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Abstract

We apply machine learning to predict currency excess return cross-sectionally while addressing the

black-box issue through interpretability techniques. First, neural networks (NN) significantly out-

perform traditional models in predicting currency excess returns including the random walk, high-

lighting the advantages of more flexible predictive functions. Second, NN-based portfolios achieve

higher Sharpe ratios, underscoring their economic value. Third, both local and global interpretabil-

ity techniques reveal that interactions between global macroeconomic factors and currency-specific

characteristics are key drivers of FX risk premia.
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1 INTRODUCTION

1. Introduction

This paper applies machine learning techniques to analyze the cross-section of currency excess

returns. We investigate the following questions: (1) Can machine learning methods enhance the

predictability of excess returns beyond traditional linear models? (2) Do machine learning models

provide economically meaningful improvements in understanding currency excess returns? (3) Does

interpretability analysis of machine learning reveal which factors—tradable or nontradable—are

most relevant, and how their interactions shape return variation?

Our research presents machine learning and other conventional econometric models to explain

currency excess returns in the cross-section. Our contributions primarily lie in the following three

aspects. First, we employ more advanced models to address the limitations of conventional linear

factor pricing models. Empirical asset pricing has undergone significant evolution, from the foun-

dational Capital Asset Pricing Model (CAPM) (Sharpe, 1964; Lintner, 1965) and Arbitrage Pricing

Theory (APT) (Ross, 1976) to the subsequent proliferation of risk factors. Despite these advance-

ments, empirical challenges remain. We find ourselves amidst the era of high-dimensional factors.

The high-dimensional nature of potential predictors introduces significant model uncertainty, mak-

ing it difficult to determine the true drivers of excess returns. Traditional econometric methods

often struggle with factor selection, dimension reduction, nonlinear interactions, and robustness in

out-of-sample forecasts (Gu et al., 2020). The existing literature provides relatively little guidance

on predictor and prediction function (Giglio et al., 2022). It is unclear whether the functional form

is linear and which are the true predictors. Machine learning is a good tool to solve this problem.

On the one hand, it can handle very large predictor sets very well. At the same time, there are

many regularization methods to deal with overfitting. On the other hand, it allows more and more

flexible functional forms.

Second, we provide further insights into the factor zoo problem in currency markets. For

the currency market, understanding the trade-off between the risk and return is crucial for both

academic research and practical investment strategies. Following the work of Lustig and Verdelhan

(2007), studies have increasingly examined the cross-section of currency excess returns through the

lens of risk factors. This has led to a growing literature on tradable factors, derived from currency

investment strategies such as carry (Lustig et al., 2011) and momentum (Menkhoff et al., 2012b),

and nontradable macro-financial factors (Nucera et al., 2024). However, this expansion of risk
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1 INTRODUCTION

factors—the so-called “factor zoo”—raises fundamental questions about which sources of risk best

explain currency excess returns and how their interactions shape return dynamics.

Many existing studies focus primarily on exchange rate movements rather than directly model-

ing currency excess returns. The latter is more relevant to risk-based factor pricing and systematic

investment strategies. In this regard, machine learning can provide a data-driven approach to learn-

ing about predictive returns. For example, it can tackle well large predictor sets and can capture

nonlinear relationships (Gu et al., 2020). In addition, machine learning has been widely used in

the stock market. Unlike prior studies that focus on either investment-strategy-based factors or

macro-financial risk factors separately, we examine both jointly, providing a more comprehensive

perspective on FX pricing. However, its potential in the foreign exchange market remains unex-

ploited, possibly because economic interpretability of machine learning models remains an unsolved

issue. This limits their application in empirical asset pricing.

Third, we introduce new interpretability tools to address the black-box problem in machine

learning, offering a better understanding of the drivers of currency excess returns. We adapt com-

mon methodologies from the engineering domain to address the black-box issue in finance. On the

one hand, we employ local interpretability techniques, such as DeepLIFT and Layer-wise Relevance

Propagation (LRP), which analyze each sample instance individually before averaging across in-

stances. On the other hand, for global interpretability, we leverage Shapley values to identify the

most significant predictors, reveal intricate return dynamics, and enhance return forecasting.

Our findings reveal several key insights. First, neural networks outperform the linear models

and the tree-based models. It is the only model that beats the random walk in predicting the cross

section of currency excess returns. However, as the forecast horizon increases from one month to

twelve months, their predictive power decreases, which is consistent with the result in the open econ-

omy (Hassan et al., 2024). Second, the interaction between global conditions and currency-specific

characteristics plays a crucial role in shaping excess returns, emphasizing the need to jointly con-

sider tradable and nontradable factors. Third, ML-based portfolios achieve superior risk-adjusted

returns, with higher Sharpe ratios compared to conventional factor-based approaches. Finally, we

introduce interpretability techniques such as Shapley value analysis to decompose the contributions

of different predictors, offering novel insights into the economic drivers of currency risk premia.

The results vary across prediction horizons, but a key insight is that the interaction between global
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market conditions and currency-specific characteristics jointly shapes return dynamics.

A related strand of literature investigates the application of machine learning in equity markets

(Gu et al., 2020). Building on Filippou et al. (2023), we expand the set of predictors beyond the

previously considered 70 macroeconomic and country-specific variables by incorporating tradable

factors and economic state indicators. Additionally, while prior studies focused on only developed

markets, we extend our analysis to a broader set of 49 countries, thereby providing a more com-

prehensive assessment of global return predictability. Our study also contributes by introducing

novel interpretability techniques to better understand ML-driven predictions and by implementing

a wider range of predictive models beyond conventional linear regressions and deep neural networks.

Moreover, we address key concerns regarding the implementability of ML-based trading strategies,

a topic of ongoing debate in finance. Furthermore, we explore the role of risk drivers in foreign

exchange (FX) returns and their connection to the broader factor zoo literature, drawing paral-

lels with the three-pass regression approach (Nucera et al., 2024). Our findings contribute to the

literature by demonstrating that ML (neural networks) outperforms traditional models in return

forecasting, reinforcing its potential as a powerful tool in empirical asset pricing.

The structure of this paper is as follows. Section 2 reviews the relevant literature. Section 3

describes the data, including currency-specific characteristics and global factors. Section 4 outlines

the methodology, detailing the model specification and evaluation framework. Section 5 presents

the prediction results, Section 6 discusses the economic performance, and Section 7 further explores

the interpretability of the model. Finally, Section 8 summarizes the key conclusions and discusses

the broader implications of the findings.

2. Literature review

Since Gu et al. (2020) introduced machine learning into asset pricing, research has flourished

in two directions. On the one hand, econometricians outside the market use machine learning in

the context of Stochastic Discount Factor (SDF) extraction in high-dimensional settings. Kelly et

al. (2019) proposed Instrumented Principal Component Analysis, enabling time-varying loadings

on latent factors. On the other hand, investors within the market use it for prediction. Gu et al.

(2020) applied various machine learning techniques to the US stock market, while Leippold et al.

(2022) extended the analysis to the Chinese stock market. Chen et al. (2024) combined Genera-
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tive Adversarial Network, Recurrent Long Short-Term Memory Network, and Feedforward Neural

Network to explain cross-sectional return differences. Bianchi et al. (2021) examined predictable

variation in bond returns with machine learning.

A key question in international finance is the predictability of exchange rates. Meese and Rogoff

(1983) found that macroeconomic models fail to outperform a random walk over short horizons,

known as the “Macro Exchange Rate Disconnect Puzzle.” Fama (1984) documented the “Forward

Premium Puzzle,” where forward premiums do not predict future spot exchange rates but reflect a

risk premium (Hansen and Hodrick, 1980). Lustig et al. (2011) found high-interest-rate currencies

earn higher excess returns. Menkhoff et al. (2012b) revealed that currencies that have performed the

best over the last three to twelve months typically continue to generate higher returns. Menkhoff

et al. (2017) identified a value factor, where undervalued currencies yield higher future returns,

though its predictive power emerges only after 6 to 24 months.

It is natural to examine its effectiveness in FX markets, where traditional models (e.g., Mark

(1995); Engel et al. (2007)) test whether fundamentals predict future exchange rates. Recent studies

explore more flexible, data-driven models. Wada (2022) shows that band spectral regression and

LASSO outperform linear benchmarks out-of-sample. Amat et al. (2018) use machine learning

to assess short-horizon FX predictability, finding that time-varying, nonlinear effects of macro

fundamentals help improve forecasts. Filippou et al. (2020) implement sequential ridge regression

and exponentially weighted averaging with discounting, showing these models can outperform the

random walk when modeling short-term links between fundamentals and FX returns. Pfahler

(2021) incorporate interaction terms between fundamentals and time dummies, finding that ANN

and XGBoost significantly boost predictive accuracy relative to standard models. Yaohao and

Albuquerque (2019) test 90 SVR models across 10 currencies using macro variables and different

Kernel functions; while most outperform the Random Walk in point forecasts, only 40% show

statistically significant improvements.

Most machine learning studies on currency focus on predicting exchange rates, not currency

excess returns. Our research shifts this focus, investigating the drivers of currency excess re-

turns—distinct from the well-known currency disconnect puzzle (Meese and Rogoff, 1983). While

ML has shown promise in other financial markets, its effectiveness in FX remains uncertain. We

aim to bridge this gap by systematically testing ML’s ability to uncover insights into currency
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excess returns. Unlike Filippou et al. (2020), which relies on macro fundamentals and addresses

time-varying loadings but overlooks tradable style factors, we take a cross-sectional approach, em-

phasizing predictive drivers beyond the macro disconnect perspective.

However, one fundamental challenge of applying machine learning in financial markets is its

black-box nature. Unlike traditional econometric models, ML techniques often lack clear economic

interpretability, making it difficult to attribute predictive power to economic fundamentals. Some

studies, such as Gu et al. (2020), propose methods to enhance interpretability. Given this concern,

this study employs model-agnostic interpretability techniques, including Shapley values (Lundberg

and Lee, 2017).

We contribute to the growing FX “factor zoo” literature by examining cross-sectional drivers of

currency excess returns. While much work focuses on tradable factors like carry (Lustig et al., 2011)

and momentum (Menkhoff et al., 2012b), recent studies highlight non-tradable risks (Nucera et al.,

2024). This study jointly considers both types and their interactions, offering a more complete view

of the FX risk–return trade-off.

We focus on conditional expected returns, which incorporate current information, unlike un-

conditional historical averages. Following Chernov et al. (2023), who advocates a conditional SDF

approach, we integrate market conditions and currency-specific traits to reflect the timing nature

of FX strategies. Results show that conditional information is essential for forecasting currency

returns.

3. Data

Our input, the predictor set, for each currency pair includes a number of characteristics, and

interactions of each characteristic with global time-series variables.

3.1. Individual characteristic

As per the data used for setting up the individual characteristic for each of 49 currency pairs,

here is all the information, including the characteristic name, the construction approach, and the

data sources.

Currency excess return

Define the spot rate as St and the corresponding one-month forward rate (midquote) as Ft for each

currency pair. The data is from Reuters and WM/Reuters accessed via Datastream and Barclays
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3 DATA 3.1 Individual characteristic

Bank International (BBI). The exchange rate is defined as the number of USD per unit of foreign

currency. Unless otherwise stated, all returns are expressed in log terms. The currency excess

return is derived from purchasing foreign currency in the forward market at time t and selling it in

the spot market at time t+ 1. This return captures the difference between the forward rate set at

t and the realized spot rate at t+ 1. This can be calculated as follows:

rt+1 = log(St+1)− log(Ft),

This is equivalent to the spot exchange rate return minus the forward premium:

rt+1 = (log(St+1)− log(St))− (log(Ft)− log(St)).

The Covered Interest Parity (CIP) condition says the forward premium approximately equals the

interest rate differential:

log(Ft)− log(St) ≃ it − i∗t ,

where it and i∗t are the risk-free rates in the domestic and foreign country respectively, over the

forward contract maturity. If CIP holds, the currency excess return is approximately equal to the

spot exchange rate return plus the interest rate differential relative to the domestic country:

(log(St+1)− log(St)) + (i∗t − it).

Carry

We use log(Sit) − log(Fit), where S and F are the correspondingly spot and one-month forward

exchange rate quotes (Menkhoff et al., 2012a), i and t correspondingly refer to the currency pair

and the month.

Short-term Momentum

We use the currency excess return over the previous month (Menkhoff et al., 2012b). The calculation

is based on spot and forward exchange rate quotes (midquote).

