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Abstract

The assets under management of option-trading exchange-traded funds (ETFs) have

grown more than 120-fold since 2018. This paper exploits option-trading ETFs to exam-

ine how flow-induced demand pressure and exogenous rollover trade demand pressure

affect the implied volatility surface. I show that demand pressure from these ETFs

significantly affects implied volatility surface, with the magnitude of the effect varying

with option characteristics—particularly moneyness and days to expiration—due to

differences in option vega. In addition, liquidity frictions also explain the magnitude of

impact. These findings suggest that flow-induced demand pressure plays an important

role in shaping both the term structure and moneyness curve of implied volatility.
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1 Introduction

The assets under management (AUM) of option-trading exchange-traded funds (ETFs) reached
$125 billion by the end of June 2024, representing a more than 120-fold increase since 2018.
These ETFs represent a specialized subset of exchange-traded funds that employ options,
either independently or in combination with underlying assets, to achieve targeted investment
objectives. Investor flows from mutual funds (Chang et al., 2015; Lou, 2012; Pavlova and
Sikorskaya, 2023) and ETFs (Easley et al., 2021; Brown et al., 2021) are known to affect the
prices and volatilities of underlying assets, with recent studies highlighting the impact of flows
from specific ETF segments, such as leveraged ETFs (Davies, 2022). Option-trading ETFs,
particularly covered call ETFs, have recently drawn attention from many practitioners who are
concerned that rising investor inflows—and the resulting increase in written call options—may
have contributed to the suppression of the VIX index.1 Despite their increasing market
presence and media attention2, the price implications of the rapidly expanding option-trading
remain largely unexplored.

This paper evaluates impact of flow-induced demand pressure from option-trading ETFs
on implied volatility surface. I proxy for flow-induced demand pressure at the option level
by mapping ETF fund flows to the specific option mandated in each fund’s prospectus. The
decomposition from ETF flow to granular option level demand, based on days to expiration,
moneyness, option type (call/put) and underlying asset, enables analysis of heterogeneous
impact of demand pressure on implied volatility.

Furthermore, to address potential endogeneity in ETF fund flows, I exploit the mechanical
nature of rollover trades. ETFs that implement predefined option strategies with minimal
discretion systematically roll over the same type of option contracts upon the expiration of
existing positions. Rollover trades are exogenous because they are mechanically determined by
the ETF’s predefined strategy and predefined outcome period, rather than market conditions
or managerial discretion. This rule-based structure provides a sharp identification, as the
resulting demand pressure is unrelated to contemporaneous information or price movements

1JPMorgan blames JPMorgan for suppressed volatility and Structured products and the ‘broken VIX’
discourse.

2See more, Bank for International Settlements (BIS) associates drop in VIX with proliferation of yield-
enhancing structured products, such as covered call ETFs. Conversely, research from the Chicago Board
Options Exchange (CBOE) argues that the impact of option income ETFs on the VIX is minimal. In addition,
a note from AQR on Option-based ETF performance.
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of underlying.

Flow-induced demand pressure significantly impacts the implied volatility of associated
options while controlling for past implied volatility level and underlying asset return, consistent
with the hypothesis that increased buying (selling) pressure raises (lowers) option prices
and, in turn, implied volatility. Plausibly exogenous rollover demand pressure confirms the
significant effect: a one-standard-deviation increase in buying pressure from rollovers results
in a 0.008 standard deviation increase in implied volatility on average.

While the average measure of price impact remains statistically modest, the high granu-
larity of dataset in this study allows a further investigation of price impact across options with
varying characteristics. The effect of demand pressure on implied volatility is theoretically
inversely related to an option’s vega, which reflects an option’s price sensitivity to changes in
implied volatility (Gârleanu et al., 2009). As option vega varies with option characteristics such
as moneyness and days to expiration, a given level of demand pressure can have heterogeneous
effects on implied volatility. Consistent with the theory, the strongest effects are observed in
near expiry options and those that are deep in- or out-of-the-money, where vega is typically
lower. The difference in the magnitude of impact is substantial. A one-standard-deviation
increase in buying pressure can result in an increase in implied volatility of up to 38.1 standard
deviations, depending on option characteristics. These results highlight the role of demand
pressure in contributing to the term structure and moneyness curve of implied volatility
surface.

Prior research has documented the existence of volatility smiles and smirks, attributing
these patterns, in part, to demand-driven price pressures (Bollen and Whaley, 2004; Xing
et al., 2010). Building on this literature, I show that flow-induced demand pressure has a more
pronounced impact on in-the-money (ITM) options compared to out-of-the-money (OTM)
options. This highlights the role of demand pressure in shaping the asymmetry of the implied
volatility surface.

To study the impact of market frictions on price pressure effects, I focus on the measures
of liquidity in the option market. In less liquid markets, market makers face greater difficulty
in hedging their exposures (delta, vega, etc.) efficiently and at low cost. As a result, they
require greater compensation for bearing these risks, which leads to elevated implied volatility.
Consistent with prior research showing that liquidity influences option pricing and implied
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volatility patterns (Chou et al., 2011; Brenner et al., 2001; Etling and Miller, 2000), I find
that in less liquid option markets, flow-driven demand pressure can exert a stronger influence
on implied volatility.

Finally, this paper investigates the impact of option-trading ETFs on the VIX index.
By incorporating all rollover trades involving option contracts that could potentially affect
the VIX index, the analysis finds that the demand pressure from these ETF-driven trades
has an economically small and statistically insignificant effect. This limited impact is largely
attributable to the narrow overlap between the specific option contracts used in the VIX
calculation and those actively traded by option-trading ETFs, which constrains their direct
influence on the VIX.

Options provides important information for the underlying assets returns, and facilitates
the price discovery process for the underlying assets. Under no-arbitrage theory, option prices
should be independent of investor demand, as payoffs can be replicated using the underlying
asset and a risk-free asset. However, due to hedging constraints and exposure to informed
trading, option market makers cannot fully offset inventory risk (Muravyev, 2016; Gârleanu
et al., 2009; Dim et al., 2024; Staer, 2017). Consequently, demand pressure affects option
prices as market makers adjust prices to manage risk (Bollen and Whaley, 2004; Eaton et al.,
2024; Hu et al., 2023).

While flow-induced demand pressure is well studied in other asset classes, such as equities
(Chang et al., 2015; Lou, 2012) and commodities (Tang and Xiong, 2012), research in the
options market remains limited. Recent studies (Eaton et al., 2024; Lipson et al., 2023;
Bryzgalova et al., 2023) emphasize the growing influence of demand pressure from retail
option investors. Additional work has focused on ultra-short-term instruments like zero-days-
to-expiration (0DTE) options, where demand shocks can lead to sharp price movements
and volatility spikes (Vilkov, 2024; Beckmeyer et al., 2023; Dim et al., 2024). However, the
role of institutionally aggregated demand—such as that generated by systematic trading in
ETFs—remains largely unexplored. ETF-induced demand is structural by design, and thus
may have a more persistent and systemically relevant impact on option pricing.

This paper contributes to several strands of literature. Firstly, it aligns with a substantial
body of research that suggests demand pressures can significantly affect asset prices. Flow-
induced demand is well documented in equities (Coval and Stafford, 2007; Ben-Rephael et al.,
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2012), with ETF flows shown to predict both future returns (Brown et al., 2021; Lou, 2012)
and stock volatility (Lazo-Paz, 2024). Evidence from the options market suggests similar
effects on option prices and implied volatility. Bollen and Whaley (2004) show that net buying
pressure, particularly for index puts, is associated with changes in implied volatility. Gârleanu
et al. (2009) develop a theoretical model in which option demand alters the pricing kernel,
impacting both option prices and volatility. More recently, Eaton et al. (2024) find that retail
option demand significantly affects implied volatility. Building on this literature, the present
paper provides novel evidence that institutional demand—arising from systematic trading by
option-trading ETFs—also contributes to option pricing dynamics.

Second, this paper relates to the literature on the shape of the implied volatility surface.
Prior research shows that its features—such as term structure (Mixon, 2007; Vasquez, 2017),
moneyness (Dennis and Mayhew, 2002; Pan, 2002; Xing et al., 2010; Yan, 2011), and option
type (Bali and Hovakimian, 2009; Cremers and Weinbaum, 2010; An et al., 2014; Han and Li,
2021)—contain information on the underlying asset. This paper suggests that the flow-driven
demand price pressure, which does not appear to contain private information, also plays a
part in the shape of implied volatility surface.

This paper contributes to the literature on asset management vehicles that employ
derivatives, particularly options. Cici and Palacios (2015) examine mutual fund option usage,
identifying motives such as income generation and portfolio insurance, but also documenting
underperformance among funds engaging in speculative strategies. Aragon and Martin (2012)
analyze hedge funds’ option positions, emphasizing their informed volatility timing in a less
regulated environment. This study complements their work by focusing on ETF option
strategies and their broader market implications.

