Political Affiliation and the Pricing of Climate Risk in Mortgages

Current Version: June 2025

Abstract

Using voter registration data of loan officers originating residential mortgages in coastal areas,

I analyze whether climate change partisanship is reflected in mortgage lending. I find that

Democratic loan officers charge higher loan spreads for mortgages on properties exposed to sea

level rise (SLR) than Republican loan officers. The results hold after controlling for loan officer

fixed factors. Partisan sorting is more pronounced for properties outside FEMA-designated

flood zones, and for loan officers located nearer the coast or in communities with fewer climate

change believers. These findings highlight how political ideology shapes the pricing of climate

risks in mortgages.

Keywords: Political Affiliation, Sea Level Rise, Climate Change, Mortgage

JEL Code: D72, G14, G21, G23, Q54

1 Introduction

Political ideology shapes not only how people vote, but also how they perceive economic conditions and make financial decisions. A growing literature documents that partisanship colors individuals' economic expectations and behavior of market participants across multiple domains—including finance professionals (e.g., Kempf and Tsoutsoura 2021), corporate executives (Rice, 2024; Fos et al., 2023), and households (e.g., Meeuwis et al. 2022; Chu et al. 2024). In this study, I examine how loan officers' political affiliation affects the pricing of climate risk in mortgage lending.

Political ideology also shapes individuals' perceptions of certain risk factors, including climate risk (Bernstein et al. 2022). Funk and Kennedy (2016) examine the political polarization in the U.S. regarding climate change, highlighting partisan differences in beliefs about its severity. Liberal Democrats are more likely to believe that climate change will cause severe environmental harms (e.g., extreme weather, rising sea levels, ecological damage). In contrast, conservative Republicans are generally more skeptical about the severity or inevitability of climate risks. In this paper, I focus on sea level rise (SLR) risk in coastal communities, which have a higher average exposure to SLR risk. Since inundation from SLR destroys the property value, rising sea levels may affect housing prices in residential real estate markets (Bernstein et al. 2019; Baldauf et al. 2020). Given that most residential housing is purchased with a mortgage, it is natural to explore the interaction of political ideology and climate risk pricing in mortgage markets.

In the mortgage underwriting process, loan officers play a key role in assessing borrower risk, evaluating financial backgrounds, and structuring suitable loan options. While lending decisions are guided by institutional policies and regulatory requirements, loan officers retain some discretion in influencing mortgage pricing (Ambrose et al. 2021; Bartlett et al. 2022; Chu 2024). Loan officers' judgments, shaped by their risk perception and personal beliefs, can ultimately impact how climate risks are factored into mortgage lending. Therefore, differences in officers' political ideology may lead to variations in mortgage pricing for properties exposed to climate risks.

I construct a sample by combining CoreLogic mortgage data, Home Mortgage Disclosure Act (HMDA) data, Nationwide Mortgage Licensing System (NMLS) loan officer data, L2 voter registration data, and National Oceanic and Atmospheric Administration (NOAA) data. L2 voter

registration data identifies loan officers' political affiliations, and NOAA data provides property-level exposure to SLR risk. I measure the SLR risk based on whether a property is projected to be inundated following an up to 6-foot increase in average global ocean level. CoreLogic mortgage data includes loan officers' unique NMLS ID numbers and names, which I use to merge with NMLS loan officer data and L2 voter registration records. Additionally, CoreLogic provides the exact property locations, allowing me to match them with NOAA data for SLR risk assessment.

First, I examine whether SLR risk is priced in residential mortgages. Properties closer to the coast differ from those that are farther away in terms of amenity values, such as scenic ocean views. To isolate the impact of SLR risk on mortgage rates, it is essential to compare properties with similar elevation and proximity to the coast. Following Bernstein et al. (2019) and Bernstein et al. (2022), I control for the property's zip code interacted with non-linear controls for its distance to the coast and elevation. On average, I do not find a statistically significant difference in mortgage spreads for properties with and without SLR risk. Similarly, when using interest rate, I still do not find a significant difference in mortgage interest rates for properties with and without exposure to SLR risk. This is consistent with the fact that the government-sponsored enterprises (GSEs) - Fannie Mae and Freddie Mac, don't factor climate change into rates.

Next, I examine whether loan officer's political affiliation affect how SLR risk is priced in residential mortgages. Democratic loan officers may work or reside farther from communities with higher SLR risk. To mitigate potential endogeneity arising from loan officer location, I include loan officer location (zip code) by year fixed effects. This approach allows me to compare loan officers with different political affiliations operating in the same location and issuing loans in the same year. I further use loan officer fixed effects to control for any potential loan officer characteristics that could affect their loan origination decisions. I find that Democratic loan officers charge higher rate spreads to mortgages on properties exposed to SLR risk than Republican loan officers. Specifically, the spread on loans for properties exposed to SLR by Democratic loan officers is about 2.5 basis points higher than those by Republican loan officers. However, I do not find that loan officers' political affiliation influences the pricing of SLR risk in mortgage interest rates. The results are not surprising. The GSEs determine credit-risk pricing adjustments via a fee that depends only on loan-to-value ratios (LTVs) and credit scores (Bartlett et al. 2022). If mortgages are sold to the GSEs, lenders are guaranteed against credit risk. Therefore, there is very little discretion for

loan officers to adjust mortgage interest rates. Instead, the rate spread is a measure of the overall mortgage cost that incorporates non-interest cost, such as origination fees and points. Thus, loan officers have relatively more discretion on it.

Furthermore, I explore the heterogeneity in the relationship of loan officer political ideology and the pricing of SLR risk. I first investigate whether the presence of mandated flood insurance mitigates the extent of partisan sorting in the pricing of SLR risk. The National Flood Insurance Reform Act of 1994 mandates that U.S. mortgage borrowers purchase flood insurance if the mortgaged property is located within a Special Flood Hazard Area (SFHA). The Federal Emergency Management Agency (FEMA) is responsible for defining SFHAs based on its flood hazard assessments and mapping. As a result, the collateral value of mortgages on properties within SFHAs is largely protected against flood risk through mandatory insurance coverage, while properties outside SFHAs remain exposed to uninsured flood losses. This institutional setting allows me to examine whether mandated flood insurance mitigates partisan differences in the pricing of SLR risk. If partisan heterogeneity primarily reflects differences in loan officers' subjective beliefs, the pricing gap should be more pronounced where flood risk remains uninsured. Consistent with this prediction, I find that the difference in SLR risk pricing between Republican and Democratic loan officers arises only for mortgages on properties located outside FEMA-designated flood zones. In contrast, there is no significant partisan difference for mortgages that are already protected against flood risk within SFHA areas. These results suggest that mandatory flood insurance partially substitutes for individual climate risk perceptions in mortgage pricing.

Moreover, loan officers' personal experience of coastal climate risks may also affect the partisan gap in mortgage pricing of SLR risk. SLR risk is a long-run risk of rising oceans eventually inundating coastal properties. While SLR is a gradual process, individuals can learn about it through their personal experience of coastal climate change. Officers located closer to the coast are more likely to have firsthand experience with coastal flooding, tidal surges, and other tangible signs of rising seas. If such exposure interacts with political ideology, Democrats and Republicans could respond very differently. Democrats may internalize climate risks more readily, whereas Republicans may remain skeptical, reinforcing partisan differences. Farther inland, where SLR risk is less salient, neither group may actively incorporate it into pricing decisions. I proxy for loan officers' personal experience of coastal climate risk using loan officers' home and work distance to

the coast and split the sample at the median. Indeed, I find that the political difference in the pricing of the SLR risk is more pronounced for officers living/working closer to the coast. The results suggest that direct experience with climate-related threats amplifies political disparities in risk perception and decision-making in mortgage lending.

Finally, to explore how local climate change beliefs shape partisan differences in pricing SLR risk, I match mortgage data with the Yale Climate Opinion Maps based on loan officers' home and work addresses. I find that the partisan gap in pricing SLR risk is more pronounced in communities with relatively low climate change belief, while there is no significant partisan gap in areas with stronger local climate concern. Pew Research Center finds that Republicans are more internally divided on climate change than Democrats. Republicans in Democratic-leaning, high-belief communities are more likely to be economically conservative and accept climate science, whereas those in Republican-dominated, low-belief communities tend to be socially conservative and skeptical of climate change. Moreover, Republicans may be more responsive than Democrats to local partisan norms, as shown in other contexts like prosocial behavior during COVID-19 (Baxter-King et al. 2022). Accordingly, Republican loan officers may be more responsive to prevailing community beliefs when pricing climate risk, particularly in regions with stronger public acceptance of climate change.