Long-term Momentum

We use the currency excess return over the previous 12 months skipping the last month. Although

long-term momentum in the currency market does not necessarily require skipping the most recent
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month of returns, we adopt this approach to ensure consistency (Asness et al., 2013). Moreover,

momentum returns for currencies are actually stronger when the most recent month is included,

making our results more conservative.

Currency Value

For currencies, the value factor is defined as the change in the real exchange rate over the past five

years, which should be calculated as log(Qt)˘log(Qt − 5), where Q is defined as the real exchange

rate as below (Menkhoff et al., 2017): Qt =
Pt

P ∗
t St

, where S denotes the exchange rate (USD per

unit of foreign currency), P denotes the US price level, and P ∗ denotes the foreign price level.

Consumer Price Index (CPI) data is from IMF International Financial Statistics, except for Taiwan

from National Statistics.

Net Foreign Assets

We use −NFA
GDP following (Della Corte et al., 2016).

Long-term Yields

We use
(
i10yr − iUS

10yr

)
, say, the difference between the foreign country’s 10-year interest rate and

the corresponding rate in the the United States. The calculation uses the interest rates available

on OECD Monthly Monetary and Financial Statistics.

Term Spread

We use (i10yr − i3mo), say, foreign country’s term spread defined as the difference between the

10-year and 3-month rates. The Long (Short)-term interest rates comes from OECD Monthly

Monetary and Financial Statistics.

3.2. Global characteristic

In our study, we construct the global predictor set by referencing the framework established

in Nucera et al. (2024), which details the development of a comprehensive global non-tradable

characteristic set. To enhance the model’s robustness and capture nuanced relationships, We further

expand the characteristic set by incorporating the interactions between seven distinct currency-

level characteristics and a range of global state variables. Specifically, this involves introducing

cross-terms where each currency-specific attribute is interacted with various aggregate time-series

indicators that reflect broader market conditions. As a result, the predictor set is significantly

enriched, encompassing a total of seven primary characteristics for each currency pair alongside their

interaction terms with the global variables. Altogether, this methodology generates a characteristic
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Table 1: Summary Statistics
This table presents the monthly prediction performance at the currency level, comparing
in-sample and out-of-sample correlation values. The data is divided into training, valida-
tion, and testing samples. The model is trained and validated on the training and vali-
dation data, respectively, and then applied to the test data without further adjustment.
The evaluation includes five models: Ordinary Least Squares (OLS), OLS with Huber
loss (OLSH), neural networks (NN) with increasing complexity, from one to eight hid-
den layers, the dimension reduction linear models including Partial Least Squares (PLS)
and Principal Component Regression (PCR), as well as the tree-based models including
Random Forest (RF) and Gradient Boosted Regression Trees (GBRT). Correlation, as
a bounded measure ranging from -1 to +1, quantifies the strength and direction of the
linear relationship between predicted and actual values. A correlation of +1 signifies a
perfect positive linear relationship, where the model’s predictions move in exact propor-
tion to the observed values. Conversely, a correlation of -1 indicates a perfect negative
linear relationship, meaning the model systematically predicts the opposite of the actual
outcomes. A correlation close to zero suggests little to no linear relationship, implying
that the model’s predictions have limited explanatory power for the observed data.

Mean Median Std Skew Min Max Kurtosis
carry 0.034 0.001 0.222 9.495 -1.259 4.728 142.738
stMom 0.034 0.005 0.224 9.277 -1.227 4.728 137.292
ltMom 0.034 0.003 0.212 9.308 -1.204 4.127 135.521
value -0.062 -0.030 0.400 -0.665 -6.265 7.363 37.510
NFA 0.003 0.001 0.033 2.548 -0.509 0.501 103.832
LTY 1.115 0.696 3.042 13.408 -9.031 105.370 353.198
TS 1.008 1.039 2.406 13.220 -29.453 89.950 377.986

set that comprises over 200 distinct baseline signals, thereby ensuring that the model accounts

for both granular currency-level details and macroeconomic influences in a comprehensive and

methodical manner.

4. Methodology

We aim to cross-sectionally predict currency excess returns, denoted as Et(ri,t+n). To achieve

this, we employ machine learning models as functions of predictor variables, denoted as g⋆. The

primary objective here is to explore the power of machine learning tools in predicting currency

excess returns. One comparative approach involves identifying which model can maximize the

out-of-sample explanatory power for realized returns denoted as ri,t+n. For the inputs of the

machine learning model, we use zi,t to represent the predictors. Thus, mathematically, our problem

can be formulated as follows: to estimate the conditional asset pricing equation using machine
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learning Et (ri,t+n) = g⋆ (zi,t) . Here g⋆ (zi,t) represents the linear/nonlinear transformation of the

interactions of the predictors/covariates zi,t depending on the choice of the machine learning model.

Specifically, relating to the standard beta pricing representation of asset pricing, denoted as

Et(ri,t+n) = βi,tγt, we assume that the predictors allow for covariates between currency-specific

characteristics and general conditions. Mathematically, we can represent the predictor as zi,t =

mt × si,t, where mt represents general conditions common to all currencies, and si,t represents

currency-specific characteristics. We discuss the methods and applications of machine learning,

rather than traditionally estimating β and γ. Thus, we do not directly estimate and evaluate β

and γ. One significant advantage of machine learning is its ability to accommodate more flexible

functional forms for g⋆.

4.1. Model specification

Ordinary least squares (OLS)

The regression is:

rit = Xitβit + ϵit,

where rit is the excess return for individual currency pair i at time t (monthly return), Xit represents

the predictors for the same currency pair at time t, βit denotes the coefficients for individual i at time

t, and ϵit represents the error term for individual i at time t. Here, we use pooled Ordinary Least

Squares regression for estimation. Our objective function for estimation is to minimize the sum of

squared residuals across all currencies and time periods. Mathematically, this is an optimization

question:

min
β

N∑
i=1

T∑
t=1

ϵ2it, where ϵit = rit −Xitβit.

For each individual i and time t, we get the βit estimates by minimizing the squared residuals:

βit = argmin
i×t∑
j=1

(rit −Xitβit)
2.

We use the default mean squared error (MSE) as our objective function for optimization. For

the next step, we replace the default error function with the Huber loss function. The Huber loss

function combines the benefits of both squared error and the absolute error. This make it less
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sensitive to outliers. It is helpful for further investigation on the potential improvements in the

model’s predictive performance. Below, we provide the specific set-up for the Huber loss function,

adapted for a pooled OLS setup:

Lδ(ri,t, r̂i,t) =


1
2(ri,t − r̂i,t)

2, if |ri,t − r̂i,t| ≤ δ,

δ|ri,t − r̂i,t| − δ2

2 , if |ri,t − r̂i,t| > δ.

ri,t is the actual return for unit i at time t, r̂i,t refers to the predicted return for unit i at time

t, δ is a threshold parameter that determines the transition point from quadratic to linear loss.

This set-up ensures residuals are penalized differently. Specifically, the smaller residuals are

penalized heavily using the second moments, while the larger residuals are subject to linear penal-

ties. This design is particularly effective in reducing the influence of outliers, thereby enhancing

the model’s robustness and overall predictive stability. The experiments provide insights into how

different error functions impact the performance and generalizability of the pooled OLS model.

Neural networks (NN)

As neural nets are highly parameterised, it is easy to overfit. We use the regularization methods

discussed in Gu et al. (2020), say learning rate shrinkage (incorporated in Adam solver) and early

stoppings. Besides, another requirement from so many parameters is more data. Therefore, if one

uses tiny dataset to have a taste of neural nets, it is very likely that it underperforms simpler

models.

The architecture of a neural network—composed of an input layer, hidden layers, and an output

layer—defines how the data flows and how the model extracts information from this data. The

way the network extracts patterns from the data is influenced by its depth and the selection of

activation functions, both of which affect its capacity to manage complex tasks. The fully connected

nature of neural networks allows each neuron to influence the subsequent layers, enabling the

learning of hierarchical patterns. This general architecture can be adapted for various tasks, such

as classification, regression, and even more complex applications like image recognition or natural

language processing. For illustration, Figure 1 shows a NN model with 5 layers fully connected .

In a neural network, the output is computed in a sequential, layer-wise manner, where each

layer transforms its input into an output that serves as the input for the subsequent layer. Let us

denote the input to the k-th layer as hk−1, and its output as hk. Mathematically, the computation
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Figure 1: A deep neural network architecture (Pakkanen, 2021)

within the k-th layer can be expressed as (Pakkanen, 2021):

hk = σ(Wkhk−1 + bk),

where Wk is the weight matrix associated with the k-th layer, representing the trainable parameters

that determine the strength and direction of the connections between neurons in the (k−1)-th and

k-th layers; bk is the bias vector for the k-th layer, another set of trainable parameters that allow

the model to shift the activation function’s response and prevent it from being constrained around

zero; σ(·) is the activation function, which introduces non-linearity to the model, enabling the

network to learn complex, non-linear patterns in the data. Without non-linear activation functions,

the entire neural network would collapse to a linear model, regardless of the number of layers or

neurons. Non-linear functions enable the model to approximate complicated mappings from inputs

to outputs, making neural networks powerful for tasks such as image recognition, natural language

processing, and more. For example: the ReLU function σ(x) = max(0, x) is widely used due to its

simplicity and efficiency in mitigating the vanishing gradient problem during training; the sigmoid

function σ(x) = 1
1+e−x maps inputs to a range between 0 and 1, which is useful in probabilistic

interpretation tasks; the tanh function σ(x) = ex−e−x

ex+e−x maps inputs to a range between -1 and 1,
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centering outputs around zero. The forward computation proceeds layer by layer, starting from the

input layer and propagating through each hidden layer. The final output of the network, denoted

as ŷ, is computed in the last layer (the L-th layer) as:

ŷ = WLhL−1 + bL,

where WL and bL are the weight matrix and bias vector for the final layer, and hL−1 is the output

of the last hidden layer.

In this context, the weights Wk and biases bk are the parameters of the neural network. These

are learned during training by minimizing a predefined loss function, such as mean squared error,

depending on the nature of the task (e.g., regression or classification). Optimization algorithms,

such as stochastic gradient descent (SGD) or its variants (e.g., Adam), are employed to iteratively

adjust Wk and bk in the direction that reduces the loss. In contrast, the hyperparameters refer to

choices made before training that are not directly learned from the data. These include the layer

count (L), neuron distribution per layer, activation function σ(·), learning rate, and regularization

methods (e.g., dropout).

From the perspective of our predictive framework, we can interpret this neural network structure

in relation to the asset pricing representation introduced in Section 4. Specifically, the first layer’s

input h1 corresponds directly to our predictor variables zi,t, which are constructed as the product

of market-wide economic conditions mt and currency-specific characteristics si,t,

zi,t = mt × si,t.

In this context, h1 is the fundamental set of inputs capturing both global and currency-specific

influences. As the data propagates through multiple layers, each transformation hk = σ(Wkhk−1+

bk) represents a combination of linear transformations (determined by Wk and bk) and non-

linear activations (through σ(·)). This recursive composition allows the model to extract complex

interactions and higher-order relationships from the predictors. Finally, the last layer’s output

hn corresponds to our function g∗(zi,t), which represents the predictive mapping of our machine

learning model:

Et(ri,t+n) = g∗(zi,t).
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Thus, we can conceptualize the entire neural network as an iterative refinement process, where

each layer progressively transforms the predictor variables to capture intricate structures and de-

pendencies, ultimately leading to the best estimation of conditional expected returns. The presence

of multiple layers enables the model to approximate non-linear dependencies in asset pricing. The

asset return prediction Et(ri,t+n) is obtained through a deep hierarchical structure refining the

interactions between zi,t and the factor loadings embedded within the network’s weight parameters.

Dimension reduction: Principal Components regression (PCR) and Partial least

squares (PLS)

Our setting is characterized by its high dimensionality of the predictor set, which is especially

prevalent in asset pricing (Nagel, 2021). In particular, we deal with a large number of predictors,

while the test assets’ cross-sectional dimension—in this case, currencies—is modest. There may be

a high degree of correlation between variables, causing the model to be unstable. Multicollinearity

can make the estimation of regression coefficients inaccurate or even uninterpretable. Furthermore,

the risk of overfitting arises because of the small number of data observations in comparison to

the size of the predictor set. When a model gets overly complicated, it overfits and captures noise

instead of important signals, which results in poor generalization on fresh data. High-dimensional

data leads to a dramatic increase in computational costs, especially in matrix operations. For

example, computing the inverse or eigenvalue decomposition of a high-dimensional matrix can be

very time-consuming.

