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Abstract

We use the long-term Capital Market Assumptions of major asset managers and insti-

tutional investor consultants from 1987 to 2022 to provide three stylized facts about

their subjective risk and return expectations on 19 asset classes. First, there is a strong

and positive subjective risk-return tradeoff, with most of the variability in subjective

expected returns due to variability in subjective risk premia (compensation for mar-

ket beta) as opposed to subjective alphas. Second, belief variation and the positive

risk-return tradeoff are both stronger across asset classes than across institutions. And

third, the subjective expected returns of these institutions predict subsequent realized

returns across asset classes and over time. Taken together, our findings imply that mod-

els with subjective beliefs should reflect a risk-return tradeoff. Additionally, accounting

for this subjective risk-return tradeoff when modeling multiple asset classes is even

more important than incorporating average belief distortions or belief heterogeneity in

our setting.
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Introduction

The risk-return tradeoff in financial markets is at the heart of asset pricing. The literature

typically explores this topic by linking risk measures of financial assets to their subsequent

realized returns (e.g., Fama and MacBeth (1973)). This approach recovers the risk-return

tradeoff investors perceive if they have rational expectations (i.e., their expectations are

objective in that they reflect the true data generating process in the economy). However, if

investors’ subjective risk and return expectations deviate from rational expectations, then the

risk-return relation in the realized return data is not very informative about the risk-return

tradeoff investors perceive.

The existing literature on subjective beliefs (reviewed by Adam and Nagel (2023)) docu-

ments important deviations between the objective and subjective expected returns of differ-

ent economic agents, with large asset managers having subjective equity premia that better

reflect the cyclical properties of the objective equity premium (Dahlquist and Ibert (2023)).

However, there is little work on the connection between subjective risk and return expecta-

tions, particularly for institutional investors and across asset classes. As Adam and Nagel

(2023) put it, “We need more work that explores how investors...risk perceptions are linked

to the subjective risk premia that they demand to hold risky assets.”

In this paper, we fill this important gap in the literature. Specifically, we study the long-

term Capital Market Assumptions (CMAs) of major asset managers and institutional investor

consultants reflecting their subjective risk and return expectations on 19 asset classes from

1987 to 2022. We uncover three stylized facts. First, as Figure 1(a) shows, there is a strong

and positive subjective risk-return tradeoff. In particular, most of the variability in subjective

expected returns is driven by variability in subjective risk premia (compensation for market

beta) as opposed to subjective alphas. Second, we find that belief variation and the positive

risk-return tradeoff are both stronger across asset classes than across institutions. This im-

plies the positive relation between subjective risk and return expectations is more influential

than belief disagreement in our setting. And third, the subjective beliefs of these institutions
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(a) Subjective E[Risk] vs E[Return] (b) E[Return]: Beliefs vs Data

Figure 1
Summary of Main Results

Panel (a) plots subjective expected excess returns (µj,n,t) against subjective market betas

(β
(m)
j,n,t), with the market reflecting US equities. These quantities are obtained from our CMAs

and vary across investors (j) and asset classes (n) as well as over time (t). Panel (b) plots
subjective µn (aggregated over time and across investors) against the respective µn obtained
from average realized excess returns. See Section 2 for more details about our subjective
beliefs data and Section 4 for the matching of beliefs to realized returns.

are largely (but not fully) consistent with objective beliefs. For instance, Figure 1(b) shows

that a regression of average realized returns on average subjective expected returns leads to

a slope coefficient close to 1 and an R2 around 70%, with similar results for data moments

related to expected risk (i.e., volatilities and betas). Moreover, the subjective beliefs of these

institutions predict subsequent realized returns across asset classes and over time, but they

do not predict subsequent risk or alphas in the time series. Taken together, our findings im-

ply that models with subjective beliefs should reflect a risk-return tradeoff. Additionally, in

our setting, accounting for this risk-return trade-off when modeling subjective beliefs across

asset classes is even more important than incorporating average belief distortions or belief

heterogeneity (despite the presence of both in the subjective beliefs data to some degree).
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We start by formalizing the point that the link between an asset’s objective risks and

its subsequent realized returns is only informative about the risk-return tradeoff perceived

by investors if investors have rational beliefs on average. In particular, we show that if

investors are optimistic (i.e., overweight probabilities of good outcomes), then empirical tests

based on realized returns may “reject” a valid asset pricing model. In contrast, if investors

are pessimistic (i.e., overweight probabilities of bad outcomes), then empirical tests based

on realized returns may “accept” an invalid asset pricing model. So, to generally test the

validity of a hypothesized subjective risk-return tradeoff, one needs to use data on the beliefs

of investors.

In turn, we describe our data on the CMAs of asset managers and institutional investor

consultants, which cover cash as well as the 19 asset classes listed in the legend of Figure 1(a).

For each institution-year observation, our CMAs data provide expected returns as well as

expected volatilities and expected return correlations across asset classes. We use these data

to create the excess of cash counterpart for each of these belief quantities. We then construct

subjective expected excess returns (µj,n,t) and subjective CAPM market betas (β
(m)
j,n,t) for

each institution (j), asset class (n), and year (t). We use two market proxies for the betas,

one based on the US equity large cap asset class (referring to the underlying model as the

“Equity CAPM”) and another based on the aggregate portfolio of US pension funds (referring

to the underlying model as the “Pension CAPM”). Combining these market betas with the

subjective expected return on the respective market proxy (µ
(m)
j,t ) allows us to calculate

subjective risk premia, rp
(m)
j,n,t = β

(m)
j,n,t · µ

(m)
j,t , and subjective alphas, α

(m)
j,n,t = µj,n,t − rp

(m)
j,n,t.

We then study the subjective risk-return tradeoff and decompose µj,n,t variation into

variation in rp
(m)
j,n,t and α

(m)
j,n,t. Regardless of the market proxy we use, we find that deviations

of µ
(m)
j,t from the market risk premia (estimated from regressions of µs on βs) are economically

small. We also find that the average subjective alpha of each asset class is economically small.

Moreover, we show that most of the variability in µj,n,t comes from variation in rp
(m)
j,n,t and

not α
(m)
j,n,t. Specifically, we find that more than 75% (90%) of the variability in µj,n,t is driven

by rp
(m)
j,n,t in the Equity CAPM (Pension CAPM), with less than 25% (10%) driven by α

(m)
j,n,t.
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While alphas play a relatively small role in explaining the overall variation in expected

returns, they play a large role in explaining disagreement across institutions. Specifically,

when we focus on µj,n,t variation across institutions (e.g., by adding fixed effects for n and

t), then alphas explain around 50% (40%) of the variability in subjective expected returns in

the Equity CAPM (Pension CAPM). As such, our results indicate that there is considerable

disagreement across institutions about alphas within asset classes, but this disagreement is

small relative to the difference in risk compensation they expect across asset classes.

The prior paragraph highlights the fact that belief heterogeneity across institutions (i.e.,

disagreement) and belief heterogeneity across asset classes (i.e., cross-asset risk-return trade-

off) play distinct roles in shaping overall beliefs. To further explore the different sources

of belief heterogeneity, we decompose within year variability in expected returns through

institution fixed effects and asset class fixed effects. We show that asset class fixed effects

explain more than 80% of the within year variability in subjective expected returns in the

typical year. This result is striking and explains why expected return variation is largely

driven by subjective risk premia and not subjective alphas. Specifically, while alphas are im-

portant in explaining expected return variation across institutions within a given asset class,

the variation in expected returns across institutions, though non-trivial, is overwhelmed by

the large variation in expected returns across asset classes. We show that a similar result

holds when we model belief heterogeneity across institutions in a different way that allows

for institutions to have different forms of heterogeneity for different asset classes.

Having established a positive and strong subjective risk-return tradeoff, we turn to explor-

ing average belief distortions. We find that belief distortions only play a relatively modest

role in our setting. For example, average subjective expected returns, volatilities, and betas

all line up well with their respective realized return counterparts. Specifically, regressions

across asset classes of expected return moments on their realized return counterparts yield

slope coefficients that are close to 1 and have high R2s. In contrast, there is effectively no

connection between subjective alphas and subsequent realized alphas across asset classes.

The link between subjective beliefs and realized return moments is not only present across
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asset classes on average, but also when we compare subjective beliefs with next-year realized

return moments. For instance, a pooled panel regression of annual realized returns on the sub-

jective expected returns formed at the end of the prior year (aggregated across institutions)

has an intercept close to zero and a slope coefficient close to one (both economically and

statistically), with a predictive R2 above 7%. Remarkably, out-of-sample R2 values (R2
OOS)

that contrast subjective expected returns with historical average returns are even higher. In

particular, R2
OOS = 12.6% if we focus on predictability across assets and R2

OOS = 12.9% if

we focus on predictability over time. Similar results (with stronger R2 values) are observed

in analogous pooled panel regressions of 1-year realized risk measures on subjective expected

risk. One stark difference, however, is that subjective expected risk does not predict subse-

quent realized risk in the time series. Alphas provide another source for belief distortions

since subjective alphas do not predict subsequent realized alphas across asset classes or over

time. In summary, subjective beliefs largely predict subsequent realized return moments, but

we also identify a few mismatches that lead to belief distortions. As such, there is scope to

further improve the belief formation process of these institutions.

Contribution to the Literature

We provide four contributions to the subjective beliefs literature in asset pricing (summarized

by Adam and Nagel (2023)).1 First, we investigate the connection between subjective risk

and return expectations across asset classes instead of studying the cyclical properties of

subjective expected returns as it is common in this literature. Second, we explore beliefs

1Some papers in this literature are Froot (1989), Bondt (1993), Vissing-Jørgensen (2003), Bacchetta,
Mertens, and Wincoop (2009), Brav, Lehavy, and Michaely (2005), Bacchetta, Mertens, and Wincoop (2009),
Malmendier and Nagel (2011, 2016), Chen, Da, and Zhao (2013), Amromin and Sharpe (2014), Greenwood
and Shleifer (2014), Piazzesi, Salomao, and Schneider (2015), Adam, Marcet, and Bautel (2017), Cassella
and Gulen (2018), Cieslak (2018), Wu (2018), Bordalo et al. (2019), Adam, Matveev, and Nagel (2021),
De La O and Myers (2021), Giglio et al. (2021) Malmendier, Nagel, and Yan (2021), Nagel and Xu (2021,
2022), Wang (2021), Andonov and Rauh (2022), Bastianello (2022), Beutel and Weber (2022), Bordalo et al.
(2022), Cassella et al. (2022), Chaudhry (2022), Dahlquist and Ibert (2023), De La O, Han, and Myers
(2022), Gandhi, Gormsen, and Lazarus (2022), Gormsen and Huber (2022, 2023), Jensen (2022), Jo, Lin,
and You (2022), Li (2022), Lochstoer and Muir (2022), Loudis (2022), Atmaz et al. (2023), Boons, Ottonello,
and Valkanov (2023), Dahlquist, Ibert, and Wilke (2023), Gnan and Schleritzko (2023), Egan, MacKay, and
Yang (2023), Laudenbach et al. (2023), and Begenau, Liang, and Siriwardane (2023).
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for many asset classes instead of focusing on a single asset class as most of the literature

does (Bacchetta, Mertens, and Wincoop (2009), Andonov and Rauh (2022), Jo, Lin, and

You (2022), and Nagel and Xu (2022) are notable exceptions). Third, we study the beliefs of

institutional investors and their consultants instead of the beliefs of households, individual

investors, professional forecasters, and sell-side financial analysts as most of the literature

does (Andonov and Rauh (2022) and Dahlquist and Ibert (2023) are notable exceptions).

And fourth, we demonstrate that subjective beliefs and realized returns have a tight link

across asset classes and over time, in stark contrast to prior findings based on other agents.

The closest paper to ours is Dahlquist and Ibert (2023). They explore the CMAs of

asset managers (with a brief analysis of consultants in their appendix) and find that their

subjective equity premia are countercyclical, with the degree of countercyclicality roughly

matching that of the objective equity premium. They also study the pass through of the

subjective equity premia to portfolio allocations, finding a degree of pass through that is

stronger for institutions than it is for individual investors (but weaker than in frictionless

one-period models with rational expectations).

We add to Dahlquist and Ibert (2023) in four important ways. First, we study 19 risky

asset classes simultaneously instead of exploring only equities. Second, we focus on the link

between subjective risk and return expectations across asset classes, which they do not study.

Third, we show that subjective risk and return expectations vary much more across asset

classes than across institutions, an entirely novel result relative to the prior literature. And

fourth, we provide a comprehensive analysis of the link between subjective risk and return

expectations with their respective realized return moments.

It is also important to point out that we expand the Dahlquist and Ibert (2023) sample

in the time-series dimension. Specifically, while the sample from Dahlquist and Ibert (2023)

is sparse before 2010, we have reasonable coverage in the 2000s and even some (modest)

coverage in the late 1990s (plus one consultant from 1987 to 1996). We accomplish this time

series coverage through a data collection process that relies heavily on direct interactions with

the institutions themselves (with online searches and direct contacts with pension funds used
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as complementary methods). Using our longer time series, we affirm and extend one of the

main findings in Dahlquist and Ibert (2023), namely that the subjective equity premium is

countercyclical (i.e., it moves together with the S&P 500 earnings yield).

Finally, a relatively small subset of the subjective beliefs literature explores the connection

between risk and subjective expected returns. We can broadly categorize these papers into

three groups. The first group relies on subjective risk and return measures from surveys of

households or individual investors and finds a negative relation between expected returns

and subjective risk (e.g., Amromin and Sharpe (2014), Giglio et al. (2021), Jo, Lin, and You

(2022), and Gnan and Schleritzko (2023)).2 The second group links the subjective expected

returns of financial professionals (e.g., financial analysts and CFOs) to subjective or objective

measures of risk (e.g., betas from factor models) in the cross-section of stocks and finds a

strong link between expected returns and subjective or objective risk (e.g., Brav, Lehavy,

and Michaely (2005), Wu (2018), Bastianello (2022), Jensen (2022), and Gormsen and Huber

(2023)). The third group identifies a positive time-series link between subjective expected

returns and measures of objective and subjective volatility from individual investors and

financial analysts (Wu (2018), Bastianello (2022), and Nagel and Xu (2022)).

We add to these papers by studying the subjective risk-return tradeoff across asset classes

under the subjective measure of asset managers and institutional investor consultants (who

have a strong potential to affect asset prices given their direct or indirect influence on large

portfolio holdings). The fact that we observe subjective betas with respect to particular risk

factors and simultaneously observe the factors’ subjective expected returns also allows us

to decompose the subjective expected return variation across asset classes into the effect of

subjective risk premia and alphas, which is entirely new in the literature.

We next provide theoretical motivation to guide our empirical analysis of subjective beliefs.

2Interestingly, Gnan and Schleritzko (2023) find a positive correlation between subjective volatility and
expected returns for the aggregate market after controlling for whether the individual investor perceives the
overall market as overvalued/undervalued. This result suggests that individual investors require a positive
risk compensation despite perceiving a negative risk-return tradeoff in equilibrium.
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1 Theoretical Motivation

In this section, we suppress the time index, t, to simplify exposition. However, our analysis

in this section can be thought of as reflecting time t beliefs about time t + h outcomes for

an arbitrary h.

Suppose the Stochastic Discount Factor (SDF) for a set of j = 1, 2, ..., J investors is given

by M . If these investors have access to n = 1, 2, , ..., N assets (or asset classes) over time,

then we have

1 = Ej[M ·Rn] ⇒ Ej[rn] = βj,n · λj (1)

where rn = Rn −Rf , βj,n =
Covj [−M,rn]

Varj [M ]
, and λj =

Varj [M ]

Ej [M ]
> 0.

Equation 1 shows that investor j perceives a positive risk-return tradeoff. That is, investor

j believes that assets that negatively comove withM deliver high expected returns. In typical

models, M reflects marginal utility so that risky assets are the ones that investors think will

perform poorly in states of nature where they have high marginal utility.

It is important to note that Ej[·] represents investor j subjective expectation operator,

which can differ from the objective expectation operator, Eo[·]. As such, assets that investor

j perceives to have high beta may not actually have high beta. Similarly, assets that investor

j perceives to have high expected return may not actually have high expected return. Taken

in isolation, the only theoretical restriction Equation 1 provides is that subjective expected

returns are positively linked to subjective expected risk (i.e., subjective betas).

From Equation 1, we can recover the objective risk-return tradeoff. To start, let πj,s reflect

investor j subjective probability that state of nature s will materialize next period. Then,

aggregating Equation 1 across investors yields

1 =
1

J
·

J∑

j=1

Ej[M ·Rn] =
1

J
·

J∑

j=1

S∑

s=1

πj,s ·Ms ·Rn,s =
S∑

s=1

(Ms ·Rn,s ·
1

J
·

J∑

j=1

πj,s

︸ ︷︷ ︸
πs

) (2)
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which can be written as

1 =
S∑

s=1

πs ·Ms ·Rn,s =
S∑

s=1

πo,s · Πs ·Ms ·Rn,s = Eo[Π ·M ·Rn] (3)

where Πs = πs/πo,s reflects the average probability distortion for state of nature n (i.e.,

“investor sentiment”). As such, the distorted SDF, Π · M , captures the risk-return tradeoff

in the realized return data (i.e., under the objective measure):

1 = Eo[Π ·M ·Rn] ⇒ Eo[rn] = βo,n · λo, (4)

where βo,n = Covo[−Π·M,rn]
Varo[Π·M ]

, and λo =
Varo[Π·M ]
Eo[Π·M ]

> 0

Since we rarely observe the beliefs of investors, we typically assume investors have ratio-

nal/objective beliefs on average (i.e., Πs = 1). As such, we often test an SDF model (M̂)

using the moment condition Eo[M̂ ·Rn] = 1. Such a test can lead to two important mistakes:

1. We may “reject” a valid SDF. Suppose M̂ = M so that our SDF model is valid. If Π

comoves positively with 1/M , then the risk-return tradeoff based on M̂ will look weaker

than investors perceive it to be. For instance (at the extreme), if Π ∝ 1/M then there

is no risk-return tradeoff under the objective measure even though investors perceive

a positive risk-return tradeoff. We will conclude that exposure to M̂ is not priced by

investors even though it is. This extreme scenario could arise if beliefs are distorted

optimistically, for instance. Specifically, Πs = πs/πo,s ∝ 1/Ms implies investors assign

relatively high probabilities to states of nature with low M (good states with low

marginal utility) and relatively low probabilities to states of nature with high M (bad

states with high marginal utility). Coro(Π, 1/M) > 0 leads to a similar qualitative

result.

