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Abstract:

This paper investigates equity premium predictability using Deep Symbolic Regression (DSR),

a method that identifies sparse and interpretable functional forms in the data. Unlike tra-

ditional opaque machine learning models, DSR allows explicit capture of nonlinear eco-

nomic relationships. The paper introduces a novel regularization parameter within the DSR

methodology, ensuring robust model selection. Extensive simulations validate the effective-

ness of this approach. Empirical analysis using monthly U.S. stock market data (1927–2021)

demonstrates that DSR consistently outperforms benchmarks such as linear regression and

random forests in forecasting accuracy. The findings highlight significant nonlinear dynam-

ics in market returns, particularly during periods of economic stress, thereby providing a

transparent and economically insightful framework for equity premium prediction.1

1This project has received support from the Google Cloud Research Credits Program.
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Introduction

In recent years, there has been a growing interest in the use of machine learning tools in

various contexts in finance. For example, machine learning methods have been applied to

predict the market returns (Kelly and Pruitt 2013; Feng, He, and Polson 2018; Rapach and G.

Zhou 2020; Kelly, Malamud, and K. Zhou 2022b), the cross-sectional predictability of returns

(Cong et al. 2022; Feng, He, Polson, and Xu 2018; Y. Han et al. 2022; Kelly, Malamud, and

K. Zhou 2022a), measuring asset risk premium (Gu, Kelly, and Xiu 2020), and the behavior

of stock analysts (Bew et al. 2019; Qiu, Zhewei Song, and Z. Chen 2022; Bianchi, Büchner,

and Tamoni 2021; Binsbergen, X. Han, and Lopez-Lira 2020). These studies highlight the

flexible nature of the machine learning methods and their ability to capture nonlinearities,

interactions, and high-dimensional features in the data. However, they also share a common

limitation: they act essentially like black box prediction tools, and it is very difficult to

bridge the gap between the flexible reduced-form predictions produced by the methods and

the structural models that should generate the underlying relationship.

In this paper, I argue for applying the advantage of symbolic regression methodology to

the classical problem of finance: predictability of market excess return. Symbolic regression

is a method that allows the recovery of flexible nonlinearities and - crucially - retains the

functional interpretation of the resulting relationship. In a nutshell, symbolic regression uses

genetic programming to search for analytical expressions that best fit the data, imposing

minimum prior on the functional form or parameter restrictions. The method can handle

complex and noisy data, discover hidden patterns and interactions, and provide interpretable

and parsimonious models.

The main contribution of this paper is twofold. First, I examine the properties of the method

in simulated data - both in small and large samples, with high and low signal-to-noise ratios

that proxy realistic data-generating processes. I propose a new penalty parameter that

allows symbolic regression to recover the key foundational dependencies in the data and the

true level of predictability. The search procedure, predicated on a progressive easing of the
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regularization constraint, facilitates the recovery of the true data-generating process even in

high-noize environments of R2 at 5% when the sample size is sufficiently large.

I then apply the method to real monthly data from the US stock market over a sample

period from 1927 to 2021. I compare the performance of symbolic regression with various

benchmark models, such as linear regression and random forest. I find that symbolic re-

gression outperforms the benchmark models in terms of out-of-sample forecasting accuracy

and, in the majority of cases, gives a better in-sample fit. This approach allows attaining a

timing Sharpe ratio of 0.17 on an annual basis compared to the Sharpe ratio of 0.04 from

the linear model. I also analyze the functional forms and economic interpretations of the

symbolic regression models and show that they capture some well-known stylized facts as

well as some novel nonlinearities and interactions in market return predictability.

The question of market excess return predictability is grounded in the market efficiency

hypothesis (MEH). It states that financial markets are “informationally efficient”, that is,

that ”prices ’fully reflect’ all available information” (Fama 1970). The hypothesis suggests

that it is impossible to consistently achieve returns in excess of average market returns, given

the information that is publicly available at the time of investment. In the present-value

relationship between returns, asset prices, and their cash flows, the gross return on a stock

or a stock market is defined as:

Rt+1 =
Pt+1 +Dt+1

Pt

(1)

where Pt and Dt are prices and dividends of a given asset at time t. Traditionally, this

relationship is log linearized with Campbell and Shiller (1988) decomposition to generate

a linear relationship. This approximation together with documented no dividend growth

predictability has led the literature to the conclusion that returns must be predictable with

dividend-to-price ratios (Lettau and Van Nieuwerburgh 2008a; Cochrane 2011; Van Binsber-

gen and Koijen 2010).

The point of departure for this study is Welch and Goyal (2008) paper (GW) that compre-
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hensively reexamines the performance of variables that have been suggested by the academic

literature to be good predictors of the equity premium. GW finds that most suggested up-

to-date models are unstable or even spurious, no longer significant even in-sample (IS), and

most of them fail simple regression diagnostics. For many models, any previous apparent

statistical significance was often based only on years up to and especially on the Oil Shock

years of 1973-1975.

The current work builds upon an estimation setting in GW,2 investigating functional forms

that link the monthly market excess stock returns to the six variables used in GW to construct

key theoretical predictors. GW and similar studies assume a linear relationship between log

returns and predictors (eg. the log of the dividend-to-price ratio). Unlike the GW study, I do

not impose ex-ante linear dependence or any predefined functional form. Instead, I use Deep

Symbolic Regression methodology (DSR) that searches through the space of functional forms

and identifies expressions that not only explain in-sample variation well but also generate

better OOS predictions. It allows to identify relatively parsimonious functional forms that

outperform the linear model in 3-month prediction horizons in both IS and OOS estimates,

although R2OOS still being negative and not statistically significant. The linear model

suggests an R2OOS of −0.34% for a 75-year prediction window while DSR estimates it at

−0.15%.

As a response to GW, Campbell and Thompson (2008) propose restricting the signs of coef-

ficients and return forecasts and steady-state valuation models as a way to improve out-of-

sample predictability of excess market return. Van Binsbergen and Koijen (2010) and Kelly

and Pruitt (2010) suggest latent variables approach for better out-of-sample predictions of

the market equity premium. Rapach and G. Zhou (2013) demonstrate that combining model

individual forecasts leads to significant out-of-sample predictability relative to the historical

average consistently over time. Most of these approaches achieve higher OOS predictability

in terms of R2OOS than identified in this study. Contrasting with this direction of the

literature, however, I do not use any other variables, data structure features, or coefficient

2Throughout this paper, I refer to the linear regression of log excess market returns on the predictors in
GW as a linear model.
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sign restrictions, and limit the model to the information set of time-series excess market

returns as in GW. Documented market return predictability in this paper stems directly

from identifying non-linear relations between returns and explanatory variables in the most

simplistic setup.

This study offers an alternative perspective on the ”virtue of complexity” phenomenon, ini-

tially explored by Kelly, Malamud, and K. Zhou (2022b). The referenced work provides a

theoretical foundation and empirical validation demonstrating that in the context of U.S.

market return predictability, model efficacy – both in terms of expected out-of-sample fore-

cast accuracy and portfolio performance – tends to enhance with increased model complex-

ity.3 This increment in complexity is achieved by augmenting the number of random Fourier

features derived from a predetermined group of initial predictors and applying a ridge-type

regularization mechanism.

In this paper, the exploration of model complexity is approached through a variation of

functional forms, particularly focusing on potential non-linear interactions among predictors.

Rather than approximating the functional form with high-dimensional linear expansions or

a neural network (Hornik, Stinchcombe, and White 1990; Jacot, Gabriel, and Hongler 2018;

Hastie et al. 2022; Allen-Zhu, Li, and Zhao Song 2019), DSR enables me to rigorously inves-

tigate the precise functional form underlying the data-generating process. The space of these

functional forms is defined by the range of permissible operations within the framework and

an ex-ante-selected set of predictors. Introducing a regularization parameter, conceptual-

ized as the maximum permissible number of tokens – encompassing variables, operations, or

weights – serves to regulate the extent of linear and non-linear transformations applied to

predictors during the training phase. Both simulation exercises and the empirical analysis

shows that there is an optimal amount of allowed model complexity for DSR that leads

to the highest out-of-sample predictability and portfolio performance. Beyond the optimal

level, the accuracy starts to decay.

DSR demonstrates particular advantage in the period of significant economic events like the

3Kelly, Malamud, and K. Zhou (2022a) shows the advantage of this approach for predicting returns in
other asset classes.
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Great Recession showing improved return predictability during such periods. This obser-

vation collaborates with the prior findings that the predictability of returns predominantly

occurs during periods of economic recession (Rapach, Strauss, and G. Zhou 2010; Henkel,

Martin, and Nardari 2011; Dangl and Halling 2012). It potentially indicates the ability of the

DSR method to approximate well the magnitudes in the steady-state shifts of the economy

mean during and after big economic shocks that is known to be challenging in the current

literature (Lettau and Van Nieuwerburgh 2008a).