This paper contributes to the literature on political affiliation and finance, especially the economic outcomes in housing and loan markets. Bernstein et al. (2022) show that Republicans are more likely than Democrats to own homes exposed to SLR risk. Chu et al. (2024) find that individuals sharing the same political affiliation as the current U.S. President are more likely to engage in housing transactions as perceiving lower uncertainty in the economy. Chu (2024) show that Democratic loan officers originate more loans to minority borrowers by lowering the lending standard based on hard information. Dagostino et al. (2023) find that bankers whose party differs from that of the U.S. President charge higher loan spreads on syndicated loans than other bankers. This is the first paper to examine how the political ideology of mortgage officers interacts with climate change risk.

This paper contributes to the growing literature on climate finance. Recent studies have examined the pricing of climate risk in residential real estate markets (Bernstein et al. 2019; Murfin and Spiegel 2020; Baldauf et al. 2020), equity markets (Engle et al. 2020; Choi et al. 2020; Hsu et al. 2023; Sautner et al. 2023), and bond markets (Goldsmith-Pinkham et al. 2023). However,

relatively little is known about how climate risk is priced in the mortgage market. Nguyen et al. (2022) find that lenders charge higher interest rates on mortgages for properties exposed to greater SLR risk. Bakkensen et al. (2023) show that homebuyers with pessimistic beliefs about SLR risk are more likely to take on mortgage debt and prefer longer-maturity loans. Additionally, related studies have examined the impact of emperature anomalies on mortgage lending (Duan and Li 2024), and wildfires on housing and mortgage markets (Issler et al. 2024). This is the first paper to examine how the political ideology of economic agents interacts with climate change risk in mortgage markets.

Finally, this paper contributes to the literature on loan officers. The literature documents the role of loan officers on the racial gap in mortgage lending. Specifically, Frame et al. (2025) find that under-representation of minority loan officers contributes to the racial gap in mortgage lending; Ambrose et al. (2021) find that officer race affects the cost of mortgage credit to minorities; Chu (2024) finds that the political ideology of loan officers is another source of the racial gap in mortgage lending. Several other studies focus on syndicated loan officers. Dagostino et al. (2023) find that bankers whose political affiliation differs from that of the U.S. President apply higher loan spreads on syndicated loans than their peers. Herpfer (2021) and Bushman et al. (2021) find that loan officers can influence the loan contracting process of corporate lending. Drexler and Schoar (2014) find that loan officers play a crucial role in maintaining client relationships. This paper is the first to examine the impact of officers' political affiliation in the pricing of climate change risk.

The remainder of the paper is organized as follows. In Section 2, I describe the details of data sources and the sample construction process. Section 3 provides the results on the SLR risk and mortgage cost. Section 4 examines the relationship of officer political affiliation and the pricing of SLR risk in mortgage lending. Section 5 explores the heterogeneity in partisan sorting on SLR risk pricing, and Section 6 concludes.

2 Data and Sample Construction

2.1 Mortgage data

I obtain mortgage origination data from CoreLogic. The CoreLogic collects information from mortgage deed documents, including the exact location of the underlying property, loan amount,

mortgage origination date, mortgage type (FHA, VA, Conventional, fixed-rate, adjustable-rate), property type (single-family, multi-family, manufactured home), lien status (first lien, second lien, etc.), borrower name, lender name, and loan officer NMLSID. I geocode the location of each property and then determine the property's distance from the nearest coastline and elevation.

To obtain interest rate, underwriting criteria and borrower demographics, I merge the CoreLogic data with Home Mortgage Disclosure Act (HMDA) data. There is no common identifier between these two datasets. I match mortgages in these two datasets with variables that are common in these two datasets, including mortgage year, lender, census tract, loan amount, mortgage term, mortgage type, loan purpose, and whether the loan has a co-applicant. I only keep loans with a unique match in these two datasets. I restrict the sample to single-family, fixed-rate, first-lien, conventional mortgages with a 30-year term. I start the sample in 2018 because some key variables required in our analysis are only available in the post-2018 HMDA data.

2.2 Exposure to SLR risk

The property-level exposure assessment to SLR is derived from the publicly accessible SLR Viewer provided by the National Oceanic and Atmospheric Administration (NOAA). The NOAA provides detailed SLR shapefiles that describe the latitude and longitudes that will be inundated following an up to 6-foot increase in average global ocean level. Utilizing geographic information systems (GIS) software, I spatially intersect these NOAA inundation layers with property parcel data to accurately determine the exposure level of each individual property within the study area. I have 788,750 homes with exposure to SLR of up to 6 feet.

2.3 Loan officer data

Congress passed the Secure and Fair Enforcement for Mortgage Licensing Act in 2008 (SAFE Act). The SAFE Act requires all loan officer registrations and licenses to be included in the Nationwide Multistate Licensing System (NMLS). By 2012, all state and federal regulators had integrated into the NMLS and a nationwide mortgage licensing system and registry for the residential mortgage industry was established. This dataset contains officer information on registrations, licenses, employers, and office locations. The NMLS dataset assigns a unique and permanent ID number to each loan officer.

To identify political affiliation, I utilize voter registration data from L2. This dataset provides voters' names, demographic information, home addresses, and political affiliations. I keep voter records registered as "Democrat", Republican", and "Non-partisan." I match the L2 data based with the NMLS loan officer data on loan officers' names, and exclude matches with distance between voters' residential addresses and the location of loan officers' working addresses being greater than 100 miles.

2.4 Sample construction

I merge property-level exposure to SLR with mortgage data using exact street address, city, state, and zip code. Restricting the sample to properties within 2 miles of the coast, I have 741,167 mortgages originated between 2018 and 2022. After matching the mortgage data with the loan officer data using the officer NMLSID, the sample is reduced to about 241,090 mortgages with loan officer political affiliation information.

SLR exposure risk decreases with distance to the coast and elevation. Properties closer to the coast differ from those that are farther away due to the amenity values and market liquidity of being close to the coast. To isolate the impact of SLR risk on mortgage rates, it is essential to compare properties with similar elevation and proximity to the coast. Following Bernstein et al. (2019) and Bernstein et al. (2022), I control for the property's zip code interacted with flexible non-linear controls for its distance to the coast and its elevation. I assign continuous measures of elevation and distance to the coast for each property to intervals. Specifically, distance-to-the-coast is split up into intervals of 1/5th of a mile, while elevation is split into 2-meter intervals.

I present the summary statistics of the main variables in Table 1. Panel A is the summary statistics of the CoreLogic-HMDA sample. The average interest rate is 3.668%. The average rate spread, the difference between the annual percentage rate (APR) and the survey-based average prime offer rates, is 21.0 basis points. About 13.1% of mortgages are on properties with exposure to SLR risk. About 88.5% of loans are classified as conforming. About 60.3% of loans have coapplicants. The average combined loan-to-value (CLTV) ratio is 69.616%. About 9.0% of mortgages are issued to minority borrowers. The average loan amount is \$450,544.

Panel B is the summary statistics of the CoreLogic-HMDA-L2 sample. The average interest rate is 3.680%. The average rate spread is 22.8 basis points. About 12.7% of mortgages are for

properties with exposure to SLR risk. About 41.5% of loans are originated by Republican loan officers, and 29.2% of loans are originated by Democratic loan officers. The average combined loan-to-value (CLTV) ratio is 70.305%. About 8.5% of mortgages are issued to minority borrowers. The average loan amount is \$436,995.

