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1 Introduction

Institutional investors are rapidly expanding their allocation to private funds, such as private equity,

private debt, real estate, and venture capital funds.1 A distinctive feature of these investment is

the Capital Call mechanism: investors make binding commitments upfront to contribute capital

upon receiving a capital call request, which is at the full discretion of the fund manager. Similar

to a bank credit line, capital call resembles a contingent liquidity obligation that is not controlled

by the capital suppliers. As of 2024, the private fund market has grown to over $9 trillion, with

uncalled commitments estimated at nearly $3 trillion, exceeding the size of unused corporate credit

lines. Meanwhile, capital calls have drawn increasing concerns from policymakers. For example,

Financial Stability Report warns that “unanticipated calls may pose a liquidity risk for some

investors, potentially forcing them to sell other assets to raise liquidity” (Federal Reserve Board,

2023), and International Monetary Fund also notes the possibility that significant capital calls in a

downside scenario and the spillover to other markets and the broad economy (IMF, 2024).

However, no existing study has directly examine the validity and severity of above concerns

because the lack of data linking investor portfolio holdings to their private fund investments.

This paper helps fill that gap by leveraging a novel dataset on insurance companies private fund

investment. Specifically, I address the following research questions: (1) What are the dynamics of

investor-level unexpected capital calls? (2) How do investors manage their portfolio in response to

unexpected capital call shocks? In particular, do they maintain sufficient buffers? How do they

rebalance their portfolios when such shocks occur? (3) Do unexpected capital calls generate spillover

effects in public asset markets through investor portfolio rebalancing?

The novel data introduced in this paper is based on Schedule BA from the statutory filings of

U.S. insurance companies.2 Schedule BA reports “Other Long-Term Invested Assets,” which include

alternative investments such as private funds. Crucially, this data offers complete coverage of each

insurer’s private fund holdings, as Schedule BA is a mandatory filing. Commonly used private

fund datasets are largely (over 80%) based on Freedom of Information Act (FOIA) requests to

public pension funds (Begenau et al., 2020a). While FOIA requests can provide detailed fund-level

1Throughout this paper, I use the term “private fund” to refer exclusively to funds that use capital call.
2To my knowledge, the only existing study use Schedule BA data is Foley-Fisher et al. (2023), which studies

insurers’ CLO investment.
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information, they are often insufficient for reconstructing the complete panel of each investor’s

private fund portfolio. In addition, insurers are required disclose detailed position-level holdings in

all asset classes, such as bonds and equities, enabling a comprehensive analysis of how capital calls

affect investors’ portfolio allocation. To my knowledge, this is the first dataset that directly links

private fund investments to the rest of an investor’s portfolio.

Utilizing this novel dataset, I estimate the portion of capital calls that are unanticipated by

investors. The focus on unexpected capital calls not expected ones is motivated by their economic

implications: unlike expected calls, which can be planned for, unexpected calls require investors

to adjust their portfolios on short notice. In addition, the unexpected component is more likely

to resemble a random shock, given that it is outside of investor’s control. I adopt a bottom-up

approach to construct investor-level expected and unexpected components as it allows me to exploit

granular fund-level information and yields better forecast. Specifically, I first forecast the expected

capital calls for each fund in an investor’s portfolio, then aggregate these fund-level estimates to the

investor level.

To capture potential nonlinear predictive patterns in capital call dynamics, I consider a wide

range of state-of-the-art machine learning methods, including LASSO, Decision Trees, Random

Forest, LightGBM, and XGBoost. I also consider two-stage hurdle models to address the issue

of zero-inflated capital call data. I employ predictors of four categories: (1) macroeconomic

indicators such as GDP growth; (2) public market indicators such as S&P 500 returns; (3) private

market indicators such as private equity deal volume; and (4) fund-specific characteristics. Model

selection is based on out-of-sample (OOS) performance using rolling windows. The best-performing

model is the two-stage LightGBM, with out-of-sample R2 of 7.4%. This low OOS R2 reflects the

inherently unpredictable nature of capital calls. Additionally, despite the use of complex models,

the performance gains over simple linear benchmarks are modest. This suggests that the capital call

process exhibits a low signal-to-noise ratio, and any nonlinear patterns are either weak or unstable

over time, limiting their usefulness for consistent out-of-sample prediction. I use the forecasts from

the best model to construct expected capital calls at the fund level, which are then aggregated to

the investor level. The unexpected capital call is defined as the positive component of the difference

between actual and expected capital calls at investor level. The reason to only take the positive
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part is because the paper focus on the results when realized calls exceed expectations.

I first present descriptive analysis on the dynamics of capital calls. As insurers’ private fund

investment grow from around $100 billion in 2008 to roughly $380 billion in 2023, the aggregate

expected capital calls also increase from approximately $3 billion to over $10 billion per quarter.

Aggregate capital calls exhibit significant fluctuations over time. During these high-capital-call

quarters, aggregate unexpected capital call shocks amount to over $5 billion. To further understand

the sources of variation in investor-level capital calls, I perform a variance decomposition. Expected

capital calls account for approximately 60% of the total variation, largely driven by cross-sectional

differences in uncalled commitments. The remaining 40%, attributed to unexpected components, is

further decomposed into investor-specific, time-specific, and idiosyncratic elements. About 78% of

the variation in unexpected capital calls is idiosyncratic, while only 4.2% is time-specific, driven

largely by private market indicators like aggregate PE deal volume. This suggests that, although

aggregate capital calls exhibit some cyclicality, most of the variation at the investor level is still

idiosyncratic, consistent with the inherently stochastic nature of unexpected capital calls.

To make cross-sectional compassion, I compute the investor-level capital call rate, which is

defined as the total amount of capital calls divided by lagged uncalled commitment. The average

quarterly capital call rate is round 10%. Conditional on experiencing a positive unexpected call

(that is, when the realized call exceeds the expected amount), the average unexpected capital call

rate is about 12% (i.e., total capital call rate of 22%). The distribution of capital call rates is

highly right-skewed: the 90th, 95th, and 99th percentiles are approximately 20%, 30%, and 55%,

respectively. A back-of-the-envelope calculation illustrates the potential magnitude of these shocks:

assume the uncalled commitment is 30% of total private fund allocations, an investor with a 20%

allocation to private funds could face a quarterly capital call shock of up to 1% (3%) of its total

portfolio value in the 90th (99th) percentiles worst cases.3

Given that the unexpected capital call shocks are substantial, I then examine how investors

manage their portfolios ex-ante in response to unexpected capital call shocks. A straightforward

strategy is to maintain a buffer, such as cash or other liquid assets, to prepare for future unexpected

capital calls. This allows investors to meet capital calls without having to sell illiquid assets on

short notice. However, maintaining large buffers can be costly, especially when capital calls are

3This measure is similar to the Capital-Call-at-Risk (CCaR) discussed by PitchBook (see Link).
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highly stochastic. Investors may need to hold large portion of low-yielding assets for extended

periods. Whether investors actually hold such buffers is therefore an empirical question. Using

various definitions of liquid assets, I find either no correlation or a slightly negative correlation

between uncalled commitments and liquid asset holdings. Moreover, I find no evidence that investors

increase liquid asset allocations following new private fund commitments. These findings suggest

that investors generally do not rely on liquid asset buffers to manage unexpected capital calls.

Next, I examine how investors adjust their portfolios in response to unexpected capital calls.

I find that investors predominantly sell long-term bonds: approximately 76% of the increase in

private fund allocation is funded through reductions in long-term bond holdings, with the remainder

mostly funded by decreases in cash. Interestedly, in the subsequent quarter, investors keep reducing

their long-term bond holdings to revert the cash reserve back to the pre-shock level. Meanwhile,

expected capital calls do not appear to affect investors’ portfolio allocations, which supports the

earlier discussion that expected calls can be managed ex-ante, through strategy such as internal

cash flow netting. I further analyze which types of bonds investors choose to liquidate. Surprisingly,

rather than selling the most liquid assets such as Treasury bonds, investors primarily reduce their

holdings of corporate bonds. This pattern is consistent when analyzing bonds by NAIC designation,

which reflects regulatory risk categories. Specifically, investors tend not to sell bonds with NAIC 1

designation, corresponding to A to AAA ratings. Instead, insurers mostly sell bonds with NAIC 2

designation or higher, which correspond to BBB and high-yield (HY) bonds.

These findings may seem puzzling at first. If investors were seeking to minimize transaction

costs, they would want to sell Treasury securities or direct draw on cash reserves. One potential

explanation is that insurers are instead focused on preserving their Risk-Based Capital (RBC), a

key regulatory metric used to assess the financial health of insurance companies. Prior research

has shown that the RBC ratio is critical for insurers (Koijen and Yogo, 2015).4 Under the current

regulatory framework, the RBC ratio is calculated based on on-balance-sheet assets, and does not

account for off-balance-sheet items such as uncalled commitments. As a result, an unexpected

capital call will increase insurers’ required capital, as private funds carry the highest risk weight. If

4Though most insurers are above the minimum RBC ratio cutoff (Ge, 2022), fluctuations in the RBC ratio still
matter, as they influence the frequency of regulatory exams and actions, as well as credit ratings, financing costs, and
product pricing (Sen, 2023). In extreme scenarios, regulatory pressure can even trigger fire sales (Ellul et al., 2011;
Merrill et al., 2021).
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insurers fund these calls using assets with low risk weights, such as Treasury securities or cash, they

effectively replace “cheapest” assets with the most “expensive” ones. Such substitution would lead

to a significant deterioration in RBC ratio, a key metric for rating agency and regulators.

I provide three pieces of evidence in support of this hypothesis. First, insurers facing tighter

regulatory capital constraints are more likely to sell bonds with high risk weights. In contrast, less

constrained insurers tend to fund capital calls using more cash and liquid bonds. Second, using

position-level data, I find that insurers are more likely to sell bonds with large unrealized gains when

facing unexpected capital calls. This contrasts with typical behavior, as they tend to hold onto such

bonds in normal periods. The reason for this behavior is that, most bonds on insurers’ balance

sheet are valued using historical cost rather than mark-to-market (Ellul et al., 2015). As a result,

selling a bond with unrealized gains will increase insurers’ book equity value and help improve the

RBC ratio. This behavior is also more pronounced for constrained insurers. Finally, I find that the

realized impact of unexpected capital calls on the RBC ratio is smaller for constrained insurers,

indicating that they actively manage their portfolios to offset the negative effects from capital calls.

Finally, I examine whether the documented asset sales induced by unexpected capital calls

generate spillover effects in the public asset market. Given previous findings that suggest insurers

primarily sell corporate bonds, I focus my analysis on the corporate bond market. I hypothesize

that bonds more heavily held by investors facing larger unexpected capital calls are more likely to

be sold. As a result, such bonds should experience negative price pressure. To test this, I construct

a bond-level measure of exposure to unexpected calls, defined as the ownership-weighted average of

unexpected calls across insurers. Consistent with the hypothesis, bonds with higher exposure to

capital call shocks face greater selling pressure from insurers and exhibit a temporary price decline.

The spillover effects are more pronounced for bonds with higher risk weights, consistent with the

previous finding that these bonds are more likely to be sold. Moreover, the effects are amplified

during periods of broader market stress, such as COVID-19. The average spillover effect is nearly

three times larger during the first quarter of 2020 than during regular periods. Overall, the results

highlight that portfolio rebalancing induced by capital calls serves as a distinct mechanism linking

private funds to public asset markets. As private fund investments continue to grow, unexpected

capital calls may introduce new sources of financial fragility.
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Although this paper focuses on insurance companies due to data availability, the main findings are

likely generalizable to other institutional investors, such as pension funds and sovereign wealth funds.

These investors often have even higher allocations to private funds, which amplifies the portfolio

management challenges posed by unexpected capital calls. Specifically, holding a liquid asset buffer

remains costly for all investors, especially when private fund exposure is large. Additionally, while

these investors may face lighter regulatory constraints, they might still avoid using cash or Treasury

securities to fully fund capital calls for risk management reasons. That said, portfolio composition

might influence the specific assets investors sell to fund capital calls. For instance, U.S. pension

funds, with their larger equity allocations, may choose liquidate stocks in response to unexpected

capital calls, potentially leading to spillovers into public equity markets.

Related Literature This paper contributes to several strands of literature. First, this paper

significantly advances the understanding of private fund capital calls and their implications for

investor portfolio management. Despite the well-recognized importance of capital call by practitioners,

very few academic studies have systematically examined the implications of capital calls. Robinson

and Sensoy (2016) investigate the cyclicality of capital calls and their relationship with fund

performance. Consistent with the notion that cyclical capital calls impose greater costs on investors,

their findings indicate that funds with more cyclical calls are associated with higher expected

returns. Brown et al. (2021) find that timing exposure to private funds is difficult for investors

due to uncertain capital calls and distributions. Li (2025) find that idiosyncratic liquidity shocks

experienced by LPs cause GPs to slow down capital calls and subsequent investment, which in

turn leads to lower productivity among portfolio companies. Leveraging granular portfolio holdings

data from insurers, this paper is the first to study the portfolio implications of private fund capital

calls. Moreover, this research demonstrates the differential portfolio impacts of expected versus

unexpected capital calls.5

This research also aligns with the growing body of literature studying private fund investments

from the investors’ perspective6. For example, Sensoy et al. (2014) evaluate the performance of LPs’

private equity investments over time, while Sorensen et al. (2014) examine whether PE performance

5Related work on predicting private fund cash flows includes Takahashi and Alexander (2002), Jeet (2020), Jeet
(2024), Cao (2023), and Brown et al. (2023).

6Korteweg and Westerfield (2022) provides a detailed literature review with open questions.
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sufficiently compensates for associated fees and illiquidity costs. Brown et al. (2020) study the

performance impact of integrating private funds into diversified portfolios otherwise consisting solely

of stocks and bonds. Relatedly, Focusing on specific investors, Korteweg et al. (2023) evaluate PE

performance for public pension funds using investor-specific stochastic discount factors. On the

theoretical side, Ang et al. (2014) and Giommetti and Sorensen (2024) solve for investors’ optimal

allocations to private funds, accounting for their illiquid nature. Gourier et al. (2024) model the ex-

ante capital commitments and find they significantly alter investors’ optimal allocations. Chen et al.

(2025) develop a state-of-the-art dynamic model for private fund allocation that incorporates realistic

challenges investors face, such as illiquidity, ex-ante commitments, and regulatory constraints. This

paper is the first to document investors’ portfolio management challenge regarding unexpected

capital calls. Its results highlight the challenges and costs private fund investors face due to the

inherent uncertainty of capital calls.

Additionally, this paper contributes to the extensive body of literature studying the implications

of RBC regulation for insurance companies. Ellul et al. (2011), Ellul et al. (2015), Merrill et al. (2021)

and Becker et al. (2022) find that RBC requirement and mark-to-market accounting affect insurers’

incentive to sell downgraded assets as they impose higher regulatory capital costs. Becker and

Ivashina (2015) demonstrate that, conditional on credit ratings, insurers’ portfolios are biased towards

bonds with higher yields. In turns of real effects, Koijen and Yogo (2015) showed that statutory

reserve levels led to extraordinary pricing behaviors for annuity and life insurance products during the

financial crisis. This paper is the first to examine how RBC requirements and associated constraints

affect insurers’ portfolio rebalancing decisions in response to unexpected private fund capital calls.

Furthermore, this research offers valuable policy insights regarding the RBC requirements for private

fund investment by highlighting the importance of considering off-balance sheet investments such as

uncalled commitment when assessing insurers’ risk exposure.

Lastly, this paper belongs to the literature on cross-asset spillovers. Since the global financial

crisis, a rapidly growing body of research has studied how risks originating in one asset class can spill

over into otherwise unrelated asset classes. For instance, Manconi et al. (2012) document contagion

from asset-backed securities to corporate bonds during the crisis. Capponi and Larsson (2015)

demonstrate that bank deleveraging activities generate spillover effects on otherwise unrelated assets
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held by the same banks. Ellul et al. (2015) show that insurers experiencing high mark-to-market

losses disproportionately sell unrelated bonds with unrealized gains, transmitting shocks across

markets. More broadly, Harvey et al. (2025) identify predictable price co-movements between bonds

and equities resulting from portfolio rebalancing activities. This paper documents a novel spillover

channel connecting private assets and public markets: asset sales induced by unexpected private

fund capital calls. This channel could be amplified during periods of market stress, as suggested by

IMF (2024). Furthermore, the recent growth of private credit funds could increase the amount of

counter-cyclical capital calls, potentially exacerbating systemic risk concerns.7 This paper serves as

a first step toward understanding how capital calls affect the interconnectedness between private

funds and the public market.

Paper Outline The remainder of the paper is organized as follows. Section 2 introduces the

institutional background. Section 3 describes the data sources, cleaning procedures, and sample

construction. Section 4 explains the key empirical methods. In Section 5, I document key stylized

facts about unexpected capital calls. Section 6 presents results on the portfolio implications of

unexpected calls, while Section 7 examines the spillover effects. Section 8 concludes.

2 Institutional Background

2.1 Private Fund Investment

Institutional investors have rapidly expanded their allocation to private funds. Data from the SEC

private fund statistics reveals that the total AUM in private funds (combination of PE, VC, and

Real Estate Funds) have grown from approximately $2 trillion in 2013 to around $8.5 trillion by

early 2024 (Figure 1 Subfigure (a)). Large financial institutions are the primary investors in private

funds. As shown in Figure 1 Subfigure (b), the largest identifiable investor type is pension funds,

which account for approximately 25% of the market. Sovereign wealth funds follow, representing

around 10%, while insurance companies and nonprofit institutions (such as university endowments)

each hold about 5%. Individuals only account for very small share of the market. Some institutional

investors have extremely high allocations to private funds. According to a report by Private Equity

7For example, see discussion from MSCI
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International, as of the end of 2024, Temasek Holdings was the largest investor in the private fund

space, with more than $148 billion allocated, representing to 58% of its portfolio.

[Insert Figure 1]

2.2 Capital Commitment and Capital Call

Private funds are typically structured as limited partnerships. In this arrangement, private fund

investors, known as Limited Partners (LPs), contribute capital but are not involved in the operation

of the fund. The General Partner (GP), usually the private equity firm, is responsible for sourcing,

managing, and exiting investments. The relationship between the GP and the LPs is formally

defined in the Limited Partnership Agreement (LPA), which specifies the fund’s terms, governance

structure, and the rights and responsibilities of all parties.