2. We may “accept” an invalid SDF. Suppose M̂ ̸= M so that our SDF model is invalid.

If Π comoves positively with M̂/M , then the risk-return tradeoff based on M̂ will look

more positive than investors perceive it to be. For instance (at the extreme), if M = 1

and Π ∝ M̂ then there is a positive risk-return tradeoff under the objective measure

even though investors perceive no risk-return tradeoff. We will conclude that exposure
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to M̂ is priced by investors even though it is not. Such an extreme scenario could

arise if investors are risk-neutral but beliefs are distorted optimistically. Specifically,

Πs = πs/πo,s = M̂s implies investors assign relatively high probabilities to states of

nature with high M̂ (states with high model-based marginal utility) and relatively low

probabilities to states of nature with low M̂ (states with low model-based marginal

utility). Coro(Π, M̂/M) > 0 leads to a similar qualitative result.

This analysis illustrates why it is important to understand the subjective risk-return tradeoff

when there is concern whether it may deviate from the objective risk-return tradeoff to

avoid incorrectly accepting or rejecting a particular model for the SDF. The rest of this

paper quantifies the strength of the risk-return tradeoff based on the subjective beliefs of

institutional investors about different asset classes. We focus on the Capital Asset Pricing

Model (CAPM), so that periods of low market returns proxy for high marginal utility states

(i.e., M̂ = a − b · Rm). Section 2 details our subjective beliefs data. Section 3 provides all

results for the CAPM test under the subjective beliefs of institutional investors (i.e., we

test Ej[M̂ ·Rn] = 1). Section 4 contrasts the subjective beliefs of institutional investors with

realized returns (which reflect objective beliefs), thereby providing an initial (but not formal)

analysis to determine whether Π can play an important role in the pricing of asset classes

under the objective measure (i.e., in Eo[Π ·M ·Rn] = 1).

2 The Subjective Beliefs Data

This section briefly describes our beliefs data. Subsection 2.1 introduces the concept of Cap-

ital Market Assumptions (CMAs), Subsection 2.2 describes our dataset of CMAs, and Sub-

section 2.3 provides a preliminary analysis to validate the data.

2.1 Capital Market Assumptions (CMAs)

Envestnet PMC states in their 2023 CMA Methodology report that

“Capital markets assumptions are the expected returns, standard deviations, and correla-

10



tion estimates that represent the long-term risk/return forecasts for various asset classes. We

use these values to score portfolio risk, assist advisors in portfolio construction, construct our

own asset allocation models and create Monte Carlo simulation inputs for portfolio wealth

forecasts.”

Relatedly, JP Morgan states in their 2022 CMA report that

“We formulate our Long-Term Capital Market Assumptions (LTCMAs) as part of a deeply

researched proprietary process that draws on quantitative and qualitative inputs as well as

insights from experts across J.P. Morgan Asset Management. Our own multi-asset investment

approach relies heavily on our LTCMAs: The assumptions form a critical foundation of our

framework for designing, building and analyzing solutions aligned with our clients’ specific

investment needs.”

As is clear from these statements, CMAs are important components of the underlying

business for several large financial institutions. In fact, these institutions often have a team

of highly trained financial experts dedicated to creating their CMAs, which reflect their long-

term views on many asset classes (in our dataset, these long-term views have horizons ranging

from 4 to 30 years, with 10 years being the most common horizon). In the case of institutional

investor consultants, the CMAs are mainly used to advise their clients on portfolio allocation

decisions. For instance, pension funds have portfolio allocation reports that rely heavily on

the CMAs of their consultants, a feature we explore in our data collection process. In the

case of asset managers (who often also have clients on their wealth management division),

the CMAs are used both to advise clients and to guide the overall portfolio allocation of the

different funds within the institution.

In contrast to the typical surveys about expected returns used in the literature, CMAs are

not responses to questions designed by a third party research team. Instead, CMAs are fully

developed documents produced organically by institutions. Moreover, CMAs tend to rely

heavily on quantitative financial research, often containing citations to academic papers. As

a consequence, it is plausible that CMAs reflect more sophisticated beliefs than the typical

beliefs derived from surveys of individual investors or financial professionals. We provide
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evidence that largely supports this view.

2.2 Our Dataset of CMAs

Our dataset is based on beliefs extracted from the CMAs of asset managers (hereafter “man-

agers”) and institutional investor consultants (hereafter “consultants”), with all data collec-

tion details provided in Internet Appendix A. In this subsection, we provide only a brief

overview of the dataset.

Our ultimate goal is to better understand the beliefs of institutional investors. As such,

the inclusion of asset managers is important. We also include consultants as we argue that

their views provide an indirect way to learn about the beliefs of institutional investors. This

argument is valid if (i) the beliefs of institutional investors and consultants are simultaneously

based on common signals and/or (ii) the beliefs of consultants have a causal impact on the

beliefs of institutional investors. While we do not attempt to explore these two channels in

our paper, Internet Appendix B shows that our main results are similar when we use only

managers or only consultants in our baseline analysis.3

We collect the long-term CMAs of 34 institutions in total: 18 managers and 16 consul-

tants.4 The bulk of the data (82% of the institution-year observations) comes directly from

the CMAs of the institutions we cover through direct data requests and/or online searches for

CMAs. However, we supplement the direct CMAs of these institutions with indirect data ob-

tained from pension funds through their internal reports.5 In Internet Appendix B, we show

3Andonov et al. (2023) show that the beliefs and portfolio allocations of pension funds are connected to
the CMAs of their consultants. As anecdotal evidence for this connection, consider the following quote from
the Wall Street Journal article (from May 5, 2023) titled Pension Funds Consider Unloading Stocks, Adding
Credit : “Board members of the $307 billion California State Teachers’ Retirement System voted Thursday to
reduce the fund’s stockholdings to 38% from 42%, a shift staff and consultants said would lower the fund’s
risk level without bringing down returns.”

4Many institutions have large consulting businesses while also managing assets directly or on behalf
of their clients. We classify these institutions as consultants or managers based on our judgment of their
primary business model. Note that this classification does not affect our main results (since we report results
for consultants and managers combined). The classification is only relevant to provide the reader a broad
understanding of the institutions in our sample and for robustness checks in which we replicate our findings
using only consultants or only managers.

5It is common practice for institutional investors like pension funds to list the long-term CMAs of their
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that our results are similar whether we rely only on the direct CMAs of these institutions or

only on the indirect CMAs we obtain from pension funds, alleviating potential concerns with

either data collection approach (e.g., the worry that institutions send us historical projections

that rely on their current models/methods).

To comply with the data sharing agreements of these institutions, our analysis does not

link specific results to individual managers or consultants. However, Table 1 shows the list

of managers and consultants that enter our sample at any time.6 Our sample covers many of

the major asset managers and institutional investor consultants. For instance, our managers

have total Assets Under Management (AUM) above $23.6 Trillion at the end of 2021, which

is equivalent to more than 26.6% of the total AUM of all the top 50 asset managers in the

world (by AUM). Similarly, in a typical year from 2001 to 2021, our consultants include the

primary consultant of more than 50% of the US public pension funds, covering more than

65% of the total AUM of US public pension funds.7

The first five rows in Panel A of Table 2 provide the number of institutions in our sample

by year as well as the split between managers and consultants.8 To conserve space, we only

show years 1987, 1996, 1997, and 1998 to 2022 in steps of two years. From 1987 to 1996, our

dataset covers a single institution. However, in 1997 two new institutions enter the dataset,

consultants in their capital allocation report and/or in their CMA report.
6The name of Asset Manager #18 (as well as its respective AUM information) will be provided in Table

1 after approval.
7The underlying data of primary consultants for US public pension funds come from Center for Retire-

ment Research at Boston College. Four of our consultants are included in the “All Others” category in this
dataset, which means we cannot identify how many pension funds have them as primary consultants in a
typical year. As such, the total coverage of US pension funds and their AUM provided in Table 1 is a lower
bound on the true coverage of the consultants included in our dataset.

8Years are defined based on the approximate timing of the institution’s information set. For instance, if
a CMA contains E2000[R2001→2010], then our year variable is 2000.
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which then grows over time.9,10

Each institution-year CMA covers a range of asset classes. Our final sample contains

a risk-free asset class proxy (US Cash) as well as 19 risky asset classes.11 To decide on

these 19 risky asset classes, we consider three aspects. First, whether the asset class is a

major asset class for institutional investors. Second, whether the asset class is covered by

a reasonable number of institutions in our sample. And third, whether the asset class is

reasonably covered by the institutions over the time period it is in the sample. We include

all asset classes that perform well along these dimensions. Because the asset class names and

corresponding indexes can differ both across institutions and over time, we use our judgment

when mapping asset classes within and across institutions to the asset classes included in

our final sample. Internet Appendix A provides further details.

The last two rows in Panel A of Table 2 show the number of unique asset classes covered

in our sample as well as the average number of asset classes per institution. Our sample

covers 4 asset classes in 1987 and this number grows steadily, reaching 20 asset classes by

2011 (US Cash plus our 19 risky asset classes) and remaining at this level until the end of

the sample. There is some variation in the coverage of asset classes across institutions and

9Note that the maximum number of institutions in any given year is 24 even though we have 34 unique
institutions in our dataset. The reason is that the data for some institutions come from CMAs we obtain
online or from pension fund reports, nether of which ensures continuous coverage of a given institution over
time. For all data sent to us directly by the underlying institutions, our coverage is continuous (i.e., annual).
In fact, the second row of Table 2 Panel A is monotonically increasing over time because it is mostly based
on data sent to us directly by the underlying institutions (with direct CMAs obtained online providing a
complementary data source). See Internet Appendix A for further details on the data collection process.

10In all subsequent tables that describe results by year, we display only years starting in 1998. The reason
is that for t ≥ 1998 we always have at least 4 institutions in any given year, and thus one cannot recover
results from a single institution from the annual results reported. Whenever reporting time series averages
of these annual values, we include all years starting in 1987 (unless otherwise noted) and we weight each
year by the number of observations in that year (typically, the number of institutions in that year). Note
that aggregate time-series plots (such as the one in Figure 2) are based on beliefs that are aggregated in a
way that also prevents the reader from recover results from any single institution (see Subsection 4.1 for the
aggregation method we use).

11We use the terminology “risk-free” just to be consistent with the literature. Our proxy for the risk-free
asset (US Cash) is not truly free of risk for the horizons underlying the CMAs we study. This aspect does
not undermine our empirical analysis since US Cash merely serves as a baseline asset to allow us to measure
expected excess returns.
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over time, but since 2005 the average institution covers at least 11 asset classes (US Cash

plus 10 risky asset classes).

Panel B of Table 2 shows the name of each asset class we cover and the number of

institutions that cover it each year. US Cash is always covered by all institutions so that we

have full availability of our risk-free asset class. We also have four broad risky asset classes:

Debt, Equity, Real Estate, and Alternatives. For Debt, we have eight asset classes covering

different parts of the debt market, with US Bonds, Global Bonds (Ex US), and Private Debt

being three broad ones and US TIPS, US Govt Bonds, US Muni Bonds, US Inv Grade Corp

Bonds, and US High Yield Corp Bonds being more specialized ones. For Equities, we have

five asset classes, with US Equities (Large Cap) and US Equities (Small Cap) covering the

US public market, Global Equities (Dev, Ex US) and Global Equities (Emerging) covering

the international public market, and Private Equity covering the private market. For Real

Estate, we have two asset classes, with REITs covering the public market and Private Real

Estate covering the private market. Finally, we have Hedge Funds, Commodities, Venture

Capital, and Infrastructure as the four asset classes under our broad Alternatives asset class.

Some of our risky asset classes are covered by all institutions present in any given year

(e.g., US Equities (Large Cap)). However, other asset classes (e.g., Hedge Funds) have little

coverage in the early years and good coverage starting in the mid 2000s.

Table 3 shows the average values for the belief quantities we observe at the end of 2022

pooled across institutions. We observe the same information for each institution-year obser-

vation, but for a subset of these 20 asset classes. As Panel A shows, we observe expected

returns, expected volatilities, and expected correlations (which allow us to obtain the sub-

jective covariance matrix of returns).

Our analysis is based on excess returns, so we explore returns on our 19 risky asset classes

(indexed by n) in excess of our risk-free asset class (indexed by f). Panel B shows the implied

belief quantities for these excess returns (rn = Rn −Rf ). Specifically, letting Ej,t[R] and ΣR
j,t

represent the subjective expected return vector and covariance matrix for institution j at

time t (with US Cash as the first asset class), Panel B reports the 2022 average values for
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the expected excess returns (µj,n,t ≡ Ej,t[rn] = Ej,t[Rn] − Ej,t[Rf ]) and covariance matrices

of excess returns (Σj,t = ΩΣR
j,tΩ

′

, where Ω = [−1, I], with 1 representing a column vector

of ones and I an identity matrix). Our analysis is based on these µj,n,t and Σj,t values.12

For brevity, in the rest of the text we refer to µj,n,t as the expected return on asset class n

(instead of expected excess return on asset class n).

Before detailing our main empirical results, it is important to point out that our analysis

in the main text is based on institutions’ expected arithmetic (excess) returns and without

any homogeneity restriction on the horizon of beliefs (i.e., different institutions report beliefs

for different horizons in the baseline analysis). In Internet Appendix B, we show that our

conclusions are very similar if we (i) use expected geometric returns to measure E[R], or

(ii) focus only on institution-year observations with a horizon of 10 years, which is the most

common horizon in our dataset (capturing around 41% of the institution-year observations).

2.3 A Validation Check of our Data

As a preliminary analysis of our data, Figure 2 plots the subjective equity premium aggre-

gated across all institutions each year (based on US Equities (Large Cap)) together with

the S&P 500 earnings yield (i.e., the log of the inverted CAPE ratio from Shiller), which

Dahlquist and Ibert (2023) use to identify the equity premium cyclicality in their data.13

As it is clear from the figure, the subjective equity premium is highly countercyclical. More

specifically, its correlation with the S&P 500 earnings yield is around 0.60 despite the fact

that this correlation is biased towards zero because we do not know the exact dates of the

CMA information sets for many institution-year observations (so, we align the two times

series at the end of December of each year). This result serves as a validation check since it

12Note that the reported average Et[rn] is not exactly equal to the average reported Et[Rn] minus the
average reported Et[Rf ]. The reason is that the excess returns are calculated at the institution-year level,
and the data coverage for US Cash (our Rf ) can differ from the data coverage of the given risky asset class,
with the mismatch varying across institutions.

13Our aggregate subjective equity premium accounts for differences in sample composition over the years.
The aggregation methodology details are provided in the header of Figure 2, with more details and discussion
in Subsection 4.1.
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confirms one of the main results in Dahlquist and Ibert (2023), who study expected returns

from CMAs. Figure 2 also extends the findings in Dahlquist and Ibert (2023) to a longer

time series, which helps to properly identity the cyclicality of the subjective equity premium

(note that the sample in Dahlquist and Ibert (2023) is sparse before 2010).

3 The Subjective Risk-Return Tradeoff

In this section, we explore the link between subjective risk and return expectations. Subsec-

tion 3.1 shows that (i) the subjective market risk premia are consistent with the subjective

expected returns on the respective market portfolios and (ii) the overall variation in subjec-

tive expected returns is mostly driven by variation in subjective risk premia (compensation

for beta), with subjective alphas having only a secondary role. Subsection 3.2 demonstrates

that most of the variation in subjective expected returns and betas originates from variation

across asset classes with variation across institutions (disagreement) playing only a secondary

role (albeit, a non-trivial role).

3.1 Subjective Expected Returns: Risk Premia vs Alphas

To start, we need a model to determine the risk premium of each asset class under the

subjective measure of each institution. For this purpose, we focus on the Capital Asset

Pricing Model (CAPM) of Sharpe (1964) and Lintner (1965):

µj,n,t = λ
(0)
j,t + β

(m)
j,n,t · λ

(m)
j,t + a

(m)
j,n,t (5)

with model implications λ
(0)
j,t = 0, λ

(m)
j,t = µ

(m)
j,t , and a

(m)
j,n,t = 0. Note that the superscript (m)

refers to the market portfolio and takes two different values below (m = e, p) to reflect two

alternative proxies for the market portfolio.