3 SLR risk and mortgage cost

To examine whether SLR risk is priced in residential mortgages, I estimate the following specification,

$$Mortgage\ Cost_{ijzdet} = \beta_1 SLR_{izde} + X_{ijzdet}\phi + \alpha_{zde} + \alpha_{loan\ char} + \alpha_{borrower\ char} + \alpha_t + \epsilon_{ijzdet},$$
(1)

where $Mortgage\ Cost_{ijzdet}$ is the rate spread (interest rate) of mortgage i to borrower j in year t, SLR_{izde} is a dummy variable that equals one if the property will experience chronic tidal flooding with up to 6 feet global average SLR and zero otherwise, X_{ijzdet} is a set of property, loan and borrower characteristics, including the age of the property (Property Age), the natural logarithm of the loan amount (Log Loan Amount), loan-to-income ratio (LTI), an indicator for conforming loans (Conforming), an indicator for the presence of a co-applicant (Co-applicant), an indicator for whether the borrower is over $62\ (Age > 62)$, and an indicator for whether the borrower is African American or Hispanic (Minority). α_{zde} is the set of zip, distance to coast, and elevation fixed effects. I also include a set of mortgage and borrower characteristics fixed effects, including debt-to-income ratio (DTI), loan purpose, loan-to-value ratio (LTV), borrower race, and borrower ethnicity fixed effects. I cluster the standard errors at the Zip code level.

I present the results of estimating Equation (1) in Table 2, with Panel A reporting results for the rate spread and Panel B for the interest rate. On average, I do not find a statistically significant difference in mortgage spreads for properties with and without SLR risk. Similarly, when using interest rate, I still do not find a significant difference in mortgage interest rates for properties with and without exposure to SLR risk. This is consistent with the fact that the government-sponsored enterprises (GSEs) - Fannie Mae and Freddie Mac, don't factor climate change into rates.

4 Partisan sorting on the pricing of SLR risk

To examine whether loan officer's political affiliation affects how SLR risk is priced in residential mortgages, I estimate the following specification,

Mortgage
$$Cost_{ijkzdet} = \beta_1 Rep\ LO_{kt} \times SLR_{izde} + \beta_2 Dem\ LO_{kt} \times SLR_{izde} + \beta_3 SLR_{izde}$$

+ $\beta_4 Rep\ LO_{kt} + \beta_5 Dem\ LO_{kt} + X_{ijkzdet}\phi + \alpha_{zde} + \alpha_{loan\ char} + \alpha_{borrower\ char} + \alpha_{k,s} + \alpha_{s,t}$
+ $\alpha_{k,t} + \alpha_t + \epsilon_{ijkzdet}$, (2)

where $Mortgage\ Cost_{ijkzdet}$ is the rate spread (interest rate) of mortgage i originated by officer k to borrower j in year t, $Rep\ LO_{kt}$ equals to one if loan officer k is registered as Republican in year t and zero otherwise, $Dem\ LO_{kt}$ equals to one if loan officer k is registered as Democratic in year t and zero otherwise. The other variables are the same as those in Equation (1). Under this specification, the reference group is unaffiliated loan officers. β_1 and β_2 capture the differences in mortgage cost to properties with SLR risk by Republican and Democratic officers, relative to unaffiliated loan officers. To satisfy the identifying assumption, I include loan officer-by-property state fixed effects. This specification absorbs all time-invariant factors at the individual loan officer level while simultaneously controlling for state-specific lending environments that may influence officer behavior. I further use loan officer-by-year fixed effects to control for loan officer characteristics that could impact their loan origination decisions in general. This approach allows me to compare mortgage lending for properties exposed to SLR risk versus those unexposed to SLR risk by the same loan officer in the same year. The standard errors are double clustered at the property Zip code and the loan officer level.

I put the results of estimating Equation (2) in Table 3, with Panel A reporting results for the rate spread and Panel B for the interest rate. Across all columns in panel A, the coefficient estimates on $Rep LO \times SLR$ are all insignificant and close to zero. In contrast, the coefficient estimates on $Dem LO \times SLR$ are all positive and statistically significant. In columns (1) and (2), I include loan officer-by-property state fixed effects, allowing me to compare mortgages originated by the same loan officers on properties within the same state. The differences between the two estimates are all statistically significant at 5% level, suggesting that Democratic loan officers charge higher rate

spreads to mortgages on properties exposed to SLR risk than Republican loan officers. Specifically, the spread on loans for properties exposed to SLR by Democratic loan officers is about 2.0 basis points higher than those by Republican loan officers. In columns (3)-(4), I include loan officer-by-year fixed effects to control for any potential loan officer characteristics that could affect their overall loan origination decisions in general in each year. The differences in the coefficient estimates remain qualitatively and quantitatively similar.

In panel B, however, I do not find that loan officers' political affiliation influences the pricing of SLR risk in mortgage interest rates. This is not surprising. In the U.S., GSEs determine creditrisk pricing adjustments through a fee structure based solely on loan-to-value (LTV) ratios and credit scores (Bartlett et al. 2022). Therefore, there is very little discretion for loan officers to adjust mortgage interest rates. Instead, the rate spread is a measure of the overall mortgage cost that incorporates non-interest cost, such as origination fees and points. Thus, loan officers have relatively more discretion on it.

5 Exploring heterogeneity in partisan sorting

To better understand the mechanisms through which officer partisanship influences the pricing of SLR risk in residential mortgages, I examine the heterogeneity in this relationship.

5.1 Flood insurance

The National Flood Insurance Reform Act of 1994 requires that U.S. mortgage borrowers buy flood insurance if the mortgaged property is located in a Special Flood Hazard Area (SFHA). The collateral value of mortgages on properties in SFHAs is protected against flood risk, whereas mortgages on properties outside SFHAs remain exposed to flood risk. Thus, it is interesting to examine whether the presence of mandated flood insurance mitigates the extent of partisan sorting in the pricing of SLR risk. If partisan heterogeneity in SLR risk pricing is primarily driven by officers' subjective assessments, I would expect it to be more pronounced outside SFHAs. I divide the sample based on whether the property is inside FEMA's identified flood zones and re-estimate the regression specified in Equation (2) separately for each group.

The results are presented in Table 4. In column (1) and (2), for mortgages on properties

located outside FEMA-identified flood zones, the difference between the coefficient estimates on $Dem\ LO \times SLR$ and $Rep\ LO \times SLR$ is positive and statistically significant. In contrast, in column (3) and (4), for mortgages on properties located inside FEMA-identified flood zones, the difference between the coefficient estimates is much smaller and statistically insignificant. These findings indicate that partisan differences in SLR risk pricing are more evident when flood risk is not covered by insurance, suggesting a greater reliance on individual beliefs in such contexts. In contrast, when flood risk is explicitly insured, the influence of officer partisanship on pricing is less pronounced. The results suggest that insurance requirements partially substitute for individual-level climate risk perception in shaping mortgage pricing.

5.2 Loan officers' experience of coastal climate risk

Next, I examine whether loan officers' own exposure to coastal climate risks affects the partisan gap in mortgage pricing of SLR risk. SLR risk is a long-run risk of rising oceans eventually inundating coastal properties. Although SLR is a slow-moving threat, individuals may internalize its significance through direct experience with coastal climate-related events. Intuitively, a loan officer located near the coast is more likely to have firsthand experience with coastal flooding, tidal surges, and other tangible signs of rising seas. Such personal exposure can make the long-term risk of SLR more concrete and salient. If individuals interpret such climate-related experience through a partisan lens, Democrats and Republicans may respond very differently. Democrats could respond by elevating the price of climate risk, but Republicans may still largely ignore or downplay it, making the partisan gap in pricing more pronounced there. In fact, Bernstein et al. (2022) find that Republicans are more likely than Democrats to own homes exposed to SLR risk. Conversely, farther inland, sea-level rise is a more abstract and distant concern. As a result, neither group may actively incorporates it into mortgage pricing. If that is the case, the partisan gap in the pricing of SLR risk may be reflected in officers near the coast only. I use the loan officers' home (work) distance to the coast as the measure of loan officers' personal experience of coastal climate risk and then split the sample based on whether their distance to the coast falls above or below the median.

I then re-estimate Equation (2) for more experienced and less experienced loan officers separately. I put the results in Table 5. Panel A is based on loan officers' residential distance to the coast. In column (1) and (2), for officers' live closer to the coast, the difference between the coeffi-

cient estimates on $Dem\ LO \times SLR$ and $Rep\ LO \times SLR$ is positive and statistically significant. In contrast, in column (3) and (4), for loan officers live farther from the coast, the difference between the coefficient estimates is much smaller and statistically insignificant. These findings suggest that direct experience with climate-related threats amplifies political disparities in risk perception and decision-making in mortgage lending. In panel B, I find similar results based on loan officers' work distance to the coast.