Unlike investing in public securities or other delegated vehicles such as mutual funds, LPs in

private funds do not transfer the full amount of their investment upfront. Instead, at the fund’s

inception, each LP makes a Capital Commitment, which is a binding promise to provide capital

upon Capital Call request, up to the total committed amount. Throughout the life of the fund, the

GP makes capital calls to LPs to finance investments, cover fund expenses, or pay management

fees. The remaining uncalled portion of the commitment, which is the total commitment minus

cumulative capital calls, is commonly referred to as “dry powder” by practitioners. In most cases,

the full commitment is called within the first three to five years of the fund’s life, a phase known as

the “investment period,” during which the GP builds the portfolio. As investments mature and are

exited, the GP returns proceeds to LPs in the form of distributions, which typically increase in the

later years of the fund’s life.

The LPA grants the GP the authority to call capital at its discretion, subject to two restrictions.

First, each capital call must be made pro rata based on each LP’s initial commitment. Second,

the total amount called cannot exceed the committed amount. From the LP’s perspective, both

the timing and the amount of each capital call are uncertain. Once a capital call is issued, LPs

must transfer the required amount to the GP within a short notice period, typically between five

and ten days. Failure to meet a capital call within the required period constitutes a default. The

penalties for default are severe and may include interest charges, suspension of future distributions,
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forced sale of the LP’s interest, or forfeiture of existing stakes (Litvak 2004 and Banal-Estanol et al.

2017, LPA template by ILPA). In addition to financial consequences, defaulting on a capital call

can cause significant reputational damange, potentially limiting the LP’s future investment. Due to

these punitive consequences, defaults on capital calls are exceptionally rare in practice.

An instructive parallel can be drawn between private fund capital call structure and a bank’s

credit line. In this analogy, the LP acts as the lender and the GP as the borrower. By committing

capital at the fund’s inception, the LP effectively extends a line of credit to the GP, with the

maximum limit being the total committed amount. Importantly, as with credit lines, the borrower

(GP) retains discretion over both the timing and the amount of each drawdown. Consequently, LPs

face liquidity and risk management challenges similar to those of banks (Greenwald et al., 2020).

Lastly, some GPs may use capital call facilities, which are credit lines obtained from banks

and secured by investors’ capital commitments. These facilities allow GPs to fund investments

immediately and repay the loan using proceeds from subsequent capital calls. Maturities typically

range from 30 days to one year. The main advantage of using capital call facilities is that they

enable GPs to deploy capital more efficiently and help reduce the frequency of capital calls, thereby

lowering administrative burden. However, they have also been criticized for inflating reported

performance and reducing transparency. Albertus et al. (2024) provides a detailed introduction

about the institutional background. Importantly, such facilities do not necessarily make capital calls

smoother or more predictable. First, as capital calls are consolidated to match with loan repayment,

each drawdown will be larger. Second, because these loans are short-term and usually cannot be

roll over, GPs still need to issue capital calls regularly. Given that the data used in this paper are

at quarterly frequency, the impact of capital call facilities on the analysis is likely limited.

2.3 Private Fund Cash Flow and Valuation

Private funds exhibit distinctive cash flow dynamics due to their capital call structure. A typical

private fund has a lifecycle of 10 to 15 years and is characterized by two main phases: the investment

period and the harvest period. During the investment period, capital calls dominate as the GP

builds the portfolio. From the perspective of LPs, these capital calls represent negative cash flows.

Consequently, the cumulative net cash flow becomes increasingly negative during the early years
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of the fund. As the fund matures and its investments are exited, it transitions into the harvest

period, during which distributions, positive cash flows to LPs, dominate. Over time, as distributions

accumulate, the cumulative net cash flow breakeven and eventually turns positive. This unique cash

flow pattern is commonly referred to as the ”J-curve.”

Figure IA.13 provides a real fund example to illustrate cash flow pattern. Capital calls and

distributions are represented in blue and red bars. The blue and red lines capture the cumulative

capital call and distribution. The fund began with an investment period lasting from its inception

in 2007 until roughly 2013. During this phase, cash flows were dominated by capital calls, as the

fund gradually drew down its $10 million of committed capital to build its portfolio. The harvest

period began around 2012, with distributions increase significantly. The fund reached breakeven in

mid-2015 as cumulative net cash flow (the green line) started to turn positive. Eventually, the fund

had generated a cumulative net cash flow of approximately $9 million.

One key challenges in private fund investment is the unavailability of market prices. As most

assets held by private funds are illiquid and not frequently traded, it is hard to assess the mark-to-

market valuation of the investment. Further, the second market for private fund are still limited,

which make it hard to use secondary market price to infer the fair value of the fund (Jenkinson

et al., 2013; Chakraborty and Ewens, 2018; Barber and Yasuda, 2017; Brown et al., 2019).

Despite the fact that fair values are often smoothed or potentially manipulated, they remain

central to assessing both the performance and risk of private fund investments. This is particularly

important for investors such as insurance companies, for whom fair values are used in calculating

Risk-Based Capital (RBC). Under standard accounting frameworks such as GAAP and IFRS,

investors are required to record the fair value of private fund investments for which capital has

already been called. Uncalled commitments, by contrast, are not reflected on insurers’ balance

sheets.8 When capital is called, it is recorded as an additional investment and thus mechanically

increases the reported fair value. Subsequent gains or losses on these investments are reflected

through fair value adjustments. Distributions are treated as disposal of investment and reduce the

fair value accordingly.

8This differs from the banking regulation. Under the Basel III framework, banks are required to convert such
uncalled commitments into on-balance-sheet equivalents using a credit conversion factor (CCF) before applying a risk
weight. In contrast, current U.S. insurance regulations focus exclusively on the on-balance-sheet exposure.
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3 Data and Sample Construction

3.1 Insurers’ Private Fund Investment Data

The primary data source for insurers’ private fund investments is Schedule BA from the statutory

filings. I obtained the raw Schedule BA data from S&P Capital IQ Pro. Schedule BA reports

insurers’ ”Other Long-Term Invested Assets,” a broad category that includes investments not

reported in the other investment schedules.9 Schedule BA is specifically designed to cover alternative

investments such as private funds. Other typical investment reported in Schedule BA include hedge

funds, joint ventures, surplus notes, and residual tranches of structured finance vehicles.

One key challenge in using Schedule BA data is the absence of a unique and consistent asset

identifier. Investments are reported only by asset name, which often contains inconsistencies,

abbreviations, and typographical errors. For my analysis, it is essential that each private fund

investment is assigned a consistent identifier across time, as many parts of the analysis rely on

tracking lagged values or constructing time series at the fund level. To address this issue, I implement

a multi-stage cleaning process. Appendix IA.B provides a detailed explanation of the procedures.

Here I briefly summarize the key steps. First, I manually examine a subset of the raw data to

identify common variations in naming conventions and recurring typographical errors. Based on

this review, I develop an algorithm to standardize fund names, correcting for frequently observed

inconsistencies. Next, for standardized names, I identify potential inconsistencies using the panel

structure of the data. In many cases, a fund that appears only sporadically or terminates abruptly

is the result of inconsistent naming rather than an actual investment exit. These suspicious cases

are flagged for further investigation. I then submit the flagged fund names to a large language

model (LLM) to perform fuzzy name matching. A key advantage of using an LLM over traditional

string-based fuzzy matching algorithms is that the LLM can incorporate contextual and external

knowledge, including internet-based information. This capability is particularly valuable in this

setting, where many funds have similar names despite being distinct entities. Relying solely on

textual similarity can result in frequent matching errors. Additionally, fund names may change due

to mergers, acquisitions, or rebranding, often leading to substantially different names. In such cases,

9Other investments schedules include Schedule A for real estate, Schedule B for mortgages, and Schedule D for
bonds and stocks.

12



LLM-based matching is the only viable approach for correctly identifying name continuity. After

applying the LLM matching, I manually review the remaining unmatched or ambiguous fund names

and manually reconcile the inconsistency if possible. Lastly, I assign unique fund identifier to each

cleaned fund name and conduct a thorough review of the final sample to ensure the resulting panel

dataset is reliable.

After obtaining unique fund identifiers, I identify all private fund holdings using both the

reported asset type and a screening algorithm based on reported fund names. For each private

fund investment, I extract the initial investment date and the total commitment amount. I also

obtained GP names and fund types by feeding the fund names to LLM.10 I then collect quarterly

transaction data, including capital calls, distributions, and sales of fund stakes. Finally, I construct

the quarterly fair value for each investment.11 Computing quarterly fair value requires additional

steps because individual fund-level fair value is only available annually. But since transaction data

are reported quarterly, I can back out the quarterly fair value. Specifically, I calculate the quarterly

fair value by starting from the year-end value and adjusting it with the cumulative quarterly

transactions, including capital calls, distributions, and disposals. One important caveat is that fair

value adjustments, such as unrealized gains and losses and other-than-temporary impairments, are

only reported annually. To estimate the quarterly fair value, I assume that these annual adjustments

are evenly distributed across quarters, such that each quarter reflects one fourth of the annual

adjustment. Appendix IA.B provides additional details on the data cleaning and sample construction

procedures.

My dataset offers several important advantages over traditional data sources used in the literature.

First, because Schedule BA is a mandatory filing for all U.S. insurance companies, the dataset

provides comprehensive coverage of private fund investments for each insurer. In contrast, traditional

data sources often rely on Freedom of Information Act (FOIA) requests or voluntary disclosures from

GPs. While these sources may offer detailed fund-level information, they are typically incomplete

at the investor level. Moreover, depending on the data vendor and subscription level, traditional

datasets often cover only certain fund types. By contrast, my dataset covers all private fund types,

10Specifically, I define six fund types: private equity, venture capital, private debt, real estate, infrastructure and
others.

11Insurers are required to report book-adjusted carrying value (BACV) under SAP. For private fund investments,
BACV is equivalent to fair value, as all insurers are required to use fair value accounting for these holdings. For the
remaining of the paper, I use fair value to refer to BACV
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including private equity, venture capital, private debt, real estate, and infrastructure. Second, this

novel data allow me to link each insurer’s private fund holdings to its full financial statements and

other portfolio holdings, such as bond and equity positions. This enables a analysis of how insurers

manage their overall portfolios in response to private fund investment, which is not possible using

existing datasets. Third, because traditional data sources rely heavily on FOIA requests, their

LP coverage is concentrated among public pension funds, with limited representation of insurance

companies. My dataset therefore offers the first comprehensive, investor-level view of private fund

investments by insurers, one of the most important institutional investors in the financial system.

3.2 Other Data

Insurer Financial and Portfolio Data I obtain financial information of insurance companies

from statutory filings through S&P Capital IQ Pro. All variables are aggregated at the insurance

group level by insurance type. Key variables include: (1) financial statement items such as total

assets, liabilities, capital and surplus, and net income; (2) insurer-level aggregate investment amounts

by asset class, including bonds, stocks, mortgages, cash, and others; (3) position-level data on

bond holdings, including par value held, fair value adjustments, reported bond types, and NAIC

designations; and (4) the annual regulatory risk-based capital (RBC) ratio. Most financial variables

are scaled by lagged total assets. I also obtain A.M. Best insurer ratings.

Corporate Bond Data I collect corporate bond characteristics such as issuance date, maturity,

outstanding amount, and credit ratings from Mergent FISD. Monthly bond transaction data such

as yield, liquidity, and trading volume are obtained from the WRDS Bond Returns database. I

calculate bond yield spreads by subtracting the maturity-matched Treasury yield from each bond’s

yield. Additionally, I obtain monthly bond-level return volatility measures from the “Open Source

Bond Asset Pricing” dataset. All monthly variables are converted to quarterly frequency by taking

quarter-end observations to align with the frequency of the holdings data. These bond-level data

are then merged with insurer holding-level data using bond CUSIP.

Other Data Most macroeconomic and public market data are obtained from the Federal Reserve

Economic Database (FRED). Specifically, I collect data on GDP, inflation, Treasury yields, public
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equity market returns, price-dividend ratios, corporate bond spread indices, and the VIX index. All

variables are converted to quarterly frequency. I also use aggregate private fund statistics from the

SEC’s Private Fund Statistics reports. I also gather additional private equity and venture capital

data from Pitchbook. Lastly, I collect data on U.S. private equity market fundraising, deal activity,

and internal rates of return (IRR) from PitchBook’s quarterly U.S. Private Equity reports.

3.3 Sample Construction

I restrict the sample to insurers that report at least one private fund investment. Following the

literature, I aggregate insurers at the insurance group level for each insurer type (Life and P&C).

The sample period is from 2008 to 2023 as transaction data are only available starting in 2008. I

restrict insurers to have positive and non-missing asset and equity value (Capital & Surplus). I also

require the annual RBC ratio not missing. The final sample includes 506 unique insurer groups (220

life insurers and 286 P&C insurers), and 6,501 unique private funds.

4 Empirical Methods

This section describes two key empirical methods of this paper: (1) estimation of investor-level

unexpected capital call, and (2) main regression specifications.

4.1 Estimate Unexpected Capital Call

The main explanatory variable is the investor-level unexpected capital call. There are several reasons

to focus on the unexpected component rather than the total capital call. First, investors have

some control over total capital calls, as the primary driver is the level of uncalled commitment.

For instance, investors who are increasing their exposure to private funds will naturally anticipate

higher capital calls due to more recent commitments. This endogeneity introduces identification

concerns. In contrast, the unexpected component of capital calls resembles a random shock and is

thus more plausibly exogenous. Second, unexpected capital calls are of greater concern to investors

because they require immediate portfolio adjustments without prior planning. Expected capital

calls, on the other hand, can be managed in advance through strategies such as internal cash flow
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netting.12 As a result, the expected and unexpected components of capital calls are likely to have

distinct implications on investors’ portfolio management.

I adopt a bottom-up approach to estimate investor-level expected capital calls. Specifically, I

first estimate the expected capital calls for each individual fund in an investor’s portfolio and then

aggregate the fund-level estimates to the investor level. This approach takes advantage of more

granular fund-level information and improves the predictive performance. I assume investors behave

rationally and form expectations using the best available statistical forecasts.

4.1.1 Forecasting Models

To predict the fund-level capital call, I generalize the classical Takahashi-Alexander (TA) model

(Takahashi and Alexander, 2002) to incorporate state-of-art forecasting techniques. Let the j index

fund and t index time.13 The amount of next period capital called, Cj,t+1, can be expressed as

equation (1):
Cj,t+1 ≡ Uj,t ×RCj,t+1, (1)

where Uj,t is the uncalled commitment from the end of previous period and RCj,t+1 is the fund-
and time-specific capital call rate.14 Since Uj,t is known, the expected capital call can be expressed

as
Et[Cj,t+1] = Ujt × Et[RCj,t+1] (2)

I use the statistical optimal forecast to measure Et[RCj,t+1]. Hence, the task is to forecast

RCj,t+1 at time t. Focusing on forecasting RCj,t+1 rather than Cj,t+1 offers practical advantages as

the RC is more stationary over time and less sensitive to fund size, making it more suitable for

forecasting and cross-sectional comparisons. Formally, the forecasting model is as follow:

RCj,t+1 = f (Xj,t) + εj,t+1,

12Internal cash flow netting is a liquidity management strategy in which an LP uses distributions received from
older vintage funds to fund capital calls from younger funds, thereby reducing the need to hold cash or rebalance the
portfolio. This strategy helps smooth cash flows at the portfolio level. However, it relies on cash flow forecasting. As
a result, it is effective primarily for managing expected capital calls, while unexpected capital calls still need to be
funded through other means.

13Let a represent the fund’s age, where a = 0 signifies the fund’s inception. Fund age is directly linked to calendar
time t by the relation t = t0 + a, where t0 is the inception period. For simplicity, I index all variables by calender time
t.

14In the original TA model, RCj,t is simplified as a stepwise function of fund age: RCj,t ≈ RC(Age).
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where f(·) is the nonlinear function to be estimated and Xj,t is the vector of predictors. Xj,t includes

four categories of variables: (1) macroeconomic indicators such as GDP growth, inflation, and

Treasury yields; (2) public market indicators such as S&P 500 returns, corporate bond spreads, and

the VIX index; (3) private market indicators including aggregate private equity fundraising, deal

activity, and average internal rates of return; and (4) fund-specific characteristics such as fund type,

fund age, vintage year, fund size, GP identity, and lagged capital call rates. The predicted value is

denoted as R̂Cj,t+1.

Machine learning methods are well-suited for this task as f(·) can be highly nonlinear. I employ

a set of classical machine learning methods: LASSO, Decision Tree, Random Forest, LightGBM, and

XGBoost. To conserve space, I delegate a more detailed explanation of the models to the Appendix

IA.C. Here, I provide a short introduction of the key intuition of each model: (1) LASSO is a linear

model that performs variable selection by penalizing the inclusion of less important predictors; (2)

Decision Tree recursively partitions the data based on predictor values to create a flowchart-like

structure for prediction; (3) Building on decision trees, a Random Forest constructs and averages

many independent trees to improve predictive accuracy and control for overfitting; (4) LightGBM

and XGBoost are more sophisticated gradient-boosting models that build trees sequentially, with

each new tree correcting the errors of the previous one, which allows for the model to learn complex

patterns and often leads to state-of-the-art performance. I do not consider more complex methods

like neural networks, as their ”black box” nature. Furthermore, classical gradient-boosting methods

are usually more effective and efficient for structured tabular data without the significant tuning

and computational cost.

A key challenge in forecasting capital calls is the prevalence of zeros (Lambert, 1992). Such

data is called zero-inflated. To address this issue, I adopt a two-stage hurdle model, which can

improve performance for zero-inflated data (Cragg, 1971; Mullahy, 1986). This approach separates

the forecasting problem into two distinct steps. The first stage is a classification task to predict the

probability that a capital call will be non-zero. The second stage is a regression task to predict the

magnitude of the capital call, conditional on it being positive. The final forecast, R̂Cj,t+1, is the

product of these two predictions:

1. Probability of a non-zero call: Pr (RCj,t+1 > 0 | Xj,t) = g1 (Xjt) = p̂j,t+1
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2. Magnitude of a non-zero call: E [RCj,t+1 | RCj,t+1 > 0,Xj,t] = g2 (Xjt) = µ̂j,t+1

3. Final prediction: R̂Cj,t+1 = p̂j,t+1 · µ̂j,t+1

I also consider a simple linear model with five variables as the benchmark. The five variables are

fund age, log fund size, fund type, the lagged capital call rate, and fraction of uncalled commitment

as a fraction of total commitment. These five variables are selected because they are the five most

important predictors from the best machine learning model.

