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MITIGATING MORAL HAZARD THROUGH ALGORITHMS

1 Introduction

We are increasingly coming to understand that financial technologies, which have been widely

used in asset management, can reshape market participants and information structures remark-

ably. See, for example Cookson et al. (2021); Capponi et al. (2022); Hong et al. (2024). Platforms

collect investment opportunities and provide advisory services, thereby connecting numerous in-

vestors with portfolio managers (e.g., mutual fund managers, and active investment agents), ag-

gregating a vast market scale. In the US, prominent examples include traditional institutions,

such as Bank of America’s Merrill Guided Investing, Wells Fargo’s Intuitive Investor, as well as

fintech entrants like Yieldstreet; In the UK, about 50% of retail mutual fund flows are channeled

through investment platforms (Cookson et al., 2021); in China, Ant Group has covered almost the

entire mutual fund market.1 However, the fact that investors’ attention is concentrated on these

platforms creates strong incentives for managers to increase their visibility. With limited liability

in delegated investment, managers are motivated to be risk-chasing in pursuit of standout per-

formance (Hong et al., 2024). The combination of expanded financial inclusion and managerial

conflicts of interest can be dangerous, as it leads to numerous non-professional investors becom-

ing overexposed to market risk.

This paper analyzes whether and how these platforms can address the above challenge by

leveraging emerging digital technologies. Specifically, we demonstrate that a recommendation

algorithm intermediary can mitigate the moral hazard of managers’ excessive risk-taking. This al-

gorithm is predetermined and publicly known. It sends each investor a personalized recommen-

dation signal for a manager (portfolio) based on investor characteristics and the noisy historical

portfolio performance. In this way, the algorithm shapes the information structure of the dele-

gated investment without altering the contractual relationship between investors and managers.

This offers a potential solution to the agency problem. While this algorithm is designed to im-

prove user-side welfare, our analyzing framework is inherently general and adapted to analyze

platform algorithm design with manager-side incentives.2

In our baseline analysis, we incorporate three practically prevalent frictions. (i) Investor het-

erogenity and imperfect self-awareness: investors differ in their risk aversion and may have lim-

ited knowledge about it (Capponi et al., 2022). (ii) Fixed contractual structure: the platform cannot

modify the contracts between investors and managers. (iii) Opaque manager actions: managers

can always (partially) hide their allocation information, even in the presence of disclosure policies,

1See Appendix C for more institutional background.
2The emerging fintech platforms typically earn revenue from user fees, such as Ant Financial. Consequently, these

platforms are incentivized to curb fund managers’ risk-taking and protect user welfare. However, in practice, platforms
may also generate income from fund managers by influencing investment flows (Berk and Green, 2004). In this way,
their incentive structure shifts: they must balance user protection with maintaining cooperation with fund providers.
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whereas historical performance only provides a noisy signal about the allocation choice.3 We also

explore their potential relaxations in extended discussions.

Consider a two-period model where a continuum of non-professional investors contract with

a fund manager via a platform. Heterogeneous investors know the distribution of their risk pref-

erences but not their specific risk aversion level. The risk-neutral manager designs the portfolio

to maximize the expected total delegation earnings depending on a contract. The fraction of risky

asset is private information. The platform uses data to observe investors’ risk aversion levels and

design a public known algorithm. The algorithm provides a recommendation probability based

on an individual’s risk aversion and the historical performance of the portfolio.

Intuitively, designing the recommendation algorithm effectively designs the information struc-

ture. Without an algorithm, a monotonic and limited-liability contract incentivize the risk-neutral

manager to invest all funds in risky assets. However, with an algorithm, the manager knows that

the realized return provides a noisy signal about the allocation choice, and the algorithm may

penalize suspected excessive risk-taking by reducing recommendation probabilities.

In this paper, we show that a non-monotonic algorithm breaks the monotonicity of the man-

ager’s expected payoff with respect to the risky asset allocation, and then mitigates the moral

hazard problem. Section 4.1 and Section 5.3 illustrate this result under discrete and continuous

distributions of risk returns, respectively. When historical returns indicate high risk, the algorithm

reduces its recommendations, thereby reducing managers’ benefits. Consequently, the platform

can force the manager’s risk allocation to any desired level and further optimize the aggregate

expected payoff for investors. Proverbially speaking, the platform effectively controls the market

participants and interactions by leveraging “the algorithm’s hand.”

A key difference here, compared with recommendation algorithms on consumption platforms

and social media, is the uncertainty of historical performance. Historical signals have varying

degrees of informativeness, making it necessary to consider the reliability of the corresponding

information structures in different situations. Consider an over-risky alternative portfolio with

an overlapping return range to the target portfolio. In this case, the algorithm cannot be fully

confident in distinguishing the manager’s risk choice when they observe a realized return that

falls within the overlap. In order to counter such uncertainty, the algorithm tends to be under-

recommendation on such overlap. We also find in Section 4.1 that the algorithm compensates by

over-recommendation when they observe informative signals from the non-overlapping return

range of the target portfolio.

Due to this trade-off, some investors receive suboptimal recommendations, update their be-

liefs incorrectly and experience a loss of welfare. Under- and over-recommendations effectively

3Although active managers may be subject to disclosure rules (e.g., mutual fund filings), in practice these are often
delayed and incomplete.

2



MITIGATING MORAL HAZARD THROUGH ALGORITHMS

constitute an information rent paid by investors. Section 4.2 illustrates that investors with high

risk aversion levels are affected first because of over-recommendation. In addition, the inevitable

information rent incentivizes us to analyze the effectiveness of the optimal algorithms under dif-

ferent contracts, as detailed in Section 4.3. In particular, we discover that the expected investor

payoff takes an inverted U-shaped form with respect to increasing management fees under opti-

mal algorithm designs. This sheds light on the joint design of algorithms and contracts, a feature

absent in recommendation algorithms across other scenarios.

The recommendation algorithm is more than an information gatekeeper. In Section 4.4, we

compare the baseline model with several information structures. Even if investors are fully in-

formed about their type and the portfolio’s historical performance, they fail to mitigate the moral

hazard of managers. The reason is that they fairly never get themselves over-exposed to risk and

never fall into ex-post inefficiency in any sub-games. Therefore, the population cannot generate

punishment or compensation, resulting in a lack of commitment power. Section 4.5 compares rec-

ommendation algorithms and ranking systems. The focus of recommendation algorithms is on the

fact that un-recommended funds are unobservable and that signals are private and personalized.

This is fundamentally different from the model of ranking systems (e.g., Huang et al., 2020).

The rest of this paper is organized as follows. Section 2 introduces the general baseline model

of this paper, including the timeline and the objectives of the players. Section 3 provides the fun-

damental necessary conditions for the equilibrium algorithm under the general setting. In order

to simplify the analysis, we develop the detailed implications of the optimal algorithm with a

discrete return in Section 4. Section 5 develops a framework for determining recommendation

algorithms under continuous risk-return distributions. We establish the existence and uniqueness

of the optimal algorithm in W1,p, 1 ă p ď `8, and characterize the optimal algorithm via vari-

ational inequalities. Section 6 concludes. Proofs, additional results and institutional background

are collected in the Appendix.

Related literature. Our paper contributes to the growing literature on the impact of financial

technologies on the asset management industry. Financial markets have become highly institu-

tionalized (Buffa et al., 2022). Asset management platforms aggregate investments and increase

adoption by introducing various technologies. These include convenient access to centralized in-

formation on fund rankings (e.g., Huang et al., 2020; Evans and Sun, 2021; Ben-David et al., 2022;

Huang et al., 2022; Hong et al., 2024), and robo-advisors that offer personalized portfolio designs

(e.g., D’Acunto et al., 2019; Loos et al., 2020; Capponi et al., 2022). Adopting the perspective that

platforms have become intermediaries (e.g., Stoughton et al., 2011; Cookson et al., 2021), we ex-

plore how they connect a large population of retail investors with delegated investment agencies.

In particular, we focus on the novel usage of personalized recommendation algorithms on
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these platforms, which are endogenous and influence the behavior of platform participants. Ac-

cording to Capponi et al. (2022), while investors often misjudge their risk aversion, robo-advisors

can identify and communicate accurate preferences through interactive adjustments. We extend

this idea by linking the algorithm’s risk aversion identification ability with its effectiveness in

coordinating the manager with the investors.

Meanwhile, empirical evidence shows that new technologies have an impact on participants’

behavior. The integration of daily consumption and investment activities has increased investors’

risk-taking behavior (Hong et al., 2020), flow of information amplifies the influence of attention-

induced trading (e.g., Kaniel and Parham, 2017; Barber et al., 2022), thereby incentivizing fund

managers’ risk chasing for greater visibility (Hong et al., 2024). Our theoretical framework pro-

vides insights into how fintech platforms can leverage technology to mitigate this two-sided over-

risk-taking phenomenon and guide proper trading behavior.

We also closely relate to the literature on asset management contracts by demonstrating that

recommendation systems can effectively address the agency problem inherent in simple con-

tracts. The inevitable agency problems of simple linear and limited-liability contracts have been

frequently highlighted in the literature (e.g., Innes, 1990; Palomino and Prat, 2003), particularly

with regard to generating risk-taking incentives (Stoughton, 1993; Lee et al., 2019).4 Li and Ti-

wari (2009) solves the problem of moral hazard in risk choices by using an option-type bonus fee

with an appropriate benchmark. However, as emphasized by D’Acunto and Rossi (2021), a prac-

tical challenge is that there is a preference for offering simpler contracts to minimize the risk of

operational errors by non-professional households. The realistic context also indicates that plat-

forms generally have limited authority over the adjustment of contracts between investors and

delegated managers. In this paper, we show that the automated and personalized recommenda-

tion algorithm can successfully address moral hazard of risk allocations under simple contracts,

thereby equipping platforms with a powerful tool to strengthen their intermediary role.

This idea of using technology to influence contract enforcement shares a similar spirit with

Cong and He (2019), which explores how blockchain technology can increase the range of vari-

ables that can be included in contracts, thus finding a niche in finance for the function of blockchain

and smart contracts. From a broader financial theory perspective, optimal algorithm design ex-

plores a novel interplay between contract and information design — a promising combination

studied in corporate finance (e.g., Azarmsa and Cong, 2020; Szydlowski, 2021; Luo, 2021).

The critical role of recommendation algorithms enriches the literature on using commitment

mechanism to empower buyers in transactions. In a bilateral trade, Roesler and Szentes (2017)

show that buyers can influence sellers’ pricing strategies by acquiring incomplete information.

4Existing literature widely studies asset management contracts in many respects, e.g., He and Xiong (2013); Parlour
and Rajan (2020) consider contracts that incentivize manager’s efforts; Buffa et al. (2022) consider avoiding unskilled
managers and impacts on market efficiency. Here we focus on the context of guarding against risk-taking.
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Ichihashi and Smolin (2023) allow the buyer’s information to depend on the price. They prove

that recommendation algorithms can safeguard total consumer surplus against personalized price

discrimination. Our study focuses on the moral hazard problem in purchasing financial services,

which particularly features noisy signals and uncertain payoffs.5 Low-quality information be-

comes critical for balancing investor welfare and managerial incentives in mutual fund market.

This complements the empirical evidence of (Li et al., 2017), which shows that in mutual fund

investment, retail investors have less information and have lower capacity to analyze information

compared to institutional investors. Therefore, they face more ambiguity. The algorithm provides

individual investors with incomplete information via recommendations, thus alleviating frictions

in the fund market.

In terms of information transmission, the recommendation algorithm contributes to the large

literature on information gatekeepers (Baye and Morgan, 2001). Many studies have examined

the various motives and functions of platforms that that strategically modify search results (e.g.,

Armstrong and Zhou, 2011; Hagiu and Jullien, 2011; Inderst and Ottaviani, 2012; De Corniere

and Taylor, 2019; Zhou, 2020; Teh and Wright, 2022). Recent contributions of Bergemann and

Bonatti (2024) emphasize that the consumer-seller platform exploits consumer data to increase its

bargaining power with sellers. We share a similar spirit with distinct features that the algorithm

also utilizes noisy information from managers, and ultimately aims to eliminate moral hazard.

2 The Model

Consider a two-period economy where investors with heterogeneous risk aversion enter into a

contract with a fund manager via a platform. The manager’s limited liability induces moral haz-

ard, potentially overexposing investors to market risk. In this paper, we assume that the platform

targets a large user base and therefore attempts to protect investor welfare. Despite being un-

able to modify the contracts between investors and the manager, the platform is involved in the

matching process by designing fund recommendation algorithms.

2.1 Setup

Assets and Fund manager. There is a risky asset and a risk-free asset. Without loss of general-

ity, the risk-free return R f is normalized to zero. The risky return Rt, t “ 1, 2 is independently

and identically distributed across two periods, following Rt „ G, where G has a strictly positive

density g over its support rR, Rs with ErRts, VarrRts ă 8. A risk-neutral manager designs a port-

folio by determining the share of allocation to risky assets, x P r0, 1s. Then the portfolio return

5Other researchers have studied commitment in mutual fund investments from different perspectives. For example,
Huang et al. (2020) focus on shaping the market reputation in repeated games.
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Rpt “ p1 ´ xqR f ` xRt “ xRt, t “ 1, 2. We introduce two key assumptions to capture practical fric-

tions. Firstly, neither the investors nor the platform observe the x directly. Typically, hedge fund

and alternative investment managers are subject to limited disclosure requirements, and even ac-

tive mutual fund managers only disclose their holdings at cyclical intervals (e.g. quarterly) and

with delays. Therefore, we assume that x is the manager’s private information, while the platform

and investors could only have information about the underlying risky asset, i.e., they only know

the distribution G. Secondly, the manager’s allocation should be predictable over time. In prac-

tice, the allocation is usually persistent due to factors such as managers’ consistent investment

habits, asset preferences and beliefs, and the costs associated with making sharp adjustments to a

portfolio over a short period of time. For simplicity, we assume that x remains constant through-

out the two periods. A more general setting would allow for some variation, such as x2 “ x1 ` ζ,

where historical allocation only serves as a noisy information about the future allocation. Under

this setting, the algorithm and the investors account for such additional uncertainty, while our

main results and implications remain unchanged.

The manager sells the fund on the platform at t “ 1. The financial payoff comes from the

limited-liability delegated asset management contract, ϕprq “ maxtαr, 0u ` β, where the first term

is a performance fee proportion α ě 0, and β ě 0 is a fixed management fee. The manager may

also be incentivized by personal benefits, such as becoming an attention-grabbing star with high

performance, which has an asymmetric effect on the manager’s utility in relation to the fund’s

gains and losses. This setting is analogous to the private benefits received by entrepreneurs when

they succeed in financing (e.g., Szydlowski, 2021). The manager’s expected utility reads

EruMpRp2qs “ q

»

—

–

ErϕpRp2qs
loooomoooon

financial payoff

` γErmaxtRp2, 0us
looooooooomooooooooon

personal benefit

fi

ffi

fl

,

where q is the total sales, γ ě 0 is the personal benefit factor. The asymmetric revenue struc-

ture gives rise to agency problems: if the manager disregards the impact on sales, they have an

incentive to fully allocate funds to risky assets. This is an inevitable consequence of a limited li-

ability contract. As emphasised in Palomino and Prat (2003), such a structure prevents investors

from selling returns to managers in exchange for their expected value, thereby exacerbating the

misalignment of incentives between managers and investors.

Investors. A unit continuum of investors have heterogeneous risk aversion. They are indexed

by their type a, where an a-type investor has $1 to invest and decides whether to invest in the fund

6
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at t “ 1 based on the expected quadratic utility over the terminal return:

EruIpRp2qs “ ErRp2 ´ ϕpRp2qs ´
1
2

aE
“

pRp2 ´ ϕpRp2qq2‰ ,

The distribution F of type a over the population has a strictly positive density f over its support

ra, as, 0 ă a ă a. As a baseline assumption, we consider that investors are unaware of their

type a and unable to search for an appropriate portfolio independently. Instead, they only de-

cide whether to invest in the fund after receiving a recommendation. When no recommendation

is received, investors cannot observe a specific fund in the market. This assumption reflects the

lack of financial expertise among platform users, including biased behavioral perceptions, a lack

of information, and self-unawareness. See, for example Capponi et al. (2022). This friction be-

comes particularly relevant when platforms expand financial inclusion and attract inexperienced

investors. In Section 4.4, 4.5 and Appendix B, we explore alternative information structures where

investors (i) know a exactly, and (ii) are aware of the fund even without receiving a recommenda-

tion. These alternative cases are important because they reinforce the idea that investors’ lack of

(or biased) knowledge about their own type creates an opportunity for the algorithm to establish

commitment power.

