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Abstract

Institutional investors commit trillions of dollars to private funds. These commitments give fund
managers discretion to call capital on short notice, effectively making investors their liquidity providers.
Using novel data on insurers’ $370 billion private fund investments, this paper studies the risk of
unexpected capital calls. Specifically, I examine the portfolio implications of capital call shocks and
the resulting spillovers to public asset markets. I show that capital calls are difficult to predict and
that unexpected calls are substantial. Nevertheless, I find no evidence that insurers build liquidity
buffers ex ante. Instead, they adjust their portfolios only ex post, primarily by selling risky corporate
bonds. These portfolio decisions are driven by regulatory capital considerations. Moreover, capital-call-
induced corporate bond sales cause negative price impacts, especially for bonds with high risk weights.
These spillover effects are amplified when capital call shocks are concentrated or coincide with other
episodes of market stress. Counterfactual stress tests reveal significant aggregate losses under extreme
scenarios. Overall, the findings highlight the liquidity risk embedded in private fund commitments and
its implications for financial fragility.
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1 Introduction

Private funds such as private equity, private debt, and real estate funds manage over $10 trillion in
private assets (McKinsey, 2024). Investors behind these funds are predominantly institutional investors,
such as insurance companies and pension funds. Understanding the asset allocation and the risk
management of these institutional investors and their implications for financial markets more broadly
is critical in the wake of the rise of private fund investments. One distinctive feature of private fund
investment is that investors make a binding commitment to contribute capital upon receiving capital
calls from fund managers. This structure effectively makes institutional investors the liquidity providers
to private funds, exposing investors to the risk of unexpected capital calls.

The total amount of uncalled private fund commitments reached $3.7 trillion in 2023 (McKinsey,
2024), on par with unused corporate credit lines from banks (Federal Reserve Board, 2020). Policymakers
have expressed concerns about potential systemic risk arising from capital calls. For example, the
Federal Reserve warns that “unanticipated calls may pose a liquidity risk for some investors, potentially
forcing them to sell other assets to raise liquidity” (Federal Reserve Board, 2023). Similarly, the
International Monetary Fund notes that significant capital calls in a downside scenario could spill
over to other markets and the broader economy (IMF, 2024). Yet there is little evidence to assess
the validity or severity of these concerns. Using novel data on insurers’ $370 billion private fund
investments, this paper provides the first evidence on how investors manage their portfolios in view of
capital call risk and on the resulting spillover effects on public asset markets.

While akin to banks’ credit line drawdown risk, capital call risk poses a distinct challenge for private
fund investors, who lack banks’ structural advantages in managing liquidity provision.! A conservative
strategy would be to build liquidity buffers ex ante. By holding sufficient liquid assets, investors can
meet capital calls without resorting to selling relatively illiquid assets when shocks occur. The trade-off,
however, is the lower returns associated with liquid assets. If investors opt to rebalance their portfolios
ex post, they must decide which assets to sell. Beyond liquidity considerations, a key factor is the
portfolio risk implication. Substituting liquid safe assets for private funds increases portfolio risk,

which could be too costly due to regulations or internal risk management mandates. The interactions

!Banks’ unique advantages of liquidity provision include: (1) stable deposit inflows (Kashyap et al., 2002; Gatev and
Strahan, 2006), (2) government-backed deposit insurance (Pennacchi, 2006), and (3) ex post risk management through
covenants (Sufi, 2009; Acharya et al., 2014; Greenwald, 2019; Chodorow-Reich and Falato, 2022).



among liquidity, opportunity costs, and risk considerations thus pose a complex portfolio management
problem. How investors manage capital call risk remains an open empirical question that this paper
aims to explore.

In this paper, I use insurance companies as a laboratory to shed light on the implications of
unexpected capital calls. Not only do insurers provide unique data coverage, but the industry has also
undergone a profound transformation, with growing involvement in private funds and a shift toward
more opaque private assets, raising concerns about systemic risk (BIS, 2025). In that context, I provide
the following main novel findings. I first show that fund-level capital calls are difficult to predict and
that insurers are unable to smooth idiosyncratic capital call risk through diversification. As a result,
investor-level unexpected calls remain substantial. In spite of this, insurers do not appear to build
liquidity buffers ex ante. Instead, they adjust their portfolios only ex post, primarily by selling risky
corporate bonds. I show that this rebalancing behavior is driven by regulatory capital considerations.
Guided by these observed portfolio adjustments, I then examine the spillover effects on the corporate
bond market. I find sizable negative price impacts arising from bond sales triggered by capital call
shocks, particularly for bonds with high risk weights. Moreover, these spillover effects are amplified
when capital call shocks are correlated and coincide with other market stresses.

One key challenge is linking private fund capital calls to investors’ portfolio holdings. I address
this problem by introducing novel data from insurers’ Schedule BA statutory filings. Schedule BA
reports “Other Long-Term Invested Assets,” which include alternative investments such as private
funds. Schedule BA filings are largely unexplored because they are messy and lack consistent asset
identifiers.? I develop a multi-stage algorithm to overcome these difficulties. The algorithm utilizes
the panel structure of the holdings data to detect potential name inconsistencies. It then applies a
customized name standardization procedure together with a large language model-based fuzzy matching
method. I also conduct extensive manual checks and corrections to ensure data quality.

Schedule BA offers several key advantages over other common datasets. First, to my knowledge,
Schedule BA is the only dataset that links investors’ private fund investments to position-level holdings
in the rest of their portfolio, covering all asset classes including public equities, Treasuries, corporate
bonds, and more. Second, as a mandatory regulatory filing, it provides the complete universe of private

fund holdings for all U.S. insurers. By contrast, most existing datasets rely on Freedom of Information

2To my knowledge, the only existing study that uses Schedule BA data is Foley-Fisher et al. (2023), which studies
insurers’ CLO investments.



Act (FOIA) requests to public pension funds, which offer only limited coverage (Harris et al., 2014;
Brown et al., 2015; Begenau et al., 2020). Third, Schedule BA provides granular, audited information
on private fund investments, including capital calls, distributions, uncalled commitments, fair value,
and even secondary market sales.

Another key challenge is measuring unexpected capital calls. While expected capital calls can
be planned for in advance, unexpected calls force investors to adjust their portfolios on short notice.
Therefore, only unexpected capital calls resemble exogenous shocks. To measure plausibly unexpected
capital calls, I first estimate expected capital calls at the fund level using a statistically optimal
forecasting model, which I describe in more detail below. I then aggregate these fund-level forecasts to
the investor level. The unexpected capital call is defined as the positive component of the difference
between actual and expected investor-level capital calls. I only account for the positive part because
the paper focuses on the implications of unexpected demands for liquidity.

For the forecasting model, I evaluate a set of state-of-the-art machine learning methods to capture
potential nonlinear predictive patterns in capital call dynamics. The candidate models include LASSO,
Decision Trees, Random Forest, Light GBM, and XGBoost. In addition, I consider two-stage hurdle
models to address the issue of zero-inflated capital call data (Tobin, 1958; Cragg, 1971). I include a wide
range of predictors, which fall into four categories: (1) macroeconomic variables, such as GDP growth
and interest rates; (2) public market variables, such as S&P 500 returns and credit spreads; (3) private
market variables, such as aggregate PE deal volume and fundraising amount; and (4) fund-specific
characteristics, such as fund age, type, and lagged cash flows. The final model is selected based on
out-of-sample (OOS) forecasting performance using rolling windows.

I begin the analysis by providing descriptive statistics on insurers’ private fund investments and
capital calls. By the end of 2023, insurers’ total exposure to private funds reached $370 billion,
comprising $270 billion in invested assets and $100 billion in uncalled commitments. On average,
private funds account for about 3% of insurers’ portfolios. However, the distribution is highly right-
skewed, with some insurers allocating more than 10% to private funds. Turning to capital calls, the
aggregate amount received by insurers has steadily increased over time, reaching approximately $10
billion per quarter in 2023. On average, about 10% of uncalled commitments are expected to be called
in the subsequent quarter. The time-series variation in unexpected calls is substantial, with some

quarters exceeding $5 billion. Moreover, unexpected calls also exhibit considerable cross-sectional



dispersion and pronounced right skewness.

To understand the sources of this variation, I perform a variance decomposition. The expected
component of the capital call rate, defined as the fraction of uncalled commitments called in the
current quarter, explains less than 10% of the total variation. I then further decompose the unexpected
component into investor-specific, time-specific, and idiosyncratic components. The majority of the
variation in unexpected calls is idiosyncratic. This finding aligns with the fund-level forecasting results:
even the best-performing forecasting model achieves an OOS R? of only 7.4%. This low OOS R?
underscores the unpredictable nature of capital calls, even for complex machine learning models.
Moreover, the fact that unexpected calls remain largely idiosyncratic even at the investor level suggests
that investors are unable to smooth fund-level uncertainty through diversification.? Overall, these
results highlight a fundamental dilemma of private fund investing: capital calls are highly unpredictable
at the fund level, yet investors cannot diversify away this exposure. As a result, unexpected capital
calls remain substantial at the investor level.

I next examine how insurers manage their portfolios in response to capital-call risk. I begin by
testing whether they build liquidity buffers ex ante. If this is their strategy, three testable predictions
follow: first, there should be a positive correlation between uncalled commitments and liquid asset
holdings; second, liquid asset holdings should increase around the time investors make abnormally
large new commitments; third, liquid asset holdings should decline when capital call shocks occur, as
these buffers are drawn down. Using multiple definitions of liquid assets, I find no support for any of
these predictions. These results suggest that insurers do not seem to rely on ex ante buffers to manage
the liquidity demand from private fund commitments. A likely explanation is the low return on liquid
assets: the opportunity cost of holding liquidity buffers outweighs the transaction costs of selling assets
ex post.

Indeed, when capital call shocks materialize, I find that insurers rebalance their portfolios mostly
by selling bonds.* For every dollar of capital calls, bond holdings decline by approximately 76 cents.

There are no changes in cash or Treasury holdings, both statistically and economically. I then analyze

3This lack of diversification is largely a structural feature of the private fund market. First, the private fund market is
heavily relationship-based, which limits investors’ ability to commit to a broad set of funds beyond the general partners
they know. Second, high minimum commitment requirements constrain the number of funds to which investors can
commit. This is consistent with the findings of Gredil et al. (2021) based on pension fund data.

4A potential caveat is that I observe holdings only at a quarterly frequency and thus cannot capture potential
intra-quarter dynamics. While insurers might initially use cash or Treasuries to meet an immediate capital call, my results
reveal the ultimate source of funding insurers choose to meet capital calls, which is more relevant for understanding the
implications for broader financial markets.



which types of bonds investors choose to liquidate. The evidence shows that investors primarily sell
corporate bonds. Moreover, when I break bonds down by risk category using NAIC designations, I find
that sales are concentrated in NAIC 2 and NAIC 3 categories, which correspond to BBB-rated and
high-yield (HY) bonds, respectively. I find no evidence of front running and the portfolio adjustments
are persistent.

Selling risky corporate bonds may first appear counterintuitive, as more liquid assets such as
Treasuries would seem the more natural choice to liquidate. This suggests that considerations beyond
simple transaction costs drive insurers’ portfolio rebalancing decisions. One potential explanation is
that insurers prioritize preserving their regulatory capital. The key regulatory metric used to assess
the financial health of insurance companies is the Risk-Based Capital (RBC) ratio. Prior research has
shown that the RBC ratio is critical for insurers (Ellul et al., 2011; Koijen and Yogo, 2015; Becker
and Ivashina, 2015; Ellul et al., 2015; Merrill et al., 2021; Becker et al., 2022).° Under the current
regulatory framework, the RBC ratio is calculated solely on the basis of on-balance-sheet assets and
does not account for off-balance-sheet items such as uncalled commitments. As a result, funding an
unexpected capital call by selling low-risk-weight assets would raise insurers’ required capital and
significantly deteriorate the RBC ratio. In contrast, selling risky corporate bonds would help mitigate
the deterioration in the RBC ratio. In other words, RBC regulations make insurers view risky corporate
bonds as the closest substitutes for private funds.

I provide three pieces of evidence in support of this explanation. First, insurers facing tighter
regulatory capital constraints are more likely to sell bonds with higher risk weights, whereas less
constrained insurers tend to fund capital calls using cash and more liquid bonds. Second, using
position-level data, I find that insurers are more likely to sell bonds with large unrealized gains when
facing unexpected capital calls. The reason is that most bonds on insurers’ balance sheets are valued
at historical cost rather than mark-to-market (Ellul et al., 2015). Selling a bond with unrealized gains
increases insurers’ book equity value and thus improves the RBC ratio. Finally, I find that the realized
impact of unexpected capital calls on the RBC ratio is smaller for constrained insurers, indicating that
they actively manage their portfolios to mitigate the negative effects of capital calls. Overall, these

results highlight that regulations play a central role in shaping insurers’ portfolio responses to capital

®Though most insurers are above the minimum RBC ratio cutoff (Ge, 2022), fluctuations in the RBC ratio still matter,
as they influence the frequency of regulatory exams and actions, as well as credit ratings, financing costs, and product
pricing (Sen, 2023).



call shocks.

Finally, I examine the motivating question raised by policymakers: Do asset sales induced by
unexpected capital calls generate spillovers to public asset markets? Because insurers mainly sell
corporate bonds, I focus on the corporate bond market. Intuitively, bonds more heavily held by
investors facing larger unexpected capital calls should experience greater selling pressure and negative
price impacts. To test this, I construct a bond-level measure of exposure to unexpected capital calls
in the same spirit as the flow-induced trade-pressure measure commonly used in the literature (Lou,
2012). Consistent with the hypothesis, I find that a one-standard deviation increase in capital call
shock exposure leads to a 0.85 bps increase in yield spreads, confirming the spillover channel. The
effects are mostly concentrated in BBB and HY bonds, consistent with insurers’ rebalancing decisions.
Moreover, the spillover effects are amplified during periods of market stress, such as COVID-19: the
average spillover effect is nearly three times larger in the first quarter of 2020 than in normal periods.

While the reduced-form estimates identify the average spillover effect, policymakers are often
concerned with outcomes under more extreme stress scenarios. I provide suggestive evidence from
counterfactual stress tests using the recent demand-system approach to asset pricing pioneered by
Koijen and Yogo (2019). Utilizing the corporate bond market demand system estimated by Bretscher
et al. (2024), I approximate the price impacts under two illustrative counterfactuals: (1) uncalled
commitments are twice as large, and (2) capital-call shocks are highly correlated across insurers. For
each scenario, I run 10,000 simulations based on the historical distribution of capital call rates and
compute the 1% Value-at-Risk (VaR) for the average changes in bond spreads. The simulations indicate
that doubling insurers’ uncalled commitments would increase the 1% VaR from roughly 2 bps to about
6 bps. The effect of correlated shocks is even stronger, with the 1% VaR reaching nearly 10 bps, or an
aggregate loss of about $8.7 billion. These hypothetical scenarios have not been observed historically
and the goal of this exercise is to illustrate how capital-call-induced selling could amplify stress in
credit markets and potentially contribute to financial fragility.

Taken together, the paper highlights the risks posed by unexpected capital calls. The commitment
structure of private funds positions investors as effective liquidity providers. Fulfilling this liquidity-
provision role presents investors with a complex portfolio management problem. Their decisions
are shaped by transaction costs, opportunity costs, risk management considerations, and, critically,

regulatory constraints. These portfolio responses ultimately shape the direction and magnitude of



spillovers to public markets. This paper provides the first systematic evaluation of these dynamics.
I focus on insurance companies because of the unique data availability. While the exact portfolio
adjustments may vary across investor types, the key message is likely generalizable: unexpected capital

calls induce non-trivial portfolio rebalancing and spillovers to public markets.

Related Literature This paper first contributes to the extensive literature on private funds by
providing the first empirical evidence on how investors manage their portfolios in response to capital
call shocks. Existing studies that focus directly on capital calls are limited and almost entirely focus
on the fund rather than the investor side. Closely related, Braun et al. (2023) show that university
endowments with large uncalled commitments and low liquidity buffers underperformed their peers
during the 2008 financial crisis. Both studies highlight the liquidity risk embedded in private fund
commitments. My paper differs by examining both ex ante and ex post portfolio adjustments in
light of unexpected capital calls, as well as the resulting spillovers to public asset markets. Robinson
and Sensoy (2016) document the cyclicality of fund-level calls and link countercyclical calls to fund
performance, while Li (2025) finds that liquidity shocks experienced by investors can cause delays in
capital calls and subsequent investments. Maurin et al. (2023) model the capital call structure as an
optimal solution to fund managers’ moral hazard problem. More broadly, the paper also relates to
studies examining the performance implications of cash flow uncertainty in private funds (e.g., Brown
et al., 2021, 2024). Additionally, this paper contributes by incorporating a wide range of machine
learning methods into capital call forecasting, complementing existing research on predicting fund-level
cash flows (Takahashi and Alexander, 2002; Jeet, 2020; Cao, 2023; Jeet, 2024).

This paper also relates to studies on investors’ portfolio allocation strategies, a central problem
in finance (Markowitz, 1952; Merton, 1969). Focusing on private funds, prior works have examined
the optimal allocation with illiquid private funds (Ang et al., 2014; Giommetti and Sorensen, 2024).
Gourier et al. (2024) develop and calibrate a dynamic portfolio allocation model with ex ante capital
commitments and stochastic capital-call timing, showing that commitment-quantity risk is substantial,
causing under-allocation to private funds and welfare losses. Chen et al. (2025) incorporate additional
key institutional features, such as regulatory constraints, into a dynamic model of private asset
allocation. Korteweg and Westerfield (2022) provides a thorough literature review. This paper provides

new empirical evidence of how investors dynamically adjust their portfolio allocation when facing



unexpected capital call shocks.

The second literature this paper speaks to is on liquidity transformation and financial fragility by
financial intermediaries. Financial fragility can arise when agents offer highly liquid liabilities while
holding less liquid assets. This problem has been extensively examined in the context of banks (e.g.,
Diamond and Dybvig, 1983; Goldstein and Pauzner, 2005). Since the Global Financial Crisis, growing
attention has also been extended to nonbank financial institutions including money market funds (e.g.,
Kacperczyk and Schnabl, 2013; Schmidt et al., 2016), fixed-income mutual funds (e.g., Chen et al.,
2010; Goldstein et al., 2017; Choi et al., 2020; Falato et al., 2021; Ma et al., 2022), Exchange-Traded
Funds (e.g., Pan and Zeng, 2017; Koont et al., 2025), insurance companies (e.g., Ellul et al., 2022;
Chodorow-Reich et al., 2021), and pension funds (e.g., Jansen et al., 2024; Andonov et al., 2025).
Almeida et al. (2014) provide a conceptual framework and survey for corporate liquidity management.
This paper examines the liquidity management and financial-stability implications arising from a unique
form of liquidity provision: institutional investors’ capital commitments to private funds.

Third, this paper also speaks to the literature on cross-asset spillovers. Since the global financial
crisis, a rapidly growing body of research has studied how risks originating in one asset class can spill
over into otherwise unrelated asset classes. For instance, Manconi et al. (2012) document contagion from
asset-backed securities to corporate bonds during the crisis. Capponi and Larsson (2015) demonstrate
that bank deleveraging activities generate spillover effects on otherwise unrelated assets held by the same
banks. Ellul et al. (2015) show that insurers experiencing high mark-to-market losses disproportionately
sell unrelated bonds with unrealized gains, transmitting shocks across markets. More broadly, Harvey
et al. (2025) identify predictable price co-movements between bonds and equities resulting from
portfolio rebalancing activities. This paper introduces the capital-call-induced portfolio rebalancing as
a novel spillover channel connecting private assets and public markets. It serves as a first step toward
understanding how capital calls affect the interconnectedness between private funds and the public
market.

Finally, this paper contributes to the literature studying the implications of risk-based capital
regulations. Specific to insurers, Ellul et al. (2011), Ellul et al. (2015), Merrill et al. (2021) and Becker
et al. (2022) find that RBC requirements and mark-to-market accounting affect insurers’ incentives
to sell downgraded assets as they impose higher regulatory capital costs. Becker and Ivashina (2015)

demonstrate that, conditional on credit ratings, insurers’ portfolios are biased towards bonds with



higher yields. In terms of real effects, Koijen and Yogo (2015) show that statutory reserve levels led
to extraordinary pricing behaviors for annuity and life insurance products during the financial crisis.
Sen (2023) shows how regulatory treatments affect insurers’ hedging behaviors. This paper is the first
to examine how RBC requirements affect insurers’ response to capital call shocks. Furthermore, this
paper offers valuable policy insights by highlighting the need to incorporate off-balance-sheet exposures,
such as uncalled commitments, when assessing insurers’ risk and liquidity management under capital

regulations.

Paper Outline The remainder of the paper is organized as follows. Section 2 introduces the
institutional background. Section 3 describes the data sources, cleaning procedures, and sample
construction. Section 4 explains the key empirical methods. Section 5 performs descriptive analysis.
Section 6 studies investors’ portfolio adjustments, while Section 7 examines the spillover effects. Section

8 concludes.

2 Institutional Background

2.1 Private Fund Investment

Institutional investors have rapidly expanded their allocation to private funds. Data from the SEC
private fund statistics reveal that the total assets under management (AUM) in private funds (a
combination of PE, VC, and real estate funds) have grown from approximately $2 trillion in 2013 to
around $8.5 trillion by early 2024 (Figure 1 Subfigure (a)). Large financial institutions are the primary
investors in private funds. As shown in Figure 1 Subfigure (b), the largest identifiable investor type is
pension funds, which account for approximately 25% of the market. Sovereign wealth funds follow,
representing around 10%), while insurance companies and nonprofit institutions (such as university
endowments) each hold about 5%. Individuals only account for a very small share of the market.%
Some institutional investors have extremely high allocations to private funds. According to a report by
Private Equity International, as of the end of 2024, Temasek Holdings was the largest investor in the

private fund space, with more than $148 billion allocated, accounting for 58% of its portfolio.

[Insert Figure 1]

5See Balloch et al. (2025) for evidence about retail investors in the private fund market.



2.2 Capital Commitment and Capital Call

Private funds are typically structured as limited partnerships. In this arrangement, private fund
investors, known as Limited Partners (LPs), contribute capital but are not involved in the fund’s
operations. The General Partner (GP), usually the private equity firm, is responsible for sourcing,
managing, and exiting investments. The relationship between the GP and the LPs is formally defined
in the Limited Partnership Agreement (LPA), which specifies the fund’s terms, governance structure,
and the rights and responsibilities of all parties.

Unlike investing in public securities or other delegated vehicles such as mutual funds, LPs in private
funds do not transfer the full amount of their investment upfront. Instead, at the fund’s inception, each
LP makes a Capital Commitment, which is a binding promise to provide capital upon Capital Call
request, up to the total committed amount. Throughout the life of the fund, the GP makes capital
calls to LPs to finance investments, cover fund expenses, or pay management fees. The remaining
uncalled portion of the commitment, which is the total commitment minus cumulative capital calls, is
commonly referred to as “dry powder” by practitioners. In most cases, the full commitment is called
within the first three to five years of the fund’s life, a phase known as the “investment period,” during
which the GP builds the portfolio. As investments mature and are exited, the GP returns proceeds to
LPs in the form of distributions, which typically increase in the later years of the fund’s life.