The remainder of the paper is organized as follows. Section 2 provides an overview
of option-trading ETFs and decomposes their strategies. Section 3 discusses the data and
flow-induced demand pressure variable, and presents descriptive statistics. Section 4 and 5
present empirical results that demand pressure from option trading ETFs affects implied
volatility surface. Section 6 investigates the impact of option trading ETFs on VIX index.
Section 7 concludes.
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2 Institutional Details and Data

2.1 Overview of Option Trading ETFs

Option-trading ETFs represent a specialized subset of ETFs that utilize options alone or in
conjunction with underlying assets to achieve specific investment objectives. These ETFs
typically implement well-defined option strategies, such as covered calls, buffers, or spreads,
to generate income or manage risk. By strategically integrating options, these funds provide
investors with exposure to various risk-return profiles, making them suitable for different
market conditions and investment goals.

Table 1 exhibits the snapshot of fund management firms that offer option-trading ETFs.
Column (1) shows the number of option trading ETFs, column (2) - (4) show the number of
ETFs, dead funds and all funds offered by the firms. The main providers of option trading
ETFs are firms that specialize in ETFs, such as Innovator, First Trust, Elevate(YieldMax),
Global X, and Pacer. Besides, large fund management firms also enter this market to complete
their product profiles, i.e., BlackRock, State Street Global Advisors.

Figure 1 shows the growth trajectory of option-trading ETFs and their total AUM over
time. By the end of June 2024, there are 423 option-trading ETFs, collectively managing
an AUM of $125 billion. While relatively small compared to the broader ETF market,
option-trading ETFs is growing at a faster speed than the broader ETF market.

The proportion of an option-trading ETF’s total market value allocated to options
varies considerably depending on the strategy it employs, as will be discussed in detail in
Section 2.3. Some ETFs, e.g., buffer ETFs, use options as their primary means of obtaining
market exposure, with options comprising up to 99% of their total portfolio market value. In
contrast, others employ options as an overlay on top of the underlying securities to enhance
income, accounting for a very small fraction of their total portfolio market value. Quantifying
the volume of option contracts traded by ETFs is challenging as transactional-level data of
ETFs is unavailable. Therefore, this paper seeks to measure flow-induced demand pressure
by fund flow and predefined option strategy, rather than directly quantifying the volume of
option trades.
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2.2 Flex Options

More than 90% of the option-trading ETFs in the sample utilize FLexible EXchange Options
(hereafter FLEX options). FLEX options3 are exchange-traded, non-standardized options
that allow investors to customize key contract terms, including strike prices, expiration dates,
and exercise styles. In terms of market share, FLEX options currently make up nearly 1.7%
of the total listed options volume, with peak days topping 2 million contracts, or 4% of the
market4.

The primary distinction between FLEX options and standardized options lies in their
level of customization. Standardized options provide a predefined grid of strike prices and
expiration dates, whereas FLEX options allow participants to tailor these parameters to meet
their specific needs. Unlike standardized options, whose prices are listed in an options chain,
FLEX options utilize a request-for-quote (RFQ) process5. This process involves soliciting
quotes from the exchange and may include negotiations to arrive at a mutually agreeable
price.

Demand pressure to FLEX options does not directly affect the prices of standardized
option contracts, which are used to derive the implied volatility surface. However, it influences
the implied volatility surface indirectly through the arbitrage activities of market makers.
The process to offset and hedge FLEX options essentially involve both FLEX options and
standardized options by market makers6. As a result, this facilitates the transmission of
demand pressure between the FLEX options market and the standardized options market,
establishing a connection between the two. Therefore, the implied volatility surface from
FLEX options and standardized options should theoretically align under the assumption of
perfect arbitrage by market makers.

3Introduced in 1993, and mainly cater to institutional investors, FLEX options combine the flexibility of over
the counter(OTC) option contracts with the transparency and low default risk of standard exchange-traded
options, as the counterparty is the Options Clearing Corporation (OCC), same as standard exchange-traded
options.

4https://www.cboe.com/insights/posts/flex-appeal-enhanced-flex-functionality-on-cboe-platforms-and-
data/

5https://www.optionseducation.org/news/the-basics-of-flex-options
6See page 20 of CBOE Margin Manual
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2.3 Strategies of Option-trading ETFs

For each option-trading ETF, the option strategy is detailed in its fund prospectus. Using this
information, I classify the strategies of option-trading ETFs into distinct strategy buckets as
summarized in Table 2. The classification framework is structured around two key dimensions.
The first dimension differentiates between ETFs that trade options on individual stocks
and those that trade options on an index or passive ETF, such as SPY7. The majority of
option-trading ETFs engage in trading index options or options on passive ETFs, while a
smaller subset, particularly those employing overlay or credit spread strategies, trade options
on individual or a group of stocks, e.g., AAPL.

The second dimension considers the extent to which ETFs hold options as a dominant
portion of their total assets. Among ETFs that trade options on an index or passive ETF,
the extent of option exposure varies based on the strategy. ETFs utilizing buffer strategies
may allocate up to 99% of their portfolio market value to options when employing deep-in-
the-money call options (e.g., option with a strike price at 1% of the underlying asset price)
as a substitute for directly holding the underlying asset. Alternatively, some ETFs directly
hold stocks while layering options to achieve a specific return profile. ETFs that follow
credit spreads, covered call, collar, and barrier strategies typically maintain direct holdings in
underlying securities while incorporating options as an additional layer to modify risk-return
characteristics.

Figure 2 presents the growth of AUM across option-trading ETF strategies over time.
Covered call and buffer ETFs have emerged as the most dominant. As of September 2024,
ETFs utilizing buffer strategies collectively manage $45 billion, while covered call ETFs oversee
an average of $73 billion. This highlights the increasing investor interest in income-generating
and risk-mitigating option strategies.

Buffer ETFs. Buffer ETFs have monthly series, and they offer defined outcomes, such as
partial downside protection and capped upside growth—over a specified time frame, mostly
one year, some for two years, starting from the first day of their designated month series. They
attract flow from risk-averse investors. The defined outcome is often realized by combining
options contracts with one-year maturity (or two years, depending on the specified time frame

7 Appendix A shows detailed information of the underlying passive ETFs.
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of the outcome period) with strike prices tied to the price of the underlying asset on the first
day of the designated month series, the cap, and the buffer. The underlying asset of options
traded by buffer ETFs are mostly passive ETFs and Index.

To illustrate the mechanics of a Buffer ETF, consider the Innovator U.S. Equity Power
Buffer ETF – January Series (ticker: PJAN). This ETF follows a structured outcome strategy
based on a defined one-year investment period, running from January 1 to December 31 each
year. For the current outcome period, spanning January 1, 2025, to December 31, 2025, the
ETF offers a predefined cap of 12.03% and a buffer of 15%8. This implies that the ETF is
designed to provide downside protection against the first 15% of losses in the SPY, while
gains are capped at 12.03% over the specified period. Both the cap and buffer levels are
subject to adjustment at the start of each new outcome period with minor fluctuations. At
the end of each defined outcome period, investor holdings are automatically transitioned into
a new one-year outcome window. This means that upon the expiration of the current option
contracts, the ETF roll over its option positions forward to establish a new set of defined
outcomes for the following year.

The defined outcome is achieved by a buffer option strategy (see Table 12). Specifically,
for Innovator US equity power buffer ETF January series, the option strategy involves buying
deep-in-the-money call options on SPY to gain exposure to it, writing out-of-money call
options, long at-the-money put options, and short in-the-money put options. All these options
will expire on December 31st, 2025. The resulting payoff plot of the option strategy is shown
in the left panel of Figure 3.

Covered Call ETFs. Covered call ETFs represent the earliest form of option-trading ETFs.
The first such fund, the Invesco S&P 500 BuyWrite ETF (ticker: PBP), was launched in 2007,
offering investors exposure to a covered call strategy based on the S&P 500 Index. From 2007
to 2018, the option-trading ETF landscape was predominantly shaped by funds employing
covered call strategies. Over time, the market has diversified to include ETFs that sell call
options on broad indices, passive ETFs, or individual stocks.

Covered call ETFs follow an income-enhancement strategy by holding a long position
in equities—either in a passive ETF or a portfolio of stocks—while simultaneously writing
call options on all or part of the same underlying assets. Compared to buffer ETFs, which

8Both specified before fees.
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may allocate up to 99% of their portfolio to options, covered call ETFs typically have much
smaller option exposure. In addition, covered call ETFs generally have greater discretion
in writing options compared to buffer ETFs, except in cases where they track a predefined
buy-write index.

As an example, the Invesco S&P 500 BuyWrite ETF implements a buy write strategy on
the S&P 500 Index. This approach mirrors the methodology of the CBOE S&P 500 BuyWrite
Index (BXM), which maintains a long position in a portfolio replicating the S&P 500 Index
while simultaneously writing a one-month-to-maturity call option on the index with a strike
price approximately equal to the current index level. The right panel of Figure 3 illustrates
the payoff profile associated with this option strategy.

3 Sample Description

3.1 ETF Sample

To measure the demand pressure of option-trading ETF on implied volatility, I zoom into
buffer ETFs to take advantage of their predefined option strategies.

The buffer ETF universe is an ideal subset for identification. First, achieving the
predefined buffer strategy requires options with specified strike prices and expiration dates.
Any future inflows within the defined outcome period into the buffer ETF will lead to
purchase or write the same options defined at the start of the outcome period. This allows
the breakdown of ETF flows into specified option contracts, enabling the mapping of ETF
flow into the demand pressure for each option. In contrast, ETFs with more discretion trade
options with strike prices and expiration dates that vary over time, and this information is
not readily available.

