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Digital platforms are increasingly serving as intermediaries in delegated investment, particu-
larly by adopting recommendation algorithms that deliver personalized suggestions to a large
user base. We develop a model to analyze the platform’s investor-optimal algorithm design
where investors with heterogeneous risk aversion contract with a portfolio manager based on
recommendation status. Investors may have limited knowledge about their types, while the
manager has risk-chasing incentives due to limited liability. We demonstrate that algorithms
can mitigate managers’ moral hazard in over risk-taking — without affecting the contract —
by acting as both information gatekeepers and commitment devices, harnessing the scale of
the user base. Optimal recommendation probabilities are non-monotonic in historical returns.
Unlike in consumption platforms, algorithms here extract noisy signals about the manager’s
actions from historical returns, reduce recommendations under ambiguous signals, and poten-
tially compensate for clear signals, leading to an information rent paid by investors. We further
discuss on algorithmic inequality, the joint design of algorithms and contracts, and compar-
isons to fund ranking systems. Our results emphasize the innovative role of recommendation
algorithms as a digital financial service. Methodologically, we provide a general approach for
algorithm design problems in function space with potentially non-monotonic solutions.
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MITIGATING MORAL HAZARD THROUGH ALGORITHMS

1 Introduction

We are increasingly coming to understand that financial technologies, which have been widely
used in asset management, can reshape market participants and information structures remark-
ably. See, for example Cookson et al. (2021); Capponi et al. (2022); Hong et al. (2024). Platforms
collect investment opportunities and provide advisory services, thereby connecting numerous in-
vestors with portfolio managers (e.g., mutual fund managers, and active investment agents), ag-
gregating a vast market scale. In the US, prominent examples include traditional institutions,
such as Bank of America’s Merrill Guided Investing, Wells Fargo’s Intuitive Investor, as well as
fintech entrants like Yieldstreet; In the UK, about 50% of retail mutual fund flows are channeled
through investment platforms (Cookson et al., 2021); in China, Ant Group has covered almost the
entire mutual fund market.! However, the fact that investors’ attention is concentrated on these
platforms creates strong incentives for managers to increase their visibility. With limited liability
in delegated investment, managers are motivated to be risk-chasing in pursuit of standout per-
formance (Hong et al., 2024). The combination of expanded financial inclusion and managerial
conflicts of interest can be dangerous, as it leads to numerous non-professional investors becom-
ing overexposed to market risk.

This paper analyzes whether and how these platforms can address the above challenge by
leveraging emerging digital technologies. Specifically, we demonstrate that a recommendation
algorithm intermediary can mitigate the moral hazard of managers’ excessive risk-taking. This al-
gorithm is predetermined and publicly known. It sends each investor a personalized recommen-
dation signal for a manager (portfolio) based on investor characteristics and the noisy historical
portfolio performance. In this way, the algorithm shapes the information structure of the dele-
gated investment without altering the contractual relationship between investors and managers.
This offers a potential solution to the agency problem. While this algorithm is designed to im-
prove user-side welfare, our analyzing framework is inherently general and adapted to analyze
platform algorithm design with manager-side incentives.

In our baseline analysis, we incorporate three practically prevalent frictions. (i) Investor het-
erogenity and imperfect self-awareness: investors differ in their risk aversion and may have lim-
ited knowledge about it (Capponi et al., 2022). (ii) Fixed contractual structure: the platform cannot
modify the contracts between investors and managers. (iii) Opaque manager actions: managers

can always (partially) hide their allocation information, even in the presence of disclosure policies,

ISee Appendix C for more institutional background.

2The emerging fintech platforms typically earn revenue from user fees, such as Ant Financial. Consequently, these
platforms are incentivized to curb fund managers’ risk-taking and protect user welfare. However, in practice, platforms
may also generate income from fund managers by influencing investment flows (Berk and Green, 2004). In this way,
their incentive structure shifts: they must balance user protection with maintaining cooperation with fund providers.
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whereas historical performance only provides a noisy signal about the allocation choice.> We also
explore their potential relaxations in extended discussions.

Consider a two-period model where a continuum of non-professional investors contract with
a fund manager via a platform. Heterogeneous investors know the distribution of their risk pref-
erences but not their specific risk aversion level. The risk-neutral manager designs the portfolio
to maximize the expected total delegation earnings depending on a contract. The fraction of risky
asset is private information. The platform uses data to observe investors’ risk aversion levels and
design a public known algorithm. The algorithm provides a recommendation probability based
on an individual’s risk aversion and the historical performance of the portfolio.

Intuitively, designing the recommendation algorithm effectively designs the information struc-
ture. Without an algorithm, a monotonic and limited-liability contract incentivize the risk-neutral
manager to invest all funds in risky assets. However, with an algorithm, the manager knows that
the realized return provides a noisy signal about the allocation choice, and the algorithm may
penalize suspected excessive risk-taking by reducing recommendation probabilities.

In this paper, we show that a non-monotonic algorithm breaks the monotonicity of the man-
ager’s expected payoff with respect to the risky asset allocation, and then mitigates the moral
hazard problem. Section 4.1 and Section 5.3 illustrate this result under discrete and continuous
distributions of risk returns, respectively. When historical returns indicate high risk, the algorithm
reduces its recommendations, thereby reducing managers” benefits. Consequently, the platform
can force the manager’s risk allocation to any desired level and further optimize the aggregate
expected payoff for investors. Proverbially speaking, the platform effectively controls the market
participants and interactions by leveraging “the algorithm’s hand.”

A key difference here, compared with recommendation algorithms on consumption platforms
and social media, is the uncertainty of historical performance. Historical signals have varying
degrees of informativeness, making it necessary to consider the reliability of the corresponding
information structures in different situations. Consider an over-risky alternative portfolio with
an overlapping return range to the target portfolio. In this case, the algorithm cannot be fully
confident in distinguishing the manager’s risk choice when they observe a realized return that
falls within the overlap. In order to counter such uncertainty, the algorithm tends to be under-
recommendation on such overlap. We also find in Section 4.1 that the algorithm compensates by
over-recommendation when they observe informative signals from the non-overlapping return
range of the target portfolio.

Due to this trade-off, some investors receive suboptimal recommendations, update their be-

liefs incorrectly and experience a loss of welfare. Under- and over-recommendations effectively

3 Although active managers may be subject to disclosure rules (e.g., mutual fund filings), in practice these are often
delayed and incomplete.
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constitute an information rent paid by investors. Section 4.2 illustrates that investors with high
risk aversion levels are affected first because of over-recommendation. In addition, the inevitable
information rent incentivizes us to analyze the effectiveness of the optimal algorithms under dif-
ferent contracts, as detailed in Section 4.3. In particular, we discover that the expected investor
payoff takes an inverted U-shaped form with respect to increasing management fees under opti-
mal algorithm designs. This sheds light on the joint design of algorithms and contracts, a feature
absent in recommendation algorithms across other scenarios.

The recommendation algorithm is more than an information gatekeeper. In Section 4.4, we
compare the baseline model with several information structures. Even if investors are fully in-
formed about their type and the portfolio’s historical performance, they fail to mitigate the moral
hazard of managers. The reason is that they fairly never get themselves over-exposed to risk and
never fall into ex-post inefficiency in any sub-games. Therefore, the population cannot generate
punishment or compensation, resulting in a lack of commitment power. Section 4.5 compares rec-
ommendation algorithms and ranking systems. The focus of recommendation algorithms is on the
fact that un-recommended funds are unobservable and that signals are private and personalized.
This is fundamentally different from the model of ranking systems (e.g., Huang et al., 2020).

The rest of this paper is organized as follows. Section 2 introduces the general baseline model
of this paper, including the timeline and the objectives of the players. Section 3 provides the fun-
damental necessary conditions for the equilibrium algorithm under the general setting. In order
to simplify the analysis, we develop the detailed implications of the optimal algorithm with a
discrete return in Section 4. Section 5 develops a framework for determining recommendation
algorithms under continuous risk-return distributions. We establish the existence and uniqueness
of the optimal algorithm in W7, 1 < p < 400, and characterize the optimal algorithm via vari-
ational inequalities. Section 6 concludes. Proofs, additional results and institutional background

are collected in the Appendix.

Related literature. Our paper contributes to the growing literature on the impact of financial
technologies on the asset management industry. Financial markets have become highly institu-
tionalized (Buffa et al., 2022). Asset management platforms aggregate investments and increase
adoption by introducing various technologies. These include convenient access to centralized in-
formation on fund rankings (e.g., Huang et al., 2020; Evans and Sun, 2021; Ben-David et al., 2022;
Huang et al., 2022; Hong et al., 2024), and robo-advisors that offer personalized portfolio designs
(e.g., D"Acunto et al., 2019; Loos et al., 2020; Capponi et al., 2022). Adopting the perspective that
platforms have become intermediaries (e.g., Stoughton et al., 2011; Cookson et al., 2021), we ex-
plore how they connect a large population of retail investors with delegated investment agencies.

In particular, we focus on the novel usage of personalized recommendation algorithms on
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these platforms, which are endogenous and influence the behavior of platform participants. Ac-
cording to Capponi et al. (2022), while investors often misjudge their risk aversion, robo-advisors
can identify and communicate accurate preferences through interactive adjustments. We extend
this idea by linking the algorithm’s risk aversion identification ability with its effectiveness in
coordinating the manager with the investors.

Meanwhile, empirical evidence shows that new technologies have an impact on participants’
behavior. The integration of daily consumption and investment activities has increased investors’
risk-taking behavior (Hong et al., 2020), flow of information amplifies the influence of attention-
induced trading (e.g., Kaniel and Parham, 2017; Barber et al., 2022), thereby incentivizing fund
managers’ risk chasing for greater visibility (Hong et al., 2024). Our theoretical framework pro-
vides insights into how fintech platforms can leverage technology to mitigate this two-sided over-
risk-taking phenomenon and guide proper trading behavior.

We also closely relate to the literature on asset management contracts by demonstrating that
recommendation systems can effectively address the agency problem inherent in simple con-
tracts. The inevitable agency problems of simple linear and limited-liability contracts have been
frequently highlighted in the literature (e.g., Innes, 1990; Palomino and Prat, 2003), particularly
with regard to generating risk-taking incentives (Stoughton, 1993; Lee et al., 2019).* Li and Ti-
wari (2009) solves the problem of moral hazard in risk choices by using an option-type bonus fee
with an appropriate benchmark. However, as emphasized by D’Acunto and Rossi (2021), a prac-
tical challenge is that there is a preference for offering simpler contracts to minimize the risk of
operational errors by non-professional households. The realistic context also indicates that plat-
forms generally have limited authority over the adjustment of contracts between investors and
delegated managers. In this paper, we show that the automated and personalized recommenda-
tion algorithm can successfully address moral hazard of risk allocations under simple contracts,
thereby equipping platforms with a powerful tool to strengthen their intermediary role.

This idea of using technology to influence contract enforcement shares a similar spirit with
Cong and He (2019), which explores how blockchain technology can increase the range of vari-
ables that can be included in contracts, thus finding a niche in finance for the function of blockchain
and smart contracts. From a broader financial theory perspective, optimal algorithm design ex-
plores a novel interplay between contract and information design — a promising combination
studied in corporate finance (e.g., Azarmsa and Cong, 2020; Szydlowski, 2021; Luo, 2021).

The critical role of recommendation algorithms enriches the literature on using commitment
mechanism to empower buyers in transactions. In a bilateral trade, Roesler and Szentes (2017)

show that buyers can influence sellers’” pricing strategies by acquiring incomplete information.

4Exis’cing literature widely studies asset management contracts in many respects, e.g., He and Xiong (2013); Parlour
and Rajan (2020) consider contracts that incentivize manager’s efforts; Buffa et al. (2022) consider avoiding unskilled
managers and impacts on market efficiency. Here we focus on the context of guarding against risk-taking.

4



MITIGATING MORAL HAZARD THROUGH ALGORITHMS

Ichihashi and Smolin (2023) allow the buyer’s information to depend on the price. They prove
that recommendation algorithms can safeguard total consumer surplus against personalized price
discrimination. Our study focuses on the moral hazard problem in purchasing financial services,
which particularly features noisy signals and uncertain payoffs.” Low-quality information be-
comes critical for balancing investor welfare and managerial incentives in mutual fund market.
This complements the empirical evidence of (Li et al., 2017), which shows that in mutual fund
investment, retail investors have less information and have lower capacity to analyze information
compared to institutional investors. Therefore, they face more ambiguity. The algorithm provides
individual investors with incomplete information via recommendations, thus alleviating frictions
in the fund market.

In terms of information transmission, the recommendation algorithm contributes to the large
literature on information gatekeepers (Baye and Morgan, 2001). Many studies have examined
the various motives and functions of platforms that that strategically modify search results (e.g.,
Armstrong and Zhou, 2011; Hagiu and Jullien, 2011; Inderst and Ottaviani, 2012; De Corniere
and Taylor, 2019; Zhou, 2020; Teh and Wright, 2022). Recent contributions of Bergemann and
Bonatti (2024) emphasize that the consumer-seller platform exploits consumer data to increase its
bargaining power with sellers. We share a similar spirit with distinct features that the algorithm

also utilizes noisy information from managers, and ultimately aims to eliminate moral hazard.

2 The Model

Consider a two-period economy where investors with heterogeneous risk aversion enter into a
contract with a fund manager via a platform. The manager’s limited liability induces moral haz-
ard, potentially overexposing investors to market risk. In this paper, we assume that the platform
targets a large user base and therefore attempts to protect investor welfare. Despite being un-
able to modify the contracts between investors and the manager, the platform is involved in the

matching process by designing fund recommendation algorithms.

2.1 Setup

Assets and Fund manager. There is a risky asset and a risk-free asset. Without loss of general-
ity, the risk-free return R s normalized to zero. The risky return R;, t = 1,2 is independently
and identically distributed across two periods, following R; ~ G, where G has a strictly positive

density g over its support [R, R| with [E[R;], Var[R;] < c. A risk-neutral manager designs a port-

folio by determining the share of allocation to risky assets, x € [0,1]. Then the portfolio return

50ther researchers have studied commitment in mutual fund investments from different perspectives. For example,
Huang et al. (2020) focus on shaping the market reputation in repeated games.
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Rpt = (1 = x)Rf + xRt = xRy, t = 1,2. We introduce two key assumptions to capture practical fric-
tions. Firstly, neither the investors nor the platform observe the x directly. Typically, hedge fund
and alternative investment managers are subject to limited disclosure requirements, and even ac-
tive mutual fund managers only disclose their holdings at cyclical intervals (e.g. quarterly) and
with delays. Therefore, we assume that x is the manager’s private information, while the platform
and investors could only have information about the underlying risky asset, i.e., they only know
the distribution G. Secondly, the manager’s allocation should be predictable over time. In prac-
tice, the allocation is usually persistent due to factors such as managers’ consistent investment
habits, asset preferences and beliefs, and the costs associated with making sharp adjustments to a
portfolio over a short period of time. For simplicity, we assume that x remains constant through-
out the two periods. A more general setting would allow for some variation, such as x, = x1 + ¢,
where historical allocation only serves as a noisy information about the future allocation. Under
this setting, the algorithm and the investors account for such additional uncertainty, while our
main results and implications remain unchanged.