The LPA grants the GP the authority to call capital at its discretion, subject to two restrictions.
First, each capital call must be made pro rata based on each LP’s initial commitment. Second, the
total amount called cannot exceed the committed amount. From the LP’s perspective, both the
timing and the amount of each capital call are uncertain. Once a capital call is issued, LPs must
transfer the required amount to the GP within a short notice period, typically between five and ten
days. Failure to meet a capital call within the required period constitutes a default. The penalties
for default are severe and may include interest charges, suspension of future distributions, forced sale
of the LP’s interest, or forfeiture of existing stakes (Litvak, 2004 and Banal-Estano et al., 2016).”
In addition to financial consequences, defaulting on a capital call can cause significant reputational
damage, potentially limiting the LP’s future investment. Due to these punitive consequences, defaults
on capital calls are exceptionally rare in practice.

An instructive parallel can be drawn between private fund capital call structure and a bank’s credit

"Also see the LPA template by the Institutional Limited Partners Association: Link.
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line. In this analogy, the LP acts as the lender and the GP as the borrower. By committing capital
at the fund’s inception, the LP effectively extends a line of credit to the GP, with the maximum
limit being the total committed amount. Importantly, as with credit lines, the borrower (GP) retains
discretion over both the timing and the amount of each drawdown. Consequently, LPs face liquidity
and risk management challenges similar to those of banks.

Lastly, some GPs may use capital call facilities, which are credit lines obtained from banks and
secured by investors’ capital commitments. These facilities allow GPs to fund investments immediately
and repay the loan using proceeds from subsequent capital calls. Maturities typically range from 30
days to one year. The main advantage of using capital call facilities is that they enable GPs to deploy
capital more efficiently and help reduce the frequency of capital calls, thereby lowering administrative
burden. However, they have also been criticized for inflating reported performance and reducing
transparency. Albertus et al. (2024) provides a detailed introduction to the institutional background.
Importantly, such facilities do not necessarily make capital calls smoother or more predictable. First,
as capital calls are consolidated to match with loan repayment, each drawdown will be larger. Second,
because these loans are short-term and usually cannot be rolled over, GPs still need to issue capital
calls regularly. Given that the data used in this paper are at quarterly frequency, the impact of capital

call facilities on the analysis is likely limited.

2.3 Private Fund Cash Flow and Valuation

Private funds exhibit distinctive cash flow dynamics due to their capital call structure. A typical private
fund has a lifecycle of 10 to 15 years and is characterized by two main phases: the investment period
and the harvest period. During the investment period, capital calls dominate as the GP builds the
portfolio. From the perspective of LPs, these capital calls represent negative cash flows. Consequently,
the cumulative net cash flow becomes increasingly negative during the early years of the fund. As
the fund matures and its investments are exited, it transitions into the harvest period, during which
distributions, positive cash flows to LPs, dominate. Over time, as distributions accumulate, the
cumulative net cash flow breaks even and eventually turns positive. This unique cash flow pattern is
commonly referred to as the “J-curve.”

Figure TA.1 provides a real-world fund example to illustrate the cash flow pattern. Capital calls

and distributions are represented in blue and red bars. The blue and red lines capture the cumulative
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capital call and distribution. The fund began with an investment period lasting from its inception
in 2007 until roughly 2013. During this phase, cash flows were dominated by capital calls, as the
fund gradually drew down its $10 million of committed capital to build its portfolio. The harvest
period began around 2012, with distributions increasing significantly. The fund reached breakeven in
mid-2015 as cumulative net cash flow (the green line) started to turn positive. Eventually, the fund
had generated a cumulative net cash flow of approximately $9 million.

One key challenge in private fund investment is the unavailability of market prices. As most assets
held by private funds are illiquid and not frequently traded, it is hard to assess the mark-to-market
valuation of the investment. Further, the secondary market for private funds is still limited, which
makes it hard to use secondary market prices to infer the fair value of the fund (Jenkinson et al., 2013;
Chakraborty and Ewens, 2018; Barber and Yasuda, 2017; Brown et al., 2019).%

Despite the fact that fair values are often smoothed or potentially manipulated, they remain
central to assessing both the performance and risk of private fund investments. This is particularly
important for investors such as insurance companies, for whom fair values are used in calculating
Risk-Based Capital (RBC). Under standard accounting frameworks such as GAAP and IFRS, investors
are required to record the fair value of private fund investments for which capital has already been
called. Uncalled commitments, by contrast, are not reflected on insurers’ balance sheets.” When capital
is called, it is recorded as an additional investment and thus mechanically increases the reported fair
value. Subsequent gains or losses on these investments are reflected through fair value adjustments.

Distributions are treated as disposal of investment and reduce the fair value accordingly.

3 Data and Sample Construction

3.1 Insurers’ Private Fund Investment Data

The primary data source for insurers’ private fund investments is Schedule BA from the statutory
filings. I obtained the raw Schedule BA data from S&P Capital IQ Pro. Schedule BA reports insurers’

“Other Long-Term Invested Assets,” a broad category that includes investments not reported in the

8Nadauld et al. (2019) find that the average secondary-market discount for PE is 13.8%, with much larger discounts
during crisis periods. The liquidity risk highlighted in this paper is distinct: private fund investments are not only illiquid,
but also liquidity-demanding.

9This differs from the banking regulation. Under the Basel III framework, banks are required to convert such uncalled
commitments into on-balance-sheet equivalents using a credit conversion factor (CCF) before applying a risk weight. In
contrast, current U.S. insurance regulations focus exclusively on the on-balance-sheet exposure.
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other investment schedules.!® Schedule BA is specifically designed to cover alternative investments
such as private funds. Other typical investments reported in Schedule BA include hedge funds, joint
ventures, surplus notes, and residual tranches of structured finance vehicles.

One key challenge in using Schedule BA data is the absence of a unique and consistent asset identifier.
Investments are reported only by asset name, which often contains inconsistencies, abbreviations, and
typographical errors. For my analysis, it is essential that each private fund investment be assigned
a consistent identifier across time, as many parts of the analysis rely on tracking lagged values or
constructing time series at the fund level. To address this issue, I implement a multi-stage cleaning
process. Appendix TA.2 provides a detailed explanation of the procedures. Here I briefly summarize
the key steps. First, I manually examine a subset of the raw data to identify common variations in
naming conventions and recurring typographical errors. Based on this review, I develop an algorithm
to standardize fund names, correcting for frequently observed inconsistencies. Next, for standardized
names, I identify potential inconsistencies using the panel structure of the data. In many cases, a fund
that appears only sporadically or terminates abruptly is the result of inconsistent naming rather than
an actual investment exit. These suspicious cases are flagged for further investigation. I then submit
the flagged fund names to a large language model (LLM) to perform fuzzy name matching. A key
advantage of using an LLM over traditional string-based fuzzy matching algorithms is that the LLM can
incorporate contextual and external knowledge, including internet-based information. This capability
is particularly valuable in this setting, where many funds have similar names despite being distinct
entities. Relying solely on textual similarity can result in frequent matching errors. Additionally,
fund names may change due to mergers, acquisitions, or rebranding, often leading to substantially
different names. In such cases, LLM-based matching is the only viable approach for correctly identifying
name continuity. After applying the LLM matching, I manually review the remaining unmatched or
ambiguous fund names and manually reconcile the inconsistency if possible. Lastly, I assign a unique
fund identifier to each cleaned fund name and conduct a thorough review of the final sample to ensure
the resulting panel dataset is reliable.

After obtaining unique fund identifiers, I identify all private fund holdings using both the reported
asset type and a screening algorithm based on reported fund names. For each private fund investment,

I extract the initial investment date and the total commitment amount. I also obtain GP names and

90ther investment schedules include Schedule A for real estate, Schedule B for mortgages, and Schedule D for bonds
and stocks.
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fund types by feeding the fund names to an LLM.'! I then collect quarterly transaction data, including
capital calls, distributions, and sales of fund stakes. Finally, I construct the quarterly fair value for each
investment.'? Computing quarterly fair values requires additional steps because individual fund-level
fair value is only available annually. But since transaction data are reported quarterly, I can back out
the quarterly fair value. Specifically, I calculate the quarterly fair value by starting from the year-end
value and adjusting it with the cumulative quarterly transactions, including capital calls, distributions,
and disposals. One important caveat is that fair value adjustments, such as unrealized gains and losses
and other-than-temporary impairments, are only reported annually. To estimate the quarterly fair
value, I assume that these annual adjustments are evenly distributed across quarters, such that each
quarter reflects one fourth of the annual adjustment. Appendix IA.2 provides additional details on the
data cleaning and sample construction procedures.

My dataset offers several important advantages over traditional data sources used in the literature.
First, because Schedule BA is a mandatory filing for all U.S. insurance companies, the dataset provides
comprehensive coverage of private fund investments for each insurer. In contrast, traditional data
sources often rely on Freedom of Information Act (FOIA) requests or voluntary disclosures from GPs.
While these sources may offer detailed fund-level information, they are typically incomplete at the
investor level. Moreover, depending on the data vendor and subscription level, traditional datasets
often cover only certain fund types. By contrast, my dataset covers all private fund types, including
private equity, venture capital, private debt, real estate, and infrastructure. Second, this novel dataset
allows me to link each insurer’s private fund holdings to its full financial statements and other portfolio
holdings, such as bond and equity positions. This enables an analysis of how insurers manage their
overall portfolios in response to private fund investments, which is not possible using existing datasets.
Third, because traditional data sources rely heavily on FOIA requests, their LP coverage is concentrated
among public pension funds, with limited representation of insurance companies. My dataset therefore
offers the first comprehensive, investor-level view of private fund investments by insurers, one of the

most important institutional investors in the financial system.

" Specifically, I classify funds into six types: private equity, venture capital, private debt, real estate, infrastructure and
others.

2Tnsurers are required to report book-adjusted carrying value (BACV) under SAP. For private fund investments, BACV
is equivalent to fair value, as all insurers are required to use fair value accounting for these holdings. For the remainder of
the paper, I use fair value to refer to BACV.

14



3.2 Other Data

Insurer Financial and Portfolio Data I obtain financial information on insurance companies
from statutory filings through S&P Capital IQ Pro. All variables are aggregated at the insurance
group level by insurance type. Key variables include: (1) financial statement items such as total assets,
liabilities, capital and surplus, and net income; (2) insurer-level aggregate investment amounts by asset
class, including bonds, stocks, mortgages, cash, and others; (3) position-level data on bond holdings,
including par value held, fair value adjustments, reported bond types, and NAIC designations; and (4)
the annual regulatory risk-based capital (RBC) ratio. Most financial variables are scaled by lagged

total assets. I also obtain A.M. Best insurer ratings.

Corporate Bond Data I collect corporate bond characteristics such as issuance date, maturity,
outstanding amount, and credit ratings from Mergent FISD. Monthly bond transaction data such
as yield, liquidity, and trading volume are obtained from the WRDS Bond Return Database. 1
calculate bond yield spreads by subtracting the maturity-matched Treasury yield from each bond’s
yield. All monthly variables are converted to a quarterly frequency by taking quarter-end observations
to align with the frequency of the holdings data. These bond-level data are then merged with insurer

holding-level data using bond CUSIP.

Other Variables Most macroeconomic and public market data are obtained from the Federal Reserve
Economic Data (FRED). Specifically, I collect data on GDP, inflation, Treasury yields, public equity
market returns, price-dividend ratios, corporate bond spread indices, and the VIX index. All variables
are converted to quarterly frequency. 1 also use aggregate private fund statistics from the SEC’s
Private Fund Statistics Reports. I also gather additional private equity and venture capital data from
PitchBook. Lastly, I collect data on U.S. private equity market fundraising, deal activity, and internal

rates of return (IRR) from PitchBook’s quarterly U.S. Private Equity reports.

3.3 Sample Construction

I restrict the sample to insurers that report at least one private fund investment. Following the
literature, I aggregate insurers at the insurance group level for each insurer type (Life and P&C). The

sample period is from 2008 to 2023, as transaction data are only available starting in 2008. I restrict
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insurers to those that have positive and non-missing asset and equity values (Capital & Surplus). I also
require the annual RBC ratio to be non-missing. The final sample includes 506 unique insurer groups
(220 life insurers and 286 P&C insurers) and 6,501 unique private funds. Table 1 provides summary

statistics.

[Insert Table 1]

4 Empirical Methods

This section describes two key empirical methods in this paper: (1) measuring unexpected capital calls,

and (2) main regression specifications.

4.1 Measuring Unexpected Capital Calls

The main explanatory variable is the investor-level unexpected capital call. There are several reasons
to focus on the unexpected component rather than the total capital call. First, investors have some
control over total capital calls, as the primary driver is the level of uncalled commitments. For
instance, investors who are increasing their exposure to private funds will naturally anticipate higher
capital calls due to more recent commitments. This endogeneity introduces identification concerns.
In contrast, the unexpected component of capital calls resembles a random shock and is thus more
plausibly exogenous. Second, unexpected capital calls are of greater concern to investors because they
require immediate portfolio adjustments without prior planning. Expected capital calls, on the other
hand, can be managed in advance through strategies such as internal cash flow netting.'® As a result,
the expected and unexpected components of capital calls are likely to have distinct implications for
investors’ portfolio management.

I adopt a bottom-up approach to plausibly measure investor-level unexpected capital calls. Specif-
ically, I first forecast the amount of capital calls for each individual fund, and then aggregate the
fund-level forecasts to the investor level. The unexpected component of capital calls is defined as

the difference between realized calls and my measure of investor-level expected calls. This approach

3Internal cash flow netting, or “commitment pacing”, is a liquidity management strategy in which an LP uses
distributions received from older vintage funds to fund capital calls from younger funds, thereby reducing the need to
hold cash or rebalance the portfolio. This strategy helps smooth cash flows at the portfolio level (PitchBook, 2022).
However, it relies on cash flow forecasting. As a result, it is effective primarily for managing expected capital calls, while
unexpected capital calls still need to be funded through other means. For more details about the industry practice, see
the report by PitchBook: Link.
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takes advantage of the more granular fund-level information and improves predictive performance.™

Effectively, I assume that investors form expectations based on the best available statistical forecasts.
This approach also assumes that investors have the same information set as the econometrician.'® In

the subsections below, I explain the exact implementation in more detail.

4.1.1 Forecasting Models

To predict the fund-level capital call, I generalize the classical Takahashi-Alexander (TA) model
(Takahashi and Alexander, 2002) to incorporate state-of-the-art forecasting techniques. Let j index

fund and ¢ index time.'® The amount of next-period capital called, Cjt+1, can be expressed as equation
(1):

Cja1 = Ujp X RCj i1, (1)
where Uj; is the uncalled commitment from the end of the previous period and RC) ¢4 is the fund-

and time-specific capital call rate.'” Since U ;¢ is known, the expected capital call can be expressed as

Ei[Cji1] = Uje X By [RC}141] (2)

I use the statistically optimal forecast to measure E.[RC}¢1]. Hence, the task is to forecast RC; ;11
at time t. Focusing on forecasting RC); ;1 rather than Cj;,1 offers practical advantages as the RC' is
more stationary over time and less sensitive to fund size, making it more suitable for forecasting and

cross-sectional comparisons. Formally, the forecasting model is as follows:

RCji1 = [ (Xj¢) + €641,

where f(-) is the nonlinear function to be estimated and X;; is the vector of predictors. X;; includes
four categories of variables: (1) macroeconomic indicators such as GDP growth, inflation, and Treasury
yields; (2) public market indicators such as S&P 500 returns, corporate bond spreads, and the VIX

index; (3) private market indicators including aggregate private equity fundraising, deal activity, and

14The results are qualitatively similar if I directly forecast investor-level capital calls.

15While in rare cases some very large LPs, or those serving on investment committees, may possess superior information,
most investors do not receive any inside information. This is consistent with my conversation with a fund manager.
Furthermore, if investors systematically received inside information about future capital calls, we would expect to observe
front-running in their portfolio adjustments. However, the results presented later show that this is not the case.

et a represent the fund’s age, where a = 0 signifies the fund’s inception. Fund age is directly linked to calendar time
t by the relation t = to + a, where %o is the inception period. For simplicity, I index all variables by calendar time t.

"In the original TA model, RC; is simplified as a stepwise function of fund age: RC;; ~ RC(Age).
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average internal rates of return; and (4) fund-specific characteristics such as fund type, fund age,
vintage year, fund size, GP identity, and lagged capital call rates. The predicted value is denoted as
RC Jit+1-

Machine learning methods are well-suited for this task, as f(-) can be highly nonlinear. Moreover,
these methods naturally capture the effects of the investment-period mandate on capital call rates.'® I
employ a set of classical machine learning methods: LASSO, Decision Tree, Random Forest, Light GBM,
and XGBoost. To conserve space, I delegate a more detailed explanation of the models to Appendix
IA.3. Here, I provide a short introduction to the key intuition of each model: (1) LASSO is a linear
model that performs variable selection by penalizing the inclusion of less important predictors; (2)
Decision Tree recursively partitions the data based on predictor values to create a flowchart-like
structure for prediction; (3) Building on decision trees, Random Forest constructs and averages many
independent trees to improve predictive accuracy and control for overfitting; (4) Light GBM and
XGBoost are more sophisticated gradient-boosting models that build trees sequentially, with each new
tree correcting the errors of the previous one, allowing the model to learn complex patterns and often
lead to state-of-the-art performance. I do not consider more complex methods like neural networks,

)

given their “black box” nature. Furthermore, classical gradient-boosting methods are usually more
effective and efficient for structured tabular data without requiring significant tuning and computational
cost.

A key challenge in forecasting capital calls is the prevalence of zeros (Lambert, 1992). Such
data are called zero-inflated. To address this issue, I adopt a two-stage hurdle model, which can
improve performance when handling zero-inflated data (Tobin, 1958; Cragg, 1971; Mullahy, 1986). This
approach separates the forecasting problem into two distinct steps. The first stage is a classification
task to predict the probability that a capital call will be non-zero. The second stage is a regression
task to predict the magnitude of the capital call, conditional on it being positive. The final forecast,
EE‘NH, is the product of these two predictions:

1. Probability of a non-zero call: Pr(RCj 41 > 0| Xj¢) = g1 (Xjt) = Dje41

2. Magnitude of a non-zero call: E[RCjy1 | RCji41 > 0,X;4¢] = g2 (Xjt) = fij.41

3. Final prediction: ﬁz’j,tﬂ = Dji4+1 - fbjt+1

18For example, a typical LPA specifies the investment period as the first five years. If a fund still has substantial
uncalled commitment near the end of the fourth year, we would expect a faster pace of capital calls in the fifth year.
Machine learning methods, such as a simple decision tree, can automatically incorporate such patterns without the need
to model the relationship explicitly.

18



I also consider a simple linear model with five variables as the benchmark, as specified in equation
(3). The five variables are the lagged capital call rate, lagged uncalled commitments, fund age, fund size,
and fund type. These variables are chosen because they are the five most important predictors identified

by the best-performing machine learning model, discussed in more detail in the next subsection.

E¢ [RCjt41] = a + B1RCj ¢ + B2Uncalled;; + B3Fund Age;, + S4Fund Sizej + Fund Type;  (3)

4.1.2 Forecasting Outcomes

The models are trained annually using a 5-year rolling window. For example, to forecast the capital call
in 2019, the models are trained using data from 2014 Q1 to 2018 Q4. Thus, all forecasting results are
out-of-sample. Additionally, to avoid losing observations in my main sample, all models are first trained
and tested on the Preqin data, which also provides fund-level cash flow information similar to my
data. The advantage is that the Preqin data start in the 1990s, allowing me to have an out-of-sample
forecasting model ready at the beginning of my sample.'® For machine learning models that require
tuning of hyperparameters, I apply standard cross-validation procedures using the data before the first
5-year training sample (sample before 2003). All hyperparameters are chosen once and remain constant
thereafter. I delegate a more detailed description to the online Appendix TA.3.

To evaluate model performance, I compute the average R? for each estimation window. Table 2
shows the results. Models are ranked based on the average out-of-sample R2. The best model is the two-
stage Light GBM with an average out-of-sample R? of 7.4%. As expected, the two-stage hurdle models
have superior performance. Predictor importance for the top 20 predictors in the best-performing
model is shown in Figure 2. Predictor importance quantifies each variable’s contribution to reducing
the model’s prediction error, measured by its average gain. Predictors with higher average gain are
more important in explaining the model’s predictions. Variables that are intuitively important for
predicting capital calls, such as lagged uncalled commitments, lagged capital calls, fund age and fund

size, rank among the top predictors.
[Insert Table 2]

[Insert Figure 2]

19The results are qualitatively similar if I directly estimate the model using my sample. But I would have to start my
main sample in 2013 (or even later if I use cross-validation to choose hyperparameters).

19



Interestingly, the performance gains from machine learning models over the linear benchmark
are surprisingly modest. The best-performing model improves the out-of-sample R? by just 0.9%.
This suggests that the underlying predictive relationship is largely linear and that the capital call
process features a low signal-to-noise ratio. While nonlinear interactions and patterns may exist, this
modest improvement implies that they are either weak or unstable over time, making them difficult for
machine learning models to exploit consistently out-of-sample. This finding aligns with the institutional
knowledge that capital calls are at GPs’ discretion and driven by idiosyncratic factors such as investment
opportunities and strategy. From LPs’ perspective, capital calls therefore often resemble idiosyncratic
shocks. Nonetheless, I use the best model (two-stage Light GBM) to predict the capital call rate in the

subsequent analysis.?’

4.1.3 Aggregating to the Investor-level

Using the best predictive model, the expected fund-level capital call amount at period ¢ is computed as
By [Cijas1] = Ugje X B [RCjpa1] = Uge X f (Xje)

where U; ;1 is the amount of uncalled commitment for fund j and investor ¢ at the end of ¢ — 1. Then,

the investor-level expected capital call is computed as

ExzpCally; = ZE,: (Ci 1]
J

Let the realized capital call be denoted as Call;s. Then, the investor-level unexpected capital call
is the difference between the realized capital call and the expected one. Since this paper focuses on
the liquidity shock imposed by unexpected capital calls, I only take the positive component of the
unexpected capital calls.?! Formally, the unexpected capital call, UnexpCall, is defined as in equation

(4). Section 5 provides more description of the unexpected capital call measures.

UnexpCally = max{Call;y — ExpCall;, 0} (4)

29A11 results remain similar if I use the linear benchmark model. Robustness of some key results is tabulated in the
Appendix.

2INegative unexpected capital calls represent positive cash flow shocks, to which investors may respond differently.
Therefore, focusing only on the positive component makes the interpretation cleaner.
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Figure TA.8 displays predicted and actual capital calls over the fund lifecycle. The red lines represent
the actual average capital calls, while the blue lines show the corresponding model predictions. The
blue area represents the 95% confidence interval of the predicted values. Panel (a) plots the capital
call rate (RC'), which follows a bell-shaped pattern: it begins at roughly 6% in the first year, increases
to about 13% by year five, and declines thereafter. Panel (b) shows cumulative capital calls as a
percentage of total commitments. On average, 20% is called by the end of year one, and approximately
80% is called within the first five years. The close alignment between the red and blue lines provides

validation for the prediction model.