Platform and algorithm. The platform leverages its ability to collect data on investors’ risk aver-

sion and the fund’s historical performance. It can implement a recommendation algorithm that

delivers personalized recommendation signals, and this algorithm is publicly known to investors and

the manager. Specifically, an algorithm is a function m : ra, as ˆ rR, Rs Ñ r0, 1s. For any pair of a

and rp1, the algorithm recommends the fund to an a-type investor with probability mpa, rp1q.

Timeline. Formally, the timeline is as follows:

1. Fintech platform designs an algorithm m, publicly known.

2. Nature draws investors’ type a.

3. Manager designs a fund which generates a historical return Rp1.

4. Platform privately observes each investor’s risk aversion a. With probability mpa, Rp1q, a-

type investors observe the recommendation and Rp1, then decide whether to contract with the

recommended manager.

5. If contracted, investors and the manager earn Rp2 ´ ϕpRp2q and ϕpRp2q ` γErmaxtRp2, 0us,

respectively.
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2.2 Platform’s Optimization and Solution Concept

The aim of this paper is to study whether and how the recommendation algorithm mitigates moral

hazard and enhances social welfare under simple contracts. The solution concept is subgame-

perfect equilibrium, and all integrals in this paper should be understood in the Lebesgue sense.

The platform’s design of the recommendation algorithm maximizes investors’ total expected

payoff. We focus on the platform’s user-side motivation based on two key considerations. From a

regulatory perspective, robo-advisors are classified as fiduciaries under the Investment Advisers

Act of 1940, which requires them to act in their clients’ best interests (Capponi et al., 2022). From

an incentive perspective, Xu and Yang (2023) emphasizes that the platforms aiming to maximize

future revenue tend to be “consumer-oriented” since their business success depends heavily on

past user satisfaction. For example, Uber employs technology-driven tools to mitigate the moral

hazard of driver detours, thereby improving the passenger experience (Liu et al., 2021); More

relevant to our scope, Yieldstreet, a tech-based customized asset management platform, collects

earnings from investors rather than fund managers, making it naturally accountable to investors.

See Appendix C for more institutional background.

The platform designs an algorithm m that restricts the manager’s optimal allocation x in the

equilibrium in order to maximize the aggregate investor expected payoff. Note that the risk-free

rate is normalized to zero, formally we can write the problem as follows:

max
m:ra,asˆrR,RsÑr0,1s,

xPr0,1s

ż R

R

ż R

R

ż a

a

„

pxr2 ´ ϕpxr2qq ´
1
2

a pxr2 ´ ϕpxr2qq
2
ȷ

mpa, xr1qdFpaqdGpr2qdGpr1q (1)

subject to the following constraints

x P arg max
x1

#

ż R

R

ż R

R

ż a

a

“

ϕpx1r2q ` γ maxtx1r2, 0u
‰

mpa, x1r1qdFpaqdGpr2qdGpr1q

+

, (2)

ż R

R

ż R

R

ż a

a
rϕpxr2q ` γ maxtxr2, 0us mpa, xr1qdFpaqdGpr2qdGpr1q ě 0, (3)

ż R

R
pxr2 ´ ϕpxr2qq ´

1
2

şa
a ampa, xr1qdFpaq
şa

a mpa, xr1qdFpaq
pxr2 ´ ϕpxr2qq

2 dGpr2q ě 0, @r1 P supppR1q. (4)

Eq. (2) is the incentive compatibility (IC) constraint for the manager, meaning that the equi-

librium allocation x will maximize the manager’s expected financial payoff when using the cor-

responding recommendation algorithm. Eq. (3) is the manager’s individual rationality (IR) con-

straint. It is naturally satisfied. Eq. (4) is the investors’ IR constraint. Investors who receive

recommendations form posterior beliefs about their risk aversion based on the publicly known

algorithm. Given the observed historical return rp1, their expected utility of investing in the rec-

8
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ommended fund is given by

ż R

R

ż a

a
pxr2 ´ ϕpxr2qq ´

1
2

a pxr2 ´ ϕpxr2qq
2 dFpa|recommended, xr1qdGpr2q

“

ż R

R
pxr2 ´ ϕpxr2qq ´

1
2

Era|recommended, xr1s pxr2 ´ ϕpxr2qq
2 dGpr2q,

which obtains the R.H.S. of (4). An investor who satisfies the IR constraint would prefer to con-

tract when they receive a recommendation. In other words, this constraint limits the total sales

influenced by the algorithm.

Note that Eq. (4) is equivalent to requiring the integral interior of the optimization problem (1)

to be non-negative, that is

ż R

R

ż a

a

„

pxr2 ´ ϕpxr2qq ´
1
2

a pxr2 ´ ϕpxr2qq
2
ȷ

mpa, xr1qdFpaqdGpr2q ě 0.

Under the IR condition (4), there is no distinction between algorithmic recommendations and

investor investments in the expression.

For convenience, we define the following notations:

µ` :“
ż R

0
r2gpr2qdr2, A :“ pα ` γqµ`,

k1pxq :“
ż R

R
pxr2 ´ ϕpxr2qqdGpr2q, k2pxq :“

ż R

R
pxr2 ´ ϕpxr2qq2dGpr2q.

The following reasonable assumptions are made when solving the model:

Assumption 1.

1. The investor’s utility uIprq is increasing and concave: 1 ´ ar ą 0 for all a P ra, as and all r P rR, Rs.

2. The contract does not prevent trading: ErRt ´ ϕpRtqs “ ErRts ´ αµ` ´ β ą 0.

Assumption 1.2 ensures that the contract costs do not become so high that the maximum ex-

pected return on the portfolio is lower than that of a risk-free asset. Under Assumption 1, we have

that @a P ra, as,

dEruIpxRtqs

dx

ˇ

ˇ

ˇ

ˇ

x“0
ą 0, and

d2EruIpxRtqs

pdxq2 ă 0.
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3 Formalism Properties of the Optimal Algorithm

In this section, we analyze the properties of the optimal algorithm in a formalistic manner, i.e.,

we proceed to discover the key intuitive insights the algorithm should embody, without rigor-

ously establishing its existence. The optimal algorithm belongs to a family of functions featuring

a simple threshold that imposes a penalty for abnormal returns.

3.1 Threshold Algorithm

Inspired by the seminal work of Ichihashi and Smolin (2023), we consider the threshold algo-

rithms. An algorithm m is a threshold algorithm if there exists a threshold function â : rR, Rs Ñ ra, as

such that mpa, rp1q “ 1pa ă âprp1qq. In other words, a threshold algorithm recommends the fund

with probability 1 (0) if the investor’s risk aversion is below (above) the threshold determined by

historical returns.

Lemma 1. (Threshold algorithm.) For any feasible algorithm m, there exists a threshold algorithm m̂,

under which the manager’s expected payoff remains the same, whereas investors yield a (weakly) greater

aggregated expected payoff than in the cases of m.

According to Lemma 1, if there exists an optimal algorithm m˚, then we can always find a

corresponding threshold algorithm m̂˚ that ensures the investor’s IR condition, the manager’s

IC condition and the manager’s IR condition are all satisfied, and the investor’s expected utility

does not decrease. This suggests that the investor-optimal algorithm can be found within the set

of threshold algorithms. In particular, for any given risky portfolio, investors with lower risk

aversion always have higher expected utilities. Therefore, any recommended investor should

have lower risk aversion than any unrecommended investor; otherwise, the total welfare could

be increased by exchanging their recommendation states. Consequently, Lemma 1 suggests that

if an optimal algorithm exists, it essentially determines a recommendation quota and then issues

recommendations sequentially according to investors’ risk aversion.

We can then represent the platform’s problem (1) in terms of the fraction q of recommended

investors determined by the threshold â. Because the probability density function of a is strictly

positive, q increases strictly with â over ra, as, ranging from 0 to 1. Let q :“
şâ

a 1dFpaq “ Fpâq,

where â is determined by the realized historical return rp1 “ xr1. With qpxr1q : rR, Rs Ñ r0, 1s and

âpxr1q “ F´1pqpxr1qq, the equilibrium can be represented as px, qq, and the platform’s problem is

rewritten as

max
q:rR,RsÑr0,1s,

xPr0,1s

ż R

R
k1pxqqpxr1q ´

1
2

˜

ż F´1pqpxr1qq

a
adFpaq

¸

k2pxqdGpr1q (5)
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subject to

x P arg max
x1

#

pAx1 ` βq

ż R

R
qpx1r1qdGpr1q

+

and (6)

k1pxqqpxr1q ´
1
2

ż F´1pqpxr1qq

a
adFpaqk2pxq ě 0, @r1 P supppR1q. (7)

Intuitively, the algorithm penalizes aggressive investment by linking the total sales to the his-

torical portfolio returns. This has the potential to address the incentive issue in contracts. When a

fund manager over-allocates to risky assets, they obtain a greater expected payoff from contracted

(or recommended) investors due to limited liability. However, this would also generate an abnor-

mal historical return relative to proper risk exposure, causing algorithms to reduce the proportion

of recommended investors.

We can further represent the IR constraint in a simpler form. Multiply the both sides of (7) by

qpxr1q and focus on the left hand side. The derivative w.r.t. qpxr1q is rk1pxq ´ 1{2F´1pqpxr1qqk2pxqs

and is strictly decreasing w.r.t. qpxr1q. Also note that (7) is equal when qpxr1q “ 0. We can then

define qpxq as

qpxq :“ sup

#

q P r0, 1s

ˇ

ˇ

ˇ
k1pxqq ´

1
2

ż F´1pqq

a
adFpaqk2pxq ě 0

+

,

and the IR constraint is equivalent to

qpxr1q ď qpxq, @r1 P rR, Rs. (8)

Briefly, the applicable recommendation fraction q has an upper envelope, as investors would not

buy if they find the platform over-delivers signals.

3.2 Non-Monotonic Algorithm

The primary principal-agent problem here is the manager’s tendency to invest excessively in risky

assets, which is driven by their expected utility that increases monotonically with the x. In prac-

tice, high ranking based on high returns generates a huge incentive for fund managers, pushing

them to be more risk-chasing (Hong et al., 2024). The algorithm is designed to change this mono-

tonicity by influencing qp¨q. To do so, qp¨q should somehow sacrifice its monotonicity and relate to

the risk-return distribution. The following proposition describes this observation.

Lemma 2. (Failure of monotonic algorithms.) If the fraction qp¨q of recommendation characterized by

an algorithm is weakly increasing in r P rR, Rs, then the algorithm induces x˚ “ 1 in equilibrium.

11



MITIGATING MORAL HAZARD THROUGH ALGORITHMS

Intuitively, if qp¨q weakly increases with r, then the algorithm provides the same incentives

as the contract ϕp¨q to the manager. Consequently, the manager will fully invest in risky assets in

order to maximize the expected return. In this case, the algorithm fails to bind the manager’s over-

exposure to risk, although it could still prevent investors with negative expected utility under

x “ 1 from entering the market. An important implication is that the platform should reduce

recommendations when historical returns are unusually high. Since qp¨q can uniquely characterize

a threshold algorithm, we will also refer to qp¨q as the algorithm in the following sections.

More generally, the algorithm punishes abnormal returns that should be impossible under

an equilibrium allocation. Therefore, we can further characterize a feasible form of the optimal

algorithm as stated in the proposition below.

Proposition 1. (Equivalent cutoff algorithms.) For any equilibrium px˚, q˚q, there is an equilibrium

px˚, q̂q which generates the same expected payoffs for the investors and manager as px˚, q˚q does. Specifi-

cally, q̂ takes a form of a “cutoff algorithm” where

q̂pr; xq :“

$

&

%

qprq, r P supppxRtq;

0, otherwise.

On the one hand, q̂ implements a greater penalty than q˚ once the realized return exceeds

supppx˚Rtq. On the other hand, q̂ imposes no additional penalty in equilibrium x˚. This ensures

that the equilibrium investor utility at x˚ remains unchanged and that the px˚, q̂q pair still satisfies

the IC constraint. In other words, the difference between q and q̂ does not affect the reach and any

quantitative nature of the equilibrium.

In what follows, we consider the existence of the equilibrium px, qq and analyze the implica-

tions of the optimal algorithm in the form of q̂ without loss of generality.

4 Optimal Algorithm under Discrete Return

This section develops the key ideas of this paper in the context of discrete return. Section 5 consid-

ers the case with continuous risk return. Here, we assume that a follows a uniform distribution,

and the supppRtq “ tR, 0, Ru, reflecting the states “down”, “flat”, and “up”, with probabilities

ppRq, pp0q, and ppRq, respectively.

Given the discrete distribution, the optimization problem (5) can be transformed into solving

for the allocation x˚ and the three points q̂px˚Rtq according to Lemma 1. Therefore, the existence

of an investor-optimal algorithm is guaranteed through convex optimization on a compact set.

12
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4.1 Moral Hazard Mitigation

We divide the optimization problem into two stages: (i) Given any target risk allocation x, find

the optimal algorithm that will achieve the highest investor welfare among all feasible algorithms

that reach the target x in equilibrium. (ii) Compare the resulting optimal welfare across different

x, then determine the optimal risk allocation that maximizes total investor welfare. By Lemma 1,

Proposition 1 and the equivalent investor’s IR condition (8), the optimization problem given x is

as follows:

max
q̂pxRq,q̂pxRq,q̂p0q

k1pxq
“

q̂pxRqppRq ` q̂p0qpp0q ` q̂pxRqppRq
‰

´
1
2

k2pxq

«˜

ż F´1pq̂pxRqq

a
adFpaq

¸

q̂pxRq `

˜

ż F´1pq̂p0qq

a
adFpaq

¸

q̂p0q `

˜

ż F´1pq̂pxRqq

a
adFpaq

¸

q̂pxRq

ff

.

(9)

subject to

pAx ` βq
“

q̂pxRqppRq ` q̂p0qpp0q ` q̂pxRqppRq
‰

ě pA ` βqq̂p0qpp0q. (10)

0 ď q̂pxr1q ď qpxq, @r1 P tR, 0, Ru. (11)

Under the cutoff algorithm (defined in Proposition 1), if the manager deviates from the target

value of x, they can only be recommended when the historic return equals zero. Therefore, once

a deviation occurs, the manager will only deviate to x1 “ 1, and the IC constraint (6) is equivalent

to (10). Since the constraint conditions are always satisfied by
`

qpxRq, qpxRq, qp0q
˘

“ p0, 0, 0q,

feasible solutions always exist for any target x. The problem can be solved using the lagrangian

multipliers. Given x, if a solution satisfies q̂pxr1q P p0, qpxqq, then it can be written in the form of

q̂pxRq “ F
ˆ

k1pxq ` λpAx ` βq

k2pxq{2

˙

,

q̂pxRq “ F
ˆ

k1pxq ` λpAx ` βq

k2pxq{2

˙

,

q̂p0q “ F
ˆ

k1pxq ` λApx ´ 1q

k2pxq{2

˙

,

where λ ě 0 is the multiplier of IC constraint (10).

To show the trade-off between scenarios of an algorithm, one could consider the ideal social

planner’s ex-post recommendation, which would involve recommending all investors with non-

negative expected utilities. The social planner’s recommendation can also be understood as the

13
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solution to the optimization problem (9) without IC condition (10). The solution is

qFBpxq “ F pk1pxq{pk2pxq{2qq . (12)

Intuitively, moral hazard arises from the manager’s advantage in hiding the allocation x,

whereas the historical performance serves as information to infer x. In this three-point case, the

platform correctly obtains x once the realized return r1 ‰ 0. Therefore, with probability 1 ´ pp0q,

the platform clearly knows x and delivers recommendations to the population accordingly. How-

ever, a “flat” realized price would blur all possible allocations. The key to mitigating moral hazard

is therefore to introduce a penalty in the uninformative flat case, so that the platform is expected

to narrow its recommendation delivery conservatively in order to protect investor welfare. But

how can enough expected sales be generated to achieve ex-ante incentive compatibility for the

manager? As compensation, the platform slightly expands its recommendations when it has in-

formation on x, even including investors with insufficient risk tolerance. This results in slight

welfare losses, essentially an information rent paid to the manager.

Figure 1 visualizes the optimal algorithm q̂˚ and optimal allocation x˚ in a simulation. Panel

(a) compares the optimal algorithm q̂˚ and qFB given x˚. When the historical return is zero, the

algorithm recommends a lower probability than the first best to prevent the manager from devi-

ating at a point where the algorithm cannot infer the x. Conversely, when the historical return is

positive, the algorithm recommends a higher probability than the first-best, thereby imposing a

more effective constraint on the manager’s behavior. The similar phenomenon can also be seen in

Panel (c) for different values of the x.

4.2 Information Rent

In this subsection we discuss more detailed properties of the information rents paid to the manager

in our model. Firstly, consider the impact of the risk allocation x on the information rents. Denote

the lower bound of perfect implementation as x :“ pp0q ´ p1 ´ pp0qqβ{A. We will explain this

constant later in this subsection. We also make the following assumption:

Assumption 2. The manager is not willing to fully allocate in risk-free assets: pA ` βqpp0q ą β.