4.1.2 Forecasting Outcomes

The models are trained annually using 5-year rolling window. For example, to forecast the capital

call in 2019, the models are trained using data from 2014 Q1 to 2018 Q4. Thus, all forecasting

results are out-of-sample. Additionally, to avoid losing observation in my main sample, all models

are first trained and tested in the Preqin data, which also provide fund-level cash flow similar to my

data. The advantage is that the Preqin data starts in 1990s, which allow me to have out-of-sample

forecasting model ready at the beginning of my sample.15 For machine learning models that require

tuning of hyper-parameters, I apply standard cross-validation procedures using the data before the

first 5-year training sample (sample before 2003). All hyper-parameters are chosen once and remain

the constant after. I delegate detailed description to the online Appendix IA.C.

To evaluate the model performance, I compute the average R2 for each estimation window. Table

2 shows the results. Models are ranked based on the average out-of-sample R2. The best model is

Two-stage LightGBM with average out-of-sample R2 of 7.4%. As expected, the two-stage hurdle

models have superior performance. The performance gains from machine learning models over the

linear benchmark are surprisingly modest. The best-performing model improves the out-of-sample

R2 by just 0.9%. This suggests that the underlying predictive relationship is largely linear and

capital call process features low signal-to-noise ratio. While nonlinear interactions and patterns

may exist, this modest improvement implies they are either weak or unstable over time, making

them difficult for machine learning models to exploit consistently out-of-sample. This is consistent

with the institutional knowledge that capital call is at GP’s discretion and driven by idiosyncratic

factors such as investment opportunities and strategy. From LPs’ perspective, capital calls therefore

15The results are qualitatively similar if I directly estimate the model using my sample. But I have to start my
main sample in 2013.
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often resemble idiosyncratic shocks. Nonetheless, I use the best model (Two-Stage LightGBM) to

predict the capital call rate in the subsequent analysis.16

[Insert Table 2]

4.1.3 Construct Investor-level Measures

Using the best predicting model, the expected fund-level capital call amount at period t is computed

as

Et [Cij,t+1] = Uijt × Et[RCj,t+1] = Uijt × f (Xjt) ,

where Ui,j,t−1 is the amount of uncalled commitment for fund j and investor i at the end of t− 1.

Then, the investor-level expected capital call is computed as

ExpCallit =
∑
j

Et [Ci,j,t+1]

Let the realized capital call be denoted as Callit. Then, the investor-level unexpected capital call is

the difference between the realized capital call and the expected one. Since this paper focus on the

liquid shock impose by unexpected capital call, I only take the positive component of unexpected

call. Formally, unexpected capital call, UnexpCallit is defined as in equation (3). Section 5 provides

more descriptions about the unexpected capital call measures.

UnexpCallit = max{Callit − ExpCallit, 0} (3)

Figure IA.7 displays predicted and actual capital calls over the fund lifecycle. The red lines

represent the actual average capital calls, while the blue lines show the corresponding model

predictions. The blue area is the 95% confidence interval of the predicted value. Panel (a) plots the

capital call rate (RC), which follows a bell-shaped pattern: it begins at roughly 6% in the first year,

increases to about 13% by year five, and declines thereafter. Panel (b) shows cumulative capital

calls as a percentage of total commitments. On average, 20% is called by the end of year one, and

approximately 80% is called within the first five years. The close alignment between the red and

16All results remain similar if I use linear benchmark model. Robustness of some key results are tabulated in the
Appendix.
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blue lines provide validation for the prediction model.

4.2 Main Regression Specification

The main regression model is at insurer-time level. Specification, the specification is as follow:

∆Yi,t = β1UnexpCallit + β2ExpCallit + β3Distit + Controls+ γi + αt + ϵit (4)

The main dependent variables are changes in portfolio allocations. The key explanatory variables is

unexpected capital call, UnexpCallit. I also include expected capital call, ExpCallit, to examine

how investor manage the capital calls that are anticipated. I also control for distribution, Distit,

as distribution is a positive cash flow shock that will also affect portfolio allocation. Additional

controls include lagged expected and unexpected capital calls, lagged distributions, lagged private

fund allocations, asset growth, return on assets, insurer size, capital and surplus, leverage ratio, and

the previous year-end RBC ratio.

One potential concern is that omitted variable might bias the estimation as this empirical

approach only relies on fixed effects and control variables.17 For an omitted factor to bias the

estimation, it must satisfy two conditions: (1) correlated with both unexpected capital calls and

changes in portfolio allocations, and (2) disproportionally affect some certain investors (not absorbed

by time fixed effects).18 There are several reasons why I don’t think omitted variable bias is a serious

threat to the validity of my analysis. First, it is important to note that private fund managers,

not investors, control the timing of capital calls, and commitments are made well in advance of

when capital is called. As a result, it is unlikely that investors can influence capital calls in response

to recent or contemporaneous shocks, such as changes in revenue or leverage. Second, the key

explanatory variable is the unexpected capital call, which by construction captures the unpredictable

component. Given the high degree of unpredictability documented in Tables 2, this component is

17Reverse causality is unlikely as capital calls are initialed by GP.
18For example, one scenario is that an sudden negative credit market shocks might simultaneously cause private

credit funds to make more capital calls (due to credit line drawdowns) and investors to sell corporate bonds to reduce
risk. The time fixed effects would not be enough if (1) the shock affect some insurers differently than others, and (2)
the more vulnerable investors are invested more in private credit funds. However, as shown in Appendix IA.D, private
credit funds only constitute a relative small part (around 15%) of insurers’ PF investment. Untabulated tests show
that removing private credit funds do not change key results materially. For private equity funds, I am not aware of
theoretical or empirical evidence to support such arguments.
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likely orthogonal to other variables. Third, investor-level capital calls represent the aggregation

of many capital calls from individual investment. This aggregation makes the investor-level shock

approximately random, as it is unlikely that any single fund or fund type drives the observed

variation.19 Lastly, for most analysis I am primary interested in the direction of the treatment

effects. In conclusion, I believe my empirical design is well suited to examine investors’ portfolio

adjustments in response to capital calls as there appears to be no clear confounders with a plausible

economic rationale.20

Lastly, to fully account for the dynamic effects of unexpected capital call, I estimate local

projection as in Jordà (2005). Specifically, the model specification is as follow:

Yi,t+h − Yi,t−1 = βh
1UnexpCallit + βh

2ExpCallit + βh
3Distit + Controls+ γi + αt + ϵit (5)

5 Descriptive Statistics

5.1 Insurers’ Portfolio Allocation

Table 1, Panel A, presents summary statistics on insurers’ portfolio allocations, while Figure IA.8

plots aggregate allocations separately for life and P&C insurers. Long-term bonds are the largest

asset class for both groups, accounting for 70% of life insurers’ portfolios and 50% of P&C insurers’.

Among bond types, industrial bonds, primarily corporate bonds, dominate, comprising 50% of life

and 20% of P&C allocations. Both groups hold approximately 5% in Treasury securities. Other

long-term bond holdings include mortgage-backed securities and municipal bonds. A key difference

between the two is equity exposure: P&C insurers allocate about 30% to public equities, while

life insurers invest only 5%. In contrast, life insurers hold 15% in mortgage loans, whereas P&C

exposure to mortgages is minimal. Both groups hold about 5% in cash and cash equivalents. Lastly,

both groups have steadily increased their allocation to Schedule BA assets, reaching approximately

6% of their portfolios by the end of the sample period.

19As shown in the next section, most variation of unexpected capital call is idiosyncratic.
20It is theoretically possible to construct an instrumental variable based on some plausible exogenous shocks such

as unexpected policy shock in certain industry that boost investment opportunity for certain fund types. However,
estimating a Local Average Treatment Effect (LATE) would not be meaningful in this context. The objective is to
understand how investors rebalance their portfolios in response to investor-level capital calls more broadly, not how
they respond to small, random capital calls induced by specific exogenous shocks. In other words, a LATE estimate
may capture behavior that differs significantly from the Average Treatment Effect (ATE).
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[Insert Table 1]

5.2 Insurers Private Fund Investment

Figure 2 plots the aggregate private fund investments held by U.S. insurance companies. Insurers

have significantly increased their allocations to private funds, rising from less than 50 billion dollars

in 2005 to over 360 billion dollars by the end of 2023. The blue bars in the figure represent the

book-adjusted fair value of these investments. As of 2023, the on-balance-sheet book value of

insurers’ private fund holdings exceeds 260 billion dollars. As discussed earlier, the capital call

structure of private funds implies that a portion of committed capital remains off-balance sheet

until it is called. The red bars in the figure represent these uncalled commitments. By the end of

2023, the total uncalled commitment held by insurers is approximately 100 billion dollars. The

orange line plots the ratio of uncalled commitment to on-balance-sheet book value. This ratio began

at around 50 percent in 2005, reflecting the early stage of insurers’ involvement in the private fund

market as they built up their portfolios. As insurers’ private fund portfolios matured, the ratio

declined and stabilized at around 30 percent.

[Insert Figure 2]

Figure 3 presents the distribution of private fund allocations across insurers. Panel (a) shows

box plots of private fund allocations by year, measured as a percentage of total assets. Each box

represents the interquartile range (IQR), with the bottom and top edges corresponding to the first

and third quartiles. The horizontal dark blue line inside each box denotes the median, while the

red triangle indicates the mean. The vertical lines extending from the boxes (whiskers) show the

range of the data, excluding outliers. Individual observations beyond the whiskers are plotted as

light gray dots. Private fund allocations by insurers have increased steadily over time, particularly

after 2020. By the end of 2023, the median allocation is approximately 2%, the average is around

3%, and the third quartile reaches about 4% The data also reveal substantial heterogeneity and

skewness. For example, in 2023, the upper whisker extends to roughly 8%—more than twice the

interquartile range—and several outliers exceed 10%. Panel (b) shows a binned scatter plot of

private fund allocations versus insurer size, measured by total assets. There is a general positive
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correlation between insurer size and private fund allocation. However, a few small insurers allocate

a disproportionately large share of their assets to private funds.

[Insert Figure 3]

5.3 Investor-level Capital Call Dynamics

Figure 5 Subfigure (a) plots the time series of aggregate amount of total (red line), expected (green

line), and unexpected (blue bars) capital calls. From 2008 to 2024, expected capital calls in the

insurance sector rose from about $3 billion per quarter to over $10 billion, reflecting insurers’

expansion in private fund investment. Notably, the expected capital call series closely tracks the

realized capital calls, supporting the validity of the forecasting method. Subfigure (b) scales capital

calls by uncalled commitments to remove the underlying time trend. The aggregate expected capital

call rate is a almost a flat line around 10%, indicating about 10% of remaining commitments are

called each quarter. On the contrary, the total capital call rate display substantial fluctuation

overtime, with notable spikes in 2008, 2012, 2015, and 2021. For instance, the call rate reached 18%

in the first quarter of 2013. The total amount of unexpected calls, as defined in Equation (3) are

below $2 billion during normal periods but can exceed $5 billion in certain quarters.

[Insert Figure 5]

Figure 6 presents the distribution of investor-level capital calls. Panel A shows capital call rates,

while Panel B displays capital call amounts as a share of insurers’ total portfolio. Within each

panel, Subfigures (a) through (c) show total capital calls, unexpected, and expected components,

respectively. Consistent with the aggregate patterns, the average capital call rate is around 10%,

which is also the average expected rate. About 10% of observations show zero capital call rates,

more commonly among investors with only a few private fund commitments. The distribution is

highly right-skewed: the 90th, 95th, and 99th percentiles reach approximately 20%, 30%, and 55%,

respectively. Around 60% of observations have unexpected capital call rates equal to zero, meaning

realized capital calls do not exceed expectations. Conditional on receiving a positive unexpected

call, the average unexpected capital call rate is approximately 12%. The distribution of capital call

amounts as a share of insurers’ total portfolios is more dispersed, as it reflects variation in portfolio
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size and private fund exposure across investors. On average, capital calls equal 0.2% of portfolio

value. At the upper tail, the 90th, 95th, and 99th percentiles are 0.5%, 0.7%, and 1%, respectively.

[Insert Figure 6]

Figure 7 plots the distribution of unexpected capital calls over time. The pattern mirrors that of

Figure 5, with the distribution shifting upward during periods of high aggregate capital calls. Still,

the cross-sectional dispersion remains wide each quarter. The 99th percentile frequently reaches

1%, highlighting that some insurers face large unexpected calls even when aggregate capital call is

moderate.

[Insert Figure 7]

To further understand the sources of variation in investor-level capital calls, I conduct a variance

decomposition. Table 3 Panel A presents results for capital call amounts scaled by investors’ portfolio

size, while Panel B reports results for capital call rates. For capital call amounts, the expected

component accounts for approximately 60% of the total variation, largely driven by cross-sectional

differences in uncalled commitments. In contrast, for capital call rates, the expected component

explains less than 10% of the total variation. By construction, the positive part of unexpected capital

calls accounts for roughly half of the remaining variation. I further decompose the unexpected

component into investor-specific, time-specific, and idiosyncratic elements. Specifically, I compute

the R2 from regressions with insurer fixed effects to capture investor-specific variation, with time

fixed effects to capture time-specific variation, and use the residual from a two-way fixed effects model

to measure the idiosyncratic component. Approximately 16% of the variation is investor-specific,

4.2% is time-specific, and 78% is idiosyncratic. As expected, private market variables, such as

aggregate PE deal volume, explain for the majority of the time-specific variation. These results

suggest that, although investor-level capital calls display some aggregate patterns, most of the

variation remains idiosyncratic.

[Insert Table 3]

The high degree of idiosyncratic variation in capital calls suggests that investors are significantly

under-diversified with respect to capital call risk. A common explanation is that the high costs of
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selecting and managing a large number of private fund investments make it impractical to hold a

fully diversified “market portfolio” of private funds (Brown et al., 2024; Gredil et al., 2021). The

unpredictable and idiosyncratic nature of capital calls implies that investors face substantial risk

from unexpected capital call shocks. Motivated by this, the next section examines the portfolio

management challenges posed by such shocks.

6 Portfolio Management

6.1 Ex-ante Buffer

Given the inherent unpredictability of capital calls, a conservative approach is to hold sufficient

cash or liquid asset buffers in anticipation of future drawdowns. However, maintaining large buffers

can be costly, especially when capital calls are more unpredictable. Investors may be forced to hold

low-yield assets over extended periods. Moreover, it is unclear how much buffer is optimal. The most

conservative strategy would require holding a buffer equal to 100% of uncalled commitments, but

such an approach is impractical. In practice, determining the optimal buffer remains an unsolved

issue. For example, PitchBook provides clients with solutions for capita call forecasting and liquidity

management (see Link.). Thus, how investors manage capital calls ex-ante remains an open empirical

question.

I begin by examining whether investors prepare for future capital calls by holding liquid asset

buffers. If that is the case, we would expect a positive correlation between cash holdings and uncalled

commitments. Figure 8 presents bin-scatter plots where the x-axis shows uncalled commitments

and the y-axis shows liquid asset holdings. Panels (a) through (d) consider four definitions of

liquid assets: cash, Treasury bonds, NAIC 1 bonds (e.g., A–AAA rated corporate bonds), and a

composite measure combining all three. Across all definitions, the correlations are either flat or

slightly negative, which suggest no ex-ante liquid asset buffer in preparing for future capital call.

[Insert Figure 8]

Table 4 presents formal regression analysis. In Panel A, I regress liquid asset holdings on uncalled

commitments. None of the estimated coefficients are statistically significant, and three are negative.

To test whether investors increase liquid buffers following new commitments, I examine changes in
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liquid assets after new commitments in Panel B. Again, the results are statistically insignificant.

Figure 9 further illustrates the dynamic effects and confirms the results. Together, these findings

suggest that, on average, investors do not appear to hold liquid asset buffers ex-ante in anticipation

of future capital calls.

[Insert Table 4]

[Insert Figure 9]

[Need to add discussion for internal cash flow matching]

6.2 Ex-post Portfolio Rebalancing

Next, I examine how investors rebalance their portfolios in response to capital calls. The dependent

variables are changes in portfolio allocations across major asset classes: private funds, long-term

bonds, cash, mortgage loans, equities, and a residual category. Since the data only provide insurers’

end-of-quarter holdings, I cannot observe intra-quarter portfolio adjustments. For example, consider

a scenario in which an investor initially uses cash to meet a capital call and later in the quarter sells

corporate bonds to restore the original cash level. In such cases, my analysis would primarily capture

the bond-selling activity, not the immediate use of cash. Therefore, the results should be interpreted

as reflecting the impact of capital calls on investors’ equilibrium portfolio allocation, rather than

their immediate liquidity responses. While the latter is more relevant for studying short-term

liquidity risk, the former offers more insights regarding the longer-term portfolio implications of

capital calls.

Table 5 presents the results. Panel A reports the effects of total capital calls. As expected, capital

calls lead to significant increases in private fund allocations, while distributions lead to significant

decreases. The coefficients suggest that a 1% capital call results in an approximate 0.6% increase

in private fund allocation, whereas a 1% distribution leads to a 0.9% decrease. More interestingly,

column (2) shows that a 1% capital call is associated with a 0.5% reduction in long-term bond

holdings. Column (3) indicates a 0.25% decline in cash holdings, although this estimate is not

statistically significant. Columns (4) through (6) show no meaningful changes in other asset classes

such as mortgage loans and equities. Taken together, the results suggest that investors meet capital
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calls primarily by reducing their holdings in long-term bonds and, to a lesser extent, cash. For

distributions, although the estimates are not significant, the direction of the coefficients suggests

that proceeds are reinvested into cash, bonds, and other residual asset categories. Figure IA.12

presents the dynamic effects using local projection.

