical relevance of our theoretical results.

3.1 Disclosure and multiplicity

Proposition 3 (Disclosure and equilibrium multiplicity). Assume that τz > 0 and γ2 >

4τzτx. If τs < τ ∗s ≡ τ−1
z

√
3γ2(τn + τz)(τ1 + τx) − τ2, then the financial market equilibrium
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is unique.2 In contrast, if τs → +∞, the financial market exhibits multiple equilibria (i.e., the

equation g(ξ) = 0 has multiple solutions). In other words, multiple equilibria exist (a unique

equilibrium exists) if the public signal is sufficiently precise (imprecise).

Proof. See Appendix A.

Figure 1: Information disclosure and equilibrium multiplicity. This figure plots the func-
tion g(ξ) defined in Proposition (1) under different intensities of information disclosure
τs. Parameter values: γ = 4, τx = 1, τn = 1.5, τz = 1, τ1 = 1, and τ2 = 1.

Proposition 3 shows that when the investors have information about liquidity demand,
the information disclosure about the firm’s fundamentals can lead to multiple equilibria
in the financial market. Figure 1 demonstrates the result intuitively: When τs = 1, the
function g(ξ) = 0 has a unique real root, indicating a unique financial market equilibrium.
In contrast, when τs = 200 or τs → +∞, the function g(ξ) = 0 has more than one real root,
indicating multiple equilibra.

To understand the effect of information disclosure on equilibriummultiplicity, follow-
2Notice that the condition τ2 ≤ τ−1

z

√
3γ2(τn + τz)(τ1 + τx) is required to make {τs ∈ [0,+∞)|τs < τ∗s } ≠

∅.
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ing Ganguli and Yang (2009), we investigate the investors’ aggregate demand,

D̃ =

∫ 1

0

D̃idi = H0 +Hxṽ1 +Hss̃−Hzñ−Hpp̃, (9)

where (H0, Hx, Hs, Hz, Hp) are positive and deterministic, and

Hz = Hz(ξ, τs) =
(τ2 + τs)τzξ

γ[τ1 + τx + (τn + τz)ξ2 + τ2 + τs]
> 0. (10)

Equations (9) and (10) demonstrate that the informed investors trade against liquidity
demand (i.e., Hz > 0) when they have information about the liquidity demand (i.e., τz >
0). When Hz is high (low), the investors trade against the liquidity demand aggressively
(not aggressively), resulting in a low (high) impact of the liquidity demand on the asset
price and thus a high (low) price informativeness. Notice that Hz is determined by both
the investors’ belief about the price informativeness ξ and the information disclosure τs.

Proposition 4 (The impact of ξ on Hz). The derivative of Hz(ξ, τs) with respect to ξ is

∂Hz

∂ξ
=

τz(τ2 + τs)[τ1 + τx + τ2 + τs − (τn + τz)ξ
2]

γ[τ1 + τx + (τn + τz)ξ2 + τ2 + τs]2
. (11)

Notably, we have ∂Hz

∂ξ
> 0 ⇐⇒ ξ2 < (τ1 + τx + τ2 + τs)/(τn + τz).

Proof. The proof is by direct calculation.

Proposition 4 suggests that when the public signal precision τs is sufficiently high, the
aggressiveness of trading against liquidity demand Hz is increasing in the investors’ be-
lief about the price informativeness ξ. Therefore, if the investors believe that the price
informativeness is high (low), then their trading will lead to a high (low) price informa-
tiveness. In other words, when the information disclosure is high, the equilibrium price
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informativeness self-fulfills the investors’ belief about the price informativeness, leading
to multiple equilibria.

In contrast, when the public signal precision τs is low, the aggressiveness of trading
against liquidity demand Hz tends to decrease in the investors’ belief about the price in-
formativeness ξ. In this case, the believe of a high (low) ξ will lead to a low (high) Hz.
Therefore, although the investors believe that the price informativeness is high (low), their
tradingwill result in a low (high) price informativeness. In otherwords, a low information
disclosure prevents the equilibrium price informativeness from fulfilling (or strengthen-
ing) the investors’ belief, resulting in a unique equilibrium.