Proposition 2. (Algorithms and information rents.)

(i) (Without information rents.) When the target equilibrium allocation x˚ ě x, the optimal algo-

rithm reaches the first best, mitigating moral hazard without paying information rent, q̂˚px˚Rq “ q̂˚p0q “

q̂˚px˚Rq “ qFBpx˚q;

(ii) (With information rents.) When the target equilibrium allocation x˚ ă x, the optimal algorithm

14
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(a) q̂˚ and qFB for optimal allocation x˚ (b) Upx, q̂˚q for different x

(c) q̂˚ for different x

Figure 1: Optimal Algorithm q̂˚p¨q and Allocation x˚

Notes: Figure 1 illustrates an example of the optimal algorithm q̂˚ and optimal allocation x˚. The parameters are
chosen as follows: α “ 0.01, β “ 0.003, γ “ 0.2, a „ Ur0.15, 0.5s, and the support of Rt is t´3, 0, 2u with corresponding
probabilities 0.1, 0.7, and 0.2, respectively. Panel (a) compares the optimal algorithm q̂˚ and qFB given x˚. Compared
with the first-best, the algorithm suffers from under-recommendation when Rp1 “ 0 and over-recommendation when
Rp1 P tx˚R, x˚Ru. Outside supppx˚R1q, the algorithm sets the recommendation probability to 0 as stated in Proposition
1. Panel (b) shows the expected utility of investors under optimal incentive-compatible and first-best algorithms, given
different values of x. Panel (c) shows the optimal incentive-compatible and first-best algorithms for different values of x.
Area A and B represent the over-recommended and under-recommended investor populations, respectively, resulting
in the welfare gap in Panel (b).

strategically make recommendations to pay information rents and ensure IC condition,

mintq̂˚px˚Rq, q̂˚px˚Rqu ě qFBpx˚q ě q̂˚p0q.

When qFBpx˚q P p0, 1q, the inequalities hold strictly.

Proposition 2 highlights that x is a crucial threshold of the exposure to risk. When an algorithm

targets an allocation x that exceeds this threshold, it mitigates moral hazard without paying any
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information rent, acting as a de facto social planner. Economically, x ě x is equivalently to

Ax ` β ě pA ` βq pp0q,

where the left hand side is the manager’s expected payoff for good behavior in one deal, i.e., allo-

cating x risky assets that align with the platform’s target. The right hand side is the opportunity

cost of being good, i.e., the maximum expected payoff of from deviating towards excessive risk-

taking. In this case, the manager would choose a full allocation of risky assets and have a pp0q

probability recommendation. Thus x ě x guarantees the incentive compatibility without addi-

tional rent. Otherwise, the platform requires additional effort to enforce the incentive constraint

by penalizing the flat case and subsidizing other cases in terms of recommendation counts. In this

case, the algorithm is designed to control the behavior of the fund manager based on all realized

values of the return.

Panel (b) of Figure 1 illustrates the expected aggregate investor utility, which is represented

by an inverted U-shaped curve. In the case of no algorithm, the only equilibrium is x “ 1 and

investors receive zero expect utility. In other words, algorithmic intervention removes the man-

ager’s full control over allocation, optimizing investor’s utility in spite of potential information

rent. Additionally, Panel (b) also shows the under-performance of the algorithm relative to the

ideal case when x ă x, due to the required information rent and corresponding ex-post errors.

In this economy, a proportion of investors pay all the information rents. As Figure 1 Panel (c)

shows, the ideal ex-ante recommendation qFB is naturally determined by x and is independent

of historical performance. Yet the algorithm’s recommendation varies depending on the period-1

state. When the fund exhibits a flat state, the algorithm’s recommendation scale is insufficient

compared to qFB. That is, some investors who were objectively eligible to invest are not recom-

mended, resulting in foregone welfare gains, as depicted in Area B. Conversely, when the risky

asset generates a non-flat state, the algorithm recommends an additional population with negative

expected payoffs, as depicted in Area A.6

Intuitively, a lower x will require a more costly q̂˚, so the welfare loss from deviating from the

qFB forms a trade-off with respect to the magnitude of the x. Consequently, one can expect x˚ to

exceed the optimal risk exposure at the same recommendation probability in equilibrium.

Proposition 3. (Comparison to the first-best situation with no moral hazard.)

1. For any targeted allocation x, the ex-ante expected recommendation fraction (with moral hazard) is

6Note that these investors voluntarily follow the recommendation guaranteed by the IR constraint. They achieve
non-negative expected payoffs based on their subjective posterior risk aversion.
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weakly lower than the first-best recommendation fraction qFB:

ÿ

rPsupptRtu

pprqq̂˚pxrq ď qFBpxq

2. For an optimal algorithm q̂˚p¨q that realizes the targeted allocation x (with moral hazard), the first-

best solution (with no moral hazard) prefers a lower x1 under the same recommendation structure:

x ě sup

$

&

%

arg max
x1

#

k1px1q
ÿ

rPsupptRtu

pprqq̂˚pxrq ´
1
2

ÿ

rPsupptRtu

˜

ż F´1pq̂˚pxrqq

a
adFpaq

¸

k2px1q

+

,

.

-

.

In particular, when x P p0, xq, the inequalities hold strictly.

Proposition 3 shows the deviations in expected participation and risky asset allocation from

the first-best solution. The reason underlying this is that algorithmic designs must account for

information rent costs, as outlined in Proposition 2. In order to offset the monotonicity of the

manager’s utility with respect to risk exposure through total sales, the expected number of recom-

mended investors must be reduced. Furthermore, to ensure the manager is incentive compatible,

the algorithm concedes in risk exposure x˚.

The two parts of Proposition 3 can be unified as follows: The algorithm uses a lower investor

participation rate to ensure that the targeted x satisfies the IC conditions. Under the threshold

algorithm, the expected risk aversion levels of these participating investors are lower, meaning

their optimal investment should actually be higher.

4.3 Algorithms under Different Contracts

Proposition 2 also implies the interplay between the algorithm and contract. The underlying logic

arises from the manager’s payoff structure: it hinges on the likelihood of being recommended and

the expected returns once recommendation. The algorithm determines the former, while the con-

tract determines the latter. Then the variation in contract design affects the manager’s compromise

on the algorithm when making allocation decisions.

In precise, the performance fee rate α and fixed management fee β jointly affect the threshold

x. A greater α decreases x, resulting in a narrower range for the algorithm to achieve zero infor-

mation rent, because it increases the incentive of higher returns, making the penalty from reduced

recommendation less important. This is intuitive, as the performance fee with limited liability

constitutes the origin of the principal-agent problem.

Consider the fixed management fee, β. Proposition 2 illustrates that a larger β allows the al-

gorithm to achieve zero information rent at a broader range of equilibrium allocation x. Because
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the management fee is independent of the portfolio performance, but solely depends on success-

ful contract. This therefore becomes an incentive to align with the objectives of the platform’s

algorithmic design, and to avoid penalty in recommendation scales.

Figure 2 presents a comparative static analysis on β. As Panel (a) and (b) show, when the

management fee is low, the equilibrium allocation under optimal algorithm, x˚, is higher than

x˚
FB, and the expected recommendation scale is lower.As β increases, x˚

FB remains relatively stable,

while x˚ decreases to align with x˚
FB, and the under-recommendation at the flat-price scenario

is resolved. It implies that the moral hazard gradually diminishes, as the manager is more like

to align with the algorithm and earn the remarkable management fee. In particular, the social

planner’s solution can be achieved by the optimal algorithm when β is sufficiently high,7 i.e.,

x˚ ą x as outlined in Proposition 2.

To further analyze the investor welfare affected by the management fee, we decompose the

expected aggregate ex-ante investor utility,

EruIpx, q̂˚pxqqs “ k1pxqqFBpxq ´
1
2

k2pxq

ż F´1pqFBpxqq

a
adFpaq

loooooooooooooooooooooooooomoooooooooooooooooooooooooon

First-best utility,
Upx,qFBq

´

ˇ

ˇ

ˇ

ˇ

ˇ

k1pxq∆qpxq ´
1
2

k2pxq∆apxq

ˇ

ˇ

ˇ

ˇ

ˇ

looooooooooooooooomooooooooooooooooon

Utility Loss from Moral Hazard,
Upx,qFBq´Upx,q˚q

,

where first term is the first-best payoff under x, and the second term represents the utility loss (e.g.,

over- and under-recommendation) to make x incentive-compatible. The loss in reflected as the

deviations relative to the social planner’s solution, including the expected recommend probability,

∆qpxq, and the expected collective risk aversion ∆apxq of recommended investors,

∆qpxq “ ´pp0qpqFBpxq ´ q̂˚p0qq
looooooooooooomooooooooooooon

Under-recommendation

`
ÿ

rPtR,Ru

pprqpq̂˚pxrq ´ qFBpxqq

looooooooooooooooomooooooooooooooooon

Over-recommendation

,

∆apxq “ ´pp0q

ż F´1pqFBpxqq

F´1pq̂˚p0qq

adFpaq

looooooooooooooomooooooooooooooon

Under-recommendation

`
ÿ

rPtR,Ru

pprq

ż F´1pq̂˚pxrqq

F´1pqFBpxqq

adFpaq

loooooooooooooooooomoooooooooooooooooon

Over-recommendation

.

The impact of the management fee β on investor welfare is twofold: a higher β enables the

algorithm to better influence the manager’s decisions, reducing the information rent to pay. On the

other hand, it directly reduces investor wealth as a fixed charge. With the above decomposition,

the former impact is reflected solely in the deviation from the first-best solution, i.e., Upx˚, qFBq ´

Upx˚, q̂˚q, while the latter also enters Upx˚, qFBq.

As Figure 2 (c) shows, when β is relatively low, the advantage of increasing β is evident (al-

7The threshold of a sufficiently-high β is (about) 0.0035 under the parameter choice of Figure 2.
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(a) x˚
FB and x˚ for different β (b) qFBpx˚q and q̂˚p0q for different β

(c) Decomposition of Utility (d) Investor Utility and Social Welfare

Figure 2: Comparative static analysis: management fee β in contract

Notes: Figure 2 illustrates the a comparative static analysis of the algorithm q̂˚, allocation x˚ and investor utility with
respect to the management fee β. The parameters are chosen as follows: α “ 0.02, γ “ 0, a „ Ur0.5, 1s, and the support
of Rt is t´1, 0, 1u with corresponding probabilities 0.1, 0.7, and 0.2, respectively. By comparing with with the First Best,
it can be seen that as β rises, moral hazard diminishes and the algorithm q̂˚ and the allocation x˚ move closer to the
First Best (see Panels (a) and (b)). Since an increase in β also directly results in a loss of investor utility, the utility
initially increases with β but then declines (see Panels (c) and (d)).

though not fully offset the direct charge as Upx˚, qFBq appears a decreasing trend), and the welfare

gradually converges to the first-best case. When the optimal algorithm reaches the targeted equi-

librium without information rent, the higher β only imposes costs, making Upx˚, qFBq decreases

linearly in β.

Combined these two forces, the investor utility exhibits an inverted U-shaped curve, as shown

in Panel (d). This non-monotonicity suggests a space for a jointly optimal design of the algorithm

and contract. Additionally, since β represents a mere transfer payment from investors to fund

managers, the reduction in wealth effect is not accounted in the total social welfare calculation. As

shown in Panel (d), the social welfare (the aggregate expected utility of investors and managers)

increases due to the mitigation of the principal-agent problem.
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4.4 Algorithm Serves as A Commitment Mechanism

A more fundamental question is: why the algorithm can successfully manipulate the equilibrium

allocation and thereby mitigate the moral hazard? This subsection uncovers its critical role as a

commitment mechanism. Specifically, we consider different timeline and information structures

and show that even if the investors are as informed as the algorithm (know their own types as well

as the portfolio historical performance), they fail to mitigate the fund manager’s moral hazard.

Consider several alternative timelines as plotted in Figure 3: (i) Blind investment, where in-

vestors do not adopt a platform, but meet the fund manager by chance. Therefore, the investors

have no information. (ii) Investment on fund distribution platforms, where the platform offers in-

formation about the funds without providing recommendations. That is, the investors know the

historical return R1 but do not know their risk aversion a. (iii) Investment experts. The investors

know both their types and all the historical performance information.

Platform
designs m

Nature
draws a

Manager chooses x

Nature
draws R

Platform observes a
and xR, then makes
a recommendation
m pa, xRq

Investor decides to in-
vest or not based on
m pa, xRq. If they are
recommended, they ob-
serves xR

R2 realizes

(a) Timeline 1: Baseline

Nature
draws a

Manager
chooses x

Nature
draws R

Investor observe neither R1
nor a

Fund invested or not

R2 realizes

(b) Timeline 2: Model without information about R1 and a (blind investment)

Nature
draws a

Manager
chooses x

Nature
draws R

Investor observe R1
without a

Fund invested or not

R2 realizes

(c) Timeline 3: Model without information about a (investment on a fund distribution platform)

Nature
draws a

Manager
chooses x

Nature
draws R

Investor observe R1
and a

Fund invested or not

R2 realizes

(d) Timeline 4: Model with information about R1 and a (investment expert)

Figure 3: Alternative Timeline and Information Settings

We compare the total investor welfare under these alternative cases to the baseline. Appendix

B provides formal analysis on each case, including proposition derivations and intuitions. We
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fix the distributions of risk aversion and the risk return, then visualize the expected payoffs for

investors at different risk aversion levels under each setting, as shown in Figure 4. A blind in-

vestment, as shown in the red dashed line, always results in a full risk taking (x˚ “ 1), and the

manager takes away all the investor welfare. The green solid line shows the case of a fund dis-

tribution platform. The equilibrium reaches a slightly lower risk allocation (x˚ “ 0.918), as the

investors could observe the historical return and partially infer the manager’s decision. However,

they may be still over-exposed to risk due to limited awareness of their own risk preferences —

particularly among highly risk-averse individuals, a group that lies at the heart of financial in-

clusion concerns. In Appendix B, we further show that the results are similar to this case even if

the platform provides additional information, such as historical Sharpe ratios and more detailed

information.

Investment experts, shown by the purple line of Figure 4, appear well-informed enough to

protect themselves: when investors know both their types and the historical return, just as the al-

gorithm does, they are never exposed to negative expected payoffs. However, the population fails

to achieve a fairly low x.8 Only those with low risk aversion (shown in area A) choose to invest,

excluding a large share of the population from participating in the delegated investment. The un-

derlying intuition is: when every investor refuses to invest in situations with ex-post inefficiency,

no one ends up paying the information rent. Since each investor makes decisions individually,

the population as a whole is unable to penalize the manager’s risk-chasing behavior through a

coordinated reduction in total sales. This lack of coordination, in a sense, exhibits a “curse of

shrewdness” and fails to create a commitment power. In contrast, the blue line shows the baseline

with an algorithm: it achieves an investor-optimal equilibrium x˚ “ 0.515. The piecewise pattern

around a “ 4 reflects the presence of information rent. Notably, the resulting aggregate expected

payoff — roughly corresponding to area B — is greater than any other settings, and financial

inclusion is substantially expanded.

The above discussion highlights the function of algorithm: it coordinates investor behavior to

generate commitment power, thus maximizing aggregate investor welfare. Revisit its unique role

relative to (interacted with) contracts. Given simple contracts that consider only future perfor-

mance without historical records, the algorithm affects the business by collecting information and

deciding signal delivery, effectively enabling functionalities of a series of complex contracts (in-

cluding both historical and future conditions), and further determining the valid contract parties.

8Under the parameter choices of Figure 4, the resulting equilibrium allocation x “ 1, while it is possible to reach an
equilibrium with x ă 1.
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Figure 4: Expected payoff under different risk aversion a and information structures.

Notes: Figure 4 illustrates the distribution of investors’ expected utility in equilibrium under four different information
structures (ranked by risk aversion a). The parameters are chosen as follows: α “ 0.1, β “ 0.0015, γ “ 0.5, a „ Ur1, 5s,
and the support of Rt is t´0.2, 0, 0.2u with corresponding probabilities 0.1, 0.7, and 0.2, respectively. The blue solid
line corresponds to the baseline model, the red dashed line represents the case where the investor has no information
(blind investment), the green solid line corresponds to the case where the investor can observe R1 (investment on a
fund distribution platform), and the pink dashed line represents the case where the investor can accurately observe
both R1 and a (investment experts). It can be seen that allowing investors to access coarse information about their own
a improves their overall welfare, as Area B is larger than Area A.

4.5 Algorithm and Ranking Systems

In addition to the role as a commitment mechanism, this subsection uncovers the other resulting

critical role played by the algorithm, i.e., a private information gatekeeper, which is significantly

distinct from ranking systems. Specifically, ranking systems (e.g., Morningstar ratings) aim to help

investors compare funds and identify suitable investment targets. In contrast, recommendation

algorithms start from investor heterogeneity: given a fund, they determine which investors are

suitable for it. This motivation provides a tractable bridge between mechanism design and finan-

cial inclusion.9 A fey difference is that the ratings are publicly known,10 while the algorithm de-

livers private signals according to investors’ characteristics. In practice, the two are not mutually

9They both process historical performance data and somehow serve similar classification functions. For instance,
an extremely high allocation x may lead the algorithm to implicitly classify the fund as “high-risk” and thus reduce
recommendation.