On the theoretical side, this paper introduces a new regularization parameter for the cost

function that enables the identification of the true sparse model that is behind the data

generating process (DGP) and that ensures a valid model selection.4 The paper shows

through extensive simulations that DSR performs well in scenarios with low signal-to-noise

ratios similar to common applications in finance. The out-of-sample performance improves

with larger samples and optimal regularization parameters and approaches the true R2 of the

DGP. These results hold even with high noise and allow DSR to recover the exact structure

of simple and complex functional forms with large enough samples.

Several recent studies have successfully adopted ML models for out-of-sample return predic-

tions. Using lagged returns from many countries as predictors, Rapach, Strauss, and G. Zhou

(2013) apply the ENet to multiple predictive regressions for monthly country stock returns

and discover that the US market return has a leading role in other countries’ returns. Rapach

and G. Zhou (2022) adopt elastic net for forecasting US market excess return. Dong et al.

(2022) use 100 anomaly portfolios as predictors to show that a multiple predictive regression

with ENet estimation can forecast the US market excess return. Gu, Kelly, and Xiu (2020)

demonstrate that investors can achieve large economic benefits by using machine learning

forecasts, in some cases doubling the performance of leading regression-based strategies from

the literature. They identify trees and neural networks as the best-performing methods and

4The idea of limiting the complexity of functional forms by itself is not new. Traditionally, the complexity
constraints are used for the construction of the accuracy-complexity Pareto frontier ex-post (eg. see Petersen
et al. (2021), Udrescu and Tegmark (2020), and Landajuela et al. (2022)). This paper introduces complexity
constraints in situ as a regularization parameter to identify the unique ”true” function behind the DGP in
a high-noise environment.

6



attribute predictive gains to allowing nonlinear interactions among predictors that other

methods are not able to capture. Incorporating economic intuition like no-arbitrage condi-

tions can allow neural networks to further improve the out-of-sample predictability of excess

returns (L. Chen, Pelger, and Zhu 2023).

Although these ML techniques show meaningful improvements in terms of out-of-sample

return predictability, the mechanism that lies behind the fundamental relationship between

asset prices and conditioning variables remains largely unexplored in these studies. All these

methods still exhibit a black box problem. Symbolic regressions, unlike other ML techniques

that are popular in economics and finance, aim to identify mathematical expressions that

best fit a given data and it is able to discover compact and generalizable expressions that

capture the underlying patterns or relationships allowing to narrow down the exact structural

relationship between predictive characteristics and an outcome variable. In the context of

excess return predictability, DSR models steadily recover the linkage between market excess

returns to dividends, lagged prices, earnings, and stock variance suggesting unusual non-

linear equations that involve exponential-term relations of predictive variables for explaining

log market excess returns.

There are only a few applications of symbolic regressions in economics and finance literature

at this point. Alvarez-Diaz and Alvarez (2003) employ genetic algorithms to find math-

ematical models that can predict the weekly fluctuations of six exchange rates. Claveria,

Monte, and Torra (2017) studies the effect of the Great Recession on agents’ expectations

using symbolic regression methodology. Claveria, Monte, and Torra (2018) propose a novel

data-driven method to construct an economic indicator from survey data using evolutionary

computation and symbolic regression. Claveria, Monte, and Torra (2022) use a soft com-

puting method to create economic sentiment indicators for 19 European countries based on

business and consumer surveys. They show that these indicators can predict GDP growth

rates better than traditional time-series models. To the best of my knowledge, the current

paper is the first to apply symbolic regressions to the market return predictability problem.
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Symbolic Regressions and Predictability

Functional Forms and Symbolic Regressions

In this paper, I employ Deep Symbolic Regression (DSR) methodology (Petersen et al. 2021;

Landajuela et al. 2022), a novel machine learning technique that aims to identify an underly-

ing mathematical expression that best describes a relationship between an outcome variable

and its explanatory variables. Symbolic regression is different from traditional regression

methods because it does not assume a predefined form of the model, but rather searches for

the optimal structure and parameters of the model from a set of simple base functions. Sym-

bolic regression can discover hidden nonlinear relationships between variables and produce

explicit models that are interpretable and robust.

Any mathematical expression can be written as a pre-order traversal of a symbolic expression

tree. For example, f(Dt, Pt) in the right-hand side of an expression like

rt+1 = β × log

(
Dt

Pt

)
︸ ︷︷ ︸

f(Dt,Pt)

+ut+1

can be transformed into a symbolic expression tree

×

β log

÷

Dt Pt

and the pre-order traversal of this expression would be {×, β, log,÷, Dt, Pt}. The traversal

is generated one element at a time by drawing from a library of accepted operations and
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variables based on the probability distribution conditioning on a previously drawn element

and a sibling element if available.5 The library can contain a large set of mathematical

operations including sigmoid and harmonic transformations as well as indicator functions. In

this paper, however, I stick to a simple set of operations that are common in financial models.

The library of accessible operations consists of {+,−,×,÷, exp, log,
√
, [vars]}. The library

can also include placeholders for numerical values akin to coefficients in linear regressions

that I refer to these coefficients as constants following the literature convention. Initial priors

on drawing elements are flat given the constraints of the equation form.6 For example, the

traversal has to start with a mathematical operator and end with a variable input.

After the initiation of a pool of expressions, each one of them is evaluated based on a loss

function. If the library also contains the constant operator, generated constants are optimized

for each equation in the candidate set. Then a top percentile of expressions is selected based

on a risk-seeking policy. This percentile threshold is set to top 5% in our case. The traversal

structure of selected expressions is then used to update conditional probabilities of drawing

operations and variables. The procedure repeats up until the discovery of an equation that

gives exact representation of the data or up until the point of convergence.

Prediction, Noise, and Out-of-Sample Forecasts

All symbolic regression methods including DSR are usually tested in environments with no

noise or low levels of noise with R2 ≥ 90% which is common in natural science studies. In

finance, noise levels that are equivalent to R2 of 5% are considered to be the norm. In this

paper, I propose a new penalty structure for the DSR loss function that allows to recovery

of true functional forms in data with high levels of noise that are common to economics and

finance datasets.

For a given loss function L(.), the goal is to find a true function f ∗ that is behind the data

5A sibling conditioning arises in operations that require two inputs like + or ×; it is not symmetric
meaning that only the second drawn element has a sibling. In the example expression only × and Re

m,t

would be drawn conditioning on a sibling.
6One can also set non-flat priors although it is beyond the scope of this project.
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generating process (DGP) from a function space F such that

f ∗ = argmin
f∈F

L(f) (2)

The function space FΛ that is accessible to an econometrician is a set of all functions spanned

by variables and mathematical expressions in the library. Throughout simulation exercises,

it is assumed that f ∗ ∈ FΛ, i.e. the true function is in the accessible space. Although FΛ

contains functions of infinite size (infinite traversal length), it is further assumed that f ∗ has

a finite although unknown traversal length.

For any given sample of data H = {X, y} where X is m by n matrix of inputs and y is m

by 1 outcome variable, the true functional form f ∗ is such that:

y = f ∗(X) + ϵ (3)

where ϵi is a random noise. Without loss of generality, I assume that ϵi ∼ N(0, σ2). Then,

f ∗ is estimated as:

f̂Λ = argmax
f∈FΛ

E[L(f(X), y)] (4)

A sufficiently long and complex function could fit training data perfectly. However, while

this function would have a perfect fit on a given sample, it would be overfitting on any other

sample drawn from the same distribution and perform poorly in out-of-sample predictions.

This issue of overfitting is not unique to this specific method but common to all ML methods.

ML’s appeal lies in its ability to handle high dimensionality and fit varied data structures

with flexible functional forms. However, this flexibility also means that simply choosing the

best in-sample function can lead to poor results. Therefore, the goal should be to minimize:

ErrH = EH [L(f̂Λ(X
′), y′)] (5)
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where H ′ = {X ′, y′} is a different subset of data than the one used to estimate f̂Λ, i.e. a test

data. To be precise, the goal should be to minimize E[ErrH ], the expected prediction error,

rather than test errors for a specific dataset.