PCR (Massy, 1965) can be understood as a combination of two parts as below. In the first part,

we apply principal component analysis to extract the most significant componets in the predictor

set. In the second part, we regress returns on these principal components. In the first step, we

measure the significance of factors mainly by how well they can capture variance in the whole

predictor set. Compared with OLS, this method simplifies the model while retaining the linear

relationship, and reduces the risk of model instability problems such as overfitting. Compared

with neural network, this method also similarly puts different weights on the predictors to retain

the most effective information, but here we still only consider the linear relationship between the

predictor and the returns.

Another dimension reduction method is PLS (Wold, 1966). The main difference between it

and PCR is that the method of weighting predictors is different. PCR’s weighting on principle
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components is based on the predictor set itself, which reduces dimensionality while retaining most

variance in the predictor set. But the drawback is that some high-variance components may be

irrelevant for predicting the returns. Instead, PLS extends PCR by selecting components that

maximize the covariance between the predictor set and the returns, ensuring that the reduced

feature space is optimized for prediction.

Both PCR and PLS provide solutions to high-dimensional regression problems through dimen-

sionality reduction. The focus of PCR is to maximize variance of the predicto set while PLS

directly optimizes prediction. The choice between PCR and PLS depends on whether feature vari-

ance (PCR) or predictive power (PLS) is more important in a given application. PLS may be more

efficient than PCR when the predictor set and the returns are strongly correlated.

Tree-based models: Random forest (RF) and Gradient Boosted Regression Trees

(GBRT)

Tree-based models are a class of machine learning algorithms valued for their interpretability, flexi-

bility, and capacity to model nonlinear relationships. These models recursively partition the feature

space into regions associated with leaf nodes, using splitting rules that optimize target homogene-

ity. The fundamental unit, the decision tree, segments data via feature-based rules and assigns

predictions at the leaves. As shown in Figure 2, a decision tree comprises nodes, branches, and

leaves: nodes represent decision points, branches indicate outcomes, and leaves provide final pre-

dictions—either class labels or continuous values. Tree construction involves selecting features and

split points that maximize the purity of resulting subsets, commonly measured by Gini impurity

for classification and mean squared error (MSE) for regression (Breiman, 2001). Although deci-

sion trees are intuitive and powerful, they are prone to overfitting. Despite their interpretability,

decision trees are prone to overfitting, particularly when excessively deep. This drawback moti-

vates ensemble approaches such as Random Forests (RF) and Gradient Boosted Regression Trees

(GBRT), which aggregate multiple trees to enhance predictive accuracy and generalization. Com-

pared to neural networks, tree-based models provide competitive nonlinear modeling with greater

interpretability.

Random Forest (RF) (Breiman, 2001) is an ensemble learning method. It builds up multiple

decision trees during training and averages their predictions to improve accuracy and reduce over-

fitting. The key idea is to introduce randomness through bootstrapped sampling of training data
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4 METHODOLOGY 4.1 Model specification

Figure 2: A tree-based model (Andrés, 2023)

(Bagging) and random feature selection at each split. This decorrelates individual trees and leads

to a robust and stable model.

Gradient Boosted Regression Trees (GBRT) (Friedman, 2001) is an ensemble learning approach

based on decision trees. However, it differs fundamentally from Random Forest. Instead of training

trees separately, GBRT sets up trees in a sequential manner, with each tree correcting the mistakes

of its predecessors by fitting the preceding trees’ residuals. Although iterative optimization enhances

prediction accuracy, it can lead to overfitting if not appropriately regularized.

Gradient Boosting Regression Tree (GBRT) and Random Forest (RF) differ in performance

characteristics and training schemes. Random Forest adopts self aggregation (bagging), allowing

each tree to be trained independently in parallel, while GBRT is trained sequentially, where each

tree attempts to correct the errors of the previous tree (i.e. boosting). Due to this fundamental dif-

ference, random forests are typically more robust to noise and capable of handling high-dimensional

sparse information. GBRT can provide higher prediction accuracy with reasonable adjustments,

but it is also more prone to overfitting. Although GBRT performs particularly well on structured

data with clear patterns, careful adjustment of hyperparameters such as tree depth and learning

rate is necessary to avoid overfitting. Although random forests provide a stable and well generalized

method, the iterative loss function minimization mechanism of GBRT makes it a powerful tool for

optimizing prediction accuracy.

Previous studies have primarily employed linear models such as ordinary least squares (OLS)

and robust variants (e.g., OLS with Huber loss) to address outliers. Dimensionality reduction
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techniques like principal component regression (PCR) and partial least squares (PLS) are used to

mitigate multicollinearity and high dimensionality. While these models are well-suited for linear

relationships and offer interpretability through coefficient estimates, they often fail to capture non-

linear interactions present in real-world data, limiting their predictive performance. In contrast,

neural networks (NN) are capable of learning highly flexible, nonlinear mappings and are effective

in extracting deep feature representations, particularly for unstructured data. However, their lack

of interpretability—the so-called “black box" problem—poses challenges in domains such as finance

and healthcare, where transparency is essential (Yuan et al., 2024). Tree-based models offer a

middle ground by capturing nonlinear patterns while retaining a degree of interpretability (Hastie,

2009). Decision trees, the basis for Random Forests (RF) and Gradient Boosted Regression Trees

(GBRT), generate rule-based structures that are easily visualized and allow for feature importance

analysis (Breiman, 2001). Unlike linear models, they automatically account for interactions, and

unlike neural networks, they perform well on heterogeneous, structured data with modest data and

computational requirements (James et al., 2013). In sum, while linear models remain important

for inference and neural networks excel with complex, high-dimensional inputs, tree-based methods

provide a robust and interpretable alternative for predictive modeling on structured data.

4.2. Model evaluation

Correlation and prediction error

Model performance is primarily evaluated using the mean squared error (MSE), defined as the

squared difference between actual and predicted returns. Minimizing MSE aligns with the objective

of improving predictive accuracy by reducing deviations from observed data. Additionally, we report

the correlation coefficient between predictions and observations as a bounded metric to quantify

the strength of their linear relationship.

By minimizing the sqaured error term, we aim to reduce the model’s prediction inaccuracies and

enhance its ability to generalize effectively across both in-sample and out-of-sample data. As seen

from the formula, in our scenario, the objective of minimising the squared error term is equivalent

to maximising R2.

Diebold-Mariano (DM) test implementation

In order to compare and analyze the prediction models and evaluate whether there is a significant

difference in prediction accuracy between the two models, we refer to Gu et al. (2020) to implement
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the DM test. This test is based on the evaluation of prediction error over time: e(1)i,t+1 = ri,t+1 −

r̂
(1)
i,t+1, e

(2)
i,t+1 = ri,t+1− r̂

(2)
i,t+1, where ri,t+1 is the realized target value, currency return, while r̂

(1)
i,t+1

and r̂
(2)
i,t+1 are the predicted values generated by Model 1 and Model 2, respectively. The test is

constructed around a loss function, here chosen to be the squared error, L(e) = e2, to quantify

the accuracy of each model’s predictions. A key adaptation in the present study involves focusing

not on individual prediction errors but on the cross-sectional average loss differential at each time

point. The cross-sectional mean loss differential is computed as:

d12,t+1 =
1

n3,t+1

n3,t+1∑
i=1

[
L(e

(1)
i,t+1)− L(e

(2)
i,t+1)

]
,

where n3,t+1 denotes the number of observations in the cross-sectional sample at time t+ 1.

The test statistic, DM12, is calculated using the time series of cross-sectional loss differentials

and is defined as:

DM12 =
d̄12
σ̂d12

,

where d̄12 is the time-averaged mean loss differential given by:

d̄12 =
1

T

T∑
t=1

d12,t,

and σ̂d12 is its standard error, estimated using the Newey-West approach to account for poten-

tial autocorrelation. Specifically, the Newey-West estimator incorporates both contemporaneous

variance and autocovariances (Newey and West, 1987), and is expressed as:

σ̂2
d12 = γ̂(0) + 2

h−1∑
k=1

γ̂(k),

where the autocovariance at lag k is given by:

γ̂(k) =
1

T

T∑
t=k+1

(
d12,t − d̄12

) (
d12,t−k − d̄12

)
,

and h is the bandwidth parameter controlling the maximum lag length.

Under the null hypothesis H0, which asserts that the two models have equivalent predictive

accuracy on average (E[d12,t] = 0), the test statistic DM12 asymptotically follows a standard normal
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distribution, i.e., DM12 ∼ N (0, 1). The null hypothesis is rejected at a significance level α if

the absolute value of the test statistic exceeds the critical value Zα/2, where Zα/2 represents the

(1− α/2)-quantile of the standard normal distribution.

This cross-sectional adaptation of the Diebold-Mariano test is particularly advantageous in fi-

nancial applications where prediction errors exhibit strong dependencies across assets due to shared

economic and market factors. By focusing on aggregated cross-sectional measures of model perfor-

mance, this approach reduces the influence of idiosyncratic noise while capturing the broader trends

in prediction accuracy. Newey-West standard errors are what we actually utilize. This ensures the

test’s validity even when autocorrelation is present.

5. Empirical results

Based on the temporal order, we divide the dataset into three separate subsets: test, validation,

and training. The model is developed using the training subset. Its parameters are adjusted using

the validation subset. The test subset is subjected to the trained model, which is intact follow-

ing training. This structure serves to ensure a thorough evaluation of the model’s generalization

capacity by assessing its predictive performance on data that hasn’t been seen before.

5.1. Correlation

Table 2 reports the correlation coefficients between predicted and actual values for each model

over a one-month prediction horizon, covering both in-sample and out-of-sample periods. As a

standardized and interpretable metric, correlation measures the linear alignment between forecasts

and realized outcomes. While it does not capture nonlinearity, it remains a widely used criterion

for model evaluation. Among the models considered, OLS with Huber and shallow neural networks

exhibit relatively strong correlations in both in-sample and out-of-sample settings. Table 2 shows a

weaker overall correlation for long-term forecasts (e.g., 12 months) than for short-term predictions

(e.g., 1 month).

Tree-based models such as Random Forest (RF) and Gradient Boosted Regression Trees (GBRT)

exhibit strong in-sample performance, with GBRT achieving correlations as high as 0.9. However,

their out-of-sample correlations are substantially lower, indicating limited generalization and po-

tential overfitting. GBRT’s boosting framework allows for highly accurate in-sample fitting by

sequentially reducing residuals, but it is prone to overfitting, especially with small datasets. In
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contrast, RF leverages the bagging strategy—training multiple independent trees on bootstrapped

samples—which improves robustness and typically yields higher out-of-sample correlation than

GBRT.

Linear models (e.g., OLS, OLS with Huber loss, PLS, and PCR) generally perform well due to

the approximately linear relationships present in many financial variables, and they remain widely

used in asset pricing and macroeconomic forecasting. For example, the linear regression frame-

work underpins the Fama-French three-factor model Fama and French (1993) and the Carhart

four-factor model (Carhart, 1997). While OLS shows high in-sample correlation, its out-of-sample

performance is weaker, reflecting limited generalizability. PLS and PCR, which reduce dimen-

sionality by extracting latent components, are more robust in high-dimensional settings and yield

superior out-of-sample correlations relative to OLS, mitigating overfitting to some extent.

In particular, the out-of-sample correlation of shallow networks is even negative, but the per-

formance of somewhat deeper networks has improved but is still inferior to RF. Neural network

models exhibit more instability. There might be a number of reasons for this. The model may not

be able to discover consistent patterns because, first of all, neural networks typically need a lot of

data to train efficiently, and financial market data is frequently sparse and extremely noisy. Second,

the gradient descent technique is used in the neural network’s optimization process. When dealing

with high-noise input, the gradient update may become unstable or even fall into a local optimum.

Furthermore, the choice of neural network hyperparameters significantly affects the outcome. The

model’s ultimate performance may be impacted by the number of layers, activation functions, reg-

ularization techniques, etc. Underfitting or overfitting may occur from improper hyperparameter

adjustment.

It should be noted that as a non-linear model as well the tree-based models also have a very

high correlation. One explanation might be that tree-based models are more robust to noise and

more adaptable when handling high-dimensional, nonlinear characteristics. Specifically, RF chooses

features and samples at random, which increases its robustness in out-of-sample assessment. In

contrast, GBRT’s boosting process allows it to learn more intricate patterns, but it also makes it

more susceptible to overfitting. In reference to this field of study, Gu et al. (2020) examined how

well several machine learning models performed in asset pricing. In several instances, particularly

when forecasting asset returns, they discovered that tree-based techniques outperformed neural
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networks in terms of stability.