There are 266 buffer ETFs in the sample and on average accounts for near 35% of the
total option-trading ETF AUM.
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3.2 Data Sources

Option trading ETFs are first flagged in the Morningstar database, including all US-domiciled
ETFs that are in the Morningstar category of derivatives income or defined outcomes with a
base currency of US dollars. There are 423 option-trading ETFs flagged. Then these flagged
option trading ETFs are merged by ticker and the latest available CUSIP (if the ticker is not
available) with the Center for Research in Security Prices (CRSP) database for monthly fund
characteristics such as total net assets. The daily ETF shares outstanding data is sourced
from Bloomberg.

Additionally, I manually collected detailed option strategy information for each option-
trading ETF from its fund prospectus. I select buffer ETFs and covered call ETFs which
mechanically track a buy-write index based on description in the fund prospectus. For buffer
ETFs, I record the buffer and the cap range, underlying asset of the options, define outcome
period length, defined monthly series. For covered call ETFs, I record underlying asset of
options.

The above information makes it possible to determine key details on the option contracts
that are traded by these ETFs such as the first purchase time of constituent options, their
expiration dates, moneyness at the time of first purchase, long or short positioning, shares of
each option in the strategy, and whether the options are calls or puts9.

In addition, I employ daily ETF holding data from Morningstar to verify the strategies
implemented by these ETFs. This dataset offers information on the option contracts and the
market values of each option position held by the ETF. Since a predefined option strategy
can be executed using various combinations of options and underlying assets, the holding
data is useful in identifying the exact strategy structure adopted by each ETF 10.

The sample includes 266 buffer ETFs. All of these ETFs trade options on either index
and mostly on passive ETFs. On average the extended sample account for 62% of the total
option-trading ETF AUM and holds on average 63% options shares of all shares held by

9An example is presented in Table 12
10A limitation of the daily Morningstar holding data is the lack of detailed characteristics for each option

contract. Specifically, option contracts are listed separately without clear information on strike prices or
maturities. Nonetheless, distinguishing the number of the type of option contracts used is sufficient for the
purposes of this study.
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option-trading ETFs over the sample period and 90% of all option shares starting from 2021.

The daily implied volatility, option price, option volume, option open interest, and option
Greeks data are sourced from OptionMetrics. Moneyness is calculated as the ratio of the
strike price to the underlying price, minus one, for put options and one minus the ratio of the
strike price to the stock price for call options. To estimate implied volatility, I average across
options that have the same underlying asset, type (call/put), and days to expiration, and fall
in the same moneyness buckets defined in the subsequent sections. The sample period for the
empirical analysis in this paper spans from January 2018 to June 2023, as implied volatility
data is only available up to June 2023.

3.3 Key Variables

ETF Flow. I measure ETF inflows and outflows using daily relative changes in shares
outstanding. ETF shares are created and redeemed in response to changes in investor demand.
When investor demand increases, the market price of the ETF rises above its Net Asset Value
(NAV), incentivizing authorized participants to create new shares by exchanging underlying
assets for ETF shares. This process continues until the market price aligns with the NAV.
Consequently, changes in shares outstanding serve as an indicator of investor interest in the
ETF. While in mutual fund literature, fund flow is usually measured by the change in AUM
after accounting for fund returns, the unique double-layer liquidity structure of ETF allows
for the separation of capital flow from ETF return11.

flowk,t = Shroutk,t − Shroutk,t−1

Shroutk,t−1

Option Level Flow-induced Demand Pressure. I construct the option-level flow-induced
demand pressure by the following steps. Firstly map flow to buffer ETF k at day t, i.e.,
flowk,t, into specific options mandated in its fund prospectus at time t. To do so, I multiply
the flow by the share of options sharesidsc,k,t incorporated in the strategy implemented. The
option characteristics include underlying asset i, days to expiration d, moneyness bucket s,

11One potential caveat of daily ETF flow is that ETFs often report shares outstanding use either "T+1"
accounting or "T" accounting, and the reporting standard of a single ETF can change over time with the
change records unavailable (Yousefi et al., 2024; Staer, 2017).
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and option type (call/put) c. Additionally, sharesidsc,k,t
12 captures the long or short position

of the option. A positive value indicates that the ETF takes a long position in the option,
while a negative value implies a short position. Secondly, summing up across K ETF to the
option-level flow-induced demand pressure.

OptionF lowidsc,t =
K∑

k=1
flowk,t × sharesidsc,k,t

The option strategy of a buffer ETF during an outcome period remains unchanged. However,
the sharesidsc,k,t changes over time. The change occurs because new ETF inflows(outflows)
lead to additional option purchases/write(option settlements) at varying days to expiration d

and varying moneyness s than those of the initial option contracts acquired at the beginning
of the defined outcome period. These discrepancies arise due to changes in the underlying
asset price and the passage of time.

An increase in OptionF lowidsc,t suggests an increased flow-induced demand pressure,
and it can be originated from one or more of the following: (1) an increase in ETF inflows
directed toward this type of option, (2) a rise in the shares of long positions in the option, or
(3) a decrease in the shares of short positions in the option. Regardless of the specific cause,
all these scenarios reflect an increase in buying pressure or a decrease in the short-selling
pressure for that option type. Conversely, a decrease in OptionF lowidsc,t signals a decline in
buying intensity or an increase in short-selling pressure for the option.

3.4 Descriptive Statistics

Table 3 shows the overview of all the option-trading ETFs (423 in total) from January 2018
to June 2024. Throughout this period the average daily option-trading ETF flow is 1.04%
and the average yearly return of option-trading ETF is 9.3% with an average yearly expense
ratio of 0.8%.

Table 4 lists ETFs with the highest AUM and highest percentage of non-zero daily flows
in the buffer and covered call ETF sample. Three covered call ETFs offered by Global X
have the highest AUMs among others. Those covered call ETFs track various buy-and-write

12As an example, for covered call strategy, the share of at-the-money call option is −1 at t the time of first
purchase of this option.
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indices such as CBOE Nasdaq-100 BuyWrite V2 Index.

Non-zero daily flow of an ETF is the percentage of the non-zero daily flow, where flow is
defined as the daily percentage change in shares outstanding. It is common for the number
of shares outstanding of an ETF to remain unchanged on certain days, due to the relatively
large minimum size required for creation or redemption units (Ivanov and Lenkey, 2019).
Therefore, non-zero daily flow measures the frequency at which an ETF experiences net share
creation or redemption activity, capturing the liquidity of the ETF.

4 Empirical Results

4.1 Flow-Induced Demand Pressure and IV

In this section, I examine flow-induced demand pressure and its impact on implied volatility.
Since option market makers cannot hedge perfectly due to market frictions and are sensitive
to inventory risk (Muravyev, 2016), demand pressure can have effects on option prices and
implied volatility (Gârleanu et al., 2009), with increased flow-induced buying demand pressure
elevates the option price and leads to a higher implied volatility.

To test the relationship between flow-induced demand pressure and implied volatility, I
estimate the following pooled regression:

IVidsc,t = α + β × OptionF lowidsc,t + X + FEt + FEi + FEd + FEs + FEc + εidsc,t (1)

Where IVidsc,t denotes the average implied volatility of options written on the underlying asset
i, observed at time t, where the options belong to days to expiration bucket d, the moneyness
bucket s, and are of type c. OptionF lowidsc,t is the flow-induced demand pressure to the
corresponding option at time t. I include fixed effect on all the option characteristics and
time. X denotes a set of control variables including reti,t, the return of the underlying asset i

at time t; shrouti,t, the number of shares outstanding for asset i at time t; and lagIVidsc,t−7,
the average implied volatility of the option over the preceding seven days.

Table 5 reports the results of the pooled regression on flow-induced demand pressure.
Column (1) - (3) present the specifications with all fixed effects. Column (4) - (8) show results
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with subsets of fixed effects. Positive coefficients on flow-induced demand pressure suggest
that buying demand pressure originating from ETFs leads to increase in option prices and
implied volatility, in line with theoretical expectations.

Flow-induced demand pressure is plausibly influenced by the return of the underlying
asset, as investors tend to adjust their holdings of ETFs in response to changes in the
underlying asset’s performance. I find that the return of the underlying asset is statistically
significantly and negatively correlated with implied volatility. Specifically, when controlling for
the average implied volatility over the preceding seven days, the estimated coefficient on the
asset return is −0.005. In addition, prior literature identifies the liquidity of the underlying
asset as an important determinant of implied volatility (Cetin et al., 2006). However, in the
present analysis, the effect of liquidity is not found to be statistically significant. Furthermore,
the empirical results confirm the well-documented persistence of implied volatility, as reflected
in statistically significant coefficients close to 0.97.

In column (3), the coefficient is not statistically significant including all the fixed effects.
In column (4) - (8), several coefficients remain statistically significant at the 5% or 10% levels,
depending on the specific combination of fixed effects applied. A one-standard-deviation
increase in flow-induced demand pressure to option leads to a 0.00002 standard deviation
increase in the implied volatility.

The pooled regression has two potential concerns. Firstly, past implied volatility contains
predictive information on future implied volatility, making it difficult to isolate the impact of
demand pressure without sharp identification. Therefore, in Section 5, I exploit the mechanical
roll over trades as exogenous shocks to better identify and quantify the impact.