5.3 Local climate change beliefs

Finally, I examine how local community beliefs regarding climate change risk affect the relationship between officer partisanship and the pricing of SLR risk. Prior studies have shown evidence that local climate change beliefs affect how climate change risk is priced in real estate and mortgage markets (e.g., Bernstein et al. 2019, Baldauf et al. 2020, Nguyen et al. 2022). Whether local climate change beliefs exacerbate or mitigate the partisan disparity in pricing SLR risk is worth examining. I use data from the Yale Climate Opinion Maps, which provide county-level measures of public perceptions about climate change. Specifically, I construct my measure of local climate change belief using county-level responses to the survey item "Do you think that global warming is happening?" from the Yale Climate Opinion Maps. I merge the mortgage data with the Yale Climate Opinions map data from 2018 to 2022 based on loan officers' home and work addresses. I divide the sample into two groups based on the sample median and re-estimate the regression specified in Equation (2) separately for each group.

I present the results in Table 6. Based on loan officers' home address, in column (1) and (2) of panel A, for officers' live in communities with relatively low climate change belief, the difference between the coefficient estimates on $Dem\ LO \times SLR$ and $Rep\ LO \times SLR$ is positive and statistically significant. In contrast, in column (3) and (4), for loan officers live in areas with stronger local climate concern, the difference between the coefficient estimates is much smaller and statistically insignificant. In panel B, I find similar results using loan officers' work addresses. Geographic areas with stronger local beliefs in climate change exhibit a higher concentration of Democratic voters, whereas regions with weaker climate change convictions are predominantly Republican. Pew Research Center finds Republicans face greater internal divisions over climate change than do Democrats. Republicans in Democratic-leaning, high-belief communities are more likely to be

economically conservative and accept climate science, whereas those in Republican-dominated, low-belief communities tend to be socially conservative and skeptical of climate change. Therefore, a Republican loan officer in a high climate-belief area may also internalize SLR risk in loan pricing - unlike their counterparts in skeptical regions where SLR risk is usually ignored. Furthermore, it could also be that Republicans are more responsive than Democrats to social cues from their local partisan environment, as documented in other contexts such as prosocial behaviors during COVID-19 (Baxter-King et al. 2022). Republican loan officers' climate risk pricing is more sensitive to the prevailing beliefs in their local communities.

6 Conclusion

Using voter registration data of loan officers originating residential mortgages in coastal areas, I analyze whether climate change partisanship is reflected in mortgage lending. I find that Democratic loan officers charge higher loan spreads for mortgages on properties exposed to sea level rise (SLR) than Republican loan officers. The results hold after controlling for loan officer fixed factors. Partisan sorting is more pronounced for properties outside FEMA-designated flood zones, and for loan officers located nearer the coast or in communities with fewer climate change believers. These findings highlight how political ideology shapes the pricing of climate risks in mortgages.

References

- Ambrose, Brent W, James N Conklin, and Luis A Lopez, 2021, Does borrower and broker race affect the cost of mortgage credit? *The Review of Financial Studies* 34, 790–826.
- Bakkensen, Laura, Toan Phan, and Russell Wong, 2023, Leveraging the disagreement on climate change: Theory and evidence, Working Paper, FRB Richmond.
- Baldauf, Markus, Lorenzo Garlappi, and Constantine Yannelis, 2020, Does climate change affect real estate prices? only if you believe in it, *The Review of Financial Studies* 33, 1256–1295.
- Bartlett, Robert, Adair Morse, Richard Stanton, and Nancy Wallace, 2022, Consumer-lending discrimination in the fintech era, *Journal of Financial Economics* 143, 30–56.
- Baxter-King, Ryan, Jacob R Brown, Ryan D Enos, Arash Naeim, and Lynn Vavreck, 2022, How local partisan context conditions prosocial behaviors: Mask wearing during covid-19, *Proceedings of the National Academy of Sciences* 119, e2116311119.
- Bernstein, Asaf, Stephen B Billings, Matthew T Gustafson, and Ryan Lewis, 2022, Partisan residential sorting on climate change risk, *Journal of Financial Economics* 146, 989–1015.
- Bernstein, Asaf, Matthew T Gustafson, and Ryan Lewis, 2019, Disaster on the horizon: The price effect of sea level rise, *Journal of Financial Economics* 134, 253–272.
- Bushman, Robert, Janet Gao, Xiumin Martin, and Joseph Pacelli, 2021, The influence of loan officers on loan contract design and performance, *Journal of Accounting and Economics* 71, 1–25.
- Choi, Darwin, Zhenyu Gao, and Wenxi Jiang, 2020, Attention to global warming, *The Review of Financial Studies* 33, 1112–1145.
- Chu, Yongqiang, 2024, Partisan loan officers and the racial gap in mortgage lending, Working Paper, UNC Charlotte.
- Chu, Yongqiang, Michael-Paul James, and Cong Roman Wang, 2024, Political alignment and housing transactions, Working Paper, UNC Charlotte.

- Dagostino, Ramona, Janet Gao, and Pengfei Ma, 2023, Partisanship in loan pricing, *Journal of Financial Economics* 150, 103717.
- Drexler, Alejandro, and Antoinette Schoar, 2014, Do relationships matter? Evidence from loan officer turnover, *Management Science* 60, 2722–2736.
- Duan, Tinghua, and Frank Weikai Li, 2024, Climate change concerns and mortgage lending, *Journal of Empirical Finance* 75, 101445.
- Engle, Robert F, Stefano Giglio, Bryan Kelly, Heebum Lee, and Johannes Stroebel, 2020, Hedging climate change news, *The Review of Financial Studies* 33, 1184–1216.
- Fos, Vyacheslav, Elisabeth Kempf, and Margarita Tsoutsoura, 2023, The political polarization of corporate america, Technical report, Working Paper, Boston College.
- Frame, W Scott, Ruidi Huang, Erica Xuewei Jiang, Yeonjoon Lee, Will Shuo Liu, Erik J Mayer, and Adi Sunderam, 2025, The impact of minority representation at mortgage lenders, *The Journal of Finance*.
- Funk, Cary, and Brian Kennedy, 2016, The politics of climate change in the united states, Washington, DC.
- Goldsmith-Pinkham, Paul, Matthew T Gustafson, Ryan C Lewis, and Michael Schwert, 2023, Sealevel rise exposure and municipal bond yields, *The Review of Financial Studies* 36, 4588–4635.
- Herpfer, Christoph, 2021, The role of bankers in the US syndicated loan market, *Journal of Accounting and Economics* 71, 1–26.
- Hsu, Po-Hsuan, Kai Li, and Chi-Yang Tsou, 2023, The pollution premium, *The Journal of Finance* 78, 1343–1392.
- Issler, Paulo, Richard Stanton, Carles Vergara-Alert, and Nancy Wallace, 2024, Housing and mort-gage markets with climate risk: Evidence from california wildfires, Working Paper, U.C. Berkeley.
- Kempf, Elisabeth, and Margarita Tsoutsoura, 2021, Partisan professionals: Evidence from credit rating analysts, *The Journal of Finance* 76, 2805–2856.

- Meeuwis, Maarten, Jonathan A Parker, Antoinette Schoar, and Duncan Simester, 2022, Belief disagreement and portfolio choice, *The Journal of Finance* 77, 3191–3247.
- Murfin, Justin, and Matthew Spiegel, 2020, Is the risk of sea level rise capitalized in residential real estate?, *The Review of Financial Studies* 33, 1217–1255.
- Nguyen, Duc Duy, Steven Ongena, Shusen Qi, and Vathunyoo Sila, 2022, Climate change risk and the cost of mortgage credit, *Review of Finance* 26, 1509–1549.
- Rice, Anthony B, 2024, Executive partisanship and corporate investment, *Journal of Financial and Quantitative Analysis* 59, 2226–2255.
- Sautner, Zacharias, Laurence Van Lent, Grigory Vilkov, and Ruishen Zhang, 2023, Firm-level climate change exposure, *The Journal of Finance* 78, 1449–1498.