4.2 Main Regression Specification

The main regression model is at the insurer—time level. Specifically, the specification is as follows:

AY; = p1UnexpCally + BoExpCally + B3 Disty + Controls 4+ v; + oy + €3¢ (5)

The main dependent variables are changes in portfolio allocations. The key explanatory variable
is the unexpected capital call, UnexpCall;;. 1 also include the expected capital call, ExpCall;, to
examine how investors manage the capital calls that are anticipated. I control for distributions,
Dist;;, as distributions are positive cash flow shocks that also affect portfolio allocation.?? Additional
controls include lagged expected and unexpected capital calls, lagged distributions, lagged private fund
allocations, asset growth, return on assets, insurer size, capital and surplus, leverage ratio, and the
previous year-end RBC ratio.

One potential concern is that omitted variables might bias the estimation, as this empirical approach

only relies on fixed effects and control variables.?> For an omitted factor to bias the estimation, it

22 Another way to control for distributions is to directly use net cash flows, defined as distributions minus capital
calls. While net cash flows indeed represent the ultimate cash flow shocks investors experience from their private fund
investments, I choose to separate capital calls and distributions in the main specifications for several reasons. First,
combining capital calls and distributions may create identification concerns. Unexpected capital calls are plausibly
exogenous, as they largely stem from the stochastic timing of private investments. Distributions, however, are directly
influenced by public equity market conditions (e.g., exits through IPOs or M&A), which could introduce omitted-variable
bias. For instance, if we observe a reduction in equity holdings following a negative cash flow shock driven by low
distributions, that effect is likely confounded by equity market downturns. Second, focusing on capital calls allows me to
isolate the liquidity shock channel. Distributions represent positive cash inflows, to which investors may respond very
differently. Combining the two would therefore blur the interpretation. Third, it is substantially more difficult to measure
the unexpected component of distributions, since the model would need to predict not only distribution rates but also
growth rates, increasing the risk of measurement error. Nonetheless, I show in the Appendix that the results are robust
when using net cash flows instead.

23Reverse causality is unlikely, as capital calls are initiated by GPs.
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must satisfy two conditions: (1) be correlated with both unexpected capital calls and changes in
portfolio allocations, and (2) disproportionately affect certain investors (not absorbed by time fixed
effects). There are several reasons why I do not think omitted variable bias poses a serious threat
to my analysis. First, unexpected capital calls are constructed as the residuals from the machine
learning prediction model and are therefore unpredictable by nature. Second, GPs, not LPs, control
the timing of capital calls, and commitments are made well before capital is drawn, making it unlikely
that investors can adjust calls in response to their own contemporaneous shocks. Third, I am not aware
of any economically plausible omitted factors that could jointly drive unusually high capital calls and
systematic portfolio rebalancing.?*

Lastly, to fully account for the dynamic effects of unexpected capital calls, 1 estimate a local
projection following Jorda (2005). The local projection method estimates the dynamic impulse response
of an outcome variable to shocks at different horizons. Specifically, this approach directly regresses the

cumulative changes in the outcome variable on current shocks. My model specification is as follows:

Yiton —Yig—1 = B?Unexp(}'allit + ﬂSExpCallit + Bg‘Dz’stit + Controls + v; + ¢ + €4 (6)

5 Descriptive Statistics

5.1 Insurers’ Portfolio Allocation

Table 1, Panel A, presents summary statistics on insurers’ portfolio allocations, while Figure IA.9 plots
aggregate allocations separately for life and P&C insurers. Long-term bonds are the largest asset class
for both groups, accounting for 70% of life insurers’ portfolios and 50% of P&C insurers’ portfolios.
Among bond types, industrial bonds, primarily corporate bonds, dominate, comprising 50% of life and
20% of P&C allocations. Both groups hold approximately 5% in Treasury securities. Other long-term
bond holdings include mortgage-backed securities and municipal bonds. A key difference between the
two is equity exposure: P&C insurers allocate about 30% to public equities, while life insurers invest
only 5%. In contrast, life insurers hold 15% in mortgage loans, whereas P&C insurers’ exposure to
mortgages is minimal. Both groups hold about 5% in cash and cash equivalents. Lastly, both groups

have steadily increased their allocation to Schedule BA assets, reaching approximately 6% of their

241 specifically discuss potential confounders such as interest rates in the context of my findings later.
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portfolios by the end of the sample period.

5.2 Insurers’ Private Fund Investment

Figure 3 plots the aggregate private fund investments held by U.S. insurance companies. Insurers have
significantly increased their allocations to private funds, rising from less than 50 billion dollars in 2005
to over 360 billion dollars by the end of 2023. The blue bars in the figure represent the book-adjusted
fair value of these investments. As of 2023, the on-balance-sheet book value of insurers’ private fund
holdings exceeded 260 billion dollars. As discussed earlier, the capital call structure of private funds
implies that a portion of committed capital remains off-balance-sheet until it is called. The red bars in
the figure represent these uncalled commitments. By the end of 2023, the total uncalled commitments
held by insurers were approximately 100 billion dollars. The orange line plots the ratio of uncalled
commitments to on-balance-sheet book value. This ratio began at around 50 percent in 2005, reflecting
the early stage of insurers’ involvement in the private fund market as they built up their portfolios. As

insurers’ private fund portfolios matured, the ratio declined and stabilized at around 30%.

[Insert Figure 3]

Figure 4 presents the distribution of private fund allocations across insurers. Panel (a) shows box
plots of private fund allocations by year, measured as a percentage of total assets. Each box represents
the interquartile range (IQR), with the bottom and top edges corresponding to the first and third
quartiles. The horizontal dark blue line inside each box denotes the median, while the red triangle
indicates the mean. The vertical lines extending from the boxes (whiskers) show the range of the data,
excluding outliers. Individual observations beyond the whiskers are plotted as light gray dots. Private
fund allocations by insurers have increased steadily over time, particularly after 2020. By the end of
2023, the median allocation is approximately 2%, the average is around 3%, and the third quartile
reaches about 4%. The data also reveal substantial heterogeneity and skewness. For example, in
2023, the upper whisker extends to roughly 8% —more than twice the interquartile range—and several
outliers exceed 10%. Panel (b) shows a binned scatter plot of private fund allocations versus insurer
size, measured by total assets. There is a general positive correlation between insurer size and private
fund allocation. However, a few small insurers allocate a disproportionately large share of their assets

to private funds.
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[Insert Figure 4]

5.3 Investor-level Capital Call Dynamics

Figure 5 subfigure (a) plots the time series of the aggregate amounts of total (red line), expected
(green line), and unexpected (blue bars) capital calls. From 2008 to 2024, expected capital calls in
the insurance sector rose from about $3 billion per quarter to over $10 billion, reflecting insurers’
expansion into private fund investments. Notably, the expected capital call series closely tracks the
realized capital calls, supporting the validity of the forecasting method. Subfigure (b) scales capital
calls by uncalled commitments to remove the underlying time trend. The aggregate expected capital
call rate is almost a flat line around 10%, indicating that about 10% of the remaining commitments
are called each quarter. In contrast, the total capital call rate displays substantial fluctuation over
time, with notable spikes in 2008, 2012, 2015, and 2021. For instance, the call rate reached 18% in the
first quarter of 2013. The total amount of unexpected calls, as defined in Equation (4), is below $2

billion during normal periods but can exceed $5 billion in certain quarters.

[Insert Figure 5]

Figure 6 presents the distribution of investor-level capital calls. Panel A shows capital call rates,
while Panel B displays capital call amounts as a share of insurers’ total portfolios. Within each panel,
subfigures (a) through (c) show total capital calls and the unexpected and expected components,
respectively. Consistent with the aggregate patterns, the average capital call rate is around 10%,
which is also the average expected rate. About 10% of observations show zero capital call rates, more
commonly among investors with only a few private fund commitments. The distribution is highly
right-skewed: the 90th, 95th, and 99th percentiles reach approximately 20%, 30%, and 55%, respectively.
Around 60% of observations have unexpected capital call rates equal to zero, meaning realized capital
calls do not exceed expectations. Conditional on receiving a positive unexpected call, the average
unexpected capital call rate is approximately 12%. The distribution of capital call amounts as a share
of insurers’ total portfolios is more dispersed, as it reflects variation in portfolio size and private fund
exposure across investors. On average, capital calls equal 0.2% of portfolio value. At the upper tail,

the 90th, 95th, and 99th percentiles are 0.5%, 0.7%, and 1%, respectively.

[Insert Figure 6]
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Figure 7 plots the distribution of unexpected capital calls over time. The pattern mirrors that of
Figure 5, with the distribution shifting upward during periods of high aggregate capital calls. Still,
the cross-sectional dispersion remains wide each quarter. The 99th percentile frequently reaches 1%,
highlighting that some insurers face large unexpected calls even when aggregate capital calls are

moderate.
[Insert Figure 7]

To further understand the sources of variation in investor-level capital calls, I conduct a variance
decomposition. Table 3 Panel A presents results for capital call amounts scaled by investors’ portfolio
size, while Panel B reports results for capital call rates. For capital call amounts, the expected
component accounts for approximately 60% of the total variation, largely driven by cross-sectional
differences in uncalled commitments. In contrast, for capital call rates, the expected component explains
less than 10% of the total variation. By construction, the positive part of unexpected capital calls
accounts for roughly half of the remaining variation. I further decompose the unexpected component
into investor-specific, time-specific, and idiosyncratic elements. Specifically, I compute the R? from
regressions with insurer fixed effects to capture investor-specific variation, with time fixed effects to
capture time-specific variation, and use the residual from a two-way fixed effects model to measure the
idiosyncratic component. Approximately 16% of the variation is investor-specific, 4.2% is time-specific,
and 78% is idiosyncratic. These results suggest that, although investor-level capital calls display some

aggregate patterns, most of the variation remains idiosyncratic.
[Insert Table 3]

The high degree of idiosyncratic variation in capital calls suggests that investors are significantly
under-diversified with respect to capital call risk. A common explanation is that the high costs of
selecting and managing a large number of private fund investments make it impractical to hold a
fully diversified “market portfolio” of private funds (Brown et al., 2024; Gredil et al., 2021). The
unpredictable and idiosyncratic nature of capital calls implies that investors face substantial risk from
unexpected capital call shocks. Motivated by this, the next section examines the portfolio management

challenges posed by such shocks.
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6 Portfolio Effects

6.1 Ex Ante Liquidity Buffers

Given the inherent unpredictability of capital calls, a conservative approach is to hold sufficient cash or
liquid asset buffers in anticipation of future drawdowns. However, maintaining large buffers can be
costly, especially when capital calls are more unpredictable. Investors may be forced to hold low-yield
assets over extended periods. Moreover, it is unclear how much of a buffer is optimal. The most
conservative strategy would require holding a buffer equal to 100% of uncalled commitments, but such
an approach is impractical. In practice, determining the optimal buffer remains an unsolved issue.?’
Thus, how investors manage capital calls ex ante remains an open empirical question.

I begin by examining whether investors prepare for future capital calls by holding liquid asset
buffers. If that is the case, we would expect a positive correlation between cash holdings and uncalled
commitments. Figure 8 presents bin-scatter plots where the x-axis shows uncalled commitments and
the y-axis shows liquid asset holdings. Panels (a) through (d) consider four definitions of liquid assets:
cash, Treasury bonds, NAIC 1 bonds (e.g., A~AAA rated corporate bonds), and a composite measure
combining all three. Across all definitions, the correlations are either flat or slightly negative, which

suggests no ex ante liquid asset buffer in preparation for future capital calls.
[Insert Figure 8|

Table 4 presents the formal regression analysis. In Panel A, I regress liquid asset holdings on uncalled
commitments. None of the estimated coefficients are statistically significant, and three are negative. To
test whether investors increase liquid buffers following new commitments, I examine changes in liquid
assets after new commitments in Panel B. Again, the results are statistically insignificant. Figure 9
further illustrates the dynamic effects and confirms the results. Together, these findings suggest that,
on average, investors do not appear to hold liquid asset buffers ex ante in anticipation of future capital

calls.?6
[Insert Table 4]

[Insert Figure 9]

25For example, PitchBook provides clients with solutions for capital call forecasting and liquidity management. See link.
26These results are consistent with the findings of Andonov et al. (2025), which show that public pension funds also
maintain low liquidity buffers despite facing potential negative cash flow shocks.
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6.2 Ex Post Portfolio Adjustments

Next, I examine how investors rebalance their portfolios in response to capital calls. The dependent
variables are changes in portfolio allocations across major asset classes: private funds, long-term
bonds, cash, mortgage loans, equities, and a residual category. Since the data only provide insurers’
end-of-quarter holdings, I cannot observe intraquarter portfolio adjustments. For example, consider a
scenario in which an investor initially uses cash to meet a capital call and later in the quarter sells
corporate bonds to restore the original cash level. In such cases, my analysis would primarily capture
the bond-selling activity, not the immediate use of cash. Therefore, the results should be interpreted
as reflecting the impact of capital calls on investors’ equilibrium portfolio allocations, rather than their
immediate liquidity responses. While the latter is more relevant for studying short-term liquidity risk,
the former offers more insights regarding the longer-term portfolio implications of capital calls.

Table 5 presents the results. Panel A reports the effects of total capital calls. As expected, capital
calls lead to significant increases in private fund allocations, while distributions lead to significant
decreases. The coefficients suggest that a 1% capital call results in an approximate 0.6% increase in
private fund allocation, whereas a 1% distribution leads to a 0.9% decrease. More interestingly, column
(2) shows that a 1% capital call is associated with a 0.5% reduction in long-term bond holdings. Column
(3) indicates a 0.25% decline in cash holdings, although this estimate is not statistically significant.
Columns (4) through (6) show no meaningful changes in other asset classes, such as mortgage loans and
equities. Taken together, the results suggest that investors meet capital calls primarily by reducing their
holdings in long-term bonds and, to a lesser extent, cash. For distributions, although the estimates are
not significant, the direction of the coefficients suggests that proceeds are reinvested into cash, bonds,
and other residual asset categories. Figure 10 presents the dynamic effects using local projections as in

equation (6).

[Insert Table 5]

[Insert Figure 10]

Panel B separates expected and unexpected components. The results for unexpected capital calls
closely mirror those for total capital calls: investors primarily reduce allocations to long-term bonds.

In contrast, the coefficients for expected capital calls are statistically insignificant and much smaller
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in magnitude. This is consistent with the earlier discussion that expected calls are managed ex ante
through strategies such as internal cash flow netting. Such an approach eliminates the need for investors
to adjust their portfolios when expected calls are realized. As a result, expected capital calls generate
little explanatory variation in portfolio shifts, leading to small and insignificant regression coefficients.
Appendix TA.1 provides a simulation that illustrates how commitment strategies can mute the estimated
effect of expected calls.

Additionally, Figure 11 presents the dynamic effects using local projections as in Equation (6).
The results suggest that the effects of unexpected capital calls on portfolio allocations are persistent.
Notably, while not statistically significant, investors continue to reduce long-term bond holdings in
the subsequent quarter, while beginning to rebuild cash balances. This pattern is consistent with the
notion that investors seek to maintain a stable level of cash. After partially funding the capital call
with cash in the first quarter, they appear to offset that drawdown by selling additional bonds in the

following quarters, thereby returning cash holdings to pre-shock levels.
[Insert Figure 11]

Omitted variables are unlikely to drive these findings. An important driver of changes in bond
holdings is movements in interest rates. Time fixed effects may not be sufficient if interest rate changes
disproportionately affect bond holdings for certain insurers. An increase in interest rates typically
leads to a decline in bond allocations, either mechanically through price decreases or through active
rebalancing. However, for most private funds, such as buyout and real estate funds, higher interest
rates tend to reduce capital calls, because many private deals rely on access to credit markets for
leverage.?” This pattern is the opposite of my findings. Furthermore, the fact that the coefficients on
changes in private fund allocations and bond allocations are roughly one-to-one provides additional
support that the estimated effects are likely causal.

The next question is which types of long-term bonds investors are selling in response to capital
calls. Table 6 presents the regression results, and Figure 12 displays the corresponding dynamic effects.
In Panel A, long-term bonds are first broken into four types: Treasury bonds, industrial bonds, non-
Treasury government agency bonds, and others. Only industrial bonds show a statistically significant

decline, with a 1% unexpected capital call resulting in a 0.75% reduction in allocation, which is close

2"The only exception may be private debt funds. For example, higher interest rates can create additional investment
opportunities for distressed lending strategies. I rule out this concern by conducting two robustness checks: (1) excluding
private debt funds and (2) focusing on subsamples with no changes in interest rates. All results remain unchanged.
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to 100% of the total impact of capital calls on long-term bond holdings. Additionally, columns (5) and
(6) further divide industrial bonds into corporate and non-corporate segments, revealing that nearly all
the reduction occurs in corporate bonds. These results together imply that investors predominantly
liquidate corporate bonds to meet unexpected capital calls.?®

Another dimension that may influence insurers’ bond-selling decisions is the NAIC designation,
which directly affects the RBC risk weight. Panel B of Table 6 presents the results. Columns (1) through
(6) correspond to NAIC designations 1 through 6. Bonds with an NAIC 1 designation are considered
the safest and most liquid, while those with NAIC 6 are the riskiest and least liquid. The associated
RBC risk weights are summarized in the Appendix. Interestingly, the coefficients on unexpected capital
calls are statistically insignificant for NAIC 1 bonds, indicating that insurers generally avoid liquidating
these assets. In contrast, capital calls significantly reduce holdings in all other categories. The largest
reduction is seen in NAIC 2 bonds, which correspond to BBB-rated corporate bonds. The impact on
NAIC 3 through NAIC 6 bonds—primarily HY bonds—is also statistically significant but smaller in
magnitude. These findings are consistent with Ge and Weisbach (2021), which shows that insurers
shift away from risky corporate bonds when facing negative shocks. Taken together, these findings
suggest that insurers fund unexpected capital calls not by selling their most liquid bonds, but rather

by liquidating BBB-rated and some high-yield corporate bonds.
[Insert Table 6]

[Insert Figure 12]

6.3 Mechanism Analysis

Why do insurers choose to sell risky corporate bonds to fund capital calls? If their objective were
to minimize transaction costs, they would likely sell Treasury securities or use cash. One potential
explanation is that insurers aim to preserve their RBC ratios. As described in Section 2.3, under
the current regulatory framework, only private fund investments that are already called and held on
the balance sheet are recognized in the RBC calculation, while uncalled commitments are excluded.
Since called private fund investments receive a 30% risk weight—the highest among common asset

classes—unexpected capital calls increase capital requirements. If insurers were to fund capital calls by

28These results are consistent with Andonov et al. (2025), which also find that public pension funds do not rely on cash
or Treasuries when facing negative cash flow shocks.
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using cash or highly liquid assets such as Treasury securities or NAIC 1 bonds—both of which have
a 0% risk weight—they would be replacing the lowest-cost assets with the highest-cost ones. This
substitution leads to a significant increase in required capital and a deterioration in the RBC ratio.
The above explanation suggests that insurers facing tighter regulatory capital constraints are more
likely to fund capital calls by selling bonds with higher risk weights. To test this hypothesis, following
Sen (2023), I divide insurers into two groups based on whether their RBC ratio is above or below the
median within their insurer type (Life or P&C) in each period. Insurers with below-median RBC ratios
face tighter regulatory capital constraints. Table 7 presents the results, and Figure 13 reports the
corresponding dynamic effects estimated using local projections. Panels A and C show the outcomes
for the low-RBC group, while Panels B and D correspond to the high-RBC group. Consistent with the
hypothesis, insurers with tighter regulatory capital constraints are more likely to sell bonds in response
to unexpected capital calls, whereas those with looser constraints tend to rely more on cash. Further
breakdown by bond category reveals that constrained insurers are particularly likely to sell BBB and

HY bonds to fund unexpected capital calls, again consistent with the hypothesis.

[Insert Table 7]

[Insert Figure 13|

In addition to selling bonds with high risk weights, insurers may also preserve their RBC ratios by
selling bonds with high unrealized gains. Since most bonds are held at historical cost rather than marked
to market (Ellul et al., 2015), selling a bond with unrealized gains will increase equity and improve
the RBC ratio. Based on this reasoning, I hypothesize that insurers facing tighter regulatory capital
constraints are more likely to sell bonds with high unrealized gains. To test this, I use position-level
data and estimate a regression where the dependent variable equals one if a bond is sold. The analysis
is conducted at the insurer-bond-time level. To isolate the effect of unrealized gains, I include tight
fixed effects. Bond-by-time fixed effects control for bond-specific time-varying characteristics, including
performance, coupon, maturity, and credit quality. This allows me to compare the sale decisions of two
insurers holding the same bond at the same time but with different unrealized gains due to different
purchase prices. I also include insurer-by-time fixed effects to absorb time-varying insurer-specific
factors, such as capital position and liquidity needs.

Table 8 presents the results, with Panel A showing the full sample, Panel B the low-RBC group,
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and Panel C the high-RBC group. First, in line with earlier findings from the insurer-level analysis, the
interaction between unexpected calls and NAIC designation is significantly positive, indicating that
insurers tend to offload bonds with higher regulatory risk weights when facing unexpected capital calls.
The coeflicient on unrealized gains is significantly negative, indicating that, in general, insurers are
less likely to sell bonds with large unrealized gains. This finding is intuitive, as insurers are typically
buy-and-hold investors and have little incentive to sell well-performing bonds under normal conditions.
Notably, the interaction term between unexpected capital calls and unrealized gains is significantly
positive. This implies that, when faced with unexpected calls, insurers are more likely to sell bonds
with high unrealized gains, consistent with the hypothesis.

Additionally, I include a measure of bond illiquidity along with the corresponding triple interaction
terms in column (3) to assess how insurers balance the trade-off between transaction costs and the
impact on their RBC ratios. The interaction between unexpected capital calls and illiquidity is
significantly positive, indicating that insurers are more likely to sell illiquid bonds in response to capital
calls. While this finding may appear counterintuitive, it likely reflects the fact that bonds with higher
risk weights also tend to be less liquid. Importantly, both triple interaction terms are significantly
negative. This suggests that, conditional on the same NAIC designation and unrealized gains, insurers
are less likely to sell illiquid bonds, which is intuitive. Taken together, these results imply that insurers
prioritize preserving their RBC ratios over minimizing transaction costs when deciding which assets to

liquidate in response to unexpected capital calls.

[Insert Table 8|

Another way to validate insurers’ incentive to preserve their RBC ratios is to examine the realized
impact. The hypothesis is that insurers facing tighter capital constraints should experience smaller
realized declines in their RBC ratios following unexpected calls due to their efforts to preserve the
RBC ratio. Table 9 presents the results. Consistent with this hypothesis, the coefficient on unexpected
capital calls is statistically insignificant for the low-RBC group but significantly negative for the
high-RBC group. This suggests that constrained insurers actively manage their RBC ratios when

facing unexpected capital calls, whereas unconstrained insurers do not.