Finding a balance between neural networks and tree-based models may be necessary from the

standpoint of practical application if the objective is to get more reliable out-of-sample predic-

tion performance. To lessen overfitting, we may, for instance, consider increasing regularization

throughout GBRT training phase or lowering the tree’s maximum depth. In order to increase the

neural network’s capacity for generalization, one may also attempt to better tune its hyperparam-

eters, such as by changing the batch size, learning rate, dropout rate, etc. Furthermore, as neural

networks demand more data to train, data augmentation techniques like building more features

or generating more samples using rolling window approaches might be used in the future to boost

the model’s performance. In the end, selecting the best model necessitates careful evaluation of

the model’s stability, interpretability, and resilience under various market situations in addition to

in-sample or out-of-sample correlation.
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Table 2: Monthly in-sample and out-of-sample currency-level
prediction performance (Correlation)

This table presents the monthly prediction performance at the currency level, comparing in-sample and
out-of-sample correlation values. The data is divided into training, validation, and testing samples. The
model is trained and validated on the training and validation data, respectively, and then applied to
the test data without further adjustment. The evaluation includes five models: Ordinary Least Squares
(OLS), OLS with Huber loss (OLSH), neural networks (NN) with increasing complexity, from one to
eight hidden layers, the dimension reduction linear models including Partial Least Squares (PLS) and
Principal Component Regression (PCR), as well as the tree-based models including Random Forest (RF)
and Gradient Boosted Regression Trees (GBRT). Correlation, as a bounded measure ranging from -1 to
+1, quantifies the strength and direction of the linear relationship between predicted and actual values.
A correlation of +1 signifies a perfect positive linear relationship, where the model’s predictions move
in exact proportion to the observed values. Conversely, a correlation of -1 indicates a perfect negative
linear relationship, meaning the model systematically predicts the opposite of the actual outcomes. A
correlation close to zero suggests little to no linear relationship, implying that the model’s predictions
have limited explanatory power for the observed data.

Prediction horizon: one month
Model In-Sample Out-of-Sample
OLS 0.977 -0.142
OLS+Huber (OLSH) 0.973 0.926
Neural Network with One Hidden Layer 0.759 0.298
Neural Network with Two Hidden Layers 0.807 0.888
Neural Network with Three Hidden Layers 0.437 0.253
Neural Network with Four Hidden Layers 0.963 0.802
Neural Network with Five Hidden Layers 0.270 0.063
Neural Network with Six Hidden Layers 0.938 0.481
Neural Network with Seven Hidden Layers 0.958 0.236
Neural Network with Eight Hidden Layers 0.781 0.882
Partial Least Squares (PLS) 0.977 0.902
Principal Component Regression (PCR) 0.932 0.903
Random Forest (RF) 0.974 0.907
Gradient Boosted Regression Trees (GBRT) 0.993 0.509

Prediction horizon: twelve months
Model In-Sample Out-of-Sample
OLS 0.770 -0.472
OLS+Huber (OLSH) 0.708 0.718
Neural Network with One Hidden Layer 0.089 -0.165
Neural Network with Two Hidden Layers 0.635 -0.015
Neural Network with Three Hidden Layers 0.570 0.458
Neural Network with Four Hidden Layers 0.661 0.564
Neural Network with Five Hidden Layers 0.385 -0.167
Neural Network with Six Hidden Layers 0.617 0.328
Neural Network with Seven Hidden Layers 0.699 0.427
Neural Network with Eight Hidden Layers 0.667 -0.052
Partial Least Squares (PLS) 0.656 0.667
Principal Component Regression (PCR) 0.646 0.652
Random Forest (RF) 0.848 0.668
Gradient Boosted Regression Trees (GBRT) 0.962 0.073
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5.2. Prediction error

In Table 3, we use Mean Squared Error (MSE) as a statistic to help assess prediction accuracy

and examine the monthly in-sample and out-of-sample forecast performance of several forecast

models. This research shows the benefits and drawbacks of various optimization techniques in

addition to assisting in understanding the generalization potential of various models. We discovered

the followings from the experimental data that need discussion.

The model’s low out-of-sample generalization performance can be attributed to a number of

causes. Due to the substantial noise and non-stationarity of financial time series data, many models

may fit training data well but perform badly on new data sets. This implies that overfitting, or

the model’s overlearning of particular patterns in the data during training, may be the cause of

the model’s instability in subsequent data. Furthermore, certain particular variables may lose their

predictive power on out-of-sample data due to dynamic changes in the market environment, which

calls into question the model’s stability in real-world applications.

Second, forecasts that are twelve months in length perform noticeably worse than those that are

one month in length. Financial forecasting tasks frequently exhibit this tendency, which might be

caused by a number of factors: First, financial markets can be predicted in the short term, but it

is more challenging to anticipate in the long run. While long-term models must contend with more

macroeconomic shifts, uncertainties, and structural disruptions, which increases the likelihood of

long-term forecast errors, short-term models can use current market data to spot short-term trends.

Furthermore, conventional modeling techniques often work better over shorter time periods, but

noise and external shocks can lead to model failure over longer time periods.

Regarding model type, we found that out-of-sample, nonlinear models—such as neural networks

and tree-based techniques—generally perform better than linear models—such as OLS regression

and dimensionality reduction techniques. The benefits of nonlinear models in managing intricate

data structures and nonlinear interactions might be the cause of this development. The connections

between variables in financial markets, on the other hand, frequently exhibit nonlinear properties,

whereas linear models typically assume linear interactions between variables. By using intricate

functional mapping relationships, neural networks and tree-based techniques can better anticipate

outcomes by capturing these nonlinear features. Though in-sample performance may not be evident,

this advantage is mostly seen in out-of-sample predictions, suggesting that these models may exhibit
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more robust adaptive skills during training but may still exhibit unstable performance in the event

of overfitting.

The OLS regression model’s Huber error function, also known as Huber loss, handles outliers

better than other linear models. In order to lessen the effect of outliers on model parameter

estimation, the Huber loss function processes the error piecewise, making it comparable to the

mean square error (MSE) when the error is little and to the absolute error (MAE) when the error

is big. As a result, even in the face of dramatic market fluctuations, the model remains resilient

and retains its strong prediction powers. The contribution of dimension reduction approaches to

prediction performance is limited. The model may not be able to fully exploit all possible prediction

signals as a result of the significant information loss that occurs throughout the dimensionality

reduction procedure. Furthermore, while the interaction between variables in financial markets

can be quite complicated, dimensionality reduction techniques often presume that the data has

a low-dimensional structure. while a result, direct dimensionality reduction may lose important

information, which could diminish forecast accuracy.

Subsequent examination of the nonlinear model revealed that the neural network model’s predic-

tion accuracy did not systematically increase as the number of layers increased. This demonstrates

that in a certain data setting, more sophisticated models may result in overfitting rather than per-

formance gains. While deep neural networks can improve the model’s expressiveness, they may also

learn the noise in the data rather than valuable prediction signals if there is insufficient training

data or insufficient effective information in the data. Furthermore, neural networks may be very

dependent on training data in out-of-sample prediction tasks, which might lead to inadequate gen-

eralization skills. To prevent overfitting issues, complexity and data size must be considered while

selecting a neural network structure.

Likewise, there is no discernible pattern of variation in prediction performance across neural

networks and tree-based models. This could have to do with how the two models differ and how

they are similar. By using a splitting rule-based decision-making process that automatically chooses

important characteristics and manages nonlinear interactions, tree models—such as random forests

and gradient boosted trees—model nonlinear connections. For neural networks to identify patterns

in data, weight optimization is essential. The two may perform similarly in real-world applica-

tions, despite their theoretically larger expressive capacities. Furthermore, when working with
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high-dimensional data, tree models could be more stable, whereas neural networks need a lot of

regularization and parameter adjustment to avoid overfitting. As a result, both neural networks

and tree-based approaches have benefits, and how well they perform varies on the hyperparameter

settings and the properties of the data.

In conclusion, this study’s experimental findings highlight a few critical elements that influence

the model’s capacity for prediction. First, out-of-sample generalization skills, particularly long-

term prediction errors, are often poor due to the significant noise and non-stationarity of financial

markets. Second, when it comes to forecasting out-of-sample, nonlinear models perform better than

linear models, suggesting that there could be significant nonlinear correlations in financial markets.

In addition, the OLS model’s resilience is increased by using the Huber loss function, although

dimensionality reduction techniques have a limited impact. Lastly, there is no discernible improve-

ment in prediction accuracy from neural network or tree-based approaches, suggesting that rather

than depending only on more intricate model structures, the model selection procedure should be

tailored to certain data features. To increase the model’s resilience and capacity for generalization,

future studies might investigate various regularization techniques, feature engineering approaches,

and ensemble learning techniques.
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Table 3: Monthly in-sample and out-of-sample currency-level
prediction performance (mean squared error)

This table presents the monthly prediction performance at the currency level, comparing in-sample and
out-of-sample, measured by the mean squared error. In this scheme, the data is divided into training,
validation, and testing samples. The model is trained and validated on the training and validation data,
respectively, and then applied to the test data without further adjustment. The evaluation includes
five models: Ordinary Least Squares (OLS), which minimizes squared errors but shows poor out-of-
sample performance; OLS combined with the Huber loss function (OLS+Huber), which is more robust
to outliers and performs better out-of-sample; neural networks with increasing complexity, featuring one
to eight hidden layers; the dimension reduction linear models including Partial Least Squares (PLS) and
Principal Component Regression (PCR); and the tree-based models including Random Forest (RF) and
Gradient Boosted Regression Trees (GBRT). A smaller mean squared error indicates improved predictive
performance. Year of 2010 is the split between the in-sample and out-of-sample.

Prediction horizon: one month
Model In-sample Out-of-sample
OLS 0.004 305.820
OLS+Huber (OLSH) 0.005 4.838
Neural Network with One Hidden Layer (NN1) 0.161 1.990
Neural Network with Two Hidden Layers (NN2) 0.054 1.063
Neural Network with Three Hidden Layers (NN3) 0.080 0.941
Neural Network with Four Hidden Layers (NN4) 0.011 11.331
Neural Network with Five Hidden Layers (NN5) 0.251 3.108
Neural Network with Six Hidden Layers (NN6) 0.085 0.601
Neural Network with Seven Hidden Layers (NN7) 0.051 0.510
Neural Network with Eight Hidden Layers (NN8) 0.045 12.497
Partial Least Squares (PLS) 0.004 16.787
Principal Component Regression (PCR) 0.012 17.265
Random Forest (RF) 0.005 11.058
Gradient Boosted Regression Trees (GBRT) 0.001 6.382

Prediction horizon: twelve months
In-sample Out-of-sample

OLS 0.038 1237.424
OLS+Huber (OLSH) 0.048 4.039
Neural Network with One Hidden Layer (NN1) 0.658 11.591
Neural Network with Two Hidden Layers (NN2) 0.061 0.745
Neural Network with Three Hidden Layers (NN3) 0.125 4.947
Neural Network with Four Hidden Layers (NN4) 0.110 7.072
Neural Network with Five Hidden Layers (NN5) 0.084 0.732
Neural Network with Six Hidden Layers (NN6) 0.061 1.842
Neural Network with Seven Hidden Layers (NN7) 0.071 1.534
Neural Network with Eight Hidden Layers (NN8) 0.081 0.260
Partial Least Squares (PLS) 0.053 9.607
Principal Component Regression (PCR) 0.054 8.716
Random Forest (RF) 0.028 9.713
Gradient Boosted Regression Trees (GBRT) 0.007 1.052
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5.3. Diebold-Mariano (DM) test

From Table 4, the findings of this study’s Diebold-Mariano (DM) test demonstrate that neural

networks (NN) outperform linear models and random walk (RW) models statistically substantially

across all prediction horizons. The neural network’s out-of-sample performance is much better

than that of the random walk (RW), in addition to being superior than the OLS linear regression

model in terms of predicting ability. Research on predictability of the exchange rate over time has

long held the view that RW, a straightforward model without any parameters, is even superior to

conventional econometric models.

The random walk (RW) is still a more reliable baseline model, even if the neural network model

did the best in this investigation. RW fared better than the linear regression model. For instance,

RW is much better than OLS-Huber and ranks second only to NN7 in the one-month prediction

test, while it is significantly better than OLS-Huber and ranks second only to NN8 in the twelve-

month prediction job. This demonstrates that RW is still a powerful comparison benchmark, even

though advanced machine learning techniques can offer additional predictive benefits.