10With a rating system, investors get to know a list of funds, at least the top funds. This suggests the crucial influence
of ratings: they generate investors’ attention to top funds, leading to risk chasing to hit the ranking (Hong et al., 2024).
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exclusive, e.g., the platform can even publish ratings and deliver personalized recommendation

simultaneously.

We consider the case when there are both recommendation algorithms and fund ratings. With

the existence of publicly known ratings, investors always know the fund and thus can invest even

without receiving recommendation.The platform’s problem is formulated as: x P r0, 1s,

max
q:rR,RsÑr0,1s

k1pxqqpxr1q ´
1
2

˜

ż F´1pqpxr1qq

a
adFpaq

¸

k2pxqdGpr1q

subject to the IC and IR constraints

x P arg max
x1

!

pAx1 ` βq
“

qpx1RqppRq ` qp0qpp0q ` qpx1RqppRq
‰

)

,

k1pxq ´
1
2

şF´1pqpxr1qq

a adFpaq

qpxr1q
k2pxq ě 0, @r1 P supppR1q, (13)

k1pxq ´
1
2

şa
F´1pqpxr1qq

adFpaq

1 ´ qpxr1q
k2pxq ď 0, @r1 P supppR1q. (14)

The additional IR constraint (14) implies that investors only follows the algorithm’s recom-

mendation to reject the investment action when the posterior expectation is high enough. In par-

ticular, as investors are able to know the fund and its performance via public information, the

IR constraint (14) rules out cases where they still invest in the fund given no recommendation

received. Otherwise, the algorithm cannot remain its commitment power.

Similar to processing the baseline IR constraint, we multiply the both sides of (14) with p1 ´

qpxr1qq, and consider the left side. Its derivative w.r.t. qpxr1q is

´k1pxq `
1
2

F´1pqpxr1qqk2pxq,

and is strictly increasing with qpxr1q. Also note the equal sign holds when qpxr1q “ 1. Then we

can define qpxq as

qpxq :“ inf

#

q P r0, 1s

ˇ

ˇ

ˇ
k1pxqp1 ´ qq ´

1
2

ż a

F´1pqq

adFpaqk2pxq ď 0

+

.

Then the IR constraint (14) is equivalent to qpxr1q ě qpxq for any r1 P rR, Rs. Proposition 4 indicates

how the two IR constraints bind and interact with the equilibrium allocation x.

Proposition 4. (Applicable range of the recommendation affected by the ranking system.) Suppose

the contract parameters and the distribution of risk aversion satisfy k1pxq ´ 1{2ak2pxq ě 0. Then there are
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cases where the upper (lower) envelope of the applicable recommendation, q (q), takes different values,

1. If k1pxq ´ 1
2

şa
a adFpaqk2pxq ă 0, qpxq “ 0 and qpxq P p0, 1q.

2. If k1pxq ´ 1
2

şa
a adFpaqk2pxq ą 0, qpxq P p0, 1q and qpxq “ 1.

Proposition 4 highlights the importance of the population average (or the average belief about

the) risk aversion levels. (i) when x is too large for the population average risk aversion, investors

would not invest when receiving no recommendations, while the baseline IR constraint binds:

if the signals were over-delivered, investors would not buy; (ii) importantly, the new binding

scenario is that when x is below the population average risk tolerance, the lower limit binds, i.e.,

investors may be inclined to invest even without a recommendation.

Figure 5 visualizes this case in comparison with the baseline, exactly corresponds to the second

scenario in Proposition 4. First, the algorithm still significantly forces the equilibrium allocation

away from x “ 1, and the investor-optimal x˚ roughly equals to 0.3. However, this is not from

a convex optimization, but bound by the new IR constraint: when the algorithm aims at a low

risk exposure x ă 0.3, it needs to pay a remarkable information rent to the manager. Then it has

to be too conservative such that q˚p0q ă qpxq. Then the investors ignore the fact of not being

recommended, and still invest. As a result, the algorithm fails to reach an equilibrium at x.

(a) Upx, q̂q for different x (b) q˚ for different x

Figure 5: Investor’s Payoff and q̂˚p¨q with constraint qpxr1q ě qpxq

Notes: Figure 5 illustrates the optimal algorithm and utility for different x, when investors can observe all funds
(i.e., the rating indicating whether to recommend purchasing). Compared to Figure 1, both the investor’s utility
and the algorithm are blank in the region below 0.3. This is because no incentive-compatible algorithm exists in this
range—investors would invest even without a recommendation, causing fund managers to deviate. In this case, the
optimal algorithm locks x˚ at a higher level, leading to a lower expected utility for investors compared to Figure 1. The
parameter choices are the same as Figure 1.

Compared to the baseline in Figure 1, the expected aggregate investor payoff decreases. This

yields a counterintuitive implication: how can additional public information reduce social wel-

24



MITIGATING MORAL HAZARD THROUGH ALGORITHMS

fare? Because once investors have access to alternative public signals, the algorithm’s recommen-

dation becomes less influential in shaping their decisions. As a result, the platform’s ability to

coordinate investor behavior — its commitment power — diminishes. This weaker coordination

shifts the equilibrium risk allocation in favor of the manager. This finding aligns with Hong et al.

(2024)’s empirical findings, where increased exposure in rating media is associated with increased

exposure to risk. Given the platform can decide how to implement rating systems and recommen-

dation algorithms, their interaction presents an important direction for future research in market

information design.

5 Analysis under Continuous Distribution

In the previous section, uncertainty arises from the three possible future states. This simplifies

the algorithm’s knowledge of the manager’s allocation into two cases: fully certain and fully

unknown. In a more realistic continuous setting, each portfolio has a probability of yielding a

continuum range of historical returns, albeit different to other portfolios. Therefore, any historical

return fails to precisely infer the allocation. The algorithm is then expected to have strictly posi-

tive recommendation probabilities over a continuous interval of historical returns, rather than at

discrete points as in Section 4.

In this section, we characterize the implications when supppRtq “ rR, Rs. The pre-determined

algorithm infers the manager’s choices based on realized historical returns with varying confi-

dence, and enforces different recommendations accordingly. One can then imagine that the pre-

vious implications still hold: the algorithm implements punishment, i.e., delivers conservative

a recommendation, when receiving less informative and/or dangerous signals, and potentially

pays an information rent. Ultimately, the algorithm optimally guides the manager to be incentive-

compatible on lower risk exposures, mitigating moral hazard.

5.1 Existence of Optimal Algorithm

In a continuous setting, the existence of an optimal algorithm is not trivial because of the lack of

the typical monotonicity. Proposition 2 implies that Helly’s selection theorem, commonly used

in the literature on mechanism or contract design, cannot be applied directly. To define the exis-

tence problem rigorously, we constrain qp¨q to a specific function space, denoted by Q. Then the

optimization problem (5) can be generalized as

sup
px,qqPDXr0,1sˆQ

Opx, qq,
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D :“
␣

px, qq : q P L8
``

R, R
˘˘

, 0 ď q p¨q ď qpxq and px, qq satisfies (6)
(

,

qpxq :“ sup

#

q P r0, 1s

ˇ

ˇ

ˇ
k1pxqq ´

1
2

ż F´1pqq

a
adFpaqk2pxq ě 0

+

,

where qpxq represents the maximum possible fraction q under allocation x. That is, qpxr1q ď qpxq,

@r1 P rR, Rs. It can be proved that qpxq is continuous with respect to x.

A reasonable choice of the function space Q ensures a certain sequential compactness of the

feasible set, thus avoiding difficulties arising from not being able to constrain qp¨q to be monotonic.

For example, by constraining qp¨q to a Lipschitz function space with the same constant L, he conti-

nuity of the objective function is mathematically guaranteed, as is the compactness of the feasible

set. More generally, the specific choice of Q and the existence of model solutions are shown by the

following theorem.

Theorem 1. (Existence.) Assume that F is supported on ra, as with continuous density function f ą 0,

where ´8 ă a ă a ă `8. Assume also G has continuous density function g ą 0 on
“

R, R
‰

. Suppose

q̄ p¨q is continuous. Let L ą 0 be a constant. If one of the following two conditions applies,

1. Q “

!

q P Cb
``

R, R
˘˘

: 0 ď q p¨q ď 1 and supx‰y
|qpxq´qpyq|

|x´y|
ď L

)

;

2. Q “

!

q P W1,p
``

R, R
˘˘

: 1 ă p ă 8, 0 ď q p¨q ď 1 and }Dq}p ď L
)

;

Then there exists px˚, q˚q P D X r0, 1s ˆ Q such that O px˚, q˚q “ sup
px,qqPDXr0,1sˆQ O px, qq.

Remark 1. The notation and basic concept of the proof are outlined below. Those not engaged in

detailed mathematical analysis may omit this Remark. Let Ω Ă R be an open set. In the Theorem,

} ¨ }p;Ω denotes the Lp pΩq norm with respect to Lebesgue measure. We omit the subscript Ω when

the domain is clear (or not important) from the context.

By Du, we mean the distributional derivative of a L1
loc function u. The spaces W1,p, 1 ď p ď 8

are the Sobolev spaces of Lp functions with Lp first order distributional derivative. It can be shown

that the space of Lipschitz continuous functions on bounded interval is just W1,8 pΩq. On the

other hand, for function u of one real variable, u P W1,p, 1 ă p ă 8 implies u has a version

u1 “ u a.e. such that u1 P C0,1´ 1
p . The Hölder class C0,α consists of continuous functions such

that supx‰yt|u pxq ´ u pyq |{|x ´ y|αu ă 8. Obviously, the space of Lipschitz functions is C0,1.

In this sense, the condition 1. and the condition 2. are similar and together they handle the

W1,p, 1 ă p ď 8 cases. For fundamental properties of the Sobolev spaces, we refer to Adams and

Fournier (2003).

To prove Theorem 1, we adopt the direct method in the calculus of variations. To be more

specific, we are going to show that under suitable topology the feasible set D X r0, 1s ˆ Q is se-
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quentially compact and the objective function is at least upper semi-continuous. For the Lips-

chitz case, the desired compactness is guaranteed by Arzelà-Ascoli theorem. When the index

p ă 8, W1,p spaces are reflexive and thus we rely on Banach-Alaoglu-Bourbaki theorem and

Rellich-Kondrachov compactness theorem.

The intuition behind the constraint L in the space Q is that the derivative of Qp¨q is not allowed

to change drastically. This implies a large algorithmic design cost. This is similar to the cost of a

certain energy functional, like
şR

R |q1pxr1q|2dGpr1q in some physics problems.

Solving for x˚ and q˚ p¨q simultaneously presents certain challenges. To illustrate the solution,

we divide the optimization problem into two stages. Firstly, we fix x P r0, 1s and find the solution

q˚pxq for the following optimization problem (15) and thus identifying the characteristics of the

optimal algorithm.

sup
qPQXDx

Opq; xq (15)

where Dx :“
!

q P L8
``

R, R
˘˘

ˇ

ˇ

ˇ
0 ď q ď qpxq and px, qq satisfies (6)

)

.11 Secondly, we pin down the

solution px˚, q˚px˚qq and the investor’s utility, which allows us to comprehend the comprehensive

impact of the algorithm on the principal-agent problem.

Here we observe the (partial) convexity of the objective function O p¨, ¨q. Since it is useful

hereafter, we call it a lemma:

Lemma 3. (Concavity of the objective function.) Suppose F is supported on ra, as with continuous

density function f ą 0, where ´8 ă a ă a ă `8. Then, for any x P p0, 1s, the objective function O px, qq

is strictly concave with respect to q.

By Lemma 3, q˚pxq is well-defined as demonstrated in the following proposition.

Proposition 5. (Uniqueness.) Given x P r0, 1s, there exists a unique function q˚pxq optimizing (15).

5.2 Solving for the Optimal Recommendation

We attempt to solve the optimal algorithm. The incentive constraint (6) can be rather complex for

further analytical derivation. Here we alternatively propose a local incentive constraint (the first-

order condition of (6) w.r.t. x) for potential solutions, and verify its satisfaction of the original

11Since Dx includes qp¨q ” 0 for all x, Dx is not empty.
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condition. The alternative constraint reads:

pα ` γq

ż R

0
r2dGpr2q

ż R

R
qpxr1qdGpr1q

looooooooooooooooooooooomooooooooooooooooooooooon

Marginal expected payoff

`

”

β ` pα ` γqx
ż R

0
r2dGpr2q

ı

ż R

R
q1pxr1qr1dGpr1q

looooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon

Marginal algorithmic penalty

“ 0, (16)

where
şRr

Rr
q1pxr1qr1dGpr1q is well-defined according to Lebesgue’s dominated convergence theo-

rem. Denote (16) in a general form with functional I,

ż R

R
Ipr1, q, q1qdr1 “ 0.

We make two reasonable assumptions for sake of the solving process.

Assumption 3. Given x, for any q P Q,

BI
By

pr1, q, q1q ´
d

dr1

ˆ

BI
Bz

pr1, q, q1q

˙

“ A ´ pAx ` βqpr1g1pr1q ` gpr1qq

is not equal to zero a.e. in rR, Rs.

Assumption 4. Given x, let q˚ P Dx XQ be the unique solution of the objective function. Fix any element

q1 P Q, Dq2 P Q with

şR
R

BI
By pr1, q˚, q˚1

qpq1 ´ q˚q ` BI
Bz pr1, q˚, q˚1

qpq1
1 ´ q˚1

qdr1
şR

R
BI
By pr1, q˚, q˚1qpq2 ´ q˚q ` BI

Bz pr1, q˚, q˚1qpq1
2 ´ q˚1qdr1

ă 0.

Assumption 3 is simply satisfied when pr1g1pr1q ` gpr1qq is not constant.12 Assumption 4 effec-

tively assumes there exists an interior solution q˚, i.e., given x, Dr1 such that q˚pxr1q P p0, qpxqq,

whilst the corner cases t0, qpxqu can be easily analyzed separately. With these two assumptions,

we obtain a variational inequality as a necessary condition for the solution q˚ of the optimization

problem (15) given x.

Theorem 2. (Variational inequality as a necessary condition.) Given x P p0, 1q, let q˚ P Dx X Q be

the unique solution of the objective function. Under Assumption 3 and 4, there exists a real number λ s.t.

12Appendix Example 1 discusses the counter case where r1g1pr1q ` gpr1q “ C, i.e., gpr1q “ C ` C1{|r1|. In particular,
when G follows a uniform distribution, the algorithm always automatically achieves the first-best equilibrium with
zero information rent.
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@q1 P Q,

0 ě

ż R

R

`

q1pxr1q ´ q˚pxr1q
˘

„

k1pxq ´
1
2

k2pxqF´1pq˚pxr1qq ` λ
β

x
` λpA `

β

x
qr1

g1pr1q

gpr1q

ȷ

dGpr1q

`
`

q1pxr1q ´ q˚pxr1q
˘

λpA `
β

x
qr1gpr1q

ˇ

ˇ

ˇ

R

R
. (17)

Now we show how this necessary condition restricts the potential q˚ to a specific formula.

Consider that the set U :“ tr1 P pR, Rq | 0 ă q˚pxr1q ă qpxqu is open, and C :“ tr1 P rR, Rs | q˚pxr1q “

0 or q˚pxr1q “ qpxqu is (relatively) closed. Fix any text function v P C8
c pUq. Then if |δ| is sufficiently

small, 0 ď q1 :“ q˚ ` δv ď qpxq, q1 P Q. Thus (17) implies13

ż

U
δvpxr1q

„

k1pxq ´
1
2

k2pxqF´1pq˚q

ȷ

dGpr1q ´ λ

ż

U
Aδvpxr1q ` pAx ` βqr1δv1pxr1qdGpr1q ď 0.

This inequality is valid for both δ and ´δ. Therefore, the above inequality must have the equal

sign. Because v has compact support in U, v is vanished near BU. By the integration by parts, we

obtain

0 “

ż

U
vpxr1q

„

k1pxq ´
1
2

k2pxqF´1pq˚pxr1qq ` λ
β

x
` λpA `

β

x
qr1

g1pr1q

gpr1q

ȷ

dGpr1q

is valid for all v P C8
c pUq. Therefore,

0 “ k1pxqgpr1q ´
1
2

k2pxqF´1pq˚pxr1qqgpr1q ` λ
β

x
gpr1q ` λpA `

β

x
qr1g1pr1q in U. (18)

Notably, when U “ pR, Rq, we can also fix any text function v P C8
c pUq, where U is the closure

of U. Then if |δ| is sufficiently small, 0 ď q1 :“ q˚ ` δv ď qpxq and so q1 P Q thus satisfies (17).