The manager sells the fund on the platform at t = 1. The financial payoff comes from the
limited-liability delegated asset management contract, ¢(r) = max{ar,0} + B, where the first term
is a performance fee proportion « > 0, and f > 0 is a fixed management fee. The manager may
also be incentivized by personal benefits, such as becoming an attention-grabbing star with high
performance, which has an asymmetric effect on the manager’s utility in relation to the fund’s
gains and losses. This setting is analogous to the private benefits received by entrepreneurs when

they succeed in financing (e.g., Szydlowski, 2021). The manager’s expected utility reads

E[um(Rp2)] = q | E[¢(Rp2)] +vE[max{Ry,0}] |,
-

J

financial payoff personal benefit

where g is the total sales, v > 0 is the personal benefit factor. The asymmetric revenue struc-
ture gives rise to agency problems: if the manager disregards the impact on sales, they have an
incentive to fully allocate funds to risky assets. This is an inevitable consequence of a limited li-
ability contract. As emphasised in Palomino and Prat (2003), such a structure prevents investors
from selling returns to managers in exchange for their expected value, thereby exacerbating the

misalignment of incentives between managers and investors.

Investors. A unit continuum of investors have heterogeneous risk aversion. They are indexed

by their type a, where an a-type investor has $1 to invest and decides whether to invest in the fund
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at t = 1 based on the expected quadratic utility over the terminal return:

Elur(Rp2)] = E[Ry2 — 9(Ry2)] — 2 [(Ryz — 9(Ry2) ],

The distribution F of type a over the population has a strictly positive density f over its support
[a,a], 0 < a < a. As a baseline assumption, we consider that investors are unaware of their
type a and unable to search for an appropriate portfolio independently. Instead, they only de-
cide whether to invest in the fund after receiving a recommendation. When no recommendation
is received, investors cannot observe a specific fund in the market. This assumption reflects the
lack of financial expertise among platform users, including biased behavioral perceptions, a lack
of information, and self-unawareness. See, for example Capponi et al. (2022). This friction be-
comes particularly relevant when platforms expand financial inclusion and attract inexperienced
investors. In Section 4.4, 4.5 and Appendix B, we explore alternative information structures where
investors (i) know a exactly, and (ii) are aware of the fund even without receiving a recommenda-
tion. These alternative cases are important because they reinforce the idea that investors” lack of
(or biased) knowledge about their own type creates an opportunity for the algorithm to establish

commitment power.

Platform and algorithm. The platform leverages its ability to collect data on investors’ risk aver-
sion and the fund’s historical performance. It can implement a recommendation algorithm that
delivers personalized recommendation signals, and this algorithm is publicly known to investors and

the manager. Specifically, an algorithm is a function m : [g,a] x [R, R] — [0, 1]. For any pair of a

and rp, the algorithm recommends the fund to an a-type investor with probability m(a, r,1).

Timeline. Formally, the timeline is as follows:

1. Fintech platform designs an algorithm m, publicly known.

2. Nature draws investors’ type a.

3. Manager designs a fund which generates a historical return R ;.

4. Platform privately observes each investor’s risk aversion a. With probability m(a, Rp1), a-
type investors observe the recommendation and R,i, then decide whether to contract with the
recommended manager.

5. If contracted, investors and the manager earn R;» — ¢(R,2) and ¢(R;2) + yE[max{R, 0}],

respectively.
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2.2 Platform’s Optimization and Solution Concept

The aim of this paper is to study whether and how the recommendation algorithm mitigates moral
hazard and enhances social welfare under simple contracts. The solution concept is subgame-
perfect equilibrium, and all integrals in this paper should be understood in the Lebesgue sense.

The platform’s design of the recommendation algorithm maximizes investors’ total expected
payoff. We focus on the platform’s user-side motivation based on two key considerations. From a
regulatory perspective, robo-advisors are classified as fiduciaries under the Investment Advisers
Act of 1940, which requires them to act in their clients” best interests (Capponi et al., 2022). From
an incentive perspective, Xu and Yang (2023) emphasizes that the platforms aiming to maximize
future revenue tend to be “consumer-oriented” since their business success depends heavily on
past user satisfaction. For example, Uber employs technology-driven tools to mitigate the moral
hazard of driver detours, thereby improving the passenger experience (Liu et al., 2021); More
relevant to our scope, Yieldstreet, a tech-based customized asset management platform, collects
earnings from investors rather than fund managers, making it naturally accountable to investors.
See Appendix C for more institutional background.

The platform designs an algorithm m that restricts the manager’s optimal allocation x in the
equilibrium in order to maximize the aggregate investor expected payoff. Note that the risk-free

rate is normalized to zero, formally we can write the problem as follows:

» ﬂir}ix o J f J [ xry — ¢(xr2)) — %a (xrp —cp(xrz))z] m(a,xry)dF(a)dG(rp)dG(r1) (1)
xe[0,1]

subject to the following constraints

xeargmax{ J J J (¥'r2) + y max{x'ry, 0}] m(a, 'r1)dF(a )dG(rz)dG(rl)} 0

f; L f [§(xr2) + 7 max{xrs, 0}] m(a, xr1)dF()dG (r2)dG(r1) > 0, 3)
% - Samaxrl)dl-"() 2 4G > 0. R .
JR (xr2 — P(xr2)) — 5 S (0 xr)dF (@) xry — ¢(xr2))”dG(r2) = 0,Vr € supp(R1).  (4)

Eq. (2) is the incentive compatibility (IC) constraint for the manager, meaning that the equi-
librium allocation x will maximize the manager’s expected financial payoff when using the cor-
responding recommendation algorithm. Eq. (3) is the manager’s individual rationality (IR) con-
straint. It is naturally satisfied. Eq. (4) is the investors’ IR constraint. Investors who receive
recommendations form posterior beliefs about their risk aversion based on the publicly known

algorithm. Given the observed historical return 7,1, their expected utility of investing in the rec-
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ommended fund is given by

JR Ja (xr2 — p(x12)) — %a (xrp — qb(xrz))2 dF(alrecommended, xr1)dG(r7)
R Ja

R
1
= J (xrp — ¢p(xr2)) — 51E[a|recommended, xr1] (xry — ¢(xr2))? dG(r2),
R
which obtains the R.H.S. of (4). An investor who satisfies the IR constraint would prefer to con-
tract when they receive a recommendation. In other words, this constraint limits the total sales
influenced by the algorithm.

Note that Eq. (4) is equivalent to requiring the integral interior of the optimization problem (1)

to be non-negative, that is

R ra
JR f [(xrz —¢(xr2)) — %a (xrp — cp(xrz))z] m(a,xry)dF(a)dG(ry) = 0.

Under the IR condition (4), there is no distinction between algorithmic recommendations and
investor investments in the expression.

For convenience, we define the following notations:

R
Uy = L 128(r2)dry, A= (a+7)us,
R R
ki(x) = JR (xr2 — p(x12))dG(r2), kao(x) = JR (xrp — 4>(xr2))2dG(r2).

The following reasonable assumptions are made when solving the model:

Assumption 1.

1. The investor’s utility uj(r) is increasing and concave: 1 —ar > 0 for all a € [a,a] and all ¥ € [R, R].

2. The contract does not prevent trading: E[Ry — ¢(R¢)] = E[R¢] —apy — > 0.

Assumption 1.2 ensures that the contract costs do not become so high that the maximum ex-
pected return on the portfolio is lower than that of a risk-free asset. Under Assumption 1, we have
that Va € [a,4a],

dELCR)| g SEBGR))

dx 20 (dx)? <0
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3 Formalism Properties of the Optimal Algorithm

In this section, we analyze the properties of the optimal algorithm in a formalistic manner, i.e.,
we proceed to discover the key intuitive insights the algorithm should embody, without rigor-
ously establishing its existence. The optimal algorithm belongs to a family of functions featuring

a simple threshold that imposes a penalty for abnormal returns.

3.1 Threshold Algorithm

Inspired by the seminal work of Ichihashi and Smolin (2023), we consider the threshold algo-
rithms. An algorithm m is a threshold algorithm if there exists a threshold function d : [R, R] — [a, 7]
such that m(a,ry1) = 1(a < 4(rp1)). In other words, a threshold algorithm recommends the fund
with probability 1 (0) if the investor’s risk aversion is below (above) the threshold determined by

historical returns.

Lemma 1. (Threshold algorithm.) For any feasible algorithm m, there exists a threshold algorithm 1,
under which the manager’s expected payoff remains the same, whereas investors yield a (weakly) greater

aggregated expected payoff than in the cases of m.

According to Lemma 1, if there exists an optimal algorithm m*, then we can always find a
corresponding threshold algorithm r1* that ensures the investor’s IR condition, the manager’s
IC condition and the manager’s IR condition are all satisfied, and the investor’s expected utility
does not decrease. This suggests that the investor-optimal algorithm can be found within the set
of threshold algorithms. In particular, for any given risky portfolio, investors with lower risk
aversion always have higher expected utilities. Therefore, any recommended investor should
have lower risk aversion than any unrecommended investor; otherwise, the total welfare could
be increased by exchanging their recommendation states. Consequently, Lemma 1 suggests that
if an optimal algorithm exists, it essentially determines a recommendation quota and then issues
recommendations sequentially according to investors’ risk aversion.

We can then represent the platform’s problem (1) in terms of the fraction g of recommended
investors determined by the threshold 4. Because the probability density function of a is strictly
positive, g increases strictly with 4 over [a,4], ranging from 0 to 1. Let g := SZ 1dF(a) = F(a),
where 4 is determined by the realized historical return r,; = xry. With g(xrq) : [é, R] — [0,1] and
a(xry) = F~Y(g(xr1)), the equilibrium can be represented as (x,q), and the platform’s problem is

rewritten as

¢[RR]—[01], JR
xe[04] =

a

R F(g(xm))
max f kl(x)q(xrl)_;< f 7 adF(a)) ko (x)dG(r1) 5)

10
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subject to
R
X € arg max {(Ax’ + B) f q(x'rl)dG(rl)} and (6)
x! R
1 (F ')
ki(x)g(xrq) — 5 f adF(a)ka(x) = 0,Vr; € supp(Ry). (7)

Intuitively, the algorithm penalizes aggressive investment by linking the total sales to the his-
torical portfolio returns. This has the potential to address the incentive issue in contracts. When a
fund manager over-allocates to risky assets, they obtain a greater expected payoff from contracted
(or recommended) investors due to limited liability. However, this would also generate an abnor-
mal historical return relative to proper risk exposure, causing algorithms to reduce the proportion
of recommended investors.

We can further represent the IR constraint in a simpler form. Multiply the both sides of (7) by
q(xr1) and focus on the left hand side. The derivative w.r.t. g(xr1) is [k1(x) — 1/2F 1 (g(xr1))ka(x)]
and is strictly decreasing w.r.t. g(xrq). Also note that (7) is equal when g(xr;) = 0. We can then

define §(x) as

1 (F'@
g(x) == sup {q e [0, 1]‘k1(x)q ~3 f adF(a)ky(x) = 0} ,

a

and the IR constraint is equivalent to

q(xrq) <q(x), Vr1 € [R R]. (8)

Briefly, the applicable recommendation fraction g has an upper envelope, as investors would not

buy if they find the platform over-delivers signals.

3.2 Non-Monotonic Algorithm

The primary principal-agent problem here is the manager’s tendency to invest excessively in risky
assets, which is driven by their expected utility that increases monotonically with the x. In prac-
tice, high ranking based on high returns generates a huge incentive for fund managers, pushing
them to be more risk-chasing (Hong et al., 2024). The algorithm is designed to change this mono-
tonicity by influencing ¢(-). To do so, q(-) should somehow sacrifice its monotonicity and relate to

the risk-return distribution. The following proposition describes this observation.

Lemma 2. (Failure of monotonic algorithms.) If the fraction q(-) of recommendation characterized by

an algorithm is weakly increasing in r € [R, R], then the algorithm induces x* = 1 in equilibrium.

11
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Intuitively, if g(-) weakly increases with r, then the algorithm provides the same incentives
as the contract ¢(-) to the manager. Consequently, the manager will fully invest in risky assets in
order to maximize the expected return. In this case, the algorithm fails to bind the manager’s over-
exposure to risk, although it could still prevent investors with negative expected utility under
x = 1 from entering the market. An important implication is that the platform should reduce
recommendations when historical returns are unusually high. Since g(-) can uniquely characterize
a threshold algorithm, we will also refer to g(-) as the algorithm in the following sections.

More generally, the algorithm punishes abnormal returns that should be impossible under
an equilibrium allocation. Therefore, we can further characterize a feasible form of the optimal

algorithm as stated in the proposition below.

Proposition 1. (Equivalent cutoff algorithms.) For any equilibrium (x*,q*), there is an equilibrium
(x*,q) which generates the same expected payoffs for the investors and manager as (x*,q*) does. Specifi-

cally, § takes a form of a “cutoff algorithm” where

q(r), resupp(xRy);

0, otherwise.

On the one hand, § implements a greater penalty than g* once the realized return exceeds
supp(x*R¢). On the other hand, § imposes no additional penalty in equilibrium x*. This ensures
that the equilibrium investor utility at x* remains unchanged and that the (x*, §) pair still satisfies
the IC constraint. In other words, the difference between g and § does not affect the reach and any
quantitative nature of the equilibrium.

In what follows, we consider the existence of the equilibrium (x,g) and analyze the implica-

tions of the optimal algorithm in the form of § without loss of generality.

4 Optimal Algorithm under Discrete Return

This section develops the key ideas of this paper in the context of discrete return. Section 5 consid-
ers the case with continuous risk return. Here, we assume that a follows a uniform distribution,
and the supp(R;) = {R,0, R}, reflecting the states “down”, “flat”, and “up”, with probabilities
p(R), p(0), and p(R), respectively.

Given the discrete distribution, the optimization problem (5) can be transformed into solving
for the allocation x* and the three points §(x*R;) according to Lemma 1. Therefore, the existence

of an investor-optimal algorithm is guaranteed through convex optimization on a compact set.

12
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4.1 Moral Hazard Mitigation

We divide the optimization problem into two stages: (i) Given any target risk allocation x, find
the optimal algorithm that will achieve the highest investor welfare among all feasible algorithms
that reach the target x in equilibrium. (ii) Compare the resulting optimal welfare across different
x, then determine the optimal risk allocation that maximizes total investor welfare. By Lemma 1,
Proposition 1 and the equivalent investor’s IR condition (8), the optimization problem given x is

as follows:

©)

subject to
(Ax+B) [4(xR)p(R) +4(0)p(0) + 4(xR)p(R)| = (A + B)(0)p(0). (10)
0 < §(xr) <q(x),vr1 € {R,0,R}. (11)

Under the cutoff algorithm (defined in Proposition 1), if the manager deviates from the target
value of x, they can only be recommended when the historic return equals zero. Therefore, once
a deviation occurs, the manager will only deviate to x’ = 1, and the IC constraint (6) is equivalent
to (10). Since the constraint conditions are always satisfied by (4(xR),(xR),q(0)) = (0,0,0),
feasible solutions always exist for any target x. The problem can be solved using the lagrangian

multipliers. Given x, if a solution satisfies §(xr1) € (0,4(x)), then it can be written in the form of

R B ki(x) + A(Ax + B)
4(xR) —F< - e )

NN ki(x) + A(Ax + B)
o) = (SR,

. ki(x)+ AA(x —1)
oo = F (ML),

where A > 0 is the multiplier of IC constraint (10).