[Insert Table 9]
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7 Spillovers

In this section, I examine whether portfolio rebalancing induced by unexpected capital calls generates
spillover effects to other parts of the financial market. In particular, as previous results show insurers
mostly sell corporate bonds, I focus my analysis on the corporate bond market. The central hypothesis
is that bonds more heavily held by insurers with larger unexpected calls should experience temporary

price declines due to selling pressure.

7.1 Measuring Bond-level Capital Call Exposure

To test this hypothesis, I first construct a bond-level measure of exposure to insurers’ unexpected capital
calls, Exposure;;, which is effectively an ownership-weighted average of unexpected calls across insurers.
The formal definition of Exposure; is provided in Equation (7). Ownership;j;—1 denotes insurer j’s
lagged ownership share of bond ¢, and UnexpCall;; represents the dollar amount of unexpected calls
for insurer j at time ¢. This step assumes that non-insurance bondholders face no capital calls or do
not use corporate bonds to meet capital calls.?? Hence, the results can be viewed as a lower bound. I
then scale this weighted average by the lagged amount outstanding for bond ¢ to account for differences
in bond sizes. Finally, I take the log, as the distribution of the raw measure is highly dispersed. The

Appendix shows the distribution of Ezposure;.

Zj Ownership;ji—1 x UnexpCallj
Outstanding; ;—1

Ezxposure;; = log <1 + (7)

The intuition behind Exposure;; is similar to the flow-induced trade-pressure measure commonly
used in the literature (Lou, 2012). Insurers’ unexpected capital calls are plausibly exogenous to bond
fundamentals. Furthermore, each bond’s exposure to the capital call shock is determined by its lagged
ownership. Hence, Exposure; should satisfy the exclusion restriction and can be used as an IV. For
instance, to estimate the effect of insurers’ selling activity on bond prices, one could regress bond
yields on the amount of bond holdings sold by insurers. This is similar to approaches used in the price
elasticity literature (e.g., Chaudhary et al. 2023). To isolate the price impact arising specifically from

capital calls, Fxposure;; can serve as an instrument for the insurer sales variable. The corresponding

29@Given that corporate bonds are largely held by insurance companies and mutual funds, this assumption is reasonable.
The caveat is that I exclude pension funds, which invest in both private funds and corporate bonds.
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two-stage least squares (2SLS) specification is shown in Equation (8).

AYieldSpread;; = BAHomsit 4+ Controls; + FEs + €;

AHoldings;y = yExposure;; + Controls;: + FEs + ug

7.2 Spillover Results

Table 10 presents the results of the spillover tests. Columns (1) through (3) assess the validity of the
exposure measure by testing whether bonds with higher exposure to capital call shocks experience
greater selling pressure from insurance companies. In column (1), the dependent variable is the total
amount of shares sold by insurers, scaled by bond size. Column (2) examines the extensive margin. In
both cases, the coefficient on Exposure;; is significantly positive, indicating that bonds with higher
exposure are more likely to be sold by insurers. Column (3) provides a more direct test by examining
changes in insurers’ ownership. The coefficient on Exposure;; is significantly negative, suggesting that
bonds with greater capital call exposure experience a decline in insurance ownership over time. In
economic terms, a one-standard-deviation increase in Exposure;; is associated with a 0.3% decline in

insurer ownership.
[Insert Table 10]

Next, I examine whether the selling pressure induced by capital calls leads to price impacts. In
column (4), I regress the change in yield spread on the bond-level exposure measure. The coefficient
on Fxposure; is significantly positive, consistent with the hypothesis that bonds with higher exposure
experience price declines. Economically, a one-standard-deviation increase in Fxposure; is associated
with a 0.85 basis point increase in yield spread. To further test this relationship, I use Exposure;; as an
instrument for the change in insurers’ holdings. The resulting coefficient can be interpreted as a price
elasticity. Column (5) reports the second-stage results, with column (3) showing the first stage. The
Kleibergen—Paap F-statistic is 32, exceeding the conventional threshold for a strong instrument (Stock
and Yogo, 2005). As expected, the coefficient is significantly negative, indicating a downward-sloping
demand curve.

Next, I examine the dynamic effects using the local projection framework described in Equation 6.

Figure 14 displays the results, with Subfigures (a) through (c) corresponding to Columns (3) to (5) in
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Table 10. For insurers’ holdings, the coefficients remain stable following the initial decline at period
t = 0, indicating that insurers do not reverse the reduction in holdings in subsequent quarters. In
contrast, the effect on yield spreads appears to be short-lived. Only the contemporaneous coefficient is
statistically significant, and it becomes insignificant in the following period. This pattern is consistent
with the interpretation of capital call as a transitory shock for certain investors. The immediate price
impact reflects limited liquidity in the corporate bond market and the presence of inelastic demand,

while the reversal suggests the influence of slow-moving capital.
[Insert Figure 14|

Finally, I examine the heterogeneity of the spillover effects. As shown in Section 6.2, investors
do not sell bonds randomly; instead, insurers tend to sell bonds with higher risk weights to mitigate
the negative impact on their RBC ratios. Holding everything else constant, bonds with higher risk
weights are therefore expected to face greater selling pressure. Moreover, such bonds are, by definition,
more illiquid. As demonstrated in Bretscher et al. (2024), illiquid bonds exhibit larger price impacts in
response to a given demand shock. Taken together, these insights suggest that bonds with higher risk
weights should experience stronger spillover effects from capital call shocks. To test this hypothesis,
I interact the exposure measure z; with indicator variables for each bond’s NAIC category. These
categories are based on credit ratings following Li (2024).3° Specifically, NAIC1 corresponds to
bonds rated A to AAA, NAIC?2 includes bonds rated BBB, and NAIC3 comprises lower-rated bonds
corresponding to NAIC categories 3 through 6.

Table 11 presents the results. Columns (1) and (3) report regressions of changes in insurers’ holdings
and yield spreads on the interaction between z; and the NAIC risk-weight indicator variables. For
bonds with an NAIC designation of 1, the spillover effects are relatively weak, with coefficients either
insignificant or only marginally significant at the 10% level. NAIC 2 bonds (i.e., BBB-rated) exhibit
the strongest spillover effects. For the same level of exposure, the selling pressure for NAIC 2 bonds is
about four times greater than that for NAIC 1 bonds, and the associated price impact is more than
ten times larger. Bonds with lower credit ratings (NAIC 3-6) also experience significant spillover
effects, though of smaller magnitude compared with NAIC 2. Column (4) reports the 2SLS estimates

to directly compare price elasticities (first-stage results are in Appendix Table TA.10). Overall, these

30T do not use the actual NAIC designations because they may vary across investors, become outdated, or be affected
by regulatory changes (Kirti and Singh, 2025).
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results align with the findings in Section 6.2, which shows that insurers predominantly sell BBB and

HY bonds.

[Insert Table 11]

Lastly, the spillover effects could be amplified when capital call shocks coincide with broader adverse
market events. During such periods, already-depressed liquidity conditions may exacerbate the price
impact of additional selling pressure as other investors may be unwilling to provide liquidity. On the
other hand, investors may choose to use cash rather than sell corporate bonds to meet capital calls,
which could lead to smaller spillover effects. Therefore, the overall impact remains an empirical question.
I use the COVID-19 pandemic to test this hypothesis, as the corporate bond market experienced severe
stress and liquidity shortages (Falato et al., 2021; Kargar et al., 2021). To capture this effect, I interact
a COVID dummy (equal to one for 2020 Q1) with Exposure;. Columns (2) and (5) report OLS results,
and Column (6) presents the 2SLS estimates. The coefficient on insurers’ holdings is slightly smaller
during this period, possibly reflecting insurers’ reluctance to sell corporate bonds in stressed markets.
Despite this, the coefficient is still significantly negative. The estimated price impacts are nearly three
times larger than in normal periods. These findings support the idea that spillover effects are amplified
when capital call shocks coincide with broader adverse shocks.

This finding has important implications for financial stability. As shown in Section 5, most of the
variation in capital calls is idiosyncratic, meaning that some investors may still experience large capital
calls during periods of market stress. Indeed, a closer look at Figure 7 shows that certain insurers faced
unexpected capital calls as large as 1% of their total assets in 2020 Q1. These “inconvenient” capital
calls can trigger large spillover effects. Actually, some industry reports have documented that some
private credit funds issued abnormally high capital calls during the first quarter of 2020, particularly
in senior debt and distressed debt strategies.?! As private fund investments continue to grow, the risk

of such “inconvenient” capital calls may pose a threat to financial stability.

7.3 Counterfactual Stress Tests

While the reduced-form estimates identify the average spillover effect, policymakers are often concerned

with outcomes under more extreme stress scenarios. In this section, I provide suggestive evidence from

31Gee MSCI.
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simulated stress tests using the recent demand-system approach to asset pricing pioneered by Koijen
and Yogo (2019). To conserve space, I briefly outline the key steps in the simulation procedure and
leave further details to Appendix IA.5.

I begin with insurers’ actual holdings at 2019Q4, as the Bretscher et al. (2024) sample ends in
2020Q3, and I want to avoid the COVID period. For each bond, I observe the holdings across all
investors. The demand elasticities and other coefficients of the demand system are directly taken
from Bretscher et al. (2024).32 T link all insurers (both life and P&C) to my dataset to obtain their

uncalled private fund commitments as of 2019Q4.33

Next, for each insurer, I randomly draw a capital
call rate from the historical distribution. In the baseline simulations, these draws are independent
across insurers. Guided by the empirical findings in Section 6.2, I assume that capital calls are funded
through corporate bond sales, with the composition of sales determined by the regression estimates.
Given these inputs, the demand system computes new equilibrium prices for all bonds. I then calculate
the average change in yield spreads across bonds. The simulation is repeated 10,000 times, and I report
the 1% VaR.

In addition to the baseline, I consider two stress scenarios: (1) uncalled commitments are twice as
large, and (2) capital-call shocks are concentrated. The first scenario is implemented by doubling each
insurer’s uncalled commitments. For the second scenario, in each simulation, I randomly select half of
the insurers to experience capital call rates drawn from the top quartile of the historical distribution.

I report the main results here and provide full details in the appendix. Under the baseline scenario,
the 1% VaR is roughly 2 basis points—an economically meaningful change given the size of the
corporate bond market. Doubling insurers’ uncalled commitments increases the 1% VaR to about 6
basis points. The effect of concentrated shocks is even larger, with the 1% VaR reaching nearly 10
basis points, corresponding to an aggregate loss of roughly $8.7 billion. Admittedly, these hypothetical
stress scenarios have not been observed historically. The goal is not to forecast precise outcomes, but
rather to illustrate the underlying mechanism: capital-call-induced selling can amplify stress in credit

markets and potentially contribute to financial fragility.

321 thank the authors for generously providing their code and coefficient estimates.
33Effectively, I assume that all other investor types have no uncalled commitments to private funds. Because pension
funds also allocate to both private funds and corporate bonds, my estimates should be viewed as a lower bound.
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8 Conclusion

The funding structure of private funds makes their investors effective liquidity providers, exposing them
to the risk of unexpected capital calls. Utilizing novel data, this paper provides the first systematic
examination of insurers’ liquidity management practices and the resulting spillovers to public asset
markets. Importantly, the findings reveal that investors do not necessarily manage capital call risk in a
way that promotes financial stability. Their portfolio decisions are shaped not only by transaction and
opportunity costs, but also by risk management considerations and, critically, regulatory constraints.
Investors’ portfolio responses ultimately shape the direction and magnitude of spillovers to public
markets.

This paper focuses on insurance companies because of the unique data availability. While the
exact portfolio adjustments may differ across investor types, the key message is likely generalizable:
unexpected capital calls induce nontrivial portfolio rebalancing and spillovers to public markets. As
private markets continue to expand, capital calls could emerge as a new threat to financial stability. In
addition, the rise of private credit could also amplify the spillover effects of capital calls, as calls from
private credit funds tend to be more countercyclical. This paper offers an important first step toward
understanding how private fund capital calls affect the broader financial market. Further research is

needed to assess the full implications.
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Figure 1: Aggregate Private Fund Investments

This figure plots the total assets under management for different private fund types (Private Fund Statistics Report
Table 2.1) from the SEC Private Fund Statistics. According to the definition provided by the SEC, “private equity fund”
includes private debt funds. Subfigure (a) plots the total assets under management for different private fund types, and
Subfigure (b) plots ownership by different investor types. Private fund types are defined by the SEC according to the

instructions of Form ADV (Instruction Part 1A, Item 6.e(2)).
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(a) First-stage Classification

(b) Second-stage Regression

Figure 2: Predictor Importance

This figure presents the predictor (feature) importance for the top 20 predictors in the best-performing machine learning
model (two-stage LightGBM). Predictor importance quantifies each variable’s contribution to reducing the model’s
prediction error, measured by its average gain across all splits. Predictors with higher average gain play a greater role in
explaining the model’s prediction outcomes. Panel (a) reports results for the first-stage classification task, and Panel (b)
for the second-stage regression task.
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Figure 3: Insurers’ Aggregate Private Fund Investments and Uncalled Commitments

This figure plots insurers’ aggregate private fund investments. The blue bars (left axis) represent the book-adjusted
carrying value (fair book value), and the red bars (left axis) represent the additional uncalled commitments. The orange
line (right axis) shows the ratio of uncalled commitments to the book-adjusted carrying value.
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(a) Distribution of Private Fund Allocations

(b) Size vs Private Fund Allocations
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Figure 4: Distribution of Insurers’ Private Fund Allocations

This figure shows the distribution of insurer-level private fund allocations. Panel A presents box plots of private fund
allocations (measured as a percentage of total assets) by year from 2008 to 2023. Each box represents the interquartile
range (IQR), with the bottom and top edges indicating the first and third quartiles, respectively. The horizontal dark
blue line within each box denotes the median, while the red triangle represents the mean. The vertical lines extending
from the boxes—known as whiskers—indicate the range of the data, excluding outliers. Individual observations beyond
the whiskers are shown as light gray dots. Panel B displays a binned scatter plot of private fund allocations against
insurer size. The x-axis measures insurer size in terms of total assets, and the y-axis shows the corresponding private fund
allocation. A fitted line is included to illustrate the relationship. Private fund allocations are winsorized at the 1st and
99th percentiles within each year.
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(a) Capital Calls

(b) Capital Call Rates

Figure 5: Time Series of Aggregate Capital Calls

This figure plots the time series of aggregate capital calls received by insurers. Subfigure (a) plots the dollar amount of
capital calls. Total capital calls are represented by the red line, expected capital calls by the green line, and unexpected
capital calls by the blue bars. The aggregate unexpected capital calls are the sum of insurer-level unexpected calls.
Subfigure (b) plots the time series of the capital call rate, which is defined as the capital call divided by the uncalled
commitment from the end of the previous period. The total capital call rates are shown in red, and the expected capital
call rates are shown in green.
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Panel A: Capital Call Rate
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Figure 6: Distribution of Investor-level Capital Calls

This figure shows the distribution of insurer-level capital calls. Panel A plots capital call rates (capital calls scaled by the
previous period-end uncalled commitments), while Panel B plots capital call amounts (scaled by the previous period-end
insurer portfolio size). Subfigure (a) presents the total capital calls, Subfigure (b) shows the unexpected component, and
Subfigure (c) shows the expected component. The y-axis reflects the fraction of observations. All variables are winsorized
at the 1st and 99th percentiles. In Panel A, observations with missing or zero lagged uncalled commitments are dropped.
In Subfigure (b), as over half of the observations have unexpected capital calls equal to zero, the y-axis is broken into two
parts for readability. The blue and red vertical dashed lines represent the median and mean, respectively. From left to
right, the three purple dashed lines represent the 90th, 95th, and 99th percentiles of the distribution.
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(a) Capital Calls

(b) Unexpected Capital Calls

Figure 7: Investor-level Capital Call Distribution over Time

This figure plots the distribution of insurer-level capital calls over time using box plots, where Subfigure (a) shows the
total capital calls and Subfigure (b) shows the unexpected component. Each box represents the interquartile range (IQR),
with the bottom and top edges corresponding to the first and third quartiles. The short horizontal dark blue line inside
each box denotes the median, while the red triangle indicates the mean. The vertical lines extending from the boxes
(whiskers) show the range of the data, excluding outliers. Individual observations beyond the whiskers (outliers) are
plotted as light gray dots. Capital calls are scaled by the previous period-end insurer portfolio size.
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(a) Cash (b) Treasury

(¢) NAIC 1 Bond (d) All Liquid Asset

Figure 8: Liquidity Buffers and Uncalled Commitments

This figure presents a binned scatter plot of insurers’ liquid asset holdings against their uncalled commitments. Subfigures
(a) through (d) correspond to cash and cash equivalents, Treasury bonds, NAIC 1-designated bonds, and the combination

of all three.
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(a) Cash (b) Treasury

(c) NAIC 1 Bond (d) All Liquid Asset

Figure 9: New Commitments and Liquid Asset Dynamics

This figure shows the dynamic effects of abnormal new commitments on investors’ liquid asset holdings. Abnormal new
commitments are defined as quarterly new commitments minus the rolling average over the past four quarters. Subfigures
(a) through (d) correspond to cash and cash equivalents, Treasury bonds, NAIC 1-designated bonds, and the combination
of all three. Coefficients are estimated using local projections as defined in Equation (6). Controls include log insurer size,
asset growth, return on assets, leverage ratio, and the prior year-end RBC ratio. I also control for four lags of capital
calls, distributions, and abnormal new commitments. Insurer and time (calendar year—quarter) fixed effects are included
in all specifications. Standard errors are double-clustered at the insurer and time levels. Error bars represent the 95%
confidence interval.
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(a) Private Fund (b) Bond (c) Cash

(d) Mortgage (e) Stock (f) Rest

Figure 10: Dynamic Portfolio Effects of Capital Calls and Distributions

This figure shows the dynamic effects of capital calls on insurers’ portfolio allocations. Subfigures (a)—(f) correspond
to private funds, long-term bonds, cash and cash equivalents, mortgage loans, stocks, and all other assets. Coefficients
are estimated using the local projection method defined in Equation (6). Estimates for capital calls are shown in red,
and those for distributions are shown in blue. Controls include log insurer size, asset growth, return on assets, leverage
ratio, and the prior year-end RBC ratio. I also control for four lags of capital calls, distributions, and dependent variables
(dropped for periods —2 to —4). Insurer and time (calendar year—quarter) fixed effects are included in all specifications.
Standard errors are double-clustered at the insurer and time levels. Error bars represent the 95% confidence interval.
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(a) Private Fund (b) Bond (c) Cash

(d) Mortgage (e) Stock (f) Rest

Figure 11: Dynamic Portfolio Effects of Expected vs. Unexpected Capital Calls

This figure shows the dynamic effects of unexpected capital calls on insurers’ portfolio allocations. Subfigures (a)—(f)
correspond to private funds, long-term bonds, cash and cash equivalents, mortgage loans, stocks, and all other assets.
Coeflicients are estimated using the local projection method defined in Equation (6). Estimates for unexpected capital calls
are shown in red, and those for expected capital calls are shown in blue. Controls include log insurer size, asset growth,
return on assets, leverage ratio, and the prior year-end RBC ratio, as well as distributions and four lags of expected calls,
unexpected calls, distributions, and the dependent variable (excluded for periods —2 to —4). All specifications include
insurer and time (calendar year—quarter) fixed effects. Standard errors are double-clustered at the insurer and time levels.
Error bars represent the 95% confidence interval.
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Panel A: Break by Bond Types
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Panel B: Break by NAIC Designations

(a) NAIC 1 (b) NAIC 2 (c) NAIC 3 (d) NAIC 4 (e) NAIC 5 (f) NAIC 6

Figure 12: Dynamic Effects on Bond Allocations

This figure shows the dynamic effects of unexpected capital calls on insurers’ bond holdings. In Panel A, Subfigures (a) to (d) correspond to Treasury bonds, industrial
bonds, other non-Treasury government-related bonds (primarily MBS and municipal bonds), and all other bonds. Subfigures (e) and (f) further split industrial bonds
into corporate bonds and other industrial bonds (e.g., CLOs). Panel B classifies bonds by NAIC designation, with Subfigures (a) to (f) corresponding to NAIC
designations one through six. Coeflicients are estimated using the local projection method defined in Equation (6). Controls include log insurer size, asset growth,
return on assets, leverage ratio, and the prior year-end RBC ratio, as well as distributions and four lags of expected calls, unexpected calls, distributions, and the
dependent variable (excluded for periods —2 to —4). Insurer and time (calendar year—quarter) fixed effects are included. Standard errors are double-clustered at the
insurer and time levels. Error bars represent the 95% confidence interval.