Given a proxy for the market portfolio weights (wm,t), we can calculate β
(m)
j,n,t =

Covj,t[rn, rm]/Varj,t[rm] = 1
′

nΣj,twm,t/w
′

m,tΣj,twm,t. However, as pointed out by Roll (1977),

it is infeasible to obtain a perfect proxy for the market portfolio weights. With this issue in

mind, we consider two alternative empirical versions of the CAPM (i.e., two alternative mar-
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ket proxies). The first is the Equity CAPM (m = e), with the market portfolio based on US

Equities (Large Cap). The second is the Pension CAPM (m = p), with the market portfolio

based on the aggregate allocations of US Public Pension Funds.14 The main advantages of

the Equity CAPM are that (i) its market proxy is common in much of the literature that

tests the CAPM using realized returns and (ii) we observe beliefs for US Equities (Large Cap)

for all our institution-year observations. The downside of the Equity CAPM is that it relies

on a market proxy that may not reflect the wealth portfolio of institutional investors. Our

Pension CAPM addresses this issue as it considers a much broader market portfolio, with

weights on several asset classes.15 The downside of this approach is that some institution-

year observations do not have beliefs for some of the asset classes included in the aggregate

portfolio of pension funds. In these cases, we adjust the market portfolio weights so that they

continue to sum to one (effectively allocating the weights for the missing asset class to the

other asset classes in the portfolio).

We obtain λ
(m)
j,t by projecting µj,n,t onto β

(m)
j,n,t in the cross-section of asset classes for

each institution-year observation. Figure 3 (Panels (a) to (d)) and Table 4 are designed to

explore the λ
(m)
j,t = µ

(m)
j,t implication (i.e., to test whether institutional investors require a risk

premium on β that is quantitatively consistent with their subjective expected return on the

underlying market factor). In particular, Figure 3 reports the distributions (across institution-

year observations) of λ
(m)
j,t and µ

(m)
j,t displayed in different ways while Table 4 reports the

distribution of λ
(m)
j,t − µ

(m)
j,t with their respective t-statistics (based on λ

(m)
j,t sampling error)

14An alternative interpretation for our Pension CAPM is that it reflects an asset pricing model based on
the wealth portfolio of asset managers. If asset managers rely on a mean-variance framework, then we have
an SDF that is linear in the wealth portfolio of asset managers even if there is no SDF that is linear in the
market portfolio (which combines the wealth portfolio of asset managers with the wealth portfolio of other
investors).

15Internet Appendix Figure IA.1 shows the market portfolios weights for our Pension CAPM from 2001
to 2021 (we use 2001 weights for earlier years and 2021 weights from later years). The data comes from the
Center for Retirement Research at Boston College. The average weights are 2% for Cash (matched to US
Cash), 34% for US Equities (matched to US Equities (Large Cap)), 20% for Global Equities (matched to
Global Equities (Dev, Ex US) and, if missing, US Equities (Large Cap)), 7% for Private Equity (matched
to Private Equity), 24% for US Bonds (matched to US Bonds and, if missing, US Govt Bonds), 3% for
Global Bonds (matched to Global Bonds (Ex US) and, if missing, US Bonds), 7% for Real Estate (matched
to REITs and, if missing, Private Real Estate), and 4% for Hedge Funds (matched to Hedge Funds).
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for each year.

The Equity CAPM results indicate that, for the typical institution-year observation, the

pricing of market betas is consistent with the subjective expected return on the market port-

folio (i.e., the difference between λ
(e)
j,t and µ

(e)
j,t tends to be small and statistically insignificant).

Interestingly, the largest median deviation in the post 1996 period (when we have multiple

institutions in the sample) is -0.7% and happens in the middle of the great recession (2008),

but even then the difference for the typical institution is not statistically significant once we

account for the sampling error in λ
(e)
j,t . The results are similar for the Pension CAPM in that

median deviations each year tend to be relatively small. One difference, however, is that the

median deviations tend to be negative (on average, -0.7% with tstat = −1.16). In fact, in

2008 the median deviation is statistically significant (albeit not that large economically, at

-1.3%).

Figures 3(e) and 3(f) explore the λ
(0)
j,t = 0 implication from the CAPM (that the subjective

expected return on the risk-free asset is consistent with the pricing of β). Specifically, these

figures plot the distributions (across institution-year observations) of λ
(0)
j,t for the Equity

CAPM and Pension CAPM. The overall results indicate that the restriction λ
(0)
j,t = 0 does

not hold in the subjective belief space of the institutions we study. In particular, we find

λ
(0)
j,t > 0 for almost all institution-year observations. This result is inconsistent with the

baseline CAPM holding in the belief space of our institutions. However, if the institutions

perceive constraints in their ability to borrow at the risk-free rate (proxied with US Cash

in our analysis), then the results remain consistent with the Black (1972) CAPM, which

considers investors who cannot borrow at the risk-free rate, implying λ
(0)
j,t > 0 (the λ

(0)
j,t > 0

result is also consistent with the concept of convenience yield discussed in the banking and

macro literatures). As such, we interpret this evidence as suggesting that institutions have

beliefs that are largely internally consistent with the pricing of risk implied by the CAPM.

While the above results explore whether subjective expected returns are consistent with

the pricing of systematic risk, these results do not tell us the sizes of the CAPM pricing

errors in Equation 5. To explore this aspect, we note that Equation 5 can alternatively be
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written as (imposing λ
(0)
j,t = 0 and λ

(m)
j,t = µ

(m)
j,t )

µj,n,t = α
(m)
j,n,t + β

(m)
j,n,t · µ

(m)
j,t = α

(m)
j,n,t + rp

(m)
j,n,t (6)

where rp
(m)
j,n,t = β

(m)
j,n,t · µ

(m)
j,t with the CAPM implying α

(m)
j,n,t = 0.

Figures 4(a) and 4(b) show the alphas for each asset class from Equation 6 averaged over

time and across institutions (with each αj,n,t calculated directly from Equation 6 since we

observe all other quantities in this equation). The striking result is that even though there

is large variation in subjective expected returns across asset classes, there is little variation

in alphas and such variation has little relation to the variation in expected returns. These

results suggest that differences in subjective expected returns across asset classes are largely

driven by differences in subjective risk premia, not subjective alphas. As such, the CAPM

reasonably describes subjective expected return variation across asset classes.

Figures 4(a) and 4(b) also show that average alphas do not center around zero. That is,

there is a tendency for positive alphas irrespective of the underlying asset class. This result

is a direct consequence of the λ
(0)
j,t > 0 finding. To demonstrate this, Figures 4(c) and 4(d)

show the average unrestricted pricing errors (a) from Equation 5 (which allow for λ
(0)
j,t > 0).

In this case, pricing errors do center around zero and it remains the case that variation in

subjective expected returns across asset classes is largely explained by variation in subjective

risk premia.

While Figure 4 displays asset class pricing errors after averaging over time and across

institutions, Figure 5 explores all alpha values (i.e., with no averaging). Specifically, Figures

5(a) and 5(b) plot µj,n,t against rp
(m)
j,n,t = β

(m)
j,n,t · µ

(m)
j,t whereas Figures 5(c) and 5(d) plot µj,n,t

against α
(m)
j,n,t. The results are striking as they suggest that µj,n,t varies much more with rp

(m)
j,n,t

than with α
(m)
j,n,t in both versions of the CAPM.

To explore a more formal decomposition of expected return variation, we take variance
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on both sides of Equation 6 to get:

Var [µj,n,t] = Cov [µj,n,t , αj,n,t] + Cov [µj,n,t , rpj,n,t]

⇓

1 =
Cov [µj,n,t , αj,n,t]

Var [µj,n,t]︸ ︷︷ ︸
% of µ Variation from Mispricing

+
Cov [µj,n,t , rpj,n,t]

Var [µj,n,t]︸ ︷︷ ︸
% of µ Variation from Risk Premia

(7)

Table 5 provides results associated with the decomposition in Equation 7, where the first

term is obtained from a projection of αj,n,t onto µj,n,t and the second term is obtained from

a projection of rp
(m)
j,n,t = β

(m)
j,n,t · µ

(m)
j,t onto µj,n,t. Different specifications add different fixed

effects to the projections. In column [1], we find that around 75% (90%) of the variability in

µ comes from variation in risk premia under the Equity CAPM (Pension CAPM). Columns

[2] and [3] show that adding year or institution fixed effects has basically no effect on these

results. However, Column [4] shows that adding asset class fixed effects largely changes

the result, with variation in alphas becoming non-trivial as it explains almost 50% (40%)

of the variability in µ in the Equity CAPM (Pension CAPM). This result indicates that

it is informative to explore different sources of variation in the data. Columns [5] and [6]

focus on variation across asset classes only and effectively reproduce the baseline result

that around 75% (90%) of the variability in µ comes from variation in risk compensation

under the CAPM (Pension CAPM). As such, when we observe two asset classes having

different subjective expected returns, we can largely conclude that it comes from the fact

that managers perceive these asset classes as requiring different risk premia. Columns [7]

and [8] focus on variation across institutions and find that in this case alphas explain around

50% (40%) of the variability in µ under the Equity CAPM (Pension CAPM). As such, when

we observe two institutions disagreeing about the expected return for the same asset class,

a substantial portion of the difference comes from the fact that these institutions perceive

different risk premia for this asset class, but a non-trivial component of the difference arises

from institutions perceiving different alphas for this asset class. Finally, Columns [9] and
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[10] focus on variation over time and also find that time-variation in alphas has a non-trivial

quantitative effect.

3.2 Belief Heterogeneity Across Asset Classes and Institutions

The prior subsection shows that variation in subjective expected returns across asset classes

is largely driven by variation in subjective risk premia whereas subjective alphas have a non-

trivial role in explaining variation in subjective expected returns across institutions for a given

asset class. As such, to fully understand the importance of alphas, we need to understand

the importance of belief heterogeneity across asset classes and across institutions, which is

the focus of this subsection.

To start, we decompose within-year variability in expected returns into variability originat-

ing from institutions and variability originating from asset classes. Specifically, we estimate

the fixed-effects model

µj,n,t = µj,t + µn,t + ηj,n,t (8)

where µj,t and µn,t are year×institution and year×asset class fixed effects and ηj,n,t are

residuals.

Figures 6(a) and 6(b) plot µj,n,t against µj,t and µn,t, respectively. Figure 6(a) shows that

there is only a weak positive relation between µj,t and µj,n,t. Moreover, for any given level

of µj,t we have a high degree of µj,n,t heterogeneity, indicating that only a small fraction

of the variability in µj,n,t is due to heterogeneity across institutions (captured by µj,t). In

contrast, Figure 6(b) shows a strong positive relation between µn,t and µj,n,t, with a more

moderate degree of µj,n,t heterogeneity at each level of µn,t. Consequently, a large fraction of

the variability in µj,n,t is due to heterogeneity across asset classes (captured by µn,t).

To precisely quantify the patterns observed in Figures 6(a) and 6(b), we take variance on
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both sides of Equation 8 to obtain the following decomposition:

1 =
Cov

(
µj,n,t , µj,t

)

Var(µj,n,t)︸ ︷︷ ︸
% of µj,n,t Variation from µj,t

+
Cov

(
µj,n,t , µn,t

)

Var(µj,n,t)︸ ︷︷ ︸
% of µj,n,t Variation from µn,t

+
Cov (µj,n,t , ηj,n,t)

Var(µj,n,t)︸ ︷︷ ︸
% of µj,n,t Variation from ηj,n,t

(9)

Figure 7(a) provides the decomposition in Equation 9 each year. The results indicate

that the vast majority of within-year expected return variability is driven by variability

across asset classes (µn,t), with only a small portion driven by variability across institutions

(µj,t). This result is striking and explains why expected return variation is largely driven by

risk premia and not alphas. Specifically, while subjective alphas are important in explaining

subjective expected return variation across institutions (for a given asset class), the variation

in subjective expected returns across institutions (driven by disagreement) is small relative

to the variation in subjective expected returns across asset classes (driven by the positive

risk-return tradeoff).

One limitation of the baseline econometric model in Equation 8 (and its respective vari-

ance decomposition in Equation 9) is that it does not allow institutions to have expected

return heterogeneity that differs across asset classes. For example, if institution j is relatively

optimistic about US Bonds at time t, then it is also relatively optimistic about all other as-

set classes at time t (i.e., µj,t is common across asset classes). To address this issue, we also

consider the alternative fixed-effects model

µj,n,t = µn,j + µn,t + ηj,n,t (10)

which leads to the variance decomposition

1 =
Cov

(
µj,n,t , µn,j

)

Var(µj,n,t)︸ ︷︷ ︸
% of µj,n,t Variation from µn,j

+
Cov

(
µj,n,t , µn,t

)

Var(µj,n,t)︸ ︷︷ ︸
% of µj,n,t Variation from µn,t

+
Cov (µj,n,t , ηj,n,t)

Var(µj,n,t)︸ ︷︷ ︸
% of µj,n,t Variation from ηj,n,t

(11)

Figures 6(c) and 6(d) show that the results from Equation 10 are similar to the results

from Equation 8. That is, µn,j has a relatively weak relation with µj,n,t whereas µn,t has a

strong relation with µj,n,t. Moreover, Figure 7(b) implements the decomposition in Equation

11. While the institution effect (through µn,j) explains more of the expected return variability
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than it does in Equation 9 (through µj,t), it remains true that the majority of the expected

return variability is driven by the asset class effect (µn,t).

We can generalize the analysis above to any other belief quantity (generically referred to as

θ). Specifically, we can decompose the within-year variability in θ into variability originating

from institutions and variability originating from asset classes through the generic fixed

effects model

θj,n,t = θj,t + θn,t + ηj,n,t (12)

which leads to the variance decomposition

1 =
Cov

(
θj,n,t , θj,t

)

Var(θj,n,t)︸ ︷︷ ︸
% of θj,n,t Variation from θj,t

+
Cov

(
θj,n,t , θn,t

)

Var(θj,n,t)︸ ︷︷ ︸
% of θj,n,t Variation from θn,t

+
Cov (θj,n,t , ηj,n,t)

Var(θj,n,t)︸ ︷︷ ︸
% of θj,n,t Variation from ηj,n,t

(13)

Figure 8 provides results for the decomposition in Equation 13 applied to βs and αs (for

the Equity CAPM and Pension CAPM). In a nutshell, the results indicate that almost all the

variability in βs is driven by variability across asset classes. In contrast, disagreement plays

a large role in explaining alpha variability, with disagreement (αj,t + ηj,n,t) being roughly as

important as variation across asset classes (αn,t) in explaining overall alpha variation.

4 Subjective Beliefs vs Realized Returns

In this section, we explore the link between subjective beliefs and realized returns. Subsection

4.1 describes how we aggregate the beliefs data across institutions and provides information

about the realized return data we rely on. Subsection 4.2 contrasts the risk-return tradeoff

implied from the subjective beliefs of our institutions with the risk-return tradeoff observed

in the realized return data. Subsection 4.3 shows that, on average, beliefs are largely consis-

tent with their realized return counterparts, but points out some exceptions. Subsection 4.4

provides an analysis of the predictability of realized return moments using subjective beliefs.
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4.1 Belief Aggregation and Return Data

To explore the link between beliefs and realized returns, we need beliefs aggregated across

institutions. We aggregate beliefs by estimating the fixed effects regression

θj,n,t = θn,j + θn,t + ηj,e,t (14)

and then obtaining the aggregate belief quantity

θn,t =

[
1

T
·

T∑

t=1

(
1

Jt

Jt∑

j=1

θj,n,t

)]
+

(
θn,t −

1

T
·

T∑

t=1

θn,t

)
(15)

where θj,n,t represents a generic belief quantity (µ, σ, µ(m), β(m)).16 In turn, we obtain ag-

gregate alphas using α
(m)
n,t = µn,t − β

(m)
n,t · µ

(m)
t .17,18

Intuitively, θn,t captures time variation in beliefs controlling for time variation in the

composition of institutions (through the θn,j fixed effects). However, the average θn,t cannot

be interpreted as the unconditional mean for the belief quantity. As such, our aggregation

takes the time demeaned θn,t and adds to it the time-series average of the cross-section

averages of θj,n,t, which is an estimate for E[θn].

Note that the time-series average of θn,t matches the time-series average of the alternative

aggregated series 1
Jt

∑Jt
j=1 θj,n,t. However, our aggregation method underlying θn,t is designed

to produce time variation that accounts for sample composition (whereas 1
Jt

∑Jt
j=1 θj,n,t is

not). The reason is that aggregating without accounting for sample composition would induce

time variation in beliefs that is purely due to variation in the set of institutions providing

the given belief quantity (i.e., it would exist even if beliefs were constant over time within

each institution).

16In the case of β
(p)
j,n,t, the asset classes in the market portfolio can vary across j (because some institutions

do not cover all asset classes present in the pension market portfolio). As such, instead of directly aggregating

β
(p)
j,n,t for each year, we aggregate the covariance for each pair of asset classes and combine aggregate variances

and covariances with the pension market portfolio weights to obtain β
(p)
n,t . However, our results are similar if

we directly aggregate β
(p)
j,n,t.

17Directly aggregating α
(m)
j,n,t yields similar α

(m)
n,t values, but we opt for using α

(m)
n,t = µn,t − β

(m)
n,t · µ

(m)
t so

that we still have the equation µn,t = α
(m)
n,t + β

(m)
n,t · µ

(m)
t , with the CAPM implying α

(m)
n,t = 0.

