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1 Introduction

In the last decade since the great financial crisis, a variety of different reforms have been

initiated to improve resilience and limit risk in the financial sector. International standards

such as Basel II.5 and Basel III, as well as the Dodd-Frank Act in the U.S., have all updated

or created new rules and laws that hope to avoid excessive risk-taking by financial institu-

tions. However, an unintended consequence of these new regulations has been their effect on

the trading behavior of dealers in over-the-counter (OTC) markets. Many dealers in OTC

markets are bank-affiliated1, that is, they operate as a subsidiary of a bank holding company

(BHC) (Cetorelli and Stern, 2015)2. The largest dealers in OTC markets are bank-affiliated,

and they comprise a large part of the market: about 50% of transaction volume in U.S.

corporate bond markets in 2020 (Anderson et al., 2023; The Federal Reserve Board, 2023).

What is key is that recent regulations aimed at improving resilience in the financial sector are

applied to a BHC’s consolidated balance sheet, which includes all subsidiary dealer trading

assets (Adrian et al., 2018; Cimon and Garriott, 2019). That is, inventories of OTC-traded

assets held by bank-affiliated dealers for trading purposes are explicitly included in their

parent BHC’s consolidated balance sheet, and so are also included in the calculation of key

regulatory ratios. When making trading decisions, a bank-affiliated dealer anticipates the

impact on their parent BHC’s regulatory position.

Among the regulations most often cited as having the largest impact on bank-affiliated

dealers’ trading behavior, this paper focuses on the impact of Basel-style risk-weighted asset

capital requirements3. While Basel II (2008) and Basel II.5 (2011) refined the notion of risk-

weighted assets to better reflect the market risks that assets held for trading face, Basel III

(expected implementation 2025) has updated these market risk weights. When risk weights

increase, stocks of those asset classes affected are weighted more heavily in the calculation

of risk-weighted assets: total risk-weighted assets are higher for the same amount of assets

held, resulting a higher capital requirement. Compared to Basel II.5, these new market

risk weights are estimated (as of 2019) to increase market risk capital requirements by 22%

on average (BIS, 2019). This affects bank-affiliated dealers because many of the affected

1I use the term bank-affiliated to refer to dealers that operate as a subsidiary of a bank holding company
(BHC). This is not to be confused with the term “broker-dealers”, usually used to refer to the largest
investment banks prior to the 2008 financial crisis. While Bear Stearns, Lehman Brothers, and Merrill
Lynch were either taken over or declared bankruptcy, Goldman Sachs and Morgan Stanley were converted
into BHCs post-crisis (Adrian and Shin, 2010).

2A BHC may have many subsidiaries, including but not limited to: commercial banking, specialty
lending, asset management, underwriting, and, of course, dealer trading desks for multiple OTC markets
(Cetorelli and Stern, 2015).

3Other notable important regulations being the supplementary leverage ratio (SLR) and the liquidity
coverage ratio (LCR).
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asset classes trade OTC. In an informal survey of practitioners by the Committee on the

Global Financial System (CGFS), approximately 50% of survey respondents cited that these

expected revisions of the market risk framework will result in “at least a moderate decline”

in market making activity for those asset classes affected (CGFS, 2014).

Since these tighter regulations have taken effect, a large body of empirical evidence shows

several clear changes in OTC markets: dealers now hold fewer trading assets, bid-ask spreads

have widened, and standard liquidity metrics have deteriorated (Adrian et al., 2017; Duffie,

2023; Breckenfelder and Ivashina, 2021; Cimon and Garriott, 2019; Dick-Nielsen and Rossi,

2019; Cohen et al., 2024; Bao et al., 2018; Bessembinder et al., 2018; Choi and Huh, 2017).

But, precisely, through what mechanism do such regulations shape dealer decision-making,

producing these outcomes? Theoretical investigation of the impact of this type of regulation

on OTC markets is just beginning, and has thus far focused on the exploration of dealer

behavior subject to a reduced-form regulatory cost of inventories; for example, by either

imposing a regulatory cap on OTC inventory stock, as in Duffie et al. (2023), or placing

a holding cost per unit of inventory, as in Cohen et al. (2024). In contrast, in this paper

I aim to micro-found the regulatory balance sheet costs of OTC assets: dealers choose a

portfolio of assets, including risky OTC traded assets, under a balance-sheet level regulatory

constraint. OTC inventories are costly to hold due to the potential threat of penalties (in

the form of lower utility) faced if the regulatory constraint is violated.

I develop a search model of an inter-dealer OTC market in which bank-affiliated dealers,

referred to interchangeably in this text as agents, manage their portfolio of risk-free liquid

assets and risky OTC-traded assets subject to a balance sheet regulatory constraint. As in

Gârleanu (2009), agents are risk averse and face idiosyncratic uncertainty regarding their

endowment income and their private valuation of the OTC asset’s return. Furthermore,

these two processes can be correlated. The agent’s risky endowment income in this model

represents the earnings allocated to a dealer’s trading desk by the parent BHC from other

lines of business, which are therefore independent of dealer decisions. In the same vein, the

OTC asset also provides some outside unmodeled income called the OTC asset “dividend”.

This return includes not only any direct income (interest payments, true dividends), but

also provides an agent indirect income from holding the OTC asset. Since this is a model

of an inter-dealer market, for a bank-affiliated dealer this indirect income also includes any

intermediation profits from the retail side of the market.

The risk-free asset exists in perfectly elastic supply: agents can save or borrow any amount

at an exogenous risk-free rate, and have constant access to this outside market. The risky

OTC asset is traded in a decentralized market characterized by random pairwise meetings:

when agents meet, they engage in proportional (Kalai) bargaining. Agents can hold strictly
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positive units of the risky OTC asset. I micro-found regulatory inventory costs through a

balance sheet constraint. All agents are subject to a risk-based capital requirement inspired

by Basel II and Basel III in that they must maintain a certain level of common equity tier 1

capital (equity) relative to the value of the risk-weighted assets (the risk-weighted sum of the

market value of their risk-free and risky OTC assets) on their balance sheet in a proportion

set by a policymaker.4 An increase in the strictness of the regulation increases the minimum

level of equity an agent must hold, all else equal. I further assume that there is perfect

enforcement of the regulatory capital requirement: if an agent’s equity falls such that it is

below the regulatory minimum, they must immediately take action to remedy it.

These two last features are at the heart of this model. First, as a consequence of the

risk-weighted asset ratio, the more risky OTC assets a dealer has the higher the amount

of regulatory capital they must hold. In this way, the regulatory constraint is endogenous

since it depends on a dealer’s stock of risky OTC assets, which follows from dealer trading

decisions. The second is a consequence of the perfect enforcement assumption: in between

trading opportunities in the OTC market, if a dealer finds themselves in violation of the

constraint the only tool at their disposal is to cut their consumption to boost their savings

in the risk-free asset in order to increase their equity to the regulatory minimum. Since this

leads to lower utility, violating the regulatory constraint is costly for agents. As a result

of these two features, when an agent buys additional units of the risky OTC asset, they

also consider the impact on their regulatory position. If a dealer is close to their constraint,

they only buy at sufficiently low prices to remain in compliance and avoid the lower utility

penalty of violation. Search frictions are crucial to this mechanism, as they prevent agents

from being able to re-balance their portfolio continuously.

I solve the steady state numerically using an iterative procedure to solve a high-dimensional

fixed-point problem in the agent value function, trading rules, and distributions. To do so, I

modify the finite difference algorithm developed by Achdou et al. (2022) to account for what

is essentially a state-based boundary condition. I solve the model for a lower risk weight

(50%) to establish baseline results. I find that the presence of a risk-based capital require-

ment causes the marginal value of an additional unit of the risky OTC asset to collapse when

4In this model, I focus exclusively on how regulation affects market making through inventory balance
sheet costs, abstracting from funding costs which have been shown to be an additional important factor in
determining how dealers intermediate. Usually, dealers finance their positions via short-term funding on the
repo market - tighter regulation reduces a dealer’s ability to get funding (Cimon and Garriott, 2019; Adrian
et al., 2018). I also abstract away from competition from non bank-affiliated dealers and focus solely on the
choices of bank affiliated dealers. The rise of non-bank dealers to fill the immediacy gap left in recent years
is thus an observed trend this model will be unable to explain. Lastly, I abstract away from the choice of
risky-principal vs. agency trades on the part of dealers, considering only risk-principal trades (Saar et al.,
2019; Cimon and Garriott, 2019; An and Zheng, 2023).
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an agent’s state is near the regulatory bound; far from the bound, marginal values level off as

the risk of violating the constraint falls. Thus, the balance sheet costs of risky OTC assets

are heterogeneous and state-based, depending crucially on dealers’ distance-to-constraint.