Table 1: Summary statistics of main variables

This table presents the summary statistics of the samples, with Panel A for the CoreLogic-HMDA matched sample and Panel B for the CoreLogic-HMDA-L2 matched sample. Interest Rate is the mortgage interest rate in percentage points; Rate Spread is the difference between mortgage APR and the average prime offering rate in percentage points; SLR is a dummy variable that equals one if the property will experience chronic tidal flooding with up to 6 feet global average SLR and zero otherwise; Conforming is a dummy variable that equals one if the loan has a co-applicant; Property Age is the age of the house; Age > 62 is a dummy variable that equals one if the age of the borrower is over 62; Mortgage Amount is the loan amount; CLTV is the combined loan-to-income ratio; and Minority is a dummy variable that equals one if the borrower is African American or Hispanic and zero otherwise.

Panel A: CoreLogic-HMDA matched sample

	N	Mean	SD	25th Perc.	Median	75th Perc.
Interest Rate	740,279	3.668	0.901	2.990	3.375	4.250
Rate Spread	708,577	0.210	0.441	-0.062	0.155	0.413
SLR	741,167	0.131	0.337	0	0	0
Conforming	741,167	0.885	0.319	1	1	1
Co Applicant	741,167	0.603	0.489	0	1	1
Property Age	$678,\!277$	52.023	30.532	28	50	70
Age > 62	740,633	0.199	0.400	0	0	0
Minority	740,930	0.090	0.286	0	0	0
CLTV	735,616	69.616	96.001	57.721	74.400	80.000
Mortgage Amount	$741,\!167$	$450,\!544$	$391,\!835$	$245,\!000$	366,700	537,200

Panel B: CoreLogic-HMDA-L2 matched sample

	N	Mean	SD	25th Perc.	Median	75th Perc.
Interest Rate	240,719	3.680	0.902	2.990	3.375	4.250
Rate Spread	230,899	0.228	0.433	-0.042	0.172	0.429
SLR	241,090	0.127	0.333	0	0	0
Republican	241,090	0.415	0.493	0	0	1
Democratic	241,090	0.292	0.455	0	0	1
Conforming	241,090	0.894	0.308	1	1	1
Co Applicant	241,090	0.604	0.489	0	1	1
Property Age	222,746	50.546	30.476	26	48	69
Age > 62	240,912	0.198	0.398	0	0	0
Minority	241,006	0.085	0.279	0	0	0
CLTV	239,678	70.305	18.865	58.659	75.000	80.000
Mortgage Amount	$241,\!090$	436,995	393,726	$239{,}700$	$356,\!952$	$517,\!500$

Table 2: SLR risk and mortgage cost

This table reports the results of estimating Equation (1). The dependent variable in Panel A is $Rate\,Spread$ and the dependent variable in Panel B is $Interest\,Rate$. $Rate\,Spread$ is the difference between mortgage APR and the average prime offering rate in percentage points. $Interest\,Rate$ is the mortgage interest rate in percentage points. SLR is a dummy variable that equals one if the property will experience chronic tidal flooding with up to 6 feet global average SLR and zero otherwise. DTI is the debt-to-income ratio categorized as follows: <20%, 20%–30%, 30%–36%, 36%–40%, 40%–46%, 46%–50%, 50%–60%, and >60%. LTV is the combined loan-to-value ratio categorized as follows: $\le60\%$, 60%–70%, 70%–75%, 75%–80%, 80%–85%, 85%–90%, 90%–95%, and >95%. The definitions of other variables are in the note to Table 1. Standard errors double clustered by property zip and loan officer are reported in parentheses below the coefficient estimates. The significance at the levels of 1%, 5%, and 10% is indicated by ***, **, and *, respectively.

Panel A: Rate spread

	(1)	(2)	(3)	(4)	(5)	(6)
SLR	0.001	0.001	0.001	0.001	-0.001	-0.001
	(0.005)	(0.005)	(0.005)	(0.005)	(0.004)	(0.004)
Log Loan Amount	-0.171***	-0.173***	-0.171***	-0.172***	-0.170***	-0.172***
	(0.004)	(0.004)	(0.004)	(0.004)	(0.004)	(0.004)
Conforming	0.014***	0.017***	0.014***	0.017***	-0.029***	-0.032***
	(0.004)	(0.004)	(0.004)	(0.004)	(0.004)	(0.004)
Co Applicant	0.018***	0.018***	0.018***	0.019***	0.024***	0.024***
	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)
Property Age	0.001***	0.001***	0.001***	0.001***	0.000***	0.000***
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
Age > 62	-0.008***	-0.009***	-0.009***	-0.011***	-0.005***	-0.004***
	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)
Minority	0.060***	0.060***	0.072***	0.074***	0.049***	0.049***
	(0.003)	(0.003)	(0.020)	(0.020)	(0.019)	(0.019)
Observations	621,106	621,106	621,077	621,077	620,812	620,812
R-squared	0.342	0.351	0.343	0.352	0.431	0.434
Year FE	Yes	Yes	Yes	Yes	Yes	Yes
Zip-Dist-Elev FE	Yes	Yes	Yes	Yes	Yes	Yes
DTI FE	Yes	Yes	Yes	Yes	Yes	Yes
Loan Purpose FE	Yes	Yes	Yes	Yes	Yes	Yes
LTV-Year FE	Yes		Yes		Yes	Yes
LTV-Year-Month FE		Yes		Yes		
Borrower Race FE			Yes	Yes	Yes	Yes
Borrower Ethnicity FE			Yes	Yes	Yes	Yes
Lender FE					Yes	Yes
State-Year FE						Yes

Panel B: Interest rate

	(1)	(2)	(3)	(4)	(5)	(6)
SLR	-0.006	-0.001	-0.006	-0.001	-0.008	-0.008
	(0.007)	(0.005)	(0.007)	(0.005)	(0.006)	(0.006)
Log Loan Amount	-0.142***	-0.128***	-0.142***	-0.128***	-0.142***	-0.144***
	(0.004)	(0.004)	(0.004)	(0.004)	(0.004)	(0.004)
Conforming	0.003	0.040***	0.003	0.040***	-0.028***	-0.030***
	(0.005)	(0.005)	(0.005)	(0.005)	(0.005)	(0.005)
Co Applicant	0.018***	0.015***	0.019***	0.015***	0.025***	0.025***
	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)
Property Age	0.001***	0.001***	0.001***	0.001***	0.001***	0.001***
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
Age > 62	-0.025***	-0.018***	-0.026***	-0.019***	-0.021***	-0.020***
	(0.003)	(0.002)	(0.003)	(0.002)	(0.002)	(0.002)
Minority	0.061***	0.054***	0.074***	0.075***	0.049**	0.047**
	(0.004)	(0.003)	(0.024)	(0.019)	(0.023)	(0.023)
Observations	648,432	648,432	648,403	648,403	648,140	648,140
R-squared	0.651	0.823	0.651	0.823	0.674	0.676
Year FE	Yes	Yes	Yes	Yes	Yes	Yes
Zip-Dist-Elev FE	Yes	Yes	Yes	Yes	Yes	Yes
DTI FE	Yes	Yes	Yes	Yes	Yes	Yes
Loan Purpose FE	Yes	Yes	Yes	Yes	Yes	Yes
LTV-Year FE	Yes		Yes		Yes	Yes
LTV-Year-Month FE		Yes		Yes		
Borrower Race FE			Yes	Yes	Yes	Yes
Borrower Ethnicity FE			Yes	Yes	Yes	Yes
Lender FE					Yes	Yes
State-Year FE						Yes

Table 3: Loan officer political affiliation and the pricing of SLR risk

This table reports the results of estimating Equation (2). The dependent variable in Panel A is $Rate\,Spread$ and the dependent variable in Panel B is $Interest\,Rate$. $Rate\,Spread$ is the difference between mortgage APR and the average prime offering rate in percentage points. $Interest\,Rate$ is the mortgage interest rate in percentage points. SLR is a dummy variable that equals one if the property will experience chronic tidal flooding with up to 6 feet global average SLR and zero otherwise. $Rep\,LO$ is a dummy variable that equals one if the loan officer is registered as Republican in the year and zero otherwise. $Dem\,LO$ is a dummy variable that equals one if the loan officer is registered as Democratic in the year and zero otherwise. DTI is the debt-to-income ratio categorized as follows: $<20\%,\ 20\%-30\%,\ 30\%-36\%,\ 36\%-40\%,\ 40\%-46\%,\ 46\%-50\%,\ 50\%-60\%,\ and <math>>60\%.\ LTV$ is the combined loan-to-value ratio categorized as follows: $\le60\%,\ 60\%-70\%,\ 70\%-75\%,\ 75\%-80\%,\ 80\%-85\%,\ 85\%-90\%,\ 90\%-95\%,\ and <math>>95\%$. The definitions of other variables are in the note to Table 1. Standard errors double clustered by property zip and loan officer are reported in parentheses below the coefficient estimates. The significance at the levels of $1\%,\ 5\%$, and 10% is indicated by ***, **, and *, respectively.