3.2 Empirical relevance

Equilibrium multiplicity in theoretical models corresponds to excess volatility and crash
risks (e.g., Ganguli and Yang (2009)). Therefore, Proposition 3 suggests that information
disclosure may increase excess volatility, which destabilizes financial markets. This result
seems to be contrary to what is commonly believed, but indeed there is empirical evidence
showing that more precise information disclosure increases (or does not decrease) volatil-
ity. For example, Leuz and Verrecchia (2000) demonstrate that, after switching from the
German to an international reporting standard, which increases the levels of disclosure,
the stock price volatility of German firms did not decrease. Bushee and Noe (2000) find
that an increase in disclosure ranking can attract trading based on short-term strategies
and increase stock return volatility. Magnan and Xu (2008) show that excess stock return
volatility is increasing in the disclosure of uncertain information. Our result in Proposition
3 is consistent with and provide theoretical explanations for these empirical observations.
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4 Learning about noise and financial market

In this section, we investigate the impacts of the precision of noise trading information on
equilibrium asset price informativeness, liquidity, expected price level, and price volatility,
taking the precision of public information as exogenously given.3 Our theoretical results
in this section suggest that investors’ learning about noise trading tends to improve mar-
ket quality, consistent with empirical observations showing that high-frequency tradings
benefit financial markets (e.g., Hasbrouck and Saar (2013)).

4.1 Price informativeness

Proposition 5 (Learning about noise and price informativeness). If the public signal pre-
cision τs ∈ (0, τ ∗s ) is exogenously given, then the asset price informativeness is increasing in the

precision of noise trading information, i.e., ∂ξ
∂τz

> 0.

Proof. See Appendix A.

Proposition 5 shows that investors’ learning about noise traders’ demand increases
asset price informativeness. When the investors have more precise signals about noise
trading, they can better filter out the noise contained in the asset price, which allows them
to extract more information about the asset fundamentals. With increased amounts of
fundamental information, the risk-averse investors perceive lower risks and thus trade
more aggressively on their private information, increasing the price informativeness. This
result is consistent with the empirical observation that high-frequency trading adds to

3In this section and Section 5, if there exist multiple equilibria in the financial market, we only focus on
the equilibriumwith the smallest price informativeness (i.e., the smallest real root of the equation g(ξ) = 0),
as in Farboodi and Veldkamp (2020).
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price discovery (e.g., Brogaard et al. (2010); Hasbrouck and Saar (2013)).

4.2 Liquidity

Proposition 6 (Learning about noise and liquidity). Define

τ̄z ≡ max

{
γ2(τ1 + τx)(τ2 + τs + τ1 + τx)

2

τ 2x(τ2 + τs)2
− τn,

τxτn
τ1 + τ2 + τs

}
. (12)

If τz > τ̄z, then the asset liquidity is increasing in the precision of noise trading information, i.e.,
∂(1/α3)

∂τz
> 0.

Proof. See Appendix A.

Proposition 6 shows that the investors’ learning about noise trading can increase the
asset’s liquidity (i.e., reduce the price impact of noise traders). Note that the investors can
profit from trading against noise traders, because the noise traders make the asset price
deviate from its fundamental value. A more precise signal about noise trading enables
an investor to trade against noise traders more aggressively, reducing the noise traders’
price impact and improving the liquidity. This result is consistent with the empirical evi-
dence demonstrating that high-frequency trading benefits financial markets by providing
liquidity (e.g., Brogaard et al. (2018); Jarnecic and Snape (2014)).

4.3 Asset price

Proposition 7 (Learning about noise and expected asset price). The expected asset price

increases in the precision of noise trading information, i.e., ∂E[p̃]
∂τz

> 0.

Proof. See Appendix A.
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Proposition 7 shows that investors’ learning about noise trading tends to increase the
asset price. This result can be understood from two perspectives. First, investors’ learn-
ing about noise trading allows them to extract more fundamental information from the
asset price and increases the price informativeness (see Proposition 5), which reduces
the risks faced by the investors, decreasing the risk premium. Second, investors’ learning
about noise trading increases the liquidity (see Proposition 6), decreasing the liquidity
premium. This result also predicts that high-frequency trading tends to reduce the cost of
capital, which can be empirically tested.