18Note that Figure 2 (discussed in Subsection 2.3) plots µe,t based on this aggregation method.
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Also note that our aggregation method partially accounts for the fact that institutions

have heterogeneous forecasting horizons and CMA report dates (i.e., CMAs are produced

around December of each year but not exactly at the end of December of each year).19

Forecasting horizon and reporting dates play a role when we attempt to forecast returns. We

explain how we deal with that in Subsection 4.4.

Given aggregate beliefs, we also need realized returns for each of the asset classes underly-

ing our beliefs data. Some institutions provide tradable indices as references for the different

asset classes in their CMAs while other institutions do not. Moreover, for the ones that do

provide tradable indices, two institutions may use different indices for the same asset class.

So, the matching between beliefs and return data is bounded to be imperfect. We obtain

return data for 17 out of the 20 asset classes we study (leaving out Private Equity, Private

Debt, and Venture Capital).20 Table 6 provides the details for the return data we use, in-

cluding the names of the indices, the data sources, and the sample period over which we

observe returns for each index. We obtain monthly returns for each index (quarterly returns

for Private Real Estate) and compound these returns to create time series of annual returns

on a monthly frequency (quarterly frequency for Private Real Estate).

The following subsections use these annual returns or data moments obtained from these

annual returns. In particular, the realized return versions of µn, σ2
n, β

(m)
n , and µ(m) are

simply the sample estimates of these quantities using the time-series of annual returns for

each asset class. Moreover, rp
(m)
n = β

(m)
n · µ(m) and α

(m)
n = µn − rp

(m)
n are analogous to their

belief counterparts. Hereafter, we use hats to denote data moments. For instance, µ̂n is the

19Specifically, the year-t CMA of institution j is meant to represent institution j forecast for the period
from t+1 to t+ hj (where hj is the institution forecasting horizon). Moreover, it is not produced exactly at
the end of December of year t, but rather around that date, with some institutions having reports dated as
early as September of year t and other institutions having reports dated as late as March of year t+1 (within
the sample of institution-year observations for which we observe the CMA report date). To the extent that hj

and the reporting date gap (relative to December) is fixed over time for each institution, our θn,j fixed effects
account for that. Time variation in horizons and reporting gaps are not controlled for in our aggregation
method, but should be of second-order importance (and would add noise to our belief data, deteriorating
the match between beliefs and return data, leading to the opposite of our main findings).

20We leave out Private Equity, Private Debt, and Venture Capital because of the difficulty in obtaining
quality data on the returns on these asset classes over our sample period.
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average return for asset class n.

4.2 Risk-Return Tradeoff: Subjective Beliefs vs Realized Returns

This subsection contrasts the risk-return tradeoff implied by the subjective beliefs of our

institutions with the risk-return tradeoff observed in the return data.

Figure 9 plots expected returns (µn) against risk premia (rp
(m)
n ) for our asset classes

using both beliefs and realized returns. Figures 9(a) and 9(b) are analogous to Figures 5(a)

and 5(b), except that they rely on µn and rp
(m)
n values aggregated across institutions and

over time (and thus only vary across asset classes). Not surprisingly, these figures uncover

the strong subjective risk-return tradeoff we emphasize in this paper. Figures 9(c) and 9(d)

repeat this analysis but using µ̂n and r̂p(m)
n . These figures demonstrate that the risk-return

tradeoff observed in the return data is almost as strong as the subjective risk-return tradeoff

of our institutions. It is important to point out that we expect the risk-return tradeoff

from realized returns to be weaker (i.e., the R2 values from the figures to be smaller) because

average returns provide noisy estimates for unconditional expected returns (Fama and French

(2002)).

Another way to look at the risk-return tradeoff is to check whether betas predict al-

phas across asset classes. Within each asset class, this is known as the “low-beta anomaly”

(see Frazzini and Pedersen (2014)). Figures 10(a) and 10(b) show that there is no low-beta

anomaly across asset classes in the subjective beliefs of our institutions. Figures 10(c) and

10(d) show that, in the return data, there is a small low-beta anomaly across asset classes.

This pattern indicates that beliefs are not fully consistent with realized returns. However,

the discrepancy is so small that it has little impact on the overall message that the subjective

risk-return tradeoff is consistent with the risk-return tradeoff observed in the realized return

data.
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4.3 Consistency Between Subjective Beliefs and Realized Returns

This subsection shows that, on average, beliefs are largely consistent with their realized

return counterparts. One exception, however, is that αn values are not consistent with α̂n

values obtained from subsequent returns even though they are consistent with the full sample

α̂n values (i.e., alphas that use return data starting before the belief formation).

Figure 11 plots realized return moments against averages of belief quantities. As in the

prior subsection, we use the entire return time-series for each asset class (so, returns start

at the “First Return Date” column of Table 6). The objective of Figure 11 is to understand

whether beliefs are consistent with long-run return data moments, which tend to be less noisy

estimates of unconditional moments (than short-run return data moments). Figures 11(a)

and 11(b) show that µ̂n and σ̂n are largely consistent with µn and σn. For instance, the slope

coefficient from regressing µ̂n on µn is 0.93 (close to one) and R2 = 70% (considering that µ̂n

contains substantial estimation noise, this R2 value is extremely high). The link between σ̂n

and σn is even stronger, with a slope coefficient of 1.05 and R2 = 90%. We observe similar

results for betas. However, alphas have a much weaker link. For instance, a regression of α̂(e)

on α(e) results in R2 = 34% (albeit the slope coefficient is 0.96, and thus still close to one).

While using the entire return time-series for each asset class minimizes estimation noise

in return moments (rendering R2 values more reliable), it has a key drawback. Specifically, if

institutions obtain their beliefs by simply estimating past data moments, the relation between

beliefs and data moments will reflect a “consistency with historical data”. Asymptotically,

this consistency with historical data ensures that beliefs are unconditionally rational (i.e.,

unconditional beliefs match unconditional return moments). However, in finite samples, this

consistency with historical data can induce temporary extrapolation.

To understand whether Figure 11 reflects more than this“consistency with historical data”

effect, Figure 12 considers return moments estimated using returns that are subsequent to

their respective beliefs. For instance, in Figure 12, we obtain µe as the average of µe,t from

1987 to 2021 and µ̂e as the average of re,t from 1988 to 2022 (and similarly for all other

quantities over their respective sample periods). As we can see from Figure 12(a), there is
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still a strong link between average returns and average expected returns, with a regression of

µ̂e on µe resulting in a slope coefficient of 0.85. The R2 value declines to 43%, but this result

is expected given that the µ̂n values used in Figure 12 have more estimation noise than the µ̂n

values used in Figure 11. We can clearly see this aspect from the fact that µ̂Commodities < −3%

in Figure 12, which is likely a consequence of estimation noise (i.e., it reflects unexpected

returns that did not average to zero over the relatively small sample period). In fact, just

dropping µ̂Commodities from Figure 12(a) increases the R2 to 63%. Figures 12(b) to 12(d)

further show that we continue to observe a tight link between subjective beliefs and return

moments related to risk (volatilities and betas). Interestingly, in this case the R2 values

remain at similar levels. This result is likely a consequence of the fact that variances and

covariances (underlying σ̂n and β̂n) have much less estimation noise than average returns

(see, e.g., Merton (1980)). So, we can conclude that the results in Figure 11 reflect more

than a “consistency with historical data” effect.

In stark contrast to the paragraph above, Figures 12(e) and 12(f) show that α̂n has

effectively no connection to αn. This indicates that the alpha connection in Figure 11 indeed

reflects a pure “consistency with historical data” effect. That is, institutions estimate alphas

based on past data. Since alphas do not tend to persist in the return data (if the CAPM is

correct, alphas are zero over long samples), there is no link between αn and α̂n calculate from

subsequent returns. So, in this case, αn reflects a temporary extrapolation. It is temporary

because as historical data accumulates estimated alphas converge to zero (under the CAPM),

which would induce beliefs to also converge to zero (if they indeed reflect past alphas), leading

to beliefs that are unconditionally rational.

4.4 Subjective Beliefs Predicting Realized Returns and Risk

While the prior subsection focuses on the unconditional link between beliefs and return

moments, this section explores the conditional link between beliefs and return moments. We

find that subjective expected returns predict subsequent realized returns both across asset

classes and over time. Moreover, the quantitative link between subjective expected returns
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and subsequent realized returns is consistent with rational expectations. We also find that

subjective risk predicts realized risk across asset classes but not over time, and that subjective

alphas do not predict subsequent realized alphas.

If our institutions, on average, have rational expectations, then we have Eo,t[rn,t+1] =

Et[rn,t+1] = µ
(1y)
n,t , which implies

rn,t+1 = a + b · µ
(1y)
n,t + ϵn,t+1 (16)

and

1/Tn ·

Tn∑

t=1

rn,t+1 = a + b ·

(
1/Tn ·

Tn∑

t=1

µ
(1y)
n,t

)
+ un (17)

where a = 0 and b = 1.

We do not observe µ
(1y)
n,t (the 1-year subjective expected return), but we do observe µn,t (the

subjective expected average annual return over the next H years). Note that 1/Tn ·
∑Tn

t=1 µ
(1y)
n,t

and 1/Tn ·
∑Tn

t=1 µn,t are asymptotically equivalent (as Tn → ∞), and thus Equation 17

continues to hold if we replace µ
(1y)
n,t with µn,t (in fact, Figure 12(a) performs exactly this

regression). Moreover, if µ
(1y)
n,t follows an AR(1), then µn,t and µ

(1y)
n,t are perfectly positively

correlated, and thus we can also replace µ
(1y)
n,t with µn,t and Equation 16 continues to hold

(except that we no longer have the a = 0 and b = 1 implications in that equation).

Table 7 (Panel A, first block) estimates Equation 16 using annual data with µn,t as a

replacement for µ
(1y)
n,t . The results indicate that µn,t is a strong predictor of rn,t+1, with b =

1.22 (tstat = 2.69) and a moderate R2 = 3.8%. When we focus only on variation across asset

classes (by adding year fixed effects) or only on variation over time (by adding asset class fixed

effects), we observe a slight increase in (within) R2 values (to 4.9% and 4.6% respectively).

Interestingly, in the variation across asset classes, we have b = 1.12 (tstat = 2.04), which

is statistically indistinguishable from 1. This happens because a regression with time fixed

effects is similar to Equation 17, and thus the b = 1 restriction is approximately valid. In

contrast, in the variation over time, we have b = 4.83 (tstat = 1.90), which is far from 1. In

the variation over time, the b = 1 restriction is far from valid. The reason is that, due to
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mean reversion, the time-variation in long-run expected returns (µn,t) is much smaller than

the respective time variation in 1-year expected returns (µ
(1y)
n,t ), so that replacing µ

(1y)
n,t with

µn,t in Equation 16 induces b > 1.

To check whether the predictability we observe in the time series is consistent with the

b = 1 implication from Equation 16, we construct a proxy for µ
(1y)
n,t . Specifically, we note that

if µ
(1y)
n,t follows an AR(1) process, then we have21

µ
(1y)
n,t = µn + H ·

1− ϕn

1− ϕH
n

· (µn,t − µn) (18)

where µn is the unconditional mean of µn,t, H is the µn,t forecasting horizon, and ϕn is

the µn,t AR(1) persistence. We then set H = 10 years (the most common horizon for our

institution-year observations), estimate µn from 1/Tn ·
∑Tn

t=1 µn,t, and estimate ϕn from the

sample persistence of µn,t.

Table 7 (Panel A, second block) estimates Equation 16 using our µ
(1y)
n,t proxy from Equation

18. The results are striking. First, in the pooled estimation, we find that a = 0.00 (tstat =

0.15) and b = 1.04 (tstat = 2.82) and are not able to reject the joint hypothesis that a = 0

and b = 1. Moreover, regardless of whether we focus on variation across asset classes or over

time, the b coefficient remains statistically indistinguishable from 1. The R2 values are also

non-trivial. For instance, the pooled R2 is 7.1% and the within R2 values are higher than 5%.

To understand whether belief variation (across asset classes and over time) improves upon

belief homogeneity, we also create R2
a=0,b=1, which reflects an R2 measure that evaluates

21Specifically, if we have (µ
(1y)
n,t+1 − µn) = ϕn · (µ

(1y)
n,t − µn) + ϵt+1, then:

µn,t − µn =
1

H
·

H−1∑

h=0

Et[µ
(1y)
n,t+h] =

1

H
·

H−1∑

h=0

ϕh
n · (µ

(1y)
n,t − µn) =

1

H
·
1− ϕH

n

1− ϕn

· (µ
(1y)
n,t − µn)

which yields Equation 18. Note that the unconditional expectation of µn,t and the persistency of µn,t − µn

are the same as the unconditional expectation of µ
(1y)
n,t and persistency of µ

(1y)
n,t − µ

(1y)
n , which allows us to

estimate µn and ϕn directly from µn,t data (as described below Equation 18).
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the predictability of µ
(1y)
n,t against constant belief benchmarks (and can be negative).22 The

R2
a=0,b=1 values suggest that belief variation improves predictability both across asset classes

and over time. Finally, we also consider an out-of-sample R2 metric (R2
OOS), which evaluates

the predictability of µ
(1y)
n,t against benchmark models based on historical average returns

(and can also be negative).23 R2
OOS is strong both across asset classes (12.6%) and over time

(12.9%).24

Table 7 (Panel A, third block) considers a regression analogous to Equation 16, but that

uses 3-year subjective expected returns (µ
(3y)
n,t ) to predict the average excess return over

22Mathematically, we calculate

R2
a=0,b=1 = 1−

∑N
n=1

∑Tn

t=1(rn,t+1 − µ
(1y)
n,t )2

∑N
n=1

∑Tn

t=1(rn,t+1 − µ
(1y)
n,t )2

where µ
(1y)
n,t = µ(1y) =

∑N
n=1

∑Tn

t=1 µ
(1y)
n,t when considering all data variation, µ

(1y)
n,t = µ

(1y)
t =

∑N
n=1 µ

(1y)
n,t

when considering variation across asset classes, and µ
(1y)
n,t = µ

(1y)
n =

∑Tn

t=1 µ
(1y)
n,t when considering variation

over time. R2
a=0,b=1 is defined analogously in columns that use alternative independent and/or dependent

variables in the regression.
23Mathematically, we calculate

R2
OOS = 1−

∑N
n=1

∑Tn

t=1(rn,t+1 − µ
(1y)
n,t )2

∑N
n=1

∑Tn

t=1(rn,t+1 − µ̂n,t)2

where the definition of µ̂n,t depends on whether we are considering variation across asset classes or over
time. In both cases, we start by defining rn,t to be the historical (expanding window) average return for
asset class n up to time t. To ensure reasonable historical averages, we require at least 20 years in the
expanding window, setting to missing any rn,t value that does not satisfy this criterium. Then, in the case
of variation over time, we use µ̂n,t = rn,t so that forecasting errors for asset class-year observations with
missing rn,t are not considered (in both the numerator and denominator of R2

OOS). In the case of variation

across asset classes, we use µ̂n,t = µ̂t =
∑Nt

n=1 rn,t, where Nt reflects the number of asset classes in the given
cross-section. R2

OOS is defined analogously in columns that use alternative independent and/or dependent
variables in the regression.

24One worry with these predictability results is that some institutions have CMA reports dated as of the
beginning of year t+1. In principle, these reports are based on information institutions had as of the end of
year t, and thus are still valid for predicting year t+ 1 returns. However, as a robustness check, we forecast
annual returns from the beginning of Q2 of year t+1 to the end of Q1 of year t+2 and find results that are
similar to our baseline results in Table 7 (see Panel A of Internet Appendix Table IA.2). Another potential
worry is that our aggregation method is not “out-of-sample” as it requires full sample estimates of institution
fixed effects (to deal with variation in the composition of institutions in our sample over time). As another

robustness check, we forecast returns using 1
Jt

∑Jt

j=1 µj,n,t, which requires no future information. The results
are similar to our baseline results in Table 7 (see Panel B of Internet Appendix Table IA.2).

32



the next three years (r
(3y)
n,t→t+3).

25 The idea is to evaluate the predictability of longer-term

returns given that beliefs have multi-year horizons. However, our sample is short on the

time dimension so that it is not meaningful to evaluate predictability at horizons that are

too long (e.g., with a 3-year horizon, the longest time series in our sample has less than 12

independent 3-year return observations). The results indicate that µ
(3y)
n,t predicts r

(3y)
n,t→t+3 with

similar strength as µ
(1y)
n,t predicts r

(1y)
n,t+1 (somewhat better in the cross-section and somewhat

worse in the time-series). Importantly, we continue to not reject the a = 0 and b = 1

implications from rational expectations.

Table 7 (Panel B, first two blocks) repeats the predictability exercise for risk measures

(but without any adjustment for horizon).26 In both cases (σ2
n,t and β

(e)
n,t), we observe strong

predictability across asset classes and b coefficients with year fixed effects that are not that far

from 1 (albeit we can statistically reject the b = 1 restriction for σ2
n,t). However, we observe

no predictability over time and the b coefficient with asset class fixed effects is negative (and

statistically insignificant) in both cases. Results for β
(p)
n,t are similar to the results for β

(e)
n,t ,

and thus we do not tabulate them to conserve space. So, our institutions seem to reasonably

predict risk across assets. However, they are unable to predict risk variation over time. One

limitation of this analysis is that if short-term risk and long-term risk are disconnected, then

it is possible that time variation in subjective risk predicts time variation in long-term realized

risk. We cannot meaningfully test this hypothesis given the short time series dimension of

our sample.