Secondly, the pooled regression shows the average effect of flow-induced demand pressure
across option contracts with heterogeneous characteristics, such as varying moneyness and
days to expiration. While the implied volatility of certain contracts may exhibit greater
sensitivity to demand pressure, the average effect can potentially be masked by less sensitive
contracts. The granularity of the dataset, however, enables a more detailed examination
of these heterogeneous effects across different types of option contracts as shown in the
Section 4.2.
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4.2 Heterogeneous Impact on IV

The previous section documents the aggregate impact of flow-induced demand pressure on
implied volatility. In this section, I investigate how demand pressure has heterogeneous effect
on implied volatility of option with varying characteristics, including days to expiration,
moneyness and underlying asset.

One source of the heterogeneity comes from option vega. Option vega measures the
sensitivity of an option’s price to changes in the implied volatility. It is a function of option
contract parameters, such as days to expiration, moneyness, underlying asset prices and
volatility level, see Figure 4. Options with longer maturity and those are near the money
exhibit higher vega compared to those with shorter maturities or those are deep in- or
out-of-the-money holding other parameters fixed.

Holding the underlying asset fixed, a given change in the option price resulting from
demand pressure is expected to lead to a larger impact on the implied volatility of options
with lower vega. Consequently, the strongest effects in implied volatility are expected to be
observed in options with shorter maturities or those that are deep in- or out-of-the-money.

To examine the heterogeneous impact of demand pressure on options with varying
characteristics, I conduct group regressions based on days to expiration, moneyness, underlying
asset, and option type (call or put). I begin by focusing on heterogeneity across moneyness.

IVidsc,t = α +
S∑

s=1
βs OptionF lowidsc,t1{Moneynessidsc,t = s} + X + FE + εidsc,t (2)

Where Moneynessidsc,t represents the moneyness bucket of the option. I include all fixed effects
except for moneyness, the characteristic of interest in the specification, and I denote them as
FE for simplicity. All other notations are consistent with those defined in Equation (1).

Table 6 shows that in-the-money (ITM) options display a stronger estimated effect as
their moneyness increases, particularly when the options are further in-the-money and exhibit
lower vega. This pattern is consistent with the hypothesis that demand pressure exerts a
greater influence on the implied volatility of options with lower sensitivity to volatility changes
(i.e., lower vega). The magnitude of this effect is substantial: for ITM options with moneyness
between 0% and 10%, the estimated coefficient is 0.0001, whereas for options with moneyness
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between 50% and 60%, the coefficient increases markedly to 6.46. This contrast highlights
the pronounced role of demand pressure in shaping implied volatility when vega is low.

The estimated coefficient for options with moneyness greater than 60% remains at 0.0001.
This diminished estimate likely reflects the imprecision introduced by aggregating option
flow and implied volatility over such a broad moneyness interval. This result underscores
the importance of employing granular defined buckets to accurately identify the impact of
demand pressure on implied volatility.

Demand pressure, in general, has a more significant impact on in-the-money (ITM)
options than out-of-money (OTM) options. The discrepancy between ITM option and OTM
option could be related to the relative trading volume (Bollen and Whaley, 2004), as discussed
in Section 4.3. Previous research records the existence of volatility smirk, and relates demand
pressure to this phenomenon (Bollen and Whaley, 2004; Xing et al., 2010). In line with this
perspective, this paper contributes to the literature by showing that flow-induced demand
pressure also plays a role in shaping the asymmetry of the implied volatility surface of options.

A key limitation of the current approach—grouping options based on a single charac-
teristic—is that the resulting groups remain heterogeneous along other relevant dimensions.
For instance, options categorized within the 0%–10% ITM moneyness range may still differ
significantly in terms of underlying asset (e.g., SPY vs. EEM) and days to expiration (e.g.,
10 days vs. 100 days). Therefore, the estimated coefficients could be potentially biased by
the composition of options along other characteristics dimensions. To address this issue, I
implement a more granular grouped regression by segmenting the sample along multiple
dimensions: days to expiration, moneyness, and underlying asset, characteristics are related
to the sensitivity of implied volatility to demand shocks. The estimated coefficients from this
multidimensional grouped regression are presented in Figure 5.

In Figure 5, the estimated coefficients are plotted against days to maturity (x-axis, left)
and moneyness (y-axis, right) in each subplot, where each subplot corresponds to options
written on a common underlying asset. Several key observations emerge. First, implied
volatility of options that are either deep in-the-money or deep out-of-the-money exhibit
heightened sensitivity to demand pressures induced by option ETFs. This is evidenced by
the upward tilting surfaces of the estimated coefficients at both extremes of the moneyness
dimension. Second, options on QQQ and SPY tend to display lower sensitivities, on average,
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relative to options on other underlyings. This pattern may be partially attributed to higher
liquidity in these markets, a hypothesis further examined in Section 4.3. Finally, along the
maturity dimension, the estimated coefficients are negative for near expiry options (those with
fewer than 10 days to maturity) that are deeply away from money. This pattern arises because
the implied volatility of such options changes substantially as they approach expiration. The
average implied volatility of the preceding seven days, used as a control, fails to capture the
level of implied volatility as it is highly non-linear and convex near maturity. To alleviate
the concern of negative estimates, a further analysis using lag one day implied volatility is
shown in Appendix D. For options with longer maturities, the coefficients decrease with time
to maturity, consistent with theoretical predictions.

4.3 Liquidity of Option Market

Market makers are required to provide liquidity and accommodate customer order imbalances
and thus their position often deviates substantially from the desired level. Therefore, they
require compensation for inventory risk (Muravyev, 2016), leading to increase in both option
price and implied volatility.

In this section, I assess whether the price effect of demand pressure is amplified in option
contracts with lower liquidity. In illiquid markets, market makers face greater difficulty in
hedging their exposures (delta, vega, etc.) efficiently and at low cost. As a result, they require
greater compensation for assuming these risks, which is reflected in higher option premiums
and, consequently, elevated implied volatility.

I employ three measures of option liquidity for each option—average open interest,
average option volume, and average bid-ask spread—calculated over the preceding seven-day
period. Specifically, I estimate the following specifications:

IVidsc,t = α + β × OptionF lowidsc,t × Liquidityidsc,t + X + FE + εidsc,t (3)

IVidsc,t = α + β × (OptionF lowidsc,t/V egaidsc,t) × Liquidityidsc,t + X + FE + εidsc,t (4)

Where Liquidityidsc,t represent for the liquidity proxies for the option contracts. Other
notations are consistent with the baseline regression (1). In addition, I also scaled option
demand pressure by option vega, V egaidsc,t ,to account for the potential bias originating from
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heterogeneous impact across option contracts.

Column (1) -(3) in Table 7 indicate that more liquid option contracts—those characterized
by higher open interest and trading volume—exhibit lower sensitivities of implied volatility
to demand pressure. This suggests that greater market depth enables market makers to
absorb order flow and manage inventory risk more effectively, thereby mitigating the impact
of trading activity on option prices. Column (4) - (6) confirm the results is not biased by the
heterogeneous impact of demand pressure on implied volatility across varying contracts.

5 Rollover Trade Demand Pressure

In this section, I exploit the mechanical rollover trades as exogenous demand shocks to better
identify and quantify the demand pressure impact on implied volatility.

Buffer ETFs, which follow predefined option strategies with minimal managerial discretion,
systematically roll over the same type of option contracts upon the expiration of existing
positions. These trades mark the beginning of a new outcome period for the ETFs. Demand
pressure shocks from rollover trades provide an ideal setting for identifying the price impact
for two key reasons. First, demand pressure from rollover trade is less subject to endogeneity
than flow-induced demand pressure due to the mechanical nature rollover trades. Second, the
volume of rollover trades is typically larger than that of flow-induced trades, enhancing the
visibility of their impact.

The rollover trades are typically not executed on a single day; rather, they are generally
spread over a few days following the start date of the defined outcome period, although the
majority of the trades tend to occur on the first day. I do not record the exact time frame of
trading but rather the date of major purchase.

I start by documenting the events that each buffer ETF purchases a specific option
contract at time t. The demand pressure from the rollover trade depends on the size of the
buffer ETF. Therefore, I multiply the shares outstanding of the ETF at the time of rollover
by the shares of the specific option needed for the strategy as a proxy for the rollover demand

18



pressure. Then I aggregate across ETFs to the option level as before:

Rolloveridsc,t =
K∑

k=1
Shroutk,t × Sharesidsc,k,t

For each rollover event, I compare the implied volatility of the option contract on the day it is
purchased by a buffer ETF with the implied volatility of similar option contracts from a control
group. The control group comprises contracts that share identical characteristics—specifically,
the same underlying asset i, days-to-maturity bucket d, moneyness bucket s, and option type
c—but are observed on days sufficiently distant from any ETF purchase activity (i.e., more
than five days apart)13. The selection methodology for the control group is identical to the
approach used in Pastor and Veronesi (2013). To mitigate day-to-day fluctuations in implied
volatility, I follow Pastor and Veronesi (2013) and use the average implied volatility of the
treated option contracts within a three-day window around day t.