4.4 Price volatility

By the equilibrium price function Eq. (3), the volatility of the asset price can be expressed
as

Var[p̃] = α2
1Var[ṽ1] + α2

2Var[s̃]︸ ︷︷ ︸
Information-driven

+ α2
3Var[ñ]︸ ︷︷ ︸

Liquidity-driven

.

As in Ozsoylev and Walden (2011), the price volatility can also be decomposed as the
“information-driven” volatility and the “liquidity-driven” volatility. The following propo-
sition shows that investors’ learning about noise trading has different impacts on different
components of price volatility.

Proposition 8 (Learning about noise anddifferent components of volatility). The information-

driven price volatility is increasing in the precision of noise trading signal, i.e., ∂(Var[α1ṽ1]+Var[α2s̃])
∂τz

>

0. Moreover, if τz > τ̄z, where τ̄z is given by Eq. (12), then the liquidity-driven price volatility is

decreasing in the precision of noise trading signal, i.e., ∂Var[α3ñ]
∂τz

< 0.

Proof. See Appendix A.
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Consistent with the results demonstrating that noise trading information increases
price informativeness (see Proposition 5) and liquidity (see Proposition 6), Proposition
8 shows that investors’ learning about noise trading increases information-driven price
volatility and decreases liquidity-driven price volatility. Regarding the impact of the pre-
cision of noise trading information on the total price volatility, it can be shown that

∂Var[p̃]
∂τz

< 0 ⇐⇒ Var[ñ] > −α1

α3

∂α1/∂τz
∂α3/∂τz

Var[ṽ1],

suggesting that the investors’ learning about noise trading tends to decrease price volatility
when noise trading prevails in the market. This result is consistent with the empirical
observation that high-frequency trading dampens volatility (e.g., Brogaard et al. (2010)).

5 Learning about noise and information disclosure

In this section, we endogenize the public signal precision τs, assuming that the precision
is optimally chosen by a manager. We then investigate how the investors’ learning about
the noise trading affects the information disclosure and the financial market.

5.1 Optimal information disclosure

Assume that at t = 0, a manager chooses the public signal precision to maximize the
expected asset price net of the cost of disclosure, i.e.,

max
τs∈[0,+∞)

E[p̃]− C(τs), (13)
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where the cost of disclosure has the form C(τs) = c
2
(τs)

2, and c > 0. To better under-
stand the firm’s incentive to disclose information, we first investigate how the information
disclosure τs affects the expected asset price E[p̃].

Proposition 9 (Information disclosure and price informativeness). The equilibrium price

informativeness ξ increases in the public signal precision τs, i.e., ∂ξ
∂τs

> 0, where ξ is determined by

Eq. (8).

Proof. See Appendix A.

Proposition 9 shows that the disclosure of information about the second part of the
asset payoff ṽ2 increases the amount of information about the first part of the asset payoff
ṽ1 revealed by the asset price. The reason is that more information about ṽ2 reduces the
risk of the total asset payoff ṽ = ṽ1+ ṽ2 perceived by the risk-averse investors, making them
trade more aggressively and incorporate more private information about ṽ1 into the asset
price.

Proposition 10 (Information disclosure and expected asset price). The expected asset price

increases in the public signal precision, i.e., ∂E[p̃]
∂τs

> 0.

Proof. The result is obvious by Proposition 9 and the following Eq. (15).

Proposition 10 shows that the information disclosure increases the expected asset price,
indicating that the firm manager has an incentive to disclose. To understand this result,
notice that the expected asset price can be expressed as

E[p̃] = v̄1 + v̄2 −
γ

τ1 + τx + ξ2(τn + τz)
− γ

τ2 + τs
, (14)
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so the derivative of E[p̃]with respect to τs is

∂E[p̃]
∂τs

=
2γξ(τn + τz)

[τ1 + τx + ξ2(τn + τz)]2
∂ξ

∂τs︸ ︷︷ ︸
Indirect Effect

+
γ

(τ2 + τs)2︸ ︷︷ ︸
Direct Effect

. (15)