Table 7 (Panel B, third block) repeats the predictability exercise for α
(e)
n,t with an adjust-

ment for horizon analogous to the µ
(1y)
n,t adjustment (so, we call the belief quantity α

(e,1y)
n,t ).

There is little connection between α
(e,1y)
n,t and subsequent alphas. While the b coefficient is

positive in all specifications, it is always below 0.40 and statistically insignificant. Moreover,

the R2 values are all around 0.5%, which shows that subjective alphas explain almost no vari-

ation in subsequent realized alphas. Indeed, the R2
a=0,b=1 values are all negative, indicating

25Specifically, we have r
(3y)
n,t→t+3 = 1

3 ·
∑3

h=1 rt+h and µ
(3y)
n,t = µn + 1

3 ·
1−φH

n

1−φn
· (µ

(1y)
n,t − µn).

26Adjusting for horizon in expected risk is more challenging because the H-year subjective risk is not the
subjective expectation of the average of 1-year realized risks over the next H-years.
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that variation in beliefs is detrimental to forecasting alphas (i.e., removing subjective alpha

heterogeneity improves alpha forecasts). We do see positive R2
OOS values. However, given the

negative R2
a=0,b=1 values, this result is simply a reflection of the fact that historical alphas

are an even worse predictor of future alphas than subjective alphas are.27 Results for α
(p,1y)
n,t

are similar to the results for α
(e,1y)
n,t , and thus we do not tabulate them to conserve space. In

a nutshell, the alpha evidence indicates that a Black CAPM type of model with all alphas

equal to a single positive number (the Black CAPM intercept) provides a better forecasting

model than the subjective alphas of our institutions do.

To further explore return predictability over time, Table 8 shows results for Equation 16

estimated separately for each asset class using µ
(1y)
n,t .

28 Two key findings emerge. First, we

can only reject the b = 1 hypothesis for US High Yield Corp Bonds. Second, R2
OOS values

are generally positive, with the only exception being Hedge Funds (with R2
OOS = −5.7%).

Overall, the subjective expected returns for our institutions vary in a manner consistent with

rational expectations.

5 Conclusion

This paper studies the link between the subjective risk and return expectations of institu-

tional investors. Specifically, we explore the long-term Capital Market Assumptions of asset

managers and institutional investor consultants from 1987 to 2022 to learn about their sub-

jective views on the risks and returns of 19 assets classes. We uncover three stylized facts.

First, there is a strong and positive subjective risk-return tradeoff, with most of the vari-

ability in subjective expected returns due to variability in subjective risk premia as opposed

27We also explore an R2
OOS value that replaces the historical alphas with zero (the standard CAPM

benchmark) and find that the R2
OOS value remains positive (i.e., subjective alphas perform better than a

zero alpha benchmark). This result is a consequence of the fact that the Black CAPM is a better (than the
standard CAPM) description of the data (both the subjective beliefs data and the realized return data).
Specifically, as discussed in Subsection 3.1, subjective alphas are positive on average, a pattern also observed
in realized alphas (see, for example, Figures 11(e) and 12(e)).

28Since there is no risk or alpha predictability over time (as per Table 7), we do not provide time-series
risk or alpha predictions by asset class in Table 8.
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to subjective alphas. Second, belief variation and the positive risk-return tradeoff are both

stronger across asset classes than across institutions. And third, the subjective expected

returns of our institutions predict subsequent realized returns across asset classes and over

time.

Our paper provides an important contribution to the literature on subjective beliefs. In

particular, our findings imply that models for the subjective beliefs of institutional investors

should reflect a positive risk-return tradeoff. Additionally, in our setting, accounting for

this risk-return trade-off when modeling subjective beliefs across asset classes is even more

important than incorporating average belief distortions or belief heterogeneity (despite the

presence of both in the data to some degree).

Our results also open the door to many new questions, some of which we explore in

simultaneous work. For instance, Couts et al. (2023) study the drivers of the market risk

premium embedded in the subjective beliefs of institutional investors. Relatedly, Andonov

et al. (2023) study the pass through of the overall beliefs of institutional investors to their

portfolio allocations. We hope our work can shed light on these important outstanding issues

in asset pricing.
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Figure 2
The Aggregate Subjective Equity Premium from Institutions

This figure plots the subjective equity premium aggregated across our institutions together with the S&P 500 earnings
yield, proxied with log(1/CAPE), where CAPE refers to the Cyclically Adjusted PE Ratio from Robert Shiller (avail-
able under http://www.econ.yale.edu/~shiller/data.htm). The shaded regions reflect US economic recessions as
defined by the National Bureau of Economic Research (NBER). The subjective equity premium of institution j at
time t is given by µj,e,t = Ej,t[Re]−Ej,t[Rf ] with Re reflecting returns from US Equities (Large Cap) and Rf reflecting
returns from US Cash. Section 2 provides more details about our subjective beliefs data and the analysis in this
figure. Our aggregation method accounts for differences in sample composition over the years (see Subsection 4.1 for
details). Specifically, we estimate a panel regression of µj,e,t onto institution fixed effects and year fixed effects (with
no intercept and one manager dummy suppressed),

µj,e,t = µe,j + µe,t + ηj,e,t

and then plot the following quantity:
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Figure 3
Consistency Between Subjective Expected Returns and the Pricing of Subjective βs

The pricing of subjective betas is based on the institution-year regression µj,n,t = λ
(0)
j,t +λ

(m)
j,t ·β

(m)
j,n,t+ a

(m)
j,n,t, where µj,n,t

and β
(m)
j,n,t are obtained directly from the beliefs of institution j at time t. Panels (a) to (d) display in different ways the

distribution (across institution-year observations) of the subjective market expected return (µ
(m)
j,t ) against λ

(m)
j,t while

Panels (e) and (f) display the distribution of λ
(0)
j,t . We consider two models to determine βs. The first is the Equity

CAPM (m = e), with market portfolio based on US Equities (Large Cap). The second is the Pension CAPM (m = p),
with market portfolio based on the aggregate allocation of US Public Pension Funds. Section 2.2 provides more details
about our subjective beliefs data and Section 3.1 provides more details about the analysis reported in this figure.
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(a) Average αs (Equity CAPM) (b) Average αs (Pension CAPM)

(c) Average as (Equity CAPM) (d) Average as (Pension CAPM)

Figure 4
Average Subjective Pricing Errors for Each Asset Class

This figure plots the expected return of each asset class (averaged across institutions and years) against its pricing
error (averaged across institutions and years). Pricing errors are based on Equation 6 (α(m) in panels (a) and (b))
and Equation 5 (a(m) in panels (c) and (d)). We consider two models to determine βs. The first is the Equity CAPM
(m = e), with market portfolio based on US Equities (Large Cap). The second is the Pension CAPM (m = p), with
market portfolio based on the aggregate allocation of US Public Pension Funds. Section 2.2 provides more details
about our subjective beliefs data and Section 3.1 provides more details about the analysis reported in this figure.
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Figure 5
Subjective Expected Returns: Risk Premia vs Alphas

This figure plots the subjective expected return of each observation (µj,n,t) against the respective subjective risk

premium (rp
(m)
j,n,t = β

(m)
j,n,t · µ

(m)
j,t ) or the respective subjective pricing error (α

(m)
j,n,t) based on Equation 6. We consider

two models to determine βs. The first is the Equity CAPM (m = e), with market portfolio based on US Equities
(Large Cap). The second is the Pension CAPM (m = p), with market portfolio based on the aggregate allocation of
US Public Pension Funds. Section 2.2 provides more details about our subjective beliefs data and Section 3.1 provides
more details about the analysis reported in this figure.
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(a) µj,t vs µj,n,t (Baseline Model) (b) µn,t vs µj,n,t (Baseline Model)

(c) µn,j vs µj,n,t (Alternative Model) (d) µn,t vs µj,n,t (Alternative Model)

Figure 6
Heterogeneity in Subjective Expected Returns: Institution vs Asset Class Effects

This figure plots subjective expected returns (µj,n,t) against institution or asset class fixed effects. The institution fixed
effect is given by µj,t or µn,j depending on whether we are in the baseline model (Equation 8) or in the alternative
model (Equation 10). The asset class fixed effect is always given by µn,t. Section 2.2 provides more details about our
subjective beliefs data and Section 3.2 provides more details about the analysis reported in this figure.
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(a) Baseline Model: µj,n,t = µn,t + µj,t + ηj,n,t

(b) Alternative Model: µj,n,t = µn,t + µn,j + ηj,n,t

Figure 7
Decomposing Variability in Subjective Expected Returns: Institution vs Asset Class Effects

This figure plots the decomposition of within year expected return variability (based on Equations 9 and 11) into the
effect of asset class heterogeneity (in blue), institution heterogeneity (in red), and residuals (in orange). The institution
fixed effect is given by µj,t or µn,j depending on whether we are in the baseline model (Equation 8) or in the alternative
model (Equation 10). The asset class fixed effect is always given by µn,t. Section 2.2 provides more details about our
subjective beliefs data and Section 3.2 provides more details about the analysis reported in this figure.
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Figure 8
Decomposing Variability in Subjective βs and αs: Institution vs Asset Class Effects

This figure plots the decomposition of within year variability in βs and αs (based on Equation 13) into the effect of
asset class heterogeneity (in blue), institution heterogeneity (in red), and residuals (in orange). The institution fixed
effect is given by βj,t or αj,t while the asset class fixed effect is given by βn,t or αn,t. We consider two models to
determine βs. The first is the Equity CAPM (m = e), with market portfolio based on US Equities (Large Cap). The
second is the Pension CAPM (m = p), with market portfolio based on the aggregate allocation of US Public Pension
Funds. Section 2.2 provides more details about our subjective beliefs data and Section 3.2 provides more details about
the analysis reported in this figure.
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(a) Subjective Beliefs (Equity CAPM) (b) Subjective Beliefs (Pension CAPM)

(c) Realized Returns (Equity CAPM) (d) Realized Returns (Pension CAPM)

Figure 9
Risk-Return Tradeoff: Subjective Beliefs vs Realized Returns

This figure plots expected returns (µn = E[rn]) against risk premia (rp
(m)
n = β

(m)
n ·µ(m)) across asset classes. Panels (a)

and (b) use beliefs (averaged across institutions and years), and thus reflect the subjective risk-return tradeoff. Panels

(c) and (d) use unconditional data moments (µn is based on average excess returns and rp
(m)
n is based on estimated

beta and market average excess return), and thus reflect the objective risk-return tradeoff. We consider two models
to determine βs. The first is the Equity CAPM (m = e), with market portfolio based on US Equities (Large Cap).
The second is the Pension CAPM (m = p), with market portfolio based on the aggregate allocation of US Public
Pension Funds. Sections 2.2 and 4.1 provide more details about the data and Section 4.2 provides more details about
the analysis reported in this figure.
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(a) Subjective Beliefs (Equity CAPM) (b) Subjective Beliefs (Pension CAPM)

(c) Realized Returns (Equity CAPM) (d) Realized Returns (Pension CAPM)

Figure 10
Low-Beta Anomaly: Subjective Beliefs vs Realized Returns

This figure plots alphas (αn = µn−rp
(m)
n ) against risk premia (rp

(m)
n = β

(m)
n ·µ(m)) across asset classes. Risk premia only

vary with beta across asset classes (since the market risk premia is constant across asset classes). Panels (a) and (b)
use beliefs (averaged across institutions and years), and thus reflect the subjective low-beta anomaly (or lack thereof).
Panels (c) and (d) use unconditional data moments, and thus reflect the objective low-beta anomaly. We consider
two models to determine βs. The first is the Equity CAPM (m = e), with market portfolio based on US Equities
(Large Cap). The second is the Pension CAPM (m = p), with market portfolio based on the aggregate allocation of
US Public Pension Funds. Sections 2.2 and 4.1 provide more details about the data and Section 4.2 provides more
details about the analysis reported in this figure.
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Figure 11
Consistency Between Subjective Beliefs and Realized Returns

This figure plots unconditional data moments against average values for their respective beliefs (averaged across
institutions and years). We use returns over the full sample for each asset class (see dates in Table 6). For Panels (c)
to (f), we consider two models to determine βs. The first is the Equity CAPM (m = e), with market portfolio based
on US Equities (Large Cap). The second is the Pension CAPM (m = p), with market portfolio based on the aggregate
allocation of US Public Pension Funds. Sections 2.2 and 4.1 provide more details about the data and Section 4.3
provides more details about the analysis reported in this figure.
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Figure 12
Consistency Between Subjective Beliefs and Realized Returns

(Beliefs Matched to Subsequent Returns)

This figure plots unconditional data moments against average values for their respective beliefs (averaged across
institutions and years). Beliefs are matched to subsequent year returns. For Panels (c) to (f), we consider two models
to determine βs. The first is the Equity CAPM (m = e), with market portfolio based on US Equities (Large Cap).
The second is the Pension CAPM (m = p), with market portfolio based on the aggregate allocation of US Public
Pension Funds. Sections 2.2 and 4.1 provide more details about the data and Section 4.3 provides more details about
the analysis reported in this figure. 50



Table 1
Asset Managers and Institutional Investor Consultants in our Sample

The table reports information on the list of institutions that enter our sample at any point in time. Panel A details
the asset managers (or simply “managers”), with information on their Assets Under Manager (AUM) ranking, dollar
value, and fraction relative to the total AUM of the top 50 AUM managers in the world (data from the October 2022
report on the world’s largest 500 asset managers by the Thinking Ahead Institute and the Pensions & Investments
company). Panel B details the institutional investor consultants (or simply “consultants”), with information on their
role as primary consultants for US public pension funds. Specifically, each row in Panel B reports information about
the pension funds for which the given consultant is the primary consultant of on average from 2001 to 2021 (data from
the Center for Retirement Research at Boston College). Section 2.1 provides more details about our subjective beliefs
data. Institution names and the respective numbers will be provided after approval from the original data sources.

PANEL A - Asset Managers (or simply “Managers”)

AUM Information
Manager Name Rank $ Value % of Top 50

Barclays - - -
BNY Mellon 9 2.43 Trillion 2.7%
Capital Group 7 2.72 Trillion 3.1%

Envestnet > 50 0.36 Trillion 0.4%
Goldman Sachs 8 2.47 Trillion 2.8%

Invesco 15 1.61 Trillion 1.8%
JP Morgan 5 3.11 Trillion 3.5%

Morgan Stanley 18 1.49 Trillion 1.7%
Northern Trust 16 1.61 Trillion 1.8%

Nuveen 22 1.26 Trillion 1.4%
PFM > 50 0.13 Trillion 0.2%

PIMCO 12 2.00 Trillion 2.3%
Russell Investments > 50 0.34 Trillion 0.4%

SEI > 50 0.30 Trillion 0.3%
T. Rowe Price 14 1.69 Trillion 1.9%

Voya > 50 0.41 Trillion 0.5%
Wells Fargo 16 1.61 Trillion 1.8%

Asset Manager #18 - - -
Total - > 23.6 Trillion > 26.6%

PANEL B - Institutional Investor Consultants (or simply “Consultants”)

Primary US Pension Fund Consultant of
Consultant Name # of Funds % of Funds % of Funds’ AUM

Aon 19 8.8% 14.8%
Callan 24 11.2% 11.9%

CAPTRUST - - -
Cliffwater 1 0.5% 0.6%

CSG - - -
Meketa 6 2.6% 2.4%
Mercer 6 2.6% 2.5%
Milliman 1 0.7% 0.2%
NEPC 19 8.7% 4.5%
PCA 9 4.0% 7.4%
RVK 8 3.7% 6.2%

Sellwood - - -
Strategic Inv Sol 1 0.3% 1.5%

Verus 4 1.7% 1.2%
Wilshire 11 5.3% 13.1%
WTW 2 0.7% 0.5%
Total ≥ 111 ≥ 50.8% ≥ 66.8%
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Table 2
Sample Coverage (by Year)

This table reports information on our sample of Capital Market Assumptions (CMAs) over time. Panel A details,
for each year, the number of asset managers (or simply “managers”), institutional investor consultants (or simply
“consultants”), and institutions (managers+consultants) in our sample. We have data obtained directly from the
CMAs of the underlying institutions (under “# of Institutions (direct data)”) and data obtained indirectly from the
reports of pension funds (which is given by“# of Institutions” - “# of Institutions (direct data)”). Panel A also reports,
for each year, the number of unique asset classes in our sample as well as the average number of asset classes covered
per institution. Panel B reports the number of institutions covering each of the asset classes in our sample. Section 2
provides more details about our subjective beliefs data.