These lower marginal values near the bound result in these dealers demanding lower prices

on asset purchases, leading to higher trading costs for their counter-party. As a consequence,

I find that spreads widen significantly near the regulatory threshold.

I use this model to study the impact of stricter regulation by increasing the risk weight

on risky OTC assets from 50% to 150%. The stricter regulation increases the set of agent

states that are constrained, making the risky OTC asset less attractive to agents near the

regulatory bound. The marginal value of an additional unit of the risky OTC asset falls

sharply near the new regulatory bound, with the steepest decline for agents that hold more

inventory. Consequently, I find that average spreads increase by 10 bps. I also find that

market participation tilts toward agents that have high levels of equity, and low-equity

traders withdraw from the market. Despite a smaller pool of traders, turnover increases as

the remaining better-capitalized agents comprise a higher fraction of meetings. This slightly

increases turnover in comparison to the low-regulatory weight environment.

This paper is organized as follows. Section 2 reviews the related literature. Section 3

outlines the quantitative model, and Section 4 discusses the method used to solve the model

and the parameterization. Section 5 presents the baseline model outcomes, and section 6

explores the counterfactual when risk weights increase due to stricter regulation. Section 7

concludes.

2 Related Literature

Many search-theoretic approaches to studying OTC markets follow the seminal works of

Duffie et al. (2005) and Lagos and Rocheteau (2009), in which dealers can intermediate trades

in an illiquid asset for customers. However, in this setting, the study of dealer inventory

management is limited: dealers do not have any private valuation of the OTC traded asset,

are risk-neutral, and have access to a centralized inter-dealer market. Consequently, dealers

do not hold steady state inventories and engage only in matchmaking activities for customers.

Weill (2007); Rocheteau and Weill (2011); Fleskes (2024) extend this framework to study the

out of steady state dynamics of dealer inventory, identifying under what conditions dealers

use their inventory capacity temporarily to smooth imbalances in customer trading needs

due to unexpected liquidity crises. In Cohen et al. (2024), the authors impose an asset-in-

advance constraint: dealers must hold assets to fulfill customer orders, and so have incentive

to hold inventories in the steady state. The regulatory cost of inventories here is modeled as

a per-unit cost to holding inventories.
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Dealer inventories play a more natural role when markets are fully decentralized.5 Hugonnier

et al. (2020) allow for fully decentralized two-tier markets for trade in an OTC asset. Risk-

neutral dealers and customers are heterogeneous in their private valuations of the asset and

engage in bilateral trade with binary asset holdings. A key result of their paper is that, in

the steady state, only some dealers with middle-of-the-road private valuations are willing to

provide intermediation services and that intermediation by dealers is characterized by inter-

mediation chains. Yang and Zeng (2021) use a similar two-tier market framework in which

risk-neutral dealers can now hold multiple units of the asset. By relaxing the binary asset

holding assumption, the authors show that there are multiple equilibria in which dealers

coordinate their liquidity provision depending on asset fundamentals.

In the above models, dealers have a special exogenous ability to intermediate in a retail

market. Other works in this literature focus instead on one-tier fully decentralized markets

to study endogenous intermediation: which agents decide to become intermediaries. Rather

than designating a special set of agents who exogenously have the ability to intermediate,

heterogeneous agents all can trade with each other. These markets are characterized by a

core-periphery structure and intermediation chains: at the core of the trading network are

agents who engage heavily in intermediation, and at the periphery are those who behave

more as value investors. The agents that arise as intermediaries tend to be those that have a

type that allows them to extract better terms of trade: they have faster meeting technologies,

better information, or more bargaining power such as in Jarosch et al. (2016); Donaldson

et al. (2018); Üslü (2019a); Bethune et al. (2022); Hugonnier et al. (2021); Farboodi et al.

(2023). In contrast to the above works, I find that it is certain agent states rather than fixed

agent types which drive the heterogeneity in trading behavior. In my model, agents are all

identical in that they face the same risky income processes. However, realizations for each

agent generate heterogeneity in the first dimension, equity.

In the vast majority of studies of OTC markets in this literature, agents are risk neutral.

Duffie et al. (2007) and Gârleanu (2009) are the foundational works that depart from this

assumption, relying on CARA utility preferences to microfound quadratic utility over multi-

ple units of the OTC asset.6 Kargar et al. (2023) is the exception, explicitly considering risk

5Another parallel literature that studies dealer inventory management is based on a class of search models
in the tradition of Rubinstein and Wolinsky (1987), such as in Johri and Leach (2002); Shevchenko (2004);
Masters (2007); Watanabe (2010); Wright and Wong (2014); Nosal et al. (2015, 2019); Watanabe (2020);
Gu et al. (2024); Gong and Wright (2024). These types of inventory models differ from the previously
discussed works in that they primarily study three-sided goods markets: there are usually distinct sellers,
middlemen, and buyers who all occupy different roles in the economy and face different frictional markets.
The middleman’s inventory management problem is therefore summarized by their pricing strategy on both
sides of the market, wholesale and retail. Carrasco and Smith (2017); Carrasco and Harrison (2023) focus
on the pricing strategies of a dealer liquidating their assets.

6The same method is used to micro-found the reduced form utility specifications in Vayanos and Weill
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averse customers and aggregate risk. However, the focus of their work is on the pricing of the

OTC asset and the portfolio choice problem of customers; dealers act as simple risk-neutral

profit maximizing matchmakers. In contrast, in this paper I investigate the portfolio prob-

lem of risk-averse dealers who are subject to a regulatory balance sheet constraint. Liquidity

in the inter-dealer market therefore a consequence of the constrained portfolio decisions of

dealers.

There is also a literature on inventory management by dealers in OTC markets in the

finance literature based on the seminal works of Amihud and Mendelson (1980) and Ho and

Stoll (1981, 1983).7. Works of this tradition primarily focus on the determination of bid-ask

spreads set by a (usually) monopolistic risk neutral dealer, where investors arrive to the

OTC market with fixed trading demands. Duffie (2023) extends Amihud and Mendelson

(1980) by imposing an maximum level of inventory that the dealer can hold: the higher the

balance sheet costs of inventories, the lower the inventory cap. As the level of inventories

approaches the regulatory implied limit, bid-ask spreads widen to account for the increasing

marginal cost of dealer balance sheet space. Similarly, Wang and Zhong (2022) study the

impact of the Basel III risk weight changes by varying the maximum level of inventories a

dealer can hold: they find that the increased capital requirements result in an increase in

order rejection rates by dealers. Adrian et al. (2020) study the impact of increased overnight

inventory costs and show that dealers adjust their pricing strategies as the end of the trading

day approaches to offload inventories and avoid them.

In contrast to this style of model, in this work all agents engage in bilateral trade;

distributions and agent demands are equilibrium objects. Furthermore, inventory costs are

derived via a balance sheet constraint rather than through an inventory cap. This paper is

the first, to the best of my knowledge, to study dealer inventory management from this joint

portfolio choice and search perspective in a general equilibrium framework.

3 A portfolio choice model with an illiquid asset

Time is continuous and infinite. Dealers, referred to interchangeably in this paper as agents,

are infinitely lived and discount time at a constant rate r ∈ (0, 1). There is a numeraire

good called consumption ct, a risk-free asset ωt in perfectly elastic supply, and a risky over-

the-counter (OTC) traded asset nt in some positive supply in shares S > 0. The risk-free

asset can be invested in an outside account that pays the discount rate and can be costlessly

converted into the numeraire. Alternatively, agents can also borrow in the risk-free asset at

(2008); Praz (2014); Üslü (2019b).
7Both this literature and the middlemen literature a la Rubinstein and Wolinsky (1987) have origins in

Garman (1976).
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the discount rate: ω is the stock of net risk-free assets an agent holds. The risky OTC asset

earns a risky dividend Dt, paid out in units of the risk-free asset. All agents earn income

from a risky endowment ηt also paid in units of the risk-free asset. Agents can hold multiple

divisible units of the risk-free asset ω and the risky OTC asset n ≥ 0.