To show the trade-off between scenarios of an algorithm, one could consider the ideal social
planner’s ex-post recommendation, which would involve recommending all investors with non-

negative expected utilities. The social planner’s recommendation can also be understood as the

13
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solution to the optimization problem (9) without IC condition (10). The solution is

qrp(x) = F (ki (x)/(k2(x)/2)) - (12)

Intuitively, moral hazard arises from the manager’s advantage in hiding the allocation x,
whereas the historical performance serves as information to infer x. In this three-point case, the
platform correctly obtains x once the realized return rq # 0. Therefore, with probability 1 — p(0),
the platform clearly knows x and delivers recommendations to the population accordingly. How-
ever, a “flat” realized price would blur all possible allocations. The key to mitigating moral hazard
is therefore to introduce a penalty in the uninformative flat case, so that the platform is expected
to narrow its recommendation delivery conservatively in order to protect investor welfare. But
how can enough expected sales be generated to achieve ex-ante incentive compatibility for the
manager? As compensation, the platform slightly expands its recommendations when it has in-
formation on x, even including investors with insufficient risk tolerance. This results in slight
welfare losses, essentially an information rent paid to the manager.

Figure 1 visualizes the optimal algorithm 4* and optimal allocation x* in a simulation. Panel
(a) compares the optimal algorithm §* and grp given x*. When the historical return is zero, the
algorithm recommends a lower probability than the first best to prevent the manager from devi-
ating at a point where the algorithm cannot infer the x. Conversely, when the historical return is
positive, the algorithm recommends a higher probability than the first-best, thereby imposing a
more effective constraint on the manager’s behavior. The similar phenomenon can also be seen in

Panel (c) for different values of the x.

4.2 Information Rent

In this subsection we discuss more detailed properties of the information rents paid to the manager
in our model. Firstly, consider the impact of the risk allocation x on the information rents. Denote
the lower bound of perfect implementation as x := p(0) — (1 — p(0))B/A. We will explain this

constant later in this subsection. We also make the following assumption:
Assumption 2. The manager is not willing to fully allocate in risk-free assets: (A + B)p(0) > B.

Proposition 2. (Algorithms and information rents.)

(i) (Without information rents.) When the target equilibrium allocation x* > x, the optimal algo-
rithm reaches the first best, mitigating moral hazard without paying information rent, §*(x*R) = §*(0) =
§*(x*R) = qrp(x*);

(ii) (With information rents.) When the target equilibrium allocation x* < x, the optimal algorithm
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Figure 1: Optimal Algorithm 4§*(-) and Allocation x*

Notes: Figure 1 illustrates an example of the optimal algorithm §* and optimal allocation x*. The parameters are
chosen as follows: « = 0.01, B = 0.003, ¥ = 0.2, 2 ~ U[0.15,0.5], and the support of R; is {—3,0,2} with corresponding
probabilities 0.1, 0.7, and 0.2, respectively. Panel (a) compares the optimal algorithm 4* and qrp given x*. Compared
with the first-best, the algorithm suffers from under-recommendation when Rpl = 0 and over-recommendation when
Ry1 € {x*R, x*R}. Outside supp(x*R1), the algorithm sets the recommendation probability to 0 as stated in Proposition
1. Panel (b) shows the expected utility of investors under optimal incentive-compatible and first-best algorithms, given
different values of x. Panel (c) shows the optimal incentive-compatible and first-best algorithms for different values of x.
Area A and B represent the over-recommended and under-recommended investor populations, respectively, resulting
in the welfare gap in Panel (b).

strategically make recommendations to pay information rents and ensure IC condition,
min{q* (x*R),§*(x*R)} > qrp(x*) = §7(0).
When qpp(x*) € (0,1), the inequalities hold strictly.

Proposition 2 highlights that x is a crucial threshold of the exposure to risk. When an algorithm

targets an allocation x that exceeds this threshold, it mitigates moral hazard without paying any
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information rent, acting as a de facto social planner. Economically, x > x is equivalently to
Ax+ B = (A+pB)p(0),

where the left hand side is the manager’s expected payoff for good behavior in one deal, i.e., allo-
cating x risky assets that align with the platform’s target. The right hand side is the opportunity
cost of being good, i.e., the maximum expected payoff of from deviating towards excessive risk-
taking. In this case, the manager would choose a full allocation of risky assets and have a p(0)
probability recommendation. Thus x > x guarantees the incentive compatibility without addi-
tional rent. Otherwise, the platform requires additional effort to enforce the incentive constraint
by penalizing the flat case and subsidizing other cases in terms of recommendation counts. In this
case, the algorithm is designed to control the behavior of the fund manager based on all realized
values of the return.

Panel (b) of Figure 1 illustrates the expected aggregate investor utility, which is represented
by an inverted U-shaped curve. In the case of no algorithm, the only equilibrium is x = 1 and
investors receive zero expect utility. In other words, algorithmic intervention removes the man-
ager’s full control over allocation, optimizing investor’s utility in spite of potential information
rent. Additionally, Panel (b) also shows the under-performance of the algorithm relative to the
ideal case when x < x, due to the required information rent and corresponding ex-post errors.

In this economy, a proportion of investors pay all the information rents. As Figure 1 Panel (c)
shows, the ideal ex-ante recommendation grp is naturally determined by x and is independent
of historical performance. Yet the algorithm’s recommendation varies depending on the period-1
state. When the fund exhibits a flat state, the algorithm’s recommendation scale is insufficient
compared to grp. That is, some investors who were objectively eligible to invest are not recom-
mended, resulting in foregone welfare gains, as depicted in Area B. Conversely, when the risky
asset generates a non-flat state, the algorithm recommends an additional population with negative
expected payoffs, as depicted in Area A.°

Intuitively, a lower x will require a more costly 4§*, so the welfare loss from deviating from the
grp forms a trade-off with respect to the magnitude of the x. Consequently, one can expect x* to

exceed the optimal risk exposure at the same recommendation probability in equilibrium.

Proposition 3. (Comparison to the first-best situation with no moral hazard.)

1. For any targeted allocation x, the ex-ante expected recommendation fraction (with moral hazard) is

®Note that these investors voluntarily follow the recommendation guaranteed by the IR constraint. They achieve
non-negative expected payoffs based on their subjective posterior risk aversion.
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weakly lower than the first-best recommendation fraction qrp:

D, PO§*(xr) < qra(x)

resupp{R:}

2. For an optimal algorithm §*(-) that realizes the targeted allocation x (with moral hazard), the first-

best solution (with no moral hazard) prefers a lower x" under the same recommendation structure:

X > sup { argmax {kl(x’) 2 p(r)g* (xr) — % Z (JF_ e adF(a)) kz(x’)}

X resupp{R;} resupp{R;}

In particular, when x € (0, x), the inequalities hold strictly.

Proposition 3 shows the deviations in expected participation and risky asset allocation from
the first-best solution. The reason underlying this is that algorithmic designs must account for
information rent costs, as outlined in Proposition 2. In order to offset the monotonicity of the
manager’s utility with respect to risk exposure through total sales, the expected number of recom-
mended investors must be reduced. Furthermore, to ensure the manager is incentive compatible,
the algorithm concedes in risk exposure x*.

The two parts of Proposition 3 can be unified as follows: The algorithm uses a lower investor
participation rate to ensure that the targeted x satisfies the IC conditions. Under the threshold
algorithm, the expected risk aversion levels of these participating investors are lower, meaning

their optimal investment should actually be higher.

4.3 Algorithms under Different Contracts

Proposition 2 also implies the interplay between the algorithm and contract. The underlying logic
arises from the manager’s payoff structure: it hinges on the likelihood of being recommended and
the expected returns once recommendation. The algorithm determines the former, while the con-
tract determines the latter. Then the variation in contract design affects the manager’s compromise
on the algorithm when making allocation decisions.

In precise, the performance fee rate « and fixed management fee j3 jointly affect the threshold
x. A greater « decreases x, resulting in a narrower range for the algorithm to achieve zero infor-
mation rent, because it increases the incentive of higher returns, making the penalty from reduced
recommendation less important. This is intuitive, as the performance fee with limited liability
constitutes the origin of the principal-agent problem.

Consider the fixed management fee, B. Proposition 2 illustrates that a larger  allows the al-

gorithm to achieve zero information rent at a broader range of equilibrium allocation x. Because
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the management fee is independent of the portfolio performance, but solely depends on success-
ful contract. This therefore becomes an incentive to align with the objectives of the platform’s
algorithmic design, and to avoid penalty in recommendation scales.

Figure 2 presents a comparative static analysis on B. As Panel (a) and (b) show, when the
management fee is low, the equilibrium allocation under optimal algorithm, x*, is higher than
xFp, and the expected recommendation scale is lower.As 8 increases, xj; remains relatively stable,
while x* decreases to align with x7;, and the under-recommendation at the flat-price scenario
is resolved. It implies that the moral hazard gradually diminishes, as the manager is more like
to align with the algorithm and earn the remarkable management fee. In particular, the social
planner’s solution can be achieved by the optimal algorithm when B is sufficiently high,” i.e.,
x* > x as outlined in Proposition 2.

To further analyze the investor welfare affected by the management fee, we decompose the

expected aggregate ex-ante investor utility,

1 F~'(qrp(x)) 1
E[ur(x, 4" (x))] =ki(x)qrp(x) — Sk2(x) J adF(a) — k1 (x)Aq(x) = Ska(x)Ba(x)),
a
First-be; utility, Utility Loss fror; Moral Hazard,
U(x,qrp) U(x,qrp)—U(x,q%)

where first term is the first-best payoff under x, and the second term represents the utility loss (e.g.,
over- and under-recommendation) to make x incentive-compatible. The loss in reflected as the
deviations relative to the social planner’s solution, including the expected recommend probability,

A4(x), and the expected collective risk aversion A;(x) of recommended investors,

Ag(x) = —p(0)(qrp(x) = 4*(0) + D7 p(r)(@*(xr) — qep(x)),
re{R,R}

~
Under-recommendation

Over-recommendation
F=1(g* (xr))

F~Y(qeg(x))
Aa(x):—p(O)f k@ Y p(r)f 2dF(a).

\ F1(4%(0)) kR UFamm()

>

Under-recommendation ~ K
Over-recommendation

The impact of the management fee B on investor welfare is twofold: a higher 8 enables the
algorithm to better influence the manager’s decisions, reducing the information rent to pay. On the
other hand, it directly reduces investor wealth as a fixed charge. With the above decomposition,
the former impact is reflected solely in the deviation from the first-best solution, i.e., U(x*, qrp) —
U(x*,4*), while the latter also enters U (x*, grp).

As Figure 2 (c) shows, when S is relatively low, the advantage of increasing B is evident (al-

"The threshold of a sufficiently-high B is (about) 0.0035 under the parameter choice of Figure 2.
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Figure 2: Comparative static analysis: management fee 3 in contract

Notes: Figure 2 illustrates the a comparative static analysis of the algorithm 4%, allocation x* and investor utility with
respect to the management fee 8. The parameters are chosen as follows: « = 0.02, ¥ = 0, a ~ U[0.5,1], and the support
of Rt is {—1,0,1} with corresponding probabilities 0.1, 0.7, and 0.2, respectively. By comparing with with the First Best,
it can be seen that as f rises, moral hazard diminishes and the algorithm §* and the allocation x* move closer to the
First Best (see Panels (a) and (b)). Since an increase in f also directly results in a loss of investor utility, the utility
initially increases with § but then declines (see Panels (c) and (d)).

though not fully offset the direct charge as U (x*, grp) appears a decreasing trend), and the welfare
gradually converges to the first-best case. When the optimal algorithm reaches the targeted equi-
librium without information rent, the higher g only imposes costs, making U(x*, grp) decreases
linearly in .

Combined these two forces, the investor utility exhibits an inverted U-shaped curve, as shown
in Panel (d). This non-monotonicity suggests a space for a jointly optimal design of the algorithm
and contract. Additionally, since B represents a mere transfer payment from investors to fund
managers, the reduction in wealth effect is not accounted in the total social welfare calculation. As
shown in Panel (d), the social welfare (the aggregate expected utility of investors and managers)

increases due to the mitigation of the principal-agent problem.
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4.4 Algorithm Serves as A Commitment Mechanism

A more fundamental question is: why the algorithm can successfully manipulate the equilibrium
allocation and thereby mitigate the moral hazard? This subsection uncovers its critical role as a
commitment mechanism. Specifically, we consider different timeline and information structures
and show that even if the investors are as informed as the algorithm (know their own types as well
as the portfolio historical performance), they fail to mitigate the fund manager’s moral hazard.

Consider several alternative timelines as plotted in Figure 3: (i) Blind investment, where in-
vestors do not adopt a platform, but meet the fund manager by chance. Therefore, the investors
have no information. (ii) Investment on fund distribution platforms, where the platform offers in-
formation about the funds without providing recommendations. That is, the investors know the
historical return Ry but do not know their risk aversion a. (iii) Investment experts. The investors
know both their types and all the historical performance information.

Investor decides to in-

vest or not based on
m (a,xR). If they are

Nature Nature recommended, they ob-

1 draws a 1 draws R 1 serves xR 1
Platform ‘ Manager chooses x ‘ Platform observes 4 ‘ Ry realizes
designs m and xR, then makes

a recommendation
m (a,xR)

(a) Timeline 1: Baseline

Nature Nature

draw§ a draws1 R
T T

Fund investpd or not
T

} }

T T
Manager Investor observe neither R;
chooses x nor a

]

T
R, realizes

(b) Timeline 2: Model without information about Ry and a (blind investment)
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T T

] ] ]
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T

T T T
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(c) Timeline 3: Model without information about a (investment on a fund distribution platform)
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(d) Timeline 4: Model with information about R; and a (investment expert)

Figure 3: Alternative Timeline and Information Settings

We compare the total investor welfare under these alternative cases to the baseline. Appendix

B provides formal analysis on each case, including proposition derivations and intuitions. We
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fix the distributions of risk aversion and the risk return, then visualize the expected payoffs for
investors at different risk aversion levels under each setting, as shown in Figure 4. A blind in-
vestment, as shown in the red dashed line, always results in a full risk taking (x* = 1), and the
manager takes away all the investor welfare. The green solid line shows the case of a fund dis-
tribution platform. The equilibrium reaches a slightly lower risk allocation (x* = 0.918), as the
investors could observe the historical return and partially infer the manager’s decision. However,
they may be still over-exposed to risk due to limited awareness of their own risk preferences —
particularly among highly risk-averse individuals, a group that lies at the heart of financial in-
clusion concerns. In Appendix B, we further show that the results are similar to this case even if
the platform provides additional information, such as historical Sharpe ratios and more detailed
information.

Investment experts, shown by the purple line of Figure 4, appear well-informed enough to
protect themselves: when investors know both their types and the historical return, just as the al-
gorithm does, they are never exposed to negative expected payoffs. However, the population fails
to achieve a fairly low x.® Only those with low risk aversion (shown in area A) choose to invest,
excluding a large share of the population from participating in the delegated investment. The un-
derlying intuition is: when every investor refuses to invest in situations with ex-post inefficiency,
no one ends up paying the information rent. Since each investor makes decisions individually,
the population as a whole is unable to penalize the manager’s risk-chasing behavior through a
coordinated reduction in total sales. This lack of coordination, in a sense, exhibits a “curse of
shrewdness” and fails to create a commitment power. In contrast, the blue line shows the baseline
with an algorithm: it achieves an investor-optimal equilibrium x* = 0.515. The piecewise pattern
around a = 4 reflects the presence of information rent. Notably, the resulting aggregate expected
payoff — roughly corresponding to area B — is greater than any other settings, and financial
inclusion is substantially expanded.