[Insert Table 5]

Panel B separates expected and unexpected components. The results for unexpected capital

calls closely mirror those for total capital calls: investors primarily reduce allocations to long-term

bonds. In contrast, the coefficients for expected capital calls are statistically insignificant and much

smaller in magnitude. It is consistent with the earlier discussion that expected calls are managed

ex-ante, through strategy such as internal cash flow netting. Such approach eliminates the need

for investor to adjust portfolio when expected calls are realized. As a result, expected capital calls

generates little explanatory variation in portfolio shifts, leading to small and insignificant regression

coefficients. The Appendix IA.A provides a simulation that illustrates how commitment strategies

can mute the estimated effect of expected calls.

Additionally, Figure 10 presents the dynamic effects using local projection as in Equation (5).

The results suggest that the effects of unexpected capital calls on portfolio allocations are persistent.

Notably, while not statistically significant, investors continue reducing long-term bond holdings in

the subsequent quarter, while beginning to rebuild cash balances. This pattern is consistent with

the notion that investors seek to maintain a stable level of cash. After partially funding the capital

call with cash in the first quarter, they appear to offset that drawdown by selling additional bonds

in the following quarters, thereby returning cash holdings to pre-shock levels.

[Insert Figure 10]

The next question is which types of long-term bonds investors are selling in response to capital

calls. Table 6 presents the regression results, and Figure 11 displays the corresponding dynamic

effects. In Panel A, long-term bonds are first broken into four types: Treasury bonds, industrial

bonds, non-Treasury government agency bonds, and others. Only industrial bonds show a statistically

significant decline, with a 1% unexpected capital call resulting in a 0.75% reduction in allocation,

which is close to 100% of total impact of capital call on long-term bond holdings. Additionally,
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columns (5) and (6) further divide industrial bonds into corporate and non-corporate segments,

revealing that nearly all of the reduction occurs in corporate bonds. These results together imply

that investors predominantly liquidate corporate bonds to meet unexpected capital calls.

Another dimension that may influence insurers’ bond-selling decisions is the NAIC designation,

which directly affects the RBC risk weight. Panel B of Table 6 presents the results. Columns (1)

through (6) correspond to NAIC designations 1 through 6. Bonds with an NAIC 1 designation are

considered the safest and most liquid, while those with NAIC 6 are the riskiest and least liquid.

The associated RBC risk weights are summarized in the Appendix. Interestingly, the coefficients on

unexpected capital calls are statistically insignificant for NAIC 1 bonds, indicating that insurers

generally avoid liquidating these assets. In contrast, capital calls significantly reduce holdings

in all other categories. The largest reduction is seen for NAIC 2 bonds, which correspond to

BBB-rated corporate bonds. The impact on NAIC 3 through NAIC 6 bonds—primarily high-yield

bonds—is also statistically significant but of smaller magnitude. Taken together, these findings

suggest that insurers fund unexpected capital calls not by selling their most liquid bonds, but rather

by liquidating BBB-rated and some high-yield corporate bonds.

[Insert Table 6]

[Insert Figure 11]

6.3 Explanation

Why do insurers choose to sell BBB and HY corporate bonds to fund capital calls? If their objective

were to minimize transaction costs, they would likely sell Treasury securities or use cash. One

potential explanation is that insurers aim to preserve their RBC ratios. As described in Section

2.3, under the current regulatory framework, only private fund investments that are already called

and held on balance sheet are recognized in the RBC calculation, while uncalled commitments

are excluded. Since called private fund investments receive a 30% risk weight—the highest among

common asset classes—unexpected capital calls increase capital requirements. If insurers were to fund

capital calls by using cash or highly liquid assets such as Treasury securities or NAIC 1 bonds—both

of which have a 0% risk weight—they would be replacing lowest-cost assets with highest-cost ones.

This substitution leads to a significant increase in required capital and deterioration in RBC ratio.
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The above explanation suggests that insurers facing tighter regulatory capital constraints are

more likely to fund capital calls by selling bonds with higher risk weights. To test this hypothesis, I

divide insurers into two groups based on whether their RBC ratio is above or below the median

within their insurer type (Life or P&C) in each period. Insurers with below-median RBC ratios

face tighter regulatory capital constraints. Table 9 presents the results. Panels A and C show

the outcomes for the low-RBC group, while Panels B and D correspond to the high-RBC group.

Consistent with the hypothesis, insurers with tighter regulatory capital constraints are more likely

to sell bonds in response to unexpected capital calls, whereas those with looser constraints tend

to rely more on cash. Further breakdown by bond category reveals that constrained insurers are

particularly likely to sell BBB and HY bonds to fund unexpected capital calls, again consistent with

the hypothesis.

[Insert Table 9]

In addition to selling bonds with high risk weights, insurers may also preserve their RBC ratio

by selling bonds with high unrealized gains. Since most bonds are held at historical cost rather

than marked to market (Ellul et al., 2015), selling a bond with unrealized gain will increases equity

and improves the RBC ratio. Based on this reasoning, I hypothesize that insurers facing tighter

regulatory capital constraints are more likely to sell bonds with high unrealized gains. To test this,

I use position-level data and estimate a regression where the dependent variable equals one if a

bond is sold. The analysis is conducted at the insurer-bond-time level. To isolate the effect of

unrealized gains, I include tight fixed effects. Bond-by-time fixed effects control for bond-specific

time-varying characteristics, including performance, coupon, maturity, and credit quality. This

allows me to compare the sale decisions of two insurers holding the same bond at the same time but

with different unrealized gains due to different purchase prices. I also include insurer-by-time fixed

effects to absorb time-varying insurer-specific factors, such as capital position and liquidity needs.

Table 8 presents the results, with Panel A showing the full sample, Panel B for the low-RBC

group, and Panel C for the high-RBC group. First, in line with earlier findings from insurer-level

analysis, the interaction between unexpected calls and NAIC designation is significantly positive,

indicating that insurers tend to offload bonds with higher regulatory risk weights when facing

unexpected capital calls. The coefficient on unrealized gains is significantly negative, indicating that,
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in general, insurers are less likely to sell bonds with large unrealized gains. This finding is intuitive,

as insurers are typically buy-and-hold investors and have little incentive to sell well-performing

bonds under normal conditions. Notably, the interaction term between unexpected capital calls

and unrealized gains is significantly positive. This implies that, when faced with unexpected calls,

insurers are more likely to sell bonds with high unrealized gains, consistent with the hypothesis.

Additionally, I include a measure of bond illiquidity along with the corresponding triple interaction

terms in column (3) to assess how insurers balance the trade-off between transaction costs and

the impact on RBC ratios. The interaction between unexpected capital calls and illiquidity is

significantly positive, indicating that insurers are more likely to sell illiquid bonds in response to

capital calls. While this finding may appear counterintuitive, it likely reflects the fact that bonds

with higher risk weights tend to also be less liquid. Importantly, both triple interaction terms are

significantly negative. This suggests that, conditional on the same NAIC designation and unrealized

gain, insurers are less likely to sell illiquid bonds, which is intuitive. Taken together, these results

imply that insurers prioritize preserving their RBC ratios over minimizing transaction costs when

deciding which assets to liquidate in response to unexpected capital calls.

[Insert Table 8]

Another way to validate insurers’ incentive to preserve their RBC ratios is to examine the

realized impact. The hypothesis is that insurers facing tighter capital constraints should experience

smaller realized declines in their RBC ratios following unexpected calls due to their effector to

preserve the RBC ratio. Table 7 presents the results. Consistent with this hypothesis, the coefficient

on unexpected capital calls is statistically insignificant for the low-RBC group, but significantly

negative for the high-RBC group. This suggests that constrained insurers actively manage their

RBC ratios when facing unexpected capital calls, whereas unconstrained insurers do not.

[Insert Table 7]
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7 Spillovers

7.1 Bond-level Capital Call Exposure Measure

In this section, I examine whether portfolio rebalancing induced by unexpected capital calls generates

spillover effects to other part of the financial market. Particularly, as previous results show insurers

mostly sell corporate bond, I focus my analysis on the corporate bond market. The central hypothesis

is that bonds more heavily held by insurers with larger unexpected calls should experience temporary

price declines due to selling pressure.

To test that hypothesis, I first construct a bond-level measure of exposure to insurers’ unexpected

capital calls, zit, which is effective a ownership-weighted average of unexpected calls across insurers.

The formal definition of zit is provided in Equation (6). Ownershipij,t−1 insurer j’s lagged ownership

share of bond i and UnexpCalljt is the dollar amount of unexpected calls for insurer j at time t.

This step assumes that non-insurance bondholders face no capital calls. Given that corporate bonds

are predominantly held by insurance companies and mutual funds, this assumption is reasonable. I

then scaled by this weighted average by the lagged amount outstanding for bond i to account for

different bond size. Finally, I take the log as the distribution of the raw measure is very dispersed.

Appendix shows the distribution of zit.

zit = log

(
1 +

∑
j Ownershipij,t−1 × UnexpCalljt

Outstandingi,t−1

)
(6)

The intuition behind zit is similar to the shift-share instrumental variable (See Borusyak et al.

(2025) for example). Insurers’ unexpected capital calls are plausibly exogenous to bond fundamentals.

Further, each bond’s exposure to to the capital call shock is determined by the lag ownership. Hence,

zit should satisfy the exclusion restriction and can be used as an instrumental variable (IV). For

instance, to estimate the effect of insurers’ selling activity on bond prices, one could regress bond

yields on the amount of bond holdings sold by insurers-similar to approaches used in the price

elasticity literature (e.g., Chaudhary et al. (2023)). To isolate the price impact arising specifically

from capital calls, zit can serve as an instrument for the insurer sales variable. The corresponding

two-stage least squares (2SLS) specification is shown in Equation (7).
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∆Y ieldSpreadit = β∆ ̂Holdingsit + Controlsit + FEs+ ϵit

∆Holdingsit = γzit + Controlsit + FEs+ uit

(7)

7.2 Spillover Results

Table 10 presents the results of the spillover tests. Columns (1) to (3) assess the validity of the

exposure measure by testing whether bonds with higher exposure to capital call shocks experience

greater selling pressure from insurance companies. In Column (1), the dependent variable is the

total amount of shares sold by insurers, scaled by bond size. Column (2) examines the extensive

margin. In both cases, the coefficient on zit is significantly positive, indicating that bonds with

higher exposure are more likely to be sold by insurers. Column (3) provides a more direct test by

examining changes in insurers’ ownership. The coefficient on zit is significantly negative, suggesting

that bonds with greater capital call exposure experience a decline in insurance ownership over time.

In economic terms, a one standard deviation increase in zit is associated with a 0.3% decline in

insurer ownership.

[Insert Table 10]

Next, I examine whether the selling pressure induced by capital calls leads to price impacts. In

Column (4), I regress the change in yield spread on the bond-level exposure measure. The coefficient

on zit is significantly positive, consistent with the hypothesis that bonds with higher exposure

experience price declines. Economically, a one standard deviation increase in zit is associated

with a 0.85 basis point increase in yield spread. To further test this relationship, I use zit as an

instrument for the change in insurers’ holdings. The resulting coefficient can be interpreted as a

price elasticity. Column (5) reports the second-stage results, with Column (3) showing the first

stage. The Kleibergen-Paap F-statistic is 32, exceeding the conventional threshold for a strong

instrument (Stock and Yogo, 2005). As expected, the coefficient is significantly negative, indicating

a downward-sloping demand curve.

Next, I examine the dynamic effects using the local projection framework described in Equation

5. Figure 12 displays the results, with Subfigures (a) through (c) corresponding to Columns (3) to

(5) in Table 10. For insurers’ holdings, the coefficients remain stable following the initial decline at
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period t = 0, indicating that insurers do not reverse the reduction in holdings in subsequent quarters.

In contrast, the effect on yield spreads appears to be short-lived. Only the contemporaneous

coefficient is statistically significant, and it becomes insignificant in the following period. This

pattern is consistent with the interpretation of capital call as transitory shock for certain investors.

The immediate price impact reflects limited liquidity in the corporate bond market and the presence

of inelastic demand, while the reversal suggests the influence of slow-moving capital.

[Insert Figure 12]

Finally, I examine the heterogeneity of the spillover effects. As shown in Section 6.2, investors

do not sell bonds randomly; instead, insurers tend to sell bonds with higher risk weights to mitigate

the negative impact on their RBC ratios. Holding everything else constant, bonds with higher

risk weights are therefore expected to face greater selling pressure. Moreover, such bonds are, by

definition, more illiquid. As demonstrated in Bretscher et al. (2024), illiquid bonds exhibit larger

price impacts in response to a given demand shock. Taken together, these insights suggest that

bonds with higher risk weights should experience stronger spillover effects from capital call shocks.

To test this hypothesis, I interact the exposure measure zit with indicator variables for each bond’s

NAIC category. These categories are based on credit ratings following Li (2024)21. Specifically,

NAIC1 corresponds to bonds rated A to AAA, NAIC2 includes bonds rated BBB, and NAIC3

comprises lower-rated bonds, corresponding to NAIC categories 3 through 6.

Table 11 presents the results. Columns (1) and (3) report regressions of changes in insurers’

holdings and yield spreads on the interaction between zit and the NAIC risk-weight indicator

variables. For bonds with a NAIC designation of 1, the spillover effects are relatively weak, with

coefficients either insignificant or only marginally significant at the 10% level. NAIC 2 bonds (i.e.,

BBB-rated) exhibit the strongest spillover effects. For the same level of exposure, the selling pressure

for NAIC 2 bonds is about four times greater than that for NAIC 1 bonds, and the associated price

impact is more than ten times larger. Bonds with lower credit ratings (NAIC 3–6) also experience

significant spillover effects, though of smaller magnitude compared to NAIC 2. Column (4) reports

2SLS estimates to directly compare price elasticities (first-stage results are in Appendix Tables).

21I do not use the actual NAIC designations because they may vary across investors, become outdated, or be affected
by regulatory changes (Kirti and Singh, 2025).
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Overall, these results align with the findings in Section 6.2, which show that insurers predominantly

sell BBB-rated bonds.

[Insert Table 11]

Lastly, the spillover effects could be amplified when capital call shocks coincide with broader

adverse market events. During such periods, already-depressed liquidity conditions may exacerbate

the price impact of additional selling pressure as other investor may be unwilling to provide liquidity.

On the other hand, investors may choose to use cash rather than sell corporate bonds to meet

capital calls, which could lead to smaller spillover effects. Therefore, the overall impact remains an

empirical question. I use the COVID-19 pandemic to test this hypothesis, as the corporate bond

market experienced severe stress and liquidity shortages (Falato et al., 2021; Kargar et al., 2021).

To capture this effect, I interact a COVID dummy (equal to one for 2020 Q1) with zit. Columns

(2) and (5) report OLS results, and Column (6) presents the 2SLS estimates. The coefficient on

insurer holdings is slightly smaller during this period, possibly reflecting insurers’ reluctance to

sell corporate bonds in stressed markets. Despite that, the coefficient is still significantly negative.

The estimated price impacts are nearly three times larger than in normal periods. These findings

support the idea that spillover effects are amplified when capital call shocks coincide with broader

adverse shocks.

This finding has important implications for financial stability. As shown in Section 5, most

of the variation in capital calls is idiosyncratic, meaning that some investors may still experience

large capital calls during periods of market stress. Indeed, a closer look at Figure 7 shows that

certain insurers faced unexpected capital calls as large as 1% of their total assets in 2020 Q1. These

“inconvenient” capital calls can trigger large spillover effects. Actually. some industry reports have

documented that some private credit funds issued abnormally high capital calls during the first

quarter of 2020, particularly in senior debt and distressed debt strategies (Cite MSCI). As private

fund investment continues to grow, the risk of such ”inconvenient” capital calls may pose threats to

financial stability.
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8 Conclusion

Capital calls are a binding obligation for private fund investors to contribute capital. Because fund

managers retain full discretion over the timing and amount of capital calls, they are inherently

difficult for investors to manage. In particular, an unanticipated large capital call represents a

negative cash flow shock. Investors must either maintain costly cash buffers in advance or liquidate

assets when such shocks occur. Leveraging novel data on insurers’ private fund investments, this

paper is the first to examine the how unexpected capital call affect investors portfolios and financial

market.

I first document that unexpected capital calls are substantial and impose economically meaningful

shocks to investor portfolios. The predictable component accounts for only 60% of the total variation

in capital calls. Moreover, most of the variation in unexpected capital calls is idiosyncratic. Although

aggregate cyclical patterns exist, time-specific factors explain only a small portion of the overall

variation. Even during economic downturns, some investors continue to experience extremely large

capital calls. Next, I examine how investors manage unexpected capital calls. Insurers appear not

to rely on cash buffers. Instead, they primarily sell long-term bonds in response to unexpected

capital calls. Interestingly, rather than liquidating the most liquid assets such as Treasury securities,

they tend to sell corporate bonds with high risk weights and unrealized gains. I provide evidence

that this seemingly counterintuitive behavior is likely driven by the desire to mitigate the impact of

capital calls on their RBC ratios. Insurers facing tighter regulatory constraints are more likely to

sell risky corporate bonds following capital call shocks. Moreoever, I find that bond sales triggered

by unexpected capital calls have spillover effects on corporate bond prices. Bonds with greater

exposure to capital call shocks face stronger selling pressure and temporary price declines. The

effects are especially pronounced for bonds with high risk weights. These spillovers are further

amplified when capital calls coincide with broader market disruptions.