I frame the above as the problem of a trading desk manager operating as a subsidiary of

a larger institution (i.e., a bank holding company). The risk-free asset is interpreted as cash,

or another equally liquid and safe asset like reserves, which serves as the unit of account.

The manager uses their cash holdings to buy and sell the OTC asset, and all income (from

dividends or endowments) is realized in this unit of account. The outside account paying the

discount rate r is interpreted as a reserve account; alternatively, they can borrow from an

outside market at the same rate. The manager controls their trading strategies and portfolio

decisions: their holdings of cash (the risk-free asset) and OTC asset inventories (the risky

OTC asset). However, they do not control the activities of the rest of the institution, for ex-

ample, the other BHC subsidiaries (e.g., commercial banking, investment banking, etc.). The

endowment is interpreted as any outside income the trading desk may periodically receive

from the institution’s other lines of business, or alternatively as a cost if the trading desk has

to transfer cash to other subsidiaries at the discretion of institution’s higher management.

All agents have constant absolute risk aversion (CARA) utility over consumption of the

numeraire good with risk aversion parameter κ: u(c) = −e−κc. As such, consumption of the

numeraire good can be negative. Consumption can be thought of as profits remitted from the

trading desk to the larger institution, with negative consumption indicating losses taken on

the trading desk at that time. Agents have idiosyncratic uncertainty over their endowment

income and their private valuation of the OTC traded asset’s dividend. Let Zt = [Zη,t, ZD,t]
′

be a two-dimensional standard Brownian motion for t ≥ 0 defined on a filtered probability

space (Ω, F,P) where Zη,t and ZD,t are independent. Following Gârleanu (2009); Duffie et al.

(2007); Praz (2014), the stochastic cumulative dividend process per unit of risky OTC asset

n follows for constants mD and σD:

dDt = mDdt+ σDdZD,t. (1)

The stochastic endowment process follows for constants mη and ση:

dηit = mηdt+ σηZ
i
η,t. (2)

Zi
η,t is defined as:

Zi
η,t = ρitdZD,t +

√
1− (ρit)

2
dZη,t. (3)
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An agent’s endowment process is stochastic with drift mη and with an element of uncer-

tainty σηdZ
i
η,t. An agent’s type i determines how correlated their endowment is with their

private valuation of the OTC asset’s dividend: ρit is the instantaneous correlation for an

agent of type i between the OTC asset dividend and the endowment of agent i. If an agent’s

OTC asset dividend income is negatively correlated with their endowment income, the OTC

asset dividend acts as a hedge. In this setting, all agents have the same fixed correlation

ρi = ρ ∀i. I assume that all agents have the same type, and so liquidity preferences are fixed

and constant ρi = ρ.

Each agent records on the asset side of their balance sheet their net holdings of the risk-

free asset ω at a market price normalized to 1, and the OTC asset n is marked to market at

price p̃, to be defined more precisely shortly. An agent’s equity E is defined as the sum of

the market value of their net assets:

E = ω + p̃n.

There is a unit measure of a continuum of agents, where F (E, n) denotes the distribution

of agents over equity E and risky OTC asset holdings n.

Trade in the risky OTC asset is fully bilateral. Agents receive a trading opportunity

according to a Poisson process with intensity λ > 0. Upon receiving a trade opportunity, an

agent draws a counter-party from the distribution F (E, n). Once a trading partner is drawn,

agents engage in proportional (Kalai) bargaining over the terms of trade of the OTC asset,

where agents have equal bargaining power. The market value of the OTC asset, p̃, is defined

as the average price of the risky asset based on current trades in the OTC market8. It is

also assumed that when trading the risky OTC asset, agents cannot consume the numeraire

good.

Each agent is also subject to a risk-based capital requirement in the spirit of Basel II

and Basel III, which stipulates that they must maintain a level of tier 1 capital relative to

their risk-weighted assets of at least Λ%. Typically the policy ratio is Λ = 4.5% unless

the BHC parent is a globally systemically important bank (G-SIB); depending on their

systemic importance, G-SIBs are subject to an additional capital requirement of 1% to 3.5%

(BIS, 2019). In this model, common equity tier 1 capital is simply agent equity, E, and

risk-weighted assets are calculated as the sum of the market value of dealer risk-free and

risky OTC asset holdings, where risk-free assets have a 0% risk weight and risky OTC asset

8The average price is used to value agent asset holdings as it best reflects current accounting standards
in the United States. According to Financial Accounting Standards Board (FASB) regulation9, assets for
which there are active (even if decentralized) markets are consider level 1 assets and therefore quoted prices
for similar assets at a given date must be used to value an institution’s illiquid assets.
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inventories have some positive risk weight set by policy, ν%. The risk-weight ν% typically

ranges from 0% to 250% in increments of 50%, with cash and U.S. treasuries using a risk

weight of 0%. The risk-based capital requirement in this model is in practice a risk-weighted

assets ratio:
E

0× ω + ν × p̃n
≥ Λ. (4)

Define the minimum level of equity required by this regulation for an agent with a stock

of risky OTC assets n to be:

Ē(n) = Λνp̃n. (5)

Due to the stochastic nature of agent income, it is possible that agents experience negative

income shocks severe enough to cause their equity to fall to or below the regulatory bound,

E ≤ Ē(n). I assume that there is perfect enforcement of the capital requirement. In such a

case, there is no fine, fee, or other cost for the violation of the constraint; rather, the agent

is required to immediate action to remedy their regulatory position. That is, dealers must

adjust their consumption policy and trading behavior such that their equity is expected to

quickly recover to comply with the capital requirement.10

Agent problem Agents are born with an initial level of the risk-free asset, ω0 > 0. Agents

receive income from their endowment dηt, their holdings of the risk-free asset rωtdt, and their

holdings of the risky OTC asset ntdDt. Agents consume the numeraire good ctdt, and can

trade at units at price Pt determined by bargaining when the trading opportunity arrives.

An agent’s equity therefore evolves according to:

dEt =dηt − ctdt+ rEtdt+ nt (dDt + dp̃t − rp̃tdt)

+ (p̃t − Pt)dnt.
(6)

An agent’s OTC asset holdings evolve according to:

dnt = 1{OTC trade opportunity}at. (7)

Higher endowment income, dηt, and higher direct income from the risk-free and risk

assets, rEtdt and ntdDt, increase an agent’s equity. When an agent consumes, ctdt, equity

falls. dp̃t captures the change in equity per unit of risky OTC asset due to changes in the

market price: as the asset appreciates in value, equity rises, The term rp̃tdt captures the

per-unit opportunity cost of holding a risky OTC asset, the value p̃t of which otherwise

could be earning the discount rate r. Finally, when an agent trades, they balance their

10Equivalently, one could impose a fine for violation sufficiently high that agents optimally choose such
behavior.
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effective trade price, P , relative to the market price, p̃: the term p̃t−Pt is called slippage by

practitioners and captures the net gain or loss to an agent’s equity when trading the illiquid

asset. In centralized markets, slippage is always zero as the trade price coincides with the

market price.

At time t, an agent of state (E, n) maximizes their expected discounted value of con-

sumption subject to equations (6), (7), as well as the regulatory constraint (4):

Wt(E, n) = sup
{c(s)}∞s=t

Et

[∫ ∞

t

−er(s−t)e−κc(s)ds | Et = E, nt = n

]
. (8)

Trade the OTC asset When agents meet in the OTC market, they engage in proportional

bargaining, also referred to as Kalai bargaining, with equal bargaining power over the terms

of trade (a, P ) with trade size a. When a > 0, this indicates a “home” agent (E, n) buy

and an “away” agent (E ′, n′) sell. The home agent maximizes their post-trade surplus with

respect to (a, P ),

max
P≥0,a

[W (E + (p̃− P )a, n+ a)−W (E, n)] , (9)

subject to the following constraints:

W (E + (p̃− P )a, n+ a)−W (E, n) = W (E ′ − (p̃− P )a, n′ − a)−W (E ′, n′),

−n ≤ a ≤ n′,

E + (p̃− P )a ≥ Λνp̃× (n+ a) ,

E ′ − (p̃− P )a ≥ Λνp̃× (n′ − a) .