Eq. (15) shows that the information disclosure has two effects on the expected asset price,
one of which is a direct effect. When the information disclosure τs increases, the investors
face a lower risk of the second part of the asset payoff ṽ2, so the discountwith respect to the
risk of the second part of the payoff (i.e., γ

τ2+τs
) is smaller. The other effect is an indirect

effect. Recall that more disclosure of information about ṽ2 also reduces the uncertainty
of ṽ1, because the asset price can provide more information about ṽ1 (see Proposition 9).
Therefore, the disclosure of information about ṽ2 also reduces the discount with respect
to the risk of ṽ1 (i.e., γ

τ1+τx+ξ2(τn+τz)
). As a result, the expected asset price is increasing in

the amount of disclosed information about the second part of asset payoff.

5.2 The impacts of learning about noise on optimal disclosure

In this subsection, we investigate the impact of the noise trading signal precision τz on
the optimal public signal precision τs. Due to the complexity of the expected price E[p̃]

as a function of τs, we numerically solve for the optimal disclosure problem (13) under
different values of τz.

Discontinuity. The left panel of Figure 2 shows that the investors’ learning about noise
trading has a non-trivial impact on the optimal disclosure of fundamental information.
First, the optimal public signal precision τs is not continuous in the precision of noise
trading signal τz. In our numerical example, when τz increases from 12.75 to 12.76, the
optimal τs jumps from 2.86 to 4.05. The reason for this discontinuity is that the objective
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Figure 2: Optimal information disclosure. The left panel plots the optimal information
disclosure τs as a function of the precision τz of private signals about noise trading. The
right panel plots the objective functions E[p] − C(τs) when τz takes different values. Pa-
rameter values: γ = 4, τx = 1, τn = 1.5, τz = 1, τ1 = 1, τ2 = 1, v̄1 = 5, v̄2 = 5, and c = 0.2.

function E[p]−C(τs) is not concave in τs. The right panel of Figure 2 shows that the objec-
tive function can have two local maxima. Which local maximum is the global maximum
depends on the precision of noise trading signal τz. In the example shown in the right
panel of Figure 2, when τz = 12.70 or 12.75, the left local maximum is larger than the right
local maximum. In contrast, when τz = 12.80, the left local maximum is lower than the
right local maximum. Therefore, a very small increase in the investors’ learning about
noise trading can lead to a surge in the disclosure of information about fundamentals.

Non-monotonicity. Second, the optimal public signal precision τs is non-monotonic in
the precision of noise trading signal τz. Recall that τs has an indirect effect on the expected
asset price E[p̃] through the price signal precision τp = ξ2(τn + τz) (see Eq. (15)). One can
also decompose the indirect effect of τs as follows,

∂[−γ(τ1 + τx + τp)
−1]

∂τs
=

γ

(τ1 + τx + τp)2
∂τp
∂ξ

∂ξ

∂τs
. (16)
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When τz is low, a marginal increase in τz increases the sensitivity of τp to ξ (i.e., ∂τp
∂ξ

), which
magnifies the positive impact of τs on ξ, increasing the indirect effect of τs and thus the
marginal effect of τs on E[p̃]. As a result, the optimal level of τs increases in τz when τz

is low. In contrast, when τz is high, a further increase in τz increases τp and decreases the
term γ

(τ1+τx+τp)2
significantly, mitigating themarginal effect of τs onE[p̃]. Consequently, the

optimal level of τs decreases in τz when τz is high.

5.3 The impacts of learning about noise on financial market

In this section, we investigate the impacts of investors’ learning about noise trading on
equilibrium market variables. In Figure 3, we plot the equilibrium price informativeness
ξ ≡ α1

α3
, liquidity 1

α3
, expected price E[p̃], and price volatility Var[p̃] as functions of the

precision of signals about noise trading τz, when the public signal precision τs is optimally
determined by problem (13).

The upper left panel of Figure 2 shows that the equilibrium price informativeness is
increasing in the precision of noise trading signals τz. The reason is that when the in-
vestors have more precise information about noise trading, they can better filter out the
noise contained in the asset price, extracting more information about the fundamentals
from the price. With a lower uncertainty about the fundamentals, the informed investors
trademore aggressively, injectingmore information about the fundamentals into the asset
price. Moreover, the increased aggressiveness of informed trading against noise trading
decreases the price impact of the noisy order flows and thus increases the liquidity (see
the upper right panel of Figure 2).