The influence of the number of neural network layers on the predictive capacity was also demon-

strated by the DM test results. Overall, as the number of hidden layers in the neural network rises,

so does the prediction accuracy. NN7 with seven hidden layers performed best in the one-month

prediction task, and NN8 with eight hidden layers performed best in the twelve-month prediction

challenge. This implies that a neural network’s forecasting capacity is frequently improved by

deepening it, since deeper networks are better able to extract latent characteristics from the market

and learn more intricate nonlinear patterns. It should be highlighted, nevertheless, that although

adding more layers might enhance the model’s expressive capabilities, going overboard with the

network depth can raise computational expenses and result in overfitting issues when there is not

enough data. Instead of mindlessly adding more layers, actual applications require that the neural

network’s depth be modified based on the particular prediction goal.

Furthermore, the DM test results demonstrate that the more successful conventional models

vary depending on the prediction horizon. OLS-Huber is the model that outperforms NN7 and RW

in the one-month prediction challenge. By adding the Huber error function, the model becomes

more resilient to outliers and outperforms conventional OLS in short-term forecasting. Gradient

Boosting Tree (GBRT), rather than OLS-Huber, is the model that performs better in the twelve-
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month prediction challenge. The benefits of tree-based models in managing high-dimensional data

and long-term nonlinear patterns may be connected to GBRT’s better long-term forecasting ability.

It demonstrates that rather than merely assuming that a particular model performs optimally across

all forecasting jobs, model selection in financial forecasting activities must be optimized in tandem

with the forecast’s time span.

When taken together, the study’s DM test findings demonstrate that the neural network model

beats the random walk and linear regression models by a wide margin and performs ideally in all

prediction tasks. This research suggests that deep learning techniques may have more applica-

tion potential in financial prediction, which somewhat contradicts conventional conclusions in the

literature. However, the random walk model continues to be a strong baseline, surpassing linear

regression on a number of tasks and coming in second only behind neural networks. Furthermore,

as the number of layers in neural networks rises, their predictive power often improves as well. How-

ever, in order to avoid overfitting, the complexity must be kept under control. The best conventional

models vary depending on the predicted timeframe. In short-term prediction, the OLS-Huber error

function performs better, while in long-term prediction, the gradient boosting tree (GBRT) offers

more benefits. These findings suggest that choosing a model cannot be done just by relying on one

technique; rather, it must be improved in tandem with certain prediction tasks. However, there is

always room for improvement in deep learning techniques, particularly in terms of how to better

explain their predictive power, enhance generalization performance, and lower computing costs.
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Table 4: Comparison of monthly out-of-sample prediction using
Diebold-Mariano tests

This table presents the results of pairwise Diebold-Mariano (DM) test statistics comparing the out-of-sample
predictive performance of currency-level forecasting models. We cover the linear models (OLS, OH, PLS, PCR),
neural networks (NN), and tree-based models (RF, GBRT). Each cell in the table shows the DM test statistic
calculated based on the null hypothesis that the prediction accuracy (measured by mean squared error) of the row
model is equal to that of the column model. A negative test statistic indicates that the column model exhibits
lower mean squared error and thus outperforms the row model in prediction accuracy. It should be noted that
all entries in the table are statistically significant at the 1% level, providing robust evidence to reject the null
hypothesis.

Prediction horizon: one month
OLS OH NN1 NN2 NN3 NN4 NN5 NN6 NN7 NN8 RW PLS PCR RF GBRT

OLS
OH 110.529
NN1 111.732 131.802
NN2 111.915 458.658 47.189
NN3 112.047 314.771 50.338 14.063
NN4 108.251 -421.581 -560.319 -618.980 -548.148
NN5 112.758 9.279 -6.293 -11.057 -11.795 45.643
NN6 112.073 560.430 68.446 169.375 35.279 622.805 13.533
NN7 112.117 510.090 70.515 180.878 46.767 592.591 14.079 31.881
NN8 107.755 -716.324 -415.780 -771.961 -711.725 -65.741 -50.348 -784.090 -803.396
RW 111.924 168.174 33.871 2.413 -3.091 386.856 11.251 -19.084 -23.182 443.068
PLS 106.153 -987.048 -533.418 -866.245 -815.889 -271.681 -72.748 -911.933 -895.971 -311.563 -564.561
PCR 105.927 -1244.014 -645.902 -1067.612 -897.877 -419.061 -76.107 -1119.432 -1049.792 -338.824 -622.056 -36.961
RF 108.239 -888.163 -422.316 -1033.643 -794.797 19.518 -43.001 -1034.906 -1021.469 195.709 -429.803 408.263 578.253
GBRT 109.934 -107.618 -193.234 -433.159 -342.050 259.329 -17.673 -457.364 -459.290 358.207 -216.808 490.318 604.009 369.411

Prediction horizon: twelve months
OLS OH NN1 NN2 NN3 NN4 NN5 NN6 NN7 NN8 RW PLS PCR RF GBRT

OLS
OH 48.099
NN1 47.791 -156.034
NN2 48.231 32.461 86.744
NN3 48.065 -66.517 117.467 -45.748
NN4 47.977 -239.051 85.230 -67.450 -183.700
NN5 48.240 321.802 222.320 0.130 240.333 342.890
NN6 48.189 216.811 186.067 -11.152 272.438 461.066 -92.521
NN7 48.202 351.743 210.869 -7.815 222.391 401.714 -107.960 31.028
NN8 48.261 296.418 225.705 4.718 251.562 347.415 54.364 116.952 118.377
RW 48.228 125.192 199.330 -2.468 143.270 214.979 -11.897 33.872 22.566 -30.983
PLS 47.882 -804.070 40.800 -86.462 -326.390 -187.675 -810.698 -716.635 -886.494 -659.025 -345.359
PCR 47.919 -695.873 57.315 -77.639 -273.078 -120.291 -768.385 -684.602 -768.410 -630.807 -312.716 256.320
RF 47.875 -688.008 37.422 -87.169 -307.935 -170.573 -636.354 -610.994 -670.848 -589.393 -330.219 -11.141 -108.792
GBRT 48.227 315.541 210.194 -3.023 251.583 350.192 -87.603 73.150 64.099 -90.857 -2.138 854.281 842.061 656.384
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6 ECONOMIC PERFORMANCE

6. Economic performance

In the next stage of the analysis, we construct a new set of portfolios specifically designed to

capitalize on the return forecasts generated by machine learning models. At the end of each month,

we compute one-month-ahead out-of-sample return predictions for each forecasting method. We

then use these forecasts to divide equities into five quintiles according to the predicted returns that

each model suggests. Since our forecasting techniques are trained to minimize equally weighted

prediction errors, we use equal-weighting to create portfolios in order to ensure consistency with

our statistical framework (Gu et al., 2020). This decision eliminates the need for further portfolio

optimization considerations while enabling a more straightforward evaluation of forecast quality.

Lastly, we employ a zero-net-investment strategy, which involves rebalancing the portfolio at the

beginning of each month and taking long positions in stocks within the quintile with the highest

anticipated return (quintile 5) and short positions within the quintile with the lowest predicted

return (quintile 1). The performance metrics of these portfolios are shown. It appears that some

machine learning models produce predictions that are negatively linked with realized returns since

the realized returns do not always show a strictly monotonic connection with the projected returns

from each model. It suggests that creating an ideal trading strategy may require more than just

forecast rankings.

First, the best models for various prediction periods differ when viewed from the standpoint

of economic value of predictability across models. With the greatest annualized Sharpe ratio of

1.103 under the one-month prediction horizon, NN7 demonstrate higher economic value in short-

term trading. NN3 outperformed all other models with an annualized Sharpe ratio of 1.476 over

the course of the twelve-month prediction horizon. It demonstrates that the best neural network

architectures for short-term and long-term predictions differ significantly. More sophisticated neural

networks (like NN7) may be better equipped to identify patterns in short-term market noise, which

might lead to larger short-term trading profits. While relatively shallow neural networks (like

NN3) are better able to extract long-term trend information and hence perform better under longer

prediction periods, too sophisticated networks may overfit in long-term prediction.

Nevertheless, one consistent finding emerges: neural network-based models tend to outperform

their linear counterparts, reaffirming their relative strength in capturing complex return dynamics.

Neural network-based models consistently outperform linear models, despite the fact that the ideal
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6 ECONOMIC PERFORMANCE

number of neural network layers changes depending on the prediction period. The neural network

approach is always superior than linear regression (OLS, OLSH) and dimensionality reduction

techniques like principle component regression (PCR) and partial least squares regression (PLS),

regardless of the forecast period, which might be one month or twelve months. Neural networks can

also occasionally perform better than tree-based models (such Random Forest RF and Gradient

Boosted Tree GBRT). This result aligns with the structural features of neural networks. Neural

networks are better able to uncover possible patterns in complicated market situations and capture

the nonlinear aspects of asset returns than classic linear models. Neural networks can therefore

provide some prediction benefits even when there is a high level of noise in the return data. Financial

market return data may exhibit significant nonlinearities, making it challenging for linear models

to accurately capture these intricate connections. As a result, linear models have a low predictive

ability. Second, there could still be a lot of space for optimization of the characteristic variables

in this study even if tree-based models (RF, GBRT) can theoretically adjust to some nonlinear

features. For instance, feature engineering might not be able to adequately represent the market’s

structural shifts, which would restrict the tree model’s capacity for generalization. Lastly, tree

models may have a tendency to overfit the training data and be unable to successfully extract

long-term trend information when prediction periods are greater (twelve months). Consequently,

they do not perform as well as shallower neural networks

One interesting finding is that while model complexity (number of layers) increases, the eco-

nomic value of neural networks (annualized Sharpe ratio of the spread portfolio) does not grow

monotonically. For instance, NN3 performed best throughout the twelve-month forecast period,

while the more complicated NN7 and NN8 fared worse; in the one-month forecast period, NN7

performed best, but NN8 did not further enhance the forecast performance.

While our analysis primarily relies on a measure of economic value derived from machine

learning-based portfolios, we acknowledge that once one moves beyond purely statistical criteria for

evaluating forecast accuracy, numerous approaches exist for defining and assessing economic value

(Leitch and Tanner, 1991). In this regard, we do not assert that our study provides a definitive

answer to the broader economic question of whether macroeconomic fundamentals can systemati-

cally predict exchange rates. Rather, we argue that employing alternative evaluation metrics based

on machine learning portfolios offers a different perspective on the relationship between exchange
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6 ECONOMIC PERFORMANCE

rates and fundamentals. This approach may highlight aspects of this relationship—or the absence

thereof—that conventional statistical measures fail to capture. Another way to interpret our study

is as an exploratory exercise in financial applications, though we recognize certain limitations that

should be kept in mind. Notably, we do not incorporate transaction costs, such as bid-ask spreads,

into our analysis. That said, the core strategy examined in this paper—a simple zero-net-investment

approach requiring only two transactions for each period, one at the beginning and one at the end

of each month—is unlikely to be significantly impacted by such costs (Abhyankar et al., 2005).

The efficient conversion of prediction capabilities into profitable trading strategies is still a major

problem, despite the fact that neural network techniques can offer high prediction accuracy and

considerable economic value. Actual returns will be impacted by a number of factors, including

capital constraints, transaction costs, and market liquidity. Therefore, even if neural networks

are clearly superior in statistical prediction, more study is still needed to determine how to best

integrate them into trading methods that are both reliable and rewarding.
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6 ECONOMIC PERFORMANCE

Table 5: Monthly Out-of-Sample Prediction Performance (Mean Re-
turn, Standard Deviation, and Sharpe Ratio)

This table presents the monthly prediction performance at the currency level, evaluating the mean return, standard deviation,
and annualiazed Sharpe ratio for different models. The data is divided into training, validation, and testing samples. The model is
trained and validated on the training and validation data, respectively, and then applied to the test data without further adjustment.
The evaluation includes OLS-based models, neural networks (NNs), dimension reduction models, and tree-based models. A higher
Sharpe ratio indicates better risk-adjusted performance.