The above discussion highlights the function of algorithm: it coordinates investor behavior to
generate commitment power, thus maximizing aggregate investor welfare. Revisit its unique role
relative to (interacted with) contracts. Given simple contracts that consider only future perfor-
mance without historical records, the algorithm affects the business by collecting information and
deciding signal delivery, effectively enabling functionalities of a series of complex contracts (in-

cluding both historical and future conditions), and further determining the valid contract parties.

8Under the parameter choices of Figure 4, the resulting equilibrium allocation x = 1, while it is possible to reach an
equilibrium with x < 1.
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Figure 4: Expected payoff under different risk aversion a4 and information structures.

Notes: Figure 4 illustrates the distribution of investors’ expected utility in equilibrium under four different information
structures (ranked by risk aversion a). The parameters are chosen as follows: « = 0.1, = 0.0015, ¥ = 0.5, a ~ U[1,5],
and the support of Ry is {—0.2,0,0.2} with corresponding probabilities 0.1, 0.7, and 0.2, respectively. The blue solid
line corresponds to the baseline model, the red dashed line represents the case where the investor has no information
(blind investment), the green solid line corresponds to the case where the investor can observe R; (investment on a
fund distribution platform), and the pink dashed line represents the case where the investor can accurately observe
both R; and a (investment experts). It can be seen that allowing investors to access coarse information about their own
a improves their overall welfare, as Area B is larger than Area A.

4.5 Algorithm and Ranking Systems

In addition to the role as a commitment mechanism, this subsection uncovers the other resulting
critical role played by the algorithm, i.e., a private information gatekeeper, which is significantly
distinct from ranking systems. Specifically, ranking systems (e.g., Morningstar ratings) aim to help
investors compare funds and identify suitable investment targets. In contrast, recommendation
algorithms start from investor heterogeneity: given a fund, they determine which investors are
suitable for it. This motivation provides a tractable bridge between mechanism design and finan-
cial inclusion.” A fey difference is that the ratings are publicly known,!? while the algorithm de-

livers private signals according to investors’ characteristics. In practice, the two are not mutually

9They both process historical performance data and somehow serve similar classification functions. For instance,
an extremely high allocation x may lead the algorithm to implicitly classify the fund as “high-risk” and thus reduce
recommendation.
19With a rating system, investors get to know a list of funds, at least the top funds. This suggests the crucial influence
of ratings: they generate investors” attention to top funds, leading to risk chasing to hit the ranking (Hong et al., 2024).
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exclusive, e.g., the platform can even publish ratings and deliver personalized recommendation
simultaneously.

We consider the case when there are both recommendation algorithms and fund ratings. With
the existence of publicly known ratings, investors always know the fund and thus can invest even

without receiving recommendation.The platform’s problem is formulated as: x € [0, 1],

max  ki(x)g(xry) — % (

7[R, R]—[01] a

F~'(q(xr1))
J adF(a)) ka(x)dG(r1)

subject to the IC and IR constraints

X € arg max {(Ax' + B) [q(x’B)p(B) +4(0)p(0) + q(x'ﬁ)p(R)] },

xl

B 13‘;71(‘1(”1)) adF(a)

k1(x) 5 prET ka(x) = 0,Vry € supp(Ry), (13)
1§51 any) 94F (@)
ki(x) — 2 1-q(n) ka(x) < 0,Yry € supp(Ry). (14)

The additional IR constraint (14) implies that investors only follows the algorithm’s recom-
mendation to reject the investment action when the posterior expectation is high enough. In par-
ticular, as investors are able to know the fund and its performance via public information, the
IR constraint (14) rules out cases where they still invest in the fund given no recommendation
received. Otherwise, the algorithm cannot remain its commitment power.

Similar to processing the baseline IR constraint, we multiply the both sides of (14) with (1 —

g(xr1)), and consider the left side. Its derivative w.r.t. g(xr1) is

i) + 3F (gl ),

and is strictly increasing with g(xr1). Also note the equal sign holds when g(xr{) = 1. Then we

can define q(x) as

g(x) = inf {q e [0, 1]‘k1(x)(1 —q) — ;Ja adF(a)ky(x) < 0} .

F~1(q)

Then the IR constraint (14) is equivalent to g(xr1) > g(x) for any r1 € [R, R]. Proposition 4 indicates

how the two IR constraints bind and interact with the equilibrium allocation x.

Proposition 4. (Applicable range of the recommendation affected by the ranking system.) Suppose

the contract parameters and the distribution of risk aversion satisfy ki(x) — 1/2aky(x) = 0. Then there are
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cases where the upper (lower) envelope of the applicable recommendation, q (), takes different values,
1. Ifki(x) — 3 ZudF(a)kQ(x) <0,q(x) =0andq(x) € (0,1).

2. Ifky (x) — § {3 adF(a)ka(x) > 0, g(x) € (0,1) and G(x) = 1.

Proposition 4 highlights the importance of the population average (or the average belief about
the) risk aversion levels. (i) when x is too large for the population average risk aversion, investors
would not invest when receiving no recommendations, while the baseline IR constraint binds:
if the signals were over-delivered, investors would not buy; (ii) importantly, the new binding
scenario is that when x is below the population average risk tolerance, the lower limit binds, i.e.,
investors may be inclined to invest even without a recommendation.

Figure 5 visualizes this case in comparison with the baseline, exactly corresponds to the second
scenario in Proposition 4. First, the algorithm still significantly forces the equilibrium allocation
away from x = 1, and the investor-optimal x* roughly equals to 0.3. However, this is not from
a convex optimization, but bound by the new IR constraint: when the algorithm aims at a low
risk exposure x < 0.3, it needs to pay a remarkable information rent to the manager. Then it has
to be too conservative such that 4%(0) < gq(x). Then the investors ignore the fact of not being

recommended, and still invest. As a result, the algorithm fails to reach an equilibrium at x.

» - dip — First-Best Utility
\ 4*(0) with IC . [ — Utility with IC
\ _ —q'(«R), ¢’ (xR) with IC N

Maximum U

Optimal g values

F

(a) U(x, §) for different x (b) g* for different x
Figure 5: Investor’s Payoff and 4*(-) with constraint g(xr1) > q(x)

Notes: Figure 5 illustrates the optimal algorithm and utility for different x, when investors can observe all funds
(i.e., the rating indicating whether to recommend purchasing). Compared to Figure 1, both the investor’s utility
and the algorithm are blank in the region below 0.3. This is because no incentive-compatible algorithm exists in this
range—investors would invest even without a recommendation, causing fund managers to deviate. In this case, the
optimal algorithm locks x* at a higher level, leading to a lower expected utility for investors compared to Figure 1. The
parameter choices are the same as Figure 1.

Compared to the baseline in Figure 1, the expected aggregate investor payoff decreases. This

yields a counterintuitive implication: how can additional public information reduce social wel-
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fare? Because once investors have access to alternative public signals, the algorithm’s recommen-
dation becomes less influential in shaping their decisions. As a result, the platform’s ability to
coordinate investor behavior — its commitment power — diminishes. This weaker coordination
shifts the equilibrium risk allocation in favor of the manager. This finding aligns with Hong et al.
(2024)’s empirical findings, where increased exposure in rating media is associated with increased
exposure to risk. Given the platform can decide how to implement rating systems and recommen-
dation algorithms, their interaction presents an important direction for future research in market

information design.

5 Analysis under Continuous Distribution

In the previous section, uncertainty arises from the three possible future states. This simplifies
the algorithm’s knowledge of the manager’s allocation into two cases: fully certain and fully
unknown. In a more realistic continuous setting, each portfolio has a probability of yielding a
continuum range of historical returns, albeit different to other portfolios. Therefore, any historical
return fails to precisely infer the allocation. The algorithm is then expected to have strictly posi-
tive recommendation probabilities over a continuous interval of historical returns, rather than at
discrete points as in Section 4.

In this section, we characterize the implications when supp(R;) = [R, R]. The pre-determined
algorithm infers the manager’s choices based on realized historical returns with varying confi-
dence, and enforces different recommendations accordingly. One can then imagine that the pre-
vious implications still hold: the algorithm implements punishment, i.e., delivers conservative
a recommendation, when receiving less informative and/or dangerous signals, and potentially
pays an information rent. Ultimately, the algorithm optimally guides the manager to be incentive-

compatible on lower risk exposures, mitigating moral hazard.

5.1 Existence of Optimal Algorithm

In a continuous setting, the existence of an optimal algorithm is not trivial because of the lack of
the typical monotonicity. Proposition 2 implies that Helly’s selection theorem, commonly used
in the literature on mechanism or contract design, cannot be applied directly. To define the exis-
tence problem rigorously, we constrain 4(-) to a specific function space, denoted by Q. Then the

optimization problem (5) can be generalized as

sup O(x,q),
(x,9)eDn[0,1]xQ
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D:={(x,q):geL” ((R,R)),0<q(-) <7(x)and (x,q) satisfies (6)},

F~(q)
a

q(x) = sup {q e [0, 1]‘k1(x)q — ;j adF(a)ky(x) > 0} ,

where 7(x) represents the maximum possible fraction g4 under allocation x. That is, g(xr1) < g(x),
Vr1 € [R, R]. It can be proved that §(x) is continuous with respect to x.

A reasonable choice of the function space Q ensures a certain sequential compactness of the
feasible set, thus avoiding difficulties arising from not being able to constrain 4(-) to be monotonic.
For example, by constraining q(-) to a Lipschitz function space with the same constant L, he conti-
nuity of the objective function is mathematically guaranteed, as is the compactness of the feasible
set. More generally, the specific choice of Q and the existence of model solutions are shown by the

following theorem.

Theorem 1. (Existence.) Assume that F is supported on [a,a] with continuous density function f > 0,
where —0 < a <@ < +o0. Assume also G has continuous density function g > 0 on [R,R]. Suppose
g (-) is continuous. Let L > 0 be a constant. If one of the following two conditions applies,

1. Q:{qecb((ﬂ,ﬁ)) :0<q(-)<land supx;éy%:z‘(y)'<L};

2. Q= {qe W' ((RR)):1<p<o,0<q()<land |Dgl, < L},-

Then there exists (x*,q*) € D n [0,1] x Q such that O (x*,q*) = SUP (y pvepnfo1]x 2 O (x,9).

Remark 1. The notation and basic concept of the proof are outlined below. Those not engaged in
detailed mathematical analysis may omit this Remark. Let () — R be an open set. In the Theorem,
I [ ;o denotes the L? () norm with respect to Lebesgue measure. We omit the subscript () when

the domain is clear (or not important) from the context.

1

1 . function u. The spaces W'?,1 < p < @

By Du, we mean the distributional derivative of a L
are the Sobolev spaces of L? functions with L? first order distributional derivative. It can be shown
that the space of Lipschitz continuous functions on bounded interval is just W%* (Q). On the
other hand, for function u of one real variable, u € W?,1 < p < oo implies u has a version

0,1-1 . . . .
' = y a.e. such that u’ € C~r. The Holder class C% consists of continuous functions such

u
that sup,., {|u (x) —u(y)|/|x —y|*} < . Obviously, the space of Lipschitz functions is colL,
In this sense, the condition 1. and the condition 2. are similar and together they handle the
WLP,1 < p < o cases. For fundamental properties of the Sobolev spaces, we refer to Adams and
Fournier (2003).

To prove Theorem 1, we adopt the direct method in the calculus of variations. To be more

specific, we are going to show that under suitable topology the feasible set D n [0,1] x Q is se-
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quentially compact and the objective function is at least upper semi-continuous. For the Lips-
chitz case, the desired compactness is guaranteed by Arzela-Ascoli theorem. When the index
p < o, WP spaces are reflexive and thus we rely on Banach-Alaoglu-Bourbaki theorem and

Rellich-Kondrachov compactness theorem.

The intuition behind the constraint L in the space Q is that the derivative of Q(-) is not allowed
to change drastically. This implies a large algorithmic design cost. This is similar to the cost of a
certain energy functional, like Sg |q(xr1)|>dG(r1) in some physics problems.

Solving for x* and g* (-) sim:ﬂtaneously presents certain challenges. To illustrate the solution,
we divide the optimization problem into two stages. Firstly, we fix x € [0, 1] and find the solution
q*(x) for the following optimization problem (15) and thus identifying the characteristics of the

optimal algorithm.

sup O(g;x) (15)
qeQnDy

where D, := {q e L” ((R,R)) ’O < g < g(x) and (x, q) satisfies (6)}.11 Secondly, we pin down the
solution (x*, ¢*(x*)) and the investor’s utility, which allows us to comprehend the comprehensive
impact of the algorithm on the principal-agent problem.

Here we observe the (partial) convexity of the objective function O (-,-). Since it is useful

hereafter, we call it a lemma:

Lemma 3. (Concavity of the objective function.) Suppose F is supported on [a,a] with continuous
density function f > 0, where —0 < a < a < +o0. Then, for any x € (0, 1], the objective function O (x, q)

is strictly concave with respect to q.
By Lemma 3, g*(x) is well-defined as demonstrated in the following proposition.

Proposition 5. (Uniqueness.) Given x € [0, 1], there exists a unique function q*(x) optimizing (15).

5.2 Solving for the Optimal Recommendation

We attempt to solve the optimal algorithm. The incentive constraint (6) can be rather complex for
further analytical derivation. Here we alternatively propose a local incentive constraint (the first-

order condition of (6) w.r.t. x) for potential solutions, and verify its satisfaction of the original

1gince Dy includes q(-) = 0 for all x, Dy is not empty.
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condition. The alternative constraint reads:

R R R R
(v + ’y)fo r2dG(r7) JR q(xr1)dG(r) + [,’3 + (a + ’y)xfo rsz(rz)] JR q'(xr1)r1dG(r1) =0, (16)

N J

Marginal expected payoff Marginal algorithmic penalty

where SR q'(xr1)r1dG(r1) is well-defined according to Lebesgue’s dominated convergence theo-

rem. Denote (16) in a general form with functional I,

R
f I(r1,q,9")dr1 = 0.
R
We make two reasonable assumptions for sake of the solving process.

Assumption 3. Given x, forany q € Q,

S ) = g (S010.0)) = A= (Ar+ Bing () + 5(n)

is not equal to zero a.e. in [R, R].

Assumption 4. Given x, let g* € Dy n Q be the unique solution of the objective function. Fix any element
g1 € Q,3q2 € Q with

—

[~ =||1=~ =
Q)‘Q) ’D‘Q)

Lr, a*, 0% (g1 — 9%) + L (r1, 9%, 4% (g — 9*')dr
G (11, a%,q7) (g2 — q*) + 5 (r1, 9%, 4% (g5 — g*')dr

< 0.

— <

()

Assumption 3 is simply satisfied when (r1¢’(r1) + g(r1)) is not constant.'? Assumption 4 effec-
tively assumes there exists an interior solution g%, i.e., given x, 3r; such that g*(xr;) € (0,4(x)),
whilst the corner cases {0,7(x)} can be easily analyzed separately. With these two assumptions,
we obtain a variational inequality as a necessary condition for the solution g* of the optimization

problem (15) given x.