Similarly, the inequality must have the equal sign. Together with (18), we obtain

0 “ λδpAx ` βq

”

pRgpRq{xqvpxRq ´ pRgpRq{xqvpxRq

ı

. (19)

Consider v such that 0 “ vpxRq ă vpxRq, there must be λ “ 0.

So far, we draw the conclusion from Theorem 2 that Dλ P R, s.t.14

q˚pxr1q “ F

˜

k1pxq ´ λ
“

β{x ` pA ` β{xqr1g1pr1q{gpr1q
‰

k2pxq{2

¸

. (20)

13Note that since v P C8
c pUq, vpxRq “ vpxRq “ 0.

14The expression q˚ “ Fpa˚q in (20) and (21) implicitly assumes a˚ P pa, aq, while the other cases are relatively trivial,
corresponding to the algorithm that never/always recommends to each investor.
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In particular, if U “ pR, Rq,

q˚pxr1q “ F
ˆ

k1pxq

k2pxq{2

˙

. (21)

5.3 Inverted U-shaped Algorithm

We pin down the return distribution for further analysis. Let the risk aversion of investors follow a

uniform distinction, a „ Ur0.15, 0.5s, and the distribution of risk returns Rt be a truncated normal

distribution supported on r´3, 2s, with µ “ 0.5 and σ “ 1.5.15 In precise, the probability density

function of Rt reads

gpr; µ, σ, R, Rq “
1

σ
?

2π

exp
`

´ 1
2 ppr ´ µq{σq2

˘

Φp
R´µ

σ q ´ Φp
R´µ

σ q

,

where Φp¨q is the cumulative CDF of the standard normal distribution.

Figure 6 visualizes the optimal algorithm q˚ solved from (20) that ensures the equilibrium

x “ 0.4.16 Panel (a) shows how the algorithm delivers recommendations over realized returns.

First, the algorithm only delivers recommendation in a narrower support of observed returns,

since highly abnormal returns are less likely to be the portfolio return with risk exposure x ď 0.4.

Second, the algorithm reduces recommendation when the historical return is higher. This aligns

with the crucial intuition in Section 3.2: a high historical return may not be a good sign, as it

may result from over-exposed to risk. Mechanically, the downward slope in Panel (a) reflects the

increasing possibility of a too-large allocation, thereby aggregating more punishment. In addition,

information rent is paid in this scenario. For example, when the recommendation amount goes

beyond the first-best, qFBpxq, there exists investors who are recommended and receive negative

expected payoff.17

Recall the solving process. Theorem 2 only provides a necessary condition by alternatively sat-

isfying the local incentive constraint–we need to verify that the IC constraint is satisfied. As Panel

(b) shows, the algorithm successfully breaks the monotonicity of manager utility: the manager

maximizes the expected payoff under the optimal algorithm, therefore is incentive compatible at

x “ 0.4, validating q˚pxq to be an equilibrium algorithm. In particular, the manager’s utility func-

tion becomes concave due to the non-monotonic algorithm. This means the algorithm effectively

15We use a truncated normal distribution for technically satisfying Assumption 1. Essentially, it could fully capture
the intuitions of the risk return normally distributed over p´8, `8q: as we show, the algorithm would choose not to
recommend if an extremely abnormal return was observed. It is somehow equivalent to presume the plausible returns
to be distributed over a finite interval.

16Note that x “ 0.4 may be not the optimal x˚ that maximizes the aggregate expected investor utility. Essentially,
any allocation can be achieved in equilibrium by designing a corresponding algorithm with potential information rent.

17The return interval with q˚ ď qFBpxq may also contain information rent, which is rather complex to decompose
from the punishment, i.e., the recommendation amount may be lower if only accounting for the punishments of multi-
ple possible allocations. While in the discrete case, the decomposition is clear since the allocation is correctly inferred.
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transfers the investors’ risk-aversion to the risk-neutral manager.

(a) Optimal algorithm given x “ 0.4 (b) Manager’s Utility under q˚ for different x

Figure 6: Optimal algorithm given x “ 0.4 and Manager’s expected payoff

Notes: Figure 6 illustrates how the algorithm incentivizes the fund manager to choose x “ 0.4 rather than x “ 1 in
the continuous case. The parameters of the contract and the manager’s personal benefit are set to α “ β “ 0.01 and
γ “ 0.2. a „ Ur0.15, 0.5s. The risk return follows a truncated normal distribution supported on r´3, 2s, µ “ 0.5
and σ “ 1.5. Panel (a) shows that the optimal algorithm is non-monotonic over supppxRtq (with zero probability
outside the support). Within the non-zero region, the algorithm is essentially quadratic, recommending with a higher
probability than the first-best when returns are moderate, and a lower probability than the first-best when returns are
extreme. Under the influence of this non-monotonic algorithm, panel (b) shows that the manager’s utility function is no
longer linear in x (based on the assumption of risk neutrality), but instead becomes a concave, non-monotonic function,
reaching its maximum at x “ 0.4.

Investor-optimal algorithm and information rent. Then we consider the equilibrium allocation

and algorithm that maximize the aggregate expected investor payoff, where the interesting ques-

tion is, similar to Section 4.2, does such optimum require an information rent? Note that whenever

the algorithm does not induce x˚ “ 1, the effectiveness and operation of the algorithm rely on the

distribution of returns, in terms of the multiplier λ and the elasticity of probability density func-

tions, pB{Bpln r1qq lnpgpr1qq.

First, when λ “ 0, the elasticity does not matter, and the algorithm is simply a bang-bang form.

The following Corollary draws implications, no information rent, and the necessary condition to

achieve this scenario.

Corollary 1. When the investor-optimal equilibrium yields a zero Lagrange multiplier, i.e., λ˚ “ 0, in-

vestors pay no information rent. In particular, The sufficient and necessary condition of λ˚ “ 0 is that, x˚
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satisfies

x˚ P arg max
x1Prx˚,1s

!

px1A ` βqrGpx˚R{x1q ´ Gpx˚R{x1qs

)

and

x˚ P arg max
x1

#

k1px1qF
ˆ

k1px1q

k2px1q{2

˙

´
1
2

˜

ż k1px1q{pk2px1q{2q

0
adFpaq

¸

k2px1q

+

.
(22)

Second, when λ ‰ 0, the information rent has to be paid, and the elasticity of the density func-

tion directly determines the shape of the algorithm. Similar to contract and information design,

algorithm design contributes to investor surplus improvement through the commitment power

that may lead to ex-post inefficiencies.

Proposition 6. (Over- and under-recommendations in general cases.) If λ˚ ‰ 0, there exists r, r1 P

rR, Rs such that investors will be over- and under-recommended when historical returns are r and r1 respec-

tively. i,e,

ErR2 ´ ϕpR2q|x˚s ´
1
2

â˚prqErpR2 ´ ϕpR2qq2|x˚s ă 0, and

ErR2 ´ ϕpR2q|x˚s ´
1
2

â˚pr1qErpR2 ´ ϕpR2qq2|x˚s ą 0,

where â˚prq “ F´1pq˚prqq.

Similar to the discrete distribution case, Proposition 6 indicates that when λ˚ ‰ 0, there exist

recommend investors who receive negative expected payoff and also unrecommended investors

who could have positive expected payoff from investment. In addition, as discussed in Section

4.3, the contract and the algorithm interact with each other.

6 Conclusion

We develop a model of recommendation algorithm design in delegated investment. The inter-

mediate platform serves investors who have limited knowledge about their risk aversion levels,

aiming to mitigate fund managers’ moral hazard in over risk-taking, particularly given the con-

tractual environment unchanged. We show that predetermined automatic algorithms can effec-

tively mitigate the principal-agent problem inherent in linear and limited-liability contracts. The

core intuition is that the algorithm reshapes the information transmission and further affects the

buyer party’s entrance, which effectively generates commitment power. Specifically, the optimal

algorithm is non-monotonic w.r.t. the fund’s historical performance, thereby distorting the man-

ager’s utility function w.r.t. risk allocation. The manager has the incentive to hide behind noisy
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signals. Therefore, the algorithm reduces recommendations when information is ambiguous and

potentially compensates for informative signals. This generates an information rent paid by in-

vestors, facilitating trading and achieving Pareto improvement.

Although this paper focuses on risk incentives, the framework can be extended to designing

algorithms for solving other principal–agent problems, such as managers’ efforts and information

acquisition. See, for example He and Xiong (2013); Huang et al. (2020); Buffa et al. (2022). Our

analysis may also inspire future research into many topics, such as optimal joint design with con-

tracts, competition with multiple funds, and information design with both public fund ratings

and personalized recommendations.

Furthermore, the powerful algorithm requires careful consideration of its regulation and pur-

pose. The algorithm’s commitment power relies heavily on transparency, while as Sun (2024)

points out, in reality, algorithms may not be fully transparent. Moreover, if the platform leans

towards the manager side rather than the user base, the algorithm may establish a new prin-

cipal–agent relationship that is detrimental to investor surplus. Overall, our paper reveals the

extent to which algorithms can mitigate moral hazard in the context of digital finance.
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Appendices

A Derivation of Results

A.1 Proof of Lemma 1

The proof is following Ichihashi and Smolin (2023). Take any feasible algorithm m. For any fund

with historical rp1, let qmprp1q :“
şa

a mpa, rp1qdFpaq denote the expected number of investors with

recommendation under rp1. Define a new algorithm m̂ as m̂pa, rp1q ” 1pa ă F´1pqmprp1qqq. At each

rp1, algorithm m̂ recommends the fund with the same expected number of investors as m:

ż a

a
1pa ă F´1pqmprp1qqqdFpaq “ FpF´1pqmprp1qqq “ qmprp1q.

As a result, the fund manager earns the same profit under m and m̂, both are

ER1rqmpxR1qs

”

ER2rϕpxR2qs ` γER2rmaxtxR2, 0us

ı

.

Because the expected value of risk aversion a conditional on recommendation is lower under m̂

than under m and BER2ruIpxR2 ´ ϕpxR2qq; xs{Ba ă 0, an investor who follows the recommenda-

tions of m would also follow those of m̂, and the expected payoff for investors is higher under m̂

than under rp1.

A.2 Proof of Proposition 1

(i) According to the definition of q̂, for any function Jp¨q, given x˚, ER1rJpq̂px˚R1qqs “ ER1rJpqpx˚R1qqs.

Therefore, the expected payoffs of the investors and the manager are unchanged. Thus the in-

vestor’s IR constraint still holds. (ii) Consider the IC condition. Since q̂ induces potential addi-

tional penalties when x1 ‰ x˚ (when x1 ă x, the penalty would not trigger),

pAx1 ` βq

ż R

R
q̂px1r1qdGpr1q ď pAx1 ` βq

ż R

R
q˚px1r1qdGpr1q.

Further by the incentive compatibility under equilibrium px˚, q˚q and no extra penalty of q̂ at x˚,

we obtain

pAx1 ` βq

ż R

R
q˚px1r1qdGpr1q ď pAx˚ ` βq

ż R

R
q˚px˚r1qdGpr1q “ pAx˚ ` βq

ż R

R
q̂px˚r1qdGpr1q.

Therefore, px˚, q̂q also satisfies the IC condition.
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A.3 Proof of Proposition 2

For x P r0, 1s, the algorithm design problem can be rewritten as

max
q:rR,RsÑr0,1s

k1pxqqpxr1q ´
1
2

˜

ż F´1pqpxr1qq

a
adFpaq

¸

k2pxqdGpr1q

subject to the IC and IR constraint

x P arg max
x1

!

pAx1 ` βq
“

qpx1RqppRq ` qp0qpp0q ` qpx1RqppRq
‰

)

, (A1)

qpxq ď qpxq. (A2)

All values of q on rR, Rs need to be determined. We can show that for any px, qpxqq satisfying

the IC constraint (A1), there exists q̂pxq defined by (A3),

q̂pr; xq :“

$

&

%

qprq, if r P txR, 0, xRu

0, otherwise,
(A3)

such that px, q̂pxqq satisfies the same IC constraint, and the investor’s payoff under px, q̂pxqq is the

same as that under px, qpxqq.

Therefore, the objective function can be further rewritten as

max
qpxRq,qpxRq,qp0q

k1pxq
“

q̂pxRqppRq ` q̂p0qpp0q ` q̂pxRqppRq
‰

´
1
2

k2pxq

«˜

ż F´1pq̂pxRqq

a
adFpaq

¸

q̂pxRq `

˜

ż F´1pq̂p0qq

a
adFpaq

¸

q̂p0q `

˜

ż F´1pq̂pxRqq

a
adFpaq

¸

q̂pxRq

ff

.

Without the IC constraint, for any x, the optimal algorithm should recommend all investors

whose payoff is non-negative under x. In this case, the first-best algorithm without the IC con-

straint is given by qFBpxq “ k1pxq{pk2pxq{2q and we have

x˚
FB “ sup

#

arg max
x1

#

k1px1qF
ˆ

k1px1q

k2px1q{2

˙

´
1
2

˜

ż k1px1q{pk2px1q{2q

a
adFpaq

¸

k2px1q

++

. (A4)

With the assumption pA ` βqpp0q ą β, under q̂, the IC constraint (A1) is equivalent to

pAx ` βq
“

q̂pxRqppRq ` q̂p0qpp0q ` q̂pxRqppRq
‰

ě max
x1

pAx1 ` βqq̂p0qpp0q “ pA ` βqq̂p0qpp0q.

Note that if the manager deviates from x to x1, then they will not be recommended when the

realization r1 ‰ 0. Consequently, given the algorithm, the probability of being recommended is
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given by q̂p0q and the manager will only deviate towards x1 “ 1 to ensure that the expected return

is maximized when they is recommended.

Given x, we have the following Lagrangian:

Lpq̂pxRq, q̂p0q, q̂pxRqq

“ k1pxq
“

q̂pxRqppRq ` q̂p0qpp0q ` q̂pxRqppRq
‰

´
1
2

k2pxq

«˜

ż F´1pq̂pxRqq

a
adFpaq

¸

ppRq `

˜

ż F´1pq̂p0qq

a
adFpaq

¸

pp0q `

˜

ż F´1pq̂pxRqq

a
adFpaq

¸

ppRq

ff

` λ
”

pAx ` βq
“

q̂pxRqppRq ` q̂p0qpp0q ` q̂pxRqppRq
‰

´ pA ` βqq̂p0qpp0q

ı

` ηR,1q̂pxRq ` ηR,2pqpxq ´ q̂pxRqq ` ηR,1q̂pxRq ` ηR,2pqpxq ´ q̂pxRqq ` η0,1q̂p0q ` η0,2pqpxq ´ q̂p0qq,

(A5)

where λ ě 0 and ηr,2 ě 0 are the multipliers from IC and IR constraints, and ηr,1 ě 0 is the

multiplier from the definition of q.

According to the first-order condition of the Lagrangian, we have

F´1pq̂pxRqq “
k1pxq ` λpAx ` βq ` pηR,1 ´ ηR,2q{ppRq

k2pxq{2
,

F´1pq̂pxRqq “
k1pxq ` λpAx ` βq ` pηR,1 ´ ηR,2q{ppRq

k2pxq{2
,

F´1pq̂p0qq “
k1pxq ` λApx ´ 1q ` pη0,1 ´ η0,2q{pp0q

k2pxq{2
.

Plug q̂˚px˚Rq “ q̂˚p0q “ q̂˚px˚Rq “ qFBpx˚q into the IC constraint, we get

pAx˚ ` βqr1 ´ pp0qs rqFBpx˚q ´ as ` Apx˚ ´ 1qpp0q rqFBpx˚q ´ as ě 0

ñ rpAx˚ ` βqp1 ´ pp0qq ` Apx˚ ´ 1qpp0qs rqFBpx˚q ´ as ě 0.

Since maxrtq˚prqu ą 0, the equilibrium x˚ must unsure that the expected utility of the least risk-

averse investor is non-negative, implying that qFBpx˚q ě a. Then if

0 ď pAx˚ ` βqp1 ´ pp0qq ` Apx˚ ´ 1qpp0q

ñ x˚ ě
App0q ´ p1 ´ pp0qqβ

A
:“ x, (A6)

the IC constraint is satisfied. Additionally, since for a given x˚, qFBpx˚q maximizes the objective

function and qFBpx˚q ď qpx˚q, then if x˚ ě x, q̂˚px˚Rq “ q̂˚p0q “ q̂˚px˚Rq “ qFBpx˚q satisfies all

constraints and maximizes the objective function, i.e., it is a solution. If x˚ ă x, (A6) does not hold.

Therefore, λ ą 0, which further implies mintq̂˚px˚Rq, q̂˚px˚Rqu ě qFBpx˚q ě q̂˚p0q.
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A.4 Proof of Proposition 3

We primarily discuss the proof of the interior solution.