Prediction Horizon: one month
Portfolio OLS OLSH NN1 NN2 NN3

Mean SD SR Mean SD SR Mean SD SR Mean SD SR Mean SD SR
p1 0.002 0.027 0.271 0.003 0.028 0.346 0.001 0.044 0.050 -0.007 0.041 -0.575 -0.010 0.044 -0.765
p2 -0.001 0.032 -0.073 -0.019 0.056 -1.184 -0.001 0.032 -0.154 -0.016 0.053 -1.022 0.001 0.028 0.068
p3 -0.025 0.063 -1.379 -0.004 0.043 -0.285 -0.009 0.042 -0.754 -0.005 0.043 -0.384 -0.004 0.044 -0.331
p4 -0.007 0.033 -0.726 -0.005 0.035 -0.459 0.000 0.021 0.073 -0.001 0.025 -0.101 0.001 0.030 0.090
p5 0.007 0.025 0.981 0.003 0.022 0.518 -0.005 0.043 -0.406 0.003 0.023 0.383 -0.005 0.039 -0.415
hml 0.005 0.025 0.682 0.001 0.026 0.073 -0.006 0.057 -0.344 0.009 0.037 0.885 0.005 0.056 0.301

Portfolio NN4 NN5 NN6 NN7 NN8
Mean SD SR Mean SD SR Mean SD SR Mean SD SR Mean SD SR

p1 0.008 0.026 1.083 -0.008 0.044 -0.640 -0.012 0.051 -0.792 -0.007 0.040 -0.629 0.006 0.029 0.695
p2 0.000 0.034 0.003 -0.002 0.036 -0.217 -0.003 0.038 -0.275 -0.011 0.044 -0.835 -0.000 0.021 -0.043
p3 -0.012 0.046 -0.922 -0.005 0.036 -0.482 -0.005 0.054 -0.337 0.005 0.025 0.746 -0.044 0.053 -2.828
p4 0.001 0.018 0.162 -0.006 0.046 -0.445 -0.006 0.024 -0.837 -0.014 0.056 -0.894 0.008 0.026 1.083
p5 -0.014 0.056 -0.885 -0.002 0.038 -0.190 0.002 0.022 0.317 0.006 0.022 0.905 0.009 0.021 1.551
hml -0.023 0.052 -1.518 0.006 0.051 0.415 0.014 0.049 0.958 0.013 0.041 1.103 0.003 0.019 0.644

Portfolio PLS PCR RF GBRT
Mean SD SR Mean SD SR Mean SD SR Mean SD SR

p1 0.004 0.024 0.619 0.004 0.025 0.608 0.004 0.024 0.537 0.002 0.028 0.224
p2 -0.023 0.055 -1.453 -0.025 0.059 -1.502 -0.020 0.059 -1.172 0.007 0.026 0.988
p3 -0.002 0.042 -0.183 -0.003 0.039 -0.286 -0.004 0.032 -0.418 -0.023 0.056 -1.416
p4 0.001 0.020 0.210 -0.001 0.034 -0.061 0.004 0.028 0.440 -0.001 0.031 -0.114
p5 0.002 0.036 0.151 0.001 0.029 0.122 -0.007 0.045 -0.501 -0.010 0.047 -0.772
hml -0.003 0.034 -0.278 -0.003 0.030 -0.386 -0.010 0.043 -0.836 -0.012 0.044 -0.975

Prediction Horizon: twelve month
Portfolio OLS OLSH NN1 NN2 NN3

Mean SD SR Mean SD SR Mean SD SR Mean SD SR Mean SD SR
p1 -0.020 0.050 -1.422 0.003 0.028 0.411 -0.020 0.055 -1.294 -0.009 0.048 -0.684 -0.020 0.055 -1.243
p2 -0.001 0.026 -0.155 -0.012 0.045 -0.931 -0.000 0.026 -0.028 0.005 0.022 0.818 -0.004 0.033 -0.463
p3 -0.013 0.052 -0.850 -0.016 0.049 -1.103 -0.010 0.042 -0.807 -0.002 0.026 -0.276 -0.017 0.052 -1.112
p4 -0.004 0.031 -0.445 -0.002 0.024 -0.355 -0.012 0.042 -0.945 -0.002 0.022 -0.378 0.000 0.021 0.017
p5 0.000 0.028 0.008 -0.014 0.048 -1.011 0.003 0.027 0.357 -0.004 0.038 -0.389 0.003 0.021 0.448
hml 0.021 0.055 1.297 -0.017 0.047 -1.270 0.023 0.058 1.382 0.005 0.056 0.323 0.023 0.053 1.476

Portfolio NN4 NN5 NN6 NN7 NN8
Mean SD SR Mean SD SR Mean SD SR Mean SD SR Mean SD SR

p1 0.002 0.027 0.276 0.003 0.027 0.439 -0.020 0.059 -1.196 0.002 0.025 0.245 -0.000 0.021 -0.007
p2 -0.001 0.029 -0.064 -0.019 0.053 -1.203 -0.000 0.031 -0.015 0.002 0.027 0.308 -0.003 0.039 -0.306
p3 -0.016 0.048 -1.200 -0.002 0.026 -0.327 -0.013 0.045 -1.026 -0.036 0.063 -2.007 -0.036 0.063 -1.986
p4 -0.001 0.021 -0.226 0.002 0.020 0.424 -0.001 0.024 -0.089 -0.002 0.026 -0.299 0.003 0.020 0.573
p5 -0.024 0.057 -1.454 -0.005 0.033 -0.513 -0.002 0.030 -0.187 -0.004 0.035 -0.434 -0.003 0.028 -0.361
hml -0.026 0.055 -1.646 -0.008 0.034 -0.852 0.019 0.059 1.088 -0.006 0.032 -0.658 -0.003 0.026 -0.384

Portfolio PLS PCR RF GBRT
Mean SD SR Mean SD SR Mean SD SR Mean SD SR

p1 0.006 0.022 0.987 -0.003 0.034 -0.327 -0.003 0.031 -0.370 0.002 0.022 0.242
p2 -0.027 0.058 -1.620 -0.026 0.060 -1.521 -0.029 0.059 -1.738 -0.007 0.041 -0.631
p3 -0.014 0.048 -1.021 -0.006 0.037 -0.589 -0.004 0.033 -0.406 -0.021 0.055 -1.350
p4 -0.004 0.034 -0.367 -0.004 0.036 -0.376 -0.000 0.026 -0.009 -0.002 0.036 -0.224
p5 0.000 0.023 0.030 0.004 0.022 0.581 0.002 0.028 0.213 0.000 0.023 0.021
hml -0.006 0.021 -1.003 0.007 0.031 0.758 0.005 0.033 0.531 -0.001 0.020 -0.236
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6 ECONOMIC PERFORMANCE

Our analysis highlights the inherent challenges in achieving robust out-of-sample predictive

performance, particularly as the forecasting horizon extends. A key observation from our results

is the presence of overfitting in models that exhibit strong in-sample performance, underscoring

the critical importance of implementing strategies that enhance generalization. Overall, the results

present a nuanced picture. From a statistical standpoint, the performance of different models varies

depending on the specific evaluation metric considered. When assessing predictive accuracy through

linear correlation between forecasts and actual returns, the best-performing models are OLSH and

NN2. However, when shifting the focus to explanatory power in terms of capturing variance in

returns, NN7 demonstrates the strongest performance. From an economic perspective, our analysis

of portfolio-based investment strategies reveals that NN6 and NN8 yield the highest annualized

Sharpe ratios for one-month prediction when applied to the spread machine learning portfolio. This

divergence across evaluation criteria is not unexpected, as different models are trained with distinct

objective functions that prioritize different aspects of prediction quality. Nevertheless, despite these

variations in statistical and economic performance, a consistent theme emerges—neural network-

based models tend to exhibit superior predictive ability relative to OLS, suggesting their potential

advantage in capturing complex return dynamics.

The maximum drawdown of each model is generally modest within a short prediction horizon

(one month), and the drawdown grows overall when the prediction horizon is increased, as Table 6

demonstrates. Furthermore, based on the performance of various models, Neural Networks has a

much lower maximum drawdown than other approaches. This could be attributable to either the

model’s strong fit to market data or its higher risk tolerance under extreme market fluctuations,

which would result in less losses in extreme circumstances.

We also looked at the cumulative returns of the top quintile (P5) and bottom quintile (P1)

portfolios, which represent the strategy’s long and short sides, respectively, when visualizing these

market-neutral portfolios. First, we find that models like NN1, NN8, PLS, and NNs have notable

yield performance benefits in the long (P5) portfolio. Nonetheless, the returns of these long-term

portfolios have exhibited a very flat trend over the last five years, which is in line with the findings

of earlier research (Gu et al., 2020). This might be an indication of shifting market dynamics,

such a decline in risk premia or a deterioration in the model’s capacity to adjust to more recent

data. Furthermore, several tree-based models have lately undergone severe retracement (sharply
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Table 6: Drawdown comparison across different prediction horizons
This table compares the drawdowns of equally weighted market-neutral portfolios constructed
from different models under two prediction horizons. The left panel presents results for the
shorter horizon of one month, while the right panel shows results for the longer horizon. Draw-
down is defined as: Drawdown = max

t1<t2
(rt1 − rt2), where r represents the cumulative log return.

Model Drawdown (One month) Drawdown (Twelve months)
OLS 0.154 0.141
OLSH 0.291 1.417
NN1 0.598 0.143
NN2 0.107 0.620
NN3 0.764 0.210
NN4 2.030 2.025
NN5 0.436 0.807
NN6 0.437 0.254
NN7 0.089 0.481
NN8 0.278 0.417
PLS 0.379 0.431
PCR 0.425 0.112
RF 1.008 0.130
GBRT 1.122 0.285

entering negative territory) , suggesting that these approaches are comparatively unstable under

the market dynamics of the more recent era. However, the model performance disparity is more

noticeable in the short (P1) combination. Certain neural network (NN) models are showing a slow

flattening of their cumulative returns. Other models, particularly tree-based models, have, however,

substantially returned to the positive range, suggesting that their predictions for the most recent

market may have structural biases that cause the short side’s performance to diverge from the

anticipated direction.
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Figure 3: Cumulative Returns of Portfolios Based on the Prediction Model
Based on a predictive model, this graph displays the cumulative log return of a portfolio’s out-of-
sample forecast performance. One-month forecast periods are represented by the top two curves,
and twelve-month prediction periods by the lower two curves. P1 (the poorest quintile) is on the
left, while P5 (the top quintile) is on the right. Every portfolio has the same weight.
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7 INTERPRETABILITY ANALYSIS

7. Interpretability analysis

Possible challenges arise despite the numerous advantages of machine learning. While it allows

for the inclusion of covariates, offers flexibility in functional forms, accommodates nonlinearity, and

leverages multidimensional advantages, there are notable bottlenecks in its application. One such

bottleneck pertains to the interpretability of machine learning models, often referred to as the “black-

box” problem. However, this challenge is not insurmountable. Techniques such as permutation

importance, as highlighted by Gu et al. (2020), can reveal which covariates are most crucial in

explaining expected returns. Furthermore, various local and global interpretability approaches can

be employed to address this issue, ensuring that the insights gleaned from machine learning models

are both understandable and actionable.

The black-box characteristic of machine learning, which refers to the impossibility to map

parameters to specific output characteristics, poses an issue for its reliability even in the case of

sped up calibration satisfactory accuracy levels. The term ‘interpretability’ lacks a precise definition,

but Miller (2019) offers a non-mathematical definition: ‘the degree to which a human can understand

the cause of a decision’. The more interpretable a machine learning model, the simpler to understand

why specific judgements or predictions have been made. When building a model, not only is

its accuracy fundamental, but also how these outputs are derived from inputs and how stable

this mapping is. Thus, interpretability can be advantageous in two cases: (1) with a thorough

understanding of the model, one may test whether the map from inputs to outputs corresponds

to intuitive understanding; (2) with a lack of model expertise, one may employ interpretability

models to increase the comprehension of the model. Overall, two machine learning interpretability

classifications have been devised by Molnar (2020): local and global.

7.1. Local interpretability

Local interpretability models aim to explain how a machine learning model generate its pre-

diction for a single instance (Molnar, 2020), rather than providing a global understanding of the

model’s overall behavior. This approach is particularly valuable when working with complex models

like neural networks, where the relationship between inputs and predictions can be opaque. The

core idea behind local interpretability is to simplify the input and examine how individual compo-

nents contribute to the final prediction. This method allows us to answer practical questions such
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as, “What is the role of each characteristic in determining this specific prediction?” or “How would

the prediction change if a certain characteristic were removed?”

Now, let us consider how local interpretability is formally defined (Yuan et al., 2024). A local

interpretability model, often denoted as g, approximates the behavior of the machine learning model

f̂ in the vicinity of a specific input x. For a simplified input x′, the interpretability model g aims

to replicate the predictions of f̂ for inputs that are close to x′. This can be expressed informally

as g(z′) ≈ f̂(hx(z
′)) for simplified inputs z′ that are similar to x′. To ensure the approximation is

meaningful, a more precise version of this relationship might involve defining neighborhoods around

x′ and setting thresholds for how close the predictions need to be.