The first is the surplus sharing Kalai constraint, which stipulates that the post-trade

surplus of each agent must be equal when there is equal bargaining power. The second

equation reflects feasibility: agents can only trade assets they have. Since agents cannot

consume simultaneous to trading, the last two equations ensure that post-trade both agents

remain in compliance with the regulatory constraint given by (4). Note that agents do not

necessarily always trade, as a = 0 is in the set of possible outcomes.

In a similar environment without an occasionally binding regulatory capital requirement,

as in Duffie et al. (2007); Gârleanu (2009); Praz (2014); Üslü (2019b), CARA utility implies

that an agent’s valuation of assets is independent of her equity position. In these frameworks,

one can effectively replicate the risk-return trade-off faced by risk-averse agents in the model

outlined here using risk-neutral agents with a specific reduced-form quadratic utility over

OTC assets. However, when an occasionally binding constraint is introduced, this equity-
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independence feature of CARA utility no longer holds: agents must now also must track

their equity position and proximity to the regulatory constraint, and take their position into

account when trading in the OTC asset.

3.1 Stationary equilibrium

I consider a steady state in which the market price p̃ is constant (dp̃ = 0).

3.1.1 Agent value function and optimal consumption policy

Assuming appropriate differentiability and using Ito’s Lemma, the agent’s Hamilton-Jacobi-

Bellman (HJB) equation is:

rW (E, n) = max
c
{u(c) + ∂EW (E, n) (mη + rE − c+ n (mD − rp̃))

+
1

2
∂2
EW (E, n)

(
σ2
η + σ2

Dn
2 + 2nρσησD

)
+ λ

∫
E′,n′

[W (E + (p̃− P ∗) a∗, n+ a∗)−W (E, n)]+ dF (E ′, n′)

(10)

The first term is the flow utility that agents earn from consuming the numeraire good c; the

second and third terms capture risk-aversion due to the stochastic nature of the endowment

and the OTC asset dividend (drift and volatility, respectively); the final two terms capture

the expected change in value due to trade where (a∗, P ∗) are determined by the bargaining

process outlined in the previous section.

Now consider the agent’s optimal consumption policy. The agent maximizes their con-

sumption c given their current level of equity E and a fixed stock of OTC risk assets n. As

stated previously, the agent must maintain a high enough level of equity E relative to their

risk weighted assets, as defined by (4). Optimal agent consumption when equity is above

the regulatory bound, E > Ē(n), satisfies:

u′(c∗(E, n)) = ∂EW (E, n). (11)

Note that an agent may receive a negative endowment or dividend realization large enough

that the agent’s equity falls below the regulatory bound. This is possible because these two

sources of income are modeled directly as a diffusion processes: they are random variables,

and so agents do not know with certainty what their realization will be when making con-

sumption decisions. Since there is perfect enforcement of the capital requirement, the agent’s

only recourse in the short run is to sharply reduce consumption and boost savings, ensuring

that her equity, at least in expectation, quickly recovers to comply with the capital require-

ment. In the medium term agents may adjust their holdings of risky OTC assets as trading
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opportunities become available. However, the perfect enforcement assumption requires that,

before those trading opportunities arrive, the agent must adjust their consumption/savings

behavior to try to regain compliance. An agent’s consumption policy therefore follows:

c∗(E, n) =

u′−1 (∂EW (E, n)) E > Ē(n),

mη + rE + n (mD + dp̃− rp̃)−
(
Ē(n)− E

)
E ≤ Ē(n).

(12)

When equity is above the regulatory bound for a given stock of risky OTC assets, E >

Ē(n), consumption is at the unconstrained optimum. When equity is below the regulatory

bound, E ≤ Ē(n), the agent consumes such that the drift in her equity is large enough to

recover the regulatory minimum. That is, a dealer consumes in such a way that they expect

their equity to rise to the regulatory minimum. The term Ē(n)−E captures the penalty to

agent consumption based on the distance from the bound: the lower your equity, the more

you have to cut your consumption to regain the regulatory minimum. In this way, being in

violation of the regulatory constraint is costly for an agent: lower consumption results in

lower utility.

A state-based boundary condition I implement this consumption policy through a state-

based boundary condition following Achdou et al. (2022). Achdou et al. (2022) handle

borrowing constraints in continuous time by implementing what is essentially a constraint

on the shape of the value function, which results in agents consuming in such a way that

the borrowing constraint is never violated. I implement the above consumption policy in

a similar manner by placing a condition on the shape of the value function that ensures

consumption and savings choices in expectation keep equity above the regulatory minimum.

The state-based boundary condition in this framework is ∀n:

∂EW (E, n) ≥ u′ (mη + rE + n (mD + dp̃− rp̃)−
(
Ē(n)− E

))
, ∀E ≤ Ē(n) (13)

Under this condition, optimal consumption is always satisfied by (11). In other words, the

boundary condition requires that the marginal value of equity below the regulatory bound is

sufficiently high such that it is optimal for agents to make severe cuts to their consumption.

This boundary condition thus enforces the regulatory constraint indirectly by encoding the

implicit cost of violating the regulatory constraint into the shape of the value function.

There are two key differences between the implementation of the state-based boundary

condition in this framework and that of Achdou et al. (2022). First, in theory, agents can

potentially realize a negative income shock such that the regulatory constraint is violated de-

spite their efforts to remain in compliance. This is because endowment dηt and dividend dDt

incomes are random variables and are not known ex-ante, in contrast to Achdou et al. (2022)
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in which income at each instant is known (though it may evolve over time via a diffusion or

jump process). In practice, however, the discretization of the value function required by the

numerical solution renders the effective probability of realizing a negative income shock that

pushes agents into violation is zero. As a consequence, in the computed equilibrium solution

the regulatory constraint is violated due to income shocks with probability zero.

Second, the state-based boundary constraint in this framework is endogenous : dealers can

adjust their stock of risky OTC assets n, and thereby adjust the regulatory minimum level

of equity they must hold. In comparison to Achdou et al. (2022), it is not sufficient to only

restrict the boundary point E = Ē(n). To ensure that dealers find trades that place them

in violation of the regulatory constraint undesirable, I must also impose off-equilibrium-path

boundary conditions for all E ≤ Ē(n).

3.1.2 Equilibrium distribution of agent types

Define the probability that, post-trade, an agent of state (E ′, n′) becomes state (E, n) to be

αE,n,E′,n′ . The steady state distribution of agents F (E, n) with probability density function

f(E, n) satisfies the following Kolmogorov forward (Fokker-Planck) equation:

0 =− ∂E {(mη − c∗(E, n) + rE + n(mD − rp̃)) f(E, n)}

+
1

2
∂2
E

{(
σ2
η + σ2

Dn
2 + 2nρσησD

)
f(E, n)

}
+ λ

(∫
E′,n′

αE,n,E′,n′f(E ′, n′)d(E ′, n′)

)
− λf(E, n)

(∫
E′,n′

αE′,n′,E,nd(E
′, n′)

)
.

(14)

The first two terms capture the changes in the distribution due to the stochastic diffusion

processes on the endowment and the OTC asset dividend. The last two lines show the inflows

and outflows of agents due to trade in the OTC asset.

3.1.3 The market price of the OTC asset

The market price of the OTC asset p̃ is the average of all the realized trade prices in the

economy. Denote the probability that two agents meet and trade, conditional on receiving

a trade opportunity and trading a non-zero amount of the asset, to be Ptrade(E, n,E ′, n′).

The weighted market price p̃ is therefore:

p̃ =

∫ ∫
(Ptrade(E, n,E ′, n′)× P ∗(E, n,E ′, n′)) dF (E ′, n′)dF (E, n). (15)
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3.1.4 Market clearing

Finally, market clearing requires that all asset shares S > 0 be held by agents. With a unit

measure of agents, it must be that the steady state weighted average of asset holdings of all

agents equals the supply in shares: ∫
ndF (E, n) = S. (16)

3.1.5 Stationary equilibrium definition

A stationary equilibrium is a value function W (E, n), consumption policy c∗(E, n), a dis-

tribution f(E, n), a set of trading rules (a∗, P ∗) for the OTC asset, and a market price p̃

such that, taking the model primitives {r, λ,mη, ση,mD, σD, ρ,Λ, ν} as given, the following

are satisfied:

1. Value function W (E, n) satisfies (10) and (13);

2. Consumption policy c∗(E, n) satisfies (11);

3. Trading rules (a∗, P ∗) satisfy the bargaining protocol defined in (9);

4. Distribution f(E, n) satisfies (14);

5. The market price p̃ is defined as in (15) and market clearing holds as in (16).

3.1.6 Discussion

The key mechanism in this model is as follows: the presence of the risk-based capital re-

quirement distorts the marginal valuation of risky and illiquid OTC assets in the region

close to the regulatory constraint by penalizing consumption if the regulatory constraint is

violated. Thus, the true “balance sheet cost” of holding OTC inventories is, in fact, the

off-equilibrium-path threat of lower utility if they violate the regulatory constraint.

The fact that the risky asset is traded in a market characterized by search frictions

is critical to this dynamic. In a model with centralized trading, agents with CARA utility

would simply hold a fixed level of assets either at their preferred level, or up to the regulatory

limit. Agents could continuously re-balance their level of assets freely, and as such never face

the possibility of violating the regulatory capital requirement. Unless agents face frictions

in buying and selling the OTC asset, the threat of violating the constraint holds no power.

The regulatory cost to holding inventories as modeled here is a purely implicit one and

differs depending on the agent’s distance to the constraint. As the regulatory bound is

approached, the threat of lower utility looms more menacingly and agents adjust their con-

sumption and trading behavior. When an agent has plenty of slack in their regulatory ratio,
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the risk of violation is minimized. This is in stark contrast to models in which balance

sheet costs are modeled as per-unit costs to OTC inventories: all agents change their trading

behavior in the same manner. This work emphasizes how this behavior changes depending

on the distance-to-constraint, and that cost changes over time as agents realize different

incomes.

4 Solution Method & Parameterization

The steady-state problem amounts to a high-dimensional fixed point problem in the value

function W (E, n) and the distribution F (E, n) of agents as discussed in Hugonnier et al.

(2020). The algorithm I have developed to solve the model numerically is available in Ap-

pendix (A). I discretize the state space for the liquid risk-free assets of the agent to be

Ei ∈ [0, 10] with I = 100 points and the risky OTC assets to be nj ∈ {0, 1, 2, 3, 4, 5}. Since
an agent’s stock of risky OTC assets n is meant to represent different inventory levels, I also

modify the regulatory constraint to include a regulatory scaling parameter ϕ ≥ 1:

E > Ē(n) = Λν ϕ︸︷︷︸n
By appropriately choosing this scaling parameter, I can ensure that when asset levels are

at their highest level (nH), this truly means that agents have a very large stock of risky OTC

assets relative to their equity. This ensures that at these higher inventory levels, agents have

a significantly lower risk-weighted assets ratio.

I use the parameterization as in Tables 1 and 2. A unit of time is one year. The following

parameters are set directly: r, S, κ, λ, and ϕ. The discount rate (the return on the risk-free

asset) is set to r = 5%. The asset supply in shares is set to S = 1, and the CARA risk

aversion parameter is set to κ = 0.4. The Poisson intensity parameter on agent meetings in

the OTC market is set to λ = 30, indicating that agents receive a trading opportunity once

every 8.4 days on average. Furthermore, I set the regulatory scaling parameter ϕ to 10. This

indicates that when agents hold the highest level of risky OTC assets (n = nH = 5), the

highest possible risk-weighted asset ratio is 18.50%; this is relative to when agents hold the

lowest level of positive risky OTC assets (n = 1), at which the highest possible risk weighted

asset ratio is 92.50%.11

The parameters on the stochastic process mη, ση,mD, σD and the correlation parameter

ρ are directly estimated using quarterly balance sheet level data from the FR-Y9C filings of

bank holding companies (BHCs). The data and the maximum likelihood procedure used are

11The parameters λ and ϕ are set directly for this draft, but a calibration is in progress targeting annual
turnover and the distribution of risk-weighted asset ratios observed in the data, respectively.
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Variable Parameter Value Variable Parameter Value

Discount rate r 5% Asset supply (in shares) S 1
Income process (drift) mη 0.0736 Meeting intensity λd 30
Income process (vol.) ση 0.1366 Correlation ρm 0.0013

Dividend process (drift) md 0.1265 Risk aversion κ 0.4
Dividend process (vol.) σd 0.3445 Regulatory Scaling ϕ 10

Table 1: Baseline model parameters

Variable Parameter Value

OTC asset risk weight ν 50%, 150%
Risk weighted assets ratio Λ 4.5%

Table 2: Baseline policy parameters

outlined in Appendix (B), as well as the standard errors of the estimates.

5 Baseline model outcomes

First, consider the baseline model to be the case with the lower risk weight on the risky

OTC asset, ν = 50%. The policy parameter is constant and set to Λ = 4.5%. The baseline

model statistics are available in Table 3, column 1. As shown, the equilibrium market price

is p̃ = 2.4604. Figure 1a presents a heatmap of the distribution of agent types, where the

gray step function represents the minimum level of equity Ē(n) agents must have for each

level of risky OTC asset n. Recall that agents are periodically receiving income shocks and

trading opportunities, and so move around the state space. Figure 1a shows that agents

spend the most time holding n = 1 units of the risky OTC asset. Agents rarely ever hold

more than n = 2 assets.

On average, agents have a risk-weighted asset ratio of 43.76%, much higher than the

4.5% required by policy. Figure 1b presents a histogram of the risk-weighted asset ratios

of all agents and shows that the distribution is bimodal: most agents have sufficiently high

risk-weighted assets clustered around the mean. These agents are primarily those who hold

one risky OTC asset, n = 1. However, there is another concentration of agents just above

the regulatory limit of 4.5%. These agents are primarily those who have two assets, n = 2.

The effect of the regulatory constraint The presence of the regulatory constraint dis-

torts agent valuations of the risky OTC asset as they approach the regulatory bound. Figure

2 presents the marginal value of an additional unit of the asset, W (E, n+1)−W (E, n), as a

function of the distance from regulatory equity minimum, E − Ē(n). The graph shows that

as agent equity approaches the bound, they increasingly dislike the risky OTC asset. This
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(1) (2)

ν = 50% ν = 150%

Equilibrium market price (p̃) 2.4629 2.4604

Equity
mean 5.68 6.89

std. dev 2.19 1.66
25th 3.93 5.65
50th 5.75 6.86
75th 7.47 8.18

Risk-weighted Asset Ratio
mean 43.76% 17.20%

std. dev 17.83 5.34
25th 31.17% 15.05%
50th 44.30% 18.06%
75th 58.25% 21.07%

Meetings that result in a trade (%) 1.24% 1.71%
Annual Turnover (%) 18.62% 25.66%

Buy side agents 99.98% 97.51%
Sell side agents 93.85% 89.39%

Buy & Sell side agents 93.85% 86.97 %
Average Spread (bps) 46.98 59.88

Average Return, buy (bps) 37.25 42.36
Average Return, sale (bps) 12.84 22.95

Table 3: Model statistics

(a) Distribution of agent types f(E,n) (b) Histogram of risk-weighted asset ratios

Figure 1: Distribution of agent types & histogram of risk-weighted asset ratios
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Figure 2: Marginal value of an additional unit of the risky OTC asset

(a) Buyers & Sellers (b) Average Spreads (BPS)

(c) Average Return, Sale (BPS) (d) Average Return, Buy (BPS)

Figure 3: Trading Behavior
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parameterization suggests that the relative change in the marginal value is the same for all

agents, regardless of their risky OTC asst inventories n, but that their inventories determine

the level. As agents move away from the bound, their marginal values begin to level off as

the risk of falling into the constrained equity region becomes very low.

Trade in the OTC market As shown in Table 3, only about 1.24% of the matches result

in trade, and the annual turnover in the market is 18.62%, below the 40%-60% usually

observed corporate bond markets. An agent of type (E, n) is classified as a buyer if they

face a non-zero probability of buying the risky OTC asset and as a seller if they face a

non-zero probability of selling. Figure 3a displays the classification indicator across agent

types (E, n). Most agents are willing to buy or sell, 99.98% and 93.85%, respectively. The

fraction of agents facing both potential purchases and sales is also 93.85%. As Figure 3a

demonstrates, for this parameterization most agents are willing to buy and sell and are strict

buyers or sellers mechanically due to the no-short selling constraint (n ≥ 0) and the finiteness

of the grid (n ≤ nH).

Figure 3b presents a heatmap of the average spreads faced by each agent in basis points,

and Figures 3c and 3d the average returns on purchases and sales of the risky OTC asset

over the market price. Average spreads in basis points are calculated as follows:

Spread(E, n) =
E[Psell|E, n]− E[Pbuy|E, n]

p̃
× 10, 000.

The one-sided returns in basis points for purchases and sales are calculated as:

Returnsell(E, n) =
E[Psell|E, n]− p̃

p̃
× 10, 000;

Returnbuy(E, n) =
p̃− E[Pbuy|E, n]

p̃
× 10, 000.

On average, agents earn a spread of 46.98 bps, with purchases earning higher returns

(37.25 bps) than sales (12.84 bps). As shown in Figure 3b, spreads mechanically increase as

agents approach the upper bound of the equity grid. However, spreads also increase as agents

approach the regulatory bound on equity (Ē(n), denoted by the gray step function). The

effect the regulatory capital requirement is visible here: as agents approach the regulatory

bound, they demand to be compensated when buying assets for the increased risk of violating

the constraint that they bear. Figures 3c and 3d show that the return on the sale of the

risky OTC asset over the market price is close to zero for most states. However, agents that

hold one asset require higher compensation when they sell the asset: this reflects the positive

marginal value observed by n = 1 agents shown in Figure 2. Since they enjoy holding one

unit of the risky OTC asset, they require a strictly positive return on their sale to compensate
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(a) Change in the marginal value of an
additional unit of the risky OTC asset

(b) Change in the average return on purchases of
the OTC assets

Figure 4: Change in marginal valuations and trading costs following an increase in the risk
weight ν%

for the loss of the asset.

The regulatory capital requirement affects the willingness of agents to buy more than

their willingness to sell. As shown in Figure 3d, the required return for agent buys quickly

rise to upwards of 200 bps as they approach the regulatory bound. These agents will indeed

buy the asset, but only if they are able to increase their equity such that they move away

from the regulatory bound. However, this is a very, very expensive trade for the counterparty.

Thus, the presence of the regulatory constraint can result in an increase in trading costs,

depending on the agent’s distance to the constraint.12

6 Regulation and OTC trade

Now consider the counterfactual of stricter regulation in which the risk weight on risky

OTC assets ν increases from 50% to 150%. The second column of Table 3 displays the

corresponding model statistics for this new steady state. Following an increase in the risk

weight, there is:

1. An increase in average regulatory tightness and average equity;

2. An increase in trading costs via higher spreads;

3. A decline in agents willing to simultaneously buy and sell, and a decline in the per-

centage of agents willing to trade;

12I omit a discussion regarding the distortion of the spreads and returns as agents approach the top of
the equity grid, as this is a mechanical result of the finite grid used and not due to the risk-return trade-off
that agents make in this model.
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(a) Change in Buyers & Sellers (b) Histogram of trade probabilities (%)

Figure 5: Change in trading behavior following an increase in the risk weight ν%

4. An increase in the fraction of meetings that result in a trade, and consequently an

increase in turnover in the OTC market.

How does a change in the risk weight ν% affect equilibrium outcomes? First, an increase

in the risk weight, all else equal, increases the minimum level of equity agents must hold,

with a larger change for higher levels of OTC assets (high n). This mechanically increases

agent equity (rising from 5.68 to 6.89 units on average), and increases average regulatory

tightness - risk-weighted asset ratios fall from 43.7% to 17.20% on average.

Agents are now more likely to get close to the regulatory minimum of equity capital.

Additionally, since there is now a larger constrained equity space, agents now face the risk

of even lower penalties for violating the constraint. This results in a decline in the marginal

value of the risky OTC asset. Figure 4a presents the change in the marginal value if one

additional unit of the risky OTC asset as a function of the distance from the constraint. That

is, I am comparing directly the marginal valuations in both regulatory cases (ν = 50%, ν =

150%) in the region close the respective constraint. As is shown, the marginal value of risky

OTC assets falls; this decline is greater the more assets one has.

This change in the compliant state-space and the marginal valuation of risky OTC as-

sets has several implications for trade in the OTC asset. As Table 3 column 2 shows, the

percentage of buy-side agents falls from 99.98% to 97.51%; sell-side agents from 93.85% to

89.39%; and agents who both buy and sell from 93.85% to 86.97%. Figure 5a shows the

change in trading behavior across agent types (E, n). The gray step function represents the

new higher regulatory minimum equity Ē(n). As is shown, in this new steady state agents

that have valid equity but are close to the regulatory bound are no longer willing to buy the
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asset; only sell13.

Additionally, agents close to the regulatory bound charge higher prices. Figure 4b shows

that the change in the average return on a purchase of an asset is significantly higher as the

agent approaches their regulatory bounds. These costs are sufficiently high that, once one

gets extremely close to the bound, they are no longer willing to buy the asset for any terms

of trade offered by agents in the economy. On average, spreads increase by 10 bps, from

49.90 bps to 59.88 bps (Table 3).

Finally, for this parameterization this regulatory change has the somewhat counterintu-

itive outcome that turnover and the percentage of meetings that result in a trade increase.

This is due to a combination of changes in the distribution of agents. First, relative to the

lower risk-weight economy, agents with lower levels of equity are less likely to trade, and

agents with higher levels of equity are more likely to trade. This change is in junction with

a shift in the distribution of equity: now, on average, agents are also larger in terms of their

equity. Therefore, on average, we see a slight rise in the fraction of meetings that result in a

trade. This is demonstrated by Figure 5b, which plots a histogram of trading probabilities.

As is shown, there is a shift post-regulatory change towards agents that have higher trade

probabilities. In summary, fewer agents are trading, but those that are trading trade more

often, resulting in higher turnover.

7 Conclusion

In this paper, I ask how recent regulatory changes, such as the Basel III market risk frame-

work, have affected dealer market making behavior in OTC markets. To answer this ques-

tion, I develop a model of an interdealer OTC market in which agents make a portfolio

choice regarding their holdings of risk-free liquid assets and risky OTC-traded assets subject

to a risk-based capital requirement. This occasionally binding financial constraint alters

the marginal valuation of the risky OTC traded asset near the regulatory bound on equity

through the threat of reduced utility when equity drops below the required threshold.

I solve the model numerically using an original iterative algorithm based on the finite

difference methods presented in Achdou et al. (2022). I show that agents change their trading

behavior in the region close to the regulatory bound, charging higher transaction costs to

buy the asset to avoid violating the constraint. I show that following an increase in the risk

weight on the risky OTC asset, the distortions introduced by this constraint cause these

trading costs to increase.

The next steps of the project are to calibrate the parameter governing the rate of meet-

13If trade sizes were not fixed at 1, it is likely that these agents would buy increasingly small increments
of the asset for very high prices.
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ings λ, and the regulatory scaling parameter, ϕ, using turnover and the distribution of

risk-weighted asset ratios, respectively. Additionally, I am working on a set of motivational

regressions using transaction level bond data from TRACE. Finally, I am working on ex-

tending the model to include a retail market in addition to the inter-dealer market analyzed

here.
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Appendix

A Stationary equilibrium solution method

The steady state problem amounts to a high-dimensional fixed point problem in the value

function W (E, n) and distribution f(E, n) as discussed in Hugonnier et al. (2020). At its

core, there are two main sub-problems. The first involves solving for the intensities with

which agents change their type in the E and n dimensions due to optimal trade outcomes as

a function of the value function and distribution. This step is solved by simply finding the

grid point that best satisfies the Kalai bargaining problems for each possible trade, if indeed

one exists.14

The second involves solving for the agent value function (taking as given switching in-

tensities due to trade), and then solving for the implied agent distribution. I solve for the

value function using finite-difference methods as outlined in Achdou et al. (2022) with some

modifications. Due to the regulatory constraint, the boundary of equity grid is staggered:

agents with more OTC asset holdings must hold higher equity. The modifications can be

found in Appendix (A.1). I solve the steady state using the algorithm defined in Algorithm

1.