(a) Private Fund (b) Bond (c) Cash

(d) Mortgage (e) Stock (f) Rest

Figure 13: Dynamic Portfolio Effects: High vs. Low RBC Ratios

This figure shows how regulatory capital affects insurers’ portfolio adjustments when facing capital call shocks. The
sample is split equally based on insurers’ prior year-end Risk-Based Capital (RBC) ratio. An insurer is classified as
having a low (high) RBC ratio if its prior year-end ratio is below (above) the median, computed by insurer type (Life or
P&C) and year. Estimates for the low-RBC group are shown in red, and those for the high-RBC group are shown in blue.
Subfigures (a)—(f) correspond to private funds, long-term bonds, cash and cash equivalents, mortgage loans, stocks, and
all other assets. Coefficients are estimated using the local projection method defined in Equation (6). Controls include log
insurer size, asset growth, return on assets, leverage ratio, and the prior year-end RBC ratio, as well as distributions and
four lags of expected calls, unexpected calls, distributions, and the dependent variable (excluded for periods —2 to —4). All
specifications include insurer and time (calendar year—quarter) fixed effects. Standard errors are double-clustered at the
insurer and time levels. Error bars represent the 95% confidence interval.
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(a) Insurer Holdings

(b) Yield Spread: OLS

(c) Yield Spread: 2SLS

Figure 14: Dynamic Spillover Effects

This figure explores the dynamic spillover effects of asset sales induced by capital calls. Subfigure (a) plots results for
insurers’ holdings (corresponding to Column (3) of Table 10), Subfigure (b) plots the results for yield spreads using OLS
(corresponding to Column (4) of Table 10), and Subfigure (c) plots the results for yield spreads using 2SLS (corresponding
to Column (5) of Table 10). Control variables include bond size, duration, credit ratings, bid—ask spread, and par-value
trading volume. Bond and time fixed effects are included. Error bars represent the 90% confidence interval, and standard
errors are double-clustered at the bond and time levels.
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Table 1: Summary Statistics

Variable N Mean SD P1 P25 Med P75 P99
Capital Call (%) 15716 0.22 0.24 0.00 0.08 0.15 0.28 1.26
Expected Capital Call (%) 15716 0.24 0.19 0.00 0.12 0.18 0.30 1.03
Unexpected Capital Call (%) 15716 0.06 0.16 0.00 0.00 0.00 0.04 0.97
Capital Call Rate (%) 15716 10.67 9.76 0.00 5.15 8.54 12.88 54.62
Expected Capital Call Rate (%) 15716 10.79 2.23 4.69 9.62 10.79 11.92 18.19
Unexpected Capital Call Rate (%) 15716 3.30 7.87 0.00 0.00 0.00 2.30 44.32
Private Fund ($ M) 15716 521.98 1647.34  0.00 3.85 27.57 232.45  8531.47
Private Fund (%) 15716 2.02 8.53 0.00 0.22 1.04 2.72 11.48
Number Private Fund 15716 44.53 93.40 1.00 2.00 6.00 32.00 497.00
Uncalled Commit ($ M) 15716 22727  657.14  0.00 0.00 7.56 116.34  3835.37
Distribution ($ M) 15716 22.19 104.89  0.00 0.00 0.29 5.75 431.02
Insurer Size ($B) 15716 21.74 49.71 0.02 1.00 3.59 18.04 272.06
RBC Ratio (%) 15716 1609.68 33255.85 250.78  590.20  830.90 1089.26  3345.23
Leverage 15716 7.52 8.55 1.35 2.37 3.43 9.68 45.01
Bond (%) 15716 69.04 16.25 9.74 61.48 71.75 80.04 94.04
NAIC 1 (%) 15716 50.14 73.92 4.46 38.74 48.61 59.95 86.78
NAIC 2 (%) 15716 17.52 50.67 0.00 7.23 14.79 24.50 52.61
NAIC 3 (%) 15716 1.87 6.10 0.00 0.33 1.42 2.73 8.10
NAIC 4 (%) 15716 0.84 1.29 0.00 0.01 0.41 1.21 5.51
NAIC 5 (%) 15716 0.28 0.70 0.00 0.00 0.07 0.30 3.41
NAIC 6 (%) 15716 0.10 0.77 0.00 0.00 0.00 0.07 1.04
Industrial (%) 15716 42.41 86.93 0.00 24.26 41.32 57.14 85.34
Corporate Bond (%) 15716 22.43 49.40 0.00 10.58 19.64 30.51 60.35
Other Industrial (%) 15716 19.98 39.19 0.00 8.88 18.12 28.43 52.05
Treasury (%) 15716 6.53 16.73 0.00 1.39 3.92 8.07 39.34
Other Govt Related (%) 15716 19.75 28.90 0.01 7.47 15.06 28.39 65.31
Other Bond (%) 15716 2.19 8.17 0.00 0.12 0.94 2.80 14.98
Cash (%) 15716 5.68 8.22 -0.67 1.59 3.28 6.48 40.18
Mortgage (%) 15716 3.89 6.15 0.00 0.00 0.06 6.50 21.93
Stock (%) 15716 13.24 13.63 0.00 2.79 8.85 20.17 64.61
Rest (%) 15716 6.14 10.17 -0.26 2.47 4.76 8.37 24.90
Exposure 373484  1.56 1.31 0.00 0.39 1.34 2.44 5.23
Yield Spread (bps) 373484  189.07  187.74  15.55 83.30 133.17  216.95  1208.47
Bond Size ($M) 373484  714.38  643.26  46.27 314.49 500.00  900.00  3000.00
Time-to-Maturity 373484  9.75 9.89 0.15 3.04 6.13 13.86 31.03
Ratings 373484  8.28 3.01 1.00 6.00 8.00 10.00 17.00
Bid-Ask Spread (bps) 373484  45.27 50.60 2.30 18.10 32.30 56.00 217.90
Trading Volume ($M) 373484  144.13 253.83  0.51 23.54 68.32 167.64 1106.63
Insurer Ownership (%) 373484  25.47 18.50 0.25 10.07 22.17 37.65 75.79
Insurer Sell ($M) 373484  4.38 14.01 0.00 0.00 0.00 2.50 61.06
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Table 2: Capital Call Prediction Model Summary

This table reports the performance of forecasting models. Root Mean Squared Error (RMSE) is measured as the percentage
improvement relative to the linear benchmark model. Columns (1) and (2) report the in-sample performance, and Columns
(3) and (4) report the out-of-sample performance. The linear benchmark model includes five variables: fund age, log fund
size, fund type, the lagged capital call rate, and the fraction of uncalled commitments as a share of total commitments.
The detailed definitions of the other models are shown in the Appendix.

In-sample Out-of-sample
Model RMSE (%) R% (%) RMSE (%) R% (%)
Two-Stage Light GBM 5.47 16.11 0.48 7.40
Two-Stage Random Forest 21.68 42.43 0.47 7.38
Two-Stage XGBoost 5.63 16.40 0.35 7.16
XGBoost 6.92 18.69 0.12 6.72
One-Stage Light GBM 5.21 15.65 0.07 6.62
Linear Benchmark 0.00 6.05 0.00 6.50
Random Forest 43.79 70.31 -0.14 6.23
Two-Stage LASSO -0.21 5.64 -0.46 5.64
LASSO -0.50 5.11 -0.77 5.05
Two-Stage Tree 2.09 9.98 -2.17 2.40
Decision Tree 3.80 13.18 -3.30 0.22
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Table 3: Variance Decomposition

This table presents the results of the variance decomposition analysis. Panel A reports results for the level of capital
calls, scaled by the lagged insurer portfolio size, while Panel B focuses on the capital call rate. In each panel, the first
row shows the share of the total variance attributable to the expected and unexpected components. Note that the
unexpected capital call captures only the positive deviation from the expected call. Hence, the sum of the expected and
unexpected components does not add up to 100%. For each of the three components, I further decompose the variance
into investor-specific, time-specific, and idiosyncratic components. This is done by estimating a series of fixed-effects
regressions: an insurer fixed-effects model to isolate investor-level variation, a time fixed-effects model to capture common
temporal variation, and a two-way fixed-effects model whose residuals represent the idiosyncratic component. The
proportion of variance explained by each source is computed as the model’s R? relative to the total variance of the
respective component.

Panel A: Capital Call Amount

Total Expected Unexpected
Share of Total Variance 100%  63.3% 20.7%

Insurer-FE Share 44.1% 62.2% 16.8%
Time-FE Share 6.7% 5% 4.2%
Residual Share 49.1% 32.5% 78.3%

Panel B: Capital Call Rate

Total Expected Unexpected

Share of Total Variance 100% 8.3% 48.2%
Insurer-FE Share 27% 23.8% 23.5%
Time-FE Share 7.6%  2.9% 5.8%

Residual Share 64.8% 73.1% 70.4%
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Table 4: Private Fund Commitments and Liquidity Buffers

This table examines whether insurers use liquid asset buffers to prepare for future capital calls. Columns (1)—(4) correspond
to cash & cash equivalents, Treasury bonds, NAIC 1-designated bonds, and the combination of all three. Panel A regresses
the level of liquid asset allocations on the level of uncalled commitments. Panel B regresses the change in liquid asset
allocations on quarterly abnormal new commitments, defined as new commitments minus the rolling average over the
past four quarters. Controls include log insurer size, asset growth, return on assets, leverage ratio, and the prior year-end
RBC ratio. Panel B also controls for capital calls, distributions, and four lags of abnormal new commitments. Insurer and
time (calendar year—quarter) fixed effects are included in all specifications. Standard errors are double-clustered at the
insurer and time levels. *** ** and * denote statistical significance at the 1%, 5%, and 10% levels, respectively.

Panel A: Uncalled Commitments and Liquid Asset Holdings
Holdings (%)
Cash Treasury NAIC 1 Bond  All Liquid Asset
(1) (2) 3) (4)

Uncalled Commitment (%) 0.128 0.040 —0.688** —0.478**
(0.104) (0.110) (0.285) (0.206)
Controls Yes Yes Yes Yes
Time FE Yes Yes Yes Yes
Insurer FE Yes Yes Yes Yes
Observations 12,128 12,128 12,128 12,128
Adjusted R? 0.750 0.797 0.522 0.849

Panel B: New Commitments and Liquid Asset Holdings
AHoldings (%)

Cash Treasury NAIC 1 Bond  All Liquid Asset
(1) (2) 3) 4)

Abnormal New Commitment —0.276 —0.076 0.024 —0.256
(0.200) (0.079) (0.263) (0.290)
Controls Yes Yes Yes Yes
Time FE Yes Yes Yes Yes
Insurer FE Yes Yes Yes Yes
Observations 12,128 12,128 12,128 12,128
Adjusted R? —0.003 0.206 0.320 0.734
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Table 5: Portfolio Effects of Capital Calls

This table examines insurers’ portfolio adjustment decisions when facing capital call shocks. The dependent variable is
the change in the percentage allocation to each asset class. Columns (1)—(6) correspond to private funds, long-term bonds,
cash and cash equivalents, mortgage loans, stocks, and all other assets. Panel A reports results for total capital calls,
controlling for distributions. Panel B decomposes capital calls into expected and unexpected components. All regressions
control for four lags of capital calls (expected and unexpected in Panel B), distributions, and the dependent variable.
Additional controls include log insurer size, asset growth, return on assets, leverage ratio, and the prior year-end RBC
ratio. Insurer and time (calendar year—quarter) fixed effects are included. Standard errors are double-clustered at the
insurer and time levels. *** ** and * denote statistical significance at the 1%, 5%, and 10% levels, respectively.

Panel A: Capital Calls vs Distributions

AHoldings(%)

Private Fund Bond Cash Mortgage Stock Rest

(1) (2) (3) (4) (5) (6)

Capital Call 0.604*** —0.571**  —0.134 —0.022 0.031 0.017
(0.054) (0.197) (0.206) (0.101) (0.027)  (0.101)

Distribution —0.799*** 0.418 0.338 0.055 0.004 0.079
(0.092) (0.288) (0.258) (0.192) (0.032)  (0.229)

Controls Yes Yes Yes Yes Yes Yes

Time FE Yes Yes Yes Yes Yes Yes

Insurer FE Yes Yes Yes Yes Yes Yes
Observations 12,128 12,128 12,128 12,128 12,128 12,128
Adjusted R? 0.432 0.148 0.119 0.392 0.098 0.114

Panel B: Expected vs. Unexpected Capital Calls
AHoldings(%)

Private Fund Bond Cash Mortgage Stock Rest

(1) (2) (3) (4) (5) (6)
Unexpected Capital Call 0.622*** —0.646"*  —0.120 0.040 0.041 —0.023
(0.059) (0.220)  (0.219)  (0.107)  (0.031)  (0.104)

Expected Capital Call 0.158 —0.165 —0.202 —0.043 0.036 0.011
(0.130) (0.310) (0.427) (0.235) (0.048)  (0.269)

Distribution —0.765*** 0.349 0.336 0.085 0.008 0.052
(0.094) (0.281) (0.252) (0.193) (0.032)  (0.234)

Controls Yes Yes Yes Yes Yes Yes

Time FE Yes Yes Yes Yes Yes Yes

Insurer FE Yes Yes Yes Yes Yes Yes
Observations 12,128 12,128 12,128 12,128 12,128 12,128
Adjusted R? 0.424 0.149 0.119 0.392 0.098 0.117
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Table 6: Capital Calls and Bond Allocations

This table examines how insurers adjust long-term bond allocations when facing unexpected capital call shocks. The
dependent variable is the change in the percentage allocation to each bond group. Panel A classifies bonds by type.
Columns (1)—(4) correspond to Treasury bonds, industrial bonds, other non-Treasury government-related bonds (primarily
MBS and municipal bonds), and all other bonds. Columns (5) and (6) further split industrial bonds into corporate
bonds and other industrial bonds (e.g., CLOs). Panel B classifies bonds by NAIC designation, with columns (1)—(6)
corresponding to NAIC designations one through six. All regressions control for four lags of expected calls, unexpected
calls, distributions, and the dependent variable. Additional controls include log insurer size, asset growth, return on assets,
leverage ratio, and the prior year-end RBC ratio. Insurer and time (calendar year—quarter) fixed effects are included.
Standard errors are double-clustered at the insurer and time levels. *** ** and * denote statistical significance at the
1%, 5%, and 10% levels, respectively.

Panel A: Break by Bond Types

AHoldings(%)
Treasury  Industrial ~ Govt Agent Other Corporate  Non-Corporate

1) 2 3) 4) (5) (6)

Unexpected Capital Call 0.005 —0.900*** 0.246* 0.518 —0.731%** —0.207
(0.104) (0.236) (0.144) (0.642) (0.147) (0.181)
Expected Capital Call 0.041 —0.228 0.535 1.131 —0.004 —0.322
(0.232) (0.612) (0.365) (1.892) (0.322) (0.481)
Controls Yes Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes Yes
Insurer FE Yes Yes Yes Yes Yes Yes
Observations 12,128 12,128 12,128 12,128 12,128 12,128
Adjusted R? 0.288 0.126 0.680 0.460 0.452 0.043
Panel B: Break by NAIC Designations
AHoldings(%)
NAIC 1 NAIC 2 NAIC 3 NAIC 4 NAIC 5 NAIC 6
(1) (2) (3) (4) (5) (6)
Unexpected Capital Call 0.0002 —0.372*** —0.100*** —0.028* —0.007 0.007
(0.289) (0.127) (0.031) (0.015) (0.008) (0.011)
Expected Capital Call 0.788 0.046 —0.081 0.008 —0.017 0.059
(0.965) (0.301) (0.088) (0.048) (0.024) (0.045)
Controls Yes Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes Yes
Insurer FE Yes Yes Yes Yes Yes Yes
Observations 12,128 12,128 12,128 12,128 12,128 12,128
Adjusted R? 0.334 0.090 0.0004 0.159 0.057 0.171
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Table 7: Regulatory Capital and Portfolio Rebalancing

This table examines how regulatory capital affects insurers’ portfolio adjustments when facing capital call shocks. The
sample is split equally based on insurers’ prior year-end Risk-Based Capital (RBC) ratio. An insurer is classified as having
a low (high) RBC ratio if its prior year-end ratio is below (above) the median, computed by insurer type (Life or P&C)
and year. Panels A and C report results for the low-RBC group, while Panels B and D report results for the high-RBC
group. Panels A and B present results for capital calls and distributions, corresponding to Panel A of Table 5. Panels C
and D present results for unexpected and expected capital calls, corresponding to Panel B of Table 5. All regression
specifications are identical to those in Table 5.

Panel A: Low RBC Ratio

Private Fund Bond Cash Mortgage Stock Rest
(1) (2) 3) (4) (5) (6)
Capital Call 0.759*** —1.044*** 0.211 —0.015 —0.002 0.051
(0.076) (0.305) (0.283) (0.209) (0.034) (0.139)
Distribution —0.756™** 0.442 0.353 0.209 —0.005 —0.547
(0.120) (0.436) (0.368) (0.294) (0.038) (0.347)
Observations 6,050 6,050 6,050 6,050 6,050 6,050
Adjusted R? 0.315 0.096 0.107 0.266 0.116 0.066
Panel B: High RBC Ratio
Private Fund Bond Cash Mortgage Stock Rest
(1) (2) (3) (4) (5) (6)
Capital Call 0.489*** —0.166 —0.494 0.004 0.057* —0.002
(0.076) (0.253) (0.314) (0.132) (0.032) (0.117)
Distribution —0.897*** 0.442 0.142 —0.097 0.039 0.941%*
(0.121) (0.293) (0.343) (0.223) (0.043) (0.330)
Observations 6,078 6,078 6,078 6,078 6,078 6,078
Adjusted R? 0.537 0.239 0.155 0.512 0.098 0.213
Panel C: Low RBC Ratio — Unexpected vs. Expected
Private Fund Bond Cash Mortgage Stock Rest
(1) (2) (3) (4) (5) (6)
Unexpected Capital Call 0.774*** —1.111%** 0.262 —0.034 0.005 0.044
(0.091) (0.332) (0.272) (0.218) (0.039) (0.160)
Expected Capital Call 0.491*** —0.722 0.592 —0.061 —0.038 —0.460
(0.163) (0.630) (0.444) (0.377) (0.067) (0.369)
Observations 6,050 6,050 6,050 6,050 6,050 6,050
Adjusted R? 0.303 0.095 0.107 0.266 0.116 0.067
Panel D: High RBC Ratio — Unexpected vs. Expected
Private Fund Bond Cash Mortgage Stock Rest
(1) (2) (3) 4) (5) (6)
Unexpected Capital Call 0.496*** —0.210 —0.512 0.108 0.070* —0.057
(0.081) (0.293) (0.359) (0.147) (0.038) (0.110)
Expected Capital Call 0.097 0.085 —0.596 0.057 0.051 0.178
(0.137) (0.328) (0.684) (0.222) (0.073) (0.295)
Controls Yes Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes Yes
Insurer FE Yes Yes Yes Yes Yes Yes
Observations 6,078 6,078 6,078 6,078 6,078 6,078
Adjusted R? 0.532 0.240 0.156 0.512 0.099 0.221
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Table 8: Which Bonds do Insurers Sell?

This table studies which bonds insurers sell when facing unexpected capital calls. The sample is at the in-
surer—bond—year—quarter level. The dependent variable is an indicator equal to one if a bond is sold partially or
fully in quarter ¢. I only consider active sales, excluding passive disposals such as redemptions, scheduled paydowns, and
maturities. Panel A reports the results for different bond types. NAIC denotes NAIC bond designations, ranging from 1
to 6. Unrealized G&L is the percentile rank (ranging from zero to one) of the unrealized gain or loss for each bond holding
at the previous year-end. Specifically, unrealized gain or loss is calculated as the difference between the reported fair value
and the book-adjusted carrying value at the previous year-end, scaled by the book-adjusted carrying value. Illiquidity
is the lagged bond bid—ask spread. The interaction terms between Unexpected Capital Call and bond characteristics
capture insurers’ relative propensity to sell bonds with certain characteristics when facing unexpected capital calls. Other
controls include a low-RBC-ratio indicator, bond size, time to maturity, lagged bond trading volume, and lagged bond
bid—ask spread. Columns (1)—(3) include bond, insurer, and time (calendar year—quarter) fixed effects. Columns (4)—(6)
include bond-by-time and insurer-by-time fixed effects. Standard errors clustered at the bond-by-time level are reported
in parentheses. *** ** and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

(1) (2) 3) (4) ®) (6)

Unexpected Capital Call 0.054*** 0.037*** 0.031***
(0.005) (0.006) (0.006)
Unexpected Capital Call x NAIC 0.008***  0.008*** 0.006** 0.034**  0.036"**  0.049***
(0.002) (0.002) (0.003) (0.002) (0.002) (0.003)
Unexpected Capital Call x Unrealized G&L 0.033**  0.041*** 0.061***  0.108***
(0.006) (0.007) (0.005) (0.007)
Unexpected Capital Call x Illiquidity 0.022*** 0.146***
(0.008) (0.015)
Unexpected Capital Call x NAIC x Iliquidity 0.002 -0.038***
(0.002) (0.007)
Unexpected Capital Call x Unrealized G&L x Illiquidity -0.021** -0.126***
(0.009) (0.011)
NAIC 0.005***  0.005***  0.004***
(0.0007)  (0.0007)  (0.0008)
Unrealized G&L -0.016™*  -0.018***  -0.022***  -0.010***  -0.014™* -0.016™**
(0.0010)  (0.0010) (0.001) (0.0009)  (0.0009) (0.001)
Low RBC Ratio 0.006™*  0.006™**  0.006™**
(0.0006)  (0.0006)  (0.0006)
Trading Volume 0.005***  0.005***  0.005***
(0.0002)  (0.0002)  (0.0002)
Tlliquidity -0.002*  -0.002***  -0.006***
(0.0003)  (0.0003)  (0.0008)
Bond Size -0.011**  -0.011***  -0.011***
(0.001) (0.001) (0.001)
Time-to-Maturity 0.085 0.085 0.085
(0.065) (0.065) (0.065)
NAIC x Illiquidity 0.0004
(0.0003)
Unrealized G&L x Illiquidity 0.007*** 0.005***
(0.0008) (0.001)
Bond FE Yes Yes Yes No No No
Insurer FE Yes Yes Yes No No No
Time FE Yes Yes Yes No No No
Bond-by-Time FE No No No Yes Yes Yes
Insurer-by-Time FE No No No Yes Yes Yes
Observations 8,851,969 8,851,969 8,851,969 8,851,969 8,851,969 8,851,969
Adjusted R? 0.106 0.106 0.106 0.3352 0.335 0.336
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Table 9: Capital Calls and Risk-Based Capital Ratios

This table examines how capital calls affect insurers’ Risk-Based Capital (RBC) ratios. Columns (1)—(3) use the full
sample; Columns (4)—(6) use the subsample of insurers with low RBC ratios; and Columns (7)—(9) use the subsample
with high RBC ratios. An insurer is classified as having a low (high) RBC ratio if its prior year-end ratio is below (above)
the median, computed by insurer type (Life or P&C) and year. The sample is annual because RBC ratios are reported
only at year-end. The dependent variable is the log RBC ratio. In Columns (1), (4), and (7), the key explanatory variable
is the private fund allocation. In Columns (2), (5), and (8), the key explanatory variable is the annual total capital
call, controlling for annual total distributions. In Columns (3), (6), and (9), the key explanatory variable is the annual
total unexpected capital call, controlling for annual total expected capital calls and distributions. Controls include log
insurer size, asset growth, return on assets, leverage ratio, and lagged capital calls and distributions. All regressions
include insurer and year fixed effects, with standard errors clustered at the insurer level. *** ** and * denote statistical
significance at the 1%, 5%, and 10% levels, respectively.

Full Sample Low RBC Ratio High RBC Ratio

(1) (2) (3) (4) (5) (6) (7) (8) 9)
Private Fund (%) —0.011** —0.006 —0.019***
(0.004) (0.005) (0.006)
Capital Call —0.010 0.011 —0.040***
(0.010) (0.013) (0.011)
Unexpected Capital Call —0.005 0.021 —0.039***
(0.011) (0.016) (0.013)
Expected Capital Call —0.014 —0.015 —0.026
(0.013) (0.019) (0.016)
Distribution —0.011  —0.009 0.006 0.008 —0.021 —0.026*
(0.013)  (0.013) (0.017)  (0.017) (0.023) (0.015)
Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Insurer FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 3,183 3,183 3,183 1,588 1,588 1,588 1,595 1,595 1,595
Adjusted R? 0.891 0.890 0.890 0.816 0.816 0.816 0.803 0.803 0.803
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Table 10: Spillovers to the Corporate Bond Market

This table studies spillover effects of asset sales induced by unexpected capital calls. I first construct a bond-level capital
call shock exposure measure. Specifically, the measure is defined as

- Ownership;; +—1 X UnexpCall;
Exposure;, = log (1 + Z] Dij,t—1 D ]t>

Outstanding; t—1

where Ownership;j,.—1 insurer j’s lagged ownership share of bond ¢, UnexpCall;; is the dollar amount of unexpected
calls for insurer j at time ¢, and Outstanding; 1 is the lagged bond amount outstanding. Columns (1) to (4) report the
results of directly regressing dependent variables on Exposure;;: using OLS. From Columns (1) to (4), the dependent
variables are: amount of share sold by insurers (Insurer_Sell), an indicator equals to one if the amount sold by insurers
are non-negative (1(Insurer_Sell)), change of share owned by insurers AInsurer_Holdings, and change of yield spread
(AYield_Spread). Finally, in Column (5), Exposure;; is used as instrument for Alnsurer_Holdings in 2SLS model.
Specifically, the regression model is as follow:

AYieldSpread;s = ﬂhAHOEn\gsit + Controls;; + FEs + €t
AHoldingsit = ynExposure;; + Controls;y + FEs + u;.