Theorem 2. (Variational inequality as a necessary condition.) Given x € (0,1), let g* € Dy n Q be

the unique solution of the objective function. Under Assumption 3 and 4, there exists a real number A s.t.

12 Appendix Example 1 discusses the counter case where r1¢’(r1) + g(r1) = C, i.e., g(r1) = C + C1/|r1|. In particular,
when G follows a uniform distribution, the algorithm always automatically achieves the first-best equilibrium with
zero information rent.
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Vg1 € Q,
ﬁ /
0> fR (q1(xr1) — q*(xr1)) [kl(x) - %kz(X)F—l(q*(xrl)) + )\g +AMA+ i)rli((:ll))] dG(r)
 (q1(xr1) =47 (1)) MA + g)rlg(m) i (17)

Now we show how this necessary condition restricts the potential 4* to a specific formula.
Consider that theset U := {r; € (R,R) | 0 < g*(xr1) < g(x)}isopen,and C := {r; € [R,R] | g*(xr1) =
0 or g*(xr1) = g(x)} is (relatively) closed. Fix any text function v € CX(U). Then if |4] is sufficiently
small, 0 < g1 := g* + 6v < G(x), g1 € Q. Thus (17) implies'®

f 5o(xr) [kl(x) - ;kz(x)F_l(q*)] dG(ry) — Af ASo(xr1) + (Ax + B)yrov/ (xr)dG(r) < 0.
u u

This inequality is valid for both § and —J. Therefore, the above inequality must have the equal
sign. Because v has compact support in U, v is vanished near 0U. By the integration by parts, we

obtain

1

0= f v(xry) [kl(x) — Ekz(x)l—"_l(q*(xrl)) + )\ﬁ + A(A+ ﬁ)rlgl(rl)] dG(rq)
u

x x’ " g(r)

is valid for all v € C°(U). Therefore,

0=ki(x)g(r1)— %kz(x)Ffl(q*(xrl))g(ﬁ) + /\ﬁg(m) +A(A+ ’B)rlg’(m) in U. (18)

x x
Notably, when U = (R, R), we can also fix any text function v € C*(U), where U is the closure

of U. Then if || is sufficiently small, 0 < g1 := g* + év < g§(x) and so q; € Q thus satisfies (17).
Similarly, the inequality must have the equal sign. Together with (18), we obtain

0 = Ad(Ax + )| (Rg(R)/x)0(xR) — (RZ(R)/x)0(xR) | (19)

Consider v such that 0 = v(xR) < v(xR), there must be A = 0.

So far, we draw the conclusion from Theorem 2 that I\ € R, s.t.#

(20)

* o (*a(x) = A[B/x + (A + B/x)r18/(r1)/g(r1)]
q*(xr1) = F ( )2 ) .

13Note that since v € C(U), v(xR) = v(xR) = 0.
4The expression g* = F(a*) in (20) and (21) implicitly assumes a* € (,a), while the other cases are relatively trivial,
corresponding to the algorithm that never/always recommends to each investor.
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q*(xrq) =F <k12<za(c))72> . (21)

In particular, if U = (R, R),

5.3 Inverted U-shaped Algorithm

We pin down the return distribution for further analysis. Let the risk aversion of investors follow a
uniform distinction, a ~ U[0.15,0.5], and the distribution of risk returns R; be a truncated normal
distribution supported on [—3,2], with 4 = 0.5 and ¢ = 1.5.° In precise, the probability density

function of R; reads

o))

_—
> q><% )

7

1 exp(—
oV27 q)(ﬁ

? NM—‘

g(rr "o, B/ E) =

?

where ®(-) is the cumulative CDF of the standard normal distribution.

Figure 6 visualizes the optimal algorithm ¢* solved from (20) that ensures the equilibrium
x = 0.4.'° Panel (a) shows how the algorithm delivers recommendations over realized returns.
First, the algorithm only delivers recommendation in a narrower support of observed returns,
since highly abnormal returns are less likely to be the portfolio return with risk exposure x < 0.4.
Second, the algorithm reduces recommendation when the historical return is higher. This aligns
with the crucial intuition in Section 3.2: a high historical return may not be a good sign, as it
may result from over-exposed to risk. Mechanically, the downward slope in Panel (a) reflects the
increasing possibility of a too-large allocation, thereby aggregating more punishment. In addition,
information rent is paid in this scenario. For example, when the recommendation amount goes
beyond the first-best, grp(x), there exists investors who are recommended and receive negative
expected payoff.!”

Recall the solving process. Theorem 2 only provides a necessary condition by alternatively sat-
isfying the local incentive constraint-we need to verify that the IC constraint is satisfied. As Panel
(b) shows, the algorithm successfully breaks the monotonicity of manager utility: the manager
maximizes the expected payoff under the optimal algorithm, therefore is incentive compatible at
x = 0.4, validating g*(x) to be an equilibrium algorithm. In particular, the manager’s utility func-

tion becomes concave due to the non-monotonic algorithm. This means the algorithm effectively

15We use a truncated normal distribution for technically satisfying Assumption 1. Essentially, it could fully capture
the intuitions of the risk return normally distributed over (—co, +00): as we show, the algorithm would choose not to
recommend if an extremely abnormal return was observed. It is somehow equivalent to presume the plausible returns
to be distributed over a finite interval.

16Note that x = 0.4 may be not the optimal x* that maximizes the aggregate expected investor utility. Essentially,
any allocation can be achieved in equilibrium by designing a corresponding algorithm with potential information rent.

7The return interval with ¢* < grp(x) may also contain information rent, which is rather complex to decompose
from the punishment, i.e., the recommendation amount may be lower if only accounting for the punishments of multi-
ple possible allocations. While in the discrete case, the decomposition is clear since the allocation is correctly inferred.
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transfers the investors’ risk-aversion to the risk-neutral manager.

= 0.40, payoff = 0.0195

a(zRy)

Gop(@)

Manager Expected Payoff

(a) Optimal algorithm given x = 0.4 (b) Manager’s Utility under g* for different x
Figure 6: Optimal algorithm given x = 0.4 and Manager’s expected payoff

Notes: Figure 6 illustrates how the algorithm incentivizes the fund manager to choose x = 0.4 rather than x = 1 in
the continuous case. The parameters of the contract and the manager’s personal benefit are set to « = f = 0.01 and
v = 02. a ~ U[0.15,0.5]. The risk return follows a truncated normal distribution supported on [-3,2], p = 0.5
and 0 = 1.5. Panel (a) shows that the optimal algorithm is non-monotonic over supp(xR;) (with zero probability
outside the support). Within the non-zero region, the algorithm is essentially quadratic, recommending with a higher
probability than the first-best when returns are moderate, and a lower probability than the first-best when returns are
extreme. Under the influence of this non-monotonic algorithm, panel (b) shows that the manager’s utility function is no
longer linear in x (based on the assumption of risk neutrality), but instead becomes a concave, non-monotonic function,
reaching its maximum at x = 0.4.

Investor-optimal algorithm and information rent. Then we consider the equilibrium allocation
and algorithm that maximize the aggregate expected investor payoff, where the interesting ques-
tion is, similar to Section 4.2, does such optimum require an information rent? Note that whenever
the algorithm does not induce x* = 1, the effectiveness and operation of the algorithm rely on the
distribution of returns, in terms of the multiplier A and the elasticity of probability density func-
tions, (0/d(Inrq)) In(g(r1)).

First, when A = 0, the elasticity does not matter, and the algorithm is simply a bang-bang form.
The following Corollary draws implications, no information rent, and the necessary condition to

achieve this scenario.

Corollary 1. When the investor-optimal equilibrium yields a zero Lagrange multiplier, i.e., A* = 0, in-

vestors pay no information rent. In particular, The sufficient and necessary condition of A* = 0 is that, x*
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satisfies

x* € arg max {(x’A + B)[G(x*R/x") — G(x*B/x’)]} and

x'e[x*,1]
/ / (22)
* / k1 (X’) _ 1 J‘kl(x )/ (ka(x")/2) ,
x* e argxr/nax {k1(x )F <k2(x/)/2 2\ g adF(a) | ka(x") p.

Second, when A # 0, the information rent has to be paid, and the elasticity of the density func-

tion directly determines the shape of the algorithm. Similar to contract and information design,
algorithm design contributes to investor surplus improvement through the commitment power

that may lead to ex-post inefficiencies.

Proposition 6. (Over- and under-recommendations in general cases.) If A\* # 0, there exists r,v’ €

[R, R] such that investors will be over- and under-recommended when historical returns are r and r' respec-

tively. i.e,

E[Rz — ¢(Ra)[x*] — 5% (r)E[(R2 — ¢(Rz))*|x*] < 0, and

a*(r")E[(R2 — ¢(Ra))*[x*] > 0,

NI~ DN~

E[Rz — ¢(Ra)[x*] —
where a*(r) = F~1(q*(r)).

Similar to the discrete distribution case, Proposition 6 indicates that when A* # 0, there exist
recommend investors who receive negative expected payoff and also unrecommended investors
who could have positive expected payoff from investment. In addition, as discussed in Section

4.3, the contract and the algorithm interact with each other.

6 Conclusion

We develop a model of recommendation algorithm design in delegated investment. The inter-
mediate platform serves investors who have limited knowledge about their risk aversion levels,
aiming to mitigate fund managers” moral hazard in over risk-taking, particularly given the con-
tractual environment unchanged. We show that predetermined automatic algorithms can effec-
tively mitigate the principal-agent problem inherent in linear and limited-liability contracts. The
core intuition is that the algorithm reshapes the information transmission and further affects the
buyer party’s entrance, which effectively generates commitment power. Specifically, the optimal
algorithm is non-monotonic w.r.t. the fund’s historical performance, thereby distorting the man-

ager’s utility function w.r.t. risk allocation. The manager has the incentive to hide behind noisy

32



MITIGATING MORAL HAZARD THROUGH ALGORITHMS

signals. Therefore, the algorithm reduces recommendations when information is ambiguous and
potentially compensates for informative signals. This generates an information rent paid by in-
vestors, facilitating trading and achieving Pareto improvement.

Although this paper focuses on risk incentives, the framework can be extended to designing
algorithms for solving other principal-agent problems, such as managers’ efforts and information
acquisition. See, for example He and Xiong (2013); Huang et al. (2020); Buffa et al. (2022). Our
analysis may also inspire future research into many topics, such as optimal joint design with con-
tracts, competition with multiple funds, and information design with both public fund ratings
and personalized recommendations.

Furthermore, the powerful algorithm requires careful consideration of its regulation and pur-
pose. The algorithm’s commitment power relies heavily on transparency, while as Sun (2024)
points out, in reality, algorithms may not be fully transparent. Moreover, if the platform leans
towards the manager side rather than the user base, the algorithm may establish a new prin-
cipal-agent relationship that is detrimental to investor surplus. Overall, our paper reveals the

extent to which algorithms can mitigate moral hazard in the context of digital finance.
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Appendices
A Derivation of Results

A.1 Proof of Lemmal

The proof is following Ichihashi and Smolin (2023). Take any feasible algorithm m. For any fund
with historical 7,1, let g (rp1) = SZm(a, rp1)dF(a) denote the expected number of investors with

recommendation under r,;. Define a new algorithm i1 as #1(a, ;1) = 1(a < F~}(qu(rp1))). At each

rp1, algorithm 77z recommends the fund with the same expected number of investors as m:

f L(a < F7 (qm(rp)))dF(a) = F(E™H(qm(rp1))) = qu(rp1)-

a

As a result, the fund manager earns the same profit under m and 1, both are

ER, [9 (xR1)] | By [¢ (¥R2)] + 7Er, [max{xRo, 0}] |

Because the expected value of risk aversion a conditional on recommendation is lower under 1
than under m and JEg,[u;(xR, — ¢(xR2)); x]/da < 0, an investor who follows the recommenda-
tions of m would also follow those of 17, and the expected payoff for investors is higher under 7

than under rpl.

A.2 Proof of Proposition 1

(i) According to the definition of §, for any function J(-), given x*, Eg, [J(§(x*R1))] = Eg, [J(q(x*R1))].
Therefore, the expected payoffs of the investors and the manager are unchanged. Thus the in-
vestor’s IR constraint still holds. (ii) Consider the IC condition. Since 4§ induces potential addi-

tional penalties when x” # x* (when x” < x, the penalty would not trigger),

R R
(AX' + B) fR §(X'r)dG(r1) < (AY' + ) jR 7" (¥'r)dG(r1).

Further by the incentive compatibility under equilibrium (x*, g*) and no extra penalty of § at x*,

we obtain

R R R
(AX' + ) fR 7*('r)dG(n) < (Ax* + B) fR 7" (x*1)dG(r) = (Ax* + ) fR §x*r)dG(r).

Therefore, (x*, §) also satisfies the IC condition.
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A.3 Proof of Proposition 2

For x € [0, 1], the algorithm design problem can be rewritten as

max  ky(x)g(xr1) — L (
F[RR]-[01] 2

F~(q(xr1))
J adF(a)) ko (x)dG(ry)

a

subject to the IC and IR constraint

x € argmax { (A¥' + B) [9(*R)p(R) +q(0)p(0) + g(xR)p(R)] |, (A1)

9(x) <7(x). (A2)

All values of g on [R, R] need to be determined. We can show that for any (x, g(x)) satisfying
the IC constraint (A1), there exists §(x) defined by (A3),

4(r; x) = (A3)

A q(r), ifre{xR,0,xR}
0, otherwise,

such that (x, §(x)) satisfies the same IC constraint, and the investor’s payoff under (x, §(x)) is the
same as that under (x,g(x)).

Therefore, the objective function can be further rewritten as

max  ki(x) [§(xR)p(R) +4(0)p(0) + 4(xR)p(R)]
q(xR),q(xR),4(0)

. F1(G(R) A F10) ) F1(§(R)) o
) [( J adp(a)> G(xR) + (J adF(a)) 4(0) + ( f adF(a)) q(xR)] .

Without the IC constraint, for any x, the optimal algorithm should recommend all investors
whose payoff is non-negative under x. In this case, the first-best algorithm without the IC con-

straint is given by grp(x) = k1(x)/(k2(x)/2) and we have

/ ke (x")/ (k2 (x")/2)
Xfp = sup {argrlnax {kl(x’)l-" (kféf:);z) — % <f adF(a)) kz(x/)}} . (A4)

a
With the assumption (A + 8)p(0) > B, under 4, the IC constraint (A1) is equivalent to

(Ax+B) [4(xR)p(R) +4(0)p(0) + 4(xR)p(R)] = max(Ax’ + B)§(0)p(0) = (A + B)4(0)p(0).

Note that if the manager deviates from x to x’, then they will not be recommended when the

realization 1 # 0. Consequently, given the algorithm, the probability of being recommended is
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given by §(0) and the manager will only deviate towards x’ = 1 to ensure that the expected return
is maximized when they is recommended.

Given x, we have the following Lagrangian:

(
F7(4(xR)) F~1(4(0)) F~'(§(xR)) _
— %kz(x) [(L ' adF(a)) p(R) + (L ' adF(a) | p(0) + (Ja ' adP(a)) p(R)]

+ /\[(Ax + B)

XR) + 117, (@(x) — 4(xR)) + 170,14(0) + 702(q(x) — 4(0)),
(A5)

[4(x
+ 1r1G(xR) + 17r2(q(x) — 4(xR)) + 115 14

where A > 0 and 7,2 > 0 are the multipliers from IC and IR constraints, and 7,7 > 0 is the
multiplier from the definition of 4.