Panel A: Rate spread

	(1)	(2)	(3)	(4)
Rep LO $\times SLR$	-0.002	-0.002	0.008	0.008
	(0.008)	(0.008)	(0.009)	(0.009)
Dem LO $\times SLR$	0.020*	0.021**	0.028**	0.028**
	(0.010)	(0.010)	(0.011)	(0.012)
SLR	-0.006	-0.003	-0.009	-0.008
	(0.010)	(0.010)	(0.011)	(0.011)
Rep LO	-0.000	0.004		
	(0.052)	(0.052)		
Dem LO	0.031	0.032		
	(0.053)	(0.053)		
Minority $\times Rep LO$	-0.009	-0.009	-0.029**	-0.028**
	(0.011)	(0.011)	(0.013)	(0.013)
Minority $\times Dem LO$	-0.008	-0.009	-0.014	-0.014
	(0.012)	(0.012)	(0.014)	(0.014)
Log Loan Amount	-0.152***	-0.152***	-0.146***	-0.146***
	(0.006)	(0.006)	(0.006)	(0.006)
Conforming	-0.031***	-0.031***	-0.033***	-0.033***
	(0.007)	(0.007)	(0.007)	(0.007)
Co Applicant	0.027***	0.027***	0.025***	0.025***
	(0.003)	(0.003)	(0.003)	(0.003)
Property Age	0.000***	0.000***	0.000***	0.000***
	(0.000)	(0.000)	(0.000)	(0.000)
Age > 62	-0.010***	-0.011***	-0.006*	-0.006*
	(0.003)	(0.003)	(0.004)	(0.004)
Minority	0.085**	0.085**	0.072*	0.072*
·	(0.038)	(0.038)	(0.041)	(0.041)
Dem LO× SLR – $Rep LO \times SLR$	0.022**	0.023**	0.020**	0.020**
	(0.009)	(0.009)	(0.010)	(0.010)
Observations	163,009	162,328	144,960	144,960
R-squared	0.606	0.606	0.684	0.684
Year FE	Yes	Yes	Yes	Yes
Zip-Dist-Elev FE	Yes	Yes	Yes	Yes
DTI FE	Yes	Yes	Yes	Yes
Loan Purpose FE	Yes	Yes	Yes	Yes
Borrower Race FE	Yes	Yes	Yes	Yes
Borrower Ethnicity FE	Yes	Yes	Yes	Yes
LTV-Year FE	Yes	Yes	Yes	Yes
Officer-State FE	Yes	Yes	Yes	Yes
Lender FE	Yes	Yes	Yes	Yes
SFHA FE		Yes	Yes	Yes
Officer-Year FE			Yes	Yes
State-Year FE				Yes

Panel B: Interest rate

Tanei B. Interest late	(1)	(2)	(3)	(4)
Rep LO $\times SLR$	0.010	0.009	0.023	0.023
•	(0.013)	(0.013)	(0.015)	(0.015)
Dem LO $\times SLR$	0.021	0.021	0.017	0.017
	(0.015)	(0.015)	(0.017)	(0.017)
SLR	-0.026*	-0.026	-0.028*	-0.027
	(0.016)	(0.016)	(0.017)	(0.017)
Rep LO	$0.029^{'}$	$0.038^{'}$,	,
•	(0.081)	(0.082)		
Dem LO	-0.016	-0.012		
	(0.086)	(0.086)		
Minority $\times Rep LO$	-0.014	-0.014	-0.027	-0.027
	(0.018)	(0.018)	(0.019)	(0.019)
Minority $\times Dem LO$	-0.019	-0.019	-0.018	-0.017
•	(0.020)	(0.020)	(0.022)	(0.022)
Log Loan Amount	-0.136***	-0.136***	-0.130***	-0.130***
	(0.007)	(0.007)	(0.008)	(0.008)
Conforming	-0.038***	-0.038***	-0.044***	-0.044***
	(0.009)	(0.009)	(0.009)	(0.009)
Co Applicant	0.034***	0.034***	0.031***	0.032***
	(0.004)	(0.004)	(0.004)	(0.004)
Property Age	0.000***	0.000***	0.000***	0.000***
	(0.000)	(0.000)	(0.000)	(0.000)
Age > 62	-0.021***	-0.022***	-0.016***	-0.016***
	(0.005)	(0.005)	(0.005)	(0.005)
Minority	0.023	0.023	0.100*	0.100*
	(0.057)	(0.057)	(0.054)	(0.054)
Dem LO× $SLR - Rep LO \times SLR$	0.011	0.012	-0.006	-0.006
	(0.013)	(0.013)	(0.014)	(0.014)
	()	()	()	()
Observations	171,008	170,316	152,607	152,607
R-squared	0.774	0.774	0.822	0.822
Year FE	Yes	Yes	Yes	Yes
Zip-Dist-Elev FE	Yes	Yes	Yes	Yes
DTI FE	Yes	Yes	Yes	Yes
Loan Purpose FE	Yes	Yes	Yes	Yes
Borrower Race FE	Yes	Yes	Yes	Yes
Borrower Ethnicity FE	Yes	Yes	Yes	Yes
LTV-Year FE	Yes	Yes	Yes	Yes
Officer-State FE	Yes	Yes	Yes	Yes
Lender FE	Yes	Yes	Yes	Yes
SFHA FE		Yes	Yes	Yes
Officer-Year FE			Yes	Yes
State-Year FE				Yes

Table 4: Loan officer political affiliation, SLR risk, and flood insurance

This table presents the results on how required flood insurance influences the relationship of political affiliation and the pricing of SLR risk. I divide the sample based on whether the property is inside FEMA's identified flood zones. The dependent variable is $Rate\,Spread$, the difference between mortgage APR and the average prime offering rate in percentage points. SLR is a dummy variable that equals one if the property will experience chronic tidal flooding with up to 6 feet global average SLR and zero otherwise. $Rep\,LO$ is a dummy variable that equals one if the loan officer is registered as Republican in the year and zero otherwise. $Dem\,LO$ is a dummy variable that equals one if the loan officer is registered as Democratic in the year and zero otherwise. DTI is the debt-to-income ratio categorized as follows: $<20\%,\,20\%-30\%,\,30\%-36\%,\,36\%-40\%,\,40\%-46\%,\,46\%-50\%,\,50\%-60\%,\,and <math>>60\%.\,LTV$ is the combined loan-to-value ratio categorized as follows: $\le60\%,\,60\%-70\%,\,70\%-75\%,\,75\%-80\%,\,80\%-85\%,\,85\%-90\%,\,90\%-95\%,\,and <math>>95\%$. The definitions of other variables are in the note to Table 1. Standard errors double clustered by property zip and loan officer are reported in parentheses below the coefficient estimates. The significance at the levels of 1%, 5%, and 10% is indicated by ****, ***, and *, respectively.