Note that Column (3) is the first-stage of Column (5). Controls include bond size, time-to-maturity, credit ratings, lagged
log trading volume, lagged bid-ask spreads, lagged insurers ownership. All columns include bond and time fixed (calender
year-quarter) effects. Standard errors double clustered at the bond and time level. *** ** and * indicate statistical
significance at the 1%, 5%, and 10%, respectively.

Insurer_Sell ~ 1(Insurer_Sell)  Alnsurer_Holdings AYield_Spread
(1) (2) (3) (4) (5)
Exposure 0.967** 0.026*** —0.201** 0.555**
(0.131) (0.003) (0.035) (0.211)
Alnsurmldmgs —2.798**
(1.210)
Bond Size 0.903*** 0.158*** —0.898*** 1.221*** —1.323
(0.155) (0.007) (0.187) (0.434) (1.485)
Time-to-Maturity 0.469 0.149 —84.049*** —61.767**  —280.084**
(3.899) (0.199) (10.768) (14.268) (109.353)
Rating 0.067 —0.001 —0.195*** 0.313*** —0.219
(0.046) (0.002) (0.020) (0.099) (0.284)
Lag Trading Volume 0.688*** 0.029*** —0.092*** —0.318** —0.732%**
(0.052) (0.002) (0.022) (0.138) (0.206)
Lag Bid-Ask Spread 0.173 —0.006 —0.041 —0.093 —0.206
(0.194) (0.004) (0.038) (0.404) (0.450)
Lag Insurer Ownership 0.260*** 0.005*** —0.133*** 0.128** —0.262
(0.013) (0.0003) (0.008) (0.054) (0.194)
Controls Yes Yes Yes Yes Yes
Bond FE Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes
Adjusted R? 0.084 0.204 0.085 0.869 0.809
Observations 375,546 375,546 355,626 375,546 355,626
Kleibergen-Paap F-Statistic 32

67



Table 11: Spillover Heterogeneity

This table examines the heterogeneous spillover effects of asset sales induced by unexpected capital call shocks. Columns
(1), (3), and (4) report results for bonds with different NAIC designations, where bonds with designations three through
six are combined into one group labeled NAIC3. Columns (2), (5), and (6) report results for the COVID versus
non-COVID periods. In Columns (1) and (2), the dependent variable is the change in the share of a bond held by
insurers (Alnsurergoldings). In Columns (3)—(6), the dependent variable is the change in yield spread (AYieldspread).
Columns (1), (3), and (5) present OLS estimates, while Columns (2), (4), and (6) present 2SLS estimates. First-stage
results are reported in Table TA.10. Controls include bond size, time to maturity, credit ratings, lagged bid—ask spreads,
and lagged insurer ownership. All regressions include bond and time (calendar year—quarter) fixed effects. Standard errors
are double-clustered at the bond and time levels. *** ** and * denote statistical significance at the 1%, 5%, and 10%

levels, respectively.

Alnsurer_Holdings

AYield_Spread

(1) (2) (3) (4) (5) (6)
Exposure x NAIC1 —0.074* 0.062
(0.044) (0.303)
Exposure x NAIC?2 —0.303*** 0.853***
(0.038) (0.267)
Exposure x NAIC3 —0.132%** 0.668**
(0.032) (0.288)
Exposure x COVID —0.182%** 1.480***
(0.034) (0.303)
Exposure x REST —0.201%** 0.546***
(0.036) (0.219)
AHoldings x NAIC1 0.914
(1.919)
AHoldings x NAIC?2 —2.953*
(1.249)
AHoldings x NAIC3 ~1.875
(1.738)
AHoldings x COVID —8.913%*
(2.014)
AHoldings x REST —2.771*
(1.223)
Controls Yes Yes Yes Yes Yes Yes
Bond FE Yes Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes Yes
Observations 355,626 355,626 375,546 355,626 375,546 355,626
Adjusted R? 0.088 0.085 0.869 0.787 0.869 0.799
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IA.1 Conceptual Framework

TA.1.1 Illustrative Examples
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Figure TA.1: Example of Private Fund Cash Flow

This figure shows cash flows from a real private fund. The blue (red) bars represent capital calls (distributions). The blue
(red) line plots the cumulative capital calls (distributions). The green line plots the net cash flows.
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Panel A: Single fund cash flow

Panel B: Portfolio of private funds

Figure IA.2: An Illustrative Example of a Portfolio of Private Funds

Panel A plots the simulated cash flow of a private fund using the Takahashi and Alexander model. Panel B illustrates
a simulated portfolio with a 10% target private fund allocation achieved by repeatedly investing in the fund simulated
in Panel A. The first subfigure of Panel B plots the portfolio weight allocated to private funds. The second subfigure
plots the aggregate capital calls and distributions at each period. The third subfigure plots the number of active funds.
The last subfigure plots the level of new commitments required to achieve a stable 10% target private fund allocation.
Additionally, there is an unexpected capital call at period t=20.
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TA.1.2 An Illustrative Model

Model Setup I consider a risk-neutral insurer operating over two dates, t =0and t =1. At t =0,
the insurer holds assets Ay and liabilities Lg, implying initial equity Ko = Ag — Lo. The asset portfolio
consists of three sleeves: risk-free liquid bonds (F), illiquid bonds (I), and private funds (P), with
portfolio weights satisfying ar + ay + ap = 1. The target allocation at ¢t = 0 is (@7, ap), and I assume
the insurer is initially at target, so that ap =1 —a; — ap.

Each asset category carries a regulatory risk weight: w;,wp,wr. The required regulatory capital

(RBC) is then

K = wpLo 4+ wrarAg + wpapAg
Then the target RBC ratio is

RatioTareet — %o = Ao — Lo
Ky wr Lo+ wrarAo +wpapAg

Asset returns are as follows: Ry ~ N (u I 0?) for illiquid bonds, Rp ~ N (u P, J?D) for private funds,
and 7y is the risk-free rate. At ¢ = 1, the insurer faces a capital call from its private fund investments
of random size Tap Ay, where 7 ~ LogNormal (,uT/, 072_,). At t = 0, the insurer chooses 6 € [0, 1], the
fraction of the capital call to be financed by selling illiquid bonds; the remaining share 1 — # is funded
from cash. Selling illiquid bonds entails a proportional transaction cost ¢ per dollar sold. Liabilities Lg
are assumed fixed for simplicity, so equity at t = 1 is K1 = A1 — Ly.

The insurer’s objective at t = 0 is to maximize expected equity net of a penalty for deviating from
the target capital ratio:

J(0) = E[A; — L] — ¢ea [ 2] ,

where Z = Ky — RatioTargetIA(I measures the deviation from the desired RBC ratio, and K 1 is the
required capital at ¢ = 1 based on end-of-period exposures. The penalty weight scales with the target
ratio as ¢geg = k/Ratio ™2 so that a lower initial RBC ratio implies a larger penalty. The capital call
arrives effectively at the start of ¢ = 1, and the post-adjustment portfolio earns returns over the full

period. I assume that (7, Ry, Rp) are independent.

Model Solution End-of-period asset value can be expressed as

Ay = (apdo — (1 = )TapAo) (1 +7y)

J/

Liquid bonds

+ (arAog — 0rapAo) (1 + Ry)
Illiqui?irbonds

+ ((1 + T)dPAo) (1+ Rp)

Private funds

— clOrapAy
——

Transaction cost
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Required capital at t =1 is
Ky =wr Lo+ wr(ar — Orap) Ag + wp(l + 1)apAy.

The deviation term Z is affine in 0: Z = Zy + 021, where

71 =T1apAo (rf —Rr—c+ RatioTargeth) ,
and Zy collects all #-independent terms. The expected equity E [A; — Lo] is linear in 6:

E[A; — Lo] = Const + §AgapE[r] (rf — pr —c),
while the expected penalty term is quadratic:
E [Z*] =K [Z3] + 20K [Z0Z1] + 0°E [ Z7] .
Substituting into the objective and grouping terms yields
J(0) = Co + C160 — Co6?

with ~

Cy = Const — ¢egE [Zg] ,

Cy = ApapE[r] (ry — pr —c) — QéeﬁcE [Z0Z1],

Cy = ¢erE [27] > 0,

so the objective is strictly concave in #. The first-order condition d.J/df = 0 implies the unconstrained

optimum

g _ Cu _ AvapElr] (ry — pr — ¢) = 26k E[Z0%1]
unc 202 2&eﬁ-E [Z%]

Using ¢eg = k /Ratio T8¢t this can be rewritten as

o ApapE[7] (rf — ps — ) Ratio T8 _ E[ZyZi]
o = 3#E (7] B2

Imposing the feasibility constraint 0 < 6 < 1, the optimal policy is

0" = min {1, max {0,0;,.}} .

Discussion The optimal #* balances two opposing forces. A higher 6 implies funding capital
calls by selling illiquid bonds rather than using cash. The marginal economic cost of doing so is
AopapE[T] (ry — pr — ¢), typically negative when py 4+ ¢ > r¢. At the same time, increasing 6 affects
the expected penalty through Z = Zy + 671, which is the marginal change in the expected penalty.

The RBC relief term inside Z; makes selling illiquid assets more attractive when capital requirements
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are binding. Moreover, since the penalty weight scales inversely with the target ratio, a lower target
ratio increases the effective penalty and shifts the optimum 6 up.

Assuming an interior solution (6* > 0), the comparative statics are intuitive. Higher expected illiquid
returns or higher transaction costs (u; T or ¢ 1) reduce 6*, since selling illiquid bonds becomes more
costly. A larger penalty coefficient (k1) shifts §* upward. A higher target RBC ratio (Ratio®°t 1)
reduces ngﬁ' and places more weight on the economic term, typically lowering 8*. The effects of RBC
risk weights (wr,wp) and targeted portfolio allocations (ay,a@p ) are ambiguous because they enter
both the required capital and the deviation term Z. A larger expected capital call E[r] magnifies the
economic term, whereas higher call volatility increases E [ZIQ], dampening the sensitivity of 6*.

For illustration, consider the following parameterization: Ag = 1000, Ly = 500, target allocations
ar; = 50%, ap = 10%, and ap = 40%. Risk weights are w; = 10%, wp = 30%, and wy, = 1%, implying
a target RBC ratio of approximately 588%. Expected returns are puy = 7%, 05 = 10%, up = 20%, 0p =
30%, with a risk-free rate ry = 1%. The capital call follows 7 ~ log N (log(0.15) — 0.5(0.4)%,0.4%),
yielding E[7] ~ 0.15. The transaction cost is ¢ = 1%, and the penalty coefficient is k = 0.6. Figure
TA.3 plots the sensitivity analysis.

(a) (b) k (¢) pr (d) pr

(e) o (f) wr (g) wp (h) RBC Ratio

Figure IA.3: Sensitivity Analysis for 6*

This figure plots the sensitivity analysis for the optimal . The baseline parameter choices are: initial asset Ag = 1000,
initial liability Lo = 500, target allocation to illiquid bond &; = 50%, target allocation to private fund ap = 10%, target
allocation to liquid asset ar = 40%, RBC charges for illiquid assets w; = 10%, RBC charges for private fund wp = 30%,
RBC charges for liability wr, = 1%, illiquid asset return pur = 7%, or = 10%, private fund return pp = 20%, op = 30%,
capital call pr = log(0.15) — 0.5 % 0.4%, o, = 40% (i.e., E(7) = 0.15), transaction cost ¢ = 1%, penalty coefficient k = 0.6,
risk free rate ry = 1%. The implied target RBC ratio ~ 588%
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IA.2 Data

TA.2.1 Raw Schedule BA Data

This section explains the raw Schedule BA data. I obtained the raw statutory filings data from Capital
1Q Pro. Schedule BA reports alternative asset investments, including private fund hedge funds, joint
ventures, surplus notes, and residual tranches of structured finance vehicles. Schedule BA has three

parts:

Part 1: Other long-term invested assets owned as of December 31 of the current year
This part is reported only in the annual report. Figure IA.4 provides an example. Some key variables
include:
e Column (2): Asset Name
e Column (8): Date Originally Acquired. For private funds, this can be interpreted as the initial
commitment date
e Column (10), (11), (12): Historical Cost Value, Fair Value, and Book-adjusted Carrying Value
(BACYV). For private funds, BACV should be very close to fair value as almost all private funds
are recorded using fair value. I use BACV to compute the on-balance-sheet book value.
e Column (13) to (17): Fair value adjustments
e Column (19): Commitment for Additional Investment. For private funds, it represents the
uncalled commitment (dry powder).

e Column (20): Percentage Ownership. I use it to back out the total size of the fund.

Part 2: Other long-term invested assets acquired and additions made during the year
(quarter) This part is reported in both the annual and quarterly (first three quarters) reports.
Figure IA.5 provides an example. For private funds, it includes initial investment as well as additional
contribution through capital call. Some key variables include:

e Column (2): Asset Name

e Column (7): Date Originally Acquired. Similar to Part 1, it is the initial commitment date.

e Column (9): Actual Cost of Time of Acquisition. This column is blank except for the initial
commitment. For private funds, it can be interpreted as the contribution at the time of initial
commitment.

e Column (10): Additional Investment Made After Acquisition. For private funds, this column
represents capital call (contribution).

e Column (12): Commitment for Additional Investment. Similar to part 1, it represents the

uncalled commitment.

Part 3: Other long-term invested assets disposed of, transferred, or repaid during the
year (quarter) This part is reported in both the annual and quarterly reports. Figure IA.6 provides
an example. For private funds, disposal includes secondary market sales, liquidation/termination, and

distribution. Some key variables include:
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Column (2): Asset Name.

Column (5): Nature of Disposal. Common types include distributions, partial disposals, full
disposals, secondary market sales, and liquidations or terminations. Most of the time, a partial
disposal also represents a distribution.

Column (7): Disposal Date. Blank for distribution.

Column (8): Book value from part 1 of last year.

Columns (9) to (14): Fair value adjustment of the disposed part from the end of last year until
the time before disposal. For distribution, it is usually blank.

Column (15): Book value immediately before disposal. For distribution, it is usually blank.
Column (16): Proceeds from disposal. I use this as the distribution amount.

Column (19): Total gain or loss on disposal (difference between column (15) and 16). For

distribution, it is usually blank.
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Figure IA.4: Example — Schedule BA Part 1
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Figure TA.5: Example — Schedule BA Part 2
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Figure IA.6: Example — Schedule BA Part 3



IA.2.2 Schedule BA Cleaning Procedure

Create Fund ID I create fund identifier (ID) using the following steps:

1. Based on recurring typographical errors and naming variations identified through manual inspec-
tion, I develop an algorithm to standardize fund names by correcting these commonly observed
inconsistencies. Below, I outline the key steps of the algorithm:

e Convert all fund names to lowercase. This ensures case-insensitive comparisons.

e Remove internal ID at the beginning or end of the name. Some insurers append
internal ID to fund names, typically as prefixes or suffixes. I apply the following rules to
identify and remove such patterns. Specifically, I drop any leading or trailing numbers longer
than six digits. I also drop any leading or trailing unpronounceable tokens longer than six
characters that contain a mix of letters and numbers.

e Standardize common phrases. Through manual review, I compile a list of over 50 com-
monly varying terms and apply consistent transformations. This step is conceptually similar
to the Porter stemming algorithm used in natural language processing, but implemented
through a manually curated list. By constructing the stemming rules by hand, my algorithm

is more flexible and robust. A few illustrative examples are:

I drop all phrases referring to Limited Partnership, including LP, L.P., limited partner,
limited partnership, prtr, ptr, ptrs, etc (more than 100 variations).

— Phrases such as American, United States, US, USA, are standardized to America.

— Phrases such as Euro, Europ, European, are standardized to Europe.

— Phrases such as Invest, Invt, and Inve, are standardized to Investment.

— Phrases such as Opportunity, opp, opps, opport, are converted to Opportunities.

— Phrases such as infra, infras, infrastruct, are standardized as Infrastructure.

¢ Remove all punctuation marks.

e Trim leading, trailing, extra spaces.

2. I then identify potential inconsistencies by exploiting the panel structure of the holdings data.
Specifically, I flag suspicious cases based on the following criteria:

e Rare appearances: [ flag fund names that appear only once or twice in an insurer’s
portfolio (except when it is likely caused by data truncation). Ezample: Fund A is recorded
in Insurer X’s portfolio only in 2013, and never before or after.

e Missing observations: I flag fund names that exhibit missing values within what should
be a continuous holding period. Fzample: Fund A is held by Insurer X continuously from
2015 to 2023, except for 2017.

e Unexplained discontinuation: I flag fund names that disappear from an insurer’s portfolio
without any reported sale. Example: Fund A was first acquired in 2016 suddenly drops out
starting 2019 and no sale is reported.

e Delayed first appearance: I flag fund names where the first appearance occurs substan-
tially after the reported initial acquisition date (except when it is likely caused by data
truncation). Example: Fund A first appears in the insurer X’s portfolio in 2017, but the

reported first acquisition year is 2014.
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3. Next, I use ChatGPT to standardize the flagged fund names. To simplify the task and ensure
consistency, I perform the matching process separately for each insurer. For each insurer, I
begin with a panel dataset that contains all fund names previously flagged in Step 2. Note
that according to Step 2, all names associated with a given fund will be flagged if any name
inconsistency is detected across time. I then identify a subset of fund names to serve as target
names. Target names are the most likely correct fund names, which other names will be matched
to. A fund name is identified as a target if its number of observed appearances exceeds half of its
theoretical appearance count, which I compute based on the reported first acquisition year and
the insurer-specific sample window. Specifically, the theoretical appearance count is calculated as
the number of years between the fund’s acquisition year and the sample end year, capped at 15
to reflect a typical private fund life span. For example, if a fund was first acquired in 2014 and
the sample ends in 2023, the theoretical appearance count is 10. Once target names are identified,
I use ChatGPT to perform fuzzy matching between non-target names and target names using
the following prompt:

4. T manually review all remaining unmatched cases as well as cases with low confidence scores.

5. I repeat steps 2 to 4 multiple times to ensure consistent and accurate name matching.

6. Finally, a unique fund ID is assigned to each unique fund name.

Prompt for Fund Name Match (reformatted for readability)

I have a dataset of private fund names reported by a specific investor. Due to typographical
errors, abbreviations, or rebranding, the same fund may appear under multiple names.
Your task is to manually review each row where Target == 0 and determine whether it

refers to the same underlying fund as any of the names listed in the rows where Target

Please do not use code or automated string comparison. Instead, consider the following
rules:

e Name variations caused by typos and abbreviations.

e Name variations caused by private equity M&A and rebranding.

e Proximity of acquisition dates. If two names refer to the same fund, their reported

acquisition date should be close (may not exactly be the same).

For each Target == 0 row, compare it to the full list of Target == 1 fund names. Return
the final dataset in CSV format with two added columns:
e MatchedName: The most likely matching fund name (or ”No Match”)

e MatchedScore: A confidence score from 1 to 5

Important: Please perform this review manually, row by row, using your knowledge and

reasoning. Do not use code or fuzzy matching tools.
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Identify Private Fund After obtaining the fund ID, I identify private funds in Schedule BA using
the following steps:
1. Keep only funds listed under the following categories according to the NAIC instructions:
e Non-Registered Private Funds
e Joint Venture, Partnership, or Limited Liability Company Interests
2. Drop assets whose names mention terms such as Hedge Fund, Surplus Debentures, Low Income
Housing Tax, or Tranches.
3. Drop assets with zero “Commitment for Additional Investment” throughout the sample, except

for funds first acquired before 2005 (the start of the annual sample).

Get Quarterly Measure To obtain all relevant variables at the quarterly frequency, I take several
additional steps. A key challenge is that the quarterly statutory filings do not include the full list of
fund holdings (Part 1). The annual filing provides a complete snapshot of all holdings at year-end
as well as the transaction during the year. In contrast, only transaction (Part 2 and 3), such as
contribution (capital call), distributions, or disposal, are reported each quarter. To reconstruct a
complete panel at the insurer-fund-year-quarter level, I proceed as follows:

1. Construct a balanced panel. I begin by creating a complete insurer-fund-year-quarter panel
that includes all possible combinations within each period. This ensures that each insurer-fund
pair has one row per quarter, regardless of whether the position changed during that quarter.

2. Merge year-end values from annual reports. I left join year-end values (e.g., book-adjusted
carrying value and uncalled commitment) from the annual report using insurer-fund-year as
matching keys. These values provide an anchor for inferring missing quarterly observations.

3. Merge quarterly transactions from quarterly reports. I then left join quarterly transaction
data, such as capital calls, distributions, and disposal, from the quarterly reports using insurer-
fund-year-quarter as matching keys.

4. Infer quarterly values. With the annual totals and Q1-Q3 transaction data, I back out the
Q4 transaction values and estimate quarterly positions. The detailed methods are as follows:

e Capital calls and distributions: The Q4 value equals the residual between the year-end
total and the sum of the reported Q1-Q3 values:

Q4 Call = Annual Call — (Q1 Call + Q2 Call + Q3 Call)

e Uncalled commitment: For quarters prior to Q4, I infer the uncalled commitment by
working backward from the year-end value and subtracting the cumulative capital calls

made after each quarter. For example:
Q1 Uncalled = Year-End Uncalled + (Q1 Call + Q2 Call + Q3 Call)

e Book value (BACYV): I first estimate quarterly BACV using the year-end value and the
cumulative capital calls and distributions. I then account for fair value adjustments such as

unrealized gains/losses by assuming these are evenly distributed across quarters. That is,
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d.

the quarterly fair value adjustment is set to one-fourth of the total annual adjustment. For
example
Q1 BACV = Year-End BACV — (Q1 Call + Q2 Call + Q3 Call)
— (Q1 Dist + Q2 Dist + Q3 Dist)
— 0.25 x Annual Adjustment

Handle fully exited holdings. For fund positions that are no longer listed in the year-end
annual report (due to full liquidation or sale), I reconstruct quarterly values using the previous
year-end value as the starting point. In such cases, I apply capital calls, distributions, and

estimated fair value adjustments to the full exit periods, where all level variables are set to zero.

Filtering Abnormal Values To ensure data quality and improve the reliability of the capital call

forecasts, I apply several filtering steps to address reporting inconsistencies and eliminate implausible

values. These steps are necessary because the reconstructed quarterly panel may contain mechanical or

reporting-induced anomalies. Specifically, I proceed as follows:

1.

By definition, uncalled commitments should only decline over time as capital is called. In cases
when uncalled commitment is larger than the previous period-end value, I set the current period’s
uncalled commitment equal to the previous period’s value. I also set the capital call for the

current period to zero.

. I set capital call to zero if it is negative. Begenau et al. (2020) point out that negative capital

calls could be attributed to fee offsets. But it does not affect my analysis.

. If a capital call exceeds the uncalled commitment from the previous period, I set that capital call

value equal to the uncalled commitment from the previous period. Note that I do not impose
any restriction based on the cumulative capital call. As pointed out by Begenau et al. (2020),

cumulative capital call could exceed the initial commitment due to recycled capital.

. To simplify the forecasting task later, I assume capital calls equal to zero after their tenth year.

Accordingly, for any fund with age greater than 10 years, I set both capital call and uncalled

commitment to zero. This step does not affect the results.