To identify and quantify the impact of rollover trade-induced demand pressure on implied
volatility, I estimate the following regression specification:

IV idsc,t,e = α + βRolloveridsc,t,e + FEi + FEd + FEs + FEc + FEe + ϵidsc,t (5)

where IV idsc,t,e denotes the average implied volatility of options written on underlying asset
i, of option type c, moneyness bucket s, and days-to-maturity bucket d, observed within a
three-day window centered on rollover day t, and corresponding to rollover event e. The
variable Rolloveridsc,t,e captures the demand pressure associated with rollover event e, and is
equal to zero for control group where no rollover event takes place. The regression includes
rollover event fixed effect FEe on top of option characteristics fixed effects applied as above.
All other notations are consistent with those defined in Equation (1).

Table 8 reports an estimated coefficient of 0.008, which is positive and statistically
significant at the 1% level. This result indicates that days on which buffer ETFs engage in
rollover buying leads to higher implied volatility in the affected option contracts, relative to
days without such transactions. Conversely, rollover selling leads to lower implied volatility.
These findings provide evidence that demand pressure from option-trading ETFs exerts a
meaningful influence on implied volatility.

13Option contracts are defined by characteristics, but not by unique contract identifier. This ensures that
fluctuations in implied volatility due to differences in days to expiration and moneyness are properly controlled.
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6 Demand Pressure and VIX

In this section, I address whether option-trading ETFs have an impact on the VIX. Media
coverage suggests that increasing inflows into covered call ETFs may have contributed to
the observed decline in VIX, as these ETFs systematically write call options on the index,
thereby exerting persistent selling pressure that dampens implied volatility as reflected in the
VIX. Institutional analyses present divergent perspectives on the influence of option-trading
ETFs on the VIX. For example, Bank for International Settlements (BIS) associates drop
in VIX with proliferation of yield-enhancing structured products, such as covered call ETFs.
Conversely, research from the Chicago Board Options Exchange (CBOE) offers a different
perspective, arguing that the impact of option income ETFs on the VIX is minimal.

The VIX, or the CBOE Volatility Index, is a widely used measure of the market’s
expectation of near-term volatility, derived from option prices on the S&P 500 index (SPX).
Often referred to as the “fear gauge,” the VIX reflects the market’s consensus view of future
volatility over the next 30 calendar days. It is calculated using a wide range of SPX call and
put options with maturities that bracket the 30-day target horizon14. I focus on the rollover
trades of option-trading ETFs to examine their impact on the VIX, as such trades are more
plausibly exogenous. I select the subset of rollover trades that potentially have an impact on
VIX: trade on options on S&P 500 index (SPX) with days to maturity between 23 and 37
days to match options used in calculating VIX.

All relevant trades in this analysis originate from covered call ETFs which short at-the-
money option contracts, as buffer ETFs typically roll over option contracts with days to
expiration aligned with their defined outcome periods, which are significantly longer than one
month and therefore fall outside the scope of the VIX calculation.

I run the following regressions to recover the impact on VIX at time t when there is a
relevant trade happen:

∆V IXt = α + βRolloveridsc,t + ∆V IX t−7:t−1 + ϵidsc,t (6)

14Specifically, the VIX is constructed using SPX options with days to expiration between 23 and 37 days,
and combines information from two adjacent maturities through linear interpolation to produce a constant
30-day measure of implied volatility. The calculation incorporates a broad grid of of both at-the-money (ATM)
and out-of-the-money (OTM) options.
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Where ∆V IXt denotes the change in the VIX on day t, defined as the difference between
the VIX index level on the day of the option trade and its level on the preceding day,
t − 1. Rolloveridsc,t represents the option-level rollover trade intensity at time t, as defined in
Equation (5). I control for the average change in the VIX over the preceding seven trading
days, ∆V IX t−7:t−1. Alternatively, as a robustness analysis, I also consider the average VIX
index change over the three preceding days, ∆V IX t−3:t, to account for transitory effects
and reduce the impact of idiosyncratic daily noise. Furthermore, I examine whether rollover
trading activity exerts an effect on the level of the VIX index.

Column (1)-(4) in Table 9 indicates that, for both measures of VIX change, the coefficients
are positive, suggesting that the rollover selling activity of covered call ETFs may contribute
to a decrease in the VIX. Column (5) shows that the same result holds for the level of VIX
index. However, these effects are economically small and statistically insignificant. The set of
options used in the VIX calculation represents only a narrow subset of the broader universe of
options actively traded by option-trading ETFs. This limited intersection of option contracts
reduces the direct influence that the trading activities of option-trading ETFs have on the
VIX.

However, while the current impact remains statistically insignificant, the rapid growth in
AUM within these funds suggests potential future implications. As the AUM of covered call
ETFs continues to expand, the volume of options transactions associated with these funds is
likely to increase correspondingly. This escalation in demand pressure could amplify their
influence on the options market, potentially leading to more pronounced effects on implied
volatility measures such as the VIX.

7 Conclusion

The AUM of option-trading exchange-traded funds (ETFs) have increased significantly in
recent years. These funds represent a specialized and rapidly expanding segment of the ETF
market, utilizing options—either independently or in conjunction with underlying assets—to
pursue specific investment objectives. This paper investigates the strategy compositions of
option-trading ETFs and examines the impact of demand pressure originating from these
funds on the options market.
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This paper demonstrates that demand pressure significantly affects implied volatility,
consistent with the hypothesis that flow-induced demand raises option prices and, in turn,
implied volatility. To more precisely identify this effect, I use mechanical rollover trades as an
exogenous shock. The results reinforce the main finding: demand pressure from option-trading
ETF has a significant impact on implied volatility.

The magnitude of this effect varies systematically with option characteristics—particularly
moneyness, days to expiration, and the underlying asset—driven by differences in vega. As
predicted by theory, the impact is inversely related to vega, with the strongest effects observed
in near expiry and deep in- or out-of-the-money options. The analysis also reveals that
flow-induced demand pressure has a stronger effect on in-the-money (ITM) options compared
to out-of-the-money (OTM) options, highlighting its role in shaping the asymmetry of the
implied volatility surface.

Additionally, the paper examines whether demand pressure originating from option-
trading ETFs contributes to the suppression of the VIX. The estimated effect is economically
small and statistically insignificant. This is likely because the set of options used in the VIX
calculation represents only a narrow subset of the broader universe of options actively traded
by these ETF. Nonetheless, since this paper confirms that demand pressure affects implied
volatility—indicating that market makers cannot perfectly hedge—continued growth in the
size and option trading intensity of these "sell volatility" ETFs could potentially lead to more
pronounced effects on aggregate measures of volatility, such as the VIX, in the future.
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Table 1: Management Firms of Option-Trading ETFs

This table exhibits the snapshot by fund management firms that offer option-trading ETFs. Column (1) shows
the number of option-trading ETFs offered by the firm. The option-trading ETFs is flagged from Morningstar,
as described in Section 3.2. Columns (2)–(3) show the number of ETFs and dead funds managed by the firm.
Column (4) shows the total number of funds offered by the firm. The data from column (2)-(4) are from
Center for Research in Security Prices Database(CRSP).

(1) (2) (3) (4)
Firm Name # Option-Trading ETF # ETF # Dead Funds # All

Innovator 126 139 7 143
First Trust 94 264 33 302
Allianz 38 37 464 606
WisdomTree 30 2 0 3
PGIM Investments 26 46 17 105
Global X 17 152 62 155
PACER FUNDS TRUST 13 51 4 54
The Opportunistic Trader 12 15 1 15
Calamos Investments 8 9 0 13
Kurv 6 7 0 7
BlackRock 5 472 38 560
Neos Funds 4 6 0 6
Invesco 4 372 144 376
ProShares 3 151 7 152
Nationwide Fund Advisors 3 8 276 591
Goldman Sachs 2 45 2 45
Amplify ETFs 2 39 10 39
JP Morgan 2 75 444 1012
KraneShares 2 43 11 43
Roundhill Investments 1 20 5 22
Peerless ETFs 1 1 0 1
REX Shares 1 11 0 14
AdvisorShares 1 54 36 54
State Street Global Advisors 1 141 13 182
PeakShares 1 1 0 1
Swan Capital Management 1 2 0 2
TappAlpha 1 1 0 1
TrueMark Investments LLC 1 1 0 1
Unity Wealth Partners 1 148 69 161
Summit Global Investments 1 5 0 5
Main Management Fund Advisors 1 4 0 4
Nicholas Wealth 1 2 0 2
Natixis Funds 1 6 3 6
Morgan Stanley 1 2 4 44
AllianceBernstein 1 15 18 95
Kensington Asset Management 1 0 0 2
Innovative Portfolios LLC 1 2 2 4
Fidelity Investments 1 65 31 544
Exchange Traded Concepts LLC 1 65 34 65
Defiance 1 24 9 24
Cullen Funds 1 1 0 1
Barclays Capital Inc 1 0 112 122
Aptus Capital Advisors 1 6 0 6
YieldMax ETFs 1 1 0 1
The Opportunistic Trader 1 1 1 1

Total 423 2512 1857 5592
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Table 2: Classification of Option-Trading ETFs by Strategy and Underlying Asset

This table categorizes option-trading ETFs based on two key dimensions: (1) the type of underlying asset
(index/passive ETF or individual stocks) and (2) the role of options in the fund’s portfolio (primary or
non-primary). A primary option trade strategy refers to strategies where options constitute a dominant
portion of the ETF’s portfolio market value, while a non-primary option trade involves using options as a
complementary layer for income generation or risk management.