The lower left panel of Figure 2 shows that the expected asset price E[p̃] is increasing
in the precision of noise trading signals τz. As has been explained, a higher τz reduces
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Figure 3: Equilibrium market outcomes. This figure plots equilibrium price informative-
ness ξ ≡ α1

α3
, liquidity 1

α3
, expected price E[p̃], and price volatility Var[p̃] as functions of the

precision of signals about noise trading τz, when information disclosure τs is endogenous.
Parameter values: γ = 4, τx = 1, τn = 1.5, τz = 1, τ1 = 1, τ2 = 1, v̄1 = 5, v̄2 = 5, and c = 0.2.
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the investors’ perceived risk of the asset payoff. Therefore, the investors require a lower
discount with respect to risk when buying the asset, increasing the expected asset price.
Equivalently, the expected return, E[ṽ − p̃], is decreasing in τz. Moreover, the lower right
panel of Figure 2 shows that the price volatility is decreasing in τz. The reason is that a
higher τz reduces the price impact of noise traders, decreasing the noise-driven volatility.
Notice that, except for the discontinuity, the impacts of learning about noise trading on
equilibrium market variables with endogenous disclosure are consistent with those with
exogenous disclosure (see Section 4).

5.4 Discussion: High-frequency trading, disclosure, and instability

As suggested by Farboodi and Veldkamp (2020), investors’ trading based on information
about noise traders’ order flow in the model resembles high-frequency trading in reality.
To understand this relationship, we can consider the “front running”, which is a kind of
high-frequency trading strategy.4 For example, a trader submit a market order to a broker
to buy some shares of a stock. Upon observing the trader’s order flow, the broker who
engages in “front running” quickly buys the stock using its own account. After that, the
broker places the trader’s order, pushing up the stock price, and then sells the stocks she
just bought at this increased price. Clearly, in the “front running”, the broker profits from
her private information about the trader’s order flow.

In economic theories, market fragility is often represented by the existence of multi-
ple equilibria (e.g., Diamond and Dybvig (1983); Benhabib et al. (2019); Goldstein et al.
(2024)), because equilibrium variables can change (e.g., prices can plunge) without any
changes in economic fundamentals. Therefore, Propositions 2 and 3 suggest that high-

4See https://en.wikipedia.org/wiki/Front running.
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frequency trading is a source of financial market fragility. This result is consistent with
that in Ganguli and Yang (2009). Proposition 3 further suggests that information dis-
closure, which is commonly thought of as a method to stabilize financial markets, can
strengthen, rather than mitigate, the instability caused by high-frequency trading.

Does restricting high-frequency trading stabilize financial markets? While we can be
sure that a market without high-frequency trading is more stable than a market with it, as
suggested by Propositions 2 and 3, our results in Figure 3 show amarket crash can occur as
the intensity of high-frequency trading gradually decreases fromahigh level to a low level.
The market crash is caused by a large (i.e., discontinuous) decrease in public (voluntary)
information disclosure in response to a small decrease in high-frequency trading. Our
results remind policy makers of the potential negative spillover effects of their regulations
on high-frequency trading.

6 Conclusion

In this paper, we analyze a model in which a part of an asset’s payoff is publicly disclosed
and rational investors can learn about noise traders’ demand for the asset. We show that
reducing information disclosure can eliminate multiple equilibria caused by rational in-
vestors’ learning about noise traders’ demand. We also find that the optimal information
disclosure and thus the equilibrium asset price, volatility, liquidity, and informativeness
are discontinuous in the precision of rational investors’ information about noise trading.
Our theoretical results suggest that (i) less information disclosure mitigates the market
fragility caused by high-frequency trading, and (ii) restrictions on high-frequency trad-
ing can also result in market crashes.
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Appendix