Although this paper focuses on insurance companies due to data availability, the challenges

posed by capital calls are likely generalizable to other institutional investors. As private markets

continue to expand, capital calls could emerge as a new threat to financial stability. In addition,

the rise of private debt may unintentionally amplify the spillover effects of capital call, as private
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credit demand tends to be more countercyclical. This paper offers a important first step toward

understanding how private fund capital calls affect the broader financial system. Further research is

needed to assess their full implications for capital allocation and financial stability.
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(a) Asset Under Management (b) Ownership

Figure 1: Aggregate Private Fund Investment

This figure plots the total asset under management for different private fund types (Private Fund Statistics Report
Table 2.1) from the SEC private fund statistics. Subfigure (a) plots the total asset under management for different
private fund types and Subfigure (b) plots the ownership by different investor types. Private fund types are defined by
SEC according to instruction of Form ADV (Instruction Part 1A 6.e(2)).
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Figure 2: Insurers’ Aggregate Private Fund Investment and Uncalled Commitment

This figure plots insurers aggregate private fund investment. The blue bars (left axis) represent the fair book value
(book-adjusted carrying value) and the red bars (left axis) represent the additional uncalled commitment. The orange
line (right axis) is the ratio of uncalled commitment to the fair book value.
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(a) Distribution of PF Allocation

(b) Size vs PF Allocation

Figure 3: Distribution of Insurers’ Private Fund Allocation

This figure shows the distribution of insurer-level private fund allocations. Panel A presents box plots of private
fund allocations (measured as a percentage of total assets) by year, from 2008 to 2023. Each box represents the
interquartile range (IQR), with the bottom and top edges indicating the first and third quartiles, respectively. The
horizontal dark blue line within each box denotes the median, while the red triangle represents the mean. The vertical
lines extending from the boxes—known as whiskers—indicate the range of the data, excluding outliers. Individual
observations beyond the whisker range are shown as light gray dots. Panel B displays a binned scatter plot of private
fund allocations against insurer size. The x-axis measures insurer size in terms of total assets, and the y-axis shows the
corresponding private fund allocation. A fitted line is included to illustrate the relationship. Private fund allocations
are winsorized at the 1st and 99th percentiles within each year.
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(a) First-stage Classification

(b) Second-stage Regression

Figure 4: Predictor Importance

This figure shows the predictor (feature) importance of the best performing machine learning model (two-stage
LightGBM). Subfigure (a) shows the first-stage classification task and Subfigure (b) shows the second-stage regression
task.
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(a) Capital Call

(b) Capital Call Rate

Figure 5: Time-series of Aggregate Capital Call

This figure plots the time-series of aggregate capital call received by insurers. Subfigure (a) plots the dollar amount
of capital call. Total capital calls are represented in red line, expected capital calls are represented in green line,
and the unexpected capital calls are shown in blue bars. The aggregate unexpected capital calls are the aggregation
of insurer-level unexpected calls. Subfigure (b) plots the time-series of capital call rate, which is defined as capital
call divided by the uncalled commitment from the end of last period. The total capital call rates are in red and the
expected capital call rates are in green.
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Panel A: Capital Call Rate

(a) Total (b) Unexpected (c) Expected

Panel B: Capital Call Amount

(a) Total (b) Unexpected (c) Expected

Figure 6: Distribution of Investor-level Capital Calls

This figure shows the distribution of investor-level capital calls. Panel A plots capital call rates (capital calls scaled by
previous period-end uncalled commitments), while Panel B plots capital call amounts (scaled by previous period-end
insurer portfolio size). Subfigure (a) presents the total capital calls, Subfigure (b) shows the unexpected component,
and Subfigure (c) shows the expected component. The y-axis reflects the fraction of observations. All variables are
winsorized at the 1st and 99th percentiles. In Panel A, observations with missing or zero lagged uncalled commitments
are dropped. In Subfigure (b), as over half of the observations have unexpected capital calls equal to zero, the y-axis
is broken into two parts for readability. The blue and red vertical dashed lines represent the median and mean,
respectively. From left to right, the three purple dashed lines represent the 90th, 95th, and 99th percentiles of the
distribution.
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(a) Capital Call

(b) Unexpected Capital Call

Figure 7: Investor-level Capital Call Distribution Over Time

This figure plots the distribution of investor-level capital call over time using boxplot, where Subfigure (a) is for the
total capital call and Subfigure (b) is for the unexpected component. Each box represents the interquartile range
(IQR), with the bottom and top edges corresponding to the first and third quartiles. The horizontal short dark blue
line inside each box denotes the median, while the red triangle indicates the mean. The vertical lines extending from
the boxes (whiskers) show the range of the data, excluding outliers. Individual observations beyond the whiskers
(outliers) are plotted as light gray dots. Capital calls are scaled by previous period-end insurer portfolio size.
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Figure 8: Insurers’ Cash Buffer and Uncalled Commitment

This figure presents a bin-scatter plot of insurers’ cash holdings against their uncalled commitments.
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(a) Cash (b) Treasury

(c) NAIC 1 Bond (d) Liquid Asset

Figure 9: New Commitment and Liquid Asset Dynamic

This figure shows the dynamic effects of new commitment on investors’ liquid asset holdings. Coefficients are estimated
using local projection. Subfigure (a) plots results for cash and cash equivalent, Subfigure (b) plots results for Treasury
securities, Subfigure (c) plots results for long-term bonds with NAIC designation of 1, Subfigure (d) plots results for
the combination of all three liquid assets.
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(a) Private Fund (b) Bond (c) Cash

(d) Mortgage (e) Stock (f) Rest

Figure 10: Dynamic Portfolio Impacts of Expected versus Unexpected Capital Calls

This figure plots the dynamic portfolio impacts of unexpected (red) and expected (blue) using local projection.
The dependent variables are ∆Holdingsi,t→t+h, where h ∈ [1, 4]. Subfigures (a) to (f) correspond to private funds,
long-term bonds, cash and cash equivalents, stocks, and rest. Controls include lagged expected and unexpected capital
call, lagged distribution, lagged private fund allocation, asset growth, return on assets, log asset size, log capital
and surplus, leverage ratio, and previous year-end RBC ratio. Insurer and time (calendar year-quarter) fixed effects
are included. Standard errors double clustered at the insurer and time level. The colored areas represent the 95%
confidence interval.
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Panel A: Break by Bond Types

(a) Treasury (b) Industrial (c) Govt Agent (d) Other (e) Corporate (f) Other Industrial

Panel B: Break by NAIC Designations

(a) NAIC 1 (b) NAIC 2 (c) NAIC 3 (d) NAIC 4 (e) NAIC 5 (f) NAIC 6

Figure 11: Dynamic Impacts of Capital Call on Bond Allocations

This figure plots the dynamic impacts of unexpected (red) and expected (blue) on different bond types using local projection. The dependent variables are
Net Changei,t→t+h, where h ∈ [1, 4]. Net change of bond allocations defined as buy minus sell, scaled by the lagged cash and invested assets. I only consider
active sales, which exclude passive disposal such as redemption, scheduled paydown, maturing, etc. Panel A reports the results of different bond types. Bond sells
Subfigures (a) to (d) correspond to treasury bonds, industrial bonds, other government-related bonds, and all other bonds. Subfigures (e) and (f) break industrial
bonds into corporate bonds and other industrial bonds. Panel B reports the results for different NAIC designations. Subfigures (a) to (f) correspond to NAIC
designations 1 to 6. Controls include lagged expected and unexpected capital call, lagged distribution, lagged private fund allocation, asset growth, return on
assets, log asset size, log capital and surplus, leverage ratio, and previous year-end RBC ratio. Insurer and time (calendar year-quarter) fixed effects are included.
Standard errors double clustered at the insurer and time level. The colored areas represent the 95% confidence interval.
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(a) Insurer Holdings

(a) Yield Spread: OLS

(a) Yield Spread: 2SLS

Figure 12: Dynamic spillover effect

This figure explore the dynamic spillover effects of assets sales induced by capital call. Subfigure (a) plots result for
insurers holdings (corresponding to Column (3) of Table 10), Subfigure (b) plots the results for yield spread using OLS
(corresponding to Column (4) of Table 10), Subfigure (c) plots the results for yield spread using 2SLS (corresponding
to Column (5) of Table 10). Control variables include bond size, duration, credit ratings, bid-ask spread, and par-value
trading volume. Bond and time fixed effects are included. Error bars represent the 90% confidence interval, where
standard errors are double clustered at the bond and time levels.
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Table 1: Summary Statistics (need update)

Variable N Mean SD P25 Median P75

Total Assets 11049 35513.79 77228.88 601.98 2771.95 25402.51
Schedule BA Assets (%) 11049 3.20 3.57 0.50 1.97 4.70
Cash (%) 11049 5.87 7.81 1.41 2.91 6.46
Bonds (%) 11049 73.97 15.52 67.45 76.01 85.02
NAIC 1 (%) 11049 46.45 15.76 37.54 45.54 56.50
NAIC 2 (%) 11049 22.62 10.75 15.64 22.92 29.49
NAIC 3 (%) 11049 2.24 1.72 0.91 2.07 3.19
NAIC 4 (%) 11049 0.78 0.87 0.09 0.52 1.15
NAIC 5 (%) 11049 0.30 0.54 0.00 0.11 0.36
NAIC 6 (%) 11049 0.34 0.88 0.00 0.06 0.33
Industiral (%) 11049 51.80 17.05 42.31 54.25 63.58
Corporate Bond (%) 11049 28.72 14.23 18.62 28.16 37.98
Rating AA (%) 11049 2.38 2.05 1.00 1.93 3.19
Rating A (%) 11049 11.21 7.02 6.23 10.04 15.31
Rating BBB (%) 11049 13.39 8.32 7.46 12.33 18.33
Rating HY (%) 11049 1.21 1.39 0.24 0.84 1.68

Federal Govt (%) 11049 5.54 6.96 1.05 2.91 7.20
Other Govt (%) 11049 13.57 11.35 5.42 10.50 18.72
Bank Loan (%) 11049 0.12 0.42 0.00 0.00 0.00
Other (%) 11049 1.46 2.22 0.02 0.61 1.88

Mortgage Loans (%) 11049 6.67 7.08 0.00 4.92 11.55
Common Stock (%) 11049 5.00 6.35 0.69 2.76 6.40
Preferred Stock (%) 11049 0.84 1.87 0.00 0.17 0.76
Rest Invested Assets (%) 11049 3.97 4.87 0.76 2.30 5.40
Invested Assets Ratio (%) 11049 82.34 21.24 76.81 92.26 96.35
Total Liability 11049 33102.23 72862.54 479.31 2422.26 22591.69
Investment Income 11049 249.11 566.08 4.98 26.57 202.82
Net Operation Gain 11049 107.03 304.78 0.19 5.91 57.19
Total Income 11049 55.48 332.97 0.01 3.56 35.72
Investment ROA 11049 0.90 0.38 0.67 0.93 1.13
Operation ROA 11049 0.40 1.04 0.05 0.27 0.58
Total ROA 11049 0.28 0.92 0.00 0.17 0.44
Leverage 11049 0.84 0.16 0.81 0.90 0.94
Group 11049 0.80 0.40 1.00 1.00 1.00
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Table 2: Capital Call Prediction Model Summary

This table reports the performance of forecasting models. Root Mean Squared Error (RMSE) is measured as percentage
improvement relative to the linear benchmark model. Columns (1) and (2) reports the in-sample performance. Columns
(3) and (4) reports the out-of-sample performance. The linear benchmark model includes five variables: fund age,
log fund size, fund type, the lagged capital call rate, and fraction of uncalled commitment as a fraction of total
commitment. The detailed definition of other models are shown in Appendix.

In-sample Out-of-sample

Model RMSE (%) R2 (%) RMSE (%) R2 (%)

Two-Stage LightGBM 5.47 16.11 0.48 7.40
Two-Stage Random Forest 21.68 42.43 0.47 7.38
Two-Stage XGBoost 5.63 16.40 0.35 7.16
XGBoost 6.92 18.69 0.12 6.72
One-Stage LightGBM 5.21 15.65 0.07 6.62
Linear Benchmark 0.00 6.05 0.00 6.50
Random Forest 43.79 70.31 -0.14 6.23
Two-Stage LASSO -0.21 5.64 -0.46 5.64
LASSO -0.50 5.11 -0.77 5.05
Two-Stage Tree 2.09 9.98 -2.17 2.40
Decision Tree 3.80 13.18 -3.30 0.22
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Table 3: Variance Decomposition

This table presents the results of the variance decomposition analysis. Panel A reports results for the level of capital
calls, scaled by the lagged insurer portfolio size, while Panel B focuses on the capital call rate. In each panel, the first
row shows the share of the total variance attributable to the expected and unexpected components. Note that the
unexpected capital call captures only the positive deviation from the expected call. Hence, the sum of the expected
and unexpected components do not add up to 100%. For each of the three components, I further decompose the
variance into investor-specific, time-specific, and idiosyncratic components. This is done by estimating a series of
fixed effects regressions: an insurer fixed effects model to isolate investor-level variation, a time fixed effects model to
capture common temporal variation, and a two-way fixed effects model whose residuals represent the idiosyncratic
component. The proportion of variance explained by each source is computed as the model’s R2 relative to the total
variance of the respective component.

Panel A: Capital Call Amount

Total Expected Unexpected

Share of Total Variance 100% 63.3% 20.7%

Firm-FE Share 44.1% 62.2% 16.8%
Time-FE Share 6.7% 5% 4.2%
Residual Share 49.1% 32.5% 78.3%

Panel B: Capital Call Rate

Total Expected Unexpected

Share of Total Variance 100% 8.3% 48.2%

Firm-FE Share 27% 23.8% 23.5%
Time-FE Share 7.6% 2.9% 5.8%
Residual Share 64.8% 73.1% 70.4%
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Table 4: New Commitment and Cash Buffer

This table studies whether insurers increase cash buffer when making new commitment. Standard errors double
clustered at the insurer and time level. ***, **, and * indicate statistical significance at the 1%, 5%, and 10%,
respectively.

Panel A: New Commitment

Cash Treasury NAIC 1 Bond Liquid Asset
(1) (2) (3) (4)

New Commitment −0.229 0.051 −0.107 −0.285
(0.180) (0.070) (0.092) (0.202)

Controls Yes Yes Yes Yes
Time FE Yes Yes Yes Yes
Insurer FE Yes Yes Yes Yes
Observations 14,351 14,351 14,351 14,351
Adjusted R2 0.002 0.085 0.233 0.153

Panel B: Uncalled Commitment

Cash Treasury NAIC 1 Bond Liquid Asset
(1) (2) (3) (4)

Uncalled Commitment −0.009 0.014 −0.024 −0.019
(0.029) (0.020) (0.031) (0.046)

Controls Yes Yes Yes Yes
Time FE Yes Yes Yes Yes
Insurer FE Yes Yes Yes Yes
Observations 14,351 14,351 14,351 14,351
Adjusted R2 −0.009 0.085 0.223 0.128
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Table 5: Portfolio Rebalance and Capital Call

This table studies the portfolio impacts of capital call. The dependent variables are the change of portfolio allocations
to each asset type. Columns (1) to (6) correspond to private funds, long-term bonds, cash and cash equivalents,
mortgage loans, stocks, and the rest. The key explanatory variables are capital call and distribution. Controls include
lagged capital call, lagged distribution, lagged private fund allocation, asset growth, return on assets, log asset size,
log capital and surplus, leverage ratio, and previous year-end RBC ratio. Insurer and time (calendar year-quarter)
fixed effects are included. Standard errors double clustered at the insurer and time level. ***, **, and * indicate
statistical significance at the 1%, 5%, and 10%, respectively.

∆Holdings(%)

Private Fund Bond Cash Mortgage Stock Rest
(1) (2) (3) (4) (5) (6)

Capital Call 0.635∗∗∗ −0.498∗∗∗ −0.248 0.014 0.001 0.074
(0.049) (0.176) (0.149) (0.018) (0.082) (0.137)

Distribution −0.918∗∗∗ 0.135 0.359 0.006 0.107 0.331
(0.079) (0.302) (0.278) (0.028) (0.203) (0.246)

Controls Yes Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes Yes
Insurer FE Yes Yes Yes Yes Yes Yes
Observations 13,615 13,615 13,615 13,615 13,615 13,615
Adjusted R2 0.348 0.060 0.001 0.070 0.306 0.077

Panel B: Expected vs Unexpected Capital Calls

∆Holdings(%)

Private Fund Bond Cash Mortgage Stock Rest
(1) (2) (3) (4) (5) (6)

Unexpected Capital Call 0.683∗∗∗ −0.517∗∗∗ −0.201 0.023 0.026 −0.018
(0.052) (0.184) (0.155) (0.019) (0.081) (0.133)

Expected Capital Call 0.014 −0.042 −0.100 −0.008 −0.108 0.291
(0.059) (0.119) (0.323) (0.019) (0.096) (0.305)

Distribution −0.881∗∗∗ 0.105 0.341 0.006 0.111 0.330
(0.078) (0.301) (0.275) (0.028) (0.203) (0.251)

Controls Yes Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes Yes
Insurer FE Yes Yes Yes Yes Yes Yes
Observations 13,615 13,615 13,615 13,615 13,615 13,615
Adjusted R2 0.349 0.060 0.001 0.070 0.306 0.078

53



Table 6: Capital Call and Bond Allocations

This table studies how insurers adjust bond allocations when facing unexpected capital calls. The dependent variable
is the net change of bond allocations defined as buy minus sell, scaled by the lagged cash and invested assets. I
only consider active sales, which exclude passive disposal such as redemption, scheduled paydown, maturing, etc.
Panel A reports the results of different bond types. Bond sells Columns (1) to (4) correspond to treasury bonds,
industrial bonds, other government-related bonds, and all other bonds. Columns (5) and (6) break industrial bonds
into corporate bonds and other industrial bonds. Panel B reports the results for different NAIC designations. Columns
(1) to (6) correspond to NAIC designations 1 to 6. Controls include lagged capital call, lagged distribution, lagged
private fund allocation, asset growth, return on assets, log asset size, log capital and surplus, leverage ratio, and
previous year-end RBC ratio. Insurer and time (calendar year-quarter) fixed effects are included. Standard errors
double clustered at the insurer and time level. ***, **, and * indicate statistical significance at the 1%, 5%, and 10%,
respectively.