First, when x˚ ě x or λ˚ “ 0, the equation holds.

Secondly, when x˚ ă x and λ˚ ą 0, we have

ÿ

rPsupptRtu

pprqq̂˚px˚rq “
k1px˚q

k2p2q{2
` p1 ´ pp0qq

λpAx ` βq

k2px˚q{2
` pp0q

λApx ´ 1q

k2pxq{2

“
k1px˚q

k2p2q{2
`

λpAx˚ ` β ´ pp0qpA ` βqq

k2px˚q{2
.

Given λ ą 0 and x˚ ă x, the second term is strictly negative, as a result we have

qE :“
ÿ

rPsupptRtu

pprqq̂˚px˚rq ă
k1px˚q

k2p2q{2
. (A7)

Given q̂˚p¨q, the FOC of the Lagrangian (A5) with respect to x is

k1
1px˚qqEpx˚q ´

1
2

k1
2px˚q

»

–pp0q

ż F´1pq̂˚p0qq

a
adFpaq `

ÿ

rPtR,Ru

pprq

ż F´1pq̂˚pxrqq

Fa
adFpaq

fi

fl` λAqE “ 0

ñk1
1px˚qqEpx˚q ´

1
2

k1
2px˚q

»

–pp0q

ż F´1pq̂˚p0qq

a
adFpaq `

ÿ

rPtR,Ru

pprq

ż F´1pq̂˚pxrqq

Fa
adFpaq

fi

fl ă 0.

The second line is because λ ą 0 and qE ą 0. When

x̃ :“ sup

$

&

%

arg max
x1

#

k1px1q
ÿ

rPsupptRtu

pprqq̂˚px˚rq ´
1
2

ÿ

rPsupptRtu

˜

ż F´1pq̂˚px˚rqq

a
adFpaq

¸

k2px1q

+

,

.

-

,

we have

k1
1px̃qqEpx˚q ´

1
2

k1
2px̃q

»

–pp0q

ż F´1pq̂˚p0qq

a
adFpaq `

ÿ

rPtR,Ru

pprq

ż F´1pq̂˚pxrqq

Fa
adFpaq

fi

fl ă 0.

A.5 Proof of Proposition 4

Recall that qpxq and qpxq are defined as below:

qpxq “ sup

#

q P r0, 1s

ˇ

ˇ

ˇ
k1pxqq ´

1
2

ż F´1pqq

a
adFpaqk2pxq ě 0

+

,
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qpxq “ inf

#

q P r0, 1s

ˇ

ˇ

ˇ
k1pxqp1 ´ qq ´

1
2

ż a

F´1pqq

adFpaqk2pxq ď 0

+

.

Given x, suppose k1pxq ´ 1
2 ak2pxq ą 0. We can observe that

k1pxq ˆ 0 ´
1
2

ż F´1p0q

a
adFpaqk2pxq “ 0, (A8)

k1pxq ˆ p1 ´ 1q ´
1
2

ż a

F´1p1q

adFpaqk2pxq “ 0, (A9)

dk1pxqq ´ 1
2

şF´1pqq

a adFpaqk2pxq

dq

ˇ

ˇ

ˇ

q“0
“ k1pxq ´

1
2

F´1pqqk2pxq

ˇ

ˇ

ˇ

q“0

“ k1pxq ´
1
2

ak2pxq ą 0, (A10)

dk1pxqp1 ´ qq ´ 1
2

şa
F´1pqq

adFpaqk2pxq

dq

ˇ

ˇ

ˇ

q“0
“ ´

„

k1pxq ´
1
2

F´1pqqk2pxq

ȷ

ˇ

ˇ

ˇ

q“0

“ ´

„

k1pxq ´
1
2

ak2pxq

ȷ

ă 0, (A11)

d2k1pxqq ´ 1
2

şF´1pqq

a adFpaqk2pxq

dq2 “ ´
1

2 f pqq
ă 0, (A12)

d2k1pxqp1 ´ qq ´ 1
2

şa
F´1pqq

adFpaqk2pxq

dq2 “
1

2 f pqq
k2pxq ą 0. (A13)

Combining k1pxq ´ 1
2

şF´1p1q

a adFpaqk2pxq “ k1pxq ´ 1
2

şa
a adFpaqk2pxq ă 0, (A8), (A10) and (A12),

we have qpxq P p0, 1q. Combining k1pxqp1 ´ 0q ´ 1
2

şa
F´1p0q

adFpaqk2pxq “ k1pxq ´ 1
2

şa
a adFpaqk2pxq ă

0, (A9), (A11) and (A13), we have qpxq “ 0.

Similarly, given k1pxq ´ 1
2

şa
a adFpaqk2pxq ą 0, by (A8) - (A13), we have qpxq P p0, 1q and qpxq “ 1.

A.6 Proof of Theorem 1

part 1 First consider the existence of the maximum point under condition 1.

Step 1: r0, 1s ˆ Q is compact.

A L-Lipschitz function u defined on an open interval pa, bq can be uniquely extended to a L-

Lipschitz function on ra, bs. To see this, take a sequence txnu8
n“1, xn P pa, bq such that limnÑ8 xn Ñ

b. By Lipschitzness of u, tu pxnqu8
n“1 is a Cauchy sequence, and thus limnÑ8 u pxnq exists. The

uniqueness of this limit among all such sequences then follows again from the Lipschitzness of u,

i.e., limxÑb u pxq exists. Further, we have

|u px0q ´ u pbq | “ lim
nÑ8

|u px0q ´ u pxnq | ď lim
nÑ8

L|x0 ´ xn| “ L|x0 ´ x|
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for all x0 P pa, bq. The a side and the upper bound of |u paq ´ u pbq | is similar to the above.

Consider Q1 “

!

q P Cb
`“

R, R
‰˘

: 0 ď q p¨q ď 1 and supx‰y
|qpxq´qpyq|

|x´y|
ď L

)

. For all ε ą 0, choose

δ “ ε{L. Then for all q P Q1, x, y P
“

R, R
‰

and |x ´ y| ă δ imply |q pxq ´ q pyq | ă ε, i.e., Q1 is

uniformly equicontinuous. Since Q1 is also uniformly bounded by definition, by Arzelà-Ascoli

theorem, Q1 is precompact in C
`“

R, R
‰˘

. By the unique extension, we can identify Q with Q1, so

Q is also precompact in Cb
``

R, R
˘˘

. Let tqnu8
n“1 be a sequence in Q and qn Ñ q under the sup

norm. For all x, y P
`

R, R
˘

, we have

|q pxq ´ q pyq | “ lim
nÑ8

|qn pxq ´ qn pyq | ď L|x ´ y|,

i.e., Q is closed and therefore compact. Then, r0, 1s ˆ Q which is the Cartesian product of two

compact spaces is compact.

Step 2: The feasible set D X pr0, 1s ˆ Qq is non-empty and compact.

By Step 1, we only need to verify that D X pr0, 1s ˆ Qq is non-empty and closed. Note that

px, 0q P D for all x P r0, 1s, which implies D X pr0, 1s ˆ Qq ‰ H. To verify closedness, let

tpxn, qnqu8
n“1 be a sequence in D X pr0, 1s ˆ Qq such that pxn, qnq Ñ px, qq for q P Q. By defini-

tion, for all x1 P r0, 1s and each n P t1, 2, . . .u, we have

pAxn ` βq

ż R

R
qn pxnr1q dG pr1q ě

`

Ax1 ` β
˘

ż R

R
qn

`

x1r1
˘

dG pr1q . (A14)

Since |qn p¨q | ď 1 and qn Ñ q uniformly, by dominated convergence theorem,

ż R

R
qn

`

x1r1
˘

dG pr1q Ñ

ż R

R
q
`

x1r1
˘

dG pr1q , @x1 P r0, 1s .

On the other hand,

ˇ

ˇ

ˇ

ˇ

ˇ

ż R

R
qn pxnr1q dG pr1q ´

ż R

R
q pxr1q dG pr1q

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ż R

R
|qn pxnr1q ´ q pxr1q| dG pr1q

ď

ż R

R
p|qn pxnr1q ´ qn pxr1q| ` |qn pxr1q ´ q pxr1q|q dG pr1q

ď

ż R

R

¨

˝L |xn ´ x| r1 ` sup
yPpR,Rq

|qn pyq ´ q pyq|

˛

‚dG pr1q Ñ 0.

(A15)

The convergence of the right hand side of the last inequality follows again from the dominated
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convergence theorem. Therefore, as n Ñ 8, the left hand side of (A14) converges and we get

pAx ` βq

ż R

R
q pxr1q dG pr1q ě

`

Ax1 ` β
˘

ż R

R
q
`

x1r1
˘

dG pr1q .

By the continuity of q̄ p¨q, we also have q p¨q “ limnÑ8 qn p¨q ď limnÑ8 q̄ pxnq “ q̄ pxq. Since a closed

subset of a compact set is compact, D X pr0, 1s ˆ Qq is compact.

Step 3: The objective function O : D X pr0, 1s ˆ Qq Ñ R is continuous with respect to px, qq.

By (A15) and the continuity of k1 pxq and k2 pxq, we only need to consider the term

ż R

R

ż F´1pqpxr1qq

a
a dFpaqdGpr1q.

Let tpxn, qnqu8
n“1 be a convergent sequence in D X pr0, 1s ˆ Qq to px, qq. Note that

ˇ

ˇ

ˇ

ˇ

ˇ

ż F´1pqnpxnr1qq

a
a f paq da ´

ż F´1pqpxr1qq

a
a f paq da

ˇ

ˇ

ˇ

ˇ

ˇ

ď K
ˇ

ˇ

ˇ
F´1pqnpxnr1qq ´ F´1pqpxr1qq

ˇ

ˇ

ˇ

for some constant K. Since F is strictly increasing and continuous, F´1 is strictly increasing and

continuous too. Similar to (A15), the right hand side of the above inequality converges to 0 as

n Ñ 8. Then by dominated convergence theorem, we have

ż R

R

˜

ż F´1pqnpxnr1qq

a
a f paq da

¸

dG pr1q Ñ

ż R

R

˜

ż F´1pqpxr1qq

a
a f paq da

¸

dG pr1q .

Here we use the obvious fact that
ˇ

ˇ

ˇ

şF´1pqnpxnr1qq

a a f paq da
ˇ

ˇ

ˇ
ď E ras ă 8.

Now we get that the objective function Op¨, ¨q is continuous and the feasible set D X pr0, 1s ˆQq

is compact. By Weierstrass theorem (on extreme value), we know that there exist px˚, q˚q P D X

pr0, 1s ˆ Qq such that Opx˚, q˚q “ sup
px,qqPDXpr0,1sˆQq

Opx, qq.

part 2 Generalizing the condition 1. to the condition 2. will not result in much change.

Step 1: r0, 1s ˆ Q is compact in the weak topology.

Recall that the condition 2. says that

Q “

!

q P W1,p ``R, R
˘˘

: 1 ă p ă 8, 0 ď q p¨q ď 1 and }Dq}p ď L
)

.

For all q P Q, }q}1,p “ }q}p ` }Dq}p ď
`

|R| ` |R|
˘

` L, i.e., Q is a bounded in norm. By Banach-

Alaoglu-Bourbaki theorem and the fact that W1,p
``

R, R
˘˘

is reflective for 1 ă p ă 8 (see for

example Theorem 3.6 of Adams and Fournier (2003)), we only need to verify that Q is closed in

weak topology. Note that Q is convex, by Mazur lemma, the closedness of Q in weak topology
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is equivalent to its closedness in strong topology, i.e., under the } ¨ }1,p norm. Let tqnu8
n“1 be a

sequence in Q such that }qn ´ q}1,p Ñ 0 as n Ñ 8. Since } ¨ }1,p dominates } ¨ }p, we have 0 ď q p¨q ď

1 a.e. with respect to Lebesgue measure. We also have that for all ε ą 0, }Dq}p ď }Dqn}p ` }Dqn ´

Dq}p ď }Dqn}p ` }qn ´ q}1,p ď L ` ε, when n pεq is chosen large enough. By the arbitrariness of ε,

}Dq} ď L, i.e., q P Q. Since the strong and weak topology is the same on R, r0, 1s ˆ Q is compact

in the weak topology (dual of product is isometric isomorphic to the product of the duals).

Step 2: The feasible set D X pr0, 1s ˆ Qq is non-empty and weakly sequentially compact.

Since 0 P W1,p, we already know that D X pr0, 1s ˆ Qq is non-empty in the Step 2 of part 1.

We only need to verify that D X pr0, 1s ˆ Qq is weakly sequentially compact. Let tpxn, qnqu8
n“1

be a sequence in D X pr0, 1s ˆ Qq. By definition, tpxn, qnqu8
n“1 is bounded. By a version of Rellich-

Kondrachov theorem (see for example Thereom 6.3 of Adams and Fournier (2003)), the embedding

W1,p ãÑ C0,1´ 1
p ´ϵ is compact, for all 1 ă p ă 8 and for all 0 ă ϵ ă 1 ´ 1

p . Hereafter, we always

identify q P W1,p
``

R, R
˘˘

with its C0,1´ 1
p
`“

R, R
‰˘

version. This identification is possible due to

Morrey inequality and the regularity of the boundary of
`

R, R
˘

, see for example Theorem 5 in

subsection 5.8.4 of Evans (2010). To be more specific18, we show that tR, Ru is a C1 (and thus

Lipschitz) boundary. Consider
␣

B pR, ρq , B
`

R, ρ
˘(

, where B px0, rq means the open ball centered

at x0 with radius r, and we may take ρ “ 1
4

`

|R| ` |R|
˘

. Let R0 “ t0u, then f1 ” R, f2 ” R are

C1 functions on R0. Obviously,
`

R, R
˘

X B pR, ρq “ tr P B pR, ρq : r ą f1u and
`

R, R
˘

X B
`

R, ρ
˘

“
␣

r P B
`

R, ρ
˘

: r ă f2
(

, i.e., tR, Ru is the C1 boundary of
`

R, R
˘

.

Now, by the compact embedding W1,p ãÑ C0,1´ 1
p ´ϵ and the discussion in the next step, we can

modify (A15) to

ˇ

ˇ

ˇ

ˇ

ˇ

ż R

R
qn pxnr1q dG pr1q ´

ż R

R
q pxr1q dG pr1q

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ż R

R
p|qn pxnr1q ´ qn pxr1q| ` |qn pxr1q ´ q pxr1q|q dG pr1q

ď

ż R

R

¨

˝L1 p|xnr1 ´ xr1|q
1´ 1

p ´ϵ
` sup

yPpR,Rq

|qn pyq ´ q pyq|

˛

‚dG pr1q Ñ 0,

(A16)

where L1 is a constant, and q is a weak limit of tpxn, qnqu8
n“1, extracting a subsequence if necessary.

The existence of q P Q is guaranteed by Eberlein–Ŝmulian theorem. The continuity of q̄ pxq again

guarantees that q p¨q ď q̄ pxq.

Step 3: The objective function O : D X pr0, 1s ˆ Qq Ñ R is weakly sequentially continuous, i.e., pxn, qnq á

px, qq implies that O pxn, qnq Ñ O px, qq.

Let tpxn, qnqu8
n“1 be a sequence in D X pr0, 1s ˆ Qq such that pxn, qnq á px, qq (weakly converges

18Although the boundary of
`

R, R
˘

is simply tR, Ru. Verifying the smooth boundary conditions can be quite confus-
ing. For this reason, we belabor it a little bit here.
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to px, qq). By the discussions in the Step 2 of part 2, tqnu converges in C0,1´ 1
p ´ϵ to some q1 up to

extraction of a subsequence. q and q1 must coincide, otherwise
ş

1tq ą q1u f “: L1 p f q ‰ 0 or
ş

1tq ă

q1u f “: L2 p f q ‰ 0. L1 and L2 are continuous linear functionals on C0,1´ 1
p ´ϵ, but limkÑ8 L1 pqnk q “

L1 pq1q ‰ L1 pqq or limkÑ8 L2 pqnk q “ L2 pq1q ‰ L2 pqq, a contradiction. Therefore q “ q1, i.e.,

qn Ñ q in C0,1´ 1
p ´ϵ. Now by (A16) and a discussions similiar to Step 3 of part 1, we can get the

weak sequentially continuity of the objective function O.

Taking a maximizing sequence tpxn, qnqu8
n“1 of the optimization problem, by Step 2 of part 2,

we can extract a weakly convergent subsequence tpxnk , qnk qu8
k“1. By Step 3 of part 2, we have

O px, qq “ lim
kÑ8

O pxnk , qnk q “ sup
px1,q1qPDXpr0,1sˆQq

O
`

x1, q1
˘

.

A.7 Proof of Lemma 3

Consider the auxiliary function function

I pq; xq :“ k1 pxq q ´
k2 pxq

2

ż F´1pqq

a
adF paq , q P r0, 1s .