According to the first-order condition of the Lagrangian, we have

ki(x) + A(Ax + B) + (7r1 — 11r2)/P(R)

FH(q(xR)) =

ka(x)/2 -
PRy - LA 5)(+) ;Z ~ra)/P(R)
Fl(g() = SRR o 0 PO,

Plug §*(x*R) = 4*(0) = §*(x*R) = qpp(x™) into the IC constraint, we get

(Ax* + B)[1 — p(0)] [grp(x*) —a] + A(x™ = 1)p(0) [grp(x*) —a] = 0
= [(Ax* + B)(1 - p(0)) + A(x* = 1)p(0)] [grB(x*) —a] = 0.

Since max,{7*(r)} > 0, the equilibrium x* must unsure that the expected utility of the least risk-

averse investor is non-negative, implying that grg(x*) > a. Then if

0< (Ax +B)(1—p(0)) + A(x* —1)p(0)
=t > Ap(0) — (fl‘ p(0))p — x, (A6)

the IC constraint is satisfied. Additionally, since for a given x*, grp(x*) maximizes the objective
function and grp(x*) < q(x*), then if x* > x, §*(x*R) = 4%(0) = §*(x*R) = qrp(x*) satisfies all
constraints and maximizes the objective function, i.e., it is a solution. If x* < x, (A6) does not hold.

Therefore, A > 0, which further implies min{4*(x*R), §*(x*R)} = qrp(x*) = §*(0).
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A.4 Proof of Proposition 3

We primarily discuss the proof of the interior solution.
First, when x* > x or A* = 0, the equation holds.

Secondly, when x* < x and A* > 0, we have

oerowon  k(x®) MAx + B) AA(x —1)
resu%{mpmq (x*r) = k21(2) 2t PO + PO
_ k(@) | A(AX* +B—p(0)(A +B))
k2(2)/2 ko (x*)/2 -

Given A > 0 and x* < x, the second term is strictly negative, as a result we have

g = ]

resupp{R;}

kq(x*)
ka(2)/2"

P (x*r) <

Given §*(-), the FOC of the Lagrangian (A5) with respect to x is

N P S F2H3*(0) F1(% (xr)
) o) [p0) [ adF@ Y p0) | adF(a)
i “ re{R,R} Fa
sy Eposy Loy i FH(*(0) F=1(3% (xr))
= (x)gE () - J4x°) [ p(O) | wdF@+ Y p() | adF(a)
L ‘ re{R,R} =

The second line is because A > 0 and g > 0. When

(g% ()
Ky (x)

> pF e -

resupp{R;}

2

resupp{R} (f

a

X = sup {arg max

x/

we have
F=1(9%(0))
KD ()~ JK(3) {p(@ [ 7w+ ¥ 0 |

A.5 Proof of Proposition 4

Recall that 7(x) and q(x) are defined as below:

1 JFI(Q)
a

q(x) = sup {q € [0, 1]‘k1(x)q ~5 adF(a)ky(x) = O} ,
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g(x) = inf {q € [0, 1]‘k1(x)(1 —q) — % fﬂ adF(a)ky(x) < 0} )

F~1(g9)

Given x, suppose ki (x) — %ng(x) > 0. We can observe that

1 (F'0)
k() <0~ 3 J adF(a)ka(x) = 0, (A8)
ki(x) x (1—-1)— % ja adF(a)ky(x) =0, (A9)
(1)
dki(x)g — 1, " adF(a)ka(x) 1
dg ’q:O =hi(x) = 3F 1(q)k2(x)‘q=0
= ka(x) — paka(x) > 0, (A10)
dk; (x) adF ko (x)
: f; e LR ]
_ {h(x) - ;ﬂkz(x)] <0, (AT1)
Chi(x)g-15 adF@k() 1
a2 7O —
&%k (x)(1 = q) — 3 §p-1(,) adF(a)ka(x) 1
i d =57 (q)kz(x) > 0. (A13)

Combining ki (x) — 4 f; ‘W adF(a)ky(x) = ky(x) — L {7 adF(a)ka(x) < 0, (A8), (A10) and (A12),
we have g(x) € (0, 1). Combining ki (x)(1 —0) — %S?—l(o) ;ZdF(a)kz(x) =ki(x)— 1 ZadF(a)kz(x) <
0, (A9), (A11) and (A13) we have q(x) =0

Similarly, given ki (x) — 5 S adF(a)kz(x) > 0, by (A8) - (A13), we have g(x) € (0,1) and g(x) = 1.

A.6 Proof of Theorem 1

part 1 First consider the existence of the maximum point under condition 1.

Step 1: [0,1] x Q is compact.
A L-Lipschitz function u defined on an open interval (a,b) can be uniquely extended to a L-
Lipschitz function on [a, b]. To see this, take a sequence {x,}_;, X, € (a,b) such that lim,_ x, —

0

b. By Lipschitzness of u, {u (x,)};_; is a Cauchy sequence, and thus lim,_, u (x;,) exists. The
uniqueness of this limit among all such sequences then follows again from the Lipschitzness of u,

i.e., lim, ,, u (x) exists. Further, we have

e (x0) —  (B) | = Tim |1 (x0) — u (x2) | < Jim L|xo — x| = Lxo —
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for all xg € (a,b). The a side and the upper bound of |u (a) — u (b) | is similar to the above.
Consider Q' = {q €Cy ([RR]):0<q()<1land sup,,, w < L}. For all ¢ > 0, choose
6 =¢/L. Thenforallg e @, x,y € [RR] and |[x —y| < §imply |g(x) —q(y)| < ¢ ie, Q is
uniformly equicontinuous. Since Q' is also uniformly bounded by definition, by Arzela-Ascoli
theorem, Q' is precompact in C ([R, R]). By the unique extension, we can identify Q with Q’, so
Q is also precompact in Cp ((R,R)). Let {g,};2; be a sequence in Q and g, — g under the sup

norm. For all x,y € (R, R), we have

|9 (x) =g () [ = lim |g, (x) =qn (y) | < Llx —y],

i.e., Q is closed and therefore compact. Then, [0,1] x Q which is the Cartesian product of two
compact spaces is compact.
Step 2: The feasible set D n ([0,1] x Q) is non-empty and compact.

By Step 1, we only need to verify that D n ([0,1] x Q) is non-empty and closed. Note that
(x,0) € D for all x € [0,1], which implies D n ([0,1] x Q) # . To verify closedness, let
{(xn,qn)};_ be a sequence in D n ([0, 1] x Q) such that (x,,4,) — (x,q) for g € Q. By defini-

tion, for all x" € [0,1] and each n € {1, 2, ...}, we have

- _
(Ax, + B) JR n (xn11) dG (r1) = (Ax" + B) JR qn (x'r1) dG (r1) . (A14)

Since |g, () | < 1 and g, — g uniformly, by dominated convergence theorem,

R R
J qn (x'11) dG (r1) — J q(x'r1)dG(r1), Vx'€[0,1].
R R

On the other hand,

R R
f Gn (x,11) dG (rl)—f g (xr1)dG (r1)
R

R

R
< f G (xar1) — q (x11)|dG (1)
R
- (A15)
< jR (g0 (1) — g (xr1)| + |9u (x71) — q (xr1)]) 4G (r1)

R
<f Ll —x/r+ sup |gn(y) —q ()] |dG (1) — 0.

R ve(RR)

The convergence of the right hand side of the last inequality follows again from the dominated
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convergence theorem. Therefore, as n — oo, the left hand side of (A14) converges and we get

R R
(Ax + B) JR q(xr1)dG (r1) = (Ax' + ) JR q (x'r1) dG (r1).

By the continuity of 7 (-), we also have g () = lim, . g5, (+) < lim, . § (x,) = 7 (x). Since a closed
subset of a compact set is compact, D n ([0, 1] x Q) is compact.
Step 3: The objective function O : D n ([0, 1] x Q) — R is continuous with respect to (x,q).

By (A15) and the continuity of k; (x) and k3 (x), we only need to consider the term

R (F-(g(en))
f f 2 dF(a)dG(r).
R Ja

Let {(x, qn)};_; be a convergent sequence in D n ([0, 1] x Q) to (x,q). Note that

F=1(gn(xn11)) F~(q(xr1))
J af(a)da—f af (a)da

a a

< K| (qu(xar)) = F(g(xr))

for some constant K. Since F is strictly increasing and continuous, F —1is strictly increasing and
continuous too. Similar to (A15), the right hand side of the above inequality converges to 0 as

n — . Then by dominated convergence theorem, we have

R [ (F7 (g (xar1)) R [ rF~(gq(xr))
f (J af (a) da) dG(r) — J (f af (a) da) dG (r1).
R R a

a
Here we use the obvious fact that

SHF_] (1)) o £ () da‘ < E[a] < .

Now we get that the objective function O(-,-) is continuous and the feasible set D n ([0, 1] x Q)
is compact. By Weierstrass theorem (on extreme value), we know that there exist (x*,4*) € D n
([0,1] x Q) such that O(x*,g*) = SUP (1 )e D ([01]x Q) O(x,q).
part 2 Generalizing the condition 1. to the condition 2. will not result in much change.
Step 1: [0, 1] x Q is compact in the weak topology.

Recall that the condition 2. says that

Q- {q e WY ((RR)):1<p<w,0<q(-)<land |Dg|, < L}.

Forallg e Q, |l = l4ql, + [Dgl, < (IR|+|R]) + L, i.e., Q is a bounded in norm. By Banach-
Alaoglu-Bourbaki theorem and the fact that W7 ((R, R)) is reflective for 1 < p < o (see for
example Theorem 3.6 of Adams and Fournier (2003)), we only need to verify that Q is closed in

weak topology. Note that Q is convex, by Mazur lemma, the closedness of Q in weak topology
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is equivalent to its closedness in strong topology, i.e., under the | - ||, norm. Let {g,},;~; be a
sequence in Q such that g, —ql|1,, — 0asn — co. Since || - |1,, dominates | - ||,, wehave 0 < g (-) <
1 a.e. with respect to Lebesgue measure. We also have that for alle > 0, |Dgq|, < |Dgu|, + |Dgn —
Dqlp < |Dqulp + |9n — qlli,p < L + ¢, when n (¢) is chosen large enough. By the arbitrariness of ¢,
|Dg|| < L, ie., g € Q. Since the strong and weak topology is the same on RR, [0,1] x Q is compact
in the weak topology (dual of product is isometric isomorphic to the product of the duals).

Step 2: The feasible set D n ([0, 1] x Q) is non-empty and weakly sequentially compact.

Since 0 € W, we already know that D n ([0,1] x Q) is non-empty in the Step 2 of part 1.
We only need to verify that D n ([0,1] x Q) is weakly sequentially compact. Let {(x,,qx)};~4
be a sequence in D n ([0, 1] x Q). By definition, {(x,, g.)},., is bounded. By a version of Rellich-
Kondrachov theorem (see for example Thereom 6.3 of Adams and Fournier (2003)), the embedding

1
WP s COTr s compact, forall1l < p < cwandforall0 <e <1-— %. Hereafter, we always

identify q € wlr ((& K)) with its Co’l_% ([B,m) version. This identification is possible due to
Morrey inequality and the regularity of the boundary of (R, R), see for example Theorem 5 in
subsection 5.8.4 of Evans (2010). To be more specific'®, we show that {R,R} is a C! (and thus
Lipschitz) boundary. Consider {B (R, p),B (R, p)}, where B (xo,r) means the open ball centered
at xo with radius r, and we may take p = 1 (|R|+ |R]). Let R® = {0}, then f; = R, f» = R are
C! functions on R°. Obviously, (R,R) nB(R,p) = {re B(R,p):r> fi} and (R,R) nB(R,p) =
{re B(R,p):r < fo},ie, {R R} is the C' boundary of (R, R).

Now, by the compact embedding W7 — €%~ and the discussion in the next step, we can
modify (A15) to

R R
J Gn (xnr1) dG (1) — J g (xr1)dG (r1)
R R

R
< JR (190 (enr1) = @ (xr1)[ + |90 (xr1) = (x71)]) dG (r1) (A16)

R 1
gj (L,(x”“x“)l”” sup |qn (y)q(y)>dG(m)HO,

R’ ve(RR)

where L’ is a constant, and ¢ is a weak limit of {(x,, g,)}:2 , extracting a subsequence if necessary.
The existence of g € Q is guaranteed by Eberlein-Smulian theorem. The continuity of 4 (x) again
guarantees that g (-) < 7 (x).
Step 3: The objective function O : D n ([0,1] x Q) — R is weakly sequentially continuous, i.e., (X, Gn) —
(x,q) implies that O (x,,q,) — O (x,q).

Let {(x4,qn)},q be asequencein D n ([0,1] x Q) such that (x,,4,) — (x,q) (weakly converges

18 Although the boundary of (R, R) is simply {R, R}. Verifying the smooth boundary conditions can be quite confus-
ing. For this reason, we belabor it a little bit here.
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to (x,¢)). By the discussions in the Step 2 of part 2, {g,} converges in ™5 ¢ to some g up to
extraction of a subsequence. g and g’ must coincide, otherwise { 1{q > ¢’} f =: L1 (f) # 0or {1{g <
g} f = L2 (f) # 0. L1 and L, are continuous linear functionals on Co’l_%_e, but limy_,, £1 (qs,) =
L1(q") # L£1(q) or limy_,o, L2 (gn,) = L2(q") # L2(q), a contradiction. Therefore g = ¢/, ie,,
gn — qin C*'=5¢. Now by (A16) and a discussions similiar to Step 3 of part 1, we can get the
weak sequentially continuity of the objective function O.

Taking a maximizing sequence {(x;, q,)},., of the optimization problem, by Step 2 of part 2,

we can extract a weakly convergent subsequence {(x,, 4, )}~ - By Step 3 of part 2, we have

O (x,q) = lim O (xp,, qn,) = sup O(x,q).
k—co (x',9)eDn([0,1]x Q)

A.7 Proof of Lemma 3

Consider the auxiliary function function

F~(g)
10 =k0a- 22 [ T atr@, gep.

By direct calculation, we have

dI> (g;x) ko (x)

dx? 2f (F1(g))

The objective function O (x, q) can be rewritten as O (x,q) = E[I (q (xrq);x)]. By (A17), I(;;x) is

<0, VYge[0,1]. (A17)

strictly concave for all x € [0, 1], so for g1, g2 such that g1 (r) # g2 (r) on a set of positive Lebesgue

measure, we have

O (x,Aqi + (1= A) q2) = E[I(Aqa (xr1) + (1= A) g2 (x71))]
>E[AM (g1 (xr1)) +(1—A) g2 (xrq)], VYxe(0,1],YA e (0,1),

since by assumption g > 0.

A.8 Proof of Proposition 5

Step 1: The existence of a maximizer.
The continuity of the objective function O(g; x), and the compactness and closeness of Q are

shown by the proof of Theorem 1. Therefore, we need to show D, n Q is compact.
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Let {g.}nenN be a sequence in Dy n Q such that g, — g. By definition, we have

n—oo

R R
lim A JR gn(xr1)dG(r1) + (Ax + B) JR q,,(xr1)r1dG(r1) =0

R

R
= AJ g(xr1)dG(r1) + (Ax + ,B)J g’ (xr1)r1dG(r1) = 0.
R R

Since Q is compact and Dy n Q is closed, then D, n Q is compact.
Step 2: The uniqueness of the maximizer. Denote the integrand of objective function O(g; x) by

ur(g(xry)). The second derivative of u;(q(xr1)) with respect to g(xry) is

1 1 ‘
B [214‘(1:—1(‘1(3”1)))]‘2(3‘)} g(r1) <0, since f(-) and g(-) > 0.