Option Exposure Strategy Underlying Asset
Primary Option Trade buffer index or passive ETF

Non-Primary Option Trade

credit spreads index or passive ETF, individual stock
barrier index or passive ETF
buffer index or passive ETF
collar index or passive ETF
covered call index or passive ETF, individual stock
floor index or passive ETF
active layer index or passive ETF, individual stock
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Table 3: Descriptive Statistics of Option Trading ETFs

This table presents the descriptive statistics of option-trading ETFs. Shrout represents the shares outstanding
of ETFs in millions. Flow measures the daily percentage change in shares outstanding. AUM refers to assets
under management in millions of dollars. Turnover Ratio indicates the trading turnover of ETFs. Expense
Ratio is the annualized expense ratio in percentage. Return represents the annualized return of ETFs in
percentage. Shrout and Flow are reported at a daily frequency, whereas the other variables are of monthly
frequency. The sample period spans from January 2018 to June 2024 and includes all 423 option-trading
ETFs.

N St. Dev. Mean Min 25th 50th 75th Max
Shrout 195,173 25.312 5.849 0.010 0.620 1.900 4.700 468.330
Flow (%) 195,173 27.861 1.044 −88.235 0.000 0.000 0.000 8,450.000
AUM 9,616 509.345 163.784 0.200 16.000 54.150 142.625 8,302.700
Turonover Ratio 7,936 1.958 0.410 0.000 0.000 0.000 0.060 28.990
Expense Ratio (%) 8,454 0.136 0.796 0.380 0.770 0.790 0.850 1.850
Return (%) 9,427 43.727 9.292 −380.623 −13.304 11.547 31.342 837.863
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Table 4: Option Trading ETF with Highest AUM and Highest Non-Zero Daily Flows

This table reports two subsets of buffer and covered call ETF sample: Panel A presents the top 10 ETFs
ranked by assets under management (AUM), while Panel B lists the top 10 ETFs with the highest frequency
of non-zero daily flows. The first three columns display the ETF name, ticker symbol, and the specific option
strategy employed. The Option Ticker refers to the underlying asset on which the ETF writes or trades
options. AUM is reported in millions of U.S. dollars. Non-zero Flows represents the proportion of trading
days with non-zero changes in shares outstanding, where flow is defined as the daily percentage change in
shares outstanding. Average Flows denotes the mean daily flow of the ETF in percentage.

Panel A: Top 10 AUM Option Trading ETFs
ETF Name ETF Ticker Strategy Option Ticker AUM Non-Zero Flows Average Flows
Global X NASDAQ 100 Covered Call ETF QYLD covered call NDX 8209.5 63.17 0.26
Global X S&P 500 Covered Call ETF XYLD covered call SPX 2895.1 26.53 0.26
Global X Russell 2000 Covered Call ETF RYLD covered call RUT 1385.2 39.86 0.54
Innovator US Equity Power Buffer ETF-Jan PJAN buffer SPY 1129.9 37.58 1.04
Innovator US Equity Power Buffer ETF-Apr PAPR buffer SPY 958.9 34.09 2.01
FT Cboe Vest US Equity Buffer ETF-Feb FFEB buffer SPY 853.6 31.23 1.07
FT Cboe Vest US Equity Buffer ETF-Mar FMAR buffer SPY 829.5 34.02 0.76
Innovator US Equity Power Buffer ETF-Dec PDEC buffer SPY 791.1 31.04 1.36
FT Cboe Vest US Equity Buffer ETF-Dec FDEC buffer SPY 789.2 34.28 0.94
FT Cboe Vest US Equity Buffer ETF-May FMAY buffer SPY 776.3 32.17 0.90

Panel B: Top 10 Non-Zero Flows Option Trading ETF
ETF Name ETF Ticker Strategy Option Ticker AUM Non-Zero Flows Average Flows
FT Vest US Equity Max Buffer ETF-June JUNM buffer SPY 42.7 100.00 120.82
FT Vest US Equity Max Buffer ETF-Mar MARM buffer SPY 212.9 64.62 17.30
Global X NASDAQ 100 Covered Call ETF QYLD covered call NDX 8209.5 63.17 0.26
FT Vest Nasdaq-100 Mod Buffr ETF-May QMMY buffer QQQ 104.7 57.14 56.81
Innovator Growth-100 Power Buffer ETF-Jun NJUN buffer QQQ 34.2 50.00 44.44
FT Vest US Equity Enhance & Mod Buffer ETF-May XMAY buffer SPY 41.6 50.00 18.05
Innovator Intl Dev Power Buffer ETF-Jun IJUN buffer EFA 19.3 44.44 22.86
Calamos S&P 500 Struct Alt Prot ETF-May CPSM buffer SPY 117.1 44.19 23.69
AllianzIM US Large Cap 6M Buffer10-Jun/Dec ETF SIXD buffer SPY 168.9 42.11 83.92
Innovator Defined Wealth Shld ETF BALT buffer SPY 624.1 40.29 1.35
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Table 5: Flow-Induced Demand Pressure on Implied Volatility: Pooled Regression

This table presents the regression results for the following specifications:
IVidsc,t = α + β × OptionF lowidsc,t + X + FEt + FEi + FEd + FEs + FEc + εidsc,t

Where IVidsc,t denotes the average implied volatility of options written on the underlying asset i, observed at
time t, where the options belong to days to expiration bucket d, the moneyness bucket s, and are of type c.
OptionF lowidsc,t is the flow-induced demand pressure to the corresponding option at time t. I include fixed
effect on all the option characteristics and time. X denotes a set of control variables including reti,t, the
return of the underlying asset i at time t; shrouti,t, the number of shares outstanding for asset i at time t;
and lagIVidsc,t−7, the average implied volatility of the option over the preceding seven days. The t-statistics
are reported in parentheses. Standard errors are clustered at time and underlying asset level. Coefficients
reported are scaled by variable standard deviation. ***, ** and * denote statistical significance at the 1%,
5%, and 10% level, respectively.

IVidsc,t

(1) (2) (3) (4) (5) (6) (7) (8)

OptionF lowidsc,t 0.0007 0.0007 0.0001 0.0002∗ 0.0002∗∗ 0.0002∗∗ 0.0001 0.0001
(1.10) (1.06) (1.35) (2.36) (2.88) (2.91) (1.79) (1.79)

reti,t -0.006 -0.005∗∗∗ -0.005∗∗∗ -0.005∗∗∗ -0.005∗∗∗ -0.005∗∗∗ -0.005∗∗∗

(-1.60) (-8.98) (-8.23) (-8.62) (-8.46) (-9.39) (-9.39)
shrouti,t 0.008 -0.004 -0.003 -0.003 -0.004 -0.002 -0.002

(0.146) (-0.471) (-0.383) (-0.374) (-0.519) (-0.290) (-0.290)
lagIVidsc,t−7 0.988∗∗∗ 0.965∗∗∗ 0.966∗∗∗ 0.967∗∗∗ 0.976∗∗∗ 0.976∗∗∗

(117.6) (141.7) (138.8) (143.4) (119.7) (119.7)
Fixed-effects
Time Yes Yes Yes Yes Yes Yes Yes Yes
Underlying Asset Yes Yes Yes Yes Yes Yes Yes Yes
Moneyness Yes Yes Yes Yes Yes
DTE Yes Yes Yes Yes
Option Type Yes Yes Yes Yes Yes Yes Yes
Fit statistics
Observations 1,405,039 1,352,004 1,346,936 1,346,936 1,346,936 1,346,936 1,346,936 1,346,936
R2 0.525 0.524 0.929 0.928 0.928 0.928 0.928 0.928
Within R2 0.000 0.000 0.850 0.925 0.924 0.893 0.908 0.908
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Table 6: Heterogeneous Impact of Moneyness

This table presents the regression results for the following specifications:

IVidsc,t = α +
S∑

s=1
βs OptionF lowidsc,t1{Moneynessidsc,t = s} + X + FE + εidsc,t

Where IVidsc,t denotes the average implied volatility of options written on the underlying asset i, observed at
time t, where the options belong to days to expiration bucket d, the moneyness bucket s, and are of type c.
OptionF lowidsc,t is the flow-induced demand pressure to the corresponding option at time t. I include fixed
effect on all the option characteristics and time except for moneyness, the characteristic of interest in the
specification. X denotes a set of control variables including reti,t, the return of the underlying asset i at time
t; and lagIVidsc,t−7, the average implied volatility of the option over the preceding seven days. The t-statistics
are reported in parentheses. Standard errors are clustered at time and underlying asset level. Coefficients
reported are scaled by variable standard deviation. ***, ** and * denote statistical significance at the 1%,
5%, and 10% level, respectively.