PANEL A - Number of Managers, Consultants, and Asset Classes in our Sample (by Year)

1987 1996 1997 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022

# of Institutions 1 1 3 4 5 8 7 10 11 14 17 14 16 20 21 24

# of Institutions (direct data) 0 1 3 4 5 5 5 7 8 10 12 12 13 17 20 22

# of Managers 0 0 1 1 1 1 1 1 4 5 6 5 6 10 11 15

# of Consultants 1 1 2 3 4 7 6 9 7 9 11 9 10 10 10 9

# of Asset Classes 4 7 13 13 13 16 16 18 18 19 20 20 20 20 20 20

Av # of Asset Classes per Institution 4 7 9 9 9 9 10 12 12 12 13 14 14 13 14 14

PANEL B - Number of Institutions Covering Each Asset Class in our Sample (by Year)

Asset Class 1987 1996 1997 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022

US Cash 1 1 3 4 5 8 7 10 11 14 17 14 16 20 21 24

US TIPS 0 0 0 1 1 5 6 9 10 14 16 13 14 17 17 21

US Bonds 1 1 3 4 5 8 7 10 11 12 16 13 16 17 17 19

US Govt Bonds 0 0 1 0 1 2 2 2 3 3 7 8 10 14 12 18

US Muni Bonds 0 0 0 0 0 1 1 1 3 4 6 6 6 8 8 10

US Inv Grade Corp Bonds 0 0 0 0 0 1 1 1 1 2 7 4 5 6 9 13

US High Yield Corp Bonds 0 0 2 3 5 5 5 7 9 11 13 11 13 16 17 21

Global Bonds (Ex US) 0 1 3 4 4 4 4 7 8 9 13 11 12 12 14 19

Private Debt 0 0 0 0 0 0 0 0 0 1 2 1 3 4 7 11

US Equities (Large Cap) 1 1 3 4 5 8 7 10 11 14 17 14 16 20 21 24

US Equities (Small Cap) 0 1 2 2 2 4 3 7 7 9 12 11 12 13 13 17

Global Equities (Dev, Ex US) 0 0 2 3 5 7 7 9 10 12 15 14 16 19 21 22

Global Equities (Emerging) 0 0 2 3 5 5 5 7 9 11 14 12 14 18 18 22

Private Equity 0 1 1 1 3 6 7 9 9 12 15 12 13 16 17 19

REITs 0 0 1 2 2 3 2 5 6 7 11 10 12 14 16 17

Private Real Estate 1 1 2 2 3 4 6 10 9 11 16 13 14 15 16 19

Hedge Funds 0 0 0 0 0 3 3 7 6 9 12 10 11 14 17 18

Commodities 0 0 1 1 0 0 0 6 7 10 13 11 13 17 17 19

Venture Capital 0 0 0 0 0 0 0 0 0 0 1 2 3 2 2 3

Infrastructure 0 0 0 0 0 0 0 1 2 2 4 4 4 6 10 10
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Table 3
Average Subjective Beliefs (Pooled Across Institutions in 2022)

This table reports the average values for the belief quantities we observe at the end of 2022 pooled across institutions
(we observe the same information in previous years, but for a subset of the asset classes available in 2022). Panel A
reports average nominal returns, E[R], average volatilities, σ[R], and average correlations. Panel B reports the same
quantities, but for excess returns, r = R−Rf , with Rf proxied by the return on US Cash. Section 2.2 provides more
details about our subjective beliefs data.

PANEL A - Raw Returns (R)

Asset Class E[R] σ[R] (0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19)

(0) US Cash 3.0% 0.9% 1

(1) US TIPS 4.1% 6.0% 0.07 1

(2) US Bonds 4.5% 5.0% 0.15 0.74 1

(3) US Govt Bonds 4.1% 7.4% 0.16 0.65 0.84 1

(4) US Muni Bonds 3.7% 4.9% 0.06 0.60 0.75 0.61 1

(5) US Inv Grade Corp Bonds 5.5% 7.4% 0.03 0.66 0.84 0.60 0.71 1

(6) US High Yield Corp Bonds 6.9% 9.8% -0.05 0.35 0.30 -0.02 0.38 0.51 1

(7) Global Bonds (Ex US) 3.8% 7.6% 0.09 0.59 0.68 0.62 0.54 0.66 0.31 1

(8) Private Debt 8.7% 12.1% -0.06 0.14 0.02 -0.21 0.10 0.35 0.67 0.14 1

(9) US Equities (Large Cap) 7.6% 16.6% -0.04 0.19 0.18 -0.09 0.17 0.35 0.69 0.19 0.59 1

(10) US Equities (Small Cap) 8.9% 21.2% -0.05 0.11 0.09 -0.18 0.13 0.32 0.67 0.12 0.58 0.89 1

(11) Global Equities (Developed, Ex US) 8.5% 18.3% -0.04 0.20 0.19 -0.09 0.18 0.36 0.67 0.29 0.55 0.83 0.78 1

(12) Global Equities (Emerging) 10.4% 23.4% -0.01 0.20 0.17 -0.12 0.17 0.33 0.64 0.19 0.51 0.72 0.69 0.80 1

(13) Private Equity 10.8% 22.7% -0.03 0.15 0.05 -0.17 0.10 0.29 0.61 0.16 0.62 0.76 0.73 0.70 0.63 1

(14) REITs 8.0% 19.8% -0.05 0.28 0.27 0.05 0.26 0.38 0.64 0.28 0.48 0.71 0.69 0.65 0.56 0.58 1

(15) Private Real Estate 6.8% 13.6% 0.00 0.17 0.14 -0.02 0.10 0.17 0.38 0.11 0.43 0.44 0.44 0.38 0.34 0.49 0.61 1

(16) Hedge Funds 6.3% 7.8% 0.00 0.20 0.13 -0.18 0.15 0.35 0.65 0.19 0.56 0.74 0.74 0.74 0.68 0.62 0.56 0.39 1

(17) Commodities 5.6% 17.9% -0.02 0.17 -0.06 -0.22 -0.05 0.11 0.35 0.06 0.34 0.33 0.33 0.40 0.40 0.33 0.28 0.21 0.43 1

(18) Venture Capital 14.5% 29.5% 0.01 0.04 -0.09 -0.25 -0.04 0.19 0.59 -0.07 0.63 0.73 0.71 0.67 0.59 0.76 0.46 0.47 0.58 0.31 1

(19) Infrastructure 8.2% 16.5% -0.03 0.28 0.19 -0.09 0.21 0.32 0.62 0.26 0.58 0.70 0.66 0.70 0.63 0.66 0.64 0.51 0.61 0.40 0.55 1

PANEL B - Excess Returns (r = R − Rf)

Asset Class E[r] σ[r] (0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19)

(0) US Cash 0.0% 0.0% 1

(1) US TIPS 1.1% 6.0% 0.00 1

(2) US Bonds 1.5% 5.0% 0.00 0.74 1

(3) US Govt Bonds 1.1% 7.3% 0.00 0.65 0.84 1

(4) US Muni Bonds 0.6% 4.9% 0.00 0.60 0.75 0.61 1

(5) US Inv Grade Corp Bonds 2.4% 7.4% 0.00 0.67 0.85 0.61 0.71 1

(6) US High Yield Corp Bonds 3.9% 9.9% 0.00 0.36 0.31 0.00 0.39 0.52 1

(7) Global Bonds (Ex US) 0.6% 7.6% 0.00 0.59 0.67 0.61 0.53 0.66 0.31 1

(8) Private Debt 5.5% 12.2% 0.00 0.17 0.03 -0.19 0.11 0.36 0.67 0.15 1

(9) US Equities (Large Cap) 4.6% 16.6% 0.00 0.20 0.20 -0.08 0.18 0.36 0.69 0.20 0.59 1

(10) US Equities (Small Cap) 5.8% 21.3% 0.00 0.12 0.11 -0.17 0.14 0.32 0.67 0.12 0.58 0.89 1

(11) Global Equities (Developed, Ex US) 5.4% 18.4% 0.00 0.21 0.20 -0.09 0.19 0.37 0.67 0.29 0.55 0.83 0.78 1

(12) Global Equities (Emerging) 7.3% 23.4% 0.00 0.20 0.18 -0.11 0.17 0.33 0.64 0.20 0.51 0.72 0.69 0.80 1

(13) Private Equity 7.8% 22.7% 0.00 0.16 0.06 -0.17 0.11 0.29 0.61 0.17 0.62 0.76 0.73 0.70 0.64 1

(14) REITs 4.9% 19.9% 0.00 0.30 0.28 0.07 0.27 0.39 0.64 0.29 0.49 0.71 0.69 0.65 0.56 0.58 1

(15) Private Real Estate 3.8% 13.7% 0.00 0.18 0.15 -0.02 0.10 0.18 0.39 0.11 0.44 0.45 0.44 0.39 0.34 0.49 0.62 1

(16) Hedge Funds 3.0% 7.9% 0.00 0.21 0.14 -0.17 0.16 0.36 0.65 0.19 0.57 0.74 0.74 0.73 0.68 0.63 0.56 0.39 1

(17) Commodities 2.6% 18.0% 0.00 0.18 -0.05 -0.21 -0.04 0.11 0.36 0.06 0.34 0.33 0.34 0.41 0.41 0.33 0.28 0.21 0.43 1

(18) Venture Capital 11.9% 29.5% 0.00 0.04 -0.10 -0.26 -0.03 0.19 0.59 -0.07 0.62 0.72 0.71 0.67 0.59 0.75 0.46 0.47 0.56 0.31 1

(19) Infrastructure 5.0% 16.6% 0.00 0.29 0.20 -0.07 0.22 0.33 0.63 0.26 0.59 0.70 0.67 0.70 0.63 0.66 0.65 0.51 0.62 0.40 0.55 1
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Table 4
Consistency Between Subjective Market Risk Premia and the Pricing of Subjective βs

(Estimated Separately for each Combination of Year/Institution)

This table reports a test of the CAPM (Equation 5) under the subjective beliefs of our institutions. Specifically, we

report the (cross-institution distribution of the) λ
(m)
j,t − µ

(m)
j,t values with their respective t-statistics for each year (in

parentheses), which reflect tests for whether the price of risk each institution assigns to β
(m)
j,n,t (i.e., λ

(m)
j,t ) is consistent

with the institution’s subjective market expected return (i.e., µ
(m)
j,t ). We consider two models to determine βs. The

first is the Equity CAPM (m = e), with market portfolio based on US Equities (Large Cap). The second is the
Pension CAPM (m = p), with market portfolio based on the aggregate allocation of US Public Pension Funds. Section
2.2 provides more details about our subjective beliefs data and Section 3.1 provides more details about the analysis
reported in this table.

Equity CAPM Pension CAPM

λ
(e)
j,t − µ

(e)
j,t λ

(p)
j,t − µ

(p)
j,t

Year Lowest Median Highest Lowest Median Highest

1998
-1.6% -0.1% 0.4% -1.5% -0.6% 0.3%

(-1.57) (0.07) (0.37) (-2.03) (-0.36) (0.55)

2000
-0.4% -0.1% 1.3% -0.7% -0.4% 0.3%

(-0.11) (-0.09) (1.56) (-1.43) (-0.29) (0.15)

2002
-3.5% -0.4% 1.0% -2.7% -0.7% -0.1%

(-1.62) (-0.26) (1.15) (-2.00) (-0.73) (-0.12)

2004
-0.7% 0.6% 1.2% -1.1% -0.4% 0.0%

(-1.27) (0.43) (1.31) (-1.13) (-0.81) (0.09)

2006
-1.7% -0.4% 1.3% -1.9% -1.0% 0.4%

(-1.78) (-0.56) (1.51) (-2.60) (-1.81) (0.77)

2008
-1.9% -0.7% -0.4% -2.5% -1.3% -0.5%

(-11.30) (-0.66) (-0.59) (-3.44) (-2.21) (-0.98)

2010
-1.4% -0.4% 0.5% -1.5% -0.9% -0.4%

(-2.14) (-0.42) (0.38) (-5.41) (-1.05) (-0.59)

2012
-1.5% 0.1% 1.4% -1.5% -0.5% 0.3%

(-2.96) (0.15) (0.70) (-2.65) (-0.99) (0.91)

2014
-1.2% 0.1% 1.5% -1.6% -0.7% 0.5%

(-2.13) (0.13) (1.34) (-3.75) (-1.21) (0.85)

2016
-0.6% 0.2% 2.6% -1.4% -0.4% 1.8%

(-2.44) (0.29) (1.84) (-2.67) (-0.81) (1.55)

2018
-1.4% 0.5% 4.8% -1.2% -0.3% 2.3%

(-1.88) (0.73) (1.22) (-2.45) (-0.37) (0.97)

2020
-4.5% 0.4% 2.8% -4.0% -0.5% 1.9%

(-1.15) (0.46) (1.19) (-1.49) (-0.84) (1.30)

2022
-1.2% 0.1% 2.2% -1.3% -0.8% 1.3%

(-1.44) (0.07) (1.16) (-2.89) (-1.41) (1.64)

Average
-1.7% 0.0% 1.8% -1.9% -0.7% 0.9%

(-2.08) (0.06) (1.03) (-2.82) (-1.17) (0.78)
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Table 5
Fraction of Expected Return Variation Originating from Risk Premia vs Alphas

(Estimated Jointly using all Years, Institutions, and Asset Classes)

This table reports the fraction of subjective expected returns (µj,n,t = Ej,t[rn]) variability explained by subjective

risk premia (rp
(m)
j,n,t = β

(m)
j,n,t · µ

(m)
j,t ) and subjective pricing errors (α

(m)
j,n,t) based on the decomposition in Equation 7.

Different columns add different fixed effects to the regressions underlying this decomposition. We consider two models
to determine βs. The first is the Equity CAPM (m = e), with market portfolio based on US Equities (Large Cap). The
second is the Pension CAPM (m = p), with market portfolio based on the aggregate allocation of US Public Pension
Funds. Section 2.2 provides more details about our subjective beliefs data and Section 3.1 provides more details about
the analysis reported in this table.

Identification from Variation Across = Multiple Sources Asset Classes Institutions Years

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

Equity CAPM

% of µ Variation from Risk Premia 76% 76% 76% 52% 77% 77% 50% 47% 47% 49%

% of µ Variation from Alphas 24% 24% 24% 48% 23% 23% 50% 53% 53% 51%

Pension CAPM

% of µ Variation from Risk Premia 91% 91% 91% 63% 92% 92% 62% 56% 56% 61%

% of µ Variation from Alphas 9% 9% 9% 37% 8% 8% 38% 44% 44% 39%

Year Fixed Effect X X X

Institution Fixed Effect X X X

Asset Class Fixed Effect X X X

Year×Institution Fixed Effect X

Year×Asset Class Fixed Effect X

Institution×Asset Class Fixed Effect X
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Table 6
Realized Return Data: Indice Names, Data Sources, and Sample Period

This table provides a list of the indices used for the realized returns matched to each asset class present in our beliefs
data (i.e., the CMAs of our institutions).

CMA Asset Class Index Name Data Source First Return Date Last Return Date

US Cash 3-Month Treasury Bill Return CRSP 04/1957 12/2022

US TIPS Bloomberg Barclays US Treasury Inflation Notes Bloomberg 03/1997 12/2022

US Bonds Bloomberg Barclays US Aggregate Bond Index Bloomberg 01/1976 12/2022

US Govt Bonds Bloomberg Barclays US Treasury Index Bloomberg 01/1973 12/2022

US Muni Bonds ICE Bank of America US Municipal Securities Index Bloomberg 01/1980 12/2022

US Inv Grade Corp Bonds Bloomberg Barclays US Investment Grade Index Bloomberg 01/1973 12/2022

US High Yield Corp Bonds Bloomberg Barclays US High Yield Index Bloomberg 07/1983 12/2022

Global Bonds (Ex US) Bloomberg Barclays Global Aggregate- Ex US Bloomberg 01/1990 12/2022

Private Debt - - - -

US Equities (Large Cap) S&P 500 Index CRSP & Bloomberga 04/1957 12/2022

US Equities (Small Cap) Russell 2000 Index Bloomberg 01/1979 12/2022

Global Equities (Dev, Ex US) MSCI World ex US Index Bloomberg 02/1970 12/2022

Global Equities (Emerging) MSCI Emerging Markets Bloomberg 01/1988 12/2022

Private Equity - - - -

REITs FTSE NAREIT US Real Estate Index (All Equity) NAREIT 01/1972 12/2022

Private Real Estate NCREIF Value Weighted Index NCREIF Q1/1978 Q4/2022

Hedge Funds HFRI FOF: Diversified Index Hedge Fund Research 01/1990 12/2022

Commodities S&P GSCI or Bloomberg Commodity Index Bloomberg 02/1970 12/2022

Venture Capital - - - -

Infrastructure Dow Jones Brookfield Global Infrastructure Index Bloomberg 01/2003 12/2022

aThe S&P 500 inception date is March 4, 1957 (so, the first complete monthly return is 04/1957). However, Bloomberg only has total
return data for the S&P500 starting in 02/1970. So, we use CRSP for the S&P 500 monthly returns from 04/1957 to 01/1970. CRSP

only reports ex-dividend returns for the S&P 500 (Rex
SP,t). To obtain the S&P 500 total return from CRSP, we use RSP,t = R

(ex)
SP,t +

(Rvw,t − R
(ex)
vw,t), where Rvw,t and R

(ex)
vw,t are the cum- and ex-dividend returns for the CRSP value-weighted index. Over the period we

directly observe RSP,t from Bloomberg, the correlation between the two RSP,t values (from CRSP and Bloomberg) is 99.95%. Moreover,
the difference in average annualized returns is only 0.04%. As such, the RSP,t imputed from CRSP data seems to be a reliable proxy for
S&P 500 returns. Note that series commonly used in the literature for the period before 1957 (e.g., Robert Shiller’s S&P 500 returns) do
not actually refer to the S&P 500 before March 4, 1957 (the inception date).
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Table 7
Predicting Realized Returns, Risk, and Alphas using Subjective Beliefs

This table reports results from the estimation of equations analogous to Equation 16. µn,t, σ
2
n,t, β

(e)
n,t , and α

(e)
n,t are the

belief quantities aggregated across institutions as described in Subsection 4.1. µ
(hy)
n,t and α

(e,hy)
n,t are linear transfor-

mations of µn,t and α
(e)
n,t to reflect h-year expected average returns and alphas, respectively (as per Equation 18 and

Footnote 25). We consider pooled regressions (Variation=All), regressions with year fixed effects (Variation=Across
AC), and regressions with asset class fixed effects (Variation=Over Time). Inference relies on double clustering (by
year and asset class). pa=0,b=1 reflects the p-value for a Wald test of the joint hypothesis that a = 0 and b = 1. R2

reflects the pooled R2 in the Variation=All case and within R2 values in the other two cases. R2
a=0,b=1 reflects an R2

metric design to identify whether belief variation (across asset classes and over time) improves upon belief homogeneity
(see Footnote 22). R2

OOS reflects an out-of-sample R2 metric, which evaluates the predictability of the given predictor
against the predictability of a historical returns benchmark (see Footnote 23). The realized risk and alphas metrics in
Panel B are calculated from monthly returns within year t + 1 (with alphas multiplied by 12). Sections 2.2 and 4.1
provide more details about the data and Section 4.3 provides more details about the analysis reported in this table.