A Proofs of propositions

A.1 Proof of Proposition 1

Proof. Using Bayes’ rule, the implied price function Eq. (6) can be expressed as

p̃ =

∫ 1

0

(
τ1v̄1 + τxx̃i + τps̃pi

τ1 + τx + τp
+

τ2v̄2 + τss̃

τ2 + τs

)
di− γ (1− ñ)

(
1

τ1 + τx + τp
+

1

τ2 + τs

)
,

where s̃pi = ṽ1 + ξ−1(ñ − E[ñ|z̃i]) and ξ = α1

α3
. By the law of large numbers, we have∫ 1

0
x̃idi = ṽ1 and

∫ 1

0
z̃idi = ñ. Therefore, the average price signal can be expressed as

∫ 1

0

s̃pidi = ṽ1 + ξ−1

(
ñ− τz

τn + τz

∫ 1

0

z̃idi

)
= ṽ1 +

ξ−1τn
τn + τz

ñ.

Calculating the integration in the implied price function and rearranging terms, we have

p̃ =

(
τ1v̄1 − γ

τ1 + τx + τp
+

τ2v̄2 − γ

τ2 + τs

)
+

τx + τp
τ1 + τx + τp

ṽ1 +
τs

τ2 + τs
s̃

+

[
τpτn

α3

α1

(τ1 + τx + τp)(τn + τz)
+

γ

τ1 + τx + τp
+

γ

τ2 + τs

]
ñ,

which yields Eq. (7). From Eq. (7) it is obvious that ξ ≡ α1

α3
is determined by the following

equation,

ξ =

τx+τp
τ1+τx+τp

τpτnξ−1

(τ1+τx+τp)(τn+τz)
+ γ

τ1+τx+τp
+ γ

τ2+τs

, (17)
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or equivalently,

g(ξ) = γ
τn + τz
τ2 + τs

ξ3 − τzξ
2 + γ

(
1 +

τ1 + τx
τ2 + τs

)
ξ − τx = 0,

Nowwe prove that if τ2 + τs < ∞, then there exists at least one positive solution to the
equation g(ξ) = 0. Notice that limξ→−∞ g(ξ) = −∞ and limξ→+∞ g(ξ) = +∞. Therefore, by
the Intermediate Value Theorem, the equation g(ξ) = 0 has at least one real root. We can
calculate that g′(ξ) = 3k3ξ

2 − 2k2ξ + k1. Since kj > 0, j = 0, 1, 2, 3, we know that g′(ξ) > 0,
∀ξ ≤ 0. Moreover, we have g(0) = −k0 < 0, so g(ξ) < 0, ∀ξ ≤ 0. Therefore, all the real
solutions to the equation g(ξ) = 0 are positive.

A.2 Proof of Proposition 2

Proof. If τz = 0, then k2 = 0, so g(ξ) = k3ξ
3 + k1ξ − k0. In this case, it is obvious that

g′(ξ) > 0, ∀ξ ∈ R. Therefore, the solution to g(ξ) = 0 is unique.

A.3 Proof of Proposition 3

Proof. The first order derivative of g(ξ) is g′(ξ) = 3k3ξ
2 − 2k2ξ + k1. We can calculate that

∆ ≡ 4k2
2 − 12k1k3 < 0 ⇐⇒ τ 2z < 3γ2

(
τn + τz
τ2 + τs

)(
1 +

τ1 + τx
τ2 + τs

)
.

Therefore, a sufficient condition for ∆ < 0 is

τ 2z < 3γ2

(
τn + τz
τ2 + τs

)(
1 +

τ1 + τx
τ2 + τs

)
− 3γ2

(
τn + τz
τ2 + τs

)
=

3γ2(τn + τz)(τ1 + τx)

(τ2 + τs)2
, (18)
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or equivalently,

τs < τ ∗s ≡

√
3γ2(τn + τz)(τ1 + τx)

τ 2z
− τ2. (19)

Nowwe prove that the financial market equilibrium is unique when τs < τ ∗s . If τs < τ ∗s ,
then ∆ = 4k2

2 − 12k1k3 < 0. Therefore, we have g′(ξ) > 0, ∀ξ. Moreover, it’s obvious that
limξ→−∞ g(ξ) = −∞ and limξ→+∞ g(ξ) = +∞, so the equation g(ξ) = 0 has a unique real
root.