One of the most popular tools for minimizing ErrH and addressing overfitting is regular-

ization. When fitting a DSR model, one could select the best-performing function among

those with a certain maximum length of the traversal instead of choosing the overall best

function. A shorter traversal may have a worse in-sample fit because individual observations

may not fit well. However, this also means that overfitting is reduced because the noise

from individual observations is averaged out. Restricted traversal length is an example of

a regularizer that measures the complexity of a function. As one decreases regularization

(increase allowed traversal length), she would improve the ability to approximate in-sample

variation but at the cost of increasing the difference between in-sample and out-of-sample

performance. By choosing the appropriate level of regularization, one can benefit from flexi-

ble functional forms without being overwhelmed by overfitting. So the constrained estimate

of f ∗ is:

f̂Λ,λ = arg min
f∈FΛ

EH [L(f(X), y)] +Rλ(f) (6)

where

Rλ(f) =

∞, if ||f || ≥ λ

0, otherwise

Here, with some abuse of notation, I denote ||f || as the length of the function traversal.

To determine the optimal traversal length or level of regularization, I can utilize empirical

tuning. The challenge with overfitting is that the goal for model selection is to achieve the

highest prediction performed on the out-of-sample data but models only fit it on in-sample

data. Empirical tuning involves creating an out-of-sample experiment within the original

sample by fitting the model on one part of the data and evaluating its performance on another
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part using different levels of regularization (Mullainathan and Spiess 2017). Cross-validation

can increase the efficiency of this process by randomly partitioning the sample into equally

sized subsamples or folds. Instead of using one omitted sample for out-of-sample performance

as it is usually done in cross-validation, I use a bootstrap. Specifically, for a collection of

subsamples {H1, H2, ..., HK} for some sufficiently large K, every in-sample equation derrived

from Hi sample is tested on all H−i samples and the results are averaged. This process is

repeated for each fold and the functional form with the best average performance is chosen.

The tuning parameter is selected based on the minimum achievable E[ErrH ].

Computational Complexity

The space of functional forms is in L∞ requiring searching through discrete space of model

representations and continuous space of parameters. It is an NP-hard combinatorial opti-

mization problem (Lu, Ren, and Wang 2016).

Earlier solutions to the symbolic regression problem were based on Genetic Programming

(GP) and similar combinatorial optimization methods (Koza 1994; E. ( Vladislavleva 2008;

E. J. Vladislavleva, Smits, and Hertog 2009; M. Schmidt and Lipson 2009; Dabhi and Vij

2011). Using operations like selection, crossover, and mutation, GP-based symbolic regres-

sion modifies a population of mathematical expressions to improve a fitness function. This

approach is prone to high computational cost and overly intricate output expressions, and

the solution varies with the initial value. (Korns 2011). There have been many attempts to

tackle these challenges by utilizing semantics and multi-objective formulation (Huynh, Singh,

and Ray 2016), proposing a problem-simplification tool for symbolic regression (Udrescu and

Tegmark 2020), incorporating grammar variational autoencoder into generative model (Kus-

ner, Paige, and Hernández-Lobato 2017), developing a Bayesian framework (Jin et al. 2020)

or NeuroEvolution of Augmenting Topologies (Trujillo et al. 2016).

DSR technique offers an efficient and yet tractable solution to this problem. This approach

uses recurrent neural networks (RNN) to generate a distribution over tractable mathematical

expressions and it trains the neural network using a risk-seeking policy gradient. DSR is
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considered to be the state-of-the-art approach among symbolic regression techniques in real-

world data tests. It has a rigorous methodological foundation while offering both flexibility

and maintaining computational efficiency.

Simulations

In order to understand the empirical properties of the DSR method, I test it on simulated

data for various sample sizes with simple and complex DGPs and different levels of noise

levels. The goal is to verify the ability of this method to recover the original DGP by

converging to the true functional form as N → ∞. I consider a simple simulation setup with

two explanatory variables. Specifically, the following equations are used for DGP: 7

Y = X1 +X2 +X1 ∗X2 + ϵ (7)

and

Y = log

(
X1

X2

)
+X2

1 + ϵ (8)

where X1 and X2 are two independent random variables drawn from a uniform distribution

with a support [0, 1] and ϵ is drawn from a standard normal distribution. For a lack of a

better word, I refer to DGP in equation 7 as a simple DGP or DGP 1 and the one generated

in equation 8 as a complex DGP or DGP 2. In essence, DGP 1 is meant to represent an

uncomplicated linear relationship and DGP 2 mirrors intricate nonlinear dependence, that

may resemble the kind of predictability observed in financial markets (e.g. with a logarithmic

price-to-dividend ratio, or in cross-sectional predictability with a logarithmic characteristic

7In all simulation exercises, I set the intercept to 0 and all parameter coefficients to 1 intentionally to
speed up estimations. By design, DSR optimizes constants in an inner loop for each draw of f̂Λ,λ so the
computation time increases substantially with constants. Optimizing constants would add some additional
uncertainty to estimations that would shrink asymptotically as N → ∞. On the other hand, the algorithm
seems to be able to pick and approximate coefficients well enough through functional representations at the
expense of the traversal length. For example, 1

3 can be expressed by DSR as X
X+X+X .
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ratio).

For sample sizes of [50, 100, 250, 500, 1000, 10000] and for levels of noise corresponding to

R2 ∈ [1, 0.95, 0.7, 0.3, 0.05] of a true functional form,8 I generate 101 random samples for

each cell in the grid of parameters. Each DSR model is estimated on the training sample

{X, y}i, and its out-off-sample performance is then evaluated on remaining {X, y}−i samples.

In this section, regularization parameter λ is set to one of the values in [5, 7, 8, 10, 15] with

the minimum complexity level of DGP 1 being 7 and of DGP 2 being 8 based on the selected

library of operations. It should be noted that although linear models are considered to be

the most common and tractable relations in the traditional regression context, there is no

particular advantage for DSR and symbolic regressions in general when the true DGP is

linear.

Densities of in-sample and average out-of-sample R2 from these simulations are presented

in Figures 1 and 2 and the summary statistics for out-of-sample R2 are reported in Table 1.

All of the estimates shown are based on DGPs with noise R2 = 5% for the true equations.

Estimates with R2 ∈ [1, 0.95, 0.7, 0.3] are in Appendix.9

These figures show that there is a substantial variation in both R2IS and R2OOS. In

estimates on small samples as in left columns in Figures 1 and 2, the in-sample R2 appear to

be centered around 0 with very wide distributions and long left tails reaching negative values

across all specifications. Small sample sizes also lead to substantial variability of R2OOS

estimates that are centered at 0 for both DGP 1 and DGP 2 regardless of the regularisation

level. In this case, mean R2OOS distributions have long left tails with some very negative

estimates of below -10.

8Noise levels are set to R2 ∈ [1, 0.95, 0.7, 0.3, 0.05] on average for a given sample group of 101 samples.
The actual noise level may vary somewhat among samples within the same noise level group due to the
randomness of DGP. As expected, larger samples have smaller variations due to the central limit theorem.

9Although advantageous relative to other symbolic regression methods in terms of computation speed,
DSR is still a highly demanding procedure. Simulations take a lot of time to compute. At the moment, a
complete set of simulations is available only for noise levels with true R2 ∈ [0.05, 0.30, 1]. No-noise estimates
are not reported because results are trivial, DSR recovers true equations in 100% of the cases when the
regularization parameter allows that.
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Mean values10 of R2OOS and even right bounds of 95% confidence intervals are in a negative

zone as it can be observed in row 1 of Panels A and B in Table 1. For all levels of complexity

and both DGPs, distribution means of R2OOS start to increase approaching the true level

of noise with R2 = 5% and standard deviations shrink accordingly. At the maximum sample

size of 10,000 obs as in the right columns in Figures 1 and 2, distributions of mean R2OOS

normalize and their variance reduces substantially. The highest density of mean R2OOS

estimates is achieved when the regularizer parameter λ is set to the true minimum traversal

length for both simple and complex DGPs. When DSR model complexity is assumed to

be low (strong regularization), mean R2OOS values are centered below the true R2 level.

The same happens when functional forms are allowed to vary beyond the minimum traversal

length of the true equation although to a lesser degree. The variance of the estimates also

appears to be smaller when the regularizer parameter is closer to the true level.

Table 2 reports the average rate of the exact convergence of DSR models to true functional

forms when DGPs have high-level noise with true R2 = 5%. The exact convergence is defined

as a perfect structural match of the equation estimated by DSR to the true equation behind

a specific DGP. Tables with convergence rates for DGPs with true R2 at levels [0.7, 0.3] are

in the Appendix.

In both simple and complex cases, there is no convergence to the true functional form when

λ is smaller than the minimum traversal length of the true function. On the other hand,

when λ is set exactly to the minimum traversal length of the true function, the DSR starts

to recover true functional forms and the rate of recovery also increases with the sample size.