A.1 State-based boundary conditions and finite-difference meth-

ods

In this section I outline the finite-difference algorithm based on Achdou et al. (2022) modified

to handle the state-based boundary condition as it appears in my model. Let there be I

liquid asset grid points Ei with step size ∆E in the domain [EL, EH ] and J OTC asset

holding points nj with step size ∆n = 1 in the domain [0, nH ]. Let Tij,i′j′ be the trade

outcome probabilities due to trade in the OTC market: Tij,i′j′ represents the probability of

switching from type ij to type i′j′ in the defined grid. Note that
∑

i′,j′ Tij,i′j′ = 1. Define

the following:

sij = mη − cij + rEi + nj(mD − rp̃)

σ2
j = σ2

η + σ2
Dn

2
j + 2njρ

mσησD

Note the relevant forward and backward differences are:

∂E,Fwij =
wi+1,j − wij

∆E

14This is a bottleneck; with 100 liquid asset grid points and up to 5 units of the OTC asset held, obtaining
the optimal trade outcomes for all agents takes about 39 seconds on a Windows laptop with a 12th Gen
Intel Core i7 processor using Python 3.11 when using parallelization.
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Algorithm 1: Steady State Equilibrium

Data : Initial guess p̃; tolerances tol1, tol2, tol3; weights w1, w2, w3; max iterations K, I.
Result: Converged market price p̃, distribution f , and value functions W .

begin
Start: Define a agent type grid given p̃. Choose an initial arbitrary guess of trade
switching intensities T̄ . Solve for W (0) and distribution f (0) using the modified
finite-difference method defined in appendix (A.1).
for k ← 1 to K do

/* Inner loop: Value Function */

W
(k)
0 ← W (k) for i← 1 to I do

Compute optimal trade intensities Ti using W
(k)
i−1. Obtain new value function

W
(k)
i . c1 ← max{|W (k)

i −W
(k)
i−1|} if c1 < tol1 then

W (k) ← W
(k)
i ; break

else

W
(k)
i ← w1W

(k)
i + (1− w1)W

(k)
i−1

/* Outer loop: Distribution */

Solve for f (k) given W (k). c2 ← max{|f (k) − f (k−1)|} if c2 < tol2 then
break

else
f (k) ← w2 f

(k) + (1− w2) f
(k−1)

/* Market price convergence */

Compute p̃K from {W (K), f (K)}. c3 ← |p̃K − p̃| if c3 < tol3 then
stop

else
p̃← w3 p̃K + (1− w3) p̃ go back to Start
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∂E,Bwij =
wij − wi−1,j

∆E

∂2
Ewij =

wi,j+1 − 2wij + wi,j−1

(∆E)2

The discretized Dealer HJB is wij, given a guess wn
ij the next guess wn+1

ij satisfies:

wn+1
ij − wn

ij

∆
+ rwn+1

ij =u(cnij) + ∂Ew
n+1
ij snij +

1

2
∂2
Ew

n+1
ij σ2

j

+ λ
∑
i′,j′

Tij,i′j′
(
wn+1

i′j′ − wn+1
ij

)
The implicit guess using the upwind scheme is a system of I × J equations:

wn+1
ij − wn

ij

∆
+ rwn+1

ij =u(cnij) + ∂E,Fw
n+1
ij

[
snij,F

]+
+ ∂E,Bw

n+1
ij

[
snij,B

]−
+

1

2
∂2
Ew

n+1
ij σ2

j

+ λ
∑
i′,j′

Tij,i′j′
(
wn+1

i′j′ − wn+1
ij

) (17)

Note that optimal agent consumption is always:

cnij = (u′)−1(∂Ew
n
i,j)

Where the marginal value of equity is:

∂Ewi,j =∂Ewij,F1{sij,F > 0}+ ∂Ewij,B1{sij,B < 0}

+ u′(mη + rEi+ nj (mD − rp̃))1{sij,F ≤ 0 ≤ sij,B}

Writing equation (17) in matrix notation and using the backwards and forward difference

equations, I obtain the following:

wn+1
ij − wn

ij

∆
+ rwn+1

ij =u(cnij) +
wn+1

i+1,j − wn+1
i,j

∆E

[
snij,F

]+
+

wn+1
i,j − wn+1

i−1,j

∆E

[
snij,B

]−
+

wn+1
i+1,j − 2wn+1

ij + wn+1
i−1,j

(∆E)2
σ2
j

2

+ λ
∑
i′,j′

Tij,i′j′
(
wn+1

i′j′ − wn+1
ij

)
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Which can be written for generic grid points ij as:

wn+1
ij − wn

ij

∆
+ rwn+1

ij =u(cnij) + znijw
n+1
i+1,j + ynijw

n+1
i,j + xn

ijw
n+1
i−1,j

+ λ
∑
i′,j′

Tij,i′j′w
n+1
i′j′

(18)

Where:

znij =

(
1

∆E

[
snij,F

]+
+

1

2
σ2
j

1

(∆E)2

)
ynij =

(
1

∆E

[
snij,B

]− − 1

∆E

[
snij,F

]+ − σ2
j

1

(∆E)2
− λ

)

xn
ij =

(
1

2
σ2
j

1

(∆E)2
− 1

∆E

[
snij,B

]−)
Up until now this method is consistent with Achdou et al. (2022). The modification

lies in how I handle the boundary condition. As in Achdou et al. (2022), implementing the

boundary condition requires a modification to the backwards difference of the value function

at the boundary point. The difference here is now the boundary point is no longer the bottom

of the grid only, and I have multiple points which need to be constrained for all levels of

equity that violate the constraint: E ≤ Ē(nj) for each nj. Therefore for intermediate OTC

asset holdings nj ≤ nH there is a region of the grid where consumption is constrained.

I impose the boundary condition as follows. For all i, j such that Ei < E(nj), the

boundary condition needs to be satisfied for the backward and forward difference. Identify

the boundary point of risk-free assets, or the minimum level of risk-free assets for each j

that satisfies the constraint, as Ē(nj∗) and the grid point as i∗j∗. The backward and forward

differences for all î ∈ {i < i∗} must satisfy the boundary condition (13):

∂E,Bwîj∗ = u′(mη + rEî + nj∗ (mD − rp̃)− (Ē(nj∗)− Eî))

∂E,Fwîj∗ = u′(mη + rEî + nj∗ (mD − rp̃)− (Ē(nj∗)− Eî))

Now, consider the point at which the regulatory constraint first binds, i∗j∗. The backward

difference at point i∗j∗ is:

∂E,Bwi∗j∗ =
wi∗j∗ − wi∗−1,j∗

∆E
= u′(mη + rĒ(nj∗) + nj∗ (mD − rp̃))
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Therefore the value function at the point i∗−1, j∗ in the risk-free asset grid is by definition:

wi∗−1,j∗ = wi∗j∗ −∆Eu′(mη + rĒ(nj∗) + nj∗ (mD − rp̃))

Similarly, the value function for any point below the constraint point is:

wî−1,j∗ = wîj∗ −∆Eu′(mη + rEî + nj∗ (mD − rp̃)− (Ē(nj∗)− Eî))

Therefore equation (18) at the boundary point i∗, j∗ is:

wn+1
i∗j∗ − wn

i∗j∗

∆
+ rwn+1

i∗j∗ =u(cni∗j∗)− xn
i∗j∗∆Eu′(mη + rEi∗(nj∗) + nj∗(mD − rp̃))

+ zni∗j∗w
n+1
i∗+1,j∗ +

(
xn
i∗j∗ + yni∗j∗

)
wn+1

i∗j∗

+ λ
∑
i′,j′

Tij,i′j′w
n+1
i′j′

And for any point below the constraint point, î ∈ {i < i∗}, is:

wn+1

îj∗
− wn

îj∗

∆
+ rwn+1

îj∗
=u(cn

îj∗
)− xn

îj∗
∆Eu′(mη + rEî + nj∗ (mD − rp̃)− (Ei∗(nj∗)− Eî))

+ zn
îj∗
wn+1

î+1j∗
+
(
xn
îj∗

+ yn
îj∗

)
wn+1

îj∗

+ λ
∑
i′,j′

Tij,i′j′w
n+1
i′j′

The upper bound of the liquid asset grid is handled in the standard manner as in Achdou

et al. (2022) by requiring that the marginal value of wealth at the upper most liquid asset

grid point I for all OTC asset holdings nj be zero:

∂Ew(EI , nj) = 0 =⇒ wIj = wI+1,j

And so equation ((18)) at the upper boundary point Ij is:

1

∆
wn+1

Ij −
1

∆
wn

Ij + rwn+1
Ij = u(cnIj) + xn

Ijw
n+1
I−1,j +

(
ynIj + znIj

)
wn+1

I,j

Note that such boundary constraints are not necessary on the OTC asset grid j as the

constraints on the bargaining process prevent agents from trading in violation of feasibility

or regulation.
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Equation (18) can therefore be written for all valid points on the i, j grid as:

wn+1
ij − wn

ij

∆
+ rwn+1

ij =u(cnij) + znijw
n+1
i+1,j + ynijw

n+1
i,j + xn

ijw
n+1
i−1,j

+ λ
∑
i′,j′

Tij,i′j′w
n+1
i′j′

(19)

Where:

zn∗ij =

znij if i < I

0 if i = I

yn∗ij =


ynij if i < Iand i > i∗j

ynij + xn
ij if i < Iand i ≤ i∗j

ynij + znij if i = I

xn∗
ij =

xn
ij if i > i∗j

0 if i ≤ i∗j

Define An to be a sparse matrix with I × J columns and I × J rows with yn∗ij on the

center diagonal, xn∗
ij on the lower diagonal, and zn∗ij on the upper diagonal. Define un

ij = u(cnij).

