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Abstract

This paper examines the enduring value of human judgment in an era of increasingly
powerful Al. Focusing on over 200 macroeconomic shock episodes across 47 countries, I
investigate when and where analysts retain an advantage over algorithmic models. I use
machine learning trained on public data to construct benchmark forecasts for earnings
expectations and decompose the gap between human and machine forecasts into soft in-
formation, bias and noise. The results show that soft information, such as contextual and
non-public insights that are not captured in public data, significantly improves human
forecast accuracy, especially at the onset of macroeconomic shocks. This advantage is par-
ticularly evident in emerging markets, where limited disclosure constrains the learning

capacity of algorithms. As the shock progresses, however, the accuracy of human forecasts
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declines due to increasing bias and noise. These findings underscore the conditional
value of human input and the informational limits of automation under uncertainty.
The analysis also reveals substantial cross-country differences related to institutional
transparency, contributing to our understanding of belief formation, systemic resilience,
and the interaction between human and algorithmic decision-making in global financial

markets.

Keywords: Soft Information, Macro Shocks, Belief Formation, Analyst Forecasts, Econo-

metric Forecasts, Machine Learning



1. Introduction

The rise of machine learning in financial markets has redefined the boundaries between
human judgment and algorithmic precision. While algorithms increasingly dominate routine
forecasting tasks such as credit scoring and high-frequency trading Fuster et al. (2019),
their performance during systemic macroeconomic shocks remains contested. A critical yet
unresolved question emerges: What residual value do human analysts provide when

conventional models fail to navigate turbulent markets?

As emphasized by the Lucas Critique (Lucas 1976), statistical relationships observed in his-
torical data may not remain valid under changing economic conditions, unless expectations
and behavioral adjustments are explicitly modeled. My paper takes this critique seriously
by decomposing analyst forecasts into a machine-based baseline and human-specific adjust-
ments, including soft information, behavioral bias, and noise. This allows us to separate
truly predictable patterns from expectation-driven shifts, especially around macroeconomic

shocks, where adaptive behavior becomes crucial.

To operationalize this idea, I develop a framework that explicitly decomposes analyst forecasts
into two components: a machine-driven baseline derived from observable, stable predictors;
and human-specific adjustments that embed behavioral features such as soft information,
belief distortions, and idiosyncratic noise. This decomposition allows us to identify when
and how humans retain forecasting advantages particularly in domains where algorithmic
predictions may falter, such as during the onset of economic shocks or in data-sparse envi-

ronments.

This approach directly addresses the Lucasian concern that fixed-rule statistical models may
fail when expectations adjust endogenously. By contrasting machine and human forecast
components, we uncover where human judgment still adds value, offering insight into the

informational limits of prediction algorithms and the contexts in which behavioral inputs



become essential.

Ultimately, the goal is to better understand the residual edge of human forecasting: what
informational or cognitive elements analysts bring to bear that are not yet captured by
machine learning algorithms, and under what conditions those elements become essential

for accuracy.

A key conceptual foundation for this paper comes from the “prediction machine” framework
introduced by Agrawal, Gans, and Goldfarb (2022), which mentions a 2x2 matrix of uncer-
tainty originally articulated by former U.S. Secretary of Defense Donald Rumsfeld. This
matrix categorizes uncertainty based on whether relevant information is both identifiable
and measurabledividing the world into known knowns, known unknowns, unknown knowns,

and unknown unknowns.

Known Unknown

Known Known Knowns Known Unknowns

Unknown | Unknown Knowns | Unknown Unknowns

This classification provides a useful lens for evaluating the relative strengths of machine-
based and human forecasts. Prediction models are most effective when operating on “known
knowns,” where relationships are stable and the data environment is rich and structured.
They may also provide reasonable performance in “known unknown” settings, where risks
are identifiable but difficult to quantify, though their reliability may decline when data are

sparse or unstable.

Human forecasters can complement algorithms by incorporating “unknown knowns,” such



as tacit knowledge, qualitative assessments, and contextual cues not captured in observable
features. This category includes soft information derived from institutional knowledge, expe-
rience, or access to management commentary. In contrast, “unknown unknowns” represent
unanticipated disruptions or regime shifts that neither humans nor machines can easily

forecast.

This paper formalizes these insights by training machine learning models to capture the
“known known” component of forecasts, and treating the analyst-specific deviation as a hu-
man adjustment. The residual component can be further decomposed into soft information,
behavioral bias, and noise. This structure allows us to assess when human forecasts diverge
from machine benchmarks and what those deviations reveal about the value of human

judgment in uncertain environments.

This paper provides the first international analysis of cross-country variation in the relative
forecasting performance of humans and machines, using data from 47 countries and more
than 200 macroeconomic shocks. By leveraging variation along temporal, forecast horizon,
and regional dimensions, I document systematic differences in when and where machines
outperform humans, and vice versa. A central contribution of this study is to highlight the
role of public data availability in shaping these dynamics: machine learning models tend to
dominate in information-rich environments, whereas human analysts retain a comparative

advantage where soft information helps bridge public information gaps.

In this paper, I quantify the role of soft information, defined as contextual and non-quantifiable

insights embedded in human expectations, during global macro shocks. My analysis builds



on the structural decomposition framework of De Silva and Thesmar (2024), which separates
the non-statistical components of human forecasts into bias, noise, and soft information.
While their study emphasizes noise using U.S. data without distinguishing economic regimes,
I extend this framework by leveraging a novel international dataset spanning 47 countries
and over 200 macro shock events. This global perspective increases the coverage of soft
information to include hard public data obscured by access barriers in smaller economies,
legally soft information from regulatory nuances, and insider knowledge beyond public reach.
By comparing human-machine performance gaps across macro shock and non-macro shock
periods, I reveal how institutional heterogeneity and economic turbulence amplify the value
of this expanded soft information, a dimension overlooked in single-country studies. These
findings provide fresh insights into the comparative advantages of human analysts over
machine learning models in financial forecasting, with significant implications for theory

and practice.

I implement a two-step structural framework to isolate the unique value of human analysts,
following established practices in the literature. In the first stage, I use supervised learning
algorithms to predict both realized earnings and analyst forecasts using all contemporane-
ously available public information, thereby isolating the statistically replicable component.
This approach builds on recent work by Van Binsbergen, Han, and Lopez-Lira (2020) and Cao
et al. (2021), who demonstrate the effectiveness of machine learning in modeling earnings
expectations and stock analyses. In the second stage, I decompose the residual non-statistical
component into three latent factors using the structural estimation method proposed by
De Silva and Thesmar (2024): soft information, systematic bias, and idiosyncratic noise.
This approach contributes to the literature in three key ways. First, it provides a direct
quantification of soft information’s economic value, moving beyond reduced-form proxies
such as textual sentiment scores Tetlock (2007). Second, it demonstrates that soft infor-
mation’s importance is state-dependent, peaking during macro shocks when algorithmic
predictability collapses Gabaix and Koijen (2020). Finally, it documents how institutional

factors such as regulatory transparency moderate the human-machine performance gap.



The earnings forecasts datasets provide an excellent opportunity to analyze human judg-
ment in three respects. First, professional equity analysts operate under strong reputational
pressures (Hong and Kubik 2003a) and benefit from access to exclusive information channels
(Groysberg, Lee, and Nanda 2011), which enables them to interpret qualitative signals
beyond the reach of algorithms. Second, the global standardization of earnings forecasts
across 47 countries offers a consistent measure to examine how institutional contexts shape
macro shock interpretations. Third, because earnings expectations directly influence eq-
uity valuations through discounted cash flows (Campbell and Shiller 1997), revisions made
during macroeconomic shocks reveal how analysts reframe disruptions that machines tend
to misprice. When historical patterns break down, analysts reassess fundamentals using

evolving macro shock narratives that algorithms fail to capture.

By integrating statistical methodologies such as machine learning algorithms into an ex-
tensive real-world dataset, I move beyond testing these models on simulated data or solely
on U.S. markets. Because the United States represents a highly developed financial envi-
ronment, my international analysis, which spans both developed and developing economies
and covers efficient as well as semi-efficient markets, offers unique insights into variations
in noise, bias, and non-statistical information. In particular, this approach expands the
measurable range of soft information to include not only qualitative insights but also public
data that is not readily accessible, legally soft disclosures, and insider information. These
variations, in turn, shed light on the evolving nature of learning and prediction accuracy as

economies transition from developing to developed status.

My analysis yields three central results. First, during the onset of macro shocks, human
analysts significantly outperform machine forecasts in short term earnings predictions
because they leverage soft information that algorithms cannot access. For example, when
forecasting earnings 30 days ahead for a firm such as Tesla, analysts incorporate timely

qualitative cues, whereas for long term forecasts, the human advantage diminishes as soft



information becomes scarce and human forecasts suffer from emotional bias and noise.

Second, my empirical findings indicate that at the beginning of a macro shock, the substan-
tial human edge is driven by a strong soft information advantage. However, as the macro
shock evolves, this edge gradually erodes because analysts’ forecasts become increasingly
affected by bias and noise. For instance, during the early stage of the 2020 pandemic, an-
alysts predicted a swift resolution and outperformed algorithms, but as the macro shock
persisted and sentiment turned pessimistic, machine forecasts eventually surpassed human

predictions.

Third, the contribution of soft information to forecast accuracy varies markedly across coun-
tries. In developing economies, where data availability is lower and legal systems are less
robust, soft information accounts for a substantially higher share of forecast accuracy gains,
reflecting a greater reliance on non-statistical insights that conventional models fail to
capture. This pattern aligns with institutional theories that predict weaker governance
amplifies both human adaptability and cognitive fragility during disruptions. Moreover, the
learning curve in developing countries is markedly steeper; at the onset of a macro shock,
these markets rely more heavily on soft information, while bias and noise intensify more
rapidly as the macro shock progresses, leading to greater fluctuations in human expectations

compared to developed economies.

Overall, these findings deepen our understanding of belief formation by highlighting the crit-
ical role of soft information in navigating global macro shocks. This evidence challenges the
inevitability of automation, emphasizing the need for forecasting models tailored to diverse
institutional settings and economic regimes, where human judgment remains essential to

interpret phenomena beyond algorithms’ reach.

The structure of the paper is as follows: Section 1 introduces the research question, key

findings, main contributions, and related literature. Section 2 describes the data sources, the



construction of forecasting targets and predictors, and the machine learning methodologies
used in the analysis. Section 3 presents the main empirical results. It benchmarks human
and machine forecasts, decomposes forecast errors into soft information, bias, and noise,
and examines cross-country heterogeneity between developed and emerging markets. Sec-
tion 4 discusses several robustness checks and model extensions, including the use of large
language models (LLMs) to extract soft information from text data. Rather than serving
as standalone prediction algorithms, LLMs are used to generate additional features that
enhance machine-based forecasts, allowing for a richer integration of textual signals into
the forecasting framework. Section 5 concludes the paper and outlines directions for future
research. Supplementary results, derivations, and additional figures are reported in the

Appendix.

Literature Review

This study contributes to the lit erature on expectation formation (e.g.,Sims (2003); Woodford
(2003); Landier, Ma, and Thesmar (2017); De Silva and Thesmar (2024)) and the role of
noise expectation in forecasting and human decision-making across various domains such
as medicine, finance, hiring, and judicial decisions (Kahneman, Sibony, and Sunstein 2021).
Subjective forecast noise has been extensively discussed in the literature on noisy informa-
tion (e.g., Woodford 2003; Coibion and Gorodnichenko 2015) and behavioral economics (e.g.,
Khaw, Li, and Woodford 2019; Woodford 2020; Enke and Graeber 2020; Kahneman et al.
2021; Afrouzi et al. 2021).

My contribution to this literature is twofold. First, I provide evidence on the size and term
structure of noise using analyst forecast data. Second, our methodology places no restric-
tions on the data-generating process. This approach is similar to that of Satopaé, Salikhov,
Tetlock, and Mellers (2020), who perform a bias—information—noise (BIN) decomposition

and find that noise reduction is a consistent property of good subjective forecasters. It is also



complementary to the approach developed by Juodis and Kucinskas (2019), which exploits
the factor structure in expectations implied by many models of belief formation. More broadly,
our methodology relates to the work of Bianchi, Ludvigson, and Ma (2020) and Nagel (2021),

who discuss how supervised learning is useful for studying subjective expectations data.