Thus, with sample size of 50 obs in DGP 2 and up to 250 in DGP 1, DSR is not able to

recover the original equations behind these DGPs. As the sample size increases, the recovery

rate reaches 100% for the DGP 1 and to 89.1% for the DGP 1 at 10,000-obs level. Further,

the convergence rate starts to decline as the regularization parameter is relaxed falling to

0 for both DGPs at λ = 15 even with the largest sample sizes. For larger levels of λ, the

DSR algorithm starts to overfit in the sample capturing not only the structural relationship

but also fitting the noise which reduces its out-of-sample performance. What is also evident

10Technically, reported mean values in 1 are mean of means estimated from the cross-validation procedure.

15



Figure 1: R2IS and Average R2OOS of DSR Estimates of DGP 1 with High Noise

Figure 1 plots 2D densities of R2IS and average R2OOS measures for DSR model that are estimated on simulated data based
on DGP 1 for samples sizes of 100 and 10,000 and 3 levels of DSR maximum complexity with λ ∈ 5, 7, 15 that referred to as
Low, True, and High correspondingly. All samples have 5% signal in terms of true R2. Each estimation cell in the grid of sample
sizes and λ levels contains 101 random samples. For each DSR model estimated on a specific sample, mean R2OOS is obtained
by average R2 estimates from predictions on the remaining 100 samples. Axis scales are different across plots. Extreme values
of R2 < −100 are winsorized. It affects < 0.5% of obs in the most demanding specifications.
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Figure 2: R2IS and Average R2OOS of DSR Estimates of DGP 2 with High Noise

Figure 2 plots 2D densities of R2IS and average R2OOS measures for DSR model that are estimated on simulated data based
on DGP 2 for samples sizes of 100 and 10,000 and 3 levels of DSR maximum complexity with λ ∈ 5, 8, 15 that referred to as
Low, True, and High correspondingly. All samples have 5% signal in terms of true R2. Each estimation cell in the grid of sample
sizes and λ levels contains 101 random samples. For each DSR model estimated on a specific sample, mean R2OOS is obtained
by average R2 estimates from predictions on the remaining 100 samples. Axis scales are different across plots. Extreme values
of R2 < −100 are winsorized. It affects < 0.5% of obs in the most demanding specifications.
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Table 1: Summary Statistics of Mean R2OOS measures in DSR Simulations

Table 1 reports summary statistics of average R2OOS in OOS predictions by DSR models estimated over simulated data

generated by simple and complex DGPs. All samples have 5% signal in terms of true R2. Sample size varies from 50 to 10,000

obs. In each specification cell, there are 101 samples for DSR model estimation. Models estimated on one sample are then tested

on the remaining 100 samples. Mean R2OOS is obtained by averaging R2 from test samples. The regularization parameter

can be one of the values λ ∈ [5, 7, 8, 10, 15]. Extreme values of R2 < −100 are truncated. It affects < 0.5% of obs in the most

demanding specifications.

Panel A: Simple DGP
Panel A reports summary statistics for simulations of DGP 1. The underlying true equation is Y = X1 + X2 + X1 ∗ X2 + ϵ.

The minimum length of the traversal is 7.

Max Complexity
Sample Size 5 7 8 10 15

50 (n=505) -0.04 -0.49 -0.40 -1.46 -3.36
(SD) (0.02) (0.14) (0.13) (0.33) (0.37)
(95% CI) [-0.08,-0.01] [-0.76,-0.22] [-0.67,-0.14] [-2.10,-0.82] [-4.09, -2.64]
100 (n=505) 0.02 -0.10 -0.13 -0.14 -1.44
(SD) (0.00) (0.06) (0.06) (0.05) (0.27)
(95% CI) [0.01,0.02] [-0.22,0.01] [-0.25,-0.01] [-0.24,-0.03] [-1.96,-0. 92]
250 (n=505) 0.04 -0.06 -0.02 -0.08 -0.34
(SD) (0.00) (0.07) (0.05) (0.08) (0.12)
(95% CI) [0.03,0.04] [-0.19,0.07] [-0.11,0.07] [-0.23,0.07] [-0.57,-0.10 ]
500 (n=505) 0.04 -0.05 -0.06 -0.03 -0.23
(SD) (0.00) (0.09) (0.09) (0.05) (0.16)
(95% CI) [0.04,0.04] [-0.24,0.13] [-0.24,0.12] [-0.14,0.07] [-0.55,0.08]
1000 (n=505) 0.04 0.04 0.04 0.04 -0.06
(SD) (0.00) (0.00) (0.00) (0.00) (0.07)
(95% CI) [0.04,0.04] [0.04,0.04] [0.04,0.05] [0.04,0.04] [-0.19,0.07]
10000 (n=505) 0.05 0.05 0.05 0.05 0.05
(SD) (0.00) (0.00) (0.00) (0.00) (0.00)

Panel B: Complex DGP
Panel B of reports summary statistics for simulations of DGP 2. The underlying true equation is Y = log

(
X1
X2

)
+X2

1 + ϵ. The

minimum length of the traversal is 8.

Max Complexity
Sample Size 5 7 8 10 15

50 (n=505) -0.27 -1.05 -2.03 -3.00 -3.58
(SD) (0.09) (0.19) (0.26) (0.27) (0.28)
(95% CI) [-0.44,-0.09] [-1.42,-0.68] [-2.55,-1.51] [-3.52,-2.47] [-4.12,-3.04]
100 (n=505) -0.11 -0.20 -1.09 -1.01 -2.22
(SD) (0.08) (0.07) (0.20) (0.16) (0.27)
(95% CI) [-0.26,0.04] [-0.34,-0.07] [-1.48,-0.69] [-1.31,-0.70] [-2.74,-1.70]
250 (n=504) 0.03 0.01 -0.01 -0.04 -0.32
(SD) (0.00) (0.00) (0.02) (0.03) (0.09)
(95% CI) [0.03,0.03] [0.01,0.02] [-0.04,0.03] [-0.10,0.02] [-0.50,-0.13]
500 (n=505) 0.04 0.03 0.03 -0.01 -0.04
(SD) (0.00) (0.00) (0.00) (0.04) (0.04)
(95% CI) [0.04,0.04] [0.03,0.04] [0.03,0.04] [-0.08,0.07] [-0.11,0.03]
1000 (n=504) 0.04 0.05 0.05 0.05 0.02
(SD) (0.00) (0.00) (0.00) (0.00) (0.02)
(95% CI) [0.04,0.04] [0.04,0.05] [0.04,0.05] [0.04,0.05] [-0.02,0.06]
10000 (n=505) 0.04 0.05 0.05 0.05 0.05
(SD) (0.00) (0.00) (0.00) (0.00) (0.00)18



Table 2: Convergence Rates of DSR estimates to True Functional Forms.

Table 1 reports mean rates of the exact convergence of DSR to true functional forms with simple and complex and DGPs. The
exact convergence is defined as the perfect structural match of the equation estimated by DSR to the true equation behind a
specific DGP. Convergence rates are on a 0 to 1 scale. All samples have 5% signal in terms of R2. Sample sizes vary from 50
to 10,000 obs. In each specification cell, there are 101 samples for DSR model estimation. The regularization parameter can
be one of the values λ ∈ [5, 7, 8, 10, 15].

Panel A: Simple DGP
Panel A shows DSR convergence rates for simulations of DGP 1. The underlying true equation is Y = X1 +X2 +X1 ∗X2 + ϵ.

The minimum length of the traversal is 7.

Max Complexity
Sample Size 5 7 8 10 15
50 0.000 0.000 0.000 0.000 0.000
100 0.000 0.000 0.000 0.000 0.000
250 0.000 0.000 0.000 0.000 0.000
500 0.000 0.139 0.020 0.000 0.000
1000 0.000 0.287 0.010 0.000 0.000
10000 0.000 1.000 0.653 0.257 0.000

Panel B: Complex DGP
Panel B shows DSR convergence rates for simulations of DGP 1. The underlying true equation is Y = log

(
X1
X2

)
+X2

1 + ϵ. The

minimum length of the traversal is 8.

Max Complexity
Sample Size 5 7 8 10 15
50 0.000 0.000 0.000 0.000 0.000
100 0.000 0.000 0.030 0.000 0.000
250 0.000 0.000 0.099 0.000 0.000
500 0.000 0.000 0.248 0.000 0.000
1000 0.000 0.000 0.376 0.050 0.000
10000 0.000 0.000 0.891 0.475 0.000
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is that the recovery rate increases with the sample size even when λ is raised beyond the

minimum traversal length of the true DGP, at least in some vicinity of its optimal level.