IVidsc,t

(1)
OptionF lowidsc,t × ITM [0%-10%] 0.0001∗

(2.12)
OptionF lowidsc,t × ITM [10%-20%] 0.0009∗

(2.11)
OptionF lowidsc,t × ITM [20%-30%] 0.010∗

(2.07)
OptionF lowidsc,t × ITM [30%-40%] 0.122

(1.09)
OptionF lowidsc,t × ITM [40%-50%] 7.13∗∗∗

(7.47)
OptionF lowidsc,t × ITM [50%-60%] 6.46∗∗∗

(7.20)
OptionF lowidsc,t × ITM [>60%] 0.0001∗

(2.14)
OptionF lowidsc,t × OTM [0%-10%] 0.0004

(1.77)
OptionF lowidsc,t × OTM [10%-20%] -0.0004∗

(-2.12)
OptionF lowidsc,t × OTM [20%-30%] 0.0005

(0.214)
OptionF lowidsc,t × OTM [30%-40%] -0.0008

(-0.363)
OptionF lowidsc,t × OTM [40%-50%] 0.037

(0.371)
OptionF lowidsc,t × OTM [50%-60%] 0.899

(1.53)
OptionF lowidsc,t × OTM [>60%] 0.174

(0.106)
retidsc,t -0.005∗∗∗

(-8.47)
lagIVidsc,t−7 0.977∗∗∗

(128.1)
Fixed-effects
Time Yes
Underlying Asset Yes
DTE Yes
Option Type Yes
Fit statistics
Observations 1,346,936
R2 0.929
Within R2 0.893
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Table 7: Flow-Induced Demand Pressure on Implied Volatility: Option Liquidity

This table presents the regression results for the following specifications:
IVidsc,t = α + β × OptionF lowidsc,t × Liquidityidsc,t + X + FE + εidsc,t

IVidsc,t = α + β × (OptionF lowidsc,t/V egaidsc,t) × Liquidityidsc,t + X + FE + εidsc,t

Where IVidsc,t denotes the average implied volatility of options written on the underlying asset i, observed at
time t, where the options belong to days to expiration bucket d, the moneyness bucket s, and are of type c.
OptionF lowidsc,t is the flow-induced demand pressure to the corresponding option at time t. Liquidityidsc,t

is the liquidity proxy for option contracts, including average option interest, option volume and bid ask spread
calculated over the preceding seven-day period. V egaidsc,t is the option vega. I include fixed effect on all
the option characteristics and time. X denotes a set of control variables including reti,t, the return of the
underlying asset i at time t; shrouti,t, the number of shares outstanding for asset i at time t; and lagIVidsc,t−7,
the average implied volatility of the option over the preceding seven days. OpenInterest, OptionV olume and
Spread are the average open interest, average option volume, and average bid-ask spread—calculated over
the preceding seven-day period. The t-statistics are reported in parentheses. Standard errors are clustered at
time and underlying asset level. Coefficients reported are scaled by variable standard deviation. ***, ** and *
denote statistical significance at the 1%, 5%, and 10% level, respectively.

IVidsc,t

(1) (2) (3) (4) (5) (6)
OptionF lowidsc,t × OpenInterest -0.0001∗∗

(-2.97)
OptionF lowidsc,t × OptionV olume -0.0002∗∗∗

(-12.9)
OptionF lowidsc,t × Spread 0.0001

(0.29)
(OptionF low/V ega) × OpenInterest -0.0001

(-0.19)
(OptionF low/V ega) × OptionV olume -0.001∗∗∗

(-5.7)
(OptionF low/V ega) × Spread 0.001

(1.25)
OptionF lowidsc,t 0.0001∗ 0.0001 0.0001

(2.08) (1.51) (0.87)
OptionF lowidsc,t/V egaidsc,t 0.0001 0.0001 0.001

(0.453) (1.19) (1.42)
OpenInterest 0.002 0.002

(1.19) (1.24)
OptionV olume 0.001∗ 0.002∗∗

(2.17) (3.51)
Spread -0.004 -0.006∗

(-1.61) (-2.04)
reti,t -0.005∗∗∗ -0.005∗∗∗ -0.005∗∗∗ -0.005∗∗∗ -0.005∗∗∗ -0.005∗∗∗

(-8.51) (-8.55) (-8.51) (-5.79) (-5.8) (-5.82)
lagIVidsc,t−7 0.989∗∗∗ 0.988∗∗∗ 0.988∗∗∗ 0.987∗∗∗ 0.987∗∗∗ 0.987∗∗∗

(112.9) (116.9) (117.3) (100.2) (105) (104.8)
Fixed-effects
Time Yes Yes Yes Yes Yes Yes
Underlying Asset Yes Yes Yes Yes Yes Yes
Moneyness Yes Yes Yes Yes Yes Yes
DTE Yes Yes Yes Yes Yes Yes
Option Type Yes Yes Yes Yes Yes Yes
Fit statistics
Observations 1,342,707 1,342,707 1,342,707 1,216,367 1,216,367 1,216,367
R2 0.929 0.929 0.929 0.930 0.930 0.930
Within R2 0.850 0.850 0.850 0.862 0.862 0.862
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Table 8: Rollover Trade Demand Pressure on Implied Volatility

This table presents the regression results for the following specifications:

IV idsc,t,e = α + βRolloveridsc,t,e + FEi + FEd + FEs + FEc + FEe + ϵidsc,t

where IV idsc,t,e denotes the average implied volatility of options written on underlying asset i, of option
type c, moneyness bucket s, and days-to-maturity bucket d, observed within a three-day window centered
on rollover day t, and corresponding to rollover event e. The variable Rolloveridsc,t,e captures the demand
pressure associated with rollover event e, and is equal to zero for control group where no rollover event takes
place. The regression includes rollover event fixed effect FEe on top of option characteristics fixed effects.
The t-statistics are reported in parentheses. Standard errors are clustered at time and underlying asset level.
Coefficients reported are scaled by variable standard deviation. ***, ** and * denote statistical significance at
the 1%, 5%, and 10% level, respectively.

IVidsc,t,e IV idsc,t,e

(1) (2)

Rolloveridsc,t,e 0.008∗∗∗ 0.008∗∗∗

(4.60) (5.11)
Fixed-effects
Event Yes Yes
Underlying Asset Yes Yes
Moneyness Yes Yes
DTE Yes Yes
Option Type Yes Yes
Fit statistics
Observations 23,591 23,781
R2 0.367 0.366
Within R2 0.000 0.000
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Table 9: Rollover Trade Demand Pressure and VIX

This table presents the regression results for the following specifications:

∆V IXt = α + βRolloveridsc,t + ∆V IXt−7:t−1 + ϵidsc,t

Where ∆V IXt denotes the change in the VIX on day t, defined as the difference between the VIX index
level on the day of the option trade and its level on the preceding day, t − 1. Rolloveridsc,t represents the
option-level rollover trade intensity at time t, as defined in Equation (5). I control for the average change in
the VIX over the preceding seven trading days, ∆V IXt−7:t−1. Alternatively, as a robustness analysis, I also
consider the average VIX index change over the three preceding days, ∆V IXt−3:t, to account for transitory
effects and reduce the impact of idiosyncratic daily noise. In addition, I also consider if rollover trades have
an impact on the level of VIX index. The t-statistics are reported in parentheses. Coefficients reported are
scaled by variable standard deviation. ***, ** and * denote statistical significance at the 1%, 5%, and 10%
level, respectively.

∆V IXt ∆V IX t−3:t V IXt

(1) (2) (3) (4) (5)

Rolloveridsc,t 0.014 0.028 0.096 0.120 0.003
(0.128) (0.258) (0.885) (1.18) (0.103)

∆V IX t−7:t−1 0.099
(0.898)

∆V IX t−10:t−4 0.371∗∗∗

(3.63)
lagIVidsc,t−7 0.969∗∗∗

(36.1)
Fit statistics
Observations 87 87 87 86 87
R2 0.000 0.010 0.009 0.146 0.940
Adjusted R2 -0.012 -0.014 -0.003 0.125 0.939
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Figure 1: Number of Option-trading ETFs and aggregate AUM over time

The left panel displays the number of option-trading ETFs over time, and the right panel shows their aggregate
assets under management (AUM), expressed in billions of U.S. dollars.

36



Figure 2: Assets Under Management by Strategy Buckets

The left panel of the figure illustrates the evolution of the number of option-trading ETFs over time, while
the right panel presents the aggregate assets under management (AUM) of these ETFs, with both panels
disaggregated by strategy category, both panels categorized by strategy bucket. Covered call strategy refers
to ETFs that hold a long position in equities—either in a passive ETF or a portfolio of stocks—while
simultaneously writing call options on all or part of the same underlying assets. Buffer strategy refers to ETFs
that have defined outcomes with partial downside protection and capped upside growth over a specified time
frame. Other strategies include credit spread, barrier, collar, floor and other active option layer strategies.
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Figure 3: Payoff Profile of Buffer and Covered Call Strategies

This figure illustrates the theoretical payoff profile of buffer strategy and covered call strategy.

Innovator US Equity Power Buffer ETF. The left panel shows the buffer strategy payoff profile of
Innovator US Equity Power Buffer ETF against varying underlying price, i.e., SPDR S&P 500 ETF Trust
(SPY), at the end of its outcome period. The coral solid line shows the total payoff the option strategy. The
black dashed line is the SPY price while other dashed lines indicate the payoff of constituent options. This
strategy provides downside protection against the first 15% of losses in the SPY, while gains are capped at
12.03% over the defined outcome period.