This is a characteristic attribution framework for intrepretability. In this framework, the predic-

tion is decomposed into a baseline value, ϕ0, which represents the prediction when all characteristics

are inactive, and a sum of contributions from each characteristic, denoted as ϕi. Mathematically,

this can be expressed as:

g(z′) = ϕ0 +
∑
i

z′iϕi,

where z′i represents if characteristic i is active (1) or inactive (0). For example, if only the first and

third characteristics are active (z′ = [1, 0, 1]), the prediction is determined by the baseline value

plus the contributions of these two characteristics. This additive structure makes it easy to see how

much each characteristic contributes to the overall prediction.

7.2. Global interpretability

Instead of focusing on a single example, global interpretability examines the overall impact of

characteristics throughout the sample. An overview of the feature contribution is given by the

global approach.

Shapley value in game theory is introduced by global interpretability, which assigns each player

the gain or loss attribute of a multiplayer game in order to gauge how each player affects the outcome

of the game. In our context, participants are characteristics, the game is the prediction task, and

the gain is the prediction. The Shapley value provides a thorough assessment of feature relevance by

quantifying the contribution of each characteristic while taking into account all potential subsets.

To formalize this concept (Yuan et al., 2024), consider a scenario with n players, represented

as a set P = {p1, p2, . . . , pn}. For any subset G ⊆ P, the function f(G) measures the collective

Student Poster Submission to 2026 AFA, July 31st 2025



7 INTERPRETABILITY ANALYSIS 7.2 Global interpretability

contribution of the players in G. The Shapley value for a specific player pk ∈ P is defined as:

ϕk =
∑

G⊆P\{pk}

|G|! (|P| − |G| − 1)!

|P|!

(
f(G ∪ {pk})− f(G)

)
,

where |G| denotes the size of the coalition G, and |P| = n is the total number of players. This

formula systematically evaluates the marginal contribution of player pk across all possible subsets

G that exclude pk, averaging these contributions to provide a fair attribution. Intuitively, this

approach considers every possible coalition the player might join and calculates their added value

in each scenario.

In machine learning, this concept translates seamlessly to characteristic attribution. Each input

characteristic is treated as a “player,” and the model’s prediction for a specific instance is the

outcome of the “game.” The Shapley value for a characteristic represents its average contribution to

the prediction, taking into account all possible combinations of active and inactive characteristics.

For a dataset with M characteristics, the Shapley value for characteristic k is given by:

ϕk

(
f̂ , x

)
=

∑
We⊆{1,2,...,M}\{k}

|I|! (M − |I| − 1)!

M !

(
f̂
(
hx(z

′
W e ∪ {k})

)
− f̂

(
hx(z

′
I)
))

,

where z′I is a binary vector indicating which characteristics are active in the subset I, and hx maps

this simplified representation back to the original input space. For example, if z′I indicates that only

the first and third characteristics are active, hx(z′I) reconstructs an input vector where all other

characteristics are replaced with their average values. This ensures that the Shapley value captures

the marginal effect of each characteristic in a systematic and unbiased manner.

Calculating Shapley values in practice can be computationally difficult because it requires con-

sidering all possible subsets of characteristics, which grows exponentially with the number of fea-

tures. For a dataset with M characteristics, there are 2M subsets, making exact computation

infeasible for high-dimensional data. To address this issue, various approximation algorithms have

been developed. One of the most commonly used tools is SHAP ((Shapley Additive exPlanations,

package in Python)). This approach allows to rank characteristics based on their average impor-

tance, providing insights into which characteristics have the greatest overall impact on the model’s

predictions.

There are drawbacks to the Shapley value technique as well. Computational flexibility is one
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issue that was previously mentioned. Its use to large-scale data is thus limited. We introduce the

approximation approach in this way. Another issue is that it makes the unrealistic assumption

that characteristics are independent of one another. Real data may be cross-sectionally or serially

correlated.

Unlike permutation importance, which evaluates characteristic importance by shuffling charac-

teristic values and measuring the resulting drop in model performance, Shapley values provide a

comprehensive attribution by considering all possible subsets of characteristics. Similarly, while

partial dependence plots visualize the marginal effect of a single characteristic by averaging predic-

tions over all other characteristics, they may fail to capture interactions between characteristics.

Shapley values, by contrast, inherently account for characteristic interactions, making them a more

robust choice for models with complex dependencies.

In conclusion, global interpretability offers a systematic method to comprehending the role

that distinct features play in machine learning models. Cooperative game theory is introduced in

this manner. The widespread use of SHAP and related techniques highlights the usefulness of the

Shapley value in machine learning, even though computational difficulties and feature independence

assumptions still require investigation. Global explainability tools will be crucial in establishing

transparency, accountability, and reliability as models grow more intricate especially in some high-

stake fields.

7.3. Empirical results of interpretability

The driving factors of returns were analyzed in this study using a range of model interpretation

techniques. The DeepLIFT and Layer-wise Relevance Propagation (LRP) approaches were used,

respectively, to examine the important factors under one-month and twelve-month forecast periods

from the standpoint of local interpretability. The findings demonstrate that, despite the great

degree of consistency between the analytical results of the two local interpretability methodologies,

there are still distinctions between them and the global interpretability conclusions. First, according

to the DeepLIFT method’s study results, the value factor is the least significant driving element for

the one-month horizon, while the NFA factor is the most significant among the currency-specific

variables. Global liquidity, F1 and F2 (primary component variables taken from large-scale macro

and financial time series data sets), and TIC1 and TIC2 (inventories) have the least contributions

to global features, whereas global liquidity is the most important driving element. This might imply
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that, in the short run, shifts in global market conditions and macro liquidity account for a greater

portion of exchange rate volatility than do long-term bond market inventories in US Treasuries. The

LRP approach’s one-month horizon findings are quite similar. In particular, the value component

continues to be the least significant currency-specific element, whilst long-term momentum and

NFA are the most significant. PTIC1 and PTIC2 have the least influence on global features, while

F1 and F2 (principal component of macro) are the most significant driving variables. While long-

term bond market-related factors have a very little impact on short-term estimates, this result

further solidifies the pivotal role of macro-financial market major component factors on exchange

rate fluctuations. The DeepLIFT method for the 12-month horizon indicates that, among currency-

specific factors, the carry factor has a leading position, with the value and NFA elements having the

least influence. This might be as a result of investors’ increased sensitivity to the arbitrage effect

of interest rates across various currencies and the longer-lasting effects of carry trading techniques.

Furthermore, interest dynamics—which include indicators like libor-tbill, libor-ois, and libor—are

the most important component in terms of global features. This suggests that long-term shifts in

the interest rate environment are the primary determinants of currency returns. Similar to the

DeepLIFT method’s conclusion, the LRP method’s results under a 12-month horizon indicate that,

among currency-specific elements, the momentum component is the most significant.

When compared over several prediction periods, the outcomes of the local interpretability tech-

niques (DeepLIFT and LRP) are very comparable. This result would suggest that the machine

learning model’s decision-making logic at the single instance level is very stable regardless of the

local interpretability approach employed. However, differing degrees of causal chains may be the

cause of the distinction between local and global interpretability. The weight ordering of important

components may range significantly between local explanations, which base their conclusions more

on short-term signals or sample characteristics, and global explanations, which tend to concen-

trate on long-term trends and the general distribution of data. Moreover, the nonlinear nature of

machine learning models could be reflected in this discrepancy. While machine learning models

may capture more complicated nonlinear patterns, traditional economic and financial theory often

assumes linear correlations between variables. Therefore, local interpretability focuses more on how

individual predictions are influenced, while global interpretability emphasizes the overall stability of

the model. Our findings demonstrate that, from the standpoint of empirical asset pricing, investors
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should concentrate on distinct driver groups at various time periods. While carry trade tactics and

global interest rate dynamics are more important elements in the long run, macro liquidity and

market principal component characteristics have a greater effect in short-term trading strategies.

From Figures 6 and 7, the characteristics are ranked according to their importance, with those

higher up in the charts contributing more significantly to the overall predictive capability of the

model. These interaction characteristics dominate the global interpretability of the model. Partic-

ularly, characteristics that capture the interactions between individual tradable factors and global

factors play a crucial role. The performance of individual tradable factors is often mediated by the

broader macroeconomic environment, and the model relies heavily on these interaction character-

istics to enhance its predictive capabilities.

For a prediction horizon of one month, the most influential individual factors are carry and

short-term momentum, underscoring their dominant role in shorter-term forecasts. These factors

likely capture immediate and transient trading dynamics, which are more relevant for short-term

predictions. In contrast, for a prediction horizon of twelve months, the key contributors among

individual factors shift to carry. This shift suggests that the importance of individual factors evolves

with the prediction horizon, as longer-term forecasts may rely more on structural and persistent

trends, such as the difference in the interest rate.

From the perspective of global factors, the characteristics with the highest relevance for a one-

month horizon are closely tied to liquidity conditions and interest rate dynamics. Examples include

the Libor-OIS spread and OIS-TBill spread, which emphasize the importance of liquidity-based

indicators derived from Libor, TBill, and OIS data. These characteristics highlight how short-

term predictions depend on precise measures of market liquidity and interest rate movements. As

the prediction horizon extends to twelve months, the ranking of characteristic importance remains

almost the same.

All things considered, the predictors with the greatest explanatory power are the interactions

between the global and individual tradable components. Under both short- and long-term predic-

tions, we simultaneously observe changes in the most influential characteristics.

The color gradient in the heatmap, ranging from blue to red, represents the characteristic values

from low to high. For the prediction horizon of 1 month, US unemployment rate primarily influ-

ences the model through its interactions with short-term momentum and long-term momentum.
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Additionally, by analyzing the distribution of SHAP values on either side of zero, we can identify the

positive or negative contributions of different characteristics to the model output, which reflects the

directionality of characteristic contribution. Most characteristics exhibit SHAP values concentrated

predominantly on either the positive or negative side. For instance, for shorter prediction horizons,

the topmost four characteristics for the prediction horizon of 1 month, whose SHAP values are

overwhelmingly positive. The strong unidirectional distribution of SHAP values for most charac-

teristics indicates that these characteristics have a clear and stable impact on the model, which is

unlikely to reverse with changes in input values. In contrast, only a small number of characteristics

exhibit a more balanced distribution of SHAP values across both positive and negative sides. This

symmetrical distribution may indicate more complex dynamic relationships. For example, these

characteristics may contribute positively to the model predictions under certain conditions, while

under other conditions, their impact may turn negative. This bidirectional effect suggests that the

contribution of such characteristics depends on the specific range of characteristic values or the

market environment. These characteristics’ dual roles in the model highlight the importance of

context-dependent relationships.
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Figure 4: Local interpretability for prediction horizon of 1 month
This figure presents the local interpretability results for the best-performing prediction model for a
prediction horizon of 1 month, a neural network with seven layers. The DeepLIFT method-based
feature contribution ranking, arranged by feature contribution absolute value, is displayed in the
top row. Based on the average absolute value of the features, the top 20 and bottom 20 most
significant features—including univariate and interaction terms—are listed. This metric shows how
much each attribute contributed overall to the model’s predicted outcomes. A clear depiction of the
significance of the various features in the dataset is provided by the ranking. The LRP method’s
results are displayed in the second row.
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Figure 5: Local interpretability for prediction horizon of 12 months
This figure presents the local interpretability results for the best-performing prediction model for a
prediction horizon of 12 months, a neural network with eight layers. The DeepLIFT method-based
feature contribution ranking, arranged by feature contribution absolute value, is displayed in the
top row. Based on the average absolute value of the features, the top 20 and bottom 20 most
significant features—including univariate and interaction terms—are listed. This metric shows how
much each attribute contributed overall to the model’s predicted outcomes. A clear depiction of the
significance of the various features in the dataset is provided by the ranking. The LRP method’s
results are displayed in the second row.
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Figure 6: Global interpretability for prediction horizon of 1 month
The global interpretability findings for the best prediction model, a seven-layer neural network,
with a one-month forecast horizon are displayed in the figure. Features are ranked on the left side
according to their average absolute value. One statistic that measures each feature’s contribution
to the model’s global predictions is the Shapley value. Out of all the features, the top 20 are chosen
as the most significant. These attributes encompass both individuals and interactions. A heatmap
of the Shapley values for the top 20 characteristics is displayed on the right. Granular analysis is
provided via heatmaps, which offer comprehensive insights into the distribution and variability of
feature contributions across samples.
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Figure 7: Global interpretability for prediction horizon of 12 months
The global interpretability findings for the best prediction model, an eight-layer neural network,
with a twelve-month forecast horizon are displayed in the figure. Features are ranked on the left side
according to their average absolute value. One statistic that measures each feature’s contribution
to the model’s global predictions is the Shapley value. Out of all the features, the top 20 are chosen
as the most significant. These attributes encompass both individuals and interactions. A heatmap
of the Shapley values for the top 20 characteristics is displayed on the right. Granular analysis is
provided via heatmaps, which offer comprehensive insights into the distribution and variability of
feature contributions across samples.
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8. Conclusions

This study represents a pioneering effort in applying machine learning to currency excess return

prediction. By allowing for nonlinear predictive functions and accommodating high-dimensional

data, our approach incorporates a broader set of information-rich predictor variables than tradi-

tional models. A key finding is that neural networks consistently outperform the others across

different evaluation metrics and prediction horizons, demonstrating the potential of machine learn-

ing in currency return forecasting. A more complex neural network architecture generally enhances

its predictive power, which is very similar to the results of the equity study (Gu et al., 2020).