	Mandatory flood insurance					
	N	Jo	Y	es		
	(1)	(2)	(3)	(4)		
Rep LO $\times SLR$	-0.008	0.007	0.020	0.031		
	(0.017)	(0.019)	(0.018)	(0.025)		
Dem LO $\times SLR$	0.033	0.054**	0.024	0.015		
	(0.022)	(0.027)	(0.025)	(0.029)		
SLR	0.008	-0.004	-0.014	0.002		
	(0.017)	(0.018)	(0.019)	(0.024)		
Rep LO	0.029		-0.033			
	(0.051)		(0.147)			
Dem LO	0.022		-0.066			
	(0.055)		(0.101)			
Minority $\times Rep LO$	-0.009	-0.023	-0.021	-0.061*		
	(0.013)	(0.015)	(0.029)	(0.033)		
Minority $\times Dem LO$	-0.012	-0.018	0.049	0.044		
Ç	(0.014)	(0.015)	(0.037)	(0.041)		
Log Loan Amount	-0.149***	-0.138***	-0.146***	-0.141***		
	(0.007)	(0.008)	(0.010)	(0.012)		
Conforming	-0.016**	-0.019**	-0.056***	-0.061***		
G	(0.007)	(0.008)	(0.014)	(0.016)		
Co Applicant	0.030***	0.027***	0.013*	$0.010^{'}$		
11	(0.003)	(0.003)	(0.007)	(0.008)		
Property Age	0.000***	0.000***	0.001***	0.001***		
1 0	(0.000)	(0.000)	(0.000)	(0.000)		
Age > 62	-0.008**	-0.003	-0.008	-0.022**		
0	(0.004)	(0.004)	(0.009)	(0.009)		
Minority	0.093**	0.069	-0.062	0.046		
	(0.043)	(0.047)	(0.097)	(0.154)		
	,	,	,	,		
Dem LO× $SLR - Rep LO \times SLR$	0.041*	0.046*	0.004	-0.015		
	(0.021)	(0.025)	(0.022)	(0.027)		
Observations	133,301	117,488	20,288	14,354		
R-squared	0.622	0.699	0.631	0.722		
Year FE	Yes	Yes	Yes	Yes		
Zip-Dist-Elev FE	Yes	Yes	Yes	Yes		
DTI FE	Yes	Yes	Yes	Yes		
Loan Purpose FE	Yes	Yes	Yes	Yes		
Borrower Race FE	Yes	Yes	Yes	Yes		
Borrower Ethnicity FE	Yes	Yes	Yes	Yes		
LTV-Year FE	Yes	Yes	Yes	Yes		
Officer-State FE	Yes	Yes	Yes	Yes		
Lender FE	Yes	Yes	Yes	Yes		
Officer-Year FE	100	Yes	100	Yes		
State-Year FE		Yes		Yes		
State-Teal FE		169		169		

Table 5: Loan officer political affiliation, SLR risk, and personal experience of coastal climate risk This table presents the results on how the loan officer's personal experience of coastal climate risk influences the relationship of political affiliation and the pricing of SLR risk. To measure loan officers' distance to the coast, Panel A uses officers' home address, and Panel B uses officers' work address. I divide the sample based on whether officers' distance to the coast falls above or below the median. The dependent variable is Rate Spread, the difference between mortgage APR and the average prime offering rate in percentage points. SLR is a dummy variable that equals one if the property will experience chronic tidal flooding with up to 6 feet global average SLR and zero otherwise. Rep LO is a dummy variable that equals one if the loan officer is registered as Republican in the year and zero otherwise. Dem LO is a dummy variable that equals one if the loan officer is registered as Democratic in the year and zero otherwise. DTI is the debt-to-income ratio categorized as follows: < 20%, 20%-30%, 30%-36%, 36%-40%, 40%-46%, 46%-50%, 50%-60%, and > 60%. LTV is the combined loan-to-value ratio categorized as follows: $\le 60\%$, 60% - 70%, 70% - 75%, 75% - 80%, 80% - 85%, 85% - 90%, 90% - 95%, and > 95%. The definitions of other variables are in the note to Table 1. Standard errors double clustered by property zip and loan officer are reported in parentheses below the coefficient estimates. The significance at the levels of 1%, 5%, and 10% is indicated by ***, **, and *, respectively.

Panel A: Based on Officer's Home Address

	Officer's Proximity to Coast					
	Ne	ear	F	ar		
	(1)	(2)	(3)	(4)		
Rep LO $\times SLR$	0.007	0.016	-0.014	-0.005		
	(0.014)	(0.014)	(0.016)	(0.017)		
Dem LO $\times SLR$	0.043**	0.047**	-0.000	0.008		
	(0.017)	(0.018)	(0.016)	(0.019)		
SLR	-0.008	-0.013	0.001	0.010		
	(0.016)	(0.016)	(0.018)	(0.021)		
Rep LO	0.287***		0.063			
	(0.097)		(0.104)			
Dem LO	0.453		0.042			
	(0.317)		(0.096)			
Minority $\times Rep LO$	-0.019	-0.030	0.014	-0.011		
	(0.017)	(0.018)	(0.020)	(0.024)		
Minority $\times Dem LO$	0.004	-0.004	-0.008	-0.010		
	(0.018)	(0.019)	(0.021)	(0.027)		
Log Loan Amount	-0.140***	-0.137***	-0.173***	-0.165***		
	(0.008)	(0.008)	(0.008)	(0.010)		
Conforming	-0.028***	-0.031***	-0.039***	-0.047***		
	(0.008)	(0.009)	(0.012)	(0.013)		
Co Applicant	0.026***	0.024***	0.030***	0.028***		
	(0.004)	(0.004)	(0.005)	(0.005)		
Property Age	0.000***	0.000***	0.000***	0.000***		
	(0.000)	(0.000)	(0.000)	(0.000)		
Age > 62	-0.007	-0.007	-0.016***	-0.008		
	(0.005)	(0.005)	(0.006)	(0.007)		
Minority	0.125**	0.107*	0.085	0.054		
	(0.059)	(0.063)	(0.061)	(0.057)		
Dem LO× $SLR - Rep LO \times SLR$	0.035**	0.031**	0.014	0.012		
	(0.014)	(0.015)	(0.015)	(0.018)		
01	09 466	70.200	CO 705	40.500		
Observations	83,466	78,308	62,765	49,506		
R-squared	0.602	0.675	0.696 V	0.778 V		
Year FE	Yes	Yes	Yes	Yes		
Zip-Dist-Elev FE DTI FE	Yes	Yes	Yes	Yes		
	Yes	Yes	Yes	Yes		
Loan Purpose FE	Yes	Yes	Yes	Yes		
Borrower Race FE	Yes	Yes	$\begin{array}{c} { m Yes} \\ { m Yes} \end{array}$	Yes		
Borrower Ethnicity FE LTV-Year FE	$\mathop{ m Yes} olimits$	$\begin{array}{c} { m Yes} \\ { m Yes} \end{array}$	Yes Yes	$\operatorname*{Yes}$ $\operatorname*{Yes}$		
Officer-State FE	Yes	Yes	Yes	Yes		
Lender FE	Yes	Yes Yes	Yes Yes	Yes Yes		
SFHA FE	Yes	Yes	Yes	Yes		
State-Year FE	Yes	Yes	Yes	Yes		
Officer-Year FE	168	Yes	168	Yes		
Omcer-rear FE		res		res		

Panel B: Based on Officer's Work Address

	Officer's Proximity to Coast				
	Ne	ear	F	ar	
	(1)	(2)	(3)	(4)	
Rep LO $\times SLR$	0.003	0.019	0.003	0.020	
	(0.013)	(0.013)	(0.015)	(0.018)	
Dem LO $\times SLR$	0.036**	0.047***	0.009	0.019	
	(0.016)	(0.017)	(0.018)	(0.022)	
SLR	-0.008	-0.014	-0.005	-0.004	
	(0.016)	(0.016)	(0.018)	(0.021)	
Rep LO	0.233***		0.088		
	(0.077)		(0.102)		
Dem LO	0.399		0.073		
	(0.319)		(0.095)		
Minority $\times Rep LO$	0.003	-0.011	-0.026	-0.060**	
	(0.017)	(0.018)	(0.019)	(0.024)	
Minority $\times Dem LO$	0.000	0.004	-0.035	-0.046*	
	(0.019)	(0.020)	(0.022)	(0.024)	
Log Loan Amount	-0.142***	-0.136***	-0.169***	-0.160***	
	(0.008)	(0.008)	(0.009)	(0.009)	
Conforming	-0.025***	-0.029***	-0.044***	-0.039***	
	(0.008)	(0.008)	(0.012)	(0.014)	
Co Applicant	0.028***	0.024***	0.026***	0.028***	
	(0.004)	(0.004)	(0.005)	(0.006)	
Property Age	0.000***	0.000***	0.000***	0.000***	
	(0.000)	(0.000)	(0.000)	(0.000)	
Age > 62	-0.007	-0.004	-0.018***	-0.011	
	(0.005)	(0.005)	(0.006)	(0.007)	
Minority	0.114**	0.123**	0.054	0.009	
	(0.057)	(0.059)	(0.065)	(0.078)	
Dem LO× SLR – $RepLO$ × SLR	0.033**	0.027*	0.006	-0.001	
	(0.014)	(0.014)	(0.015)	(0.018)	
	07.000		20.20	47.000	
Observations	85,626	81,257	60,627	47,080	
R-squared	0.603	0.672	0.694	0.777	
Year FE	Yes	Yes	Yes	Yes	
Zip-Dist-Elev FE	Yes	Yes	Yes	Yes	
DTI FE	Yes	Yes	Yes	Yes	
Loan Purpose FE	Yes	Yes	Yes	Yes	
Borrower Race FE	Yes	Yes	Yes	Yes	
Borrower Ethnicity FE	Yes	Yes	Yes	Yes	
LTV-Year FE	Yes	Yes	Yes	Yes	
Officer-State FE	Yes	Yes	Yes	Yes	
Lender FE	Yes	Yes	Yes	Yes	
SFHA FE	Yes	Yes	Yes	Yes	
State-Year FE	Yes	Yes	Yes	Yes	
Officer-Year FE		Yes		Yes	