Invesco S&P 500 BuyWrite ETF. The right panel shows the covered call strategy payoff profile of Invesco
S&P 500 BuyWrite ETF against varying underlying price, i.e., S&P 500 (SPX), at its option maturity date.
The coral solid line shows the total payoff the option strategy. The black dashed line is the SPX price while
grey dashed lines indicate the payoff of short at-the-money call options.
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Figure 4: Vega Moneyness and Days to Expiration

This figure shows how option vega vary with moneyness and days to expiration. Generally, at-the-money(ATM)
options have higher vega than in-the-money(ITM) or out-of-the-money(OTM) options. Long-dated options
have greater vega than near-term options.

39



Figure 5: Estimate of Impact across Moneyness and Days to Expiration and Underlying Asset

This plot presents the estimated coefficients from the group regression of IVidsc,t on OptionF lowidsc,t, incorporating various combinations of days to
expiration, moneyness, and underlying asset groups. Only coefficients that are statistically significant at the 10% level are retained, while insignificant
estimates are set to be zero. Coefficients reported are scaled by variable standard deviation. Standard errors are clustered at time and underlying asset level.
The x-axis (left) shows the days to expiration grid, while the y-axis (right) shows the moneyness grid . The z-axis (vertical) shows the estimated coefficients.
Short-term options exhibit the highest sensitivity to demand pressure, particularly those with fewer than 30 days to expiration. Deep in-the-money (ITM)
and deep out-of-the-money (OTM) options generally show greater sensitivity compared to at-the-money (ATM) options.
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Appendix A Underlying Passive ETFs

Table 10: Summary of Underlying Passive ETFs Used in Buffer Strategies

The buffer ETFs mainly implement buffer option strategies on several passive ETFs. This table shows the
name, ticker, benchmark, market value, and shares outstanding of these passive ETFs. Market value is
measured in billion US dollars and shares outstanding is in millions.

Name Ticker Benchmark Index Market Value Shares Outstanding
SPDR S&P 500 ETF Trust SPY S&P 500 430.2 879.1
Invesco QQQ Trust QQQ Nasdaq-100 230.5 489.7
iShares Russell 2000 ETF IWM Russell 2000 70.4 349.6
iShares MSCI EAFE ETF EFA MSCI EAFE 55.1 681.2
iShares MSCI Emerging Markets ETF EEM MSCI Emerging Markets 24.3 476.5
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Appendix B Buffer ETFs In Detail

The Innovator US equity power buffer ETF January series above is an example of simple
buffer ETF, where the payoff feature includes downside buffer and upside cap. While simple
buffer ETFs are the most popular subcategory (194 simple buffer ETFs out of 266 buffer
ETFs in my sample), there are also other buffer ETFs that provide alternative features other
than the basic buffer and caps. Table 11 illustrates the detailed classification of buffer ETFs
based on their distinctive payoff features.

Buffer ETFs exhibit a range of payoff features, but their underlying option strategies
follow a basic principle: the total cost of the options (and any government bonds, if used)
must match the ETF’s net asset value at the start of the defined outcome period. This means
that beneficial features—such as downside protection—come at a cost, usually in the form
of a trade-off like an upside cap. In general, the more protection the ETF provides with its
buffer, the lower the cap would be as a consequence of cost of option strategy.

Table 11: Classification of Buffer ETF Categories and Payoff Features

Category Representative ETF Main Payoff Feature
Accelerated ETF Innovator Growth Accelerated Plus ETF – Jan (QTJA) Leverage on upside return, subject to cap
Accelerated Buffer FT Vest U.S. Equity Enhanced Moderate Buffer ETF – Apr (XAPR) Buffer and leveraged upside return until cap
Downside Accelerated Buffer Pacer Swan SOS Flex (April) ETF (PSFM) Buffer, upside cap, and leveraged downside below threshold
Deep Buffer FT Vest U.S. Equity Deep Buffer ETF – Feb (DFEB) Deep buffer and capped upside
Income Buffer FT Vest U.S. Equity Buffer Premium Income ETF – Dec (XIDE) Buffer with defined income generation
Uncapped Buffer with Upside Threshold AllianzIM U.S. Equity Buffer 15 Uncapped Dec ETF (DECU) Buffer with full upside beyond a threshold
Uncapped Buffer with Partial Upside TrueShares Structured Outcome January ETF (JANZ) Buffer with partial participation in upside return
Simple Buffer FT Vest Emerging Markets Buffer ETF – Dec (TDEC) Downside buffer and upside cap

Figure 6 presents illustrative payoff profiles for all categories of Buffer ETFs. While the
combined payoff can theoretically be replicated through various combinations of constituent
instruments, the daily holdings disclosures of the ETFs provide empirical confirmation of the
implemented option strategy. This is critical, as a clear understanding of the strategy enables
precise identification of the specific options purchased or sold by the Buffer ETFs.
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Figure 6: Illustrative Payoff of Buffer ETFs

This figure displays the hypothetical payoff profiles of eight Buffer ETF categories. Each panel represents the combined payoff and individual
instrument payoff of a buffer ETF. The horizontal axis corresponds to the price of the underlying asset (e.g., SPY) at the end of the
outcome period, while the vertical axis reflects the resulting payoff.
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Appendix C Data Construction

I provide a detailed example illustrating how information from the fund prospectus is translated
into structural data, shareidsc,k,t. This variable is subsequently used to decompose the demand
pressure exerted by buffer ETFs on specific option contracts.

Innovator U.S. Equity Power Buffer ETF – January Series (PJAN). PJAN is
a simple buffer ETF with a predetermined buffer and cap level. According to the fund’s
prospectus:

“The pre-determined outcomes sought by the Fund, which include the buffer
and cap discussed below (‘Outcomes’), are based upon the performance of the
share price of the SPDR® S&P 500® ETF Trust (the ‘Underlying ETF’) over an
approximately one-year period from January 1 through December 31
of each year (the ‘Outcome Period’)... The Cap is set on the first day of the
Outcome Period and is 12.03% prior to taking into account any fees or expenses
charged to shareholders... The Fund seeks to provide shareholders that hold Shares
for the entire Outcome Period with a buffer (the ‘Buffer’) against the first 15%
of Underlying ETF losses during the Outcome Period.”

From the above, I collect the details of the outcome period, the predetermined buffer
and cap levels, as well as any other specified payoff features.

The next step involves backing up the option strategy of the ETF. Table 12 shows
the options that replicates the payoff of PJAN in the outcome period from Jan 1st 2025.
With the underlying price and predetermined cap/buffer, I am able to back out the strike
price of options. The outcome period also defines the maturity of these options, which is
set to expire on December 31, 2025. While multiple combinations of option contracts can
theoretically replicate the target payoff, I verify the specific strategy employed by the ETF
by cross-checking the fund’s disclosed option holdings.

Following the procedure outlined above, I am able to infer the value of shareidsc,k,t on the
first day of each outcome period. Over the course of the outcome period, shareidsc,k,t evolves
as the moneyness s and days to expiration d of the option change in response to movements
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Table 12: Option Strategy for Innovator US Equity Power Buffer ETF January Series

This table shows the option strategy of Innovator US Equity Power Buffer ETF. The option strategy involves
four options with different moneyness and strikes prices. Moneyness and Underlying Price are defined at the
start of construction of the option strategy, i.e., Jan 1st 2025.

Option Call/Put Shares Moneyness Underlying Price Strike Price Strike/Underlying Note

1 Call on SPY 1 Deep ITM 586.08 5.86 1% SPY exposure
2 Call on SPY -1 OTM 586.08 656.64 112% Cap
3 Put on SPY 1 ATM 586.08 498.17 85% Buffer
4 Put on SPY -1 ITM 586.08 586.08 100%

in the price of the underlying asset and passage of time, while the strike price and expiry date
remains fixed. This allows me to explore the heterogeneous effects of demand pressure on
option-implied volatility across different levels of moneyness and days to expiration.

By the above steps, I’m able to back out the shareidsc,k,t at each outcome period start
day. The shareidsc,k,t changes as the moneyness change with the price change of the underlying
asset dueing the outcome period (while strike price keeps unchanged). This change allows me
to explore heterogeneous impact of demand pressure to option implied volatility with different
moneynees.
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Appendix D Demand Pressure and Near-expiry option

Implied volatility tends to vary substantially as options approach expiration. Consequently,
using the 7-day average implied volatility may fail to accurately capture the prevailing level of
implied volatility at the time of trading, potentially introducing bias into the estimation. To
mitigate this concern, I restrict the analysis to a subsample of near-expiry options—defined
as contracts with fewer than 10 days to maturity—and employ the one-day lagged implied
volatility as a control for the prevailing volatility level.

Figure 7 illustrates that, consistent with the baseline results using the 7-day average,
demand pressure has a stronger effect on options that are further out-of-the-money relative
to those that are near-the-money. However, the estimated coefficients for deep in-the-money
and deep out-of-the-money options are generally not statistically significant. This is likely
attributable to the heightened volatility dynamics near expiration, which make it inherently
difficult to fully control for implied volatility level.
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Figure 7: Estimate of Impact for Near Expiry Options

This figure presents the estimated coefficients from the group regression of IVidsc,t on OptionF lowidsc,t for
the near-expiry options, along with 10% confidence intervals. Coefficients reported are scaled by variable
standard deviation. Standard errors are clustered at time and underlying asset level. The x-axis shows the
moneyness grid . The y-axis (vertical) shows the estimated coefficients.
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