By direct calculation, we have

dI2 pq; xq

dx2 “ ´
k2 pxq

2 f pF´1 pqqq
ă 0, @q P r0, 1s . (A17)

The objective function O px, qq can be rewritten as O px, qq “ E rI pq pxr1q ; xqs. By (A17), I p¨; xq is

strictly concave for all x P r0, 1s, so for q1, q2 such that q1 prq ‰ q2 prq on a set of positive Lebesgue

measure, we have

O px, λq1 ` p1 ´ λq q2q “ E rI pλq1 pxr1q ` p1 ´ λq q2 pxr1qqs

ą E rλI pq1 pxr1qq ` p1 ´ λq q2 pxr1qs , @x P p0, 1s, @λ P p0, 1q ,

since by assumption g ą 0.

A.8 Proof of Proposition 5

Step 1: The existence of a maximizer.

The continuity of the objective function Opq; xq, and the compactness and closeness of Q are

shown by the proof of Theorem 1. Therefore, we need to show Dx X Q is compact.

44



MITIGATING MORAL HAZARD THROUGH ALGORITHMS

Let tqnunPN be a sequence in Dx X Q such that qn Ñ q. By definition, we have

lim
nÑ8

A
ż R

R
qnpxr1qdGpr1q ` pAx ` βq

ż R

R
q1

npxr1qr1dGpr1q “ 0

ñ A
ż R

R
qpxr1qdGpr1q ` pAx ` βq

ż R

R
q1pxr1qr1dGpr1q “ 0.

Since Q is compact and Dx X Q is closed, then Dx X Q is compact.

Step 2: The uniqueness of the maximizer. Denote the integrand of objective function Opq; xq by

uIpqpxr1qq. The second derivative of uIpqpxr1qq with respect to qpxr1q is

´

„

1
2

1
f pF´1pqpxr1qqq

k2pxq

ȷ

gpr1q ă 0, since f p¨q and gp¨q ą 0.

Therefore uIpqpxr1qq is a strictly concave function with respect to qpxr1q. For all q1, q2 P Dx X Q,

q1pxr1q ‰ q2pxr1q for some xr1, we have

uIrλq1pxr1q ` p1 ´ λqq2pxr1qs ą λuIrqpxr1qs ` p1 ´ λquIrq2pxr1qs

for some xr1, where λ P p0, 1q. It implies that

ż R

R
uIrλq1pxr1q ` p1 ´ λqq2pxr1qsdGpr1q ą

ż R

R
λuIrqpxr1qs ` p1 ´ λquIrq2pxr1qsdGpr1q

ñ

ż R

R
uIrpλq1 ` p1 ´ λqq2qpxr1qsdGpr1q ą λ

ż R

R
uIrqpxr1qsdGpr1q ` p1 ´ λq

ż R

R
uIrq2pxr1qsdGpr1q.

Here we use Dx X Q is a convex set. It implies that Opq; xq is strictly convex with respect to q and

the maximizer is unique.

A.9 Proof of Theorem 2

The proof is mainly following Theorem 2 in Evans (2010, p491).

Let q˚ P Dx X Q be the unique solution of the objective function. Fix any element q1 P Q.

Choose then any function q2 P Q with

şR
R

BI
By pr1, q˚, q˚1

qpq1 ´ q˚q ` BI
Bz pr1, q˚, q˚1

qpq1
1 ´ q˚1

qdr1
şR

R
BI
By pr1, q˚, q˚1qpq2 ´ q˚q ` BI

Bz pr1, q˚, q˚1qpq1
2 ´ q˚1qdr1

ă 0

ô

şR
R

”

BI
By pr1, q˚, q˚1

q ´ d
dr1

`

BI
Bz pr1, q˚, q˚1

q
˘

ı

pq1 ´ q˚qdr1 ` pAx ` βqr1pq1 ´ q˚q|R
R

şR
R

”

BI
By pr1, q˚, q˚1q ´ d

dr1

`

BI
Bz pr1, q˚, q˚1q

˘

ı

pq2 ´ q˚qdr1 ` pAx ` βqr1pq2 ´ q˚q|R
R

ă 0
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and

ż R

R

„

BI
By

pr1, q˚, q˚1
q ´

d
dr1

ˆ

BI
Bz

pr1, q˚, q˚1
q

˙ȷ

pq2 ´ q˚qdr1 ` pAx ` βqr1pq2 ´ q˚q|R
R ‰ 0. (A18)

(A18) is possible because of Assumption 3. Then for each 0 ď τ ď 1 and 0 ď δ ď 1,

q̃ :“ q˚ ` τpq2 ´ q˚q ` δrq1 ´ pq˚ ` τpq2 ´ q˚qqs P Q

ô p1 ´ δqp1 ´ τqq˚ ` p1 ´ δqτq2 ` δq1 P Q

since Q is convex. Now write

ipτ, δq :“
ż R

R
Ipr1, p1 ´ δqp1 ´ τqq˚ ` p1 ´ δqτq2 ` δq1, p1 ´ δqp1 ´ τqq˚1

` p1 ´ δqτq1
2 ` δq1

1qdr1.

Clearly,

ip0, 0q “

ż R

R
Ipr1, q˚, q˚1

qdr1 “ 0.

In addition, i is C1 and

Bi
Bτ

pτ, δq “ p1 ´ δq

ż R

R

BI
By

pr1, q̃, q̃1qpq2 ´ q˚q `
BI
Bz

pr1, q̃, q̃1qpq1
2 ´ q˚1

qdr1, (A19)

Bi
Bδ

pτ, δq “

ż R

R

BI
By

pr1, q̃, q̃1qrq1 ´ pq˚ ` τpq2 ´ q˚qqs

`
BI
Bz

pr1, q̃, q̃1qrq1
1 ´ pq˚1

` τpq1
2 ´ q˚1

qqsdr1. (A20)

Consequently (A18) implies that

Bi
Bτ

p0, 0q ‰ 0.

According to the Implicit Function Theorem, there exists a C1 function ϕ : R Ñ R such that

ϕp0q “ 0 and

ipϕpδq, δq “ 0 (A21)

for all sufficiently small δ. Differentiating, we discover that

Bi
Bτ

pϕpδq, δqϕ1pδq `
Bi
Bδ

pϕpδq, δq “ 0,
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whence (A19) and (A20) yield

ϕ1p0q “ ´

Bi
Bδ pϕp0q, 0q

Bi
Bτ pϕp0q, 0q

“ ´

şR
R

BI
By pr1, q˚, q˚1

qpq1 ´ q˚q ` BI
Bz pr1, q˚, q˚1

qpq1
1 ´ q˚1

qdr1

p1 ´ δq
şR

R
BI
By pr1, q˚, q˚1qpq2 ´ q˚q ` BI

Bz pr1, q˚, q˚1qpq1
2 ´ q˚1qdr1

. (A22)

Under Assumption 4, we have ϕ1p0q ą 0. By ϕp0q “ 0, ϕ1p0q ą 0 implies that 0 ď ϕpδq ď 1 for

sufficiently small positive δ, say 0 ď δ ď δ0.

Now set

q̃pδq :“ ϕpδqpq2 ´ q˚q ` δrq1 ´ pq˚ ` ϕpδqpq2 ´ q˚qqs

and write

opδq :“ Opq˚ ` q̃pδq; xq

“

ż R

R
k1pxqpq˚ ` q̃pδqqpxr1q ´

1
2

k2pxq

˜

ż F´1ppq˚`q̃pδqqpxr1qq

a
adFpaq

¸

dGpr1q.

Since (A21), we see that q˚ ` q̃pδq P Dx X Q.

By q˚ maximizes Opq; xq, we have op0q ě opδq for all 0 ď δ ď 1. Hence

0 ě o1p0q “

ż R

R
k1pxq

“

ϕ1p0qpq2 ´ q˚q ` q1 ´ q˚
‰

´
1
2

k2pxqF´1pq˚q
“

ϕ1p0qpq2 ´ q˚q ` q1 ´ q˚
‰

dGpr1q.

(A23)

Define

λ :“

şR
R k1pxqpq2 ´ q˚q ´ 1

2 k2pxqF´1pq˚qpq2 ´ q˚qdGpr1q

p1 ´ δq
şR

R
BI
By pr1, q˚, q˚1qpq2 ´ q˚q ` BI

Bz pr1, q˚, q˚1qpq1
2 ´ q˚1qdr1

, (A24)

then we see that

ϕ1p0q

ż R

R
k1pxqpq2 ´ q˚q ´

1
2

k2pxqF´1pq˚qpq2 ´ q˚qdGpr1q

“ ´λ

ż R

R

BI
By

pr1, q˚, q˚1
qpq1 ´ q˚q `

BI
Bz

pr1, q˚, q˚1
qpq1

1 ´ q˚1
qdr1

and plugging this into (A23), we have

0 ě

ż R

R

`

q1 ´ q˚
˘

„

k1pxq ´
1
2

k2pxqF´1pq˚q

ȷ

dGpr1q
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´ λ

ż R

R

BI
By

pr1, q˚, q˚1
qpq1 ´ q˚q `

BI
Bz

pr1, q˚, q˚1
qpq1

1 ´ q˚1
qdr1

“

ż R

R

`

q1 ´ q˚
˘

„

k1pxq ´
1
2

k2pxqF´1pq˚q

ȷ

dGpr1q ´ λ

ż R

R
Apq1 ´ q˚q ` pAx ` βqr1pq1

1 ´ q˚1
qdGpr1q

“

ż R

R

`

q1 ´ q˚
˘

„

k1pxq ´
1
2

k2pxqF´1pq˚q

ȷ

dGpr1q ´ λ
“

Agpr1q ´ pAx ` βqpgpr1q ` r1g1pr1qq{x
‰

dr1

` λpAx ` βqr1gpr1q{xrq1pxr1q ´ q˚pxr1qs

ˇ

ˇ

ˇ

R

R

“

ż R

R

`

q1 ´ q˚
˘

„

k1pxq ´
1
2

k2pxqF´1pq˚q ` λβ{x ` λpA ` β{xqr1g1pr1q{gpr1q

ȷ

dGpr1q

` λpAx ` βqr1gpr1q{x rq1pxr1q ´ q˚pxr1qs

ˇ

ˇ

ˇ

R

R
.

Example 1. Consider that the risk return Rt follows a uniform distribution UrR, Rs, indicating

that r1g1pr1q ` gpr1q is constant and thus the Euler-Lagrange approach under Assumption 3 is not

appropriate. Let qp¨q simply takes a bang-bang form:

qpr; x, q̂q “

$

&

%

q̂, R P rxR, xRs;

0, otherwise ,

where x P r0, 1s. Under the bang-bang probability qpr; x˚, q̂q, the incentive constraint (6) is

x P arg max
x1

#

px1A ` βq

ż mintx˚,x1uR

mintx˚,x1uR
q̂dGpr{x1q

+

ñx P arg max
x1

#

px1A ` βqq̂
„

Gpmintx˚, x1uR{x1q ´ Gpmintx˚, x1uR{x1q

ȷ

+

.

Note that

arg max
x1ďx˚

px1 A ` βqq̂
„

Gpx1R{x1q ´ Gpx1R{x1q

ȷ

“ x˚;

arg max
x1ěx˚

px1 A ` βqq̂
„

Gpx˚R{x1q ´ Gpx˚R{x1q

ȷ

“ arg max
x1ěx˚

x˚pA ` β{x1qq̂ “ x˚,

implying that x˚ is always incentive compatible without information rent. This result reflects the

fact that algorithms do influence managers’ decisions and rectify contractual flaws. In particular,

when returns are uniformly distributed, this algorithm achieves exactly the first best equilibrium.
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A.10 Proof of Proposition 6

Given x˚ and λ ‰ 0, we have

ErR2 ´ ϕpR2q|x˚s ´
1
2

F´1
ˆ

k1px˚q

k2px˚q{2

˙

ErpR2 ´ ϕpR2qq2|x˚s “ 0.

Plug λ ‰ 0 into (20), there exists r, r1 P rR, Rs such that

â˚prq “ F´1pq˚prqq ą F´1
ˆ

k1px˚q

k2px˚q{2

˙

ą â˚pr1q “ F´1pq˚pr1qq.

Then we obtain

ErR2 ´ ϕpR2q|x˚s ´
1
2

â˚prqErpR2 ´ ϕpR2qq2|x˚s ă 0 ă ErR2 ´ ϕpR2q|x˚s ´
1
2

â˚pr1qErpR2 ´ ϕpR2qq2|x˚s.

B Alternative Timeline and Information Settings

In the baseline model, the roles of the recommendation algorithm are twofold. (i) It processes two

information, fund historical returns and investors’ risk aversions. (ii) By algorithmic automation,

it provides a commitment power which ensures execution even realizes cases with ex-post ineffi-

ciency. To further understand the economic meaning of using an algorithm, we separately mute

the above functionalities by considering alternative information structures and timeline, as shown

in Figure 3, then analyze what the equilibrium would be. For tractability, we follow the discrete

setting in Section 4. We analyze each case respectively, and end up with a visualization of their

comparison in Figure 4.

Blind investment. In a primordial case, non-professional investors do not adopt a platform, but

meet the fund manager by chance. They do not know about the historical returns R1 and their risk

aversion a as Timeline 2 describes. They set up a belief about their risk aversions, say a population

average risk aversion, and decide the investment choices.

Proposition 7. Given the contract ϕp¨q, x “ 1 is a dominant strategy of the fund manager.

1. If k1p1q ´ 1{2Erask2p1q ě 0, there exists an equilibrium where all investors invest in the fund and

the manager chooses x˚ “ 1.

2. If k1p1q ´ 1{2Erask2p1q ă 0, there exists an equilibrium where no investor invest in the fund and the

manager chooses x˚ “ 1.

When the investor has no information, Proposition 7 describes that, given a realistic simple
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contract, the trade can only be made under x “ 1 according to the manager’s risk-neutral prefer-

ences, regardless of the distribution of the investor’s own risk aversion. Therefore, there is no risk

sharing at this point. Managers chase on risks, and investors inappropriately take the risk.

Investment on fund distribution platforms. We consider a scenario (captured by Timeline 3)

where investors see the fund on a distribution platform which provides the historical return R1.

This setup is equivalent to assuming that the platform simply aggregates the historical returns of

the fund, corresponding to the context of Hong et al. (2024). Also, they make decisions based on

their belief, the population average risk aversion. Denote the strategy of investors by qI : rR, Rs Ñ

r0, 1s.

Proposition 8. Suppose the contract ϕp¨q is given and the investors can observe the realization of historical

return R1.

1. If k1p1q ´ 1{2Erask2p1q ě 0, there exists an equilibrium where all investors invest in the fund and

the manager chooses x˚ “ 1.

2. If k1p1q ´ 1{2Erask2p1q ă 0, there is no equilibrium where the expected payoff of investors is strictly

positive, but exists an equilibrium pxI , q˚p¨qq,

q˚prq “

$

’

’

’

’

&

’

’

’

’

%

0, r P rR, xI Rq Y pxI R, 0q Y p0, xI Rq Y pxI R, Rq;

1, r P rxI R, xI Rs Y rxI R, xI Rs;

qp0q, r “ 0,

where

xI “ maxtx P r0, 1s : k1pxq ´ 1{2Erask2pxq ě 0u,

xI “ mintx P r0, 1s : k1pxq ´ 1{2Erask2pxq ě 0u,

qp0q P

„

0, min
"

pAxI ` βqp1 ´ pp0qq

Ap1 ´ xIqpp0q
, 1
*ȷ

and the expected payoff of investors is zero.

Compared to classic principal-agent problems, the platform empowers investors to form de-

cisions in response to historical returns, which allows fund managers to credibly deliver (noisy

at r “ 0) signals about x, thus facilitating trading. Therefore, compared to blind investment, the

platform can make the equilibrium with investment always exist.

Compared to the baseline model in Figure 1, it is not enough to increase the investor’s expected
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return by allowing investors to observe historical returns. Because the fund manager takes actions

first and is unable to adjust x later, the investor could always choose to buy once they infers an x

(when the historical return is non-zero) that generates a positive expected return.19 Anticipating

this, the fund manager will always increase x to xI , where the investor’s expected return is 0. The

underlying reason is that any atomic investor does not have the bargaining power on x, and also

cannot commit to invest when a proper x is observed.

To further see the power of commitment, we can further suppose the support of risky returns

is tR, Ru, i.e., investors always correctly learn x. Then we have the following implication.

Corollary 2. Suppose supppRtq “ tR, Ru and k1p1q ´ 1{2Erask2p1q ă 0, there is no equilibrium with

strictly positive investor expected payoff, even though there is no information asymmetry.

In addition, when the realized return is zero, investors cannot recognize x, similar to the base-

line. This leads to conservative investments by investors to avoid the fund manager’s deviation.

Thus there is still a no-trade efficiency loss due to the non-informative signal r “ 0.