Table 6: Loan officer political affiliation, SLR risk, and local climate change beliefs This table presents the results on how local climate change beliefs influence the relationship between political affiliation and the pricing of SLR risk. Panel A uses officers' home addresses, and Panel B uses work addresses. The sample is divided based on whether local belief in climate change is above or below the sample median. The dependent variable is Rate Spread, the difference between mortgage APR and the average prime offering rate in percentage points. SLR is a dummy variable that equals one if the property will experience chronic tidal flooding with up to 6 feet global average SLR and zero otherwise. Rep LO is a dummy variable that equals one if the loan officer is registered as Republican in the year and zero otherwise. Dem LO is a dummy variable that equals one if the loan officer is registered as Democratic in the year and zero otherwise. DTI is the debt-toincome ratio categorized as follows: < 20%, 20% - 30%, 30% - 36%, 36% - 40%, 40% - 46%, 46% - 50%, 50%–60%, and > 60%. LTV is the combined loan-to-value ratio categorized as follows: $\leq 60\%$, 60% - 70%, 70% - 75%, 75% - 80%, 80% - 85%, 85% - 90%, 90% - 95%, and > 95%. The definitions of other variables are in the note to Table 1. Standard errors double clustered by property zip and loan officer are reported in parentheses below the coefficient estimates. The significance at the levels of 1%, 5%, and 10% is indicated by ***, **, and *, respectively.

Panel A: Based on Officer's Home Address

	Local Climate Change Belief					
	Le	OW	Hi	gh		
	(1)	(2)	(3)	(4)		
Rep LO $\times SLR$	-0.011	-0.007	0.004	0.018		
	(0.011)	(0.013)	(0.016)	(0.017)		
Dem LO $\times SLR$	0.023	0.022	0.014	0.036*		
	(0.014)	(0.016)	(0.019)	(0.020)		
SLR	0.004	0.004	-0.007	-0.015		
	(0.014)	(0.016)	(0.020)	(0.021)		
Rep LO	-0.011		0.153			
	(0.062)		(0.284)			
Dem LO	-0.017		0.274			
	(0.088)		(0.282)			
Minority $\times Rep LO$	-0.010	-0.030	-0.029*	-0.049**		
	(0.019)	(0.021)	(0.018)	(0.019)		
Minority $\times Dem LO$	-0.012	-0.017	0.005	-0.005		
	(0.022)	(0.026)	(0.017)	(0.019)		
Log Loan Amount	-0.194***	-0.186***	-0.104***	-0.096***		
G	(0.007)	(0.008)	(0.008)	(0.009)		
Conforming	-0.068***	-0.067***	-0.003	-0.006		
G	(0.011)	(0.012)	(0.009)	(0.009)		
Co Applicant	0.035***	0.033***	0.017***	0.016***		
• •	(0.004)	(0.005)	(0.004)	(0.004)		
Property Age	0.001***	0.001***	0.000***	0.000***		
	(0.000)	(0.000)	(0.000)	(0.000)		
Age > 62	-0.020***	-0.014***	0.002	$0.005^{'}$		
	(0.005)	(0.005)	(0.006)	(0.006)		
Minority	0.149^{*}	0.104	0.036	0.044		
·	(0.082)	(0.088)	(0.049)	(0.054)		
Dem LO× $SLR - Rep LO \times SLR$	0.034***	0.030**	0.010	0.018		
•	(0.012)	(0.014)	(0.017)	(0.019)		
	70.050	C1 F04	70.005	CF 10F		
Observations	70,259	61,584	72,325	65,105		
R-squared	0.629 V	0.693 V	0.636	0.702 V		
Year FE	Yes	Yes	Yes	Yes		
Zip-Dist-Elev FE DTI FE	Yes	Yes	Yes	Yes		
	Yes	Yes	Yes	Yes		
Loan Purpose FE	Yes	Yes	Yes	Yes		
Borrower Race FE	Yes	Yes	Yes Yes	Yes		
Borrower Ethnicity FE LTV-Year FE	$\mathop{ m Yes} olimits$	$\operatorname*{Yes}$ $\operatorname*{Yes}$	Yes Yes	$\operatorname*{Yes}$ $\operatorname*{Yes}$		
Officer-State FE	Yes	Yes	Yes	Yes		
Lender FE	Yes	Yes Yes	Yes Yes	Yes Yes		
SFHA FE	Yes	Yes	Yes	Yes		
State-Year FE	Yes	Yes	Yes	Yes		
Officer-Year FE	168	Yes	168	Yes		
Omcer-rear r E		res		res		

Panel B: Based on Officer's Work Address

	Local Climate Change Belief					
	L	OW	Hi	gh		
	(1)	(2)	(3)	(4)		
Rep LO $\times SLR$	-0.012	-0.006	0.004	0.019		
	(0.011)	(0.013)	(0.016)	(0.017)		
Dem LO $\times SLR$	0.023	0.022	0.014	0.036*		
	(0.014)	(0.016)	(0.019)	(0.020)		
SLR	0.005	0.005	-0.008	-0.014		
	(0.015)	(0.016)	(0.020)	(0.021)		
Rep LO	-0.016		0.150			
	(0.063)		(0.284)			
Dem LO	-0.029		0.270			
	(0.092)		(0.282)			
Minority $\times Rep LO$	-0.011	-0.035	-0.029*	-0.049**		
	(0.019)	(0.022)	(0.018)	(0.019)		
Minority $\times Dem LO$	-0.014	-0.022	0.006	-0.005		
	(0.023)	(0.027)	(0.017)	(0.019)		
Log Loan Amount	-0.195***	-0.186***	-0.103***	-0.095***		
	(0.007)	(0.008)	(0.008)	(0.009)		
Conforming	-0.068***	-0.067***	-0.003	-0.006		
G	(0.011)	(0.012)	(0.009)	(0.009)		
Co Applicant	0.036***	0.033***	0.016***	0.016***		
• •	(0.004)	(0.005)	(0.004)	(0.004)		
Property Age	0.001***	0.001***	0.000***	0.000***		
	(0.000)	(0.000)	(0.000)	(0.000)		
Age > 62	-0.020***	-0.015***	0.002	$0.005^{'}$		
	(0.005)	(0.005)	(0.006)	(0.006)		
Minority	0.153^{*}	0.114	0.036	0.043		
V	(0.081)	(0.086)	(0.049)	(0.054)		
Dem LO× $SLR - Rep LO \times SLR$	0.034***	0.028**	0.010	0.017		
•	(0.013)	(0.014)	(0.017)	(0.019)		
	,	, ,		, ,		
Observations	69,346	60,788	72,285	65,064		
R-squared	0.629	0.693	0.636	0.702		
Year FE	Yes	Yes	Yes	Yes		
Zip-Dist-Elev FE	Yes	Yes	Yes	Yes		
DTI FE	Yes	Yes	Yes	Yes		
Loan Purpose FE	Yes	Yes	Yes	Yes		
Borrower Race FE	Yes	Yes	Yes	Yes		
Borrower Ethnicity FE	Yes	Yes	Yes	Yes		
LTV-Year FE	Yes	Yes	Yes	Yes		
Officer-State FE	Yes	Yes	Yes	Yes		
Lender FE	Yes	Yes	Yes	Yes		
SFHA FE	Yes	Yes	Yes	Yes		
State-Year FE	Yes	Yes	Yes	Yes		
Officer-Year FE		Yes		Yes		