Panel A: Bond Sells by Bond Types

Net Change (%)

Treasury Industrial Govt Agent Other Corporate Non-Corporate
(1) (2) (3) (4) (5) (6)

Unexpected Capital Call −0.022 −0.745∗∗∗ 0.032 −0.028 −0.646∗∗∗ −0.076
(0.052) (0.135) (0.072) (0.043) (0.127) (0.075)

Expected Capital Call 0.088 0.314 −0.0005 0.010 0.233 0.090
(0.212) (0.351) (0.152) (0.089) (0.309) (0.077)

Distribution 0.082 0.421∗∗ −0.187∗ 0.049 0.110 0.379∗∗

(0.129) (0.183) (0.101) (0.045) (0.125) (0.157)

Controls Yes Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes Yes
Insurer FE Yes Yes Yes Yes Yes Yes
Observations 13,615 13,615 13,615 13,615 13,615 13,615
Adjusted R2 0.087 0.207 0.168 0.108 0.109 0.315

Panel B: Bond Sells by NAIC Designations

Net Change (%)

NAIC 1 NAIC 2 NAIC 3 NAIC 4 NAIC 5 NAIC 6
(1) (2) (3) (4) (5) (6)

Unexpected Capital Call −0.053 −0.290∗∗∗ −0.069∗∗∗ −0.029∗∗∗ −0.018∗∗∗ −0.004∗∗

(0.103) (0.060) (0.012) (0.007) (0.003) (0.002)
Expected Capital Call −0.037 0.150 0.036 0.017 0.001 0.0004

(0.102) (0.173) (0.022) (0.015) (0.008) (0.003)
Distribution 0.116 0.091 0.001 0.018 0.003 −0.007

(0.199) (0.069) (0.014) (0.014) (0.004) (0.004)

Controls Yes Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes Yes
Insurer FE Yes Yes Yes Yes Yes Yes
Observations 13,615 13,615 13,615 13,615 13,615 13,615
Adjusted R2 0.240 0.283 0.136 0.196 0.136 0.112
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Table 7: Regulatory Constraints and Portfolio Impacts of Capital Call

This table studies how regulatory constraints affect insurers’ portfolio adjustment when facing capital calls. The
sample is split equally based on insurers’ previous year-end RBC Ratio. Panel A reports the results for the low RBC
ratio group, and panel B reports the results for the high RBC ratio group. Panels C and D repeat the same exercise
with capital calls decomposed into expected and unexpected components. The dependent variables are the change of
portfolio allocations to each asset type. Columns (1) to (6) correspond to private funds, long-term bonds, cash and
cash equivalents, mortgage loans, stocks, and the rest. Controls include lagged capital call (or lagged expected and
unexpected capital calls), lagged distribution, lagged private fund allocation, asset growth, return on assets, log asset
size, log capital and surplus, leverage ratio, and previous year-end RBC ratio. Insurer and time (calendar year-quarter)
fixed effects are included. Standard errors double clustered at the insurer and time level. ***, **, and * indicate
statistical significance at the 1%, 5%, and 10%, respectively.

Panel A: Low RBC Ratio

Private Fund Bond Cash Mortgage Stock Rest
(1) (2) (3) (4) (5) (6)

Capital Call 0.694∗∗∗ −0.592∗∗ −0.209 0.006 −0.036 0.129
(0.074) (0.264) (0.221) (0.024) (0.141) (0.215)

Distribution −0.882∗∗∗ −0.173 0.591∗ −0.057∗ 0.283 −0.032
(0.080) (0.408) (0.340) (0.029) (0.296) (0.298)

Observations 6,938 6,938 6,938 6,938 6,938 6,938
Adjusted R2 0.327 0.021 −0.004 0.099 0.229 0.047

Panel B: High RBC Ratio

Private Fund Bond Cash Mortgage Stock Rest
(1) (2) (3) (4) (5) (6)

Capital Call 0.537∗∗∗ −0.292 −0.452∗∗ 0.033 0.059 0.055
(0.053) (0.234) (0.190) (0.028) (0.092) (0.128)

Distribution −1.055∗∗∗ 0.471 0.011 0.088∗ −0.116 0.954∗∗∗

(0.167) (0.309) (0.337) (0.047) (0.234) (0.355)

Observations 6,677 6,677 6,677 6,677 6,677 6,677
Adjusted R2 0.367 0.117 −0.004 0.066 0.392 0.132

Panel C: Low RBC Ratio – Unexpected vs Expected

Private Fund Bond Cash Mortgage Stock Rest
(1) (2) (3) (4) (5) (6)

Unexpected Capital Call 0.742∗∗∗ −0.621∗∗ −0.111 0.019 −0.039 0.010
(0.078) (0.272) (0.228) (0.025) (0.149) (0.216)

Expected Capital Call 0.041 −0.060 0.035 −0.031 −0.107 0.174
(0.037) (0.096) (0.258) (0.022) (0.095) (0.264)

Distribution −0.851∗∗∗ −0.199 0.557 −0.057∗ 0.288 −0.013
(0.080) (0.409) (0.335) (0.030) (0.299) (0.305)

Observations 6,938 6,938 6,938 6,938 6,938 6,938
Adjusted R2 0.327 0.021 −0.004 0.099 0.230 0.047

Panel D: High RBC Ratio – Unexpected vs Expected

Private Fund Bond Cash Mortgage Stock Rest
(1) (2) (3) (4) (5) (6)

Unexpected Capital Call 0.574∗∗∗ −0.271 −0.494∗∗ 0.041 0.100 0.022
(0.057) (0.257) (0.208) (0.031) (0.092) (0.128)

Expected Capital Call −0.340 −0.332 −0.339 0.136 −0.172 0.896
(0.329) (0.425) (0.437) (0.105) (0.322) (0.593)

Distribution −0.998∗∗∗ 0.462 0.008 0.080∗ −0.105 0.906∗∗

(0.158) (0.304) (0.335) (0.047) (0.229) (0.350)

Controls Yes Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes Yes
Insurer FE Yes Yes Yes Yes Yes Yes
Observations 6,677 6,677 6,677 6,677 6,677 6,677
Adjusted R2 0.373 0.117 −0.004 0.067 0.392 0.134
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Table 8: Which Bonds do Insurers Sell?

This table studies which bonds insurers sell when facing unexpected capital calls. The sample is at the insurer-bond-
year-quarter level. The dependent variable is an indicator variable equal to one if a bond is sold partially or fully
at quarter t. I only consider active sales, which exclude passive disposal such as redemption, scheduled paydown,
maturing, etc. Panel A reports the results of different bond types. NAIC is NAIC bond designations, ranging from 1
to 6. Unrealized G&L is the percentile rank, ranging from zero to one, of the unrealized gain or loss for each bond
holding at the previous year-end. Specifically, unrealized gain or loss is calculated as the difference between the
reported fair value and book-adjusted carrying value at the previous year-end, scaled by the book-adjusted carrying
value. Illiqudity is the lagged bond bid-ask spread. The interaction terms between Unexpected Capital Call and bond
characteristics capture insurers’ relative propensity to sell bonds with certain characteristics when facing unexpected
capital calls. Other controls include low RBC ratio indicator, bond size, time-to-maturity, lagged bond trading volume,
and lagged bond bid-ask spread. Columns (1) to (3) include bond, insurer, and time (calendar year-quarter) fixed
effects. Columns (4) to (6) include bond-by-time and insurer-by-time fixed effects. Standard errors clustered at the
bond-by-time levels are presented in parentheses. ***, **, and * indicate statistical significance at the 1%, 5%, and
10%, respectively.

(1) (2) (3) (4) (5) (6)

Unexpected Capital Call 0.054∗∗∗ 0.037∗∗∗ 0.031∗∗∗

(0.005) (0.006) (0.006)
Unexpected Capital Call × NAIC 0.008∗∗∗ 0.008∗∗∗ 0.006∗∗ 0.034∗∗∗ 0.036∗∗∗ 0.049∗∗∗

(0.002) (0.002) (0.003) (0.002) (0.002) (0.003)
Unexpected Capital Call × Unrealized G&L 0.033∗∗∗ 0.041∗∗∗ 0.061∗∗∗ 0.108∗∗∗

(0.006) (0.007) (0.005) (0.007)
Unexpected Capital Call × Illiquidity 0.022∗∗∗ 0.146∗∗∗

(0.008) (0.015)
Unexpected Capital Call × NAIC × Illiquidity 0.002 -0.038∗∗∗

(0.002) (0.007)
Unexpected Capital Call × Unrealized G&L × Illiquidity -0.021∗∗ -0.126∗∗∗

(0.009) (0.011)
NAIC 0.005∗∗∗ 0.005∗∗∗ 0.004∗∗∗

(0.0007) (0.0007) (0.0008)
Unrealized G&L -0.016∗∗∗ -0.018∗∗∗ -0.022∗∗∗ -0.010∗∗∗ -0.014∗∗∗ -0.016∗∗∗

(0.0010) (0.0010) (0.001) (0.0009) (0.0009) (0.001)
Low RBC Ratio 0.006∗∗∗ 0.006∗∗∗ 0.006∗∗∗

(0.0006) (0.0006) (0.0006)
Trading Volume 0.005∗∗∗ 0.005∗∗∗ 0.005∗∗∗

(0.0002) (0.0002) (0.0002)
Illiquidity -0.002∗∗∗ -0.002∗∗∗ -0.006∗∗∗

(0.0003) (0.0003) (0.0008)
Bond Size -0.011∗∗∗ -0.011∗∗∗ -0.011∗∗∗

(0.001) (0.001) (0.001)
Time-to-Maturity 0.085 0.085 0.085

(0.065) (0.065) (0.065)
NAIC × Illiquidity 0.0004

(0.0003)
Unrealized G&L × Illiquidity 0.007∗∗∗ 0.005∗∗∗

(0.0008) (0.001)

Bond FE Yes Yes Yes No No No
Insurer FE Yes Yes Yes No No No
Time FE Yes Yes Yes No No No
Bond-by-Time FE No No No Yes Yes Yes
Insurer-by-Time FE No No No Yes Yes Yes

Observations 8,851,969 8,851,969 8,851,969 8,851,969 8,851,969 8,851,969
Adjusted R2 0.106 0.106 0.106 0.3352 0.335 0.336
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Table 9: Capital Calls and Risk-Based Capital Ratio

This table studies how capital calls affect insurers Risk-Based Capital (RBC) ratio. The dependent variable is the
percentage changes of insurers’ RBC ratio. The key explanatory variables are changes in insurers allocation to private
funds, capital call, unexpected and expected capital calls. Column (1) to (3) report the results for the full sample. I
then split the full sample into half based on the lagged RBC ratio. Column (4) and (5) report the results for the low
RBC ratio sample and columns (6) and (7) report the results for the high RBC sample. Controls include asset growth,
return on assets, log asset size, log capital & surplus, leverage ratio, and percentage changes of capital & surplus.
Insurer and year fixed effects are included. Standard errors double clustered at the insurer and year level. ***, **,
and * indicate statistical significance at the 1%, 5%, and 10%, respectively.

∆RBC Ratio (%)

Full Sample Low RBC Ratio High RBC Ratio

(1) (2) (3) (4) (5) (6) (7)

∆Private Fund (%) −1.085∗∗

(0.481)
Capital Call −1.542∗∗∗ −0.869 −1.141∗∗

(0.428) (0.921) (0.476)
Unexpected Capital Call −1.454∗∗∗ −0.305 −1.457∗∗

(0.431) (1.007) (0.491)
Expected Capital Call −1.711 −1.400 −1.651

(1.135) (1.136) (1.138)
Distribution 2.484∗∗ 2.576∗ 2.156∗ 2.155 0.648 0.987

(1.128) (1.208) (1.221) (1.225) (1.479) (1.534)

Controls Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes
Insurer FE Yes Yes Yes Yes Yes Yes Yes
Observations 3,773 3,773 3,773 1,886 1,886 1,887 1,887
Adjusted R2 0.204 0.204 0.204 0.744 0.744 0.257 0.258
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Table 10: Spillover Effect

This table studies spillover effects of asset sales induced by unexpected capital calls using 2SLS methods. I built a
shift-share instrument exploiting a bond’s heterogeneous exposure to insurers’ unexpected capital calls. Specifically,
the instrument is defined as

zit = log

(
1 +

∑
j Ownershipij,t−1 × UnexpCalljt

Outstandingi,t−1

)
where Ownershipij,t−1 insurer j’s lagged ownership share of bond i, UnexpCalljt is the dollar amount of unexpected
calls for insurer j at time t, and Outstandingi,t−1 is the lagged bond amount outstanding. Columns (1) to (4) report the
results of directly regressing dependent variables on zit using OLS. The dependent variables are: amount of share sold by
insurers (Insurer Sell), an indicator equals to one if the amount sold by insurers are non-negative (1(Insurer Sell)),
change of share owned by insurers ∆Insurer Holdings, and change of yield spread (∆Y ield Spread). In Column (5),
zit is used as instrument for ∆Insurer Holdings in 2SLS model.

∆Y ieldSpreadit = βh∆ ̂Holdingsit + Controlsit + FEs+ ϵit

∆Holdingsit = γhzit + Controlsit + FEs+ uit

Other controls include bond size, time-to-maturity, credit ratings, lagged bid-ask spreads, lagged insurers ownership.
All columns include bond and time fixed (calender year-quarter) effects. Standard errors double clustered at the bond
and time level. ***, **, and * indicate statistical significance at the 1%, 5%, and 10%, respectively.

Insurer Sell 1(Insurer Sell) ∆Insurer Holdings ∆Y ield Spread

(1) (2) (3) (4) (5)

zit 0.967∗∗∗ 0.026∗∗∗ −0.201∗∗∗ 0.555∗∗

(0.131) (0.003) (0.035) (0.211)

∆ ̂Insurer Holdings −2.798∗∗

(1.210)
Bond size 0.903∗∗∗ 0.158∗∗∗ −0.898∗∗∗ 1.221∗∗∗ −1.323

(0.155) (0.007) (0.187) (0.434) (1.485)
TMT 0.469 0.149 −84.049∗∗∗ −61.767∗∗∗ −280.084∗∗

(3.899) (0.199) (10.768) (14.268) (109.353)
RATING NUM 0.067 −0.001 −0.195∗∗∗ 0.313∗∗∗ −0.219

(0.046) (0.002) (0.020) (0.099) (0.284)
TVolume log l1 0.688∗∗∗ 0.029∗∗∗ −0.092∗∗∗ −0.318∗∗ −0.732∗∗∗

(0.052) (0.002) (0.022) (0.138) (0.206)
T Spread ew l1 0.173 −0.006 −0.041 −0.093 −0.206

(0.194) (0.004) (0.038) (0.404) (0.450)
Insurer Ownership l1 0.260∗∗∗ 0.005∗∗∗ −0.133∗∗∗ 0.128∗∗ −0.262

(0.013) (0.0003) (0.008) (0.054) (0.194)

Controls Yes Yes Yes Yes Yes
Bond FE Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes
Adjusted R2 0.084 0.204 0.085 0.869 0.809
Observations 375,546 375,546 355,626 375,546 355,626
Kleibergen-Paap F-Statistic 32
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Table 11: Spillover Heterogeneity

This table studies spillover effects of asset sales induced by unexpected capital calls using 2SLS methods. I built a
shift-share instrument exploiting a bond’s heterogeneous exposure to insurers’ unexpected capital calls. Specifically,
the instrument is defined as

zit = log

(
1 +

∑
j Ownershipij,t−1 × UnexpCalljt

Outstandingi,t−1

)
where Ownershipij,t−1 insurer j’s lagged ownership share of bond i, UnexpCalljt is the dollar amount of unexpected
calls for insurer j at time t, and Outstandingi,t−1 is the lagged bond amount outstanding. Columns (1) to (4) report the
results of directly regressing dependent variables on zit using OLS. The dependent variables are: amount of share sold by
insurers (Insurer Sell), an indicator equals to one if the amount sold by insurers are non-negative (1(Insurer Sell)),
change of share owned by insurers ∆Insurer Holdings, and change of yield spread (∆Y ield Spread). In Column (5),
zit is used as instrument for ∆Insurer Holdings in 2SLS model.

∆Y ieldSpreadit = βh∆ ̂Holdingsit + Controlsit + FEs+ ϵit

∆Holdingsit = γhzit + Controlsit + FEs+ uit

Other controls include bond size, time-to-maturity, credit ratings, lagged bid-ask spreads, lagged insurers ownership.
All columns include bond and time fixed (calender year-quarter) effects. Standard errors double clustered at the bond
and time level. ***, **, and * indicate statistical significance at the 1%, 5%, and 10%, respectively.

∆Insurer Holdings ∆Y ield Spread

(1) (2) (3) (4) (5) (6)

zit ×NAIC1 −0.074∗ 0.062
(0.044) (0.303)

zit ×NAIC2 −0.303∗∗∗ 0.853∗∗∗

(0.038) (0.267)
zit ×NAIC3 −0.132∗∗∗ 0.668∗∗

(0.032) (0.288)
zit × COV ID −0.182∗∗∗ 1.480∗∗∗

(0.034) (0.303)
zit ×REST −0.201∗∗∗ 0.546∗∗∗

(0.036) (0.219)

∆ ̂Holdings×NAIC1 0.914
(1.919)

∆ ̂Holdings×NAIC2 −2.953∗∗

(1.249)

∆ ̂Holdings×NAIC3 −1.875
(1.738)

∆ ̂Holdings× COV ID −8.913∗∗∗

(2.014)

∆ ̂Holdings×REST −2.771∗∗

(1.223)

Controls Yes Yes Yes Yes Yes Yes
Bond FE Yes Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes Yes
Observations 355,626 355,626 375,546 355,626 375,546 355,626
Adjusted R2 0.088 0.085 0.869 0.787 0.869 0.799
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Falato, Antonio, Itay Goldstein, and Ali Hortaçsu, 2021, Financial fragility in the covid-19 crisis:

The case of investment funds in corporate bond markets, Journal of Monetary Economics 123,

35–52.

Federal Reserve Board, 2023, Financial stability report, Board of Governors of the Federal Reserve

System.
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IA.A Conceptual Framework

IA.A.1 Illustrative Example

Figure IA.1: Example of Private Fund Cash Flow

This figure shows the cash flow from a real private fund.
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Panel A: Single fund cash flow and NAV

Panel B: Portfolio of private funds

Figure IA.2: A Illustrative Example

Panel A plots the simulated cash flow of a private fund using the Takahashi and Alexander model. Panel B illustrates
a simulated portfolio with a 10% target private fund allocation achieved by repeatedly investing in the fund simulated
in Panel A. The first subfigure of Panel B plots the portfolio weight allocated to private funds. The second subfigure
plots the aggregate capital calls and distributions at each period. The third subfigure plots the number of active funds.
The last subfigure plots the level of new commitments required to achieve a stable 10% target private fund allocation.
Additionally, there is an unexpected capital call at period t=20.
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IA.B Data

IA.B.1 Raw Schedule BA Data

This section explains the raw Schedule BA data. I obtained the raw statutory filings data from

Capital IQ Pro. Schedule BA reports alternative asset investments include private fund hedge funds,

joint ventures, surplus notes, and residual tranches of structured finance vehicles. Schedule BA has

three parts:

Part 1: Other long-term invested assets owned as of December 31 of the current year

This part is reported only in the annual report. Figure IA.3 provides an example. Some key variables

include:

• Column (2): Asset Name

• Column (8): Date Originally Acquired. For private funds, this can be interpreted as the initial

commitment date

• Column (10), (11), (12): Historical Cost Value, Fair Value, and Book-adjusted Carrying Value

(BACV). For private funds, BACV should be very close to fair value as almost all private

funds are recorded using fair value. I use BACV to compute the on-balance-sheet book value.