This simulation exercise highlights several important properties of the DSR methodology.

The OOS performance as measured by average R2OOS in cross-validation seems to improve

with larger sample sizes approaching the level of R2 implied by the true equation. The

uncertainty around it also falls for larger samples. Further, if the true equation is in the

accessible space of functional forms, there seems to be an optimal regularization parameter

that maximizes R2OOS bringing it to the true R2 of the underlying DGP. The convergence

appears to be the fastest when λ is set to the minimum traversal length of the true func-

tional form. These results hold even when the noise in the data is high at true R2 = 5%

which is prevalent in economics and finance research. It is also shown, that at least in the

simulated environment, it is possible to use DSR for recovering the exact structure of simple

and complex functional forms behind the true DGP by tuning the proposed regularization

parameter when the sample size is large enough.

By comparing the outcomes of two simulations with simple and complex DGPs, one can also

infer that more complex expressions converge at a slower rate with respect to the sample

size. Although intuitive, this claim requires further investigation which is beyond the scope

of this study.

Empirical Results

Data

As an empirical exercise, I focus on the time-series predictability of the market equity return

premium over the period from 1927 to 2021 on the monthly level and the dynamics of

functional forms that can explain this predictability.

In recent years, many predictors have been proposed and tested with various success. I

restrict this study to six variables used to construct key predictors in GW that are available

for the entire span of the dataset: dividends, prices, lagged prices, earnings, stock variance
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(svar), and book-to-market ratio (b/m). With each additional variable, the computational

complexity of the DSR search process and the space of functional forms grow exponentially.

This limitation of DSR restricts the number of possible predictors in the current analysis.

The data comes from an extended version of a GW dataset from Ivo Welch’s website. In this

dataset, the returns data is based on the S&P 500 index from 1926 to 2021 from the month-

end values of the Center for Research in Security Press (CRSP) continuously compounded

cum-dividend stock return data.

The risk-free rate data is the Treasury-bill rate for the period 1920 to 2005 and it is imputed

by GW for the period 1871 to 1919 from Commercial paper rates for New York City that

is available in the National Bureau of Economic Research (NBER) Macrohistory database.

Dividends and earnings are 12-month moving sums for the S&P 500 index. The data is

taken from Robert Shiller’s website from 1871 to 1987. The dividends from 1988 to 2021

are provided by the S&P Corporation and the earnings data for this period are interpolated

from quarterly earnings from the S&P Corporation. In the analysis, returns are defined as

Rt+1 =
Pt+1

Pt
and the log excess return is rt+1 = log

(
Rt+1

Rf
t+1

)
.11

The stock variance is measured as a daily sum of daily returns on the S&P 500. In the

book-to-market ratio, book values are from the Value Line website. The ratio is computed

for the Dow Jones Industrial Average.

Measures of Predictability

A model specification that links market excess returns to lagged predictors, can be expressed

as:

rt+1 = ft(Xt) + ut+1 (9)

where rt+1 is log market excess return at time t+1,12 Xt is a matrix where column vectors are

11The monthly returns are computed as net dividends following GW. The yearly returns are computed
as cum dividend returns so that Rt+1 = Pt+1+Dt+1

Pt
12In DSR estimations, log excess market returns (instead of untransformed excess market returns) are
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predictor variables as of time t, namely, prices (X1,t), lagged prices (X2,t), dividends (X3,t),

earnings (X4,t), svar (X5,t), and b/m (X6,t). ut+1 is an idiosyncratic noise. In this case,

ft(Xt) can be either a linear model including models estimated in GW or a model estimated

by DSR.13 For example, in the regression of returns on the log dividend-price ratio, GW

estimations assume a linear relationship in the form of:

rt+1 = αt + βt ∗ log
(
Dt

Pt

)
+ ut+1 (10)

where f̂t(Dt, Pt) = α̂t+β̂t∗log
(

Dt

Pt

)
is of a fixed functional form f(Dt, Pt) and only coefficients

α̂t and β̂t are estimated. In DSR model estimations, functional forms themselves are assessed

so that for each period [1, t], DSR estimates f̂t(Xt) and it can vary over time by design.

For the sample of length T 14, the specification (9) is estimated repeatedly in expanding

windows k = k1, ..., kT−k1 starting from an initial estimation period t = k1 and where kT−k0 =

T . In-sample results are based on the full sample estimation of length T − 1.

In this study, I mainly focus on OOS predictions and related diagnostic statistics. This is

primarily dictated by the DSR estimation method as it can always produce a functional form

that will fit a given sample well enough or even perfectly. Using in-sample statistics becomes

irrelevant in this case.

In order to evaluate the performance of a given model, I construct a measure of the cumulative

difference between squared prediction errors of the proposed model and a null model. The

difference between these errors allows to understand whether an investor would be able to

time the market and gain returns above the market average. For a given estimation window

ki, I define ∆CSEki as:

used for convenience only as it allows to directly compare the results to GW specifications. Using raw values
would have no impact on DSR estimations.

13In a traditional sense, DSR estimates different models for each estimation window. I refer to the DSR
model as a collection of best in-sample fitted equations over the expanding window for a specific cell of
tuning parameters.

14The time frame here is defined relative to predictors so that the outcome variable rt+1 ranges from 2
to T + 1
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∆CSEki = CSEN
ki
− CSEf

ki
(11)

where CSEf
ki

and CSEN
ki

are cumulative squared errors of excess return predictions. That

is, for predictions r̂t+1 = f̂t(Xt) with t ∈ [k1, ..., ki], CSEki is calculated as:

CSEf
ki
=

ki∑
t=1

(rt+1 − r̂t+1)
2 (12)

The null model of historical mean excess return is based on average past returns defined as

r̄t+1 =
1
t

∑t
s=1 rs. Then, CSEN

ki
can be expressed as:

CSEN
ki

=

ki∑
t=1

(rt+1 − r̄t+1)
2 (13)

Prolonged periods with ∆CSEki > 0 would indicate that the investor would be able to

profitably time the market had she used one of the alternative models.

Two-sided 95% confidence intervals for CSEf
ki
are constructed with a consistent estimate of

the the asymptotic variance of the scaled mean following Diebold and Mariano (2002):

Ω̂ki =
1

ki − k1
∗

ki∑
s=k1

[
∆CSEs −∆CSEki

]2
(14)

where ∆CSEki =
1

ki−k1
∗
∑ki

s=k1
∆CSEs. Similar to GW, the primary benchmark for com-

paring the OOS performance of a given model in this paper is the null model of past average

excess market returns. I use the R2OOS measure defined as:

R2OOS = 1− CSEf
T

CSEN
T

(15)

The R2OOS compares the forecasting quality of the estimated model with the null model

of the past mean excess return. Assuming that the past mean returns are at least some-
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what informative (but not perfectly) of the future returns, these statistics can range from

−∞, signifying no predictability of the estimated model, to 1, indicating perfect return pre-

dictability. I test the equality of prediction errors between the conditional and null models

for statistical significance with MSE-F statistic advocated in McCracken (2007):

MSE-F = (T − k1)

(
MSEN −MSEf

MSEf

)
(16)

Further, I estimate a goodness-of-fit static R2IS for in-sample estimates over the full sample

as:

R2IS = 1−
∑T

t=1(rt+1 − f̂T (Xt))
2∑T

t=1(rt+1 − r̄T )2
(17)

with statistical significance levels based on a traditional F-statistic.15

I estimate non-overlapping 3-month horizon predictions with monthly data. The base case

scenario starts with k1 = 240. That is, with the first t+ 1 return data available in 1927, the

first predictions are the month of the first quarter in 1947. The estimation generates 300

quarters of monthly excess return predictions.