Therefore uj(q(xry1)) is a strictly concave function with respect to gq(xrq). For all 41,42 € Dy n Q,

g1(xrq1) # g2(xr1) for some xrq, we have
ur[Aqi(xry) + (1 = A)ga(xry)] > Aug[g(xre)] + (1 — Aug[gz(xr1)]

for some xr1, where A € (0,1). It implies that

R R
fR ur[Agi(xry) + (1 — A)ga(xrq)]dG(ry) > fR Aur[g(xry)] + (1 — A)ug[ga(xr1)]dG(r1)

R R R
N f wi[(Agy + (1= M) (xr)]dG(r1) > A f wiq(xr)]dG () + (1 — A) f wilas (xer)]AG ().
R R R

Here we use D, n Q is a convex set. It implies that O(g; x) is strictly convex with respect to g and

the maximizer is unique.

A.9 Proof of Theorem 2

The proof is mainly following Theorem 2 in Evans (2010, p491).
Let g% € Dy n Q be the unique solution of the objective function. Fix any element q; € Q.

Choose then any function g, € Q with

Sk Z(r g%, q* )@ — q°) + Z(r 4%, 4*) (g5 — g*')dry

)
§x L0r1, 9%, 002 — %) + L(r1,0%, 3°) (g — g*')dn

(

<0
(
(g1 —g*)dr1 + (Ax + B)ri(q1 — q%)
(

q2 — q*)dr1 + (Ax + B)r1(q2 — q*)

3‘11; [%(7’1/ q*f q*/) - % (%(1’1, q*,q*/))] ’E
< — <
|57, a) — i (S g7q7) | R

—
= =i |
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and

fR ﬂ(?’ * */)—i ﬂ(1’ *q*)V )| (g2 — g%)dr + (Ax + B)r1(q2 — *)|§7é0 (A18)
R ay 1.9 ,49 drl 0z 1.9 /9 q2 q 1 1(42 q R .

(A18) is possible because of Assumption 3. Then foreach0 < T <land0<J <1,

g=q" +7(q2—q7) +0[q1 — (" + T(q2—97))] € @
< (1-0)1-1)g"+(1—0)Tq2 + g1 € Q

since Q is convex. Now write

R
i(t1,6) := JR I(r1, (1= 8)(1 —7)g* + (1 —8)Tq2 + 61, (1 — &) (1 — 7)g*" + (1 — 8)Tgh + 5¢;)dry.

Clearly,

R
i(0,0) = L I(r,q*,q*")dr; = 0.

In addition, i is C! and

e 5)—(1—6)f‘”<r 17— 0% + L, 3,8 (g — g*)dr (A19)
5’( 7 - B ay 11‘7/17 qz q 62 11‘7/17 qz q 1,
oi Ror . .
5@5) ~ e afy(ﬁ,q,q)[ql—(v/ +7(92—9%))]
ol 5 = * *
+ (3,49 — (g "+ (g —q*))]dri.  (A20)
Consequently (A18) implies that
oi
E(O,O) # 0.

According to the Implicit Function Theorem, there exists a C! function ¢ : R — R such that
¢(0) = 0and

i(¢(6),6) =0 (A21)
for all sufficiently small J. Differentiating, we discover that

o oy O
50 (#00),0)¢'(0) + 55(9(0),0) =0,
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whence (A19) and (A20) yield

4),(0):_5}@(0),0) _ Sﬁ%(rl,q A =4+ gt g dn A2)
7(9(0),0) 0) [ 2 (r1, 0%, %) (92— 4%) + £ (r1,4,4*) (g5 — 9*')dlr

Under Assumption 4, we have ¢’'(0) > 0. By ¢(0) = 0, ¢'(0) > 0 implies that 0 < ¢(J) < 1 for
sufficiently small positive , say 0 < § < dy.

Now set

q(0) == ¢(0)(q2 = 4%) + 8lq1 — (9" + ¢(9) (92 — 77))]

and write

0(6) = O(q" +4(6); x)

= 1 FL((q*+4(5)) (xr1))
- f ki (x)(q™ +4(0)) (xr1) — Ska (%) (f
R

a

adF(a)) dG(ry).

Since (A21), we see that g* + §(0) € Dy n Q.
By g* maximizes O(g; x), we have 0(0) > o(d) for all 0 < § < 1. Hence

f k(x)[¢'(0)(92 = 4%) + 01 — "] - %kz(@F‘l(q*)[ﬁ(O)(qz —q") +q1 —¢7]dG(r).
(A23)

Define

N SR k1(x)(q2 — 7*) — 3k2(0)F 1 (7%) (92 — 4%)dG(r) , (A24)

(1-6) §5 & (r1, 4%, 4*) (@2 — 4°) + & (r1, 0%, 4*') (g5 — 4*')dry

then we see that

/ K * 1 -1/ % *
¥ | k(52— 47~ 3Ra(F (4702 = 47)4G()

ﬁal * % % ol H* % *
- —/\L a—y(m,q )@ — %) + 5 (r1,0%,9%) (g1 — 9*")dn

and plugging this into (A23), we have

R
0= [ (014 [l - JratoF (g | dGir)
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—AJR ;y(rlfq ) —g%) + &(”"’7 ) (g — g*)dry
R * 1 —1/ % R * / %/
= fR (1 —q%) |ku(x) — Sk2(X)F(q )| dG(r1) — AJR A(q1 —q%) + (Ax + B)r1(q; — g7 )dG(r1)

R
~ [ =) ) - 3R0F %) 4G ()~ A [Ag(r0) - (Ax-+ B)(g(r) + g ()]

+ MAx + Byrig(r)/xlq (xr1) = * (xn)]|

= =

R
= [ =) [l Gl g+ ABx 4 A+ Brong (r0)/g(r0) | dGr)

+A(Ax + B)rig(r)/x [q1(xr1) — g™ (xr1)]

I~ =

Example 1. Consider that the risk return R; follows a uniform distribution U[R, R], indicating
that r1g'(r1) + g(r1) is constant and thus the Euler-Lagrange approach under Assumption 3 is not

appropriate. Let q(-) simply takes a bang-bang form:

X 4, Re[xR,xR];
q(r;x,§) =
0, otherwise,

where x € [0,1]. Under the bang-bang probability g(r; x*, §), the incentive constraint (6) is

min{x*,x'}R

X € arg max {(x’A + B) J QdG(r/x')}

X! min{x*,x'}R

=X € arg max {(x’A + [S)ﬁ[G(min{x*,x’}R/x’) — G(min{x*,x’}R/x’)} }

x/

Note that
argmax (x'A + ,B)Q[G(x’R/x’) — G(x/R/x’)] = x%;
x/'<x*

argmax (x'A + ,B)qA[G(x*R/x’) — G(x*R/x’)} = argmax x*(A + B/x')§ = x*,

x'=x* x'=x*

implying that x* is always incentive compatible without information rent. This result reflects the
fact that algorithms do influence managers’ decisions and rectify contractual flaws. In particular,

when returns are uniformly distributed, this algorithm achieves exactly the first best equilibrium.
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A.10 Proof of Proposition 6
Given x* and A # 0, we have

ElR: — (R[] - 37 (rk ) ) Bl(Ra — 9(Ra) "] = 0,

Plug A # 0 into (20), there exists 7, 7" € [R, R] such that

awn=P*www>F*(£g§L)>wuvzrﬂfw»

Then we obtain

a*(E[(R2 — ¢(R2))*[x*] < 0 < E[R2 — ¢(Ro)|x*] — 5% (") E[(R2 — §(R2))*|x*].

N =
N~

E[Ry — ¢(Ro)|x*] =

B Alternative Timeline and Information Settings

In the baseline model, the roles of the recommendation algorithm are twofold. (i) It processes two
information, fund historical returns and investors’ risk aversions. (ii) By algorithmic automation,
it provides a commitment power which ensures execution even realizes cases with ex-post ineffi-
ciency. To further understand the economic meaning of using an algorithm, we separately mute
the above functionalities by considering alternative information structures and timeline, as shown
in Figure 3, then analyze what the equilibrium would be. For tractability, we follow the discrete
setting in Section 4. We analyze each case respectively, and end up with a visualization of their

comparison in Figure 4.

Blind investment. In a primordial case, non-professional investors do not adopt a platform, but
meet the fund manager by chance. They do not know about the historical returns R; and their risk
aversion a as Timeline 2 describes. They set up a belief about their risk aversions, say a population

average risk aversion, and decide the investment choices.

Proposition 7. Given the contract ¢(-), x = 1 is a dominant strategy of the fund manager.

1. If k(1) — 1/2E[alka2(1) = O, there exists an equilibrium where all investors invest in the fund and

the manager chooses x* = 1.

2. Ifki(1) —1/2E[a]ka(1) < O, there exists an equilibrium where no investor invest in the fund and the
S *

manager chooses x* = 1.

When the investor has no information, Proposition 7 describes that, given a realistic simple
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contract, the trade can only be made under x = 1 according to the manager’s risk-neutral prefer-
ences, regardless of the distribution of the investor’s own risk aversion. Therefore, there is no risk

sharing at this point. Managers chase on risks, and investors inappropriately take the risk.

Investment on fund distribution platforms. We consider a scenario (captured by Timeline 3)
where investors see the fund on a distribution platform which provides the historical return R;.
This setup is equivalent to assuming that the platform simply aggregates the historical returns of
the fund, corresponding to the context of Hong et al. (2024). Also, they make decisions based on

their belief, the population average risk aversion. Denote the strategy of investors by g; : [R, R] —
[0,1].

Proposition 8. Suppose the contract ¢(-) is given and the investors can observe the realization of historical
return Rj.

1. Ifki1(1) — 1/2E[alka(1) > O, there exists an equilibrium where all investors invest in the fund and

the manager chooses x* = 1.

2. Ifk1(1) —1/2E[alky(1) < 0, there is no equilibrium where the expected payoff of investors is strictly

positive, but exists an equilibrium (X1, q*(-)),

0, re [R,%R) U (x;R,0) U (0,x,R) U (¥R, R);
q*(r) =11, re [%1R, x;R] U [x;R,X[R];
q(0), r=0,

where

X1 = max{x € [0,1] : k1(x) — 1/2E[a]k,(x) = 0},
x; =min{x € [0,1] : k1(x) — 1/2E[a]ka(x) = 0},
[ (Axr + B)(1 - p(0))

g(0) € [O,mm{ AI(l —20p(0) ,1”

and the expected payoff of investors is zero.

Compared to classic principal-agent problems, the platform empowers investors to form de-
cisions in response to historical returns, which allows fund managers to credibly deliver (noisy
at r = 0) signals about x, thus facilitating trading. Therefore, compared to blind investment, the
platform can make the equilibrium with investment always exist.

Compared to the baseline model in Figure 1, it is not enough to increase the investor’s expected
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return by allowing investors to observe historical returns. Because the fund manager takes actions
tirst and is unable to adjust x later, the investor could always choose to buy once they infers an x
(when the historical return is non-zero) that generates a positive expected return.'” Anticipating
this, the fund manager will always increase x to x;, where the investor’s expected return is 0. The
underlying reason is that any atomic investor does not have the bargaining power on x, and also
cannot commit to invest when a proper x is observed.

To further see the power of commitment, we can further suppose the support of risky returns

is {R, F}, i.e., investors always correctly learn x. Then we have the following implication.

Corollary 2. Suppose supp(R;) = {R, R} and ki(1) — 1/2E[a]ka(1) < 0, there is no equilibrium with

strictly positive investor expected payoff, even though there is no information asymmetry.

In addition, when the realized return is zero, investors cannot recognize x, similar to the base-
line. This leads to conservative investments by investors to avoid the fund manager’s deviation.

Thus there is still a no-trade efficiency loss due to the non-informative signal r = 0.

Additional information about the fund. Continue with the previous case. A natural idea for the
platform is to provide information about the fund in addition to an observation of the historical
return, e.g., a series of historical returns, Sharpe ratios, etc. These cases can be directly analyzed
within our continuous framework-the additional information solely contributes to the conditional
probabilities. Align with practice, these achievements can increase the confidence of inferring the
allocation. However, they still fail to replace the algorithm, as the algorithm also processes infor-
mation about investors’ risk aversion. Therefore, there is no fundamental change if just allowing

for additional information about the fund.

Investment experts. Then does algorithm only serve as informing investors about their risk
aversion? We consider the case (captured by Timeline 4) when the investors are experts: they
observe the historical return R; and know the risk aversion a. Then their investment choice is de-
termined by two information, somehow similar to the algorithm, denoted as m; : [4,4] x [R, R] —
[0,1]. For any a, denote the minimum and maximum of {x € [0,1] : ky(x) — 1/2aka(x) > 0} as
x;(a) and x(a), respectively, and d(x) = ki(x)/(ka(x)/2). Proposition 9 analytically solves the

equilibrium allocation and the corresponding investment choice.

19When the distribution of risky returns is continuous, the investors have a noisy signal about x.
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Proposition 9. For any equilibrium (x*, m*) (if exists), x* satisfies that for any x € [0, 1],

a(x*)

a(x*) i)
(x*A + B) [p(O)f 1dF(a) + p(R) J 1dF(a) + p(R) J

a a a

1dF(a)]

a(x)

3(x) i
> (xA + B) [p(O) f 1dF(a) + p(R) J 1dF(a) + p(R) f

a a a

1dF(a)] . (B25)

Fora < a(x*),

mi(r,a) = {0’ frelRx

sl
S
=
C
—~
1=
—
2
=
=
C
o
=
—
[
~—
=
~—
C
=l
—
[
~—
=l
Z

Fora > a(x™*),

(r,a) = {0’ if e [RE@R) v (R 0) v (0,2,(a)R) v (Fi(@)R R) v {0},
/ L if relxi(a)R, x(a)R] v [l[(ﬂ)ﬁ, 71((1)?],‘

{0/ if re[Rx(a)R) v (x1(a)R,0) U (0,x;(a)R) U (¥1(a)R, R),
1, if re (@(@R x;(a)R) v (x;(a)R, X1(a)R);

and m’*(r, a) can be arbitrarily assigned in [0, 1] when r € {X(a)R, x;(a)R, x;(a)R,%(a)R, 0}.

Compared to Proposition 8, the additional information about a allows investors to always re-
alize non-negative expected payoff, resulting in a strictly positive aggregate investor expected
utility. The manager no longer uses E[a] in deciding x, but considers the entire distribution F.
Therefore, when the historical return is informative, the manager does suffer a punishment of risk
chasing, as high-risk-aversion investors would exit. On the other hand, investors with sufficiently
low risk aversion always invest, even without any information about x. Therefore, investors can-
not generate enough punishment when the historical return is not informative, making the result-
ing equilibrium allocation x* higher than in the baseline case.