PANEL A - Predicting Realized Returns

rn,t+1 = a + b · µn,t + ϵt rn,t+1 = a + b · µ
(1y)
n,t + ϵt rn,t→t+3 = a + b · µ

(3y)
n,t + ϵt

Variation = All Across AC Over Time All Across AC Over Time All Across AC Over Time

a 0.00 0.00 0.01

(ta=0) (-0.37) (0.15) (1.40)

b 1.22 1.12 4.83 1.04 0.82 1.11 0.97 0.94 0.82

(tb=0) (2.69) (2.04) (1.90) (2.82) (2.38) (1.92) (5.35) (5.96) (1.50)

[tb=1] [0.49] [0.21] [1.51] [0.10] [-0.54] [0.20] [-0.18] [-0.40] [-0.34]

{pa=0,b=1} {0.87} {0.96} {0.33}

R2 3.8% 4.9% 4.6% 7.1% 5.5% 5.3% 12.7% 14.2% 3.9%

R2
a=0,b=1 3.6% 4.0% 1.7% 7.0% 7.4% 5.2% 11.8% 12.3% 2.5%

R2
OOS 5.5% 5.8% 12.6% 12.9% 13.6% 10.9%

PANEL B - Predicting Realized Risk and Alphas

σ̂2
n,t+1 = a + b · σ2

n,t + ϵt β̂
(e)
n,t+1 = a + b · β

(e)
n,t + ϵt α̂

(e)
n,t+1 = a + b · α

(e,1y)
n,t + ϵt

Variation = All Across AC Over Time All Across AC Over Time All Across AC Over Time

a 0.00 0.02 0.00

(ta=0) (0.17) (0.51) (0.40)

b 0.68 0.71 -0.28 0.96 0.99 -0.24 0.32 0.31 0.38

(tb=0) (9.45) (6.95) (-0.54) (16.82) (16.86) (-1.21) (0.61) (0.61) (0.66)

[tb=1] [-4.51] [-2.81] [-2.44] [-0.72] [-0.20] [-6.15] [-1.28] [-1.40] [-1.09]

{pa=0,b=1} {0.00} {0.76} {0.44}

R2 26.8% 38.8% 0.6% 61.5% 67.9% 1.3% 0.5% 0.5% 0.5%

R2
a=0,b=1 19.3% 18.6% -9.3% 61.4% 61.7% -25.3% -1.8% -1.1% -1.8%

R2
OOS 9.5% -26.1% 60.9% -14.8% 5.4% 5.8%
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Table 8
Predicting Realized Returns using Subjective E[Return] (by Asset Class)

This table reports results from the estimation of Equation 16 by asset class. µn,t is the subjective expected return

aggregated across institutions as described in Subsection 4.1. The predictor in these regressions, µ
(1y)
n,t , is a linear

transformations of µn,t to reflect 1-year expected returns (as per Equation 18). Inference relies on Newey and West
(1987, 1994). R2

OOS reflects an out-of-sample R2 metric, which evaluates the predictability of the given predictor
against the predictability of the historical average return for the given asset class (see Footnote 23). NR2 reflects the
number of years of forecasting errors we have to compute R2

OOS. Sections 2.2 and 4.1 provide more details about the
data and Section 4.3 provides more details about the analysis reported in this table.

a (ta=0) b (tb=0) [tb=1] R2 R2
OOS NR2

US TIPS 0.03 (1.61) 0.34 (0.60) [-1.18] 2.9% 9.7% 5

US Bonds 0.01 (0.33) 1.01 (1.48) [0.02] 4.9% 4.2% 27

US Govt Bonds 0.02 (1.30) 0.55 (1.42) [-1.16] 10.0% 1.8% 24

US Muni Bonds 0.01 (1.44) 1.09 (4.06) [0.34] 14.7% 10.2% 19

US Inv Grade Corp Bonds 0.02 (0.91) 1.33 (3.83) [0.96] 46.6% 39.6% 17

US High Yield Corp Bonds -0.04 (-1.52) 2.51 (4.84) [2.91] 59.3% 45.3% 19

Global Bonds (Ex US) 0.00 (0.08) 0.68 (0.66) [-0.32] 1.3% 15.7% 13

US Equities (Large Cap) 0.03 (0.30) 0.98 (0.67) [-0.02] 1.7% 3.1% 35

US Equities (Small Cap) 0.05 (0.59) 0.27 (0.24) [-0.66] 0.2% 11.6% 24

Global Equities (Developed, Ex US) -0.09 (-0.85) 2.32 (1.67) [0.95] 8.6% 8.2% 25

Global Equities (Emerging) 0.14 (0.88) -0.62 (-0.37) [-0.96] 0.9% 15.9% 15

REITs -0.05 (-0.61) 2.71 (2.32) [1.46] 16.8% 10.2% 25

Private Real Estate -0.01 (-0.39) 1.08 (2.99) [0.21] 15.3% 21.4% 25

Hedge Funds -0.01 (-0.15) 0.86 (0.87) [-0.14] 3.3% -5.7% 13

Commodities -0.10 (-1.97) 2.15 (1.24) [0.66] 11.3% 4.7% 19

Infrastructure -0.02 (-0.34) 1.43 (1.94) [0.58] 15.6% - -
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Internet Appendix

“The Subjective Risk and Return Expectations of Institutional Investors”

By Spencer J. Couts, Andrei S. Gonçalves, and Johnathan A. Loudis

This Internet Appendix is organized as follows. Section A provides a full description of

the data sources and measurement for the analysis and Section B describes additional results

that supplement the main findings in the paper.



A Data Details

This section provides details on our collection of Capital Market Assumptions (CMAs).

A.1 Data Collection Process

We collected the long-term CMAs of 34 institutions on total: 18 asset managers and 16 insti-

tutional investor consultants. We rely on three complementary data collection approaches:

(i) The bulk of the data comes directly from the institutions covered in our CMAs. We

identify individuals within each institution that are connected to the production of

CMAs and contact them directly to request access to their data. In all successful cases,

the institution send us continuous (at least annual) data covering from some initial

year until their most recent CMA, and thus these data are free of issues related to

attrition rates.

(ii) To complement the data sent directly by institutions, we also obtain data from online

sources. As in Dahlquist and Ibert (2023), our approach is simple: we obtain the most

recent CMA of each institution directly from their website and complement these CMAs

with prior CMAs obtained through google searches and archive.org.

(iii) The third data collection approach is based on indirect data obtained from pension

funds. Specifically, we contacted various pension funds to request the CMAs they rely

on when deciding their portfolio allocation. In the successful cases, the pension funds

send us their their portfolio allocation reports and/or their CMA reports. In turn, these

reports include the numbers (expected returns, volatilities, and correlations) associated

with the CMAs of third party institutions that the pension fund rely on (including

consultants and sometimes asset managers).

Whenever an institution-year observation is available through more than one of the three

methods above, we rely on a pecking order for data selection (we use (i) when available,

(ii) when (i) is not available, and (iii) when nether (i) nor (ii) is available). Given this
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pecking order, 82% of the institution-year observations in our baseline sample is based on

data collected from methods (i)+(ii).

As we explain in Section B, while the results we report in the main text combine consul-

tants with managers and rely on this pecking order, we explore different subsets of the data

in our robustness checks to demonstrate that our results are not due to particular biases

that may be present in the data. For example, we show that our results are similar if we

rely only on consultants or only on managers, indicating that our results are not due to any

particular incentive that is specific to either of these type of institutions. Analogously, we

show that our results are similar if we rely only on data collection process (i)+(ii) or only

on data collection process (iii), indicating that our results are not due to potential biases

that may arise from collecting data directly from the institution or collecting data indirectly

through pension funds.

Each institution-year CMA covers a range of asset classes, which we identify based on the

asset class name used in the CMA report and/or the actual portfolio index stated in the

CMA report. Our final sample contains a risk-free asset class proxy (US Cash) as well as 19

risky asset classes. To decide on these 19 risky asset classes, we consider three aspects. First,

whether the asset class is a major asset class for institutional investors. Second, whether

the asset class is covered by a reasonable number of institutions in our sample. And third,

whether the asset class is covered over a reasonable time period within the institutions that

cover it. We include all asset classes that perform well in these dimensions, with the final list

of asset classes covered in our study available in the first column of Table IA.1.

Since the names/indexes for different asset classes differ across institutions and over time

within institutions, we use our judgment when mapping asset classes within and across

institutions to the asset classes included in our final sample. Specifically, we start by manually

mapping each asset class in each institution-year observation to an institution-specific asset

class name (fixed over time) that reflects the underlying asset class well. Then, we map each

institution-specific asset class name to a broader asset class name (which we refer to as the

master asset class) that reflects the institution-specific asset class name reasonably well while
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allowing for small mismatches to accommodate asset classes from different institution under

the same asset class name. Finally, we map these master asset classes to our final 20 asset

classes in column 1 of Table IA.1 (which we refer to as primary asset classes). Note that

any mismatch between asset classes across institutions would lead to an overstatement of

heterogeneity across institutions, but one of our main findings is that belief heterogeneity

across asset classes dominates belief heterogeneity across institutions.

The default master asset class of each primary asset class is the one with the exact same

name as the primary asset class itself. Column“% Match” in Table IA.1 shows the fraction of

institution-year observations with the primary asset class available that has the name of the

primary asset class matching the name of the underlying master asset class. These numbers

are high but not 100% because we allow for substitutions of the master asset class when the

default one is not available. The other columns of Table IA.1 show the master asset classes

that are used as substitutes for the default master asset class. We allow for some flexibility

(to increase coverage) without allowing for too large of a deviation between the primary

asset class and its underlying master asset class. Section B.1.3 provides a robustness analysis

that focuses on institution-year observations for which the primary asset class name matches

the name of the underlying master asset class used (the results are very similar to the ones

reported in the main text).

A.2 Extracting Beliefs from the CMAs

As JP Morgan details in their 2015 report, their expected returns (µ), expected volatilities

(σ), and expected correlations (ρ) are all obtained based on their views on log returns through

a log-Normal transformation.IA.1 Specifically, they first form their beliefs in log return space

and then translate to raw return space using the assumption that log returns are normally

distributed. In mathematical terms, they report (for each asset class j)

IA.1The use of µ in this section embeds a slight abuse of notation since µ reflects expected excess returns
in the main text while it reflects expected returns (not in excess of the risk-free asset) in this section.
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


µj

σ2
j

ρj,i


 =




eµ̂j+
1

2
·σ̂2

j − 1

e2·(µ̂j+
1

2
·σ̂2

j ) · (eσ̂
2

j − 1)
(
eρ̂j,i·σ̂i·σ̂j − 1

)
/

√
(eσ̂

2

j − 1) · (eσ̂
2

i − 1)


 (IA.1)

where µ̂, σ̂, and ρ̂ are the expected log returns, expected log volatilities, and expected log

correlations.IA.2

To obtain the log return estimates, one needs to solve the system above for the log return

quantities, which yields:




σ̂2
j

µ̂j

ρ̂j,i


 =




log
(
1 + σ2

j/(µj + 1)2
)

log(µj + 1)− 1
2
· σ̂2

j

log

(
1 + ρj,i ·

√
(eσ̂

2

j − 1) · (eσ̂
2

i − 1)

)
/ (σ̂i · σ̂j)




(IA.2)

All institution-year observations in our sample contain σj and ρj,i. However, they vary

on whether they contain “expected arithmetic returns” (which is µ in our notation), “ex-

pected geometric returns” (which is eµ̂j − 1 in our notation as per Footnote IA.2), or both.

Using the transformations above, we recover all six variables (µj, σj, ρj,i, µ̂j, σ̂j, ρ̂j,i) for all

institution-year observations in our sample and use subsets of these variables for different

parts of our analysis. In particular, the main text is entirely based on (µj, σj, ρj,i) while our

robustness check related to “expected geometric returns” (in Section B.2.1) also uses µ̂j and

σ̂j. Below, we describe how we recover all six variables for the different cases that arise in

our data construction. We then describe which variables are used in the main text and in

our robustness checks.

Case 1: We have “Expected Arithmetic Return”

In this case, we directly observe (µj, σj, ρj,i) and solve for (µ̂j, σ̂j, ρ̂j,i) from the system in

Equation IA.2.

IA.2The JP Morgan 2015 report also provides eµ̂j − 1 as the “Expected Compound Return”.
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Case 2: We have “Expected Geometric Return”

In this case, we directly observe (σj, ρj,i) and directly recover µ̂j = log(1 +

Expected Geometric Return). We then combine Equations IA.1 and IA.2 to solve for (µj,

σ̂j, ρ̂j,i) from




µj

σ̂2
j

ρ̂j,i


 =




eµ̂j+
1

2
·σ̂2

j − 1

log
(
1 + σ2

j/(µj + 1)2
)

log

(
1 + ρj,i ·

√
(eσ̂

2

j − 1) · (eσ̂
2

i − 1)

)
/ (σ̂i · σ̂j)




(IA.3)

The first two equations in this system cannot be solved in closed form for µj and σ̂j as

functions of µ̂j and σj. So, we solve these two equations numerically using a root-solving

algorithm and obtain ρ̂j,i from the third equation in closed-form.

Case 3: We have “Expected Arithmetic Return” & “Expected Geometric Return”

In this case, we directly observe (µj, σj, ρj,i) and directly recover µ̂j = log(1 +

ExpectedGeometricReturn). We then calculate (σ̂j, ρ̂j,i) from


 σ̂2

j

ρ̂j,i


 =




log
(
1 + σ2

j/(e
2·µ̂j+σ̂2

j )
)

log

(
1 + ρj,i ·

√
(eσ̂

2

j − 1) · (eσ̂
2

i − 1)

)
/ (σ̂i · σ̂j)


 (IA.4)

The first equation in this system cannot be solved in closed form for σ̂j as a function of

µ̂j and σj. So, we solve this equation numerically using a root-solving algorithm and obtain

ρ̂j,i from the second equation in closed-form. Note that this approach ensures the “Expected

Arithmetic Return” is not used when calculating (σ̂j, ρ̂j,i).

Our use of (µj, σj, ρj,i, µ̂j, σ̂j, ρ̂j,i)

In the main text, we construct
∑R

j,t from (σj,t, ρj,i,t) and set Ej,t[R] = µj,t, which does not

rely on the “Expected Geometric Return” variable (unless the “Expected Arithmetic Return”

variable is missing). In our robustness check of Section B.2.1, we still construct
∑R

j,t from

(σj,t, ρj,i,t), but we set Ej,t[R] = eµ̂j,t − 1 based on Footnote IA.2, which does not rely on the
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“Expected Arithmetic Return” variable (unless the “Expected Geometric Return” variable is

missing). Section B.2.1 also explores Ej,t[R] = eµ̂j,t+0.5·σ̂2

j,t−1, but the results are very similar,

and thus omitted for brevity.
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B Results from Alternative Specifications

This section provides results that complement the main findings in the paper.

B.1 Main Results with Alternative Subsets of the Data

In the main text, we combine different data sources and institution types to maximize data

coverage (with the measurement of subjective beliefs detailed in Section A.1). In this section,

we show that our results are similar for different subsets of the data. This finding helps to

alleviate/eliminate concerns related to different potential biases that may affect our data.

B.1.1 Main Results for Each Institution Type

One potential worry with including institutional investor consultants in our analysis is that

they may have distortionary incentives related to their business model. For instance, it is

possible that the CMAs of consultants are distorted to justify the portfolio allocation of their

clients. To address this issue, Figure IA.2 shows that our main results are very similar if we

rely on a sample that is based entirely on asset managers.

Relatedly, a potential worry with including managers in our analysis is that they may

distort their CMAs to meet their own incentives. For instance, managers may create CMAs

that are design to create demand for the asset classes they currently overweight in their

portfolios. To address this issue, Figure IA.3 shows that our main results are very similar if

we rely on a sample that is based entirely on consultants.

The results in this subsection indicate that our results are not due to any particular

incentive that is specific to either consultants or managers.

B.1.2 Main Results for Each Data Source

One may worry that pension fund reports do not reflect the true CMAs of the institutions we

are trying to capture. This would happen, for example, if institutions sent different CMAs

to different pension funds based on the pension funds’ own incentives (e.g., high expected
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returns allow pension funds to discount their liabilities at a high rate, with this incentive

depending on how underfunded the pension fund is). To address this issue, Figure IA.4 shows

that our main results are very similar if we rely on a sample that is entirely based on the

direct CMAs of the underlying institutions (data collection processes (i) and (ii) in Section

A.1).