Now we prove that the financial market exhibits multiple equilibria when τs → +∞.
Notice that limτs→+∞ k3 = 0 and limτs→+∞ k1 = γ. Therefore, when τs → +∞, we have
g(ξ) = −τzξ

2 + γξ − τx. Solving the quadratic equation g(ξ) = 0 yields two solutions,

ξ+ =
γ +

√
γ2 − 4τzτx
2τz

, ξ− =
γ −

√
γ2 − 4τzτx
2τz

. (20)

This result is similar to those in Ganguli and Yang (2009) and Farboodi and Veldkamp
(2020).

A.4 Proof of Proposition 5

Proof. A transformation of Eq. (17) yields ξ = h(ξ, τz), where

h(ξ, τz) =
τx + τzξ

2

γ[1 + (τ2 + τs)−1(τ1 + τx + (τn + τz)ξ2)]
.

Taking derivative of h(ξ, τz)with respect to τz, it can be shown that

∂h(ξ, τz)

∂τz
=

ξ2[1 + (τ2 + τs)
−1(τ1 + τnξ

2)]

γ[1 + (τ2 + τs)−1(τ1 + τx + (τn + τz)ξ2)]2
> 0, ∀ξ > 0.
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One can also observe that h(0, τz) > 0. Recall from Proposition 2 that the equation of ξ,
ξ = h(ξ, τz), has a unique real root. Let τLz > 0, ∆τz > 0, and τHz = τLz +∆τz. Let ξ(τHz ) be
the solution to ξ = h(ξ, τHz ), i.e., ξ(τHz ) = h(ξ(τHz ), τHz ). Recall that ∂h(ξ,τz)

∂τz
> 0 and τLz < τHz ,

so h(ξ(τHz ), τLz ) < h(ξ(τHz ), τHz ) = ξ(τHz ), or equivalently, h(ξ(τHz ), τLz ) − ξ(τHz ) < 0. Also
recall that h(0, τLz ) − 0 > 0. Therefore, by the intermediate value theorem, there exists a
ξ(τLz ) ∈ (0, ξ(τHz )), such that h(ξ(τLz ), τz)− ξ(τLz ) > 0, or equivalently, ξ(τLz ) = h(ξ(τLz ), τz).
Now we have proved that ξ(τLz ) < ξ(τLz +∆τz), ∀τLz ,∆τz > 0. Therefore, we have

ξ′(τz) = lim
∆τz→0

ξ(τz +∆τz)− ξ(τz)

∆τz
> 0,

which completes the proof.

A.5 Proof of Proposition 6

Proof. From Eq. (7), we know that the price impact of noise traders can be expressed as

α3 =
ξτn

τ1 + τx + ξ2(τn + τz)
+

γ

τ1 + τx + ξ2(τn + τz)
+

γ

τ2 + τs
, (21)

where ξ = α1

α3
. By Proposition 5, we know that ∂ξ

∂τz
> 0. Therefore, it can be observed that

the second term on the right-hand side of Eq. (21) is decreasing in τz. Notice that the first
term on the right-hand side of Eq. (21) by τn/f(ξ), where f(ξ) = τ1+τx

ξ
+ (τn + τz)ξ. It is

easy to show that f ′(ξ) > 0 ⇐⇒ ξ2 > τ1+τx
τn+τz

.
Denote t = ξ2. Therefore, Eq. (17) is equivalent to√

t = g(t), where

g(t) ≡ τx + τzt

γ
[
1 + τ1+τx

τ2+τs
+
(

τn+τz
τ2+τs

)
t
] .
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Taking derivative with respect to t, it can be shown that

g′(t) =
τz

(
1 + τ1+τx

τ2+τs

)
− τx

(
τn+τz
τ2+τs

)
γ
[
1 + τ1+τx

τ2+τs
+
(

τn+τz
τ2+τs

)
t
]2 .

Therefore, we have
g′(t) > 0 ⇐⇒ τz >

τxτn
τ1 + τ2 + τs

.