Market Return Predictability

In the empirical part, I restrict the library of tokens in DSR estimations to

{+,−,×,÷, exp, log,
√
, •2, [vars], const, 1.0}. Compared to the dictionary in the simulation

section, here I add a constant operator to account for possible fractional weights. This library

also includes squaring operator •2 and a fixed value 1.0 that shrinks the length of traversals

15F-statistic and its distribution assume a linear estimation model and rely on degrees of freedom for
building confidence intervals. To the best of my knowledge, at this point, there is no equivalent for F-statistics
or degrees of freedom in the symbolic regression context. To make model estimates comparable, although
somewhat arbitrary, I measure degrees of freedom in DSR models by the number of affine parameters. The
degrees-of-freedom complexity in DSR models is also the reason why I rely on non-adjusted R2 statistics in
this paper.
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for some functions.16

I start by comparing prediction errors of DSR models with various levels of the regularization

parameter λ and using the linear model in equation (10) as a reference point.17 Table 3

reports the IS and OOS R2 for excess market return forecasts at a monthly frequency for

3-month non-overlapping horizons. As in the original GW paper, the linear model is not

significant in IS and OOS estimations across specifications. DSR models seem to be able

to identify equations with good in-sample feet when constrains are loose (large λ) based on

R2IS statistic. Columns 3 and 5 show that DSR models are able to generate meaningfully

better OOS predictions with higher R2 compared to the linear model giving the best result

for the stringiest level of regularization parameter at λ = 8. Still, all DSR models appear

to be under-performing relative to the null model producing negative R2 and low (negative)

MSEF statistics. The performance seems to degrade for looser regularization parameters

(larger λ). Large R2IS together with very negative R2OOS point to potential overfitting

in DSR estimations when the regularization parameter weakens (λ large). Although these

estimates generate negative R2OOS, consistent with Kelly, Malamud, and K. Zhou (2022b),

the timing Sharpe ratio is positive at 0.17 for the best-performing model. This is substantially

exceeding the linear model Sharpe ratio of 0.04.

Forecasting errors can vary over time and model performance can change in different eco-

nomic environments. Therefore, it is crucial to consider prediction results across the predic-

tion window. Figure 3 plots cumulative SSE difference ∆CSEki from 3-month predictions

generated by the DSR and linear models setting the initial estimation period to 20 years.

Both IS and OOS measures are presented. All DSR models experienced a substantial boost

in terms of the in-sample fit during the Great Depression period. This potentially indicates

that the model search is to a larger degree shaped by this crisis period.

As it can be seen from the top plot in Figure 3, for stronger levels of regularization parameter

16Eg. a dictionary with •2 operator needs two nodes to represent x2, namely {•2, x}, while without this
operator the traversal would need three nodes {×, x, x}. Similarly, the fixed value 1.0 can be expressed as
{÷, x, x}.

17Among four considered estimations in GW, in the current setup of 3-month predictions with monthly
data, dividend-to-price ratio gives the highest R2OOS compared to other specifications.
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Table 3: DSR and linear models Forecasts

Table 3 presents IS and OOS R2 for excess market return forecasts at a monthly frequency for 3-month non-overlapping

horizons from GW and DSR models. Statistics for 3-month horizon predictions are based on 75-year prediction period. R2 are

in percentage terms. The IS R2 are estimated over the full sample period. The OOS R2 compares the forecast error of the

estimated model with the forecast error of the past excess mean return. The sample runs from 1927 through 2021. Forecasts

start after 20 from the beginning of the sample. Sharpe Ratio (SR) are annualized values based on monthly portfolio return

estimates. Statistical significance is based on the F-statistic for IS estimates and the MSE–F statistic of McCracken (2007)

for OOS estimates. ***, **, and * denote significance at the 1%, 5%, and 10% level, respectively. R2 estimates for 3-month

horizon prediction with a shorter prediction window are omitted as they are the same as with a longer prediction window.

Model R2IS R2OOS MSEF F-stat SR
(1) (2) (3) (4) (5) (6)
GW 0.01 -0.338 -3.036 0.109 0.042
DSR4 1.14 -0.856 -7.684 13.102 -0.078
DSR5 6.192 -0.265 -2.38 74.979 0.036
DSR6 6.625 -0.401 -3.603 80.603 -0.186
DSR7 7.849 -0.407 -3.656 96.766 -0.195
DSR8 9.936 -0.15 -1.35 125.318 0.171
DSR9 9.936 -0.737 -6.619 125.318 -0.193
DSR10 10.136 -1.398 -12.551 128.126 0.018
DSR11 9.937 -1.543 -13.852 125.342 0.009
DSR12 11.329 -2.103 -18.888 145.14 0.01
DSR13 11.628 -3.738 -33.568 149.469 -0.083
DSR14 11.495 -9.417 -84.567 147.548 -0.056
DSR15 12.466 -3.614 -32.45 161.776 -0.031
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Figure 3: OOS Performance of GW and DSR Models

Figure 3 shows the monthly performance of DSR models relative to the linear model as specified in equation (10) with dividends
and prices as predictors. The figure covers 75 years of predictions with 20 years of initial training period. The outcome in
all models is the montly excess market return. Colored lines show the differences in errors in 3-month ahead predictions of
estimated models relative to the null model of past mean excess returns based on ∆CSEki

in equation (11). A given model
does better than the null model if the line moves up and vice versa. IS and OOS predictions from the linear model are the
same across all three plots. Solid lines reflect OOS estimates while dotted lines show IS estimates. confidence intervals for OOS
estimates are based on Diebold and Mariano (1995) as specified in equation (14). Top-to-bottom plots present: OOS estimates
for all estimated DSR models with different constraints for λ between 4 and 11; IS and OOS estimates of two best-performing
DSR models with confidence intervals and a comparison to a linear model; IS estimates for all estimated DSR models with
different constraints for λ between 4 and 11. Greyed sections are NBER recessions and the red line reflects the 1974 Oil Crisis.
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λ ∈ {4, 5} that enforce relatively simple expressions, DSR is not able to identify specifications

that produce positive predictions throughout most of the forecasting period compared to

the linear model. While several regularization levels allow DSR to produce specifications

that outperform the linear model in OOS predictions, the model with a relatively stronger

regularization parameter (λ = 8) demonstrates better results up until the Great Recession.

Notably, models of higher complexity (λ = 10) seem to substantially outperform during the

Great Recession. This can be seen as a sign of the shared complexity of data generating

process being time-varying.

Although more complex models performed particularly well during the Great Recession pe-

riod, they sharply underperformed in Covid-19 times. This evidence points to the ability

of DSR to capture changes in the dynamics between returns and predictors even in such

a simple and restrictive setup. This also indicates that, potentially, the DSR method can

effectively track changes in the average level of the economy during and following large

economic disturbances, which is a difficult task as documented by Lettau and Van Nieuwer-

burgh (2008b). Further, the ability to forecast excess returns using models derived from DSR

appears to be highly localized in time and predominantly occurs within specific, adjacent

’pockets’, corroborating the results in Farmer, L. Schmidt, and Timmermann (2023). In this

case, the ’pockets’ of predictability seem to occur mostly, but not universally, during or just

after recessions as defined by NBER.

Overall, relaxing the regularization parameter leads to DSR estimating more complex models

that, although performing well in the sample, demonstrate poor out-of-sample results with

occasional improbable predictions that lead to substantial jumps in ∆CSEki .

It has been shown that random forest (RF) tends to outperform other ML techniques in

prediction tasks (Mullainathan and Spiess 2017) including predictions of market returns

(Gu, Kelly, and Xiu 2020). I use RF as a state-of-the-art ML benchmark method for market

excess return predictability. The comparison with the tuned random forest model is shown

in Figure 4. Similar to the DSR setup, the RF algorithm is given raw values of dividends

and prices and it is asked to estimate the best fit of log excess market returns. 3-month OOS
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predictions are then generated. RF is tuned along the tree depth and impurity parameters.

Figure 4 demonstrates that even after tuning, RF substantially underperforms relative to

the null hypothesis compared to the linear model or DSR8 models consistently generating

inferior OOS predictions though-out the prediction horizon and over-fitting in-sample.

The model structure in DSR estimations is flexible and it can change as the estimation

window increases. Therefore, examining how the equations in these models evolve over time

can help us understand how they generate out-of-sample forecasts of excess returns. Table

4 and Figure 5 document equations identified by best performing DSR models based OOS

predictions for corresponding prediction years for the constraints λ ∈ {8, 10} in 3-month

prediction window estimations. The table shows that although there is some variation in

the model structure, the estimates overall remain stable over time with a dominant model

capturing 99% and 88% of the prediction periods correspondingly. The log excess return

appears to be better predicted by exponential predictions and not the log of the dividend-

to-price ratio or logs of other variables as traditionally considered in the finance literature,

both in-sample and out-of-sample. The dominant model is very similar in both cases with a

more complex one only adding a linear term of svar.

In order to further explore the performance of discovered models, I generate predictions

based on the top models fixing estimated parameters and compare them to the in-sample

linear model.18 As before, these models appear to predict well during periods of substantial

economic distress, especially during the Great Depression and the Great Recession. More

complex models exhibit higher volatility in terms of predictions fitting data well during

financial crises but also underperforming over other periods. At the same time, added svar

term causes these more complex models to miss the market movements during Covid-19.

Given that the only difference between eq.1 for λ = 8 and eq.1 for λ = 10 is the linear

svar term, the observed differences in the performance of more complex models can solely

be attributed to the stock variance.