Relatedly, one may worry that institutions have incentives to send us distorted CMAs that

make them “look good”. For instance, they could send us CMAs that combine their current

models with historical data, and thus that differ from the CMAs produced historically (which

better reflect the real-time beliefs of the institutions). To address this issue, Figure IA.5 shows

that our main results are very similar if we rely on a sample that is entirely based on the

CMAs we receive from pension funds (data collection processes (iii) in Section A.1).

B.1.3 Main Results Using Observations in which the Primary Asset Class is Available

As Table IA.1 highlights, to increase coverage, we build our 20 primary asset classes by

combining data from different master key asset classes depending on data availability. This

process creates mismatches between the asset classes of different institutions. To address this

issue, Figure IA.6 shows that our main results are very similar if we rely on a sample that

focuses on institution-year observations for which the primary asset class name matches the

name of the underlying master asset class used (that is, a sample that does not rely on the

substitute asset classes in Table IA.1). The exception is that we still rely on substitute asset

classes for US Cash and Equities (Large Cap) since these two asset classes are needed to

obtain µ and β.

B.2 Main Results with Alternative Constructions of Subjective Beliefs

The results in the main text are based on institutions’ beliefs about arithmetic (excess)

returns and without any homogeneity restriction on the horizon of beliefs (i.e., different

institutions report beliefs for different horizons in the baseline analysis). In this section, we

show that our conclusions are very similar if we instead (i) use expected geometric returns
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to recover E[R] or (ii) focus only on institution-year observations with a horizon of 10 years,

which is the most common horizon in our dataset (capturing around 41% of our institution-

year observations).

B.2.1 E[R] Based on Expected Geometric Returns

In our baseline analysis, Ej,t[R] is based on expected arithmetic returns (µj,t in the notation

of Section A.2). To consider expected geometric returns, we reproduce our main results

using Ej,t[R] = eµ̂j,t − 1 (while holding all other empirical decisions fixed), where µ̂j,t is the

expected log return (see the discussion in Section A.2). Figure IA.7 provides the results,

which demonstrate that our findings are very similar if we use expected geometric returns

instead of expected arithmetic returns. We also consider arithmetic returns implied from the

geometric returns (e.g., Ej,t[R] = eµ̂j,t+0.5·σ̂2

j,t − 1), but the results are very similar, and thus

omitted for brevity.

B.2.2 Beliefs Based on a Homogeneous Horizon

In our baseline analysis, the beliefs have heterogeneous horizons (they vary from 4 years to

30 years). To ensure our results are not coming from horizon heterogeneity, we consider a

sample in which all institution-year observations have a 10 year horizon, which is the most

common horizon in our dataset (capturing around 41% of our institution-year observations).

Figure IA.7 provides the results, which demonstrate that our findings are very similar if we

rely on a sample in which belief horizons are homogeneous.

B.3 Main Results with Aggregated Data Obtained from a Third Party Company

While our robustness checks of Sections B.1 and B.2 are useful in minimizing several concerns

that readers may have about our dataset, it is always possible that our dataset is subject

to other biases that we have not addressed. This section explores a different dataset (of

aggregated CMAs) obtained from a third party company.
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This third party company systematically collects (annually) the CMAs of many institu-

tional investor consultants and asset managers. We have access to their annual CMA surveys

from 2012 to 2022, with each year providing aggregated (across institutions) data on expected

returns, volatilities, and correlations. Their CMA surveys cover 17 institutions in 2012, with

this number growing over time to 40 institutions in 2022.

Since we do not observe the institution-level data in this case, we treat each aggregate

observation (of expected returns, volatiltities, and correlations) as coming from a single

institution. Then, we perform our main analysis using this single representative institution

(except that we cannot produce results related to heterogeneity across institutions). Figure

IA.9 provides the main results. In a nutshell, the overall findings are very similar to what we

report in the main text.
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Table IA.1
Constructing our Asset Classes

This table reports the master asset classes we rely on when constructing the primary asset classes used in our paper.
Specifically, we start by manually mapping each asset class in each institution-year observation to an institution-
specific asset class name (fixed over time) that reflects the underlying asset class well. Then, we map each institution-
specific asset class name to a broader asset class name (which we refer to as the master asset class) that reflects the
institution-specific asset class name reasonably well while allowing for small mismatches to accommodate asset classes
from different institution under the same asset class name. Finally, we map these master asset classes to our final 20
asset classes (which we refer to as primary asset classes). The default master asset class of each primary asset class
is the one with the exact same name as the primary asset class itself (in the first column of this table). Column “%
Match” shows the fraction of institution-year observations with the primary asset class available that has the name of
the primary asset class matching the name of the underlying master asset class. The other columns show the master
asset classes that are used as substitutes for the default master asset class. Sections 2 and A provide more details
about our subjective beliefs data.

Substitute Asset Classes

Major Asset Class % Match Substitute 1 Substitute 2 Substitute 3 Substitute 4

US Cash 92% 3-Month Libor US Treasuries ST

US TIPS 100%

US Bonds 86% US Bonds Core+

US Govt Bonds 58% US Treasuries MT US Govt MT US Treasuries LT US Govt LT

US Muni Bonds 80% US Muni Bonds (1-15 Years)

US Inv Grade Corp Bonds 69% US Corp Fixed Income US Corp Bonds LT

US High Yield Corp Bonds 100%

Global Bonds (Ex US) 50% Govt Bonds (Ex US) Inv Grade Corp Bonds (Ex US) Global Bonds Global Govt Bonds

Private Debt 100%

US Equities (Large Cap) 70% US Equities

US Equities (Small Cap) 81% US Equities (Mid+Small Cap)

Global Equities (Dev, Ex US) 61% Global Equities (Ex US) Global Equities

Global Equities (Emerging) 100%

Private Equity 100%

REITs 91% REITs (Global)

Private Real Estate 87% Private Real Estate Funds Real Estate (Global)

Hedge Funds* 94% Equal-Weighted Average of Different Hedge Fund Strategies

Commodities 97% Commodity Futures

Venture Capital 100%

Infrastructure 73% Private Infrastructure

Abbreviations: ST = Short-Term; MT = Mid-Term; LT = Long-Term; Ex = Excluding; Cap = Market Capitalization; Govt = Government; Muni = Municipal;

* For Hedge Funds, we take the average of all available hedge fund strategies when the major category (Hedge Funds) is missing.

The hedge fund strategies are (they vary by institution-year observation) “Funds of Funds”, “Multi Strategy”, “Discretionary”, “Open Mandate”, “Directional”,

“Non-Directional”, “Event Driven”, “Market Neutral”, “Relative Value”, “Long-Short”, “Long Bias”, “Macro”, “CTA”, “Equity Style”,

“Credit Style Bonds Hedged”, “Asymmetric Style”, “Equity Hedged”, “Convertible”, “Moderate Aggregate Risk”, “Absolute Returns”, “Managed Futures”
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Table IA.2
Predicting Realized Returns and Risk using Subjective Beliefs

(Alternative Specifications)

This table reports results from the estimation of equations analogous to Equation 16. µn,t and β
(e)
n,t are the belief

quantities aggregated across institutions, with the aggregation method for Panel A as described in Subsection 4.1
and for Panel B as the average of the respective belief quantity across all institutions in a given year. µ

(1y)
n,t is a

linear transformations of µn,t to reflect 1-year expected returns (as per Equation 18). We consider pooled regressions
(Variation=All), regressions with year fixed effects (Variation=Across AC), and regressions with asset class fixed
effects (Variation=Over Time). Inference relies on double clustering (by year and asset class). pa=0,b=1 reflects the
p-value for a Wald test of the joint hypothesis that a = 0 and b = 1. R2 reflects the pooled R2 in the Variation=All
case and within R2 values in the other two cases. R2

a=0,b=1 reflects an R2 metric design to identify whether belief
variation (across asset classes and over time) improves upon belief homogeneity (see Footnote 22). R2

OOS reflects
an out-of-sample R2 metric, which evaluates the predictability of the given predictor against the predictability of a
historical returns benchmark (see Footnote 23). β̂

(e)
n,t values are calculated from monthly returns within year t+ 1. In

Panel A, year t+1 actually refers to the 12 months covering from the second quarter of year t+1 to the first quarter
of year t + 2. Sections 2.2 and 4.1 provide more details about the data and Section 4.3 provides more details about
the analysis reported in this table.

PANEL A - Realized Returns from Q2 of t + 1 to Q1 of t + 2

rn,t+1 = a + b · µn,t + ϵt rn,t+1 = a + b · µ
(1y)
n,t + ϵt β̂

(e)
n,t+1 = a + b · β̂

(e)
n,t + ϵt

Variation = All Across AC Over Time All Across AC Over Time All Across AC Over Time

a 0.00 0.01 -0.01

(ta=0) (-0.25) (0.30) (-0.22)

b 1.45 1.33 5.42 1.17 0.91 1.20 0.98 1.01 -0.22

(tb=0) (2.12) (1.70) (1.57) (2.21) (2.10) (1.55) (18.96) (18.65) (-1.00)

[tb=1] [0.66] [0.42] [1.28] [0.32] [-0.20] [0.26] [-0.31] [0.16] [-5.61]

{pa=0,b=1} {0.79} {0.78} {0.85}

R2 3.7% 4.9% 4.1% 6.2% 4.8% 4.3% 61.4% 66.4% 0.9%

R2
a=0,b=1 3.3% 3.6% 1.3% 6.0% 6.3% 4.1% 61.3% 61.7% -22.7%

R2
OOS 4.6% 4.2% 9.7% 9.2% 58.5% -15.7%

PANEL B - Belief Aggregation Based on Annual Cross-Sectional Averages

rn,t+1 = a + b · µn,t + ϵt rn,t+1 = a + b · µ
(1y)
n,t + ϵt β̂

(e)
n,t+1 = a + b · β̂

(e)
n,t + ϵt

Variation = All Across AC Over Time All Across AC Over Time All Across AC Over Time

a 0.00 0.01 0.02

(ta=0) (-0.14) 0.45 0.88

b 1.15 1.06 3.57 0.86 0.61 0.84 0.97 1.01 -0.22

(tb=0) (2.50) (1.92) (1.48) (2.09) (1.61) (1.27) (17.43) (18.26) (-0.95)

[tb=1] [0.33] [0.11] [1.06] [-0.34] [-1.03] [-0.25] [-0.56] [0.17] [-5.29]

{pa=0,b=1} {0.95} {0.90} {0.86}

R2 3.4% 4.4% 2.9% 4.8% 3.0% 2.9% 62.3% 69.4% 0.9%

R2
a=0,b=1 3.4% 3.7% 1.4% 4.6% 5.0% 2.7% 62.3% 62.6% -22.0%

R2
OOS 5.3% 5.7% 11.0% 11.4% 63.2% -8.2%
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Figure IA.1
Aggregate Allocation of US Public Pension Funds

This figure plots the aggregate allocation of US Public Pension Funds from 2001 to 2021 (data from the Center for
Retirement Research at Boston College). This allocation is used to form the market portfolio in the Pension CAPM
(m = p) model we explore in the main text.
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(a) λ
(e)
j,t vs µ

(e)
j,t (b) rp

(e)
j,n,t vs µj,n,t

(c) µj,n,t = µn,t + µj,t + ηj,n,t (d) µj,n,t = µn,t + µn,j + ηj,n,t

(e) µn (Beliefs vs Data) (f) σn (Beliefs vs Data)

Figure IA.2
Main Results: Using Only Asset Managers

This figure replicates our main results, but using only the CMAs of asset managers. Panel (a) replicates Figure 3(a)
in the main text. Panel (b) replicates Figure 5(a) in the main text. Panels (c) and (d) replicate Figures 7(a) and 7(b)
in the main text. Panels (e) and (f) replicate Figures 11(a) and 11(b) in the main text. Sections 2 and A provide more
details about our subjective beliefs data and Section B.1.1 provides more details about the analysis reported in this
figure.
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(e)
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(e)
j,n,t vs µj,n,t

(c) µj,n,t = µn,t + µj,t + ηj,n,t (d) µj,n,t = µn,t + µn,j + ηj,n,t

(e) µn (Beliefs vs Data) (f) σn (Beliefs vs Data)

Figure IA.3
Main Results: Using Only Institutional Investor Consultants

This figure replicates our main results, but using only the CMAs of institutional investor consultants. Panel (a)
replicates Figure 3(a) in the main text. Panel (b) replicates Figure 5(a) in the main text. Panels (c) and (d) replicate
Figures 7(a) and 7(b) in the main text. Panels (e) and (f) replicate Figures 11(a) and 11(b) in the main text. Sections
2 and A provide more details about our subjective beliefs data and Section B.1.1 provides more details about the
analysis reported in this figure.
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(e)
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(e)
j,n,t vs µj,n,t

(c) µj,n,t = µn,t + µj,t + ηj,n,t (d) µj,n,t = µn,t + µn,j + ηj,n,t

(e) µn (Beliefs vs Data) (f) σn (Beliefs vs Data)

Figure IA.4
Main Results: Using Only Data Obtained Indirectly through Pension Fund Reports

This figure replicates our main results, but using only data obtained indirectly through pension fund reports. Panel (a)
replicates Figure 3(a) in the main text. Panel (b) replicates Figure 5(a) in the main text. Panels (c) and (d) replicate
Figures 7(a) and 7(b) in the main text. Panels (e) and (f) replicate Figures 11(a) and 11(b) in the main text. Sections
2 and A provide more details about our subjective beliefs data and Section B.1.2 provides more details about the
analysis reported in this figure.
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(e)
j,n,t vs µj,n,t

(c) µj,n,t = µn,t + µj,t + ηj,n,t (d) µj,n,t = µn,t + µn,j + ηj,n,t

(e) µn (Beliefs vs Data) (f) σn (Beliefs vs Data)

Figure IA.5
Main Results: Using Only Data Obtained Directly from the Institutions Underlying our CMAs

This figure replicates our main results, but using only data obtained directly from the Institutions Underlying our
CMAs. Panel (a) replicates Figure 3(a) in the main text. Panel (b) replicates Figure 5(a) in the main text. Panels (c)
and (d) replicate Figures 7(a) and 7(b) in the main text. Panels (e) and (f) replicate Figures 11(a) and 11(b) in the
main text. Sections 2 and A provide more details about our subjective beliefs data and Section B.1.2 provides more
details about the analysis reported in this figure.
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(e)
j,n,t vs µj,n,t

(c) µj,n,t = µn,t + µj,t + ηj,n,t (d) µj,n,t = µn,t + µn,j + ηj,n,t

(e) µn (Beliefs vs Data) (f) σn (Beliefs vs Data)

Figure IA.6
Main Results: Using Only Data with Primary Asset Class Available

This figure replicates our main results, but using only institution-year-asset class observations for which the given
primary asset class used in the analysis is directly available among our master asset classes for the given institution-
year observation. Panel (a) replicates Figure 3(a) in the main text. Panel (b) replicates Figure 5(a) in the main text.
Panels (c) and (d) replicate Figures 7(a) and 7(b) in the main text. Panels (e) and (f) replicate Figures 11(a) and
11(b) in the main text. Sections 2 and A provide more details about our subjective beliefs data and Section B.1.3
provides more details about the analysis reported in this figure.
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(e)
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(c) µj,n,t = µn,t + µj,t + ηj,n,t (d) µj,n,t = µn,t + µn,j + ηj,n,t

(e) µn (Beliefs vs Data) (f) σn (Beliefs vs Data)

Figure IA.7
Main Results: E[R] Based on Expected Geometric Returns

This figure replicates our main results, but measuring E[R] from expected geometric returns (i.e., using Ej,t[R] =
eµ̂j,t − 1, where µ̂j,t is the expected log return discussed in Subsection A.2). Panel (a) replicates Figure 3(a) in the
main text. Panel (b) replicates Figure 5(a) in the main text. Panels (c) and (d) replicate Figures 7(a) and 7(b) in
the main text. Panels (e) and (f) replicate Figures 11(a) and 11(b) in the main text. Sections 2 and A provide more
details about our subjective beliefs data and Section B.2.1 provides more details about the analysis reported in this
figure.
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j,n,t vs µj,n,t

(c) µj,n,t = µn,t + µj,t + ηj,n,t (d) µj,n,t = µn,t + µn,j + ηj,n,t

(e) µn (Beliefs vs Data) (f) σn (Beliefs vs Data)

Figure IA.8
Main Results: Beliefs Based on a Homogeneous Horizon

This figure replicates our main results, but measuring beliefs only from CMAs that state a 10 year horizon, which is
the most common horizon in our dataset. Panel (a) replicates Figure 3(a) in the main text. Panel (b) replicates Figure
5(a) in the main text. Panels (c) and (d) replicate Figures 7(a) and 7(b) in the main text. Panels (e) and (f) replicate
Figures 11(a) and 11(b) in the main text. Sections 2 and A provide more details about our subjective beliefs data and
Section B.2.2 provides more details about the analysis reported in this figure.
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(e) µn (Beliefs vs Data) (f) σn (Beliefs vs Data)

Figure IA.9
Main Results: Using Aggregated Data Obtained from a Third Party Company

This figure replicates our main results, but measuring beliefs each year from CMAs collected from a third party
company and aggregated across institutions (we only have access to the aggregated data). Given this aggregation
issue, we cannot replicate our results about heterogeneity of beliefs across institutions in this sample. Panel (a)
replicates Figure 3(a) in the main text. Panel (b) replicates Figure 5(a) in the main text. Panels (c) and (d) replicate
Figures 11(a) and 11(b) in the main text. Sections 2 and A provide more details about our subjective beliefs data and
Section B.3 provides more details about the analysis reported in this figure.
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