Additional information about the fund. Continue with the previous case. A natural idea for the

platform is to provide information about the fund in addition to an observation of the historical

return, e.g., a series of historical returns, Sharpe ratios, etc. These cases can be directly analyzed

within our continuous framework–the additional information solely contributes to the conditional

probabilities. Align with practice, these achievements can increase the confidence of inferring the

allocation. However, they still fail to replace the algorithm, as the algorithm also processes infor-

mation about investors’ risk aversion. Therefore, there is no fundamental change if just allowing

for additional information about the fund.

Investment experts. Then does algorithm only serve as informing investors about their risk

aversion? We consider the case (captured by Timeline 4) when the investors are experts: they

observe the historical return R1 and know the risk aversion a. Then their investment choice is de-

termined by two information, somehow similar to the algorithm, denoted as mI : ra, as ˆ rR, Rs Ñ

r0, 1s. For any a, denote the minimum and maximum of tx P r0, 1s : k1pxq ´ 1{2ak2pxq ě 0u as

xIpaq and xIpaq, respectively, and âpxq “ k1pxq{pk2pxq{2q. Proposition 9 analytically solves the

equilibrium allocation and the corresponding investment choice.

19When the distribution of risky returns is continuous, the investors have a noisy signal about x.
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Proposition 9. For any equilibrium px˚, m˚q (if exists), x˚ satisfies that for any x P r0, 1s,

px˚ A ` βq

«

pp0q

ż âpx˚q

a
1dFpaq ` ppRq

ż âpx˚q

a
1dFpaq ` ppRq

ż âpx˚q

a
1dFpaq

ff

ě pxA ` βq

«

pp0q

ż âpx˚q

a
1dFpaq ` ppRq

ż âpxq

a
1dFpaq ` ppRq

ż âpxq

a
1dFpaq

ff

. (B25)

For a ă âpx˚q,

m˚
I pr, aq “

$

&

%

0, if r P rR, xIpaqRq Y pxIpaqR, 0q Y p0, xIpaqRq Y pxIpaqR, Rq,

1, if r P rxIpaqR, xIpaqRs Y rxIpaqR, xIpaqRs Y t0u;

For a ą âpx˚q,

m˚
I pr, aq “

$

&

%

0, if r P rR, xIpaqRq Y pxIpaqR, 0q Y p0, xIpaqRq Y pxIpaqR, Rq Y t0u,

1, if r P rxIpaqR, xIpaqRs Y rxIpaqR, xIpaqRs;

For a “ âpx˚q,

m˚
I pr, aq “

$

&

%

0, if r P rR, xIpaqRq Y pxIpaqR, 0q Y p0, xIpaqRq Y pxIpaqR, Rq,

1, if r P pxIpaqR, xIpaqRq Y pxIpaqR, xIpaqRq;

and m˚
I pr, aq can be arbitrarily assigned in r0, 1s when r P txIpaqR, xIpaqR, xIpaqR, xIpaqR, 0u.

Compared to Proposition 8, the additional information about a allows investors to always re-

alize non-negative expected payoff, resulting in a strictly positive aggregate investor expected

utility. The manager no longer uses Eras in deciding x, but considers the entire distribution F.

Therefore, when the historical return is informative, the manager does suffer a punishment of risk

chasing, as high-risk-aversion investors would exit. On the other hand, investors with sufficiently

low risk aversion always invest, even without any information about x. Therefore, investors can-

not generate enough punishment when the historical return is not informative, making the result-

ing equilibrium allocation x˚ higher than in the baseline case.

So far, we have seen the algorithm serves not only an information delivery mechanism, but

also a source of commitment power. Even with experts, the algorithm can add noise to their risk

aversion observations by a threshold function, thus realizing that fewer investors would like to

invest when the historical return is less informative, thus alleviating fund managers’ incentives to

raise x.
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B.1 Proof of Proposition 7

Obviously, x “ 1 is a dominant strategy of the fund manager. Given x “ 1 and the expected level

of risk aversion is Eras, if the expected utility of investment is non-negative, k1p1q ´ 1{2Erask2p1q ě

0, investors could choose to invest and all agents do not deviate. Conversely, if the expected utility

of investment is negative, that is k1p1q ´ 1{2Erask2p1q ă 0, the investors do not invest, and all

agents do not deviate.

B.2 Proof of Proposition 8

If k1p1q ´ 1{2Erask2p1q ě 0, then investors should always invest in the fund given x “ 1. Given

qIp¨q ” 1, the manager prefer x “ 1.

If k1p1q ´ 1{2Erask2p1q ă 0, we define the minimum and maximum of tx P r0, 1s : k1pxq ´

1{2Erask2pxq ě 0u as xI and xI P p0, 1q, respectively. Here we use the fact that k1pxq ´ 1{2Erask2pxq

is concave and strictly continuous with respect to x. Since k1p0q ´ 1{2Erask2p0q ă 0, we have

xI ą 0. Consider the strategy of the investors. When the historical return is non-zero, investors can

know the fund manager’s choice of x. As a result, consider the subgames, given r P pxI R, xI Rq Y

pxI R, xI Rq, investors always should invest in the fund, that is qIprq “ 1. Similarly, given r P

rR, xI Rq Y pxI R, 0q Y p0, xI Rq Y pxI R, Rq, investors should not invest in the fund, that is qIprq “ 0.

As for r P txI R, xI R, xI R, xI Ru, investors are indifferent to qIprq “ qr P r0, 1s, because

qr rk1pxq ´ 1{2Erask2pxqs “ qr ˆ 0 “ 0, @qr P r0, 1s.

The investor cannot recognize x when the return is 0, so qIp0q depends on the equilibrium we

consider.

Given k1p1q ´ 1{2Erask2p1q ă 0, we suppose there exists an equilibrium px˚, q˚
I p¨qq where the

investors invest in the fund with some strictly positive probability, which implies x˚ P rxI , xIs.

Given the above response of investors, we know that the manager prefers suprxI , xIq “ xI to any

x P r0, xIq. This is because,

pxA ` βqrqIp0qpp0q ` qIpxRqppRq ` qIpxRqppRqs

“ pxA ` βqrqIp0qpp0q ` ppRq ` ppRqs

ď sup
xPpxI ,xIq

pxA ` βqrqIp0qpp0q ` ppRq ` ppRqs, for all x P pxI , xIq,

and

pxA ` βqrqIp0qpp0q ` qIpxRqppRq ` qIpxRqppRqs
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“ pxA ` βqqIp0qpp0q

ď sup
xPpxI ,xIq

pxA ` βqrqIp0qpp0q ` ppRq ` ppRqs, for all x P p0, xIq,

If x˚ P r0, xIq, the manager can always deviate from x˚ to choose the larger x1 P px˚, xIq. Therefore,

if there exists such an equilibrium characterized by px˚, q˚
I q, x˚ “ suppxI , xIq “ xI , otherwise

the manager always deviate x˚. This also means that the expected payoff of investors must be

0 according to the definition of xI . Then the first necessary condition of the equilibrium is that

q˚pxI Rq and q˚pxI Rq need to satisfy

pAxI ` βqrqIp0qpp0q ` qIpxI RqppRq ` qIpxI RqppRqs

ě sup
xPrxI ,xIq

tAx ` βqrqIp0qpp0q ` ppRq ` ppRqsu “ pAxI ` βqqIp0qpp0q

ñ qIpxI Rq “ qIpxI Rq “ 1,

where the last line is because, if qIpxI Rq ă 1 or qIpxI Rq ă 1, there always exists x1 P pxI , xIq such

that

pAxI ` βqrqIp0qpp0q ` qIpxI RqppRq ` qIpxI RqppRqs

ă pAx1 ` βqrqIp0qpp0q ` ppRq ` ppRqs “ pAx1 ` βqqIp0qpp0q.

At the same time, the second necessary condition is that, qIp0q need to satisfy

pAxI ` βqrqIp0qpp0q ` qIpxI RqppRq ` qIpxI RqppRqs

“ pAxI ` βqrqIp0qpp0q ` ppRq ` ppRqs

ě sup
xPpxI ,1s

pAx1 ` βqrqIp0qpp0q ` qIpx1RqppRq ` qIpx1RqppRqs

“ pA ` βqqIp0qpp0q

ô pAxI ` βqrqIp0qpp0q ` ppRq ` ppRqs ě pA ` βqqIp0qpp0q

ô qp0q ď
pAxI ` βqp1 ´ pp0qq

Ap1 ´ xIqpp0q
.

The second line uses qIpxI Rq “ qIpxI Rq “ 1 in the equilibrium. The forth line uses qIpx1Rq “

qIpx1Rq “ 0 for all x1 P pxI , 1s.
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In addition, we can see that pxI , q˚
I p¨qq is a PBE, where

q˚
I prq “

$

’

’

’

’

&

’

’

’

’

%

0 , if r P rR, xI Rq Y pxI R, 0q Y p0, xI Rq Y pxI R, Rq

1 , if r P rxI R, xI Rs Y rxI R, xI Rs

qp0q , if r “ 0

and

qp0q P

„

0, min
"

pAxI ` βqp1 ´ pp0qq

Ap1 ´ xIqpp0q
, 1
*ȷ

.

B.3 Proof of Proposition 9

Consider the subgames with given historical r, for any a, if r P pxIpaqR, xIpaqRq Y pxIpaqR, xIpaqRq,

investors with a always should invest in the fund, that is mpr, aq “ 1. Similarly, given r P

rR, xIpaqRq Y pxIpaqR, 0q Y p0, xIpaqRq Y pxIpaqR, Rq, investors should not invest in the fund, that

is mpr, aq “ 0. As for r P txIpaqR, xIpaqR, xIpaqR, xIpaqRu, investors are indifferent to mpr, aq “

mr,a P r0, 1s.

Note that k1pxq ´ 1{2ak2pxq is strictly decreasing with respect to a. Then we know that, when

xIpaq P p0, 1q and xIpaq P p0, 1q, xIpaq strictly decreases with a and xIpaq strictly increases with a. It

implies that if mpRx, aq “ 1 for some a, then mpRx, a1q “ 1 for all a1 ď a.

Define âpxq as supta P ra, as : mpxR, aq “ 1u “ k1pxq{pk2pxq{2q.

Then, the expected payoff of the manager is

pxA ` βq

«

pp0q

ż a

a
mpa, 0qdFpaq ` ppRq

ż a

a
mpa, xRqdFpaq ` ppRq

ż a

a
mpa, xRqdFpaq

ff

“ pxA ` βq

«

pp0q

ż a

a
mpa, 0qdFpaq ` ppRq

ż âpxq

a
1dFpaq ` ppRq

ż âpxq

a
1dFpaq

`ppRq

ż a

âpxq

0dFpaq ` ppRq

ż a

âpxq

0dFpaq

ff

“ pxA ` βq

«

pp0q

ż a

a
mpa, 0qdFpaq ` ppRq

ż âpxq

a
1dFpaq ` ppRq

ż âpxq

a
1dFpaq

ff

.

In the second line, we use the fact that the value of mpâ, xRq and mpâ, xRq does not influence the

value of the integral.

Then we suppose there exists an equilibrium px˚, m˚
I q. Different with Proposition 8, on the

equilibrium path, investors observing a ă âpx˚q invest in the fund even if the historical return is

0, that is mpa, 0q “ 1. Meanwhile, on the equilibrium path, investors observing a ą âpx˚q do not
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invest in the fund if the historical return is 0, that is mpa, 0q “ 0. Given the above response of

investors, one of the necessary conditions of equilibrium px˚, m˚
I q is that the manager prefers x˚ to

any x P r0, x˚q

px˚ A ` βq

«

pp0q

ż âpx˚q

a
1dFpaq ` ppRq

ż âpx˚q

a
1dFpaq ` ppRq

ż âpx˚q

a
1dFpaq

ff

ě pxA ` βq

«

pp0q

ż âpx˚q

a
1dFpaq ` ppRq

ż âpxq

a
1dFpaq ` ppRq

ż âpxq

a
1dFpaq

ff

.

If the manager chooses a lower x, it can increase the probability of being invested in at positive and

negative returns, but the probability of being invested in at the zero return remains unchanged,

and the expected return on being invested in decreases.

Another necessary condition of equilibrium px˚, m˚
I q is that the manager prefers x˚ to any

x P px˚, 1s

px˚ A ` βq

«

pp0q

ż âpx˚q

a
1dFpaq ` ppRq

ż âpx˚q

a
1dFpaq ` ppRq

ż âpx˚q

a
1dFpaq

ff

ě pxA ` βq

«

pp0q

ż âpx˚q

a
1dFpaq ` ppRq

ż âpxq

a
1dFpaq ` ppRq

ż âpxq

a
1dFpaq

ff

.

Again, here we use the fact that the value of mpâ, 0q does not influence the value of the integral.

C Institutional Background

This appendix provides examples of real-world intermediaries in delegated asset management,

with a particular focus on personalized advisories and/or recommendation signals.

As new entrants to the asset management business, fintech platforms are the ones that most

closely correspond to our baseline settings. They prioritize maximizing and protecting users’

investments. They have been investing considerable effort in improving their technology and

designs to provide better personalized services. For example, Yieldstreet, founded in New York in

2015, has grown up to a large business scale with more than 450,000 users and $3.9 billion invested

value up to September 2024.20 It connects retail investors with alternative investments managed

by various fund managers, offering personalized recommendations based on user profiles and

investment goals. Figure C1 illustrates the three main steps involved in the platform. First, the

platform recommends investment opportunities, highlighting its advantages in offering a wide

range of options (including real estate, art and legal finance) and providing easy access. Second,

20According to https://www.yieldstreet.com/about/ Date of visit: Sep 09, 2024.
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it helps users to invest according to their risk tolerance and the projects’ past performance. Third,

the platform tracks the earnings and especially visualize asset allocations.

Commercial banks have a long-standing tradition of providing asset management services.

Some businesses have been split into specialized companies or platforms. In this era of digital

finance, easy access, low costs for online/in-app usage and personalized services are commonly

highlighted. For example, Merrill Guided Investing (under Bank of America), as shown in Figure

C2 provides both automated investing and guided advisory services. The platform integrates hu-

man advisors with digital tools, allowing investors to choose from curated portfolios managed by

fund managers. Merrill Lynch fund managers and other partner funds can promote their strate-

gies on the platform, and users receive personalized recommendations based on their goals.

Similarly, Wells Fargo Intuitive Investor combines robo-advisory services with access to finan-

cial advisors and a marketplace for managed funds. Fund managers can promote their funds

on the platform, and users receive investment recommendations based on their profiles and risk

tolerance, as Figure C3 shows.

Since 2012, China has permitted platforms to distribute mutual funds. Technology companies

that are independent of fund families, banks and brokers are allowed to issue mutual funds via

fintech platforms. One of the largest platforms, Ant Financial, is a typical example of a platform

that assesses investors’ risk tolerance and investment goals and then recommends suitable funds.

Ant’s ecosystem comprises five major components: online consumption, mobile payment, in-

vestment, consumer credit, and healthcare insurance. For a detailed introduction, see for example

Hong et al. (2020). This all-in-one ecosystem enables it to conduct analysis of investor prefer-

ences, as shown in Figure C4. The app interface features mutual fund recommendation pages, as

illustrated in Figure C5.

Furthermore, Ant Financial has partnered with Vanguard Group to develop a fund investment

advisory service called “BangNiTou”. The system evaluates an individual’s daily consumption,

financial habits, and other data to create a personalized investment strategy based on their risk

assessment results. This includes determining investment objectives, asset allocation, and ex-

pected returns. After the risk assessment and setting of investment goals, BangNiTou works by

recommending a portfolio selected from 6,000 mutual funds, see Figure C6. In 2021, assets under

BangNiTou sits at ¥6.9 billion (about $1 billion) (Bloomberg, 2021). BangNiTou adopts a "buyer’s

agent" model, customizing financial planning based on an investor’s risk assessment and a cu-

rated pool of mutual funds. The platform charges a service fee of approximately 0.0014% of total

daily assets (0.5% annually). Fees related to fund transactions are charged according to the pricing

rules of the respective fund products.
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Figure C1: Delegated Investment service of Yieldstreet

Source: https://www.yieldstreet.com/how-it-works/. Date of visit: Sep 09, 2024.
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Figure C2: Personalized investment matching service of Merrill Guided Investing

Source: https://www.merrilledge.com/offers/retirement-mgi. Date of visit: Sep 09, 2024.

Figure C3: Intuitive Investor’s Personalized investment based on risk tolerance

Source: https://www.wellsfargoadvisors.com/services/intuitive-investor.htm. Date of visit: Sep 09, 2024.
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Figure C4: Analysis of Risk Tolerance and Investment Object in Ant Financial

(a) Recommended Funds (b) Detail of A Recommended Fund

Figure C5: Recommendation service of Ant Group Co. Ltd.
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(a) Recommended Strategy (b) Detail of the Strategy

Figure C6: Robo-advisory service of BangNiTou
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