18It should be noted that for DSR predictions, cannot be treated as OOS estimates since the model and
its parameters are taken ex-post after observing all predictions and best model from the whole sample.
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Table 4: DSR Estimated Equations

Table 4 lists equations identified by best OOS performing DSR models in expanding window estimations for 3-month non-

overlapping horizons from monthly estimates. The dependent variable is a monthly log excess return defined as r∗t+1 =

log

(
(Rt+1

R
f
t+1

)
where Rt+1 =

Pt+1

Pt
. The set of RHS variables are: prices (X1); lagged prices (X2); dividends (X3); earnings

(X4); svar (X5); b/m (X6).

λ = 8
# Equation Prediction Quarters Total Quarters

1. e
2.5−x2×x3

x3×x4 1947Q1-1989Q2, 1990Q2-2021Q4 297

2. e
4.9−x2×x3

x3 1989Q4 1

3. 6e−x2

x3−0.4 1990Q1 1

4. (181.5− 242.9x3)× e−x2 1990Q2 1

λ = 10
# Equation Prediction Quarters Total Quarters

1. e
2.5−x2×x3

x3×x4 − x5

1947Q1-1961Q4, 1962Q2-1964Q2, 1964Q4-1967Q4,

265

1968Q2-1980Q2, 1980Q4-1985Q1, 1985Q3-1988Q3,
1989Q1-Q4, 21991Q1-Q4,1992Q2-1996Q1, 1996Q3-2001Q3,
2020Q1, 2002Q4-2003Q2, 2004Q2-2007Q3, 2004Q2-2007Q3,

2008Q1-Q2, 2008Q4-2009Q1, 2009Q4-2010Q2, 2010Q4-2011Q3,
2012Q1-2014Q2, 2014Q4-2015Q4, 2016Q3-Q4,
2017Q2-2019Q2, 2019Q4-2020Q1, 2021Q2

2. 2× 10−4e
9.3−x2

x3 − x5

1962Q1, 1964Q3, 1980Q3, 1988Q4, 1990Q3, 1992Q1, 1996Q2,
232001Q4, 2002Q2-2002Q3, 2003Q3-Q4, 2004Q1, 2007Q4, 2008Q3,

2009Q2, 2010Q3, 2011Q4, 2014Q3, 2016Q1-Q2, 2017Q1, 2019Q3

3. 2.52× 10−5x5 × e
11−x2

x4 2020Q2-2021Q1, 2021Q3-2021Q4 6

4. e
5
x3

−2x2 − x5 1968Q1, 1990Q4 2

5. x5 ×
(
e

3.38
x4

−x2 − 1.53
)

1985Q2 1

6. x2

(x2−6.16)ex2+160.56 1990Q1 1

7. 2.44 ∗ 105 × e−1.70x2−9.31x3 1990Q2 1

8. 7× 10−6e
29.86
x2x3 − x5 2009Q3 1
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Figure 4: OOS Performance of GW, DSR, and RF Models for Dividends and Prices

Figure 4 shows the annual performance of the DSR model relative to the OLS model in GW and a tuned Random Forest
model. The outcome in both models is the annual excess market return. Lines show the differences in errors in one-year ahead
prediction of past mean and corresponding models. A given model does better than the mean if the line moves up and vice
versa. Top-to-bottom plots present the DSR model as a constraint for λ = 8. Greyed sections are NBER recessions and the
red line reflects the 1974 Oil Crisis.

Figure 5: Prediction Periods of DSR10 Generated Models

Figure 5 show the OOS performance of the DSR models with λ = 10 and the prediction periods generated by the models in the
Table 4. The figure covers 75 years of predictions with 20 years of initial training period. The outcome variable is the monthly
excess market return. The orange line shows the difference in errors in 3-month ahead predictions of estimated DSR10 models
relative to the null model of past mean excess returns based on ∆CSEki

in equation (11). A given model does better than
the null model if the line moves up and vice versa. Light-colored sections labeled Eq1-8 reflect prediction periods generated
by models estimated with DSR for λ = 10 as enumerated in Table 4. Greyed sections are NBER recessions and the red line
reflects the 1974 Oil Crisis.
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Figure 6: Preidctions of Top DSR models

Figure 6 show the performance of the most frequent DSR models with λ ∈ [8, 10] relative to the in-sample GW estimate. The
figure covers 75 years of predictions with 20 years of initial training period. The outcome variable is the monthly excess market
return. The lines show the difference in errors in 3-month ahead predictions of estimated by DSR8 or DSR10 models relative to
the null model of past mean excess returns based on ∆CSEki

in equation (11). The most frequent models are the equation #1
for λ = 8 and the equations #1 and #2 for λ = 10 in Table 4. A given model does better than the null model if the line moves
up and vice versa. Greyed sections are NBER recessions and the red line reflects the 1974 Oil Crisis.

Conclusion

This paper has demonstrated the potential of symbolic regression, and DSR in particular,

as a novel and powerful method for predicting market return based on a simple setting of

the present value relationship. The paper has applied symbolic regression to both simulated

and real data from the US stock market and compared its performance with linear regression

and random forest as benchmark models.

It has been shown in a simulation exercise that symbolic regression can recover the true

functional dependencies and the level of predictability, even in noisy environments. It can

also handle complex data and find hidden patterns and interactions among predictors. In

a real-world test, DSR outperforms linear regression and random forest in terms of out-

of-sample forecasting accuracy and in-sample fit for real data from the US stock market

over a sample period from 1927 to 2021. At the same time, DSR generates interpretable

and parsimonious models that capture some well-known stylized facts as well as some novel

nonlinearities and interactions in market return predictability.
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In particular, DSR appears to be capable of generating meaningfully superior OOS predic-

tions during large economic events like the Great Depression suggesting convoluted under-

lying relationships in the economy. These findings merit further investigation of the higher

order approximations beyond the log-linearization of Campbell and Shiller (1988) tradition-

ally used in the literature.

Further, a natural avenue for further research is to employ symbolic regressions in the cross-

sectional asset pricing context. Unlike any other ML methods used in economics and finance

literature, symbolic regressions are aimed at explaining underlying patterns in the data with

succinct equations. This means that this methodology suits well the task of describing and

facilitating the understanding of differences in expected returns across assets.

The paper also acknowledges some limitations of this methodology. Symbolic regression is

computationally intensive and requires careful tuning of hyperparameters to produce optimal

results. The space of possible functional forms that DSR searches through is predetermined

by the dictionary ex-ante. If the true data-generating process is based on transformations

that are not in the library, the generated equations will still be only an approximation to

the true DSP. Further, given the flexibility of all possible functional forms in the span of a

given dictionary, DSR tends to overfit in-sample producing poor OOS predictions unless the

sample is sufficiently large. Introducing economically motivated priors to the cost function

to enhance the regularization parameter by penalizing equations that produce unrealistic

forecasts based on the range of the outcome and predictor variables and experimenting with

the extended library to include other operations is a reasonable avenue to pursue in the

future.
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Appendix

Table A1: Convergence Rates of DSR estimates to True Functional Forms. (True R2 = 30%)

Table A2 reports mean rates of the exact convergence of DSR to true functional forms with simple and complex and DGPs.
The exact convergence is defined as the perfect structural match of the equation estimated by DSR to the true equation behind
a specific DGP. Convergence rates are on a 0 to 1 scale. All samples have 30% signal in terms of R2. Sample sizes vary from
50 to 10,000 obs. In each specification cell, there are 101 samples for DSR model estimation. The regularization parameter can
be one of the values λ ∈ [5, 7, 8, 10, 15].

Panel A: Simple DGP
Panel A shows DSR convergence rates for simulations of DGP 1. The underlying true equation is Y = X1 +X2 +X1 ∗X2 + ϵ.

The minimum length of the traversal is 7.

SampleSize 5 7 8 10 15
50 0.000 0.079 0.000 0.000 0.000
100 0.000 0.198 0.020 0.000 0.000
250 0.000 0.693 0.119 0.010 0.000
1000 0.000 0.990 0.663 0.188 0.010
10000 0.000 1.000 1.000 0.931 0.257

Panel B: Complex DGP
Panel B shows DSR convergence rates for simulations of DGP 1. The underlying true equation is Y = log

(
X1
X2

)
+X2

1 + ϵ. The

minimum length of the traversal is 8.