Furthermore, I extend Thesmar’s methodology by testing this decomposition approach on
global datasets, thereby connecting it to a broader range of contexts. Additionally, I engage
with the literature that uses machine learning algorithms as benchmarks for studying
human forecasts. This paper contributes to the literature of studying analyst forecasts,
together with stattical forecasts as benchmark. Van Binsbergen, Han, and Lopez-Lira (2020)
compares analyst forecasts with machine’s forecasts, and define the difference as conditional
bias in firms’ earnings forecasts. The authors also show the term structure of this new
measure. De Silva and Thesmar (2024) decompose the conditional bias into soft information,
bias and noise of human compared to machine and analyze its term structure. This paper
also generates a theoretical framework to account for the empirical facts. Ball and Ghysels
(2018) uses mixed data sampling (MIDAS) regression methods to utilize high frequency
data when constructing forecasts. Cao et al. (2021) studies human’s capacity vs machine in

forecasting stock prices.

Besides, this paper contributes to the literature on forecasting accuracy during macro shock.
Our study also continues the line of research on the informativeness of financial forecasts
and the literature on forecasts during crises, such as the work by Fouliard, Howell, and Rey

(2021).

This paper also adds to the topic of informativeness of financial forecasts. Dessaint, Foucault,
and Frésard (2021) study the horizon effect existing in the analyst forecasts with evidence

from alternative data.



This paper resonate with the governance-based view of home bias proposed by Pinkowitz,
Stulz, and Williamson (2001) and Dahlquist et al. (2003), extending its logic from the domain
of asset ownership to that of forecast composition. Specifically, I show that analysts are more
likely to generate value when they possess privileged access to local, non-public information.
This result also connects to the literature on local analyst advantage, particularly Bae,
Stulz, and Tan (2008), by structurally quantifying the contribution of soft information to

forecasting performance.

In doing so, my paper contributes to both strands of literature by introducing direct, quan-
titative measures of local informational advantage in the context of financial forecasting.
These measures allow for a systematic evaluation of when and how locally embedded ana-
lysts outperform, thereby offering new empirical content to theories of home bias and local

expertise.

Prior literature extensively documents the prevalence of analyst optimism, whereby analysts
tend to overestimate firm earnings and stock values due to various incentives. These include
the motivation to maintain access to management (Lim 2001), the desire to secure trading
commissions and retain clients (Cowen, Groysberg, and Healy 2006), as well as career
concerns and institutional affiliations (Hong and Kubik 2003b; Mola and Guidolin 2009),
among a broader literature on analyst behavior. This optimistic bias has been identified as a

form of analyst activism influencing market expectations.

Extending this understanding, I leverage international datasets to uncover a complemen-
tary pattern in noisy forecasting environments. In these markets, characterized by less
transparent information and greater uncertainty, analysts exhibit systematic pessimism,
consistently underestimating firm earnings and stock prices. This finding suggests that
analyst biases are context-dependent and that pessimism may dominate when informational

noise impedes accurate forecasting.



2. Data and Methodology

2.1. Data Sources and Coverage

2.1.1. International Coverage

The analysis leverages a novel international dataset designed to capture cross-country
heterogeneity in human expectations during macroeconomic shocks. It spans 47 countries
and regions, encompassing all constituents of the MSCI ACWI Index as of 2020. The sample
covers approximately 85% of the global investable equity market (see Appendix Table A1),
including 23 developed markets (e.g., United States, Japan, Germany) and 24 emerging
markets (e.g., India, Brazil, Malaysia), ensuring broad representation across institutional

and developmental contexts.

The dataset includes over 200 macroeconomic shocks from 1980 to 2025, classified into three

categories:

* Global Systemic Shocks: Events with cross-border transmission mechanisms, such as

the early 1990s recession, the 2008 Global Financial Crisis, and the COVID-19 pandemic!.

* Regional Shocks: Geographically concentrated crises, including the 1997 Asian Finan-

cial Crisis and the 2010 European Debt Crisis.

* Country-Specific Shocks: Nationally confined disruptions, such as Argentina’s 2001

sovereign default and Russia’s 2014 currency crisis.

This taxonomy enables systematic examination of how shock type and geographic scope
moderate the relative performance of human and machine forecasts. The sample begins in
1990 to align with the widespread adoption of digital data infrastructure and advances in

computational forecasting. Shock selection criteria and the full event list are provided in

IPigure A1 in the Appendix illustrates selected global shocks for the United States using industrial production
data.
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Appendix Table A2.

2.1.2. Data Sources

This study integrates three types of publicly available data to construct a comprehensive

cross-country forecasting framework:

* Firm Fundamentals: Over 200 firm-level variables are sourced from Compustat Global
and Datastream, including balance sheet items, profitability metrics, and market prices.
For stock price and market capitalization data, I use CRSP for firms in the United States
and Canada, and Eikon Datastream for firms in other countries, ensuring consistent
coverage across the global sample. These variables form the primary input for statistical
forecast models. Comprehensive variable lists are provided in the appendix tables A3,

A4, A5, and A6; see also the overview in Appendix Note E.1.

I focus on commonly used Compustat variables to maximize data availability and mini-
mize missing observations. This selection strategy follows the approach in Hansen and
Thimsen (2021), who emphasize the importance of avoiding look-ahead bias by relying

on contemporaneously observable inputs.

* Analyst Forecasts: I obtain analyst earnings forecasts from the I/B/E/S Global database,
covering the period 1985 to 2023 and comprising more than 20 million observations
across 47 countries. Fiscal-year-end earnings are used as the realized values to enhance
cross-sectional comparability and address concerns related to seasonal reporting patterns
(Kothari 2001). To limit the impact of extreme values, EPS figures are winsorized at the

5% level on an annual basis within each country.
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°* Macroeconomic Indicators: This study incorporates over 30 monthly country-level
indicators from 1985 to 2023, sourced from Trading Economics and FactSet. The variables
include GDP growth, inflation, unemployment, the Industrial Production Index, and the
Consumer Price Index, among others. These indicators characterize the macroeconomic
environment in which forecasts are formed and serve as key inputs for modeling earnings
dynamics across countries. Their inclusion is motivated by the asset pricing literature
emphasizing the role of macroeconomic conditions in shaping firm valuation and return
predictability (Fama and French 1989; Chen, Roll, and Ross 1986). A complete list of

variables is provided in the Appendix Table A7.

These three data sources are merged at the firm-country-date level to create a unified panel

suitable for machine learning-based forecast modeling and structural decomposition.

To train machine learning models, I construct two versions of statistical inputs. The first
relies solely on public financial and macroeconomic data, excluding any information about
analyst forecasts. This version allows us to build fully independent benchmark forecasts
that simulate algorithm-only predictions. The second version incorporates analyst forecasts
as additional features, enabling us to explore potential complementarities between human

and machine inputs in predictive performance.

2.1.3. Analyst Forecast Processing

The analyst forecasts from I/B/E/S provide a high-quality global panel of human judgment
under uncertainty. Sell-side equity analysts are highly trained professionals with strong
reputational incentives (Hong and Kubik 2003a), and they issue firm-level earnings forecasts

across 47 countries, including 23 Developed and 24 Emerging Markets.
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To ensure data quality and comparability across countries, I implement several preprocess-
ing steps on the I/B/E/S analyst forecasts. First, EPS forecasts are winsorized at the 5% level
annually within each country to mitigate the influence of outliers. Second, all forecast and
earnings announcement dates are standardized using UTC timestamps. Finally, to ensure
cross-country comparability, I standardize forecast dates, control for outliers, and classify

forecasts into short-, mid-, and long-term horizons based on time to earnings release.

This structure allows us to systematically examine how analysts in different institutional
environments, such as those with high or low information barriers, respond to the same

macroeconomic shocks. This comparative design feature is absent in single-country studies.

2.2. Statistical Forecasting Framework

A key objective of this study is to compare the accuracy and composition of human and
algorithmic forecasts during macroeconomic shocks. To establish a meaningful benchmark
for analyst expectations, I implement a dual-model forecasting framework using supervised
machine learning algorithms trained on public financial and macroeconomic data. This
algorithmic forecasting framework is referred to as the "machine analyst” throughout the
analysis. This setup enables direct comparison between human and machine predictions

across varying institutional, temporal, and informational contexts.

2.2.1. Benchmark Forecasting Models

Building on the approaches of Van Binsbergen, Han, and Lopez-Lira (2020), Cao et al.
(2021), and De Silva and Thesmar (2024), I implement a dual-model framework in which
machine learning forecasts are generated concurrently with human forecasts, using only

publicly available information for the machine-based predictions. These models serve as
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benchmarks for constructing forecast residuals used in the structural decomposition. A

detailed description of the algorithms is provided in Appendix A.

* Quasi-linear Models: Lasso/Ridge/Elastic Net regression for sparse high-dimensional

data:

2

N p p p
1) min |y~ Bo— D By | +A Y [Bj[+A2) B
b i Jj=1 Jj=1 J=1

where y; is the target variable, x;; are the input features, 3 ; are the model coefficients,
and A, Ag are regularization parameters controlling the strength of Lasso (L) and Ridge

(L9) penalties, respectively.

* Non-linear Models: such as Random Forests, Gradient-Boosted Trees predict outcomes

by aggregating the predictions of multiple decision trees:

M
(2) ¥=> fm@, fmeF
m=1

where each f,, represents an individual regression tree, and JF is the space of all decision
trees.

Besides standard machine learning methods, I also employ Feedforward Neural Networks
(FNN) to generate financial forecasts, allowing for nonlinear patterns and complex

interactions among input features to be captured.

In addition to these classical supervised learning methods, I incorporate large language
models (LLMs) to extract soft information from text data and generate supplementary
features that enhance machine-based forecasts. This extension is discussed in detail in

Section 4.
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2.2.2. Forecast Horizons

Following Dessaint, Foucault, and Frésard (2021), forecast horizons are computed as the

number of calendar days between the forecast date and the earnings release date:
Horizon = Earnings Release Date - Forecast Date

For example, if an analyst issues an earnings forecast for Tesla on January 1st, and the

actual earnings are released on March 31st, the forecast horizon is 89 calendar days.

This continuous measure provides a more precise indication of the time remaining until the
realization of the target variable, compared to the traditional use of the FPI (Forecast Period
Indicator) in I/B/E/S datasets, which only reflects the fiscal period being forecasted. It better
captures the actual temporal distance faced by forecasters, either human or machine, at the

time of prediction.

Horizons are classified into three categories:
* Short-term: < 1 year
°* Mid-term: 1-2 years

* Long-term: > 2 years

This categorization captures how analysts update beliefs across different macro shock phases

while maintaining comparability with machine learning predictions.

As an illustrative example, Figure A2 presents the distribution of forecast horizons for analyst
forecasts in the United Kingdom. The figure is based on over 700,000 analyst forecasts from
the United Kingdom, with horizons measured in calendar months and rounded to the nearest

whole number.
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2.2.3. Structural Model

Building on De Silva and Thesmar (2024), I develop a structural decomposition of analyst
forecast errors into three economically meaningful components: soft information, bias, and
noise. I define the residual forecast error as the difference between analyst expectations and
a benchmark prediction conditional on observable financial and macroeconomic variables X;.

The structural form is given by:

(3) Fl] =xl‘+2i+bij +nlj

where F;; denotes the forecast by analystj for firm i, x; = E[m; | X;1is the model-implied
benchmark based on observable information, z; captures firm-level soft information available
to analysts but not to the model, b;; represents analyst-specific bias, and n;; is idiosyncratic

noise.