. In principle, capital calls and uncalled commitments should evolve consistently over time. I

manually inspect cases where the two series exhibit significant misalignment and attempt to

reconcile them. If reconciliation is not possible, I drop the affected observations from the sample.

. For funds held by multiple insurers at the same period, I compare the capital call rates and

distribution rates across insurers. Although small differences are normal, large discrepancies likely
indicate potential errors. I manually inspect all such suspicious cases and attempt to reconcile
them. If reconciliation is not possible, I replace the outlier observation with the median capital

call (or distribution) rate reported by other insurers holding the same fund in the same period.

Identify Fund Type I use the following steps to identify fund types.

1.

For funds that can be merged with the PitchBook data, I use the fund type classification from
PitchBook. Specifically, I group PitchBook fund types into the following six categories: Private
Equity, Venture Capital, Real Estate, Private Debt, Infrastructure, and Others.
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2. For the remaining funds, I use fund names to perform further classification. Specifically,
e Funds with names including words such as Buyout, Equity, Balance, Growth, or Stock are
classified as Private Equity Funds.
e Funds with names including words such as Venture, Early, Seed, or Start Up are classified
as Venture Capital Funds.
e Funds with names including words such as Real Estate, Housing, Residential, or
Mortgage are classified as Real Estate Funds.
e Funds with names including words such as Debt, Credit, Mezzanine, Direct Lending, or
Distressed Debt are classified as Private Debt Funds.
e Funds with names including the word Infrastructure are classified as Infrastructure Funds.
3. Finally, I use ChatGPT to further classify funds into the above six categories using the following
prompt.

Prompt for Fund Type Classification (reformatted for readability)

I have a list of private fund names. Please help classify each fund into one of the following
six categories: (1) Private Equity, (2) Venture Capital, (3) Real Estate, (4) Private Debt, (5)
Infrastructure, (6) Others.

Use your broader understanding of private market terminology to make informed judgments. If

a fund name does not fit into any category, classify it as Others.

Return your output in CSV format with two columns:
e FundName: the original fund name.

e FundType: one of the six categories.
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IA.2.3 Data Comparison

Table TA.1 compares my dataset, based on Schedule BA statutory filings, with commonly used data

sources in the literature such as Preqin and MSCI Burgiss. Below, I summarize the key similarities

and differences:

Data Source and Coverage: The Schedule BA data is derived from mandatory statutory
filings submitted by U.S. insurance companies. In contrast, most traditional datasets, such as
Preqin, primarily rely on Freedom of Information Act (FOIA) requests to U.S. public pension
funds (Begenau et al., 2020). While some more proprietary datasets exist based on information
collected by investment advisors or third-party providers, these are relatively uncommon. Due to
the difference in source, my data covers U.S. insurers, whereas traditional datasets focus largely
on U.S. public pensions. A further distinction is that Schedule BA filings provide a complete
investor-level panel of holdings, while FOIA-based data is often insufficient to reconstruct a
complete panel for each investor.

Capital Calls and Distributions: Both my dataset and traditional sources report after-fee
cash flows—that is, the actual cash flows experienced by the investor, net of fees.

Sample Period and Frequency: My dataset includes annual holdings starting in 2005 and
quarterly transaction-level data beginning in 2008. Traditional datasets, such as Preqin and
Burgiss, typically start in the 1990s. Both my data and traditional sources provide quarterly
frequency for cash flow and valuation information.

Secondary Market Sales: Although secondary sales of private fund stakes remain relatively
limited, they do affect investor-level holdings. My data captures all secondary market sales,
whereas traditional datasets generally do not track these transactions.

Fund Characteristics: Key fund-level attributes, such as vintage year, fund age, size, general
partner identity, and fund type, are available in both my data and in traditional sources. However,
in my data, extracting these fund characteristics requires additional processing.

Rest of portfolio: My data can link investors’ private fund holdings with the rest of their

portfolio, which is not possible in traditional data sources.

It is possible to merge the Schedule BA data with traditional datasets. To do this, I apply the same

fund name standardization algorithm used in the first step of creating fund identifiers (as discussed

earlier) to the fund names in the other data sources. The standardized fund names then serve as a

common key for merging both datasets.
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Table IA.1: Data Comparison

This table compares the Schedule BA data with the other data commonly used in the PE literature.

Schedule BA Data

Other Data Used in the

Literature

Data Source

Fund Type Coverage
Investor Type Coverage
Investor-level Completeness
Sample Period

Frequency

Easy to use

Key Variables

Fund Information

Initial Commitment Amount
Capital Call

Distribution

Uncalled Commitment
Secondary Market Sale
Performance Measures

Rest of Portfolio

Investor Financial

Deals/Portfolio Companies

Mandatory Statutory Filings

All private funds

Insurance companies

Complete

Since 2008

Quarterly

No

Name, Vintage, Age, Size, GP,
Type (needs some work)
Yes

Yes (include fee)

Yes

Yes

Yes

Need to calculate yourself
Yes

Yes

No

(1) FOIA request

(2) Voluntary disclosure from GP

(3) Third party data
Depends on your subscription
Mostly public pension funds
Not complete
Since 1990s
Quarterly

Yes

Available and easy to use

Depends

Yes (include fee)
Yes

Depends
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TA.2.4 Variable Definitions

Table IA.2: Variable Definitions

Variable Definition
Capital Call Amount of capital call an insurer received during a quarter, scaled by the lagged total portfolio size.
Expected Capital Call Expected amount of capital call an insurer received during a quarter, defined as in Section 4, scaled

by the last period total portfolio size.

Unexpected Capital Call Unexpected amount of capital call an insurer received during a quarter, defined as in Section 4, scaled
by the last period total portfolio size.

Capital Call Rate Amount of capital call scaled by the lagged uncalled commitment. Same for expected and unexpected
capital call rate.

Distribution Amount of distribution an insurer received during a quarter, scaled by the lagged total portfolio size.
Uncalled Commit The total amount of uncalled commitment an insurer has, scaled by the lagged total portfolio size.
New Commit The total amount of new commitment an insurer made during a quarter, scaled by the lagged total

portfolio size.

Private Fund Percentage holdings of private funds based on the book value (BACV).

Bond Percentage holdings of all long-term bonds, reported in Schedule D Part 1.

Treasury Percentage holdings of all treasury bonds.

Industrial Percentage holdings of all industrial bonds, based on the definition of NAIC.

Corporate Bond Percentage holdings of all corporate bonds.

Other-Industrial Bond Percentage holdings of all non-corporate industrial bonds.

Govt Agent Percentage holdings of all government-related, non-Treasury bonds.

Other Bond Percentage holdings of other long-term bonds.

Mortgage Percentage holdings of all mortgage loans, reported in Schedule B.

Stock Percentage holdings of stocks (both common and preferred stocks), reported in Schedule D Part 2.
Rest All remaining holdings.

NAIC A numerical number for the NAIC designations, range from 1 to 6.

RBC Ratio Risk-Based Capital Ratio.

Unrealized G&L Unrealized gains and losses computed as the difference between book value (BACV) and fair value,

scaled by the book value.

Exposure Bond-level capital call shock exposure measure, defined as in equation (7)

Yield Spread Corporate bond yield spread defined as yield minus the maturity-match treasury yield.

Ownership The percentage bond share owned by each insurer.

Insurer Ownership The percentage bond share owned by all insurers.

Insurer Sell The par amount of bond sold by all insurers, scaled by bond size. Only active sales are considered.
Bid-Ask Spread Corporate bond bid-ask spread.

Bond Ratings Numerical number of corporate bond ratings.

Trading Volume Log of bond trading volume based on par value.

Bond Size Log of bond outstanding amount

Time-to-Maturity The number of years before the stated maturity date.
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IA.3 Forecasting Capital Calls

TA.3.1 Forecasting Models

LASSO LASSO (Least Absolute Shrinkage and Selection Operator) is a type of linear regression
model designed to identify the most important predictors. Specifically, it models the outcome variable
as a linear function of the predictor vector X, ;, but with a penalty on complexity. Formally, it estimates
coefficients 8 by solving:
min Z (RCjs1 — X,8)" + X |6l
7t k

The second term is a penalty on the absolute values of the coefficients, controlled by the hyperparameter
A > 0. When A\ is large, the model shrinks more coefficients toward zero, effectively performing variable
selection by excluding weak predictors. When A = 0, LASSO reduces to ordinary least squares. The
key advantage of LASSO is the interpretability. However, LASSO cannot capture nonlinear interactions

or complex functional forms.

Decision Tree A decision tree is a flexible, non-parametric model that predicts the outcome variable
by recursively splitting the data based on values of the predictors. The model creates a tree-like
structure where each internal node represents a rule, and each terminal leaf node assigns a predicted
value based on the average of the outcome variable in that subgroup. Formally, a decision tree partitions
the feature space X;; into regions {R1, Ra, ..., Ry}, and predicts the outcome variable as the average

in the corresponding region:

M
RCjyi1 =Y RCpm-1{X;; € Ry}
m=1

where RC,, is the average capital call ratio in region R,,. The key hyperparameters include: (1)
Maximum tree depth (limits the number of splits); (2) Minimum samples per leaf (prevents overfitting
by requiring enough observations per group); (3) Split criterion (e.g., mean squared error)

Figure TA.7 illustrates a simple decision tree used to predict capital call outcomes. Each node
represents a decision rule that splits the data based on a specific predictor, recursively dividing the
sample into increasingly homogeneous subgroups. The top number in each node is the predicted
outcome variable, and the bottom number shows the proportion of observations in that group. The
tree starts with the full sample (100% in the root node) and a sample average capital call rate of 11%.
The first split is based on whether the lagged capital call rate is below 25%. 10% of the sample has a
lagged call rate above 25%, and has a predicted capital call rate of 18%. The remaining 90% is further
split based on whether the uncalled commitment (as a percentage of the initial commitment) exceeds
66%. If it does, the predicted call rate is 6.4%; if not, the predicted call rate is 11%.

As the example shows, decision trees are highly interpretable and automatically capture nonlinearities
and interactions. However, a single decision tree tends to overfit the data, which is why a single tree is
rarely optimal. Instead, it serves as the building block for more powerful ensemble methods such as

random forests and gradient boosting, which I describe next.
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Figure IA.7: Illustration of Decision Tree

This figure illustrates the idea of a decision tree.

Random Forest Random Forest is an ensemble learning method that builds upon the decision tree
model. Instead of relying on a single tree, it constructs many trees and averages their predictions to
produce a more stable and accurate forecast. Each tree is trained on a different random subset of
the data and, at each split, considers only a random subset of the predictors. This randomness helps
reduce overfitting. Formally, the Random Forest prediction for the outcome variable is the average of

predictions from B separate trees:
B
— 1 ——(b)
RCj1 = B E :ch,tJrl
b=1

where each Ebﬁbt) 1 is the prediction from tree b. Key hyperparameters include: (1) Number of trees (B):
more trees usually improve performance up to a point; (2) Maximum tree depth: controls complexity
of each tree; (3) Minimum samples per leaf: avoids splitting into overly small regions; (4) Number of
predictors considered at each split: adds randomness and reduces correlation among trees.
Advantages of Random Forest include its ability to capture complex nonlinear interactions without
much tuning, its robustness to overfitting, and its built-in measure of variable importance. The main

drawback is that the model loses interpretability compared to a single decision tree and LASSO.

LightGBM LightGBM (Light Gradient Boosting Machine) is a fast and efficient implementation
of gradient boosting, a technique that builds a sequence of decision trees, where each tree tries to
improve on the errors made by the previous ones. Unlike Random Forest, which averages predictions
from many independent trees, Light GBM builds trees sequentially in a boosting framework to correct

past mistakes.
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Formally, at each stage, Light GBM minimizes a loss function (such as squared error) by fitting a

new tree to the residuals of the current model. The updated prediction becomes:

(m) (

. ——(m—1)

+ 1 him (Xt)
where hy,(+) is the new tree added at stage m, and 7 is a learning rate controlling how much weight is
given to new trees. Key hyperparameters include: (1) Learning rate (n): smaller values slow learning
but improve stability; (2) Number of boosting rounds; (3) Maximum depth or number of leaves:
controls complexity of individual trees; (4) Minimum data in a leaf and feature fraction: regularization
parameters to prevent overfitting.

Light GBM is highly efficient and well-suited for large structured datasets. It often achieves state-
of-the-art accuracy with relatively fast training time. The disadvantage is that it reduces transparency

and requires more careful tuning.

XGBoost XGBoost (Extreme Gradient Boosting) is another popular and powerful implementation of
gradient boosting. Like Light GBM, XGBoost constructs trees sequentially to minimize prediction error,
improving upon prior trees by fitting to residuals. Formally, XGBoost solves the following penalized
objective:
Objective = > (Rcml, Tz?,*ml) +5°9Q ()
it m

where £(-) is the loss function, and € (h,,) penalizes model complexity to prevent overfitting. Key
hyperparameters include: (1) Learning rate (n) and number of boosting rounds; (2) Maximum depth,
minimum child weight, subsample ratio, and colsample by tree (fraction of features randomly sampled
per tree); (3) Gamma (minimum loss reduction required to make a split).

XGBoost is robust and flexible. In many settings, it delivers strong performance. Like Light GBM,

its main limitation is interpretability.

Two-stage Hurdle Model One challenge in forecasting capital calls is the prevalence of zero
observations: many fund-quarter observations have capital calls exactly equal to zero. This feature
creates what is known as zero-inflated data, which violates standard model assumptions and can lead
to biased or inefficient forecasts (Lambert, 1992). To overcome this challenge, I implement a two-stage
hurdle model framework, a method commonly used in econometrics to model outcomes with excess
zeros (Cragg, 1971; Mullahy, 1986). The core idea is to treat the zero and non-zero outcomes separately:
the first-stage is a classification task to forecast whether there is going to be any capital call (non-zero),
and the second-stag is a regression task to forecast how magnitude of the capital call, conditional on
having non-zero capital calls.

Specifically, in the first stage, the binary classification task is to estimate the probability that a
capital call is non-zero:

Pr(RCji1 > 0] Xjt) = g1 (Xjt) = Pjt+1

In the second stage, a regression model is fit to the subsample of non-zero capital calls to estimate the
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expected magnitude, conditional on a call occurring;:
E(RCji41 | RCjtr1 > 0,X;t) = g2 (Xjjt) = 41
The final forecast is computed as the product of the two components:
1/?(\7j,t+1 = Pjt+1 " fjtr1

This two-stage approach is especially beneficial in my setting, where a large portion of the
observations are zeros but the positive realizations display significant heterogeneity. I implement this
two-stage framework across all above machine learning models discussed earlier: LASSO, decision tree,

random forest, Light GBM, and XGBoost. Hence, there are ten machine learning models in total.

IA.3.2 Implementation

Predictors Predictors X;; includes
e Macro variables: GDP, CPI, industrial production, unemployment,
e Public market indicators: S&P 500 returns, Price-Dividend ratio, Price-Earnings ratio, credit
spread index, fed fund rate, Treasury yield curve, VIX
e Private market: PE fundraising, PE deal volume, PE rolling IRR.
e Fund-level variables: vintage year, fund age, fund type, fund size, three lagged capital call rates
(t,t —1,t — 2), and lagged uncalled commitment (as the percentage of initial commitment). Note

that some fund-level variables might be missing. I set the missing value to zero.

Sample All models are initially trained and tested using the Preqin fund cash flow data. Since
the Preqin data spans a significantly longer period (starting in the 1990s), it enables me to perform

hyperparameter tuning and out-of-sample model selection without reducing the size of the main sample.

Hyperparameter Selection When hyperparameter tuning is required, I perform cross-validation
using data available up to 2003. Specifically, this pre-2003 data is split into two equal parts: a training
set and a validation set. The model is trained on the training set across various combinations of
hyperparameters, and performance is evaluated on the validation set. I then select the hyperparameter
combination that yields the best out-of-sample performance on the validation set. This selected
configuration is fixed and used for all subsequent forecasts across time, i.e., hyperparameters are are

only choose once.

Rolling Window Forecast Evaluation To evaluate out-of-sample forecasting performance, I adopt
a five-year rolling window approach. For each forecast year ¢, I train the model using data from the
previous five calendar years, i.e., from year ¢ — 4 through ¢ — 1. For example, to forecast capital calls in
2019, the model is trained on data from 2014 Q1 to 2018 Q4. This procedure is repeated for each year

in the evaluation period (2008 to 2023), and I compute the average out-of-sample R? across all test
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years. This method resembles standard cross-validation method but is tailored for time-series data,

ensuring that future information is never used in model training.

Apply the Selected Model to Main Sample I then apply the selected forecasting model to the
main sample. For each year ¢, I use the same model specification as in the out-of-sample rolling window
evaluation, i.e., trained on data from year ¢t — 4 through ¢ — 1. For any predictor variables that are
unavailable in the main sample, I either set them to zero or leave them as missing (most packages can

handle the missing values automatically).

TA.3.3 Additional Forecasting Results

Figure TA.8 shows the average of the predicted capital call rate. Subfigure (a) shows the sample average
and fitted value of the capital call rate over the life of the fund. Subfigure (b) shows the percentage

amount of uncalled commitment over the life of the fund.

(a) Predicted Capital Call Rate (b) Predicted Cumulative Capital Call

Figure TA.8: Predicted Capital Call Rates over Fund Ages

Subfigure (a) shows the sample average and fitted value of the capital call rate over the life of the fund. Subfigure (b)
shows the percentage amount of uncalled commitment over the life of the fund.
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IA.4 Additional Results

(a) Life Insurers (c) P&C Insurers

Figure IA.9: Insurers’ Portfolio Allocation

This figure shows the aggregate allocation of insurance companies in the sample. Subfigure (a) is for Life insurers, and
Subfigure (b) is for P&C insurers.

(a) By Fund Types (b) By Fund Ages

Figure IA.10: Private Fund Allocation

This figure shows insurers’ private fund allocation over time: Subfigure (a) breaks allocation by fund types and Subfigure
(b) breaks allocation by fund ages.
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Table TA.3: Summary Statistics: Life vs. P&C Insurers

Panel A: Life Insurers

Variable N Mean SD P1 P25 Med P75 P99
Private Fund ($ M) 6977 867.59 2281.41 0.00 5.76 48.77 609.56 11926.60
Private Fund (%) 6977 2.01 12.46 0.00 0.22 1.06 2.60 10.46
Number Private Fund 6977 67.05 115.31 1.00 2.00 9.00 80.00 497.00
Uncalled Commit ($ M) 6977 381.29 910.88 0.00 0.00 15.62 299.54  4589.91
Distribution ($ M) 6977 38.44 144.03 0.00 0.00 0.76 16.36 672.85
Insurer Size ($ B) 6977 33.82 58.87 0.01 1.71 11.03 35.71 292.50
RBC Ratio (%) 6977 939.92 2764.92 291.48 732.86 900.74 1122.61 3544.55
Leverage 6977 12.95 9.16 1.55 6.16 10.50 16.94 43.28
Bond (%) 6977 73.64 14.23 15.98 67.72 74.73 83.44 94.81
NAIC 1 (%) 6977 46.82 62.26 5.10 37.98 44.35 53.78 83.59
NAIC 2 (%) 6977 26.46 72.74 0.47 19.03 24.84 31.01 56.64
NAIC 3 (%) 6977 2.64 8.92 0.00 1.31 2.30 3.39 8.68
NAIC 4 (%) 6977 0.87 1.08 0.00 0.22 0.64 1.27 3.65
NAIC 5 (%) 6977 0.34 0.82 0.00 0.02 0.13 0.37 4.04
NAIC 6 (%) 6977 0.09 0.19 0.00 0.00 0.02 0.10 0.82
Industrial (%) 6977 57.89 117.09 1.29 47.83 56.80 65.95 90.43
Corporate Bond (%) 6977 30.74 66.75 0.00 20.02 28.76 38.07 62.59
Other Industrial (%) 6977 27.15 52.10 0.13 18.18 26.98 33.12 57.09
Treasury (%) 6977 4.42 5.96 0.00 0.81 2.51 5.73 29.62
Other Govt Related (%) 6977 12.31 18.30 0.00 5.08 9.61 15.85 49.36
Other Bond (%) 6977 2.74 11.65 0.00 0.38 1.44 3.36 15.14
Cash (%) 6977 4.47 8.17 0.06 1.21 2.38 4.52 38.92
Mortage (%) 6977 7.93 7.19 0.00 0.70 7.43 12.87 32.47
Stock (%) 6977 4.77 5.92 0.00 0.94 2.98 6.13 30.46
Rest (%) 6977 7.19 13.91 -0.08 3.38 6.04 9.34 25.90
Panel B: P&C Insurers
Private Fund ($ M) 8739 246.05 744.15 0.00 2.99 17.89 103.12 3895.42
Private Fund (%) 8739 2.03 2.62 0.00 0.22 1.02 2.85 11.84
Number Private Fund 8739 26.54 65.93 1.00 2.00 5.00 18.00 390.00
Uncalled Commit ($ M) 8739 104.31 283.17  0.00 0.00 4.66 53.52 1503.36
Distribution ($ M) 8739 9.22 53.34 0.00 0.00 0.14 2.39 140.14
Insurer Size ($ B) 8739 12.09 38.30 0.03 0.69 2.35 7.13 180.56
RBC Ratio (%) 8739 2157.50 44763.11 241.16 505.17 727.10 1046.96  3179.28
Leverage 8739 3.18 4.71 1.34 2.02 2.53 3.12 45.95
Bond (%) 8739 65.37 16.83 8.34 57.18 68.19 77.25 92.07
NAIC 1 (%) 8739 52.79 81.96 3.27 40.79 52.86 63.20 88.00
NAIC 2 (%) 8739 10.39 16.68 0.00 4.79 8.63 13.76 41.74
NAIC 3 (%) 8739 1.25 1.63 0.00 0.07 0.65 1.84 7.61
NAIC 4 (%) 8739 0.82 1.44 0.00 0.00 0.17 1.11 6.33
NAIC 5 (%) 8739 0.23 0.58 0.00 0.00 0.02 0.22 3.03
NAIC 6 (%) 8739 0.12 1.02 0.00 0.00 0.00 0.04 1.18
Industrial (%) 8739 30.05 47.98 0.00 16.32 27.88 39.86 73.51
Corporate Bond (%) 8739 15.79 27.08 0.00 7.27 13.43 21.31 52.64
Other Industrial (%) 8739 14.26 22.82 0.00 5.79 11.84 20.00 45.22
Treasury (%) 8739 8.21 21.64 0.01 2.23 5.20 10.29 41.08
Other Govt Related (%) 8739 25.69 33.99 0.07 12.46 22.83 36.14 67.64
Other Bond (%) 8739 1.76 3.38 0.00 0.00 0.59 2.24 14.66
Cash (%) 8739 6.64 8.14 -1.46 2.18 4.24 8.12 40.98
Mortage (%) 8739 0.66 1.84 0.00 0.00 0.00 0.06 10.10
Stock (%) 8739 20.00 14.25 0.00 9.73 17.81 26.86 70.57
Rest (%) 8739 5.30 5.48 -0.38 1.83 3.82 7.28 23.21
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Table TA.4: Correlation with Other Data Source

This table shows the correlation between my data and Preqin. The first column shows the number of observations
successfully merged. The second column shows the correlation for capital call rate, and the third column shows the
correlation for uncalled commitment.