Assume that τz >
τxτn

τ1 + τ2 + τs
, so that g′(t) > 0. Since t = ξ2, we know that h′(ξ) > 0,

where
h(ξ) =

τx + τzξ
2

γ[1 + (τ2 + τs)−1(τ1 + τx + (τn + τz)ξ2)]
.

Therefore, we have
ξ = h(ξ) > h(0) =

τx

γ
(
1 + τ1+τx

τ2+τs

) ,
so a sufficient condition for ξ2 > τ1+τx

τn+τz
is [h(0)]2 > τ1+τx

τn+τz
, or equivalently,

τz >
γ2(τ1 + τx)(τ2 + τs + τ1 + τx)

2

τ 2x(τ2 + τs)2
− τn.

Nowwe prove the statement in Proposition 6. When τz > τ̄z, where τ̄z is defined in Eq.
(12), we have ξ2 > τ1+τx

τn+τz
, so f ′(ξ) > 0. Therefore, together with the result that ∂ξ

∂τz
> 0 (see

Proposition 5), it can be shown that f ′(ξ) ∂ξ
∂τz

> 0, which implies that τn/f(ξ) is decreasing
in τz. Therefore, α3 is decreasing in τz, or equivalently, 1/α3 is increasing in τz, which
completes the proof.
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A.6 Proof of Proposition 7

Proof. By Eq. (7), the unconditional expected asset price can be expressed as E[p̃] = v̄1 +

v̄2 − γ
τ1+τx+ξ2(τn+τz)

− γ
τ2+τs

. By Proposition 5, we have ∂ξ
∂τz

> 0. It immediately follows that
∂E[p̃]
∂τz

> 0.

A.7 Proof of Proposition 8

Proof. From Eq. (7), it can be shown that ∂α1

∂τz
=

τ1
(τ1 + τx + τp)2

∂τp
∂τz

. Recall that τp = ξ2(τn +

τz). Moreover, Proposition 5 have shown that ∂ξ
∂τz

> 0. Therefore, it is obvious that ∂τp
∂τz

> 0

and thus ∂α1

∂τz
> 0. It immediately follows that ∂Var[α1ṽ1]

∂τz
> 0. Notice that α2 = τs

τ2+τs
is not

affected by τz, so ∂(Var[α1ṽ1]+Var[α2s̃])
∂τz

> 0. From Proposition 6 we know that when τz > τ̄z,
∂α3

∂τz
< 0, so ∂Var[α3ñ]

∂τz
< 0.

A.8 Proof of Proposition 9

Proof. This proof is similar to that of Proposition 5. A transformation of Eq. (17) yields
ξ = h(ξ, τs), where

h(ξ, τs) =
τx + τzξ

2

γ[1 + (τ2 + τs)−1(τ1 + τx + (τn + τz)ξ2)]
.

One can observe that ∂h(ξ,τs)
∂τs

> 0, ∀ξ, and h(0, τs) > 0. Recall from the proof of Proposi-
tion 1 that the equation of ξ, ξ = h(ξ, τs), has at least one real root. In what follows we
only focus on the smallest solution to the equation ξ = h(ξ, τs). Let τLs > 0, ∆τs > 0, and
τHs = τLs +∆τs. Let ξ(τHs ) be the solution to ξ = h(ξ, τHs ), i.e., ξ(τHs ) = h(ξ(τHs ), τHs ). Recall
that ∂h(ξ,τs)

∂τs
> 0 and τLs < τHs , so h(ξ(τHs ), τLs ) < h(ξ(τHs ), τHs ) = ξ(τHs ), or equivalently,
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h(ξ(τHs ), τLs )− ξ(τHs ) < 0. Also recall that h(0, τLs )− 0 > 0. Therefore, by the intermediate
value theorem, there exists a ξ(τLs ) ∈ (0, ξ(τHs )), such that h(ξ(τLs ), τs)−ξ(τLs ) > 0, or equiv-
alently, ξ(τLs ) = h(ξ(τLs ), τs). Now we have proved that ξ(τLs ) < ξ(τLs +∆τs), ∀τLs ,∆τs > 0.
Therefore, we have

ξ′(τs) = lim
∆τs→0

ξ(τs +∆τs)− ξ(τs)

∆τs
> 0,

which completes the proof.
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