• Column (13) to (17): Fair value adjustments

• Column (19): Commitment for Additional Investment. For private funds, it represents the

uncalled commitment (dry powder).

• Column (20): Percentage Ownership. I use it to back out the total size of the fund.

Part 2: Other long-term invested assets acquired and additions made during the

year (quarter) This part is reported in both the annual and quarterly (first three quarters)

reports. Figure IA.4 provides an example. For private funds, it includes initial investment as well as

additional contribution through capital call. Some key variables include:

• Column (2): Asset Name

• Column (7): Date Originally Acquired. Similar to Part 1, it is the initial commitment date.

• Column (9): Actual Cost of Time of Acquisition. This column is blank except for the initial

commitment. For private fund, it can be interpreted as the contribution at the time of initial

commitment.

• Column (10): Additional Investment Made After Acquisition. For private fund, this column

represents capital call (contribution).

• Column (12): Commitment for Additional Investment. Similar to part 1, it represents the

uncalled commitment.

Part 3: Other long-term invested assets disposed of, transferred, or repaid during the

year (quarter) This part is reported in both the annual and quarterly reports. Figure IA.5
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provides an example. For private funds, disposal includes secondary market sales, liquidation/termi-

nation, and distribution. Some key variables include:

• Column (2): Asset Name.

• Column (5): Nature of Disposal. Common types include distribution, partial disposal, full

disposal, secondary market sales, and liquidation/termination. For most of time, partial

disposal also represents distribution.

• Column (7): Disposal Date. Blank for distribution.

• Column (8): Book value from part 1 of last year.

• Column (9) to (14): Fair value adjustment of the disposed part from the end of last year until

the time before disposal. For distribution, it is usually blank.

• Column (15): Book value immediately before disposal. For distribution, it is usually blank.

• Column (16): Proceeds from disposal. I use it as the amount from distribution.

• Column (19): Total gain or loss on disposal (difference between column (15) and 16). For

distribution, it is usually blank.
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Figure IA.3: Example – Schedule BA Part 1
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Figure IA.4: Example – Schedule BA Part 2
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Figure IA.5: Example – Schedule BA Part 3
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IA.B.2 Schedule BA Cleaning Procedure

Create Fund ID I create fund identifier (ID) using following steps:

1. Based on recurring typographical errors and naming variations identified through manual

inspection, I develop an algorithm to standardize fund names by correcting these commonly

observed inconsistencies. Below, I outline the key steps of the algorithm:

• Convert all fund names to lowercase. This ensures case-insensitive comparisons.

• Remove internal ID at the beginning or end of the name. Some insurers append

internal ID to fund names, typically as prefixes or suffixes. I apply the following rules to

identify and remove such patterns. Specifically, I drop any leading or trailing numbers

longer than six digits. I also drop any leading or trailing unpronounceable tokens longer

than six characters that contain a mix of letters and numbers.

• Standardize common phrases. Through manual review, I compile a list of over 50

commonly varying terms and apply consistent transformations. This step is conceptually

similar to the Porter stemming algorithm used in natural language processing, but

implemented through a manually curated list. By constructing the stemming rules by

hand, my algorithm is more flexible and robust. A few illustrative examples are:

– I drop all phrases referring to Limited Partnership, including LP, L.P., limited

partner, limited partnership, prtr, ptr, ptrs, etc (more than 100 variations).

– Phrases such as American, United States, US, USA, are standardized to America.

– Phrases such as Euro, Europ, European, are standardized to Europe.

– Phrases such as Invest, Invt, and Inve, are standardized to Investment.

– Phrases such as Opportunity, opp, opps, opport, are converted to Opportunities.

– Phrases such as infra, infras, infrastruct, are standardized as Infrastructure.

• Remove all punctuation marks.

• Trim leading, trailing, extra spaces.

2. I then identify potential inconsistencies by exploiting the panel structure of the holdings data.

Specifically, I flag suspicious cases based on the following criteria:

• Rare appearances: I flag fund names that appear only once or twice in an insurer’s

portfolio (except when it is likely caused by data truncation). Example: Fund A is

recorded in Insurer X’s portfolio only in 2013, and never before or after.

• Missing observations: I flag fund names that exhibit missing values within what should

be a continuous holding period. Example: Fund A is held by Insurer X continuously

from 2015 to 2023, except for 2017.

• Unexplained discontinuation: I flag fund names that disappear from an insurer’s

portfolio without any reported sale. Example: Fund A was first acquired in 2016 suddenly

drops out starting 2019 and no sale is reported.

• Delayed first appearance: I flag fund names where the first appearance occurs

substantially after the reported initial acquisition date (except when it is likely caused

by data truncation). Example: Fund A first appears in the insurer X’s portfolio in 2017,
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but the reported first acquisition year is 2014.

3. Next, I use ChatGPT to standardize the flagged fund names. To simplify the task and ensure

consistency, I perform the matching process separately for each insurer. For each insurer, I

begin with a panel dataset that contains all fund names previously flagged in Step 2. Note

that according to Step 2, all names associated with a given fund will be flagged if any name

inconsistency is detected across time. I then identify a subset of fund names to serve as

target names. Target names are the most likely correct fund names, which other names will

be matched to. A fund name is identified as a target if its number of observed appearances

exceeds half of its theoretical appearance count, which I compute based on the reported

first acquisition year and the insurer-specific sample window. Specifically, the theoretical

appearance count is calculated as the number of years between the fund’s acquisition year and

the sample end year, capped at 15 to reflect a typical private fund life span. For example, if a

fund was first acquired in 2014 and the sample ends in 2023, the theoretical appearance count

is 10. Once target names are identified, I use ChatGPT to perform fuzzy matching between

non-target names and target names using the following prompt:

4. I manually review all remaining unmatched cases as well as cases with low confidence score.

5. I repeat step 2 to 4 multiple times to ensure consistent and accurate name match.

6. Finally, a unique fund ID is assigned to each unique fund name.

Prompt for Fund Name Match (reformatted for readability)

I have a dataset of private fund names reported by a specific investor. Due to typograph-

ical errors, abbreviations, or rebranding, the same fund may appear under multiple

names. Your task is to manually review each row where Target == 0 and determine

whether it refers to the same underlying fund as any of the names listed in the rows

where Target == 1.

Please do not use code or automated string comparison. Instead, considering following

rules:

• Name variations caused by typos and abbreviations.

• Name variations caused private equity M&A and rebranding.

• Proximity of acquisition dates. If two names refer to the same fund, their reported

acquisition date should be close (may not exactly be the same).

For each Target == 0 row, compare it to the full list of Target == 1 fund names.

Return the final dataset in CSV format with two added columns:

• MatchedName: The most likely matching fund name (or ”No Match”)

• MatchedScore: A confidence score from 1 to 5

Important: Please perform this review manually, row by row, using your knowledge

and reasoning. Do not use code or fuzzy matching tools.
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Identify Private Fund After obtaining the fund ID, I identify private funds in Schedule BA

using the following steps:

1. Keep only funds listed under the following categories according to the NAIC instructions:

• Non-Registered Private Funds

• Joint Venture, Partnership, or Limited Liability Company Interests

2. Drop assets whose names mention terms such as Hedge Fund, Surplus Debentures, Low

Income Housing Tax, or Tranches.

3. Drop assets with zero “Commitment for Additional Investment” throughout the sample, except

for funds first acquired before 2005 (the start of the annual sample).

Get Quarterly Measure To obtain all relevant variables at the quarterly frequency, I take

several additional steps. A key challenge is that the quarterly statutory filings do not include the

full list of fund holdings (Part 1). The annual filing provides a complete snapshot of all holdings

at year-end as well as the transaction during the year. In contrast, only transaction (Part 2 and

3), such as contribution (capital call), distributions, or disposal, are reported each quarter. To

reconstruct a complete panel at the insurer-fund-year-quarter level, I proceed as follows:

1. Construct a balanced panel. I begin by creating an complete insurer-fund-year-quarter

panel that includes all possible combinations within each period. This ensures that each

insurer-fund pair has one row per quarter, regardless of whether the position changed during

that quarter.

2. Merge year-end values from annual reports. I left join year-end values (e.g., book-

adjusted carrying value and uncalled commitment) from the annual report using insurer-

fund-year as matching keys. These values provide an anchor for inferring missing quarterly

observations.

3. Merge quarterly transactions from quarterly reports. I then left join quarterly

transaction data, such as capital calls, distributions, and disposal, from the quarterly reports

using insurer-fund-year-quarter as matching keys.

4. Infer quarterly values. With the annual totals and Q1–Q3 transaction data, I back out the

Q4 transaction values and estimate quarterly positions. The detailed methods are as follows:

• Capital calls and distributions: The Q4 value equals to the residual between the

year-end total and the sum of the reported Q1–Q3 values:

Q4 Call = Annual Call− (Q1 Call + Q2 Call + Q3 Call)

• Uncalled commitment: For quarters prior to Q4, I infer the uncalled commitment by

working backward from the year-end value and subtracting the cumulative capital calls

made after each quarter. For example:

Q1 Uncalled = Year-End Uncalled + (Q1 Call + Q Call + Q3 Call)
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• Book value (BACV): I first estimate quarterly BACV using the year-end value and the

cumulative capital calls and distributions. I then account for fair value adjustments such

as unrealized gains/losses by assuming these are evenly distributed across quarters. That

is, the quarterly fair value adjustment is set to one-fourth of the total annual adjustment.

For example

Q1 BACV = Year-End BACV− (Q1 Call + Q Call + Q3 Call)

− (Q1 Dist + Q Dist + Q3 Dist)

− 0.25×Annual Adjustment

5. Handle fully exited holdings. For fund positions that are no longer listed in the year-end

annual report (due to full liquidation or sale), I reconstruct quarterly values using the previous

year-end value as the starting point. In such cases, I apply capital calls, distributions, and

estimated fair value adjustments to the full exit periods, where all level variables are set to

zero.

Filtering Abnormal Values To ensure data quality and improve the reliability of the capital call

forecasts, I apply several filtering steps to address reporting inconsistencies and eliminate implausible

values. These steps are necessary because the reconstructed quarterly panel may contain mechanical

or reporting-induced anomalies. Specifically, I proceed as follows:

1. By definition, uncalled commitments should only decline over time as capital is called. In

cases when uncalled commitment is larger than the previous period-end value, I set the current

period’s uncalled commitment equal to the previous period’s value. I also set the capital call

for the current period to zero.

2. I set capital call to zero if it is negative. Begenau et al. (2020b) points out negative capital

call could be attribute to fee offsets. But it does not affect my analysis.

3. If capital call exceeds the uncalled commitment from the previous period, I set the capital

call equals to the uncalled commitment from the previous period. Note that I do not impose

restriction based on the cumulative capital call. As pointed out by Begenau et al. (2020b),

cumulative capital call could exceed the initial commitment due to recycled capital.

4. To simplify the forecasting task later, I assume capital calls equal to zero after their tenth

year. Accordingly, for any fund with age greater than 10 years, I set both capital call and

uncalled commitment to zero. This step does not affect the results.

5. In principle, capital calls and uncalled commitments should evolve consistently over time. I

manually inspect cases where the two series exhibit significant misalignment and attempt to

reconcile them. If reconciliation is not possible, I drop the affected observations from the

sample.

6. For funds held by multiple insurers at the same period, I compare the capital call rates and

distribution rates across insurers. Although small difference is normal, large discrepancies

likely indicate potential errors. I manually inspect all such suspicious cases and attempt to
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reconcile them. If reconciliation is not possible, I replace the outlier observation with the

median capital call (or distribution) rate reported by other insurers holding the same fund in

the same period.

Identify Fund Type I use the following steps to identify fund types.

1. For funds that can be merged with the PitchBook data, I use the fund type classification

from PitchBook. Specifically, I group PitchBook fund types into the following six categories:

Private Equity, Venture Capital, Real Estate, Private Debt, Infrastructure, and Others.

2. For the remaining funds, I use fund names to perform further classification. Specifically,

• Funds with names including words such as Buyout, Equity, Balance, Growth, or Stock

are classified as Private Equity Funds.

• Funds with names including words such as Venture, Early, Seed, or Start Up are

classified as Venture Capital Funds.

• Funds with names including words such as Real Estate, Housing, Residential, or

Mortgage are classified as Real Estate Funds.

• Funds with names including words such as Debt, Credit, Mezzanine, Direct Lending,

or Distressed Debt are classified as Private Debt Funds.

• Funds with names including the word Infrastructure are classified as Infrastructure

Funds.

3. Finally, I use ChatGPT to further classify funds into the above six categories using the

following prompt.

Prompt for Fund Type Classification (reformatted for readability)

I have a list of private fund names. Please help classify each fund into one of the following

six categories: (1) Private Equity, (2) Venture Capital, (3) Real Estate, (4) Private Debt, (5)

Infrastructure, (6) Others.

Use your broader understanding of private market terminology to make informed judgments.

If a fund name does not fit into any category, classify it as Others.

Return your output in CSV format with two columns:

• FundName: the original fund name.

• FundType: one of the six categories.
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IA.B.3 Data Comparison

Table IA.1 compares my dataset, based on Schedule BA statutory filings, with commonly used data

sources in the literature such as Preqin and MSCI Burgiss. Below, I summarize the key similarities

and differences:

• Data Source and Coverage: The Schedule BA data is derived from mandatory statutory

filings submitted by U.S. insurance companies. In contrast, most traditional datasets, such

as Preqin, primarily rely on Freedom of Information Act (FOIA) requests to U.S. public

pension funds (Begenau et al., 2020b). While some more proprietary datasets exist based

on information collected by investment advisors or third-party providers, these are relatively

uncommon. Due to the difference in source, my data covers U.S. insurers, whereas traditional

datasets focus largely on U.S. public pensions. A further distinction is that Schedule BA

filings provide a complete investor-level panel of holdings, while FOIA-based data is often

insufficient to reconstruct a complete panel for each investor.

• Capital Calls and Distributions: Both my dataset and traditional sources report after-fee

cash flows—that is, the actual cash flows experienced by the investor, net of fees.

• Sample Period and Frequency: My dataset includes annual holdings starting in 2005 and

quarterly transaction-level data beginning in 2008. Traditional datasets, such as Preqin and

Burgiss, typically start in the 1990s. Both my data and traditional sources provide quarterly

frequency for cash flow and valuation information.

• Secondary Market Sales: Although secondary sales of private fund stakes remain relatively

limited, they do affect investor-level holdings. My data captures all secondary market sales,

whereas traditional datasets generally do not track these transactions.

• Fund Characteristics: Key fund-level attributes, such as vintage year, fund age, size, general

partner identity, and fund type, are available in both my data and in traditional sources.

However, in my data, extracting these fund characteristics requires additional processing.

• Rest of portfolio: My data can link investors’ private fund holdings with the rest of their

portfolio, which is not possible in traditional data sources.

It is possible to merge the Schedule BA data with traditional datasets. To do this, I apply the

same fund name standardization algorithm used in the first step of creating fund identifiers (as

discussed earlier) to the fund names in the other data sources. The standardized fund names then

serve as a common key for merging both datasets.
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Table IA.1: Data Comparison

This table compares the Schedule BA data with the other data commonly used in the PE literature.

Schedule BA Data Other Data Used in the

Literature

Data Source Mandatory Statutory Filings (1) FOIA request

(2) Voluntary disclosure from GP

(3) Third party data

Fund Type Coverage All private funds Depend on your subscription

Investor Type Coverage Insurance companies Mostly public pension funds

Investor-level Completeness Complete Not complete

Sample Period Since 2008 Since 1990s

Frequency Quarterly Quarterly

Easyness to use Not easy Yes

Key Variables

Fund Information Name, Vintage, Age, Size, GP,

Type (needs some work)

Available and easy to use

Initial Commitment Amount Yes Depends

Capital Call Yes (include fee) Yes (include fee)

Distribution Yes Yes

Uncalled Commitment Yes Depends

Secondary Market Sale Yes No

Performance Measures Need to calculate yourself Yes

Rest of Portfolio Yes No

Investor Financial Yes No

Deals/Portfolio Companies No Yes

IA.15



IA.B.4 Variable Definition

Table IA.2: Variable Definition

Variable Definition

Capital Call Amount of capital call a insurer received during a quarter, scaled by the lagged total portfolio size.

Expected Capital Call Expected amount of capital call a insurer received during a quarter, defined as in Section 4, scaled by
the last period total portfolio size.

Unexpected Capital Call Unexpected amount of capital call a insurer received during a quarter, defined as in Section 4, scaled
by the last period total portfolio size.

Capital Call Rate Amount of capital call scaled by the the lagged uncalled commitment. Same for expected and
unexpected capital call rate.

Distribution Amount of distribution a insurer received during a quarter, scaled by the lagged total portfolio size.

Uncalled Commit The total amount of uncalled commitment a insurer has, scaled by the lagged total portfolio size.

New Commit The total amount of new commitment a insurer made during a quarter, scaled by the lagged total
portfolio size.

Private Fund Percentage holdings of private funds based on the book value (BACV).

Bond Percentage holdings of all long-term bonds, reported in Schedule D Part 1.

Treasury Percentage holdings of all treasury bonds.

Industrial Percentage holdings of all industrial bonds, based on the definition of NAIC.

Corporate Bond Percentage holdings of all corporate bonds.

Other-Industrial Bond Percentage holdings of all non-corporate industrial bonds.

Govt Agent Percentage holdings of all government related non-treasury bonds.

Other Bond Percentage holdings of other long-term bonds.

Mortgage Percentage holdings of all mortgage loans, reported in Schedule B.

Stock Percentage holdings of stocks (both common and preferred stocks), reported in Schedule D Part 2.

Rest All remaining holdings.