(1) (2)
N Capital Call Rate Uncalled Commit

235,773 0.816 0.977
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(c) Capital Call Rates

(¢) Unexpected Capital Call Rates

Figure TA.11: Investor-level Capital Call Rate Distribution over Time

This figure plots the distribution of investor-level capital call rates over time using boxplots, where Subfigure (a) is for the
total capital call and Subfigure (b) is for the unexpected component. Capital calls are scaled by the previous period-end
uncalled commitments. Each box represents the interquartile range (IQR), with the bottom and top edges corresponding
to the first and third quartiles. The horizontal short dark blue line inside each box denotes the median, while the red
triangle indicates the mean. The vertical lines extending from the boxes (whiskers) show the range of the data, excluding
outliers. Individual observations beyond the whiskers (outliers) are plotted as light gray dots.
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Table IA.5: Time Series Determinants of Capital Calls

This table shows the time series determinant of capital call. Panel A shows the results for capital call rate, and Panel B
shows the results for unexpected capital call rate. Insurer fixed effects are included. Standard errors double clustered at
the insurer and time level. *** ** and * indicate statistical significance at the 1%, 5%, and 10%, respectively.

Panel A: Capital Call Rates

1 2) () (4) (5) (6) (7 (8)
log(P/D) 0.118*** 0.063**
(0.024) (0.030)
log(Credit Spread) —0.042%** 0.028**
(0.012) (0.011)
log(Fund Raising) 0.050*** 0.037***
(0.005) (0.007)
log(PE Deal Volume) 0.044** 0.013*
(0.006) (0.007)
log(PE IRR) 0.064*** 0.002
(0.023) (0.030)
Treasury 1Y 0.002 0.001
(0.006) (0.004)
Treasury 5Y 0.047** 0.003
(0.015) (0.010)
Treasury 10Y —0.055"** —0.002
(0.012) (0.009)
GDP Growth 0.001 —0.001
(0.001) (0.001)
Insurer FE Yes Yes Yes Yes Yes Yes Yes Yes
Observations 11,498 11,498 11,498 11,498 11,498 11,498 11,498 11,498
Adjusted R? 0.449 0.436 0.474 0.461 0.428 0.457 0.421 0.480
Panel B: Unexpected Capital Call Rates
B B DG ©® o ®
log(P/D) 0.018"* 0.006
(0.009) (0.014)
log(Credit Spread) —0.006* 0.007*
(0.004) (0.004)
log(Fund Raising) 0.008*** 0.011***
(0.002) (0.002)
log(PE Deal Volume) 0.008*** 0.009***
(0.002) (0.003)
log(PE IRR) 0.019** —0.010
(0.008) (0.016)
Treasury 1Y —0.001 —0.002
(0.002) (0.002)
Treasury 5Y 0.008 —0.007*
(0.006) (0.004)
Treasury 10Y —0.008* 0.009**
(0.004) (0.004)
GDP Growth 0.0001  —0.0003
(0.001)  (0.0005)
Insurer FE Yes Yes Yes Yes Yes Yes Yes Yes
Observations 11,498 11,498 11,498 11,498 11,498 11,498 11,498 11,498
Adjusted R? 0.153 0.149 0.160 0.159 0.152 0.150 0.146 0.168
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(a) Number of Funds Invested (b) Number of New Commitments per Year

Figure TA.12: Distribution of Number of Private Funds Invested

Subfigure (a) shows the distribution of number of private funds held by one insurer. Subfigure (b) shows the cumulative
distribution of number of new commitments made by each insurer every year.
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Table TA.6: Portfolio Rebalancing: Life vs. P&C Insurers

This table examines differences in portfolio adjustment decisions between Life and P&C insurers when facing capital calls.
Panels A and C present results for Life insurers, while Panels B and D present results for P&C insurers. Panels A and B
correspond to Panel A of Table 5, and Panels C and D correspond to Panel B of Table 5. All regression specifications are
identical to those in Table 5.

Panel A: Life

Private Fund Bond Cash Mortgage Stock Rest
(1) (2) (3) (4) (5) (6)
Capital Call 0.629*** —0.577  —0.243 0.071 0.021 0.135
(0.049) (0.281) (0.385) (0.120) (0.036) (0.166)
Distribution —0.732%* 0.784* 0.498 —0.152 0.018 —0.293
(0.137) (0.419) (0.336) (0.151) (0.062) (0.568)
Observations 6,050 6,050 6,050 6,050 6,050 6,050
Adjusted R? 0.315 0.096 0.107 0.266 0.116 0.066
Panel B: P&C
Private Fund Bond Cash Mortgage Stock Rest
(1) (2) (3) (4) (5) (6)
Capital Call 0.624*** —0.502"*  —0.124 —0.050 0.034 —0.080
(0.078) (0.235) (0.235) (0.141) (0.026) (0.112)
Distribution —0.850*** 0.245 0.155 0.156 0.017 0.362***
(0.082) (0.383) (0.359) (0.287) (0.027) (0.132)
Observations 6,078 6,078 6,078 6,078 6,078 6,078
Adjusted R? 0.537 0.239 0.155 0.512 0.098 0.213
Panel C: Life — Unexpected vs. Expected
Private Fund Bond Cash Mortgage Stock Rest
(1) (2) (3) (4) (5) (6)
Unexpected Capital Call 0.616™** —0.632**  —0.059 0.030 0.018 0.128
(0.055) (0.300) (0.396) (0.134) (0.041) (0.182)
Expected Capital Call 0.315** —0.048 —0.341 0.115 0.040 —0.165
(0.151) (0.369) (0.732) (0.141) (0.091) (0.278)
Observations 5,476 5,476 5,476 5,476 5,476 5,476
Adjusted R? 0.218 0.082 0.144 0.119 0.106 0.081
Panel D: P&C — Unexpected vs. Expected
Private Fund Bond Cash Mortgage Stock Rest
(1) (2) (3) (4) (5) (6)
Unexpected Capital Call 0.659*** —-0.573**  —0.233 0.070 0.046 —0.165
(0.089) (0.264) (0.248) (0.152) (0.030) (0.108)
Expected Capital Call 0.090 —0.133 —0.099 —0.112 0.039 —0.031
(0.166) (0.504) (0.468) (0.414) (0.049) (0.357)
Controls Yes Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes Yes
Insurer FE Yes Yes Yes Yes Yes Yes
Observations 6,652 6,652 6,652 6,652 6,652 6,652
Adjusted R? 0.535 0.206 0.124 0.447 0.204 0.179
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¢EVI

Panel A: Life vs. P&C Insurers — Capital Calls and Distributions

(a) Private Fund (b) Bond (c) Cash (d) Stock (e) Mortgage (f) Rest

Panel B: Life vs. P&C Insurers — Expected and Unexpected Capital Calls

(a) Private Fund (b) Bond (c) Cash (d) Stock (e) Mortgage (f) Rest

Figure TA.13: Dynamic Portfolio Effects: Life vs. P&C Insurers

This figure examines differences in dynamic portfolio adjustment decisions between Life and P&C insurers when facing capital calls. Panel A presents results for total
capital calls, while Panel B presents results for unexpected capital calls. Panel A corresponds to Figure 10, and Panel B corresponds to Figure 11. All specifications
are identical to those in Figures 10 and 11.



Table IA.7: Robustness: Net Cash Flow

This table examines portfolio effects using net private fund cash flow as the shock. Net cash flow is defined as the quarterly
private fund distributions minus capital calls, with positive values indicating distributions exceed capital calls. Panel A
reports portfolio effects by asset class, corresponding to Panel A of Table 5. Panel B reports bond holding adjustments
by bond type, corresponding to Panel A of Table 6. Panel C reports bond holding adjustments by NAIC designation,
corresponding to Panel B of Table 6. All specifications are identical to those in Tables 5 and 6.

Panel A: By Asset Class

Private Fund Bond Cash Mortgage Stock Rest
(1) (2) (3) (4) (5) (6)
Net Cash Flow —0.641*** 0.529*** 0.190 0.024 —0.023 —0.008
(0.049) (0.179) (0.194) (0.090) (0.022) (0.085)
Observations 12,128 12,128 12,128 12,128 12,128 12,128
Adjusted R? 0.428 0.148 0.119 0.392 0.098 0.112
Panel B: By Bond Type
Treasury Industrial ~ Govt Agent Other Corporate  Non-Corporate
(1) (2) (3) (4) (5) (6)
Net Cash Flow 0.075 0.597*** —0.284** —0.099 0.487** 0.133
(0.082) (0.202) (0.134) (0.464) (0.141) (0.123)
Observations 12,128 12,128 12,128 12,128 12,128 12,128
Adjusted R? 0.288 0.126 0.679 0.460 0.451 0.043
Panel C: By NAIC Designation
NAIC 1 NAIC 2 NAIC 3 NAIC 4 NAIC 5 NAIC 6
1) (2) 3) (4) (5) (6)
Net Cash Flow —0.106 0.254** 0.080*** 0.024 0.011 —0.017
(0.260) (0.117) (0.025) (0.015) (0.008) (0.017)
Controls Yes Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes Yes
Insurer FE Yes Yes Yes Yes Yes Yes
Observations 12,128 12,128 12,128 12,128 12,128 12,128
Adjusted R? 0.334 0.091 0.001 0.158 0.057 0.172
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Table TA.8: Robustness: Using Linear Model

This table examines the robustness of the portfolio effects of unexpected capital call shocks, using a linear model to
estimate expected calls. Panel A reports portfolio effects by asset class, corresponding to Panel A of Table 5. Panel B
reports bond holding adjustments by bond type, corresponding to Panel A of Table 6. Panel C reports bond holding
adjustments by NAIC designation, corresponding to Panel B of Table 6. All specifications are identical to those in Tables
5 and 6.

Panel A: By Asset Class

Private Fund Bond Cash Mortgage Stock Rest

(1) () () (4) (5) (6)
Unexpected Capital Call 0.618*** —0.656** —0.123 0.053 0.039 —0.009
(0.059) (0.216) (0.216) (0.108) (0.030) (0.102)
Expected Capital Call 0.171 —0.118 —0.190 —0.051 0.022 —-0.077
(0.135) (0.305) (0.448) (0.241) (0.046) (0.276)
Observations 12,128 12,128 12,128 12,128 12,128 12,128
Adjusted R? 0.425 0.149 0.119 0.392 0.098 0.117

Panel B: By Bond Type

Treasury Industrial ~ Govt Agent Other Corporate  Non-Corporate

(1) (2) (3) (4) (5) (6)
Unexpected Capital Call —0.007 —0.912%** 0.250* 0.541 —0.748*** —0.204
(0.101) (0.228) (0.142) (0.662) (0.146) (0.175)
Expected Capital Call 0.017 —0.421 0.494 1.138 —0.082 —0.445
(0.230) (0.649) (0.360) (1.773) (0.332) (0.503)
Observations 12,128 12,128 12,128 12,128 12,128 12,128
Adjusted R? 0.288 0.126 0.680 0.460 0.452 0.043
Panel C: By NAIC Designation
NAIC 1 NAIC 2 NAIC 3 NAIC 4 NAIC 5 NAIC 6
1) (2 () (4) (5) (6)
Unexpected Capital Call 0.023 —0.403*** —0.102*** —0.030** —0.007 0.001
(0.301) (0.121) (0.029) (0.015) (0.008) (0.009)
Expected Capital Call 0.507 —0.024 —0.094 —0.010 —0.021 0.112
(0.986) (0.301) (0.089) (0.054) (0.024) (0.086)
Controls Yes Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes Yes
Insurer FE Yes Yes Yes Yes Yes Yes
Observations 12,128 12,128 12,128 12,128 12,128 12,128
Adjusted R? 0.334 0.090 0.0004 0.159 0.057 0.172
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Table TA.9: Robustness: Using Industrial Model

This table examines the robustness of the portfolio effects of unexpected capital call shocks, using a commonly used
industrial model to estimate expected calls. The industrial model predict capital call rate as a stepwise function of fund
age. Panel A reports portfolio effects by asset class, corresponding to Panel A of Table 5. Panel B reports bond holding
adjustments by bond type, corresponding to Panel A of Table 6. Panel C reports bond holding adjustments by NAIC
designation, corresponding to Panel B of Table 6. All specifications are identical to those in Tables 5 and 6.

Panel A: By Asset Class

Private Fund Bond Cash Mortgage Stock Rest
1) (2) (3) (4) (5) (6)
Unexpected Capital Call 0.492*** —0.663*** 0.029 —0.152 0.039 0.222**
(0.053) (0.209) (0.195) (0.105) (0.030) (0.103)
Expected Capital Call 0.202 0.202 —0.228 —0.117 —0.008 —0.317
(0.290) (0.615) (0.722) (0.517) (0.085) (0.585)
Observations 12,128 12,128 12,128 12,128 12,128 12,128
Adjusted R? 0.414 0.150 0.119 0.392 0.098 0.119
Panel B: By Bond Type
Treasury Industrial ~ Govt Agent Other Corporate  Non-Corporate
1) (2) () (4) (5) (6)
Unexpected Capital Call 0.089 —1.046** 0.232* 1.567 —0.715%* —0.396*
(0.095) (0.264) (0.128) (1.498) (0.157) (0.198)
Expected Capital Call 0.222 0.042 0.740 5.472 0.005 —0.114
(0.509) (1.296) (0.790) (5.095) (0.740) (0.845)
Observations 12,128 12,128 12,128 12,128 12,128 12,128
Adjusted R? 0.288 0.126 0.680 0.461 0.452 0.043
Panel C: By NAIC Designation
NAIC 1 NAIC 2 NAIC 3 NAIC 4 NAIC 5 NAIC 6
) 2) @) (4) (5) (6)
Unexpected Capital Call 0.134 —0.506*** —0.194** —0.054*** —0.013 —0.004
(0.325) (0.140) (0.032) (0.017) (0.011) (0.010)
Expected Capital Call 1.154 0.133 —0.113 0.127 —0.066 0.251
(2.088) (0.675) (0.228) (0.104) (0.071) (0.183)
Controls Yes Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes Yes
Insurer FE Yes Yes Yes Yes Yes Yes
Observations 12,128 12,128 12,128 12,128 12,128 12,128
Adjusted R? 0.334 0.090 0.001 0.161 0.057 0.172

IA.35



Figure TA.14: Distribution of Bond-level Exposure Measure

This figure shows the distribution of bond-level exposure measure.
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Table TA.10: Spillover Heterogeneity: The First Stage

This table shows the first stage results for the 2SLS results in Table 11. Panel A corresponds to the first stage for Column
(4) of Table 11, and Panel B corresponds to the first stage for Column (6) of Table 11. *** ** and * indicate statistical
significance at the 1%, 5%, and 10%, respectively.

Panel A: Bond Rating Test

AHoldings x NAIC1

AHoldings x NAIC2  AHoldings x NAIC3

(1) (2) (3)

Exposure x NAIC1 —0.082* —0.014 0.021***

(0.042) (0.020) (0.006)
Exposure x NAIC?2 0.031** —0.363*** 0.029***

(0.014) (0.034) (0.005)
Exposure x NAIC3 0.030*** —0.025* —0.137***

(0.011) (0.015) (0.024)
Controls Yes Yes Yes
Bond FE Yes Yes Yes
Time FE Yes Yes Yes
Observations 355,626 355,626 355,626
Adjusted R? 0.033 0.046 0.049
Kleibergen-Paap F-Statistic 5.3 38.3 20.7

Panel B: Covid Test

AHoldings x COVID

AHoldings x REST

(1) (2)

Exposure x COVID —0.166*** —0.017

(0.014) (0.032)
Exposure x REST —0.004 —0.197***

(0.004) (0.036)
Controls Yes Yes
Bond FE Yes Yes
Time FE Yes Yes
Observations 355,626 355,626
Adjusted R? 0.008 0.085
Kleibergen-Paap F-Statistic 7.8 41.7
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IA.5 Demand-System Counterfactual Stress Tests

In this section, I briefly explain the demand-system corporate bond pricing model proposed by Bretscher
et al. (2024). I refer readers to the original paper for more details. Building on Koijen and Yogo (2019),
the model uses a nested logit demand system to account for the segmentation across rating groups in

the corporate bond market.

IA.5.1 Model Setup

Investors are indexed by ¢ = 1,...,I. Bonds are indexed by n =0,..., N, where n = 0 corresponds
to the outside assets. Time is denoted by t. The yield of bond n at time ¢ is y:(n). x¢(n) is a vector
of bond characteristics, including time-to-maturity, ratings, size, and bid-ask spread. Investor total
wealth is A;;. The model assumes that investors choose bonds only from their investment universe,
denoted by N; ;.

The portfolio weight can be decomposed into two parts: an across rating group allocation and a

within rating group allocation.
wit(n) = wir(n, 1) = wir(n | Dwi(l),

where w; +(n | [) is the weight for bond n within rating group ! and w; +(1) is the weight for rating group

I.! The within rating group portfolio weight is modeled as

(51'7,5(71, l)
1+ N 6i0(m, 1)

wit(n|l) =

where
8i,e(n, 1) = exp { Bo,iye(n) + B xe(n) + €ir(n)} .

The portfolio weight in the outside asset equals

1

Wy 01]1) =
010 L+ Yo it (m, D)

We can rewrite the portfolio weight as a logit function of the yield and bond characteristics:

wit(n | 1)

lo
& win(0]1)

=log 0 ¢(n,1) = Bosye(n) + B1ixe(n) + €i¢(n),

where €;(n) is the latent demand for investor 7.

Next, we can model the aggregate portfolio (i.e., incorporate the across-group allocation):

N Al
. (14 o dsalm, D)™ exp {ar + €41}
Ws ¢ - ik )
S (14 S duelm, )™ exp {4654 (1)

'"Weights must sum to one: 22’:0 wit(n|l) =1and w; (1) + w;t(2) =1
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where A\;; € [0,1] govern the substitution between IG and HY bonds.? We can also derive the

corresponding logit function

N N
log (Z:E;i) = A\ 1log <1 + Z dit(m, 1)) — Ai2log (1 + Z 8it(m, 2)) +ag + & 4(1)

m=1 m=1

= —Xi1log (w; (0] 1)) + Nj2log (wi (0] 2)) + a1 + & (1)

Finally, we impose market clearing

I
My(n) = Z A;pwig(n),
i=1
where M;(n) is the market value of bond n.

TA.5.2 Estimation

For identification, Bretscher et al. (2024) instrument bond yields y;(n) in the same spirit as Koijen
and Yogo (2019). The intuition is that investors have a persistent investment universe and can only
invest in bonds within that universe. Specifically, Bretscher et al. (2024) define the investment universe
as bonds either currently held or held within the past 11 quarters. Then, yields are instrumented as

follows

. 1;:(n)
yit(n) = log Ajt A
%ﬁ:i 1 + Zm:l lj,t(m)

Using this instrument, Bretscher et al. (2024) estimate the demand functions for each investor and

at each point of time (quarter). To save space, I refer readers to the original paper for more details

about the estimation procedures and results.

TA.5.3 Counterfactual Stress Tests

In this demand system, bond prices are fully determined by bond supply s;, bond characteristics x,

investors’ wealth A;, the latent demand ¢;, estimated coefficients 5, and A. More formally, we have

Pt=8 (Sta Xt, At7 5257 A? et)

The goal of the counterfactual analysis is to examine how bond yield spread would change when some
of the input elements change, i.e., Ap; = pCF — py.

To examine the impact of capital call shocks, I begin with the bond characteristics, holdings and
coefficients estimated in 2019Q4. This is because the sample of Bretscher et al. (2024) ends in 2020Q3
and I want to avoid the COVID period. Because I focus just on one period, I drop the time subscript
from now on. I first link all insurers (both life and P&C) to my dataset to obtain their actual uncalled

private fund commitments as of 2019Q4. Next, for each insurer, I randomly draw a capital call rate

*When Mi,1 = Ai2 = 1, the model simplifies to the original demand system in Koijen and Yogo (2019).
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CC; from the historical distribution. In the baseline simulations, these draws are independent across
insurers. Effectively, I assume that all other investor types have no uncalled commitments to private
funds. Because pension funds also allocate to both private funds and corporate bonds, my estimates
should be viewed as a lower bound.

Capital call shocks affect insurers’ corporate bond allocation. I model the shock by directly scaling
portfolio weights rather than reducing investor wealth (A;) or altering latent demand (¢;). This approach
allows me to precisely target the BBB/HY bonds, consistent with empirical findings.®> Specifically, I first
keep baseline wealth distribution unchanged and compute each investor’s within-nest and across-nest
choice weights at the current price guess, w;(n) = w;(n|l)w;(l). I then find the investor’s total weight
on BBB/HY bonds WiBBB/ HY Y nwcBBB JHY w;(n) and scale only those eligible weights by the scaling

factor s;, defined as

CG;
SZ':1—W7 SZE[O,].]
The scaled weights are
_ siw;(n) n € BBB/HY
wi(n) =

w;(n) otherwise .

The missing weights represent the demand that leaves the risky-bond universe to meet the capital call
shocks. I do not renormalize the remaining weights so the rest of investors endogenously absorb the

demand shock. Then the market demand for each bond is

I then iterate on price to clear markets using the same algorithm as in Bretscher et al. (2024). For
each simulation, I then calculate the average change in yield spreads across bonds. The simulation is
repeated 10,000 times, and I report the 1% Value-at-Risk (VaR).

In addition to the baseline, I consider two stress scenarios: (1) uncalled commitments are twice as
large, and (2) capital-call shocks are concentrated. The first scenario is implemented by doubling each
insurer’s uncalled commitments. For the second scenario, in each simulation, I randomly select half of
the insurers to experience capital call rates drawn from the top quartile of the historical distribution.

Figure IA.15 plots the histogram of all simulations. Under the baseline scenario, the 1% VaR is
roughly 2 bps (i.e., 1% percentile average spread changes). Doubling insurers’ uncalled commitments
increases the 1% VaR to about 6 bps. The effect of concentrated shocks is even larger, with the 1%
VaR reaching nearly 10 basis points. Based on a back-of-the-envelope calculation using the average
duration and bond market size, it corresponds to an aggregate loss of roughly $8.7 billion. Admittedly,
these hypothetical stress scenarios have not been observed historically. The goal is not to forecast
precise outcomes, but rather to illustrate the underlying mechanism: capital-call-induced selling can

amplify stress in credit markets and potentially contribute to financial fragility.

3Change A; would imply a proportional selling of all bond holdings. It’s not feasible to link latent demand directly
with capital call shocks.
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(a) Baseline (b) Double Commitment (¢) Concentrated Shocks

Figure ITA.15: Counterfactual Stress Tests

This figure shows the results of counterfactual stress tests based on simulations using the demand-system asset pricing
approach. Each panel plots the histogram of average bond spread changes. The vertical dashed line represents the 99th
percentile of the spread changes (i.e., the 1% VaR). Panel (a) presents the baseline scenario, where capital calls are
drawn independently from the historical distribution for each insurer. Panel (b) represents the scenario in which uncalled
commitments are doubled. Panel (c¢) shows the scenario where capital call shocks are concentrated. Specifically, in each
simulation, I randomly select half of the insurers to experience capital call rates drawn from the top quartile of the
historical distribution.
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