SampleSize 5 7 8 10 15
50 0.000 0.000 0.168 0.000 0.000
100 0.000 0.000 0.238 0.020 0.000
250 0.000 0.000 0.614 0.149 0.000
500 0.000 0.000 0.733 0.287 0.000
1000 0.000 0.000 0.842 0.505 0.000
10000 0.000 0.000 1.000 0.990 0.050
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Table A2: Summary Statistics of Mean R2OOS in DSR Simulations (True R2 = 30%)

Table A2 reports summary statistics of average R2OOS in OOS predictions by DSR models estimated over simulated data

generated by simple and complex DGPs. All samples have 30% signal in terms of true R2. Sample size varies from 50 to

10,000 obs. In each specification cell, there are 101 samples for DSR model estimation. Models estimated on one sample are

then tested on the remaining 100 samples. Mean R2OOS is obtained by averaging R2 from test samples. The regularization

parameter can be one of the values λ ∈ [5, 7, 8, 10, 15]. Extreme values of R2 < −100 are truncated. It affects < 0.5% of obs.

Panel A: Simple DGP
Panel A reports summary statistics for simulations of DGP 1. The underlying true equation is Y = X1 +X2 +X1 ∗X2 + ϵ.

Max Complexity
Sample Size 5 7 8 10 15

50 (n=505) 0.23 0.02 0.08 0.09 -0.39
(SD) (0.01) (0.10) (0.07) (0.05) (0.19)
(95% CI) [0.22,0.24] [-0.17,0.21] [-0.06,0.22] [-0.01,0.19] [-0.75,-0.02]
100 (n=505) 0.25 0.21 0.25 0.23 0.09
(SD) (0.00) (0.03) (0.00) (0.01) (0.09)
(95% CI) [0.24,0.26] [0.15,0.28] [0.24,0.26] [0.21,0.25] [-0.08,0.26]
250 (n=505) 0.27 0.28 0.28 0.26 0.25
(SD) (0.00) (0.00) (0.00) (0.02) (0.02)
(95% CI) [0.27,0.27] [0.28,0.29] [0.28,0.29] [0.22,0.30] [0.21,0.30]
1000 (n=505) 0.27 0.30 0.29 0.29 0.26
(SD) (0.00) (0.00) (0.00) (0.00) (0.02)
(95% CI) [0.27,0.27] [0.30,0.30] [0.29,0.30] [0.29,0.29] [0.22,0.30]
10000 (n=505) 0.27 0.30 0.30 0.30 0.30
(SD) (0.00) (0.00) (0.00) (0.00) (0.00)

Panel B: Complex DGP
Panel B of reports summary statistics for simulations of DGP 2. The underlying true equation is Y = log

(
X1
X2

)
+X2

1 + ϵ.

Max Complexity
Sample Size 5 7 8 10 15

50 (n=505) 0.09 -0.05 -0.21 -0.25 -0.56
(SE) (0.10) (0.13) (0.15) (0.15) (0.15)
(95% CI) [-0.10,0.29] [-0.30,0.21] [-0.50,0.09] [-0.54,0.04] [-0.86,-0.26]
100 (n=505) 0.21 0.21 0.08 0.10 0.02
(SE) (0.01) (0.01) (0.08) (0.05) (0.07)
(95% CI) [0.19,0.22] [0.19,0.24] [-0.08,0.25] [0.00,0.21] [-0.12,0.16]
250 (n=505) 0.25 0.28 0.28 0.27 0.26
(SE) (0.00) (0.00) (0.01) (0.01) (0.01)
(95% CI) [0.24,0.25] [0.28,0.29] [0.27,0.29] [0.26,0.28] [0.23,0.28]
500 (n=505) 0.26 0.29 0.29 0.29 0.29
(SE) (0.00) (0.00) (0.00) (0.00) (0.00)
(95% CI) [0.26,0.26] [0.29,0.29] [0.29,0.30] [0.29,0.29] [0.29,0.29]
1000 (n=505) 0.26 0.30 0.30 0.30 0.30
(SE) (0.00) (0.00) (0.00) (0.00) (0.00)
(95% CI) [0.26,0.26] [0.29,0.30] [0.30,0.30] [0.30,0.30] [0.30,0.30]
10000 (n=505) 0.26 0.30 0.30 0.30 0.30
(SE) (0.00) (0.00) (0.00) (0.00) (0.00)
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Figure A1: R2IS and Average R2OOS of DSR Estimates of DGP 1 (True R2 = 5%)

Figure A1 plots 2D densities of R2IS and average R2OOS measures for DSR model that are estimated on simulated data based
on DGP 1 for samples sizes of 50 and 1000 and 3 levels of DSR maximum complexity with λ ∈ 5, 7, 15 that referred to as Low,
True, and High correspondingly. All samples have 5% signal in terms of true R2. Each estimation cell in the grid of sample
sizes and λ levels contains 101 random samples. For each DSR model estimated on a specific sample, mean R2OOS is obtained
by average R2 estimates from predictions on the remaining 100 samples. Axis scales are different across plots. Extreme values
of R2 < −100 are winsorized. It affects < 0.5% of obs in the most demanding specifications.
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Figure A2: R2IS and Average R2OOS of DSR Estimates of DGP 2 (True R2 = 5%)

Figure A2 plots 2D densities of R2IS and average R2OOS measures for DSR model that are estimated on simulated data based
on DGP 2 for samples sizes of 50 and 1000 and 3 levels of DSR maximum complexity with λ ∈ 5, 8, 15 that referred to as Low,
True, and High correspondingly. All samples have 5% signal in terms of true R2. Each estimation cell in the grid of sample
sizes and λ levels contains 101 random samples. For each DSR model estimated on a specific sample, mean R2OOS is obtained
by average R2 estimates from predictions on the remaining 100 samples. Axis scales are different across plots. Extreme values
of R2 < −100 are winsorized. It affects < 0.5% of obs in the most demanding specifications.
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Figure A3: R2IS and Average R2OOS of DSR Estimates of DGP 1 (True R2 = 30%)

Figure A3 plots 2D densities of R2IS and average R2OOS measures for DSR model that are estimated on simulated data based
on DGP 1 for samples sizes of 50 and 1000 and 3 levels of DSR maximum complexity with λ ∈ 5, 7, 15 that referred to as Low,
True, and High correspondingly. All samples have 30% signal in terms of true R2. Each estimation cell in the grid of sample
sizes and λ levels contains 101 random samples. For each DSR model estimated on a specific sample, mean R2OOS is obtained
by average R2 estimates from predictions on the remaining 100 samples. Axis scales are different across plots. Extreme values
of R2 < −100 are winsorized. It affects < 0.5% of obs in the most demanding specifications.
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Figure A4: R2IS and Average R2OOS of DSR Estimates of DGP 2 (True R2 = 30%)

Figure A4 plots 2D densities of R2IS and average R2OOS measures for DSR model that are estimated on simulated data based
on DGP 2 for samples sizes of 50 and 1000 and 3 levels of DSR maximum complexity with λ ∈ 5, 8, 15 that referred to as Low,
True, and High correspondingly. All samples have 30% signal in terms of true R2. Each estimation cell in the grid of sample
sizes and λ levels contains 101 random samples. For each DSR model estimated on a specific sample, mean R2OOS is obtained
by average R2 estimates from predictions on the remaining 100 samples. Axis scales are different across plots. Extreme values
of R2 < −100 are winsorized. It affects < 0.5% of obs in the most demanding specifications.
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Figure A5: R2IS and Average R2OOS of DSR Estimates of DGP 1 (True R2 = 30%)

Figure A5 plots 2D densities of R2IS and average R2OOS measures for DSR model that are estimated on simulated data based
on DGP 1 for samples sizes of 100 and 10,000 and 3 levels of DSR maximum complexity with λ ∈ 5, 7, 15 that referred to as Low,
True, and High correspondingly. All samples have 30% signal in terms of true R2. Each estimation cell in the grid of sample
sizes and λ levels contains 101 random samples. For each DSR model estimated on a specific sample, mean R2OOS is obtained
by average R2 estimates from predictions on the remaining 100 samples. Axis scales are different across plots. Extreme values
of R2 < −100 are winsorized. It affects < 0.5% of obs in the most demanding specifications.
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Figure A6: R2IS and Average R2OOS of DSR Estimates of DGP 2 (True R2 = 30%)

Figure A6 plots 2D densities of R2IS and average R2OOS measures for DSR model that are estimated on simulated data based
on DGP 2 for samples sizes of 100 and 10,000 and 3 levels of DSR maximum complexity with λ ∈ 5, 8, 15 that referred to as Low,
True, and High correspondingly. All samples have 30% signal in terms of true R2. Each estimation cell in the grid of sample
sizes and λ levels contains 101 random samples. For each DSR model estimated on a specific sample, mean R2OOS is obtained
by average R2 estimates from predictions on the remaining 100 samples. Axis scales are different across plots. Extreme values
of R2 < −100 are winsorized. It affects < 0.5% of obs in the most demanding specifications.
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