Define wn as a vector of length I×J , with entries (w11, ..., wI1, w12..., wI2, w1J , ..., wIJ). Define

bn to be a vector of length I × J with entries:

bnij =

un
ij − xn

ij∆ωu′(mη + rEi + nj(mD − rp̃)− (Ē(nj∗)− Ei)) if i ≤ i∗j

un
ij otherwise

Define T to be a matrix with I × J columns and I × J rows populated with the trading

probabilities Tij,i′j′ . Therefore the difference equation can be written in matrix form as:

1

∆

(
wn+1 − wn

)
+ rwn+1︸ ︷︷ ︸

dim=(I×J)×1

= un︸︷︷︸
dim=(I×J)×1

+ An + λT︸ ︷︷ ︸
dim=(I×J)×(I×J)

× wn+1︸ ︷︷ ︸
dim=(I×J)×1

Which can be solved following the standard iterative procedure outlined in Achdou et al.

(2022).

B Estimation of stochastic processes

I use quarterly balance sheet level data from the FR-Y9C filings of bank holding companies

(BHCs) to estimate via maximum likelihood the constants in the stochastic processes in
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equations (1) and (2), mη, ση,mD and σD. FR-Y9C filings are publicly available financial

statements that financial institutions are required to prepare and submit for regulatory

purposes. I filter the dataset to only include domestic U.S. based bank holding companies

with strictly positive levels of assets: the data spans 76 quarters from Q1 2006 to Q4 2024,

and includes 1580 distinct BHC’s. Figure (6) displays the count of BHC’s in the sample over

time.

Figure 6: Number of bank holding companies (BHCs) in the sample over time.

I define an agent’s endowment income in the data, η̂, to be a BHC’s recorded consolidated

net income less their income from trading assets, which is defined as the sum of total interest

on their stock of trading assets and trading revenues. I define an agent’s dividend income

per unit of risky OTC asset in the data, D̂, to be the sum of a BHC’s total consolidated

income from trading assets divided by their stock of trading assets.

Since equity in my model spans [0, 10], I need to scale η̂ appropriately before estimation

of the endowment process. I first scale the line item for total equity, Ê such that the 95th

percentile value is equal to 10, and obtain the scaling factor. I then scale η̂ using this scaling

factor, to obtain η̂∗. Since D̂ is a per unit return, it does not need to be scaled. Table 4

reports the summary statistics for the scaled variables of interest.

I now derive the log-likelihood function for the endowment process (the procedure is

exactly the same for the dividend process). Since the unit of time is one year and data is

observed quarterly, the time step is ∆t = 0.25. Equation (2) can be discretized as:

∆ηit = ηi,t+∆t − ηit ≈ mη∆t+ ση

√
∆tϵit

Where ϵit ∼ N(0, 1). Therefore, for a given BHC i at time t, the change in their endow-

34



All BHCs BHCs with Trading Assets

Mean Std. Dev. 25th 50th 75th 90th Max Mean Std. Dev. 25th 50th 75th 90th Max

Equity, Ê∗ 4.211 27.773 0.106 0.212 0.745 3.196 561.044 20.013 61.230 0.654 2.096 9.585 36.970 561.044
Endowment income, η̂∗ 0.071 1.384 0.003 0.009 0.031 0.143 39.100 0.238 3.081 0.009 0.064 0.273 1.188 39.100
∆ Endowment income, ∆η̂∗ 0.000 0.966 –0.003 0.003 0.010 0.049 36.206 –0.003 2.145 –0.015 0.015 0.089 0.492 36.206

Dividend income, D̂ – – – – – – – 0.526 12.190 0.008 0.037 0.103 0.320 672.800

∆ Dividend income, ∆D̂ – – – – – – – 0.105 11.928 –0.016 0.007 0.034 0.119 594.666
Total assets∗ (log) 1.283 1.569 0.175 0.810 1.975 3.330 8.829 3.246 1.966 1.921 3.014 4.490 5.862 8.829
Return on Assets (%) 5.750 721.460 0.200 0.430 0.760 1.110 118286.150 0.496 0.931 0.224 0.460 0.496 1.090 19.368
No. Subsidiaries 1.436 1.770 1.000 1.000 1.000 2.000 57.000 1.780 2.470 1.000 2.000 2.000 6.000 40.000
Age (years) 2.460 3.010 1.000 2.000 3.000 6.000 33.000 2.420 2.620 1.000 2.000 3.000 6.000 26.000

Table 4: Summary Statistics

This table presents the summary statistics for the variables and controls
used for all BHCs in the sample over all quarters observed. Note that a ∗

indicates that the variable is scaled such that the 95% percentile of BHC
total equity is equal to EH = 10, the maximum level of equity in the model’s
grid.

(1)
Endowment dηt

(2)
Dividend dDt

(3)
Correlation ρ

m̂η
0.0736
(0.0017)

– –

σ̂η
0.1366
(0.0004)

– –

m̂D –
0.1265
(0.0103)

–

σ̂D –
0.3443
(0.0024)

–

β̂ – –
0.0030
(0.0010)

ρ̂ – –
0.0014
(0.0023)

N 49,214 9,523 9,523
LL -62,383.57 -3,241.77 –
r – – 0.098

Table 5: Stochastic process MLE estimates

Column (1) presents the MLE estimates of the parameters (mη, ση) for the
process defined by equation (2). Column (2) presents the MLE estimates of
the parameters (mD, σD) for the process defined by equation (1) using the
log-likelihood defined in equation (20). Column (3) presents the estimate of
β from equation (21), and the implied correlation ρ that follows by definition
of equation (3).
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ment income is:

∆ηit ∼ N(mη∆t, σ2
η∆t)

The log-likelihood function for Nt BHCs in each time t is therefore:

ℓ(mη, ση) =
T∑
t=1

Nt∑
i=1

[
−1

2
ln
(
2πσ2

η∆t
)
− (∆ηit −mη∆t)2

2σ2
η∆t

]
(20)

I minimize the above log-likelihood using the observed scaled net income η̂∗it from the

FR-Y9C filings for each BHC. The log-likelihood function for the dividend process is of a

similar form, for which the observed return on trading assets D̂it is used. I additionally use

for both BHC level controls: log of total assets (scaled), return on assets, age, the number of

subsidiary companies, and a first quarter dummy variable to control for seasonality. Table

4 reports the summary statistics for these control variables. All continuous variables are

winsorized at the 3% level. The MLE estimates are presented in Table 5.

Given the above MLE estimates, I can then obtain an estimate for the correlation pa-

rameter, ρ. By definition of the stochastic process given in equations (1), (2), and (3):

cov(dηt, dDt)

var(dηt)︸ ︷︷ ︸
β

=
σησDρ

σ2
η

=
σD

ση

ρ

Where the term cov(dηt,dDt)
var(dηt)

is in fact the OLS coefficient β in the following regression:

∆Dt = α + β∆ηt + ϵt (21)

I run the above OLS regression using η̂∗it, D̂it, as well as the same BHC level controls as in

the MLE estimation, to obtain an estimate of β̂, and use the previously obtained estimates

of σ̂η and σ̂D. The estimate of the correlation coefficient is therefore:

ρ̂ = β̂
σ̂η

σ̂D

.
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