This decomposition is grounded in the intuition that these components influence forecasts in
distinct and empirically separable ways. For instance, if two analysts issue similar deviations
from the benchmark for the same firm, the pattern likely reflects common soft signals. If
one analyst consistently overpredicts regardless of fundamentals, this suggests bias. If
residuals vary without relation to either fundamentals or outcomes, they are attributed
to noise. Exploiting variation across analysts, horizons, and macroeconomic states enables

identification of these latent components.

* Soft Information: Context-specific insights unavailable to algorithms. This includes:

16



— Unstructured public data (e.g., narrative disclosures, local news),
— Institutional signals (e.g., timing of earnings guidance or local enforcement norms),
— Private information (e.g., management tone, site visits),

— Human judgment, especially under uncertainty.

* Bias: Predictable deviations unrelated to information advantages. These often arise
from behavioral tendencies (e.g., optimism or conservatism) or institutional incentives

(e.g., affiliation pressures, career concerns).

* Noise: Unsystematic forecast variation caused by information frictions (Woodford 2003),

inattentiveness, or bounded rationality (Landier, Ma, and Thesmar 2017).

I implement the decomposition in two stages. First, I estimate benchmark forecasts for
both realized earnings and analyst expectations using supervised machine learning mod-
els trained on public financial and macroeconomic data. Second, I compute residuals and
separate them into the three structural components. This empirical strategy builds on the
identification design of De Silva and Thesmar (2024), originally applied to U.S. forecasts
under normal economic conditions. I extend their approach to a global setting covering 47
countries and over 200 macroeconomic shocks, explicitly distinguishing between crisis and
non-crisis periods. This setting introduces rich cross-sectional and temporal variation that

supports identification even under institutional heterogeneity.

The structural framework is particularly suited to analyzing macroeconomic shock dynamics.
Such shocks reduce the reliability of statistical models trained on historical patterns while
amplifying the importance of contextual cues and subjective interpretation. In this environ-
ment, human forecasts may incorporate valuable soft information that escapes algorithmic
detection. The international scope of the dataset enables decomposition of forecast errors
into distinct components, even in the presence of varying regulatory and informational

environments.
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2.2.4. GMM Estimation Strategy

The parameters of interest are identified using Generalized Method of Moments (GMM),
following the approach of De Silva and Thesmar (2024). The estimation is based on three

moment conditions derived from residualized forecasts and outcomes:

°* Moment 1: Cov(Tt:-‘,Fl.*j) = O
°* Moment 2: Var(FlT;.) =020+ £

* Moment 3: Cov(F};,F};) = 20

yori

where 7} = m; —E[m; | X;] and F;; =Fj; —E‘[Fij | X;] are residualized outcomes and forecasts

after conditioning on public information.

Instruments Z;;, constructed from firm-level or macro variables (e.g., size bins, disclosure
regimes), enter the moment conditions via interactions with residuals. Identification relies
on the exclusion of these instruments from the noise component, and on the orthogonality

between residual soft information and idiosyncratic error.

The model estimates four key quantities: © (variance of soft information), « (extent of
analyst reliance on soft information), £ (variance of noise), and A (public bias). The soft bias
component is further computed as Ap = (1 - «)20. Estimation is performed by minimizing
the weighted squared moments, with standard errors obtained via heteroskedasticity-robust

sandwich formula.

For interpretability, results are reported separately by forecast horizon and sample split (e.g.,
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cross-country, pre/post shock). Appendix C provides technical derivations and simulation

validation.

2.3. Identification Strategy

The scope and design of the international panel provide a credible basis for identification
along three key dimensions: institutional differences across countries, temporal variation
induced by macroeconomic shocks, and heterogeneity across forecast horizons. This empirical
framework allows for a quasi-experimental approach to isolating the drivers of forecasting

behavior.

* Cross-sectional variation, by comparing countries exposed to similar macroeconomic
shocks but differing in institutional and informational environments, such as regulatory
transparency, capital controls, and disclosure regimes. These differences affect how

information is processed and incorporated into forecasts.

* Temporal variation, by tracking forecast components before, during, and after macroe-
conomic shocks, as well as across different stages of the same shock, capturing dynamic

adjustments over time.

* Variation across forecast horizons, by analyzing the term structure of forecast
accuracy. Differences in short- versus long-term predictive performance offer insights
into the relative strengths and weaknesses of human and machine forecasts under

varying information complexity.
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3. Forecasting Results: Human vs. Machine

Drawing on a global dataset covering 47 countries and more than 200 macroeconomic shocks,
I analyze forecasting behavior across three empirical dimensions: cross-sectional variation,
temporal evolution around shocks, and variation by forecast horizon. This setting allows the
decomposition of forecast errors into components attributable to soft information, behavioral

bias, and random noise under diverse economic and institutional conditions.

3.1. Universal Forecasting Patterns

3.1.1. Descriptive Statistics of Forecasting Variables

Table A8 presents summary statistics for a selected set of forecast horizons, including three
quarterly horizons (A = 0.25,0.5,0.75 years) and three annual horizons (h = 1,2, 4 years).
We report the distribution of analyst consensus forecasts (Fgg), realized earnings (71;;,z),
and forecast errors (FZ — ;) Pjt, normalized by price. In addition, the table includes the

number of analysts issuing forecasts (N l-’}) and firm size as measured by total assets.

Analyst forecasts are generally optimistic, with mean forecast errors tending to be pos-
itive across horizons. Dispersion increases with forecast horizon, consistent with rising
uncertainty and decreasing information precision. The number of analysts per firm-time
observation declines with horizon, while firm size remains relatively stable. These patterns
highlight the increasing challenge of long-term forecasting and motivate our focus on decom-

posing forecast errors into structural components across time and horizon.
Table ?? reports the summary statistics of firm-level analyst forecasts and associated fore-

cast errors for selected horizons (2 = 0.25,0.5,1, 2, 4). Forecast errors are computed as the

difference between analyst forecasts and realized outcomes. The results show that mean
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forecast errors are generally close to zero, but the dispersion increases with the forecast

horizon, reflecting growing uncertainty.

Table A9 reports the distribution of forecast errors at the analyst level, highlighting the dis-
persion across individual analyst expectations and the magnitude of disagreement relative

to realized firm earnings. The statistics are computed separately by forecast horizon.

This motivates the decomposition approach, which seeks to quantify the human-specific
components, such as soft information, bias, and noise, embedded in analyst forecasts beyond

what can be predicted by statistical models.

3.1.2. Consistent Forecast Patterns Across Models

To further evaluate the robustness of machine learning models in learning human forecasting
behavior, we compare multiple algorithms’ performance in predicting analysts’ forecasts.
Specifically, we define the A-type forecast as the machine’s prediction of the analyst forecast,

capturing the extent to which the machine can replicate human beliefs using public signals.

Figure A10 in the Appendix presents the mean squared error (MSE) of A-type forecasts
across different horizons for two representative environments: structured (e.g., Germany) and
noisy (e.g., Turkey). Across both countries, we observe a consistent pattern: MSE increases
monotonically with the forecast horizon. This reflects the growing uncertainty in human
forecasts as the horizon extends, and the greater difficulty for machines to replicate long-term

analyst expectations accurately.
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Importantly, both the elastic net and random forest models exhibit a similar directional trend
in MSE growth, despite differences in absolute accuracy. This convergence in trend across
algorithms highlights the shared underlying structure in how machines recognize patterns
in analyst behavior. In particular, the similar slope and curvature of MSE lines across models
indicate that pattern recognition, though varying in precision, follows a coherent logic across

learning architectures.

Taken together, these results suggest that machines can internalize not only directional
biases (as shown in Section 3.3.3) but also the structure of forecast uncertainty. The rising
MSE profile implies that human forecasts become harder to predict as they become more
speculative, and machines mirror this difficulty even when trained on rich public signals.
This robustness across methods strengthens the evidence that human uncertainty is a

learnable and measurable feature of forecast environments.

3.1.3. For Machines: Human Forecast Errors Are Most Predictable

Having shown earlier that machines struggle to predict analyst forecasts (A-type) and
firm fundamentals (E-type) over long horizons, I now investigate a third, and perhaps more
revealing learning task: can machines predict the analyst forecast error, that is, the difference

between their forecast and the realized outcome?

The AE-type forecast is defined as the machine prediction of analyst forecast errors. Fig-
ure All and Figure A12 in the Appendix plot the MSE trends for E-type and AE-type

forecasts, respectively, across forecast horizons and countries.
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For E-type forecasts (Figure A11), MSE increases with horizon, as expected. This reflects

the growing difficulty of forecasting actual earnings over longer time frames.

In contrast, AE-type forecasts (Figure A12) exhibit a declining MSE profile with horizon.
That is, machines become better at predicting analyst forecast errors as the time horizon
extends. This counterintuitive pattern reveals a surprising regularity: analysts become
increasingly conservative at long horizons, and this behavior becomes more predictable to

the machine.

Taken together, these results highlight a subtle but powerful insight: while machines struggle
to predict analysts (A-type) and firms (E-type) directly, they can effectively learn how humans
fail. That is, machines are especially good at predicting the residual—the behavioral bias in
analyst forecasts—which turns out to be more systematic and learnable than the targets
themselves. This underscores the promise of decompositional approaches to understanding

human-machine interaction in forecasting.

This distinction highlights a key mechanism underlying my empirical findings. Predicting
analyst forecasts (F_ ANALYST) requires replicating raw human behavior, which is often
noisy, biased, and highly context-dependent. In contrast, predicting analyst forecast errors
(F_ANALYST - ACTUAL) enables the model to focus on systematic deviations from actual
outcomes. When these deviations exhibit consistent patterns, such as persistent optimism

or variation across forecast horizons, they become more amenable to learning.

In essence, machines find it difficult to replicate human forecasts, but are more successful at

learning how humans tend to deviate from fundamentals. This insight underscores the value
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of decompositional approaches for uncovering the structure of human forecasting errors.

I next examine whether this learnable residual structure varies systematically across mar-

kets with different levels of public information disclosure (see Section 3.3.4).

3.2. Shock-Time Dynamics

I next examine how forecasting behavior evolves across the life cycle of macroeconomic shocks.
The relevance of soft information tends to be elevated during the early stages of a shock and

declines during periods of stabilization.

As illustrated in Figure A4, human forecasts tend to outperform machine-based predictions
in the early stages of financial crises, such as the onset of the dot-com bubble. This initial
advantage likely reflects analysts’ ability to rapidly incorporate qualitative signals, including
emerging policy responses, supply chain disruptions, or shifts in market sentiment, which
are not captured by structured historical data. In contrast, machine learning models, par-
ticularly those based on supervised learning algorithms such as Lasso or Random Forest,
rely on patterns extracted from past data and typically produce estimates that reflect histor-
ically dominant regimes. As a result, they often interpret early-stage shocks as transient

fluctuations rather than structural breaks, and therefore adapt more slowly.

As the crisis unfolds, however, the relative advantage of human forecasts declines. Machine
models gradually adjust as new data accumulates and the underlying patterns shift. Mean-
while, human forecasters may become increasingly uncertain as the crisis persists beyond
initial expectations. This uncertainty can lead to overreactions, inconsistent revisions, and
increased forecast bias and noise. The narrowing, and at times reversal, of the performance

gap between human and machine forecasts is consistent with the structural decomposition
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of forecast errors and highlights the shifting balance of informational advantages over the

course of financial shocks.

Similar patterns are observed in other crises, including the 2008 financial crisis and the
collapse of the dot-com bubble. The persistence of analyst advantage varies with the nature

of the shock.

The structural decomposition method complements traditional approaches that attribute
forecast gaps solely to bias. By isolating the role of information, the model provides a more

nuanced understanding of analyst behavior under conditions of macroeconomic turbulence.

3.3. Structured vs. Noisy Forecast Environments

3.3.1. Forecast Dynamics Cross Markets

Building on the temporal patterns documented earlier, I now compare how the relative
performance of analyst and machine forecasts evolves across markets with different infor-
mational environments. This comparison highlights the extent to which market structure

shapes the timing and persistence of forecasting advantages.

Appendix Figure ?? plots forecast errors for analysts and machines across structured and
noisy markets during episodes of macroeconomic stress. A consistent pattern emerges across
countries. In the early stages of a macroeconomic shock, analysts typically outperform
machines, particularly in noisy environments. This initial advantage likely reflects analysts’
ability to incorporate soft or firm-specific information that is unavailable to machines relying

solely on public signals.
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As the crisis progresses, however, the advantage of analysts diminishes. Forecast errors
tend to rise most notably in noisy markets where analysts appear to revise expectations
too frequently or too aggressively in response to evolving conditions. In contrast, machine
forecasts remain more stable and gradually improve in relative accuracy as the informational

content of public data increases and human forecasts become more erratic.

The timing of this reversal differs by market type. In structured environments, machines
tend to catch up and outperform analysts relatively quickly, as the value of public information
increases with resolution of uncertainty. In noisy markets, where public data remains sparse
and soft information continues to play a role, the convergence is more gradual and sometimes

incomplete.

Taken together, these results suggest that market-level information quality shapes not only
forecast accuracy, but also the duration and stability of human-machine performance gaps.
In the later section (Section 3.5.2), I discuss the underlying mechanisms, focusing on the

role of soft information and information frictions in different markets.

3.3.2. Analyst Optimism vs. Pessimism

I examine the cross-country differences in analyst forecast bias by distinguishing between
structured and noisy forecast environments. Consistent with the concept of analyst activism
documented in the literature, I find that in structured markets, analysts tend to be overly
optimistic, systematically forecasting earnings higher than the realized corporate profits.
This pattern aligns with the notion that analysts in these markets actively shape investor

expectations through optimistic forecasts.
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In contrast, within noisy forecast environments, I observe a distinct pattern of pessimism.
Here, analyst forecasts tend to underestimate actual firm earnings, revealing a downward
bias. This divergence suggests that in less structured markets, analysts face greater uncer-

tainty or noisier information, which leads to conservative or cautious earnings projections.

Figure A7 and AS8 illustrates the term structure of annual and quarterly analyst forecast
errors in two representative countries. Germany, a structured market, exhibits a consistent
downward bias in analyst forecasts relative to actual earnings. In contrast, Turkey, charac-
terized by a noisier forecast environment, shows an upward bias where analyst forecasts
systematically exceed realized earnings. This cross-country evidence supports the hypothesis

that the informational environment shapes the direction of analyst forecast bias.

Overall, these findings provide new insights into how the forecasting environment influ-
ences analyst optimism and pessimism, extending the literature on analyst activism by

emphasizing that such activism is context dependent and varies across countries.

3.3.3. Machines Learn Human Forecast Bias

To assess the extent to which machines can learn systematic bias in human forecasts, I
compare forecast error patterns across countries with contrasting institutional environments.
Specifically, I examine countries representing structured environments (e.g., Germany),
characterized by transparent financial reporting, stable macroeconomic policy, and low
inflation volatility, versus those representing noisy forecast environments (e.g., Turkey),

where analysts face greater informational frictions and macroeconomic uncertainty.

Figure A9 in the Appendix plots the term structure of forecast errors, both actual and
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machine-predicted, across different horizons for these representative environments. In
structured settings like Germany, analyst forecast errors display a steadily increasing trend
with horizon, suggesting growing optimism. The machine effectively learns this directional
pattern but consistently produces more muted forecast errors, indicating a conservative

adjustment that avoids extreme human beliefs.

In contrast, in noisy environments such as Turkey, analysts display persistent pessimism
across all horizons. Once again, the machine detects and reproduces the directional bias, yet
its predictions are systematically closer to zero. This reinforces the finding that machines

absorb the direction of human bias while tempering its magnitude.

3.3.4. Forecast Errors Are More Learnable in Structured Environments

As previewed in Section 3.1.3, I now examine whether the learnability of analyst forecast
errors varies systematically across markets with different levels of public information disclo-

sure.

Appendix Figure A12 shows that the MSE of AE-type forecasts declines more smoothly and
consistently in structured environments. This pattern suggests that analyst forecast errors
in these settings are more systematic and therefore more learnable. Machines replicate
these patterns well, indicating that analyst behavior is driven by stable, repeatable biases

rather than ad hoc adjustments.

By contrast, in noisy environments, the MSE trend is less stable and more volatile across

horizons. Analyst forecast errors appear to be shaped by subjective views, firm-specific
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narratives, or transitory shocks—factors that are often unobservable to the machine. As a

result, model performance deteriorates.

Appendix Figure A11 reinforces this contrast in the context of E-type forecasts. As expected,
MSE increases with horizon in both market types. However, the increase is more erratic
and pronounced in noisy environments, reflecting the difficulty of forecasting fundamentals
when public data is sparse or unreliable. In structured settings, the MSE slope is flatter

and more regular, consistent with more stable earnings dynamics.

Taken together, these results underscore that forecast accuracy depends not only on data
availability, but also on the nature of analyst behavior. In structured environments, analysts
appear to follow consistent decision rules that can be learned and replicated by machines. In
contrast, where behavior is shaped by discretion, intuition, or local information, prediction

becomes less feasible.

This interpretation aligns with the weaker AE-type performance observed in emerging
markets. When analyst errors reflect non-structural or unobservable components, machine
learning models have limited capacity to generalize. Cross-country variation in model

performance thus reflects deeper differences in the predictability of analyst behavior.

Finally, I note that across environments, machine-generated AE forecasts remain consistently
closer to zero. This conservative tendency likely reflects the model’s inability to replicate
the full extent of human biases, but also its strength in avoiding overreaction. In this sense,

machine learning may serve as a stabilizing force in noisy forecasting contexts.
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3.3.5. Institutional Environments and Forecasting Potential

Forecast accuracy and composition vary systematically across countries facing similar
macroeconomic shocks. A key explanatory factor is the availability of public data, shaped
by institutional features such as regulatory quality, disclosure standards, and capital ac-
count openness. These institutions determine how easily algorithms can learn from data
and adapt to changing conditions. For example, in countries like Germany with high data
transparency, machine learning models can more effectively extract signals and improve
forecast performance. In contrast, in countries like Turkey, where reliable public information

is more limited, algorithms face constraints in both forecasting potential and learning speed.

This variation provides a foundation for decomposing forecast errors into components such as
soft information, bias, and noise. In transparent markets, analysts respond more directly to
latent signals, as confirmed by higher values of « in structural estimation. In less transparent
settings, forecast errors contain more unstructured elements. Figure illustrates this cross-

country dispersion in soft information reliance.

3.3.6. When Algorithms Learn and When They Struggle

Structured forecast environments are characterized by stable institutions and abundant
data, allowing analysts and algorithms to form expectations based on repeatable patterns.
In these settings, forecast errors are more systematic and reproducible, enabling strong

model performance.

By contrast, noisy environments lack consistent disclosure and are subject to idiosyncratic
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shocks and discretionary forecasting behavior. Here, analysts depend more on private judg-
ment, and forecast errors appear less structured. As a result, machine learning models

struggle to identify stable predictive signals.

Importantly, this asymmetry extends to prediction targets. Machine learning models are
more effective at predicting forecast errors—systematic deviations from outcomes—than
they are at replicating full analyst forecasts, which embed behavioral biases and inaccessible

information.

Recognizing these differences is critical. Structured environments offer fertile ground for
model-based forecasting, while noisier environments limit the scope for algorithmic learning

and reinforce the value of human expertise.

3.4. Forecast Horizon and Term Structure

3.4.1. General Trends in the Term Structure

My findings from the international datasets are consistent with the general trends docu-
mented in De Silva and Thesmar (2024). Forecast performance varies systematically across
horizons: human predictions tend to be more accurate in the short term, while model-based

forecasts become relatively more effective at longer horizons.
For horizons within one year, analyst forecasts generally achieve higher accuracy than

machine forecasts. This pattern reflects the analysts’ ability to incorporate contextual

knowledge and qualitative insights that are difficult to encode into statistical features.
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Beyond two years, algorithmic forecasts close the performance gap. Human forecasts at long
horizons exhibit increasing variance and systematic deviation from outcomes, particularly

in sectors characterized by technological uncertainty.

3.4.2. Country Differences

However, I also find meaningful cross-country differences. In countries where access to
information is more restricted, such as Turkey, the performance of machine learning models
appears to be more limited compared to countries with more transparent and comprehensive
public data, such as Germany. I interpret this as evidence that limited data availability

constrains the effectiveness of model-based forecasting in information-scarce environments.

3.4.3. Machine Insensitivity to Horizon

As shown in Figure A5, forecast accuracy exhibits distinct dynamics across time horizons
for human analysts and machine learning models. The blue line depicts the term structure
of forecast errors for human analysts, measured as the deviation between their forecasts
and the realized earnings of firms. I observe a clear upward trend in human forecast errors
as the time horizon increases, indicating that analysts tend to make larger mistakes the

further into the future they attempt to forecast.

In contrast, the orange line reflects the forecast error produced by the random forest model.
Unlike the human benchmark, the model’s error does not exhibit a strong upward or down-
ward trend over the forecast horizon. This pattern suggests that the machine learning model
is relatively insensitive to the forecast horizon, likely because it consistently applies pat-
terns learned from historical data without adjusting expectations based on horizon-specific

intuitions or macro narratives.
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Together, these results underscore the differing nature of forecast formation between human
and machine. While human forecasters may benefit from near-term qualitative signals, their
performance deteriorates at longer horizons, potentially due to overconfidence, narrative
extrapolation, or underweighting uncertainty. The model, by contrast, maintains stable
performance across horizons, though it may also fail to capture important forward-looking

dynamics at short horizons that are not present in the training data.

This contrast in sensitivity may also reflect differences in how soft information, bias, and
noise evolve across forecast horizons for each approach. Motivated by this observation, I

proceed with a structural decomposition of the forecasts in the following section.

These results suggest a form of forecast specialization. Human forecasters offer greater
value in the interpretation of short-term developments, especially during uncertain periods,
while machine learning models are better equipped to extrapolate long-run trends from

structured data.

3.5. Structural Decomposition

3.5.1. Model Overview

To estimate the composition of forecast errors, I implement a structural model following
the approach proposed by De Silva and Thesmar (2024). The model expresses analyst j’s

forecast for firm i at time ¢ as:

(4) Fijt=E%L+zit+bijt+nljt
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where E%L is the machine learning prediction of the realized outcome, z;; denotes unobserved
soft information, b;;; captures systematic bias, and n;;; represents idiosyncratic forecast

noise.

I estimate the model using the Generalized Method of Moments, relying on forecast and

realization residuals. The parameters of interest include:

* o: the responsiveness of analyst forecasts to soft information,

* 0: the variance of the soft information component,

* X:the variance of forecast noise across analysts,

* A: the average deviation between analyst and machine forecasts,

* Ap: the bias component resulting from under- or over-reaction to soft signals, defined as

(1-x)?.0.

These parameters are estimated separately by country group and forecast horizon. Ap-

pendix C provides further details on identification assumptions and variable definitions.

3.5.2. Decomposition Results

In this section, I present the decomposition of human adjustments into three key components:
soft information, bias, and noise. These components are derived from my structural estima-
tion, performed using the Generalized Method of Moments (GMM), a robust econometric

technique. This decomposition sheds light on the differences between human and machine
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forecasts and explains why human prediction accuracy tends to decrease with longer forecast

horizons, a trend observed in earlier sections.

As illustrated in Figure A6 in the Appendix, the contribution of these components varies
significantly across forecast horizons. For short-term horizons, human forecasts often outper-
form machine learning models. I attribute this superior performance primarily to humans’
richer access to and effective integration of soft information, which encapsulates unique

private information.

However, as the forecast horizon extends, the dynamics shift. Figure A6 clearly demonstrates
that the contribution of soft information to human forecasts is decreasing with the increasing
forecast horizon. Concurrently, behavioral bias and noise play an increasingly prominent
role, showing an increasing contribution to human forecasts over longer horizons. This
accumulation of bias and noise ultimately leads to the observed decline in the relative

accuracy of human forecasts compared to machine learning models at extended horizons.

4. Robustness and Extensions

4.1. Extension: Large Language Models for Soft Information Extrac-

tion

As an extension to the benchmark machine learning framework, I incorporate large language
models (LLMs) to evaluate their ability to capture soft information from firm-level textual
data. Rather than using LLMs as independent forecasters, which may introduce lookahead
bias due to training on the full textual corpus, I employ them to extract sentiment-based

signals such as tone, narrative focus, and linguistic uncertainty. These signals are derived
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from forward-looking documents including earnings call transcripts, management guidance,

and macroeconomic news summaries.

The extracted indicators are then used as additional inputs within the machine learning
models, resulting in what I refer to as LLM-augmented forecasts. This design enables a
structured comparison across three types of forecasters: human analysts, traditional machine
learning models based solely on structured data, and machine learners supplemented with

soft information extracted from unstructured textual sources.

This approach contributes to a more nuanced understanding of how qualitative information
influences financial forecasting. Although LLMs cannot replicate the full depth of human
intuition or access to private channels, they provide a scalable and transparent method for
incorporating public soft information into forecasting models. Their integration clarifies the
respective strengths of human forecasters, conventional algorithms, and language-based

tools in settings where soft signals are expected to be valuable.

4.2. Disclosure Quality and Machine Forecast Accuracy

To explore how disclosure environments shape the effectiveness of machine forecasts, I
regress forecast accuracy on cross-country differences in disclosure quality. The central
hypothesis is that higher-quality public information environments improve the relative
performance of machine learning models, which rely primarily on structured and widely

available data.
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The main explanatory variable is the Accounting Standards Index introduced by Porta
et al. (1998), which has been widely used in the literature on law, finance, and information
environments. This index captures the comprehensiveness and quality of financial accounting

standards at the country level.

An alternative measure of accounting disclosure quality is proposed by Lang, Lins, and
Maffett (2012), which is widely regarded in the accounting literature as a reliable proxy for

the quality of financial transparency across countries.

The regression includes several layers of controls. At the country level, I control for gross
national product per capita and other macroeconomic indicators that may confound the
relationship between disclosure quality and forecasting performance. At the firm level, I
include controls for financial fundamentals from Compustat and market-based variables
from Datastream. To account for potential variation in data availability, I also control for

the size of the IBES forecast panel and the rate of missing forecasts.

All regressions include fixed effects for country, legal origin, industry, and calendar season to
absorb systematic variation unrelated to disclosure practices. As part of ongoing robustness
checks, I also explore alternative measures of data infrastructure and transparency. In par-
ticular, I consider the ODIN Pillar Scores from the World Bank’s Open Data Inventory, which

provide country-level indicators on data use, services, products, sources, and infrastructure.

This empirical design allows for a rigorous assessment of whether and where machine-based

forecasts benefit from stronger public information environments.
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5. Conclusion

This paper provides an in-depth analysis of how human expectations respond to macroe-
conomic shocks by decomposing belief formation into context information, bias, and noise.
Through a comprehensive meta-statistical analysis of international datasets from 47 coun-
tries and over 200 macroeconomic events, I have illustrated the critical role of these compo-
nents in shaping human expectations during periods of significant structural change, such

as financial crises.

Our findings highlight the importance of context information, particularly during the early
stages of a macro shock, when human forecasters hold a significant advantage due to their
access to soft information and real-time contextual cues. This advantage gradually declines
as the shock progresses, and the influence of bias and noise becomes more pronounced. This
pattern is especially evident in emerging markets, where the learning process is slower and

the fluctuations in expectations are more extreme compared to developed economies.

By examining forecasts across different horizons, I find that short-term predictions benefit
substantially from private information, granting humans an advantage over purely statistical
methods. In contrast, long-term forecasts are more vulnerable to behavioral distortions and

noise, which makes machine forecasts more stable and reliable over extended periods.

The availability of public data is also essential in shaping forecast accuracy, particularly
in emerging markets where limited transparency amplifies the importance of both soft
information and the ability to filter out noise. These findings underscore the limitations of
static machine learning forecasts and emphasize the value of combining algorithmic models

with human judgment, especially under uncertainty or structural change.
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The application of machine learning algorithms on a large and diverse international dataset
allows this study to move beyond conventional approaches that rely on simulations or
data from a few highly developed markets. The cross-country analysis reveals meaningful
variations in the roles of context information, bias, and noise under different institutional

and informational conditions.

In conclusion, this research affirms that human forecasts remain valuable. Soft information
plays a critical role, especially at short horizons and in the early phases of crises. Forecast
errors vary systematically across countries, forecast horizons, and stages of macroeconomic
shocks, shaped by differences in information environments and behavioral responses. These
results offer new insights into belief formation and support the development of forecasting

systems that combine the complementary strengths of humans and machines.

Limitations and Future Directions.. While our structural model provides a useful decompo-
sition of forecast errors, it assumes that the informational variance parameters (such as 0)
remain constant over time. In practice, the quality and availability of soft information may
evolve as a macro shock unfolds or as market institutions adapt. Future work could extend
the model by allowing 6 to vary over time or across institutional contexts, capturing more

dynamic patterns of learning and adjustment in belief formation.
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Appendix A. Machine Learning Techniques

This section provides a more detailed description of the supervised learning techniques I
explore for forecasting firm earnings. I begin with the class of penalized linear estimators,

followed by tree-based methods.

A.1l. Quasi-Linear Models

Quasi-linear models are a class of supervised learning algorithms that combine linear re-
gression with regularization techniques. These models aim to balance the trade-off between
model complexity and prediction accuracy. The following three quasi-linear models are

commonly used in financial analysis:

A11. Lasso

Lasso (Least Absolute Shrinkage and Selection Operator) is a penalized linear estimator
that adds an L1 penalty term to the mean squared error (MSE) loss function. The objective

function for Lasso is defined as:

LB, oy, 05) = Y [(EPS = X'B)2| + oy 1By + a3,

where {3 represents the coefficient vector, «; and «gy are the penalty parameters controlling

the amount of regularization.

A.1.2. Ridge

Ridge is another penalized linear estimator that introduces an L2 penalty term to the MSE

loss function. The objective function for Ridge is given by:

L(B, a1, 09) = Y |(EPS = X'B)?| + oy |Blly + 2B
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where the terms have the same meaning as in Lasso.

A.1.3. Elastic Net

Elastic Net combines the L1 and L2 penalties of Lasso and Ridge, respectively, in order to
leverage the benefits of both regularization techniques. The objective function for Elastic

Net is defined as:

L(B, &1, 9) = Y |(EPS X'B)?| + oy | Bll1 + x| I,

where o1 and a9 control the amount of regularization.
The hyperparameters «; and «y are chosen using cross-validation on the training set to

avoid introducing any look-ahead bias.

A.2. Non-Linear Models

Non-linear models offer greater flexibility in capturing complex relationships between pre-

dictor variables and firm earnings. I consider two popular non-linear models:

A.2.1. Random Forest

Random Forest is an ensemble learning method that combines multiple regression trees.
Each tree is built using a random subset of predictor variables and a random subset of
observations. The final prediction is obtained by averaging the predictions of all the trees.
Random Forest is regularized through the averaging of trees with different structures,
reducing prediction variance and limiting overfitting. The hyperparameters, such as the
number of trees and the maximum number of splits, can be chosen using cross-validation on

the training set.

44



A.2.2. Gradient-Boosted Trees

Gradient-Boosted Trees (GBT) is another tree-based method that builds an ensemble of
regression trees in a sequential manner. GBT starts by fitting a shallow tree of depth d to
the data and calculates the residuals from this tree. Then, another shallow tree of depth d
is fitted to the residuals, and this process is repeated for a specified number of iterations.
The predicted values are formed by adding the predicted values from each tree, with a
regularization factor A applied to shrink the predicted values from subsequent trees. By
growing trees sequentially on the residuals from previous trees, GBT reduces correlation
among the trees and limits overfitting.

GBT has three hyperparameters: the number of iterations B, the depth of each tree d, and
the regularization factor A. These hyperparameters can be chosen using cross-validation on

the training set.
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Appendix B. Forecasts formation

B.1. Analyst Forecast Processing

We implement several procedures to ensure the robustness of analyst forecast data:

* Outlier Control: Earnings-per-share (EPS) forecasts are winsorized at the 5% level
within each country on an annual basis to remove extreme values that may distort

analysis.

° Date Alignment: Forecast dates and earnings release dates are standardized using

UTC timestamps to ensure temporal consistency across countries and time zones.

* Forecast Horizon Classification: Forecasts are grouped into short-, mid-, and long-
term horizons depending on the number of calendar days between the forecast date
and the actual earnings announcement. The classification procedure follows Dessaint,

Foucault, and Frésard (2021), and details are provided in Section 2.2.2.

B.2. Machine Forecast Formation

Following the common framework of current literature Van Binsbergen, Han, and Lopez-Lira
(2020), De Silva and Thesmar (2021), Cao et al. (2021), I build the machine analyst using

the following framework:

* Build a Machine Analyst using algorithms: I construct the machine analyst by
leveraging supervised learning algorithms. Specifically, I utilize quasi-linear models such
as Lasso, Ridge, Elastic Net, as well as non-linear models such as Random Forest and
Gradient-Boosted Trees. These algorithms are chosen for their ability to capture complex

patterns and relationships in the data.

* Feed public information to the machine and generate forecasts: The machine

analyst is trained using a combination of publicly available information. This includes
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financial statements, market data, macro information and other relevant variables. The

trained machine analyst then generates forecasts based on this input.

Compare Man vs. Machine in forecasting accuracy: I assess the forecasting accuracy
of the machine analyst by comparing its predictions against the historical forecasts made
by human analysts. This comparison allows us to evaluate the performance of the machine

analyst in terms of accuracy and reliability.

Feed (analyst forecasts + public information) to the machine to build a (Man+Machine)
analyst: To further enhance the forecasting process, I combine the forecasts made by
the human analysts with the information provided to the machine analyst. This fusion of

inputs creates a hybrid forecasting approach, referred to as the (Man+Machine) analyst.

Compare Man vs. Machine vs (Man+Machine): Finally, I compare the forecasting
performance of the human analyst, machine analyst, and the hybrid (Man+Machine)
analyst. This comparison enables us to evaluate the relative strengths and weaknesses

of each approach and identify the most effective forecasting strategy.
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Appendix C. GMM Estimation Details

C.1. Moment Condition Derivation

The model structure is:

Fij =xi+z;+b; +ny

Define residualized forecasts and outcomes:

= — Elm; | X1

4

F} =F; -ElF; | X;], =

Based on the orthogonality of noise and residual soft information, the following moment

conditions hold:

(A1) ElmF; ] = «®
(A2) ELF; Y2l= 20+ X
(A3) EIF};Fjl=o0 (G #k)

C.2. Instrument Construction

Instruments Z;; are constructed from firm- or macro-level characteristics, including size
bin dummies, lagged volatility measures, and country-level disclosure regimes. Moment

conditions are multiplied by Z;; to yield over-identified GMM equations.

C.3. Parameter Interpretation
* @: Variance of soft information (incremental, unobserved signal used by analysts)
* «: Intensity of soft information usage
* ¥: Variance of idiosyncratic noise

* A: Bias from public model mis-specification
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c Ap=(01- «)2@: Misuse of soft information (soft bias)

C.4. Estimation Procedure

Estimation is implemented via two-step GMM with robust standard errors. Each horizon is
estimated separately, and moment weighting is optimized using the inverse of the moment

covariance matrix. Identification is confirmed via Hansen’s J-statistic.

C.5. Validation and Robustness

I validate the estimation framework through Monte Carlo simulations (not shown) and
compare parameter estimates across alternative instrument sets. Results are robust to

trimming of forecast tails and subsample exclusions.
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Appendix D. International Datasets

D.1. List of Country/Region

The study considers the countries included in the MSCI ACWI Index, which represents
stocks from 23 Developed Markets and 24 Emerging Markets, covering about 85% of the

global investable equity market. See Table A1l for the full list of countries and regions.
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TasrLe Al. List of Countries and Regions in the MSCI ACWI Index

MSCI World Index (Developed Markets)

Americas Canada, United States

Europe & Middle East Austria, Belgium, Denmark, Finland, France, Germany, Ireland, Is-
rael, Italy, Netherlands, Norway, Portugal, Spain, Sweden, Switzer-
land, United Kingdom

Pacific Australia, Hong Kong, Japan, New Zealand, Singapore

MSCI Emerging Markets Index

Americas Brazil, Chile, Colombia, Mexico, Peru

Europe, Middle East Czech Republic, Egypt, Greece, Hungary, Kuwait, Poland, Qatar,
& Africa Saudi Arabia, South Africa, Turkey, United Arab Emirates

Asia Mainland China, India, Indonesia, Korea, Malaysia, Philippines, Tai-

wan, Thailand
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D.2. List of Macro Shocks by Country/Region

The study examines 47 countries and regions and incorporates more than 200 macroeconomic

shocks observed since the widespread adoption of machine learning technologies in the 1990s.

TasLE A2. List of Macro Shocks by Country/Region

Country/ Early 2000 2008 2020 Other Macro Shock(s)
Region 1990 Dot-com Global Covid
Recession Bubble Financial Pandemic
Crisis

Australia v v v v

Austria v v v v

Belgium v v v v

Brazil v v v v 1994 Mexican Peso Crisis

Canada v v v v

Chile v v v v 1994 Mexican Peso Crisis

China v v v v 1997 Asian Financial Crisis
2015 Chinese Stock Market
Crash

Colombia v v v v

Czech Repub- v v v v 1998 Russian Financial Cri-

lic sis

Denmark v v v v

Egypt v v v v

Finland v v v v

France v v v v

Germany v v v v

Greece v v v v 2010 European Sovereign
Debt Crisis

Japan v v v v 1991 Japanese Asset Bubble
Burst; 1997 Asian Financial
Crisis

Korea v v v v 1997 Asian Financial Crisis
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Country/ Early 2000 2008 2020 Other Macro Shock(s)
Region 1990 Dot-com Global Covid
Recession Bubble Financial Pandemic
Crisis

Kuwait v v v v

Hong Kong v v v v 1997 Asian Financial Crisis

Hungary v v v v 1998 Russian Financial Cri-
sis

India v v v v

Indonesia v v v v 1997 Asian Financial Crisis

Ireland v v v v 2010 European Sovereign
Debt Crisis

Israel v v v v

Italy v v v v 2010 European Sovereign
Debt Crisis

Malaysia v v v v 1997 Asian Financial Crisis

Mexico v v v v 1994 Mexican Peso Crisis

Netherlands v v v v

Norway v v v v

Philippines v v v v 1997 Asian Financial Crisis

Poland v v v v 1998 Russian Financial Cri-
sis

Portugal v v v v 2010 European Sovereign
Debt Crisis

Peru v v v v

Qatar v v v v

Saudi Arabia Vv v v v

Singapore v v v v

South Africa v v v v

Spain v v v v 2010 European Sovereign
Debt Crisis

Sweden v v v v

Switzerland v v v v
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Country/ Early 2000 2008 2020 Other Macro Shock(s)
Region 1990 Dot-com Global Covid
Recession Bubble Financial Pandemic
Crisis
United King- v v v v 2010 European Sovereign
dom Debt Crisis
Taiwan v v v v
Thailand v v v v 1997 Asian Financial Crisis
Turkey v v v v
United Arab v v v v
Emirates
United States v v v v
New Zealand v v v v
Explanations

* 1991 Japanese Asset Bubble Burst: Japan experienced a significant economic bubble

in the late 1980s, primarily driven by rapid increases in real estate and stock market

prices. The bubble burst in 1991, leading to a prolonged period of economic stagnation

known as the "Lost Decade.”

- Affected Country: Japan

* 1994 Mexican Peso Crisis (Tequila Crisis): A sudden devaluation of the Mexican

peso in December 1994 triggered a financial Crisis. This led to severe economic and social

disruptions in Mexico and impacted other emerging markets.

- Affected Country: Mexico

- Countries affected by ripple effects: Argentina and other Latin American countries

* 1997 Asian Financial Crisis: Starting in Thailand with the collapse of the Thai baht,

this Crisis spread to several Asian countries including Indonesia, South Korea, and
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Malaysia. It resulted in severe economic downturns and required international financial

intervention.

- Affected Countries: Thailand, Indonesia, South Korea, Malaysia, Philippines,

Hong Kong, Laos

- Countries affected by ripple effects: Japan, China, and other emerging markets

* 1998 Russian Financial Crisis: Russia devalued the ruble and defaulted on its debt in
August 1998 due to a collapse in commodity prices and political instability. This Crisis

had ripple effects on global financial markets.

- Affected Country: Russia

- Countries affected by ripple effects: Emerging markets in Eastern Europe and

global financial markets

* 2000 Dot-com Bubble: The rapid rise and subsequent collapse of internet-based com-
panies’ stock prices around the turn of the millennium. The NASDAQ Composite index,

which includes many tech stocks, lost nearly 78

- Affected Countries: Primarily the United States, but also global markets with tech

stocks

* 2007-2008 Global Financial Crisis: Triggered by the collapse of the subprime mortgage
market in the United States, this macro shock led to the failure of major financial
institutions, bailouts of banks by national governments, and significant downturns in

stock markets worldwide.

- Affected Countries: United States, United Kingdom, Iceland, Ireland, Spain,

Greece, Portugal, Italy

- Countries affected by ripple effects: Global impact, affecting most economies world-

wide

* 2010 European Sovereign Debt Crisis: Several Eurozone countries, including Greece,

Ireland, Portugal, and Spain, faced high government debt levels and rising borrowing
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costs. This led to austerity measures and financial assistance from the European Union
and International Monetary Fund.

- Affected Countries: Greece, Ireland, Portugal, Spain, Italy, Cyprus

- Countries affected by ripple effects: Entire Eurozone and global markets
2015 Chinese Stock Market Crash: China’s stock markets saw dramatic rises and
falls in 2015, leading to a global sell-off. The Shanghai Stock Exchange fell by 32

- Affected Country: China

- Countries affected by ripple effects: Global markets, especially emerging markets

closely tied to China’s economy

2020 COVID-19 Pandemic: The global outbreak of COVID-19 led to unprecedented
economic shutdowns and contractions. Stock markets plummeted in March 2020, and

many countries implemented stimulus measures to support their economies.

- Affected Countries: Global impact, with virtually all countries affected to varying
degrees. The major economies hit include the United States, China, member states

of the European Union, India, Brazil, and many others.
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Appendix E. Data Inputs

E.1. Fundamental Variables

E.1.1. Compustat

Owing to the variations in the available variables lists between Compustat North America
(covering the United States and Canada) and Compustat Global (covering all other coun-
tries/regions), the fundamental variables gathered for the United States and Canada differ
slightly from those in other countries within the international datasets. Efforts were made to
collect comparable variables to minimize the differences in fundamental variables as much

as feasible.

It’s important to mention that for some variables, the naming conventions in the Compustat

Global dataset differ from those in the Compustat North America dataset.

The comprehensive lists of Computstat variables for North America and other countries/regions

in the international datasets are detailed in Table A3 and Table A4, respectively.
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TasLE A3. Fundamental Variables from Compustat North America

Variable

Required

non-missing?

Total assets

Total liabilities

Revenue

SG&A expense

R&D expense

Cost of goods sold
Current assets

Current liabilities

Cash

Cash and short-term investments
Income tax expense

Total long-term debt
Total long-term debt due within one-year
Debt in current liabilities
Depreciation expense
EBIT

EBITDA

Interest expense

Interest paid

Capital expenditures
Goodwill

Income tax payable
Income tax expense

Total income tax

Net income

Common dividends

v
v
v
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Variable Required

non-missing?

Purchase of common and preferred stock

Sale of common and preferred stock

Subordinated debt
Gross profit v
Operating cash flow v

Common shares outstanding

Stock price at fiscal year end v
Extraordinary items

Common ESOP obligation

Special items

Acquisitions

Capitalized leases (due within two-years)

Capitalized leases (due within three-years)

Capitalized leases (due within four years)

Capitalized leases (due within five years)

Interest and related income (total)

Total intangible assets

Marketable securities adjustment

Net PPE v
Nonoperating income

Tax loss carryforward

Pension and retirement expense

Preferred stock value
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TaBLE A4. Fundamental Variables from Compustat Global

Compustat Name Variable Required

non-missing?

act Total Current Assets

aqc Acquisitions

at Total assets v

capfl Capital Element of Finance Lease Rental Pay-
ments

capx Capital Expenditures

ceq Total Common/Ordinary Equity

ch Cash

che Cash and Short-Term Investments

cogs Cost of Goods Sold v

dd1 ong-Term Debt Due in One Year

dlc Total Debt in Current Liabilities

dltt Total Long-Term Debt

dp Depreciation and Amortization v

dve Dividends Common/Ordinary

ebit Earnings Before Interest and Taxes v

gdwl Goodwill

ib Income Before Extraordinary Items

idit Total Interest and Related Income

intan Total Intangible Assets

intpn Net Interest Paid

let Total Current Liabilities

It Total Liabilities v

nopi Nonoperating Income (Expense)

oancf Operating Activities - Net Cash Flow v

opprft Operating Profit

Continued on next page
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Compustat Name

Variable Required

non-missing?

pi
ppent
prstkc
pstk
pstkn
pstkr
revt
sale
spi
sstk
tx
txdb
txp
txpd
txt
unnp
xi
xint
xpr
xrd
xsga

ajexi

cshoi

cshpria

Pretax Income

Property, Plant and Equipment - Total (Net) v
Purchase of Common and Preferred Stock
Preferred/Preference Stock (Capital) - Total
Preferred/Preference Stock - Nonredeemable
Preferred/Preference Stock - Redeemable

Total Revenue v
Sales/Turnover (Net)

Special Items

Sale of Common and Preferred Stock

Taxation

Deferred Taxes (Balance Sheet)

Income Taxes Payable

Income Taxes Paid

Income Taxes - Total

Unappropriated Net Profit (Stockholders’ Equity)
Extraordinary Items

Interest and Related Expense - Total

Pension and Retirement Expense

Research and Development Expense

Selling, General and Administrative Expense
Adjustment Factor (International Issue)-
Cumulative by Ex-Date

Com Shares Outstanding - Issue

Common Shares Used to Calculate Earnings Per

Share (Basic) - As Reported

Continued on next page
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Compustat Name

Variable

Required

non-missing?

epsexcon

epsexnc

epsincon

epsinnc

Earnings Per Share (Basic) - Excluding Extraordi-
nary Items - Consolidated

Earnings Per Share (Basic) - Excluding Extraordi-
nary Items - Nonconsolidated

Earnings Per Share (Basic) - Including Extraordi-
nary Items - Consolidated

Earnings Per Share (Basic) - Including Extraordi-

nary Items - Nonconsolidated
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E.1.2. CRSP and Datastream

For gathering firm-specific data on stock prices and market capitalization, I utilized re-
sources from CRSP and Datastream. Following the literature, CRSP is commonly employed
for accessing stock price data for firms within North America, specifically the United States
and Canada. However, given CRSP’s inaccessibility outside of North America, this study
relies on Datastream to obtain information on stock prices and market valuations, which

are crucial inputs for the econometric forecasting algorithms.
The comprehensive lists of price-related variables used for constructing market valuation

inputs are detailed in Table A5 for CRSP (North America) and Table A6 for Datastream

(international markets).

TasLE A5. Fundamental Variables from CRSP

Variable Required
non-missing?

SIC 2-digit industry code dummie v

Return over prior month to fiscal year end t v

Return over year prior to fiscal year end t, excluding last month v

Market capitalization at the end of year t v

TaBLE A6. Fundamental Variables from Datastream

Variable Required
non-missing?

Adjusted close price on market date t v

Return over the day prior to market date t v

Market capitalization on market date t v
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E.2. Macroeconomic Variables

To gather information on the macroeconomic conditions at the country level, I sourced

data from Trading Economics and FactSet, serving as crucial inputs for the econometric

forecasting algorithms.

TasLE A7. Macro Variables

Variable

Required

non-missing?

balance_of trade
consumer_confidence
consumer _price_index_cpi
crude _oil rigs

currency

exports

gdp_growth _rate
government_bond_10y

government_debt_to_gdp

gross_fixed_capital _formation

gross_national_product
housing_index

imports

inflation_rate
interbank_rate

interest_rate

labor_force_participation_rate

labour _costs
manufacturing_pmi

money_supply_mO

N N N N N N N N S N N N N N NN

Continued on next page
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Variable Required

non-missing?

money_supply m1
money_supply_m2
money_supply_m3
productivity
retail sales_ mom
services_pmi

stock_market

N N N N NN

unemployment_rate

Note: This is the standard list of macroeconomic variables used in our analysis. For most
countries in my sample, these variables are fully available. However, due to limitations in

public data disclosure, a few countries may have incomplete macroeconomic coverage.
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Appendix F. Descriptive Statistics

Table A8 and Table A9 provide summary statistics of the key variables used in the empirical
analysis, separately at the firm-forecast horizon level and the analyst-forecast level. The
statistics are computed across all available forecast horizons (1 to 4 quarters and 1 to 4

years) and both quarterly and annual frequencies.

Table A8 summarizes firm-level forecast information, including the consensus forecast F' Z,
realized earnings 7;;,;, and the normalized forecast error (F{; — Ty1)/ Pye. It also includes
the number of analysts N;; and firm characteristics such as total assets. These statistics
help characterize the typical magnitude and dispersion of analyst forecasts across firms and

time.

The following two tables are both calculated using the data in United Kingdom.
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TaBLE A8. Firm-level Summary Statistics Across Forecast Horizons

Count Mean SD 10% 25% 50% 75% 90%
Fl=025 4,197  20.068 30.228 0.100  0.579 9.023 24.542 53.972
N!=025 4,197 3.945 4125 1 1 2 5 9
Total Assetsh 025 4197 4,302.910 21,511.639 23.218 74.407 328477 1,419.900 5,346.100
F=0.25 _7h=025 q1 4,197  0.068 1.317 -0.933 0279  -0.001 0.285 1135
F{{Oﬁ 4,386  19.610 29.504 0.100  0.650  8.661 24.327 51.303
N1=05 4,386  4.056 4.028 1 1 3 5 10
Total Assets’ 05 4,386 4,095.843 21,054.611 21.644 69.484  289.050 1,319.720 4,826.575
Fi=05_nh=05 g2 4386 0117 1.497 1122 -0.345  0.004 0.416 1.535
Fi’i=0-75 4,194  20.388 30.150 0.100  0.656 9.500 25.032 54.347
N£=075 4,194 4111 4.014 1 1 3 6 10
Total Assets/: ™07 4,194 4,215.651 21,423.881 23470 73.118 314.984 1,395.782 5,091.200
Fl=0.75 _7h=0-75 g3 4,194  0.220 1.733 -1.286  -0.355  0.028 0.613 2.027
Fli=1 4509 20.300 29.755 0.100  1.038 9.690 24.708 53.296
N 4509 4627 4.521 1 1 3 7 11
Total Assets);~! 4509 3,702.871 19,948.612 16.899 55112 242197 1,119  4,382.260
FI=V =1 g4 4509  0.309 2.030 -1.675 0430  0.058 0.862 2.735
Fl=1 3432 23132 31.921 0.100  1.280 11970  28.870 61.833
Ni=1 3432 3561 3.336 1 1 2 5 9
Total Assets/;™! 3,432 4,974.461 22,849.198 41325 121.149 474.606 1,824.050 6,679.060
Fi=l—nh=l a1 3432 0.098 1.433 1175 -0.339  0.007 0.413 1.392
F{{? 3,035  25.903 33.171 0192 2980  14.667  33.491 69.456
Ni=2 3,035  3.618 3.413 1 1 2 5 9
Total Assets/:™2 3,035 5011.709 22,420.154 42481 128.426 485.300 1,864.655 7,050.120
Fl=2 _nh=2 a9 3,035  0.409 2.314 -1.969  -0.501  0.105 1.231 3.417
F{i=3 2,092 30.554 37.030 0.306  3.872  17.835  40.677 84.878
Ni=3 2,092  3.352 3.046 1 1 2 5 8
Total Assetsl; ™ 2,092 6484571 25,784.675 58.069 198.136 716.563 2,576.054 10,608.690
Fl=3 _nh=3 a3 2,092 0.650 2.689 -2.387  -0425  0.196 2.032 4.399
Fh=4 612  36.545 45.005 0476 1697  17.336  54.334¢  118.851
Ni=4 612 1.482 0.965 1 1 1 2 3
Total Assets’s™ 612  15110.166 42,826.644 115450 557.601 2,091.202 8,532  31,356.700
Fli=t =1 a4 612 1.052 2.780 -L772 -0.042  0.243 2.840 5.130
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Table A9 presents the distribution of individual analyst forecast errors, defined as
(T, — F{ m:41)/ Pit. These statistics reveal the dispersion of analyst-level expectations
around both the realized outcomes and the consensus, shedding light on the extent of

heterogeneity in analyst beliefs and potential informational frictions.

Overall, the descriptive statistics suggest substantial variation in forecast errors across
horizons and analysts, motivating the need for a decomposition of forecast inaccuracy into

its structural components.
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TaBLE A9. Analyst-level Forecast Error Summary Statistics

Count Mean SD 10% 25% 50%  75%  90%
=025 _ plnh=0.25" 51402370 -0.105 0176 -0.369 -0.241 -0.001 0.005 0.009
nlf;j%ﬁ—F{n{;jgﬁ 51,383,506 -0.051 0.133 -0.198 -0.140 -0  0.011 0.025
nh=0.75 _ g/ 7h=075 51372185 0.697 1.624 -0.100 -0.005 0.012 0.117 4.464
nh=l" _plah=l 51411,992 1.073 1.908 -0.012 -0.009 0.016 0.399 4.653
m=l _ Flnl=l 19,312,551 0.023 0.311 -0.003 0.004 0.009 0.012 0.014
nh=2 _ Fl nh=2 19,318,903 0.086 0.393 0.019 0.038 0.062 0.079 0.105
nh=3 _ il nh=d 974,232  0.597 1727 -0.201 -0.036 0.056 0.279 3.562
=4 _ ] =4 18,457,347 0.178 0.313 0.086 0.147 0.148 0.167 0.277

it+h t"Vit+h
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Appendix G. Key Elements of the Structural Estimation

Table A10 summarizes the key structural parameters in our estimation framework, along

with their economic interpretation and sources of identification.

TasrLE A10. Structural Parameters and Their Identification

Parameter Economic Meaning Identification Source

x Analyst responsiveness to soft information Z;; Covariance structure of
Fl’; , and E7,

0 = Var(Z) Importance of soft information Cross-sectional variance
of residual forecasts

> =Var(n) Analyst-specific forecast noise Variation in F;; ; across
analysts

A Magnitude of model disagreement (common bias) Mean of §;; = (Fi’; - Fiet)2

Ap=(1- x)2.0 Bias induced by soft information

Constructed from « and 0

71



Appendix H. Detailed Empirical Results

H.1. Overview

This section presents the distribution of expectation horizons in the United Kingdom, using
both annual and quarterly forecast frequencies. Figure A2 provides four complementary
views of this distribution, including raw counts and percentage-based representations. The
UK is used as a representative example, as the distribution of forecast horizons in this

country is broadly similar to those observed in other countries in the sample.

Histogram of Forecasts on Annual Announcements by Horizon Histogram of Forecasts on Quarterly Announcements by Horizon
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Ficure A2. Different views of expectation horizon distributions in the United Kingdom.
Note: Due to space constraints, only results for the United Kingdom are presented as a
representative example. The patterns observed here are broadly consistent with those found
across the other 46 countries in the dataset.
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A comparison of forecast accuracy between human analysts and machine learning models

over the past decade in the United States is presented.?
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Ficure A3. Recent 10 years history in United States

2All machine learning algorithms were trained using the same input data. For clarity and visual simplicity,
the figure below reports results from two representative models, Lasso and Elastic Net. Other algorithms,
including Ridge regression, Random Forest, and Gradient-Boosted Trees, yielded broadly similar performance.
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Appendix I. Forecasting Accuracy Shock-Time Dynamics

Figure A4 illustrates the evolution of forecasting accuracy over the course of financial crises.

Two core dynamics are highlighted:

Early phase of shock: Human forecasters exhibit a significant advantage, driven by their
ability to rapidly process soft information such as policy announcements, sentiment shifts,

and idiosyncratic disruptions.

Later stage of crisis: As uncertainty persists, forecast bias and noise in human predic-
tions increase. Meanwhile, machine learning models gradually adapt to the evolving data

environment, narrowing or even reversing the initial performance gap.

These dynamics reinforce the structural interpretation of forecast errors discussed in the
main text and highlight the time-varying nature of informational advantages between

human and machine forecasters during systemic disruptions.
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Appendix J. Term Structure

J.1. General Trends in the Term Structure: Man vs Machine

randomforest — Forecast Error vs Time Horizon — GERMANY

0.12 —&— Actual Forecast Error

Predicted Forecast Error
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0.06

Error

0.04
0.02
0.00

-0.02

0.5 1.0 1.5 2.0 25 3.0 3.5 4.0
Time Horizon (Years)

Ficure A5. Term Structure of Forecast Errors over Time.

Figure A5 illustrates the distinct term structures of forecast errors for human analysts and
machine learning models, as discussed in Section ??. This figure highlights that human fore-
cast errors generally increase with the forecast horizon, suggesting a decline in accuracy over
longer periods. Conversely, the machine learning model’s forecast error remains relatively
stable across horizons, indicating its insensitivity to the forecast horizon. This divergence
underscores the differing strengths of human forecasters, particularly in short-term inter-
pretation, versus the consistent pattern-recognition capabilities of machine learning models

across various horizons.
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J.2. Decomposed Components
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Ficure A6. Term Structures of Soft Information, Bias, and Noise in Human Forecasts

Figure A6 visually presents the decomposition of human forecast adjustments into soft
information, bias, and noise across varying forecast horizons. As discussed in Section 3.5.2,
this figure illustrates the decreasing contribution of soft information and the increasing

impact of behavioral bias and noise on human forecasts as the horizon lengthens.
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J.3. Analyst Optimism vs Pessimism

3A. Annual Forecast Errors
3B. Quarterly Forecast Errors
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3.8

Mean Earnings

3.0

Germany: Term Structure of Analyst Forecast vs Realized Earnings
Model Group: annual

~@— Analyst Forecast (F_MEDIAN)
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Forecast Horizon

Germany
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Turkey: Term Structure of Analyst Forecast vs Realized Earnings
Model Group: annual

——

Analyst Forecast (F_MEDIAN)
Realized Earnings (ACTUAL)

H1

H2 H3 H4
Forecast Horizon
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Ficure A7. Term structure of analyst forecast errors based on annual earnings forecasts.
Forecasts in Germany tend to exhibit a downward bias, whereas forecasts in Turkey display
an upward bias. These patterns reflect differences between structured and noisy forecasting
environments across countries.
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Germany: Term Structure of Analyst Forecast vs Realized Earnings
Model Group: quarterly
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Turkey: Term Structure of Analyst Forecast vs Realized Earnings
Model Group: quarterly
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Ficure A8. Term structure of analyst forecast errors based on quarterly earnings forecasts.
The results echo the annual pattern: German forecasts show consistent pessimism, while
Turkish forecasts show optimism. This suggests the bias is persistent across reporting
frequencies.
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J.4. Machines Learn Human Forecast Bias
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elasticnet — Forecast Error vs Time Horizon — GERMANY elasticnet — Forecast Error vs Time Horizon — TURKEY
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Ficure A9. Forecast error term structures across horizons for representative structured
and noisy forecast environments. Blue lines denote actual analyst forecast errors; orange
lines indicate machine-predicted errors using elastic net. Machines consistently capture the
direction of analyst bias but forecast more conservatively.
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J.5. Cross-Country MSE Patterns in E-type and AE-type Forecasts
Appendix K. Forecast Accuracy Figures for the United Kingdom

This appendix presents a detailed set of forecast performance figures that aim to illustrate
cross-model and cross-setting variations in forecasting accuracy. The visualizations compare
results across different machine learning algorithms, forecast horizons, and data frequencies
(annual vs. quarterly), and also include comparisons between human analysts and machine-
generated forecasts. These figures highlight how forecasting performance evolves across

these multiple dimensions.

Due to space constraints, results are presented only for a single representative country—the
United Kingdom. Similarly, while all machine learning models were trained on the same
input data, only two representative algorithms (Lasso and Elastic Net) are shown here.
Other models, including Ridge regression, Random Forest, and Gradient-Boosted Trees,

were also tested and yielded broadly similar patterns.
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Ficure A10. Mean squared error (MSE) of A-type forecasts—machine predictions of analyst
forecasts—across forecast horizons. Both elastic net and random forest models exhibit rising
MSE with horizon, implying shared recognition of increasing human uncertainty across
models and countries.
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Ficure A11. MSE of E-type forecasts—machine predictions of actual earnings—across fore-
cast horizons. As expected, MSE increases with horizon. The increase is more structured
in Germany and more erratic in Turkey, consistent with cross-country differences in data
quality and firm behavior.
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AE-Type Forecast: Annual MSE over Horizons — GERMANY AE-Type Forecast: Annual MSE over Horizons — TURKEY
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Ficure A12. MSE of AE-type forecasts—machine predictions of analyst forecast errors—across
forecast horizons. MSE decreases with horizon, suggesting that long-term analyst conser-
vatism is more predictable. The pattern is clearer and more stable in Germany.
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K.1. Aggregate MSE Comparison (Bar Charts)

These plots summarize average forecast errors across models and horizons, separated by
data frequency (annual or quarterly).
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Ficure A14. A Type Forecast Mse Quarterly
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AE-Type Forecast MSEs (Annual Only)
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K.2. Model Performance Overview

Overall Model MSE Distribution by Forecast Type
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Ficure A17. Model Mse Boxplot Overall
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K.3. Cross Variation by Forecast Type, Algorithm, Frequency & Hori-
zon
K.3.1. Actual vs Predicted

This subsection shows actual vs. predicted values for the Elastic Net model® using quarterly

data?. The figures highlight how prediction accuracy evolves as the forecast horizon increases.

3Elastic Net is a regularized linear regression method that combines Lasso and Ridge penalties.
4Quarterly frequency corresponds to Horizon = 1 to 3, approximately covering forecast periods of 1 to 3 years.
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Elastic Net — Quarterly.
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Elastic Net — Annual.
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Gradient Boosted Tree — Quarterly.
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Gradient Boosted Tree — Annual.
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Random Forest — Quarterly.
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Random Forest — Annual.
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K.3.2. Forecast Error

This subsection presents the forecast errors and their predicted counterparts for each model
across multiple forecast horizons. The figures allow visual comparison of actual forecast
error magnitudes and how well each algorithm captures them. Results are organized by

frequency (annual and quarterly) and forecast horizon.?

5Forecast error is defined as the difference between the forecast and the realized outcome. All models were
trained using the same input features.
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Elastic Net — Quarterly.
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Elastic Net — Annual.
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Gradient Boosted Tree — Quarterly.
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Gradient Boosted Tree — Annual.
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Random Forest — Quarterly.
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Ficure A48. Random Forest Forecast Error Quarterly H1
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Random Forest — Annual.
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K.4. Term Structure of Forecast Accuracy

This subsection presents the term structure of forecast accuracy under different machine
learning specifications and data frequencies. Each plot shows how the mean squared error
(MSE) changes with forecast horizon for multiple forecast types—namely A-type, AE-type,
and E-type forecasts. Colored lines represent different forecast types, while each panel
reflects either annual or quarterly frequency. These trends reveal how forecast difficulty and

model performance vary across forecast horizon, frequency, and forecast component.
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A-Type Forecast — Annual Frequency.

A-Type Forecast: Annual MSE over Horizons
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Ficure A54. Term Structure of A-Type Forecast Accuracy (Annual)

A-Type Forecast — Quarterly Frequency.
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Ficure A55. Term Structure of A-Type Forecast Accuracy (Quarterly)
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AE-Type Forecast — Annual Frequency.

AE-Type Forecast: Annual MSE over Horizons

o Model
09 R —— gradientboostedtree
—— elasticnet
randomforest

0.8
g
5 0.7
k]
o
S
o L ]
‘g 0.6
g . ? T
=

0.5 (]

o
L
0.4
'®
1.0 1.5 2.0 25 3.0 35 4.0 4.5 5.0

Forecast Horizon (Years)

Ficure A56. Term Structure of AE-Type Forecast Accuracy (Annual)

E-Type Forecast — Annual Frequency.

E-Type Forecast: Annual MSE over Horizons
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Ficure A57. Term Structure of E-T'ype Forecast Accuracy (Annual)
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Elastic Net — Forecast Error Term Structure.

Error

elasticnet — Forecast Error vs Time Horizon
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Ficure A58. Forecast Error Term Structure — Elastic Net

Gradient Boosted Tree — Forecast Error Term Structure.
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Ficure A59. Forecast Error Term Structure — Gradient Boosted Tree
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Count Mean SD 10% 25% 50% 75%

Fh=025 4,197 20.068 30.228 0.100 0.579 9.023 24.542 5
NI=0.25 4,197 3.945 4125 1 1 2 5

Total Assets?=025 4,197 4,302.910 21,511.639 23.218 74.407 328.477 1,419.900 5,5
Fi=025 _7h=025 q1 4,197  0.068 1.317 -0.933 0279  -0.001 0.285

Fh=05 4,386  19.610 29.504 0.100  0.650 8.661 24.327 5
NI=05 4,386 4.056 4.028 1 1 3 5

Total Assets’=0-? 4,386 4,095.843 21,054.611 21.644 69.484  289.050 1,319.720 4,8
Fi=05 _nh=05q2 4386  0.117 1.497 1122 -0.345  0.004 0.416 :
Fh=0.75 4194  20.388 30.150 0.100 0.656 9.500 25.032 5
N[=0.75 4,194 4111 4.014 1 1 3 6

Total Assets?=075 4,194 4215651 21,423.881 23.470 73.118 314.984 1,395.782 5.
Fh=0T5 _7h=075 q3 4,194  0.220 1.733 -1286  -0.355  0.028 0.613 :
Fh=t 4509  20.300 29.755 0.100 1.038 9.690 24.708 5
Nh=T" 4,509 4.627 4.521 1 1 3 7

Total Assets?=1" 4509 3,702.871 19,948.612 16.899 55.112  242.197 1,119 4,
Fi=1" —nh=1" g4 4,509 0.309 2.030 -1.675  -0.430 0.058 0.862 ¢
Fh=1 3,432  23.132 31.921 0.100 1.280 11.970 28.870 6
Ni=1 3,432 3.561 3.336 1 1 2 5

Total Assets]:™! 3,432 4,974.461 22,849.198 41.325 121.149 474.606 1,824.050 6,6
Fi=1_nh=l a1 3,432 0.098 1.433 -1.175  -0.339 0.007 0.413 )
Fh=2 3,035  25.903 33.171 0.192  2.980 14.667 33.491 6
NI=2 3,035 3.618 3.413 1 1 2 5

Total Assets?~2 3,035 5,011.709 22,420.154 42.481 128.426 485.300 1,864.655 7,0
Fi=2 _nl=2 42 3,035  0.409 2.314 -1.969 0501  0.105 1.231 :
Fh=3 2,092  30.554 37.030 0.306  3.872 17.835 40.677 8
N!=3 2,092 3.352 3.046 1 1 2 5

Total Assets?™> 2,092 6,484.571 25/784.675 58.069 198136 716.563 2,576.054 10,
Ft=3 _n=3 a3 2,092 0.650 2.689 2.387  -0.425 0.196 2.032 .
Fh=4 612 36.545 45.005 0.476 1.697 17.336 54.334 1
NI=4 612 1.482 0.965 1 1 1 2

Total Assets’; ™ 612 15,110.166 42,826.644 115450 557.601 2,091.202 8,532 31,
Fh=4 _nh=4 a4 612 1052 197 2780 -1.772 -0.042 0.243 2.840 :

it+h




Count Mean SD 10% 25% 50% 75%  90%
nlf;j%%—F{ngj%% 51,402,370 -0.105 0.176 -0.369 -0.241 -0.001 0.005 0.009
ngjgf’—F{ngj%f’ 51,383,506 -0.051 0.133 -0.198 -0.140 -0  0.011 0.025
nﬁ@j%“-F{nﬁﬁ%“ 51,372,185 0.697 1.624 -0.100 -0.005 0.012 0.117 4.464
mh=1" _ p/ =l 51,411,992 1.073 1.908 -0.012 -0.009 0.016 0.399 4.653
=l _ /=l 19,312,551  0.023 0.311 -0.003 0.004 0.009 0.012 0.014
=2 _ pl nh=2 19,318,903 0.086 0.393 0.019 0.038 0.062 0.079 0.105
=3 _ Fl nh=3 974,232  0.597 1.727 -0.201 -0.036 0.056 0.279 3.562
=4 _ ] nh=4 18,457,347 0.178 0.313 0.086 0.147 0.148 0.167 0.277

108



	Introduction
	Data and Methodology
	Data Sources and Coverage
	International Coverage
	Data Sources
	Analyst Forecast Processing

	Statistical Forecasting Framework
	Benchmark Forecasting Models
	Forecast Horizons
	Structural Model
	GMM Estimation Strategy

	Identification Strategy

	Forecasting Results: Human vs. Machine
	Universal Forecasting Patterns
	Descriptive Statistics of Forecasting Variables
	Consistent Forecast Patterns Across Models
	For Machines: Human Forecast Errors Are Most Predictable

	Shock-Time Dynamics
	Structured vs. Noisy Forecast Environments
	Forecast Dynamics Cross Markets
	Analyst Optimism vs. Pessimism
	Machines Learn Human Forecast Bias
	Forecast Errors Are More Learnable in Structured Environments
	Institutional Environments and Forecasting Potential
	When Algorithms Learn and When They Struggle

	Forecast Horizon and Term Structure
	General Trends in the Term Structure
	Country Differences
	Machine Insensitivity to Horizon

	Structural Decomposition
	Model Overview
	Decomposition Results


	Robustness and Extensions
	Extension: Large Language Models for Soft Information Extraction
	Disclosure Quality and Machine Forecast Accuracy

	Conclusion
	Machine Learning Techniques
	Quasi-Linear Models
	Lasso
	Ridge
	Elastic Net

	Non-Linear Models
	Random Forest
	Gradient-Boosted Trees


	Forecasts formation
	Analyst Forecast Processing
	Machine Forecast Formation

	GMM Estimation Details
	Moment Condition Derivation
	Instrument Construction
	Parameter Interpretation
	Estimation Procedure
	Validation and Robustness

	International Datasets
	List of Country/Region
	List of Macro Shocks by Country/Region

	Data Inputs
	Fundamental Variables
	Compustat
	CRSP and Datastream

	Macroeconomic Variables

	Descriptive Statistics
	Key Elements of the Structural Estimation
	Detailed Empirical Results
	Overview

	Forecasting Accuracy Shock-Time Dynamics
	Forecasting Accuracy Shock-Time Dynamics
	Term Structure
	General Trends in the Term Structure: Man vs Machine
	Decomposed Components
	Analyst Optimism vs Pessimism
	Machines Learn Human Forecast Bias
	Cross-Country MSE Patterns in E-type and AE-type Forecasts

	Forecast Accuracy Figures for the United Kingdom
	Aggregate MSE Comparison (Bar Charts)
	Model Performance Overview
	Cross Variation by Forecast Type, Algorithm, Frequency & Horizon
	Actual vs Predicted
	Forecast Error

	Term Structure of Forecast Accuracy