NAIC A numerical number for the NAIC designations, range from 1 to 6.

RBC Ratio Risk-Based Capital Ratio.

Unrealized G&L Unrealized gains and losses computed as the difference between book value (BACV) and fair value,
scaled by the book value.

Exposure Bond-level capital call shock exposure measure, defined as in equation (6)

Yield Spread Corporate bond yield spread defined as yield minus the maturity-match treasury yield.

Ownership The percentage bond share owned by each insurer.

Insurer Ownership The percentage bond share owned by all insurers.

Insurer Sell The par amount of bond sold by all insurers, scaled by bond size. Only active sales are considered.

Bid-Ask Spread Corporate bond bid-ask spread.

Bond Ratings Numerical number of corporate bond ratings.

Trading Volume Log bond trading volume based on par value.

Bond Size Log bond outstanding amount

Time-to-Maturity The number of years before the stated maturity date.
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IA.C Forecast Capital Call

IA.C.1 Forecasting Models

LASSO LASSO (Least Absolute Shrinkage and Selection Operator) is a type of linear regression

model designed to identify the most important predictors. Specifically, it models the outcome

variable as a linear function of the predictor vector Xj,t, but with a penalty on complexity. Formally,

it estimates coefficients β by solving:

min
β

∑
j,t

(
RCj,t+1 −X′

j,tβ
)2

+ λ
∑
k

|βk|

The second term is a penalty on the absolute values of the coefficients, controlled by the hyperparam-

eter λ ≥ 0. When λ is large, the model shrinks more coefficients toward zero, effectively performing

variable selection by excluding weak predictors. When λ = 0, LASSO reduces to ordinary least

squares. The key advantage of LASSO is the interpretability. However, LASSO cannot capture

nonlinear interactions or complex functional forms.

Decision Tree A decision tree is a flexible, non-parametric model that predicts the outcome

variable by recursively splitting the data based on values of the predictors. The model creates a

tree-like structure where each internal node represents a rule, and each terminal leaf node assigns a

predicted value based on the average of the outcome variable in that subgroup. Formally, a decision

tree partitions the feature space Xj,t into regions {R1, R2, . . . , RM}, and predicts the outcome

variable as the average in the corresponding region:

R̂Cj,t+1 =

M∑
m=1

R̄Cm · 1 {Xj,t ∈ Rm}

where R̄Cm is the average capital call ratio in region Rm. The key hyperparameters include:

(1) Maximum tree depth (limits the number of splits); (2) Minimum samples per leaf (prevents

overfitting by requiring enough observations per group); (3) Split criterion (e.g., mean squared error)

Figure IA.6 illustrates a simple decision tree used to predict capital call outcomes. Each node

represents a decision rule that splits the data based on a specific predictor, recursively dividing the

sample into increasingly homogeneous subgroups. The top number in each node is the predicted

outcome variable, and the bottom number shows the proportion of observations in that group. The

tree starts with the full sample (100% in the root node) and an sample average capital call rate of

11%. The first split is based on whether the lagged capital call rate is below 25%. 10% of the sample

has a lagged call rate above 25%, and has a predicted capital call rate of 18%. The remaining 90% is

further split based on whether the uncalled commitment (as a percentage of the initial commitment)

exceeds 66%. If it does, the predicted call rate is 6.4%; if not, the predicted call rate is 11%.

As the example shows, decision trees are highly interpretable and automatically capture non-
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linearities and interactions. However, single decision tree tend to overfit the data, which is why a

single tree is rarely optimal. Instead, it serves as the building block for more powerful ensemble

methods such as random forests and gradient boosting, which I describe next.

Figure IA.6: Illustration of Decision Tree

This figure illustrates the idea of decision tree

Random Forest Random Forest is an ensemble learning method that builds upon the decision

tree model. Instead of relying on a single tree, it constructs many trees and averages their predictions

to produce a more stable and accurate forecast. Each tree is trained on a different random subset

of the data and, at each split, considers only a random subset of the predictors. This randomness

helps reduces overfitting. Formally, the Random Forest prediction for the outcome variable is the

average of predictions from B separate trees:

R̂Cj,t+1 =
1

B

B∑
b=1

R̂C
(b)

j,t+1

where each R̂C
(b)

j,t+1 is the prediction from tree b. Key hyperparameters include: (1) Number of

trees (B): more trees usually improve performance up to a point; (2) Maximum tree depth: controls

complexity of each tree; (3) Minimum samples per leaf: avoids splitting into overly small regions;

(4) Number of predictors considered at each split: adds randomness and reduces correlation among

trees.

Advantages of Random Forest include its ability to capture complex nonlinear interactions

without much tuning, its robustness to overfitting, and its built-in measure of variable importance.

A main drawback is that the model loses interpretability compared to single decision tree and

LASSO.
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LightGBM LightGBM (Light Gradient Boosting Machine) is a fast and efficient implementation

of gradient boosting, a technique that builds a sequence of decision trees, where each tree tries to

improve on the errors made by the previous ones. Unlike Random Forest, which averages predictions

from many independent trees, LightGBM builds trees sequentially in a boosting framework to

correct past mistakes.

Formally, at each stage, LightGBM minimizes a loss function (such as squared error) by fitting

a new tree to the residuals of the current model. The updated prediction becomes:

R̂C
(m)

j,t+1 = R̂C
(m−1)

j,t+1 + η · hm (Xj,t)

where hm(·) is the new tree added at stage m, and η is a learning rate controlling how much weight

is given to new trees. Key hyperparameters include: (1) Learning rate (η): smaller values slow

learning but improve stability; (2) Number of boosting rounds; (3) Maximum depth or number of

leaves: controls complexity of individual trees; (4) Minimum data in a leaf and feature fraction:

regularization parameters to prevent overfitting.

LightGBM is highly efficient and well-suited for large structured datasets. It often achieves

state-of-the-art accuracy with relatively fast training time. The disadvantage is that it reduced

transparency and requires more careful tuning.

XGBoost XGBoost (Extreme Gradient Boosting) is another popular and powerful implementation

of gradient boosting. Like LightGBM, XGBoost constructs trees sequentially to minimize prediction

error, improving upon prior trees by fitting to residuals. Formally, XGBoost solves the following

penalized objective:

Objective =
∑
j,t

ℓ
(
RCj,t+1, R̂Cj,t+1

)
+
∑
m

Ω (hm)

where ℓ(·) is the loss function, and Ω (hm) penalizes model complexity to prevent overfitting. Key

hyperparameters include: (1) Learning rate (η) and number of boosting rounds; (2) Maximum

depth, minimum child weight, subsample ratio, and colsample by tree (fraction of features randomly

sampled per tree); (3) Gamma (minimum loss reduction required to make a split).

XGBoost is robust and flexible. In many settings, it delivers strong performance. Like LightGBM,

its main limitation is interpretability.

Two-stage Hurdle Model One challenge in forecasting capital calls is the prevalence of zero

observations: many fund-quarter observations have capital call exactly equals to zero. This feature

creates what is known as zero-inflated data, which violates standard model assumptions and can

lead to biased or inefficient forecasts (Lambert, 1992). To overcome this challenge, I implement a

two-stage hurdle model framework, a method commonly used in econometrics to model outcomes

with excess zeros (Cragg, 1971; Mullahy, 1986). The core idea is to treat the zero and non-zero
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outcomes separately: the first-stage is a classification task to forecast whether there is going to be

any capital call (non-zero), and the second-stag is a regression task to forecast how magnitude of

the capital call, conditional on having non-zero capital call.

Specifically, in the first stage, the binary classification task is to estimate the probability that a

capital call is non-zero:

Pr (RCj,t+1 > 0 | Xj,t) = g1 (Xj,t) = p̂j,t+1

In the second stage, a regression model is fit to the subsample of non-zero capital calls to estimate

the expected magnitude, conditional on a call occurring:

E (RCj,t+1 | RCj,t+1 > 0,Xj,t) = g2 (Xj,t) = µ̂j,t+1

The final forecast is computed as the product of the two components:

R̂Cj,t+1 = p̂j,t+1 · µ̂j,t+1

This two-stage approach is especially beneficial in my setting, where a large portion of the

observations are zeros but the positive realizations display significant heterogeneity. I implement this

two-stage framework across all above machine learning models discussed earlier: LASSO, decision

tree, random forest, LightGBM, and XGBoost. Hence, there are ten machine learning models in

total.

IA.C.2 Implementation

Predictors Predictors Xjt includes

• Macro variables: GDP, CPI, industrial production, unemployment,

• Public market indicators: S&P 500 returns, Price-Dividend ratio, Price-Earnings ratio, credit

spread index, fed fund rate, Treasury yield curve, VIX

• Private market: PE fundraising, PE deal volume, PE rolling IRR.

• Fund-level variables: vintage year, fund age, fund type, fund size, three lagged capital call rates

(t, t− 1, t− 2), and lagged uncalled commitment (as the percentage of initial commitment).

Note that some fund-level variables might be missing. I set the missing value to zero.

Sample All models are initially trained and tested using the Preqin fund cash flow data. Since

the Preqin data spans a significantly longer period (starting in the 1990s), it enables me to perform

hyperparameter tuning and out-of-sample model selection without reducing the size of the main

sample.

Hyperparameter Selection When hyperparameter tuning is required, I perform cross-validation

using data available up to 2003. Specifically, this pre-2003 data is split into two equal parts:

a training set and a validation set. The model is trained on the training set across various
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combinations of hyperparameters, and performance is evaluated on the validation set. I then select

the hyperparameter combination that yields the best out-of-sample performance on the validation

set. This selected configuration is fixed and used for all subsequent forecasts across time, i.e.,

hyperparameters are are only choose once.

Rolling Window Forecast Evaluation To evaluate out-of-sample forecasting performance, I

adopt a five-year rolling window approach. For each forecast year t, I train the model using data from

the previous five calendar years, i.e., from year t− 4 through t− 1. For example, to forecast capital

calls in 2019, the model is trained on data from 2014 Q1 to 2018 Q4. This procedure is repeated

for each year in the evaluation period (2008 to 2023), and I compute the average out-of-sample R2

across all test years. This method resembles standard cross-validation method but is tailored for

time-series data, ensuring that future information is never used in model training.

Apply the Selected Model to Main Sample I then apply the selected forecasting model to

the main sample. For each year t, I use the same model specification as in the out-of-sample rolling

window evaluation, i.e., trained on data from year t− 4 through t− 1. For any predictor variables

that are unavailable in the main sample, I either set them to zero or leave them as missing (most

packages can handle the missing values automatically).

IA.C.3 Additional Forecasting results

Figure IA.7 shows the average of the predicted capital call rate. Subfigure (a) shows the sample

average and fitted value of the capital call rate over the life of the fund. Subfigure (b) shows the

percentage amount of uncalled commitment over the life of the fund.

(a) Predicted Capital Call Rate (b) Predicted Cumulative Capital Call

Figure IA.7: Predicted Capital Call

Subfigure (a) shows the sample average and fitted value of the capital call rate over the life of the fund. Subfigure (b)
shows the percentage amount of uncalled commitment over the life of the fund.
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IA.D Additional Results

IA.D.1 Additional Descriptive Results

(a) All Insurers

(b) Life Insurers (c) P&C Insurers

Figure IA.8: Insurers’ Portfolio Allocation

This figure shows the aggregate allocation of insurance companies in the sample. Subfigure (a) shows for all insurers,
Subfigure (b) is for Life insurers, and Subfigure (c) is for P&C insurers.
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(a) By Fund Type

(b) By Fund Age

Figure IA.9: Private Fund Allocation

This figure shows the predictor (feature) importance of the best performing machine learning model (two-stage
LightGBM). Subfigure (a) shows the first-stage classification task and Subfigure (b) shows the second-stage regression
task.
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Table IA.3: Capital Call Correlation with Other Data

This table shows the correlation between my data and Preqin. The first column shows the number of observations
successfully merged. The second column shows the correlation for capital call rate, and the third column shows the
correlation for uncalled commitment.

(1) (2)
N Capital Call Rate Uncalled Commit

235,773 0.816 0.977

(c) Capital Call Rate

(c) Unexpected Capital Call Rate

Figure IA.10: Investor-level Capital Call Rate Distribution Over time

This figure plots the distribution of investor-level capital call over time using boxplot, where Subfigure (a) is for the
total capital call and Subfigure (b) is for the unexpected component. Each box represents the interquartile range
(IQR), with the bottom and top edges corresponding to the first and third quartiles. The horizontal short dark blue
line inside each box denotes the median, while the red triangle indicates the mean. The vertical lines extending from
the boxes (whiskers) show the range of the data, excluding outliers. Individual observations beyond the whiskers
(outliers) are plotted as light gray dots. Capital calls are scaled by previous period-end insurer portfolio size.
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Table IA.4: Determinant of Capital Call

This table shows the time series determinant of capital call. Panel A shows the results for capital call rate, and Panel B
shows the results for unexpected capital call rate. Insurer fixed effects are included. Standard errors double clustered
at the insurer and time level. ***, **, and * indicate statistical significance at the 1%, 5%, and 10%, respectively.

Panel A: Capital Call Rate

(1) (2) (3) (4) (5) (6) (7) (8)

SP500 PD log 0.118∗∗∗ 0.063∗∗

(0.024) (0.030)
CreditSpread log −0.042∗∗∗ 0.028∗∗

(0.012) (0.011)
FundRaising log 0.050∗∗∗ 0.037∗∗∗

(0.005) (0.007)
PE Deal log 0.044∗∗∗ 0.013∗

(0.006) (0.007)
USPE IRR Rolling 0.064∗∗∗ 0.002

(0.023) (0.030)
r1y 0.002 0.001

(0.006) (0.004)
r5y 0.047∗∗∗ 0.003

(0.015) (0.010)
r10y −0.055∗∗∗ −0.002

(0.012) (0.009)
GDP growth 0.001 −0.001

(0.001) (0.001)

Insurer FE Yes Yes Yes Yes Yes Yes Yes Yes
Observations 11,498 11,498 11,498 11,498 11,498 11,498 11,498 11,498
Adjusted R2 0.449 0.436 0.474 0.461 0.428 0.457 0.421 0.480

Panel B: Unexpected Capital Call Rate

(1) (2) (3) (4) (5) (6) (7) (8)

SP500 PD log 0.018∗∗ 0.006
(0.009) (0.014)

CreditSpread log −0.006∗ 0.007∗

(0.004) (0.004)
FundRaising log 0.008∗∗∗ 0.011∗∗∗

(0.002) (0.002)
PE Deal log 0.008∗∗∗ 0.009∗∗∗

(0.002) (0.003)
USPE IRR Rolling 0.019∗∗ −0.010

(0.008) (0.016)
r1y −0.001 −0.002

(0.002) (0.002)
r5y 0.008 −0.007∗

(0.006) (0.004)
r10y −0.008∗ 0.009∗∗

(0.004) (0.004)
GDP growth 0.0001 −0.0003

(0.001) (0.0005)

Insurer FE Yes Yes Yes Yes Yes Yes Yes Yes
Observations 11,498 11,498 11,498 11,498 11,498 11,498 11,498 11,498
Adjusted R2 0.153 0.149 0.160 0.159 0.152 0.150 0.146 0.168
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(a) Number of Fund Held (b) Number of New Commitment

Figure IA.11: Distribution of Number of Private Fund Invested

Subfigure (a) shows the distribution of number of Private Fund held by one insurer. Subfigure (b) shows the cumulative
distribution of number of new commitment made by each insurer every year.
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(a) Private Fund (b) Bond (c) Cash

(d) Mortgage (e) Stock (f) Rest

Figure IA.12: Dynamic Portfolio Impacts of Capital Call and Distribution

This figure plots the dynamic portfolio impacts of capital call (red) and distribution (blue) using local projection.
The dependent variables are ∆Holdingsi,t→t+h, where h ∈ [1, 4]. Subfigures (a) to (f) correspond to private funds,
long-term bonds, cash and cash equivalents, stocks, and rest. Controls include lagged capital call, lagged distribution,
lagged private fund allocation, asset growth, return on assets, log asset size, log capital and surplus, leverage ratio,
and previous year-end RBC ratio. Insurer and time (calendar year-quarter) fixed effects are included. Standard errors
double clustered at the insurer and time level. The colored areas represent the 95% confidence interval.
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Figure IA.13: Distribution of Bond-level Exposure Measure

This figure shows the distribution of bond-level exposure measure.
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Table IA.5: Spillover Heterogeneity: First Stage

This table shows the first stage results for the 2SLS results in Table 11. Panel A corresponds to the first stage for
Column (4) of Table 11, and Panel B corresponds to the first stage for Column (6) of Table 11. ***, **, and * indicate
statistical significance at the 1%, 5%, and 10%, respectively.

Panel A: Bond rating test

∆Holdings×NAIC1 ∆Holdings×NAIC2 ∆Holdings×NAIC3
(1) (2) (3)

zit ×NAIC1 −0.082∗ −0.014 0.021∗∗∗

(0.042) (0.020) (0.006)
zit ×NAIC1 0.031∗∗ −0.363∗∗∗ 0.029∗∗∗

(0.014) (0.034) (0.005)
zit ×NAIC1 0.030∗∗∗ −0.025∗ −0.137∗∗∗

(0.011) (0.015) (0.024)

Controls Yes Yes Yes
Bond FE Yes Yes Yes
Time FE Yes Yes Yes
Observations 355,626 355,626 355,626
Adjusted R2 0.033 0.046 0.049
Kleibergen-Paap F-Statistic 5.3 38.3 20.7

Panel B: Covid test

∆Holdings× COV ID ∆Holdings×REST
(1) (2)

zit × COV ID −0.166∗∗∗ −0.017
(0.014) (0.032)

zit ×REST −0.004 −0.197∗∗∗

(0.004) (0.036)

Controls Yes Yes
Bond FE Yes Yes
Time FE Yes Yes
Observations 355,626 355,626
Adjusted R2 0.008 0.085
Kleibergen-Paap F-Statistic 7.8 41.7

IA.29


	Conceptual Framework
	Illustrative Example

	Data
	Raw Schedule BA Data
	Schedule BA Cleaning Procedure
	Data Comparison
	Variable Definition

	Forecast Capital Call
	Forecasting Models
	Implementation
	Additional Forecasting results

	Additional Results
	Additional Descriptive Results