So far, we have seen the algorithm serves not only an information delivery mechanism, but
also a source of commitment power. Even with experts, the algorithm can add noise to their risk
aversion observations by a threshold function, thus realizing that fewer investors would like to
invest when the historical return is less informative, thus alleviating fund managers’ incentives to

raise Xx.
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B.1 Proof of Proposition 7

Obviously, x = 1 is a dominant strategy of the fund manager. Given x = 1 and the expected level
of risk aversion is [E[a], if the expected utility of investment is non-negative, k1 (1) — 1/2E[a]kx(1) >
0, investors could choose to invest and all agents do not deviate. Conversely, if the expected utility
of investment is negative, that is k(1) — 1/2E[a]k2(1) < 0, the investors do not invest, and all

agents do not deviate.

B.2 Proof of Proposition 8

If k1(1) — 1/2[E[a]kz(1) > 0, then investors should always invest in the fund given x = 1. Given
g1(-) = 1, the manager prefer x = 1.

If k1(1) — 1/2E[a]k2(1) < 0, we define the minimum and maximum of {x € [0,1] : ki(x) —
1/2E[a]ka(x) = 0} as x; and X1 € (0, 1), respectively. Here we use the fact that k1(x) — 1/2E[a]ka(x)
is concave and strictly continuous with respect to x. Since k1(0) — 1/2E[a]k2(0) < 0, we have
x; > 0. Consider the strategy of the investors. When the historical return is non-zero, investors can
know the fund manager’s choice of x. As a result, consider the subgames, given r € (X|R, x;R) u
(x;R,%[R), investors always should invest in the fund, that is q;(r) = 1. Similarly, given r €
[R,%/R) U (x;R,0) U (0,x;R) U (%R, R), investors should not invest in the fund, that is g;(r) = 0.

As for r € {x;R, x;R, %R, ¥R}, investors are indifferent to q;(r) = g, € [0, 1], because
gr [k1(x) — 1/2E[a)ka(x)] = g- x 0 =0, Vg, € [0, 1].

The investor cannot recognize x when the return is 0, so 4;(0) depends on the equilibrium we
consider.

Given k(1) — 1/2E[a]k>(1) < 0, we suppose there exists an equilibrium (x*, 47 (-)) where the
investors invest in the fund with some strictly positive probability, which implies x* € [x, X1].
Given the above response of investors, we know that the manager prefers sup[x;, X;) = X; to any

x € [0,x7). This is because,

(xA+ B)[9:1(0)p(0) + g1 (xR)p(R) + q1(xR)p(R)]
= (xA + B)[9:(0)p(0) + p(R) + p(R)]
< sup (xA+B)[q1(0)p(0) + p(R) + p(R)], forall x € (x;,%1),

x€(x7,%1)

and

(xA+ B)[:(0)p(0) + q1(xR)p(R) + q1(xR) p(R)]
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= (xA+ B)q:1(0)p(0)
< sup (xA+B)[q1(0)p(0) + p(R) + p(R)], forallx e (0,x)),

xe(x;,X1)

If x* € [0, %), the manager can always deviate from x* to choose the larger x’ € (x*,x ). Therefore,
if there exists such an equilibrium characterized by (x*,q}), x* = sup(x;,X;) = ¥, otherwise
the manager always deviate x*. This also means that the expected payoff of investors must be
0 according to the definition of X;. Then the first necessary condition of the equilibrium is that

g*(%;R) and ¢* (%/R) need to satisfy

(A% + B)[9:1(0)p(0) + q1(XIR)p(R) + q1(X1R)p(R)]
> sup {Ax+B)[q:1(0)p(0) + p(R) + p(R)]} = (AX1 + B)q1(0)p(0)

x€e[x;,X1)

= q1(X/R) = q;(x[R) =1,

where the last line is because, if g;(X;R) < 1 or q;(X;R) < 1, there always exists x’ € (x;, %) such
that

(AX1 + B)[91(0)p(0) + q1(X1R)p(R) + q1(X1R) p(R)]
< (Ax" + B)[91(0)p(0) + p(R) + p(R)] = (Ax" + B)q1(0)p(0).

At the same time, the second necessary condition is that, q;(0) need to satisfy

(A% + B)[q:1(0)p(0) + gr(X1R)p(R) + q1(%R)p(R)]
= (A% + B)[q1(0)p(0) + p(R) + p(R)]
> sup (Ax'+ B)[q1(0)p(0) + q1(x'R)p(R) + q1(x'R)p(R)]

xe(x,1]
= (A+B)q1(0)p(0)

< (A% + B)[q:(0)p(0) + p(R) + p(R)] = (A + B)q:(0)p(0)

(Ax +B)(1 — p(0))
A(l=xp)p(0)

=q(0) <

The second line uses q;(X;R) = g;(x;R) = 1 in the equilibrium. The forth line uses g;(x'R) =
gr(x'R) = 0 for all x’ € (x7,1].
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In addition, we can see that (X}, ¢} (-)) is a PBE, where

0 ,ifr € [R, x/R) U (x;R,0) U (0, x;R) U (%R, R)
qi(r)=41 ,ifre[xR xR] v [xRXR]
q(0) ,ifr=0

and

oo 2050,

B.3 Proof of Proposition 9

Consider the subgames with given historical 7, for any 4, if r € (x;(a)R, x;(a)R) U (x;(a)R,x;(a)R),
investors with a always should invest in the fund, that is m(r,a) = 1. Similarly, given r €
[R,x(a)R) U (x;(a)R,0) U (0,x;(a)R) U (x;(a)R, R), investors should not invest in the fund, that
is m(r,a) = 0. As for r € {x;(a)R, x;(a)R,%[(a)R, X;(a)R}, investors are indifferent to m(r,a) =
myq € [0,1].

Note that kq(x) — 1/2ak;(x) is strictly decreasing with respect to a. Then we know that, when
x7(a) € (0,1) and xy(a) € (0,1), x;(a) strictly decreases with a and x;(a) strictly increases with a. It
implies that if m(Rx, a) = 1 for some a, then m(Rx,a’) = 1 forall a’ < a.

Define 4(x) as sup{a € [a,a] : m(xR,a) = 1} = ky(x)/(kz2(x)/2).

Then, the expected payoff of the manager is

(xA+B) [p<0> [ ma.0ar@ +p@ [

a a

a

m(a, xR)dF(a) + p(R) f

a

m(a, xR)dF(a)]

a(x)

a . a(x)
_ (xA+B) [p(O) f m(a, 0)dE(a) + p(R) f 1dF(a) + p(R) J 1dF(a)

a a a

+p(R) fa '

0dF(a R
. DF@ p<>f

a(x)

a o a(x)
— (xA+B) [p<o> f m(a,0)dF(a) + p(R) f

1dF(a) + p(R)f

a a a

1dF(a)] .

In the second line, we use the fact that the value of m(a, xR) and m(4, xR) does not influence the
value of the integral.

Then we suppose there exists an equilibrium (x*,m7). Different with Proposition 8, on the
equilibrium path, investors observing a < d(x*) invest in the fund even if the historical return is

0, that is m(a,0) = 1. Meanwhile, on the equilibrium path, investors observing a > 4(x*) do not
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invest in the fund if the historical return is 0, that is m(a,0) = 0. Given the above response of
investors, one of the necessary conditions of equilibrium (x*, m7}) is that the manager prefers x* to

any x € [0, x*)

a(x*)

a(x*) o pa(x®) a(x*
(x*A + B) [p(O) f 1dF(a) +p(R)f 1dF(a) + p(R)f 1dF(a)]

a a

a(x)

a(x*) )
> (xA+B) [p(O)f 1dF(a) + p(R) f 1dF(a) + p(R) J 1dF(a)].

a a
If the manager chooses a lower x, it can increase the probability of being invested in at positive and
negative returns, but the probability of being invested in at the zero return remains unchanged,
and the expected return on being invested in decreases.

Another necessary condition of equilibrium (x*,m7}) is that the manager prefers x* to any
x € (x*,1]

a(x*)

A(x*) _rh(x*)
(x*A + B) [p(O) f 1dp(a)+p(1z)f 1dF(a) + p(R) f 1dF(a)]

a a a

a(x)

3(x) i
> (xA + B) [p(O)J 1dF(a) + p(R) f 1dF(a) + p(R) J

a a a

1dF(a)] .

Again, here we use the fact that the value of m(4,0) does not influence the value of the integral.

C Institutional Background

This appendix provides examples of real-world intermediaries in delegated asset management,
with a particular focus on personalized advisories and/or recommendation signals.

As new entrants to the asset management business, fintech platforms are the ones that most
closely correspond to our baseline settings. They prioritize maximizing and protecting users’
investments. They have been investing considerable effort in improving their technology and
designs to provide better personalized services. For example, Yieldstreet, founded in New York in
2015, has grown up to a large business scale with more than 450,000 users and $3.9 billion invested
value up to September 2024.% Tt connects retail investors with alternative investments managed
by various fund managers, offering personalized recommendations based on user profiles and
investment goals. Figure C1 illustrates the three main steps involved in the platform. First, the
platform recommends investment opportunities, highlighting its advantages in offering a wide

range of options (including real estate, art and legal finance) and providing easy access. Second,

20According tohttps://www.yieldstreet.com/about/ Date of visit: Sep 09, 2024.
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it helps users to invest according to their risk tolerance and the projects’ past performance. Third,
the platform tracks the earnings and especially visualize asset allocations.

Commercial banks have a long-standing tradition of providing asset management services.
Some businesses have been split into specialized companies or platforms. In this era of digital
finance, easy access, low costs for online/in-app usage and personalized services are commonly
highlighted. For example, Merrill Guided Investing (under Bank of America), as shown in Figure
C2 provides both automated investing and guided advisory services. The platform integrates hu-
man advisors with digital tools, allowing investors to choose from curated portfolios managed by
fund managers. Merrill Lynch fund managers and other partner funds can promote their strate-
gies on the platform, and users receive personalized recommendations based on their goals.

Similarly, Wells Fargo Intuitive Investor combines robo-advisory services with access to finan-
cial advisors and a marketplace for managed funds. Fund managers can promote their funds
on the platform, and users receive investment recommendations based on their profiles and risk
tolerance, as Figure C3 shows.

Since 2012, China has permitted platforms to distribute mutual funds. Technology companies
that are independent of fund families, banks and brokers are allowed to issue mutual funds via
fintech platforms. One of the largest platforms, Ant Financial, is a typical example of a platform
that assesses investors’ risk tolerance and investment goals and then recommends suitable funds.

Ant’s ecosystem comprises five major components: online consumption, mobile payment, in-
vestment, consumer credit, and healthcare insurance. For a detailed introduction, see for example
Hong et al. (2020). This all-in-one ecosystem enables it to conduct analysis of investor prefer-
ences, as shown in Figure C4. The app interface features mutual fund recommendation pages, as
illustrated in Figure C5.

Furthermore, Ant Financial has partnered with Vanguard Group to develop a fund investment
advisory service called “BangNiTou”. The system evaluates an individual’s daily consumption,
financial habits, and other data to create a personalized investment strategy based on their risk
assessment results. This includes determining investment objectives, asset allocation, and ex-
pected returns. After the risk assessment and setting of investment goals, BangNiTou works by
recommending a portfolio selected from 6,000 mutual funds, see Figure C6. In 2021, assets under
BangNiTou sits at ¥6.9 billion (about $1 billion) (Bloomberg, 2021). BangNiTou adopts a "buyer’s
agent” model, customizing financial planning based on an investor’s risk assessment and a cu-
rated pool of mutual funds. The platform charges a service fee of approximately 0.0014% of total
daily assets (0.5% annually). Fees related to fund transactions are charged according to the pricing

rules of the respective fund products.
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Yieldstreet Investments  How it works  Performance

XPLORE

Income

High monthly or quarterly current
income.

Target returns
3-10%+
Terms

3m-4yr+

View offerings =

Invest with confidence

From past performance metrics to background on our
partners, we aim to provide all the information
needed to make an informed decision.

v Highly-vetted: All investments pass a four-step
due diligence process.

v Dedicated support: Our investor relations team is
available to answer your questions at any time.

Learn more

Portfolio composition

@ Short term notes $58,320

® Corporates $2,402

Education v About v

INVEST

Help center Login

EARN

1 EXPLORE

Explore investment
opportunities

Whether you're looking to generate income, grow your
portfolio’s value, or a combination of both, we offer
investments that match these objectives.

v | Broadest range: We offer more alternative asset

classes than any other platform

v |Top-tier‘ :.I ccess institutional-
quality investments without institutional costs.

Browse inves' S Get recommendations

Risk tolerance

Past performance Moderate

Tax information

Track your performance
and earnings

Investments typically pay regular income, growth at
maturity, or a combination of both.

v See your performance: We provide regular
updates on your investment

v Quick payments: Your returns are deposited into
your FDIC-insured Yieldstreet Wallet.

v Returns on your returns: Roll your maturing
investments directly into a new opportunity.

Get started

Figure C1: Déiégated Investment service of Yieldstreet

Source: https://www.yieldstreet.com/how-it-works/. Date of visit: Sep 09, 2024.
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Must use offer code 600MGI
Merrill Investing

@ Your goal, our guidance

Get a professionally managed portfolio

Accounts B that's monitored and rebalanced by Merrill
Detail investment professionals.? Get started with
etalls  Strategy  Activity  Perform i ini
ance a $1,000 investment minimum and low

annual program fee.”

Renovation Dreams
CMA-Edge

[ef

Investment strategies aligned to
your goal

$2,099.32
OPEN MERRILL APP
Tell us about yourself and your goal, and
|we'll match you with a portfoliofto help

Goal Status Almost On Track you get there.

Estimated Funding 95%

Percent:
e @ Tools to help you stay on track

We estimate you will need $12,420 in today’s dollars
to reach your goal at a High risk tolerance.’ How did IA personalized online dashboardlto ek

we calculate this?
your progress and update your goal as your
needs change.

Where you are What you need

Est. available assets Est. goal cost

0$1,845 L (%) Increase your growth potential

Set up recurring deposits, and we'll automatically

@ Currentavailable assets $2,099
invest the funds in your portfolio.

@ Est. future income/contributions $9, 746

Figure C2: Personalized investment matching service of Merrill Guided Investing

Source: https://www.merrilledge.com/offers/retirement-mgi. Date of visit: Sep 09, 2024.

With Intuitive Investor® you get:

| ¢ Alow cost, professionally designed portfolio |
¢ Automated investing technology

¢ Access to financial advisors
o Goal tracking with LifeSync® to set and track progress toward
your financial objectives

How it works

Match Choose Invest Rebalance
With just a few questions we —=v Select your investment style, Open and fund your account. We automatically monitor
m suggest a portfolio based on [ Globally Diversified or ]]:I[IDI Set up recurring transfers. @ your account daily and
your risk tolerance. = Sustainability Focused. = rebalance as needed.

Figure C3: Intuitive Investor’s Personalized investment based on risk tolerance

Source: https://www.wellsfargoadvisors.com/services/intuitive-investor.htm. Date of visit: Sep 09, 2024.
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Detailed analysis

Figure C4: Analysis of Risk Tolerance and Investment Object in Ant Financial
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(a) Recommended Funds (b) Detail of A Recommended Fund

Figure C5: Recommendation service of Ant Group Co. Ltd.
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Market-wide preferred funds, decentralized allocation, the
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Diversified allocation of partial stock funds, grasp the market
rotation opportunity will be

Global Select Strategy
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Equity Bond 73 Ratio, Pursuit of Higher
Yield

Pursuit of long-term higher yields and
reduced volatility in debt funds

Professional team management, dynamic
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(b) Detail of the Strategy

Figure C6: Robo-advisory service of BangNiTou
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