Specifically, neural networks are the only models that outperform the random walk benchmark.

Economically, they also yield the highest Sharpe ratio when constructing long-short spread portfo-

lios.

To address the well-known black-box issue of machine learning models, we employ DeepLIFT,

LRP, and Shapley value analysis to interpret the sources of predictive power. Our results indicate

that the dominant predictive signals arise from the interaction between global state variables and

currency-specific factors, rather than from any single variable alone. At a global scale, mong

tradable factors, carry and momentum emerge as the most powerful predictors, aligning with their

well-established roles in currency investment strategies. Among global state predictors, market

liquidity stands out as the most influential, highlighting its critical role in shaping return dynamics.

But the local interpretbility results are distinct from the global approach. One possible reason could

be that the global predictability reflects overall model performance across the entire dataset. These

findings enhance our understanding of the risk-return trade-offs inherent in currency investment

strategies.

Our results are consistent with prior empirical findings, such as those in Nucera et al. (2024),

while making further progress in addressing the challenge of the FX “factor zoo.” By systemati-

cally identifying the most relevant characteristics for return prediction, we contribute to the effort

of refining and streamlining factor-based currency investment strategies. At the same time, the

demonstrated success of machine learning algorithms in return prediction offers promising impli-

cations for both economic modeling and practical portfolio management. Our findings help justify

the growing role of machine learning across the broader fintech industry, supporting its increasing

integration into asset pricing, risk management, and investment decision-making processes.
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APPENDIX A GLOBAL CHARACTERISTIC

Appendix A. Global characteristic
Factor Description

Financial Factors

MOVE Volatility index measuring options on U.S. Treasury bonds, reflecting

uncertainty in fixed-income markets.

VXO A measure of implied volatility in the S&P 100, often used as a proxy

for market risk perception.

MF1, MF2, MF3 Principal components derived from a broad dataset of economic and

financial indicators.

GVOL, GLIQ Global foreign exchange market volatility and liquidity indices con-

structed from daily trading data.

PSLIQ Liquidity measure for equities, assessing market-wide ease of trading

conditions.

SLIQ A systematic indicator of liquidity variations in the FX market, empha-

sizing low-frequency trends.

TED The spread between interbank lending rates and Treasury bills, serving

as a gauge of credit risk.

NOISE An indicator of arbitrage capital availability based on deviations in U.S.

Treasury bond prices.

ICAP Captures fluctuations in financial intermediaries’ equity capital, impact-

ing asset pricing dynamics.

OILVOL Volatility of crude oil prices, estimated via historical fluctuations in daily

returns.

GCF A synthetic factor representing global financial conditions, constructed

using price movements of various risky assets.

TIC Official and private inventory levels in U.S. Treasuries, standardizing

across time for consistency.

CORP The yield differential between investment-grade and lower-rated corpo-

rate bonds, signaling credit spreads.

LIB-OIS A measure of stress in the interbank market derived from differences in

short-term borrowing rates.
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EQRV Realized volatility in the S&P 500 index, computed using daily price

movements.

GEQRV A factor capturing worldwide equity market volatility based on stock

market indices.

Macro Factors

IPUS Monthly industrial production growth rate, indicating economic activity

in the U.S.

CPIUS Consumer price inflation rate in the U.S., reflecting changes in cost-of-

living metrics.

NFPYR Change in non-farm payroll employment, a widely followed labor market

indicator.

CFNAWe A composite index summarizing national economic conditions using mul-

tiple macro indicators.

UNEUS Unemployment rate changes in the U.S., serving as a key labor market

barometer.

CUS Household consumption expenditure trends, capturing shifts in consumer

behavior.

IPW A global measure of industrial production growth, aggregated across mul-

tiple economies.

CPIW A composite inflation metric, combining price index data from different

countries.

UNEW A weighted measure of unemployment trends across major economies.

IPSTD Cross-country dispersion of industrial production changes, reflecting eco-

nomic heterogeneity.

CPISTD A measure of inflation variability across countries, highlighting dispari-

ties in price stability.

Text-Based Factors

GEPU A macroeconomic policy uncertainty index aggregating country-specific

data using weighted GDP.
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FSWe A financial stress indicator computed from media coverage and market

conditions.

EMV A textual-based equity market volatility measure derived from news

sources.

EPU An index measuring economic policy uncertainty by analyzing newspaper

articles and policy discussions.

Appendix B. Details: Neural Networks (NN)

The training Procedure can be summarised as:

• Initialization: The weights Wk are typically initialized randomly, biases bk are usually ini-

tialized to zero or small random values.

• Forward Pass: Given the input h0, the model computes the layer-wise results sequentially

using the formulas above, ultimately producing ŷ.

• Loss Computation: The difference between the predicted output ŷ and the actual target y is

quantified using a loss function, such as mean squared error (for regression) or cross-entropy

(for classification).

• Backward Pass: Using backpropagation, the gradients of the loss with respect to the param-

eters Wk and bk are computed.

• Optimization: The parameters are updated using an optimization algorithm, typically by

making incremental moves along the negative gradient, as determined by the learning rate.

• Iteration: The process repeats for a set number of iterations or until convergence is achieved,

such as when the loss function stops improving significantly.

This detailed process underscores the interplay between parameters, hyperparameters, and the

role of non-linear transformations in enabling neural networks to learn and generalize from data

effectively.
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PARTIAL LEAST SQUARES (PLS)

Appendix C. Details: Principal Components regression (PCR) and Partial least

squares (PLS)

The procedure of PCR can be summarised as below.

• PCA on predictors:

Given a dataset with NT observations and p predictor variables, we define the centered and

standardised predictor matrix:

Xstd ∈ RNT×p, where
NT∑
i=1

(Xstd)ij = 0, ∀j ∈ {1, . . . , p}.

The sample covariance matrix of Xstd is:

ΣXstd =
1

NT − 1
XT

stdXstd ∈ Rp×p.

The principal components are found by solving the eigenvalue problem:

ΣXstdvj = λjvj , j = 1, . . . , p,

where vj are the eigenvectors (principal directions) and λj are the corresponding eigenvalues.

The eigenvectors are stacked in a matrix:

V = [v1, v2, . . . , vp] ∈ Rp×p.

The principal component transformation is then given by:

Z = XstdV ∈ RNT×p,

where the columns of Z are the principal components (PCs), sorted in descending order of

variance.

To reduce dimensionality, we retain only the first k principal components:

Zk = XstdVk ∈ RNT×k,
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where Vk ∈ Rp×k contains only the first k principal directions.

• Regression on principal components:

Instead of regressing r directly on Xstd, we perform regression on Zk:

r = Zkβ + ε,

where β ∈ Rk are the regression coefficients and ε is the error term. The least squares estimate

of β is:

β̂ = (ZT
k Zk)

−1ZT
k r.

The final prediction is obtained as:

r̂ = Zkβ̂ = XstdVk(V
T
k XT

stdXstdVk)
−1V T

k XT
stdr.

The procedure of PLS can be summarised as below.

• Finding latent components:

PLS finds components S ∈ RNT×k such that they maximize covariance of Xstd and r. The

decomposition of Xstd and r is given by:

Xstd = SP T + Epls, r = Sq + fpls,

where S ∈ RNT×k is the matrix of latent scores, P ∈ Rp×k and q ∈ Rk are loadings, Epls ∈

RNT×p and fpls ∈ RNT are residuals.

• Maximizing Covariance:

The latent components are computed by solving:

max
S

cov(S, r) = max
S
∥ST r∥2,

subject to S = XstdV , where V contains weights that define the projection.
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PLS finds the first component s1 by maximizing:

v1 = argmax
v

cov2(Xstdv, r), subject to ∥v∥ = 1.

This is solved iteratively by Singular Value Decomposition (SVD):

U,D, Vsvd = SVD(XT
stdr).

The first weight vector is:

v1 = U1,

and the first score is:

s1 = Xstdv1.

Subsequent components are computed by deflating Xstd and y:

Xstd ← Xstd − s1p
T
1 , y ← y − s1q1.

This process is repeated to obtain k latent components.

• Regression on latent components

Once the latent components are extracted, we estimate the regression:

r = Sβ + ε.

The least squares estimate is:

β̂ = (STS)−1ST r.

The final prediction is:

r̂ = Sβ̂ = XstdV (STS)−1ST r.
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Appendix D. Details: Random forest (RF) and Gradient Boosted Regression Trees

(GBRT)

Given the dataset D = {(Xit, rit)}t=1,...T
i=1,...N with input features Xit ∈ Rp and response rit ∈ R,

RF builds B individual trees, each trained on a bootstrapped subset Db ⊂ D. Each individual tree

in a Random Forest is constructed using the following steps:

• Select a bootstrap sample Db of size NT (sampling with replacement). Each tree is trained

on a different subset of the training data.

• At each split in the tree, randomly sample a subset of m features (m < p) instead of consider-

ing all p features. This random selecting reduces overfitting and encourages diversity among

trees.

• For each selected feature subset, determine the optimal split by maximizing an impurity

reduction criterion such as variance reduction (for regression) (Breiman, 2017). For regression

trees, the split criterion minimizes variance. Given a dataset with response values ri, variance

is calculated as:

σ2 =
1

N

N∑
i=1

(ri − r̄)2,

where r̄ is the mean of the node. The optimal split minimizes the weighted variance of the

left and right nodes:

σ2
split =

NL

N
σ2
L +

NR

N
σ2
R.

• Grow the tree recursively by applying the same splitting strategy to each child node until

a stopping criterion is met (Breiman, 2017), such as minimum number of samples required

to split a node, maximum depth limit to control complexity, leaf nodes reaching a minimal

sample size.

• Each tree provides a prediction by averaging the outcomes in each leaf node:

fb(x) =

Lb∑
l=1

cblI(x ∈ Rbl)

where Lb is the number of leaf nodes, Rbl represents the regions of the feature space assigned

to each leaf, and cbl are the leaf node predictions.
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APPENDIX D DETAILS: RANDOM FOREST (RF) AND GRADIENT BOOSTED
REGRESSION TREES (GBRT)

• The final prediction for Random Forest is the aggregation of individual tree predictions, which

is typically computed as an average for regression:

r̂ =
1

B

B∑
b=1

fb(x).

In the process of our model fitting, the relevant hyper parameters: for booststrapping our number of

trees is 300, our stopping criterion is when the maximum tree depth reaches 4. Generally speaking,

a shallow tree will have less risk of overfitting and improve generalization capabilities.

Given training data D = {(Xit, rit)}t=1,,,T
i=1,...N , GBRT approximates the target variable F (x) by

iteratively constructing trees:

• Initialize the model with a constant value (often the mean response):

F0(x) = argmin
c

N∑
i=1

T∑
t=1

L(rit, c).

• For b = 1, 2, . . . , B:

– Compute the residuals (negative gradient of loss function L):

resitb = −
∂L(rit, F (xit))

∂F (xit)

∣∣∣∣
F (xit)=Fb−1(xit)

.

– Fit a regression tree hb(x) to predict the residuals resitb.

– Compute the step size γb by solving:

γb = argmin
γ

N∑
i=1

T∑
t=1

L(rit, Fb−1(xit) + γhb(xit)).

– Update the model:

Fb(x) = Fb−1(x) + γbhb(x).

• The final prediction is given by:

r̂ = FB(x) =

B∑
b=1

γbhb(x).
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