# (Don't) Go Woke, Go Broke? An Analysis of Public Pension Plan Investment Restrictions

Madison Borrelli University of Central Florida Madison.Borrelli@ucf.edu **Abstract** 

I use a hand-collected dataset to examine the impact of recent politicized restrictions on public

pension plans' investment decisions. Framing the analysis around three actors—plans, politicians,

and constituents—I find that political interference leads to suboptimal asset allocation in public

pension plans, with capital shifting from traditional assets to costlier, less transparent alternatives.

These effects are concentrated in politically assertive, Republican-led states and result in higher

fees and weaker performance. Politicians gain media attention, but the restrictions offer no

measurable benefits to beneficiaries or other stakeholders. Targeted firms experience negative

market reactions following restriction announcements. My study underscores the role of political

incentives in shaping public pension plan governance and investment outcomes.

Keywords: Public pension fund, Investment behavior, Political Incentives, Governance

1

#### 1. Introduction

How do the incentives of state politicians shape public pension plan investment decisions? Tasked with delivering retirement security for millions of beneficiaries, U.S. public pension plans manage over \$6 trillion in assets. Yet unlike corporations and other asset managers, they operate under a unique governance structure—sponsored by state governments and shaped by political oversight. This structure enables elected officials to exert influence over investment policy through legislation, board appointments, and statutory mandates (Mitchell and Hsin, 1994; Useem and Mitchell, 2000). It creates the potential for agency conflicts, where politicians may implement policies that prioritize short-term political objectives—such as boosting public visibility or ideological signaling —over value-maximizing goals that protect the long-term financial interests of beneficiaries. Such misaligned incentives can lead plans to deviate from optimal strategy, distorting investment policy and ultimately imposing costs on retirees and taxpayers (Romano, 1993, 1995; Coronado, Engen, and Knight, 2003; Eaton and Nofsinger, 2005). Understanding how political incentives translate into public pension investment decisions is central to evaluating whether these interventions are intended to impact plan portfolios or are primarily symbolic, serving self-interested political goals.

This paper focuses on one mechanism through which political interference in public pension plans materializes: state-imposed restrictions on investment choices. These restrictions offer a natural setting to evaluate whether an agency conflict exists between politicians and their constituents. I evaluate how these restrictions affect portfolio efficiency and explore their political and economic implications.

<sup>1</sup> Data is sourced from the National Association of State Retirement Administrators (NASRA, 2024) Retrieved from https://www.nasra.org/files/issue%20briefs/nasrainvreturnassumptbrief.pdf.

In recent years, a wave of U.S. legislation has politicized environmental, social, and governance (ESG) investing, often by restricting public retirement plans' investment choices. For instance, since 2022, nine states have collectively withdrawn \$13.3 billion from BlackRock after adopting policies limiting ESG integration in investment and stewardship (Bashur, 2024).<sup>2</sup> Politicians have also publicly criticized financial institutions for adopting ESG criteria—West Virginia State Treasurer Riley Moore, for example, accused them of having "... weaponized our tax dollars against the very people and industry that have generated them..." (Catenacci, 2022). Ironically, although framed as safeguards for constituents, such restrictions may impose unintended costs. By narrowing the investable universe, they may compel plans to shift capital toward riskier or more expensive assets to meet required return targets. This raises a central question: Who benefits from these restrictions—and who bears the cost?

To understand the dynamics underlying this political interference, I center the analysis on public pension plans while also considering the incentives of two additional actors: state politicians and constituents (e.g., beneficiaries, taxpayers, firms). I evaluate i) the impact of recent investment restrictions on plan decisions and outcomes, ii) the political incentives motivating these policies, and iii) the downstream economic implications of such policies. This framework offers a multidimensional view of how political incentives shape public pension investment policy. It illustrates how investment restrictions serve as a vehicle for politicization—revealing political motives, altering plan investment behavior, and offering no clear public benefit.

My setting is the universe of U.S. state and local public pension plans. I hand-collect data on ESG-related investment restrictions. I begin by examining how public pension plans adjust their

<sup>&</sup>lt;sup>2</sup> The list of states includes the following: West Virginia, Florida, Louisiana, South Carolina, Missouri, Utah, Arkansas, Arizona, and Texas.

asset allocations when faced with such restrictions. My main finding is that, in response to investment restrictions, public pension funds decrease their allocation to traditional assets (e.g., equity and fixed income) by approximately 3% and shift it to alternative asset classes (e.g., hedge funds, real estate). Regarding individual asset classes, I observe a 2.7% decrease in equity allocation, while the percentage of assets allocated to hedge funds and real estate increases by 1.4% and 1.8%, respectively. The results are statistically significant and robust across multiple empirical methods.

Next, I conduct cross-sectional tests to determine where these allocation changes are most pronounced. Specifically, I propose the political influence channel, under the premise that if these changes reflect political aspirations as a conflict of interest, they will be most evident in plans subject to greater political pressure. I measure political pressure using three proxies: (i) state's political affiliation, (ii) the degree of state control over the plan, and (iii) the public activism of the states' politicians. Several studies document that political influence and connections shape fund investment decisions and governance (Andonov, Hochberg, and Rauh, 2018; Bradley, Pantzalis, and Yuan, 2016; Lee, 2023; Wang and Mao, 2015; Tu, Wen, F. Zhang, H. Zhang, 2025).

My findings suggest that plans in states where politicians exert greater political influence exhibit the allocation shifts I document. The main results concentrate in plans i) headquartered in Republican-leaning states, ii) more directly controlled by state governments and iii) whose state politicians are more publicly vocal on ESG issues.

Next, I investigate the consequences of the allocation changes on plan returns. I find that the asset classes in which pension funds reduce their exposure, namely equities and fixed income, are those that perform better ex-post, while the assets in which plans increase their positions, such

as hedge funds, perform worse. These effects suggest that pension funds forego value by reducing their exposure to traditional assets, while also incurring losses from reallocating to alternatives.

To more directly quantify the costs of political interference, I present transaction-level evidence from three plans in my sample. I find that these plans respond to investment restrictions by reallocating capital from low-cost traditional assets, such as public equities and bonds, to higher-cost alternatives, including hedge funds, private equity, and real estate. This shift increases fees by up to 5.89%, or approximately \$28 million. While the reallocation may aim to preserve a risk-adjusted profile comparable to the pre-divestment portfolio, the substantially higher fees associated with alternative investments likely erode any performance gains. The findings suggest that the restrictions distort investment choice and undermine effective portfolio management.

In addition to evaluating the effect of restrictions across asset classes, I examine the composition of assets within equities. Since the main findings show that plans reduce their allocation to traditional assets—mainly equities—after a restriction, I use 13F filings to analyze what this reduction entails. Specifically, I examine holdings of energy and weapons stocks, which are common targets of these policies. Blue-state plans reduce exposure to these industries post-restriction, consistent with the stated policy goals. Red-state plans show no comparable shift, suggesting that restrictions may serve political purposes beyond portfolio adjustment.

While the analysis so far centers on the consequences for pension plans, these laws originate from a second actor: the politicians who propose, promote, or inspire them. To assess whether politicians have measurable incentives, I examine whether they receive increased public attention following the implementation of investment restrictions. I conduct state-level regressions within the sample of states that impose such restrictions on their pension plans. The results show that politicians receive significantly greater media attention in the aftermath of a restriction, as

measured by article counts in major online news sources. This effect is concentrated in red states. These findings suggest that politicians may pursue investment restrictions not to improve plan outcomes or benefit stakeholders, but to increase their own political visibility and capital.

To address this possibility, I examine whether the political interference in this paper affects a third party: state residents and firms. Given the earlier evidence of investment decision distortion following restrictions, it is reasonable to infer that beneficiaries and taxpayers may ultimately bear the costs. However, one could argue that such policies are intended to benefit the broader state economy, for instance, by supporting local industries. I test this by estimating state-level regressions that examine changes in employment levels in industries tied to the premise of the restrictions—namely, fossil fuels and weapons—following their implementation. The results indicate no significant change in employment in these industries, suggesting no clear cost or benefit for this aspect of the broader state economy.

Additionally, I assess whether restrictions affect target firms. Using an event study approach, I find a significant market response to this political interference. Energy firms experience negative abnormal returns following restriction announcements in red states, while blue-state announcements are associated with positive abnormal returns. I also analyze Oklahoma's Energy Discrimination Act (HB 2034) and document a strong negative reaction among institutions named on its Restricted Financial Company List, such as Bank of America and State Street. These results suggest that markets view red-state restrictions as a source of political or regulatory uncertainty, while blue-state actions appear more aligned with investor expectations, eliciting a more muted response. I conclude that politicized investment restrictions have financial consequences that extend beyond the public pension plan portfolio.

My study makes three main contributions to the literature. First, I build on work examining political influence in public pension plans. Prior research has primarily focused on political bias in micro-level investment decisions, such as board connections, shareholder activism, local bias, and private rent extraction (e.g., linking donations to investment management) (Andonov et al., 2018; Bradley et al., 2016; Lee, 2023; Brown et al., 2015; Wang and Mao, 2015; Dyck, Manoel, Morse, 2022; Tu, et al., 2025). I shift the focus to a more observable channel through which political actors shape investment behavior: ESG-related investment restrictions. Specifically, I contribute new hand-collected data that captures overt state interference in investment strategy, moving beyond indirect proxies of political bias. I also examine how these restrictions affect asset allocation and risk profiles, providing insights into their broader effects on performance and fee structures. Finally, I incorporate measures of political incentives, linking the imposition of investment constraints to the pursuit of political gain.

Secondly, I contribute to the existing literature on public pension plan asset allocation and performance. A central concern in this literature is that government accounting standards permit optimistic assumptions about plan liabilities, often obscuring true funding gaps. These gaps have been shown to influence both asset allocation and risk-taking (Novy-Marx, 2009; 2011). While prior studies emphasize how funding pressures and discount rate assumptions shape portfolio decisions (e.g., Andonov, Bauer, and Cremers, 2017; Mohan and Zhang, 2014; Ang, Chen, and Sundaresan, 2013; Addoum, Jawad, van Binsbergen, and Brandt, 2010; Brown and Wilcox, 2009; Pennacchi and Rastad, 2011), I identify politically motivated investment restrictions as a novel driver of allocation policy and risk-shifting behavior.

Lastly, I highlight governance challenges in the public pension industry, an area that warrants greater attention given its scale. As of 2024, U.S. public-sector retirement systems serve

12.3 million beneficiaries and 15.3 million active workers. Unfunded liabilities are estimated at \$2.5 trillion, underscoring the importance of prudent investment decisions (Apell, 2024).<sup>3</sup> Prior studies shows that governance structures influence board decisions, which in turn affect portfolio allocation and performance (Mitchell and Hsin, 1994; Useem and Mitchell, 2000; Mitchell and Yang, 2005). I build on work examining the consequences of external political pressures on pension fund management (Romano, 1993, 1995; Eaton et al., 2004; Coronado et al., 2003; Nofsinger, 1998). I provide new evidence that political incentives can influence portfolio decisions in a suboptimal manner. I quantify the financial costs of these distortions—enabled by governance structures that permit political interference—not only for the plans themselves, but also for stakeholders and the broader economy.

My study carries important implications for the governance of public pension funds. I reveal that political incentives, when unchecked by effective governance structures, can shape investment policy in a multidimensional way—distorting asset allocation and delivering no clear economic benefits for residents or firms. Politicians emerge as the primary beneficiaries, gaining media attention and political capital while imposing diffuse costs on their constituents. Strengthening institutional safeguards that insulate pension decision-making from political pressures may be critical to preserving the integrity and performance of public retirement systems.

#### 2. Overview of Public Pension Plan Investment Behavior and Governance

Several studies discuss the effect of political influence on the investment decisions of public pension plans. Romano (1993,1995) exposes the susceptibility of plans to political pressures, arguing for the separation of politics and the interests of plan beneficiaries, as such interference

<sup>&</sup>lt;sup>3</sup> Data on beneficiaries and active workers is sourced from the U.S. Census Bureau (2023) Annual Survey of Public Pensions. Retrieved from https://www.census.gov/programs-surveys/aspp.html.

can conflict with the responsibility of fund management. Related to my study, Garrett and Ivanov (2024) examine the impact of state-level restrictive laws, with a particular focus on legislation in Texas. While their analysis centers on the municipal bond market, the authors provide evidence that restrictions on borrower-underwriter relationships imposed by the law lead to increased borrowing costs, demonstrating the harmful effects of such restrictions in financial markets.

A host of studies associate political bias in public pension plan investment decisions with underperformance. One form of political bias examined is the impact of state politician representation on pension plan boards. For instance, Andonov et al., (2018) provide evidence that pension fund boards with greater representation by state politicians are associated with higher allocation to underperforming private equity funds. Similarly, Bradley et al., (2016) document inferior investment performance in plans with more state officials on the board, particularly in those that bias their asset allocation toward political connected public equities. Lee (2023) examines the impact of political connections on pension plans, finding that plans are more likely to invest in private equity funds connected to state politicians serving on the plan's board. Tu et al. (2025) demonstrate that U.S. politicians influence state pension plan investments to secure greater corporate campaign contributions, generating adverse effects for both the pension plans and their portfolio firms. Brown, Pollet, and Weisbenner (2015) find that state pension plans favor in-state equities, particularly firms in counties with strong political ties to the governor. Wang and Mao (2015) conclude that politicians on pension funds' boards use shareholder proposals to bolster their political power. While these studies demonstrate political influence on specific investment decisions, my paper contributes in two key ways. First, I examine a direct measure of state interference in pension fund investment strategies, moving beyond indirect proxies of political bias. Second, I assess how this interference shapes overall asset allocation and risk profiles, revealing its broader impact on plan portfolios.

I contribute to the existing literature on how public pension plan governance shapes investment behavior and outcomes. Research demonstrates that governance structures directly influence the investment decisions of board members, ultimately impacting portfolio performance (Mitchell and Hsin, 1994; Useem and Mitchell, 2000; Mitchell and Yang, 2005). Agency problems arise from the organizational structure of public pension plans, with taxpayers ultimately bearing the costs. Specifically, a conflict of interest exists between the state and pension beneficiaries, as political incentives may diverge from retirees' financial interests. Prior literature highlights various ways this conflict materializes, such as economically targeted investments (ETIs)—mandated allocations intended to stimulate local economies—along with permissible investment statutes, funding requirements, and country or industry prohibitions (Eaton and Nofsinger, 2005; Romano, 1993; Mitchell and Hsin, 1994; Nofsinger, 1998; Coronado et al., 2003; Useem and Mitchell, 2000). Moreover, governance structures among public pension plans vary significantly. For example, board composition differs in terms of gubernatorial appointees, elected members, and ex-officio representatives (Andonov et al., 2018). A pension fund's board of administration plays a critical role in overseeing investment decisions, particularly in setting and approving asset allocation policies. These structural differences have been shown to influence both funding levels and investment performance, reinforcing the importance of governance in public pension management.

Finally, I contribute to the literature on public pension fund allocation and investment behavior. A key concern in pension fund management is that government accounting standards allow for flexibility in reporting pension liabilities, often leading to severe understatements of obligations (Novy-Marx, 2009; 2011). <sup>4</sup> This results in funding gaps that influence both asset allocation and risk-taking. Several studies demonstrate that risk-taking is closely linked to the liability discount rate chosen by plans, with funding levels impacting allocation decisions. Underfunded plans tend to increase risk in their investment strategies, a practice negatively associated with performance (Andonov, Bauer, and Cremers, 2017; Mohan and Zhang, 2014; Addoum, Van Binsbergen, and Brandt, 2010). Plans justify higher discount rates by allocating more capital to riskier assets, mechanically reducing reported liabilities and shifting financial risks into the future. Other studies suggest that well-funded plans are better positioned to take on investment risk (Ang et al., 2013).

# 3. Data and Sample

I construct my sample using two primary sources. First, I obtain plan-level data from the Public Plans database (PPD) provided by the Boston College Center for Retirement Research. The data consists of annual plan-level data for 228 state and local pension plans from 2000 through 2023. It contains asset allocations and investment performance, along with other variables of interest used in my study.

My second data source is a hand-collected dataset of ESG-related investment restriction, drawn from Ropes & Gray LLP, a law firm that maintains a webpage dedicated to tracking state-level ESG-related actions, legislation, and initiatives across the United States.<sup>5</sup> Ropes & Gray documents all past (inactive), pending, and active measures. For each state, I manually collect all

<sup>&</sup>lt;sup>4</sup> Notably, literature evidence shows that the Governmental Accounting Standards Board (GASB) enables plans to utilize the expected return on assets as the liability discount rate, even though this approach does not accurately represent the risk of liability cash flows (Andonov, Bauer, and Cremers, 2017; Pennacchi and Rastad, 2011). Interestingly, Brown and Wilcox (2009) argue that, due to the constitutional and legal protections binding public pension funds, their obligations resemble low risk, or 'risk-free' cash flows, warranting a lower discount rate that would, in turn, increase the present value of obligatory payments.

<sup>&</sup>lt;sup>5</sup> The webpage can be accessed at https://www.ropesgray.com/en/sites/navigating-state-regulation-of-esg.

laws, policies, and actions that impose restrictions on public pension investments. For each restriction, I record key details, including the announcement and effective dates, its nature and scope, subject matter, and other pertinent information. I supplement the PPD and my hand-collected restrictions dataset with additional variables used throughout the study, including political affiliation, 13F filings, and other relevant metrics.

I construct a cross-sectional indicator variable, *Restriction*, which equals one for public pension plans subject to at least one identified investment restriction—either a state law or a public pension board policy— and zero otherwise. Although board policies are not always enacted at the state level, they still constitute political interference for several reasons. First, public pension plans operate under state and local government oversight, allowing political actors to exert influence. Second, plan boards often include political appointees or elected officials—such as governors, treasurers, comptrollers, etc.— creating avenues for political agendas to intervene in fund management. Third, some public pension plans are housed within the offices of elected officials, meaning their investment operations are not independent from state political leadership.

To examine the effects of investment restrictions, my main variable of interest is *Post*, a time-varying indicator set to one if a plan's fiscal year-end occurs after the effective date of a *Restriction*. My final sample consists of 228 plans and 5,240 unique plan-FYEs from 2000 to 2023. All continuous variables are winsorized at the 1% and 99% levels.

<sup>&</sup>lt;sup>6</sup> For example, the Arkansas Public Employees' Retirement System board is composed of 9 members, 33% of which are ex-officio trustees -- the Auditor of State, the Treasurer of State and the Director of the Department of Finance and Administration.

<sup>&</sup>lt;sup>7</sup> For instance, in Connecticut and North Carolina, the State Treasurer is responsible for managing the pooling and investing the assets of the state pension plans.

<sup>&</sup>lt;sup>8</sup> My observations are at the plan-fiscal year-end level rather than the plan fiscal year level, as public pension plans have varying fiscal year-ends. This approach allows me to account for unobserved heterogeneity and macroeconomic factors that cannot be fully controlled for within a single fiscal year.

Table 1, Panel A, presents distributional statistics of the *Restriction* sample, organized by state and year. The restrictions span 2020 to 2023. The Restriction sample includes 16 states and is characterized by policy-inducing divestments, restricted financial company lists ("financial blacklists") and industry-specific investment prohibitions. Beginning in 2020, Connecticut, New York, and Rhode Island implement industry-specific investment prohibitions, typically restricting investment in the public equity sector. <sup>9</sup> Similarly, Maine enacts a law in 2021 that bans investments in fossil fuel companies, and the California State Teachers' Retirement System issues a net-zero emissions pledge, effectively signaling a shift away from carbon-intensive industries. That same year, Texas adopts legislation requiring the creation of a financial blacklist, which bars investment in institutions that boycott or discriminate against energy firms. Kentucky, Oklahoma, West Virginia, and Arkansas soon follow with similar legislation. These blacklists constrain relationships with major asset managers central to public security markets; for example, Texas' list includes UBS, BlackRock, and 13 others. 10 In 2022, six states announce divestments from BlackRock Inc, due its integration of ESG into investment and proxy voting practices. These divestments arise from changes to pension board investment policies or public resolutions issued by state officials targeting ESG practices. In total, 87 plans (38.2%) in my sample are subject to an investment restriction (Restriction = 1), with ex-post data available for 84 of them (Post = 1).

Panel B of Table 1 provides summary statistics for the pension plans in my sample. The average (median) plan size in my sample has assets under management of \$13.6 (\$4.03 billion).

.

<sup>&</sup>lt;sup>9</sup> For example, in January of 2020, the Rhode Island State Investment Commission announced a motion to restrict investment in companies that manufacture assault-style weapons for civilian use or operate private for-profit prisons. <sup>10</sup> Section 809.051 of Texas Senate bill 13, effective in September of 2021, states that "The Comptroller shall prepare and maintain, and provide to each state governmental entity, a list of all financial companies that boycott energy companies…", restricting investment in the listed companies.

On average, the funding ratio of public pension plans in my sample is 77.72%, and the average (median) annual return is 6.72% (8.27%).

My two key asset allocation measures are *Traditional* and *Alternative*, defined at the planfiscal year-end (FYE) level. *Traditional* refers to the percentage of assets allocated to equities, fixed income, and cash. *Alternative* is the percentage allocated to private equity, hedge funds, and real estate. Plans on average allocate 79.33% of assets to traditional assets, 16.83% to alternative assets, and the residual to commodities or alternative miscellaneous assets. The average (median) plan allocates 51.73% (53%) of its assets to equity, 25.84% (25%) to fixed income, 1.76% to cash (1%), 6.21% (4.75%) to private equity, 4.52% (0%) to hedge funds, 6.10% (6.30%) to real estate, 1.83% (0%) to commodities, 1.32% (0%) to alternative miscellaneous assets. Across asset classes, the highest average return is private equity at 11.86%, while cash yields the lowest at 1.99%.

## 4. Impact of Political Interference on Public Pension Plan Investment Outcomes

# 4.1. Public Pension Plan Asset Allocation

I begin by examining the impact of investment restrictions on public pension plan asset allocation. Table 2 presents a univariate analysis comparing the percentage of assets allocated to various asset classes in the period before and after the restriction takes effect. I conduct the analysis within plans identified as having an investment restriction (*Restriction* = 1). <sup>11</sup> First, I observe significant differences in the percentage of assets allocated to *Traditional*; specifically, plans on average offload about 14% of their allocation to traditional assets following the restriction, while *Alternative* increases by about 11%. When we breakdown these groupings into individual asset classes, the results corroborate my findings for *Traditional* and *Alternative*. Post-restriction, equity

14

<sup>&</sup>lt;sup>11</sup> Results are statistically and economically similar if we conduct the analysis across the full sample.

allocation experiences an approximate 8.3% drop, while allocation to fixed income declines by about 5.4%. We do not see any meaningful change in the percentage of assets allocated to cash, implying that equity and fixed income drive the changes we see in *Traditional*. Private equity increases by about 6%, real estate by about 3%, and hedge funds by about 2%. All differences are statistically significant at the 1% level. These univariate results serve as a baseline, suggesting that public pension plans adjust their investment behavior in a risk-shifting manner in response to restrictions imposed by state politicians.

Because the analysis in Table 2 does not account for confounding factors, time trends, or unobserved heterogeneity, I proceed by estimating the following multivariate regression:

$$Allocation_{i,t} = \beta Post_{i,t} + X_{i,t-1} + \varphi_t + \delta_i + \varepsilon_{i,t}$$
 (1)

where *i* indexes plans and *t* indexes time. *Allocation*<sub>*i*,*t*</sub> is the percentage of assets allocated to an asset class or group.  $Post_{i,t}$  is the key independent variable of interest, set to one for FYEs that occur after the date the restriction is effective, and zero otherwise.  $X_{i,t}$  is a vector of lagged plan characteristics, including the natural log of plan size and plan funding ratio.  $\varphi_t$  and  $\delta_i$  denote FYE and plan fixed effects, respectively. Standard errors are double clustered by plan and FYE.

Panel A of Table 3 presents estimates of equation (1) for allocations to *Traditional* and *Alternative*. Columns (1) and (2) incorporate plan fixed effects to absorb time invariant heterogeneity. The results show that following a restriction, plans reduce their allocation to traditional assets by approximately 5.7%, while increasing their allocation to alternative assets by about 4.1%. *Post* is statistically significant at the 1% level in both columns. Plan size is negatively (positively) related to *Traditional (Alternative)*, implying that larger plans are more likely to take risks. Funding ratio is positively (negatively) related to *Traditional (Alternative)*, consistent with

evidence in the literature that underfunded plans take more risk (Novy-Marx and Rauh, 2009; 2011; Andonov et al., 2017; Mohan and Zhang, 2014; Addoum et al., 2010). In Columns (3) and (4), I include FYE fixed effects to account for time-varying shocks common to all plans. This improves model fit as reflected by the increase in adjusted R<sup>2</sup>. The coefficients remain consistent with a risk-shifting behavior. Following the restriction, allocation to *Traditional* declines by 2.7% with a corresponding increase in Alternative. These effects are economically meaningful. For instance, a 3% increase in alternative allocation represents an approximate 18% rise relative to the pre-restriction average of 16.83% (Table 1, Panel B).

Panel B presents the results for allocations to individual asset classes. Column (1) suggests that the decline in traditional assets is driven by reductions in equities and fixed income, although these effects are not statistically significant. In line with the rise in alternative exposure observed in Panel A, Columns (5) and (6) show that hedge fund and real estate allocations significantly increase by 1.3% and 1.6%, respectively. There is no meaningful change in cash or private equity allocations.

To reduce selection bias concerns, I employ a propensity score match (PSM) procedure. Specifically, I match plan-FYEs exposed to an investment restriction (Restriction =1) with unexposed plan-FYEs (Restriction = 0) without replacement. <sup>12</sup> I match on Log Plan Size, Plan Funding %, State, and FYE. State is an indicator variable equal to one for plans identified by the PPD as administered at the state-level, and equal to zero for local plans. The resulting matched sample contains 1,333 pairs, yielding 2,666 plan-FYEs.

<sup>&</sup>lt;sup>12</sup> I use the nearest neighbor approach and enforce a caliper of 0.05. Results are economically similar if I enforce a stronger caliper such as 0.01.

Panel C displays the results of estimating equation (1) on the matched sample. Columns (1) and (2) show effects that are qualitatively consistent with those in Panels A and B, but notably larger in magnitude. In addition to reinforcing the overall shift toward alternative assets, the matched estimates provide new insight into the composition of that shift. Specifically, the decline in traditional assets is driven by a statistically significant 2.7% reduction in equity allocation, with corresponding increases of 1.4% in hedge funds and 1.8% in real estate. Given that many restrictions either directly limit equity investments or target asset managers with a significant equity market presence, the observed reduction in equities is consistent with the nature of these constraints. The reallocation from public equities and into more opaque, higher-cost alternatives may reflect an effort to preserve a similar risk-return profile despite a politically constrained opportunity set. Table 3 illustrates that political interference alters plans' asset allocation decisions.

The following analyses examine cross-sectional variation to assess where the allocation changes reported in Table 3 are most concentrated. I focus on one key channel through which these effects should emerge if the allocation shifts are motivated by political aspirations: political influence. I hypothesize that the political environment in which public pension plans operate shapes their response to investment restrictions. <sup>13</sup> Specifically, I consider three dimensions of political influence that may shed light on the baseline results: i) the political leaning of the state, ii) political actions taken by state officials, such as signing coalition letters to signal their stance on ESG-related issues, and iii) the degree of state control over the pension system. I use equation (1) to estimate multivariate regressions within subsamples defined along these three dimensions.

12

<sup>&</sup>lt;sup>13</sup> Existing literature documents the role political influence plays fund investment decisions and governance structures (Romano, 1993, 1995; Andonov, Hochberg, and Rauh, 2018; Bradley, Pantzalis, and Yuan, 2016; Lee, 2023; Wang and Mao, 2015; Brown, Pollet, Weisbenner, 2015; Tu et al., 2025).

To examine the impact of state political ideology on a plans' change in investment behavior, I identify the political leanings of U.S. states using data from FiveThirtyEight's partisan lean metric for 2021 (most recent year available). This metric is calculated as the average margin difference between how a state votes and how the country votes. <sup>14</sup> I define Republican-leaning (*Red*) states as states with a lean of -10% or more and Democratic-leaning (*Bue*) states as states with a lean of 10% or more. About 27% of plans affected by a restriction are headquartered in a *Blue* state, while about 73% of these plans are *Red*. Provided in the appendix is a list of states by partisan lean.

Panel A of Table 4 presents the results of testing equation (1) within political lean subsamples. The findings are striking; the decline in traditional assets and the corresponding rise in alternative assets is driven entirely by public pension plans in red states. Following the implementation of restrictions, plans in red states reduce their allocation to traditional assets by 3.4%, reallocation capital to alternatives. Blue states do not exhibit a meaningful change in their asset allocation post-restriction. The results support the conjecture that the political environment, particularly the partisan makeup of state leadership, shapes how plans navigate political pressure. The pronounced shifts in red states may reflect a political climate in which policymakers are more assertive or stringent in their directives, exerting greater influence over fund managers to align investment strategies with prevailing political ideologies. Conversely, blue states may adopt a more measured or hands-off approach, resulting in more muted changes to portfolio allocation.

To evaluate the second form of political influence— the political actions taken by politicians —I use hand-collected data from Ropes & Gray on recent multi-state coalitions

<sup>&</sup>lt;sup>14</sup> The data can be accessed at <a href="https://github.com/fivethirtyeight/data/tree/master/partisan-lean">https://github.com/fivethirtyeight/data/tree/master/partisan-lean</a>.

surrounding ESG and political issues. <sup>15</sup> These coalitions take the form of letters signed by state elected officials, including attorney generals, treasurers, or governors. A signature on a letter signifies that a state politician took action to endorse the initiative outlined in the letter. A greater number of signatures for a letter indicates a stronger multi-state coalition supporting the initiative. <sup>16</sup> In total, I collect 26 distinct multi-state coalition letters from 2021 to 2023. All U.S. states have a political official that signed at least one letter, with exception to Hawaii. Across all letters, there are a total of 80 Democratic state signatures and 360 Republican state signatures, foreshadowing that Republican politicians are more aggressive in advancing their stance on ESG policy. The median (mean) number of letters signed by a state is 7 (8.68), while the maximum is 19 (Utah) and the minimum is 0 (Hawaii).

I create two cross-sectional indicators by state. The first is *Active*, which is a cross-sectional indicator variable set to one if a public pension plan is headquartered in a state that has signed greater or equal to the median number of multi-state coalition letters signed in the full sample. The second is *Red (Blue) Signer*, which is an indicator variable set to one if a plan is headquartered in a state where a Republican (Democratic) political official signs at least one coalition letter. <sup>17</sup>

In Panel B of Table 4 I divide the sample based on the indicator variable, *Active*. I posit that plans in states endorsing more letters—and thereby demonstrating stronger commitment to their political stance—will exhibit the risk-transfer behavior I have documented. The findings

<sup>&</sup>lt;sup>15</sup> The information is attainable at <a href="https://www.ropesgray.com/en/sites/navigating-state-regulation-of-esg/multi-state-initiatives">https://www.ropesgray.com/en/sites/navigating-state-regulation-of-esg/multi-state-initiatives</a>.

<sup>&</sup>lt;sup>16</sup> For example, published on August 4th, 2022, 19 Republican state attorney generals signed a letter to the CEO of BlackRock asserting their dissatisfaction with its uses of state pension plan assets to promote an ESG agenda, and to address general concern with the company's investment and shareholder welfare strategies. To view this letter, see <a href="https://www.texasattorneygeneral.gov/sites/default/files/images/executive-management/BlackRock%20Letter.pdf">https://www.texasattorneygeneral.gov/sites/default/files/images/executive-management/BlackRock%20Letter.pdf</a>.

<sup>17</sup> It is important to note that these groups are not mutually exclusive; for example, Arizona's Republican state

<sup>&</sup>lt;sup>17</sup> It is important to note that these groups are not mutually exclusive; for example, Arizona's Republican state attorney general signed a letter in 2022 ( $Red\ Signer=1$ ), while the Democratic attorney general that took office in 2023 signed a letter in 2023 ( $Blue\ Signer=1$ ). This overlay occurs in 3 states (affecting 14 plans) during the period in which I collect the letters.

support my conjecture: public pension plans headquartered in states more actively promoting their stance on ESG are the plans shifting capital toward alternative assets. In the subsample *Active*, *Traditional* drops by 3.7% ex-post, while *Alternative* increases by about 4.2%. We do not observe any significant effects in states that fall at the lower end of the multi-state coalition spectrum (*Active* = 0). The results show that my main results are concentrated in pension funds headquartered in states where politicians are more vocal in their pursuit of their social or political agendas. <sup>18</sup> I re-estimate this analysis using *Red* (*Blue*) *Signer* and report the results in the appendix. I interpret the results as reinforcement of the findings from the political lean analysis in Panel A.

Panel C of Table 4 divides the sample into state- and local-administered public pension plans. Of the 87 plans in the *Restriction* sample, 48 are state plans. I expect the main effects to be concentrated among state plans, as most restrictions in my sample are imposed at the state level, and these plans are more likely to face political pressure or direct oversight from state officials. In contrast, local plans may be more responsive to city or county-level governance. <sup>19</sup> The results support this conjecture: the observed allocation shifts occur exclusively among state plans. Taken together, Table 4 highlights the multifaceted impact of political influence on public pension investment decisions, offering preliminary evidence that political incentives – particularly where control is strongest—shape how plans allocate their assets when faced with interference.

### 4.2 Public Pension Plan Investment Performance

. .

<sup>&</sup>lt;sup>18</sup> The findings hold when redefining the indicator variable to represent plans headquartered in states falling within the top quartile of active signers.

<sup>&</sup>lt;sup>19</sup>At first glance, it may seem obvious that state plans would exhibit the allocation changes, given that the restrictions are primarily enacted at the state level. However, two important caveats warrant attention. First, some local plans are administered by the state rather than independent local governments. Second, these publicized investment restrictions may indirectly influence local plan investment behavior by increasing political pressure or prompting anticipation of future restrictions.

The previous empirical results indicate that plans shift their investments to alternative assets in response to politicized investment restrictions. In this subsection, I explore the consequences of these changes for investment performance. I estimate the following regression:

$$Performance_{i,t} = \beta Post_{i,t} + X_{i,t-1} + \varphi_t + \delta_i + \varepsilon_{i,t}$$
 (2)

where,  $performance_{i,t}$  is the peer-adjusted return of plan i at time t. Peer-adjusted return is computed for the annual investment return, Traditional and Alternative, and individual asset class returns. It is calculated by subtracting the average return of all other plans from a plan's investment return during the same FYE. This calculation removes concerns that the return effects we pick up are due to the time trend in public pension plan performance.  $X_{i,t-1}$  is a vector of lagged plan characteristics including Log Plan Size, Plan Funding %, asset allocations, and peer-adjusted returns. The annual investment return contains the lagged asset allocation and peer-adjusted returns of all asset classes as controls, while the regressions on individual asset returns contain the previous allocation and return of just that asset.  $^{20}$  Traditional return is calculated as a weighted average of peer-adjusted returns for equities (EQ), fixed income (FI), and cash:

$$Traditional = w_{EQ} * R_{EQ}^{peer} + w_{FI} * R_{FI}^{peer} + w_{Cash} * R_{Cash}^{peer}$$

where w represents allocation weights and  $R^{peer}$  indicates peer-adjusted returns. I construct Alternative return analogously using the corresponding asset classes.  $\varphi_t$  and  $\delta_i$  denotes FYE and plan fixed effects, respectively. Standard errors are double clustered by plan and FYE. Controls are suppressed for brevity; the full model is reported in the appendix.

<sup>&</sup>lt;sup>20</sup> Andonov and Rauh (2022) show that public pension fund return expectations positively correlate to cross-sectional differences in their past performance, suggesting the importance to control for lagged performance and asset allocations.

Table 5 provides the results of equation (2). In column (1), the annual investment return is not significantly different following the restriction. However, when I analyze the asset groups in columns (2) and (3), the performance of traditional assets gains 30 basis points (bp) ex-post, while the performance of alternatives declines by 70 bps. Driving the improvement in *Traditional*, fixed income performance rises by 130 bps following the restriction. Equity rises by 50 bps, but the effect is not statistically significant. Meanwhile, a 230bp drop in hedge fund performance drives the decline in the performance of alternatives. Considering the documented allocation changes, these findings suggest that pension managers' investment choices in response to the restrictions are inefficient. After the investment restriction, traditional assets outperform, yet pension funds reduce exposure to these assets, foregoing positive returns. Instead, funds reallocate capital to lower performing, riskier assets such as hedge funds. Collectively, these patterns suggest that political interference distorts portfolio allocation in a manner that may impair overall performance.

# 4.3 Anecdotal Evidence on the Portfolio Costs of Political Interference

Although Table 5 provides suggestive evidence of the costs associated with politicized investment restrictions, finding direct evidence is challenging for two key reasons. First, the limited post-restriction time series prevents a comprehensive assessment of long-term performance impacts, as most restrictions are relatively recent. <sup>21</sup> Second, public pension plans oversee substantial assets, averaging \$13.6 billion in this study. As a result, restriction-driven allocation shifts likely affect a small share of total assets, making performance impacts difficult to detect. <sup>22</sup>

<sup>&</sup>lt;sup>21</sup> This is especially true for alternatives like private equity funds, where internal rates of return are not realized until exit. Before exit, reported returns primarily rely on interim valuations of illiquid assets with long holding periods.

<sup>&</sup>lt;sup>22</sup> For instance, in August of 2022, the \$32 billion Texas Employees Retirement System divested about \$646 million to comply with the mandated financial blacklist. This \$646 million comprised a mere 2% of its total portfolio.

To more directly assess the costs associated with the restrictions, I examine treated plans (Restriction = 1) at the transactional level. Appendix Table A6 details three cases: the Missouri States Employees' Retirement System (MOSERS), the Texas Employees' Retirement System (TX ERS), and the Texas Municipal Retirement System (TX MRS). For each case, I document both the divestments made and corresponding investments undertaken to comply with the restriction.

# Case A: Missouri States Employees' Retirement System

Panel A presents the case of MOSERS. In June of 2022, the plan adopted a board policy eliminating ESG considerations in its proxy voting. MOSERS held a share in a commingled fund that included BlackRock, a firm known for incorporating ESG factors into its voting decisions. Despite efforts to prohibit BlackRock from voting proxies on behalf of MOSERS, the commingled fund structure made this infeasible. As a result, MOSERS withdrew from the fund (\$500 million) and reallocated the capital to hedge funds. <sup>23</sup>

MOSERS' reallocation sought to maintain the investment manager's desired Sharpe ratio. <sup>24</sup> However, a fee comparison between the divestment and reinvestment reveals a substantial cost increase. The transition from a low-cost, diversified commingled fund to higher-cost hedge funds resulted in an additional \$27.85 million in management fees—a 5.89% increase relative to market value. While the reallocation may enhance gross returns, the significant rise in fees could offset potential gains. Moreover, hedge funds require more time and resources to generate returns compared to commingled funds, which offer cost-effective, broad market exposure.

<sup>23</sup> Note that the new investment amount is not exactly \$500,000,000. Data limitations prevent the ability to identify the investment to the exact dollar in these detailed cases.

<sup>&</sup>lt;sup>24</sup> A possible motivation for shifting capital into alternatives to maintain the Sharpe ratio is that these assets are linked to lower reported volatility in plan returns (Munnell, Aubry, & Crawford, 2016).

### Case B: Texas Employees' Retirement System

Panel B presents the case of the Texas ERS, which responded to the statutory restricted financial company list released by the TX comptroller in August of 2022. At the time, the ERS had exposure to four restricted financial institutions, totaling around \$646 million in market value, which the law required the fund to divest. This exposure was primarily through externally managed holdings, with a small portion consisting of public securities held within the underlying portfolios of non-blacklisted external managers. To comply with the legislation, TX ERS withdrew capital from BlackRock, a blacklisted institution, and Pzena, due to its underlying exposure to restricted public securities. The fund also requested that external managers divest from individual public securities of blacklisted institutions, while retaining their relationships with those managers.

Following the divestment, the ERS reinvested the \$646 million across three asset classes: approximately \$526.3 million in alternatives—\$57.4 million in private credit and \$468.9 million in hedge funds—and \$100 million in public equity. This shift into private assets and hedge funds increases management fees, nearly doubling the fee from 0.39% on the divested capital to 0.81% on the replacement investments. In essence, the ERS replaced low-cost external managers, like BlackRock, known for its predominantly passive products, with actively managed funds characterized by higher fees. The behavior reflects a risk transfer, likely intended to maintain the plan's target return-risk profile despite a constrained investment universe. In seeking to replicate pre-divestment portfolio performance, the ERS turned to alternatives—accepting higher fees, lower liquidity, and reduced transparency. While this shift may aid diversification and return objectives, elevated management fees likely offset much of the potential for performance gains.

# Case C: Texas Municipal Retirement System

Panel C details the case of TX MRS, which faced the same financial blacklist as the ERs in Panel B. At the time of the list's release, TX MRS held a separately managed account with BlackRock for its core fixed income investment, valued at about \$1.52 billion. In compliance with the law, the fund terminated its BlackRock account and redistributed the divested capital across private credit, real estate, real assets, private equity, and other alternative investments.

This reallocation led to an increase in fees by .43% of assets managed, translating to an additional \$6.88 million relative to the prior BlackRock account. Notably, TX MRS transitioned from a relatively lower-risk, cost-effective fixed income strategy to investments requiring higher risk tolerance and incurring greater management fees. As in cases A and B, this reallocation appears driven by the investment team's effort to preserve the portfolio's risk-return profile, seeking alternative sources of yield to achieve comparable returns and stable Sharpe ratio.

The anecdotal evidence in Table A6 suggests that politically imposed investment restrictions lead to inefficient and costly portfolio adjustments. To preserve performance, plans shift capital away from traditional, cost-effective assets toward higher-risk, higher-fee alternatives. This reallocation increases opacity, reduces equity exposure, and raises management costs—introducing complexity and uncertainty without clear evidence of superior net returns (net of fees).

# 4.4 Analysis of Public Pension Plan Equity Holdings

The earlier results show that plans subject to political interference adjust their portfolio allocation across asset classes. This raises a further question: Do these restrictions also affect equity selection? In particular, do plans reallocate capital toward or away from the firms targeted by the restrictions, such as those in the energy (e.g., fossil fuel, coal) and firearms sectors? To explore

this, I analyze changes in equity holdings using 13F filings.<sup>25</sup> I examine whether there are observable shifts in holdings of energy and weapons firms by constructing custom industry classifications.<sup>26</sup> I estimate the following regression:

$$TargetedSectorExposure_{i,t} = \beta Post_{i,t} + Log(HV)_{i,t} + \varphi_t + \delta_i + \varepsilon_{i,t}$$
 (3)

where, i indexes plans and t indexes year-quarters. The dependent variable,  $TargetedSectorExposure_{i,t}$  is measured as either  $Energy(Guns)\%\_MV$  – the proportion of a plan's equity holdings invested in energy (gun) stocks – or as  $Energy(Guns)\_Count$ , the number of such stocks held. Log(HV) is the logged market value of a plan's equity portfolio as reported in 13F.  $\varphi_t$  and  $\delta_i$  are year-quarter and plan fixed effects. I cluster standard errors by plan (13F manager).

Panel A of Table 6 presents the results of equation (3) for the full sample of 13F-reporting plans with an investment restriction (*Restriction* =1). Columns (1) and (2) show no meaningful change in exposure to energy stocks. In contrast, columns (3) and (4) reveal a significant decline in the number of gun-related stocks held. Only two states in the sample—Connecticut and Rhode Island—enact firearm-related restrictions, so I place limited weight on this finding.

Panel A highlights that the nature and subject matter of the restriction matters. Red-state plans in my sample face restrictions aimed at protecting the energy sector. For example, Texas (SB13) bands investment in companies that boycott energy, and Missouri's policy prohibits the integration

<sup>26</sup> My energy classification captures firms involved in extraction, refining, distribution, and infrastructure related to fossil fuels. This includes SIC codes used by Fama-French to define the Energy sector (1200–1399, 2900–2999) as well as select codes from Utilities (e.g., 4920–4939), Pipelines (4610–4629), and Wholesale sectors (5160–5172) that reflect midstream and downstream fossil fuel activity. This approach provides a more comprehensive measure of fossil-related holdings relevant to ESG divestment policies. For more details, see the appendix.

26

<sup>&</sup>lt;sup>25</sup> Many public pension plans do not appear in Form 13F filings. This is due to several reasons, including: (i) the plan outsources all asset management, (ii) it does not meet the \$100 million threshold in 13F-reportable securities, or (iii) its equity exposure is held through commingled funds, mutual funds, or other passive vehicles that do not require disclosure. See the appendix for the sample of 13F-reporting managers included in this study.

of ESG in proxy voting, prompting future divestments. Meanwhile, blue-state restrictions typically call for divestment from fossil fuel or weapons-related stocks, often as part of broader decarbonization or social responsibility goals. This suggests that the impact of restrictions on equity holdings is likely to differ by political alignment. Panel B of Table 6 investigates this by splitting the sample by political affiliation and comparing restricted plans to other red (blue) plans not subject to restrictions. Columns (1) - (4) reveal that red states do not significantly alter their portfolio holdings in the targeted sectors following political interference. This is noteworthy: if such policies are intended to promote energy investment, the results do not support that objective. However, columns (5)-(8) indicate that blue plans significantly reduce both the value and number of fossil fuel and weapon-related holdings relative to non-restricted blue plans. These findings align with the intent of blue state restrictions.

Panel C compares post-restriction changes between red and blue plans. No statistically significant difference exists between their energy or weapons holdings following an interference, except for a relative decline in firearm stocks among blue plans. This finding is somewhat surprising—if restrictions are politically motivated, we might expect red and blue states to respond in opposite directions. Yet the limited divergence suggests that, in some cases, restrictions endorsed by elected officials serve more as symbolic political gestures than binding mandates that materially alter equity choice.<sup>27</sup> Overall, Section 4 demonstrates that such interference does, in fact, disrupt plan investment behavior, with potentially costly consequences.

#### 5. Incentives of State Politicians

<sup>&</sup>lt;sup>27</sup> These findings are consistent with Rajgopal, Srivastava, and Zhao (2024), who find no meaningful difference in energy holdings composition between red and blue states, and conclude that many political statements on ESG lack tangible follow-through.

The previous section focuses on the impact of political interference on the public pension plan itself. This section shifts perspective to evaluate the potential benefits—or costs—for the politicians responsible for implementing or influencing investment restrictions. Specifically, I examine whether such restrictions lead to increased media attention for these officials.

I collect data from prominent news sources using Media Cloud, the world's largest open-source news database. <sup>28</sup> I count the number of times a politician's name co-occurs with ESG-related or investment restriction-related terms. <sup>29</sup> Politicians are identified using multiple name variants (i.e., full name, nickname plus last name, or title plus last name) to capture mentions accurately while minimizing false positives. For example, mentions of the Massachusetts governor could include "Maura Healey," "Healey," or "Governor Healey," so long as an ESG- or restriction-related keyword also appears in the same article. Based on manual reviews of press releases and media coverage related to the investment restrictions in this study, I aggregate annual article counts at the state level from 2018 to 2023, summing mentions of political figures commonly and publicly linked to these policies. These include (titles varying by state) Governor, Treasurer, Comptroller, Director of Administration, Auditor, and Chief Financial Officer. I estimate a state-level regression to test whether restrictions are associated with increased media attention to these officials:

$$TotalArticles_{i,t} = \beta Post_{i,t} + Election Cycle_{i,t} + \varphi_t + \delta_i + \varepsilon_{i,t}$$
 (4)

<sup>&</sup>lt;sup>28</sup> The news source directory can be accessed here <a href="https://www.mediacloud.org/media-cloud-directory">https://www.mediacloud.org/media-cloud-directory</a>. I use the directory titled 'US Most Visited News Online (Mar 2025)' which includes sources such as *New York Times*, *Reuters*, *Forbes*, *politico*, among 42 others.

<sup>&</sup>lt;sup>29</sup> The keyword group includes the following: anti-ESG legislation; ESG legislation; anti-ESG bill; ESG bill; ESG regulation and (pension or retirement); divest blackrock; divest fossil; boycott oil; boycott fossil; prohibit ESG; restricted company list; restricted financial institution list; (woke and pension); (public pension or pension or retirement system) and (ESG or environmental social and governance or anti-ESG); state divest and (ESG or environmental social and governance or anti-ESG); pension and (divest or boycott) and (ESG or anti-ESG); investment policy and (ESG or fossil fuel or social criteria); pension and (proxy vote or proxy voting) and ESG.

where i indexes states and t indexes years.  $TotalArticles_{i,t}$  is the number of news articles in which the name of any of a state's covered political officials co-occurs with an ESG- or restriction-related term. To account for media garnered driven by election cycles rather than the investment restriction,  $Election \ Cycle_{i,t}$  is an indicator variable set to one in gubernatorial election years.  $\varphi_t$  and  $\delta_i$  represent year and state fixed effects, respectively. Standard errors are clustered by state. Due to sample size concerns, I present results using both an ordinary least squares (OLS) and matched sample approach. OLS regressions include all states where politicians impose an investment restriction, while the matched sample included a treated (Restricted) and control state.

Panel A of Table 7 presents the results of estimating equation (4) for the full sample of treated states. Column (1) shows that, using OLS, politicians garner higher media attention following a restriction. I introduce year fixed effects in column (2); although the adjusted R<sub>2</sub> slightly improves, the coefficient on *Post* is no longer statistically significant. However, the matched sample estimates in columns (3) and (4) reveal a significant increase in article counts, suggesting that restrictions are indeed a form of interference associated with greater media visibility for state politicians.

Panel B presents results by political alignment. Similar to Panel A, the matched sample specification reveals that politicians receive greater media coverage following the imposition of a restriction. Specifically, Column (3) shows that red-state politicians experience a boost in attention after implementing a restrictive investment policy, relative to other red states without such a policy. In contrast, I observe no comparable increase among blue states. This pattern connects to the findings in Table 4, where the political environment in red states appears to drive more assertive and stringent restrictions that lead to tangible allocation changes. That same environment may also

stag and motehod on the manageity to have a mothisted largeby

<sup>&</sup>lt;sup>30</sup> States are matched on the propensity to have a restricted law by political affiliation and year.

explain why these politicians garner more media coverage. In this way, the incentive to be vocal in promoting restrictions may reflect a strategy aimed more at garnering political capital than improving pension plan performance.

Panel C compares media coverage of politicians in red versus blue states. In column (2), the positive and significant interaction between *Red* and *Post* indicates that red state politicians receive more media coverage relative to their blue-state counterparts. Although the effect—roughly two additional articles—persists in Column (4), the estimate loses statistical significance. These findings suggest that red states may attract disproportionate media attention, consistent with the idea that such policies are more politically salient in those environments. However, the evidence is modest, and it remains possible that both affiliates receive comparable increases. Overall, Table 7 indicates that the politicization of pension plan investment policy may yield political benefits, even when the value to retirement plan performance is unclear.

#### 6. Economic Welfare of State Constituents

In this section, I evaluate how political interference in pension investments affects broader state welfare, including beneficiaries, taxpayers, and firms. Section 4 shows that restrictions lead to inefficient portfolio decisions, which—given the governance structure of public pension plans—suggests taxpayers may bear long-term costs. Section 5 indicates that politicians may benefit by championing such policies. The question remains whether, and to what extent, constituents are affected. I address this by expanding the analysis to include additional state-level outcomes.

# 6.1 Employment Outcomes in Politically Targeted Sectors

I begin by testing whether state-level employment changes in the sectors targeted by investment restrictions. I hand-collect annual state-level employment data from the U.S. Bureau

of Labor Statistics for the years 2018–2023, using industry classifications based on NAICS codes. I construct two groupings: Fossil Fuel, which includes employment in oil, gas, and coal sectors, and Weapons, which includes firearms and ammunition manufacturing.<sup>31</sup> For each state-year, I compute the share of total industry employment attributable to each targeted sector. I estimate the following state-level regression within the sample of treated states (*Restriction* = 1):

$$Employment_{i,t} = \beta Post_{i,t} + \varphi_t + \delta_i + \varepsilon_{i,t}$$
 (5)

where, i indexes state and t indexes year.  $Employment_{i,t}$  is measured as either %FossilFuelEmpl or %WeaponEmpl, defined as employment in the respective sector scaled by total industry employment.  $\varphi_t$  and  $\delta_i$  represent year and state fixed effects, respectively. I cluster standard errors at the state level.

Panel A of Table 8 presents the results of equation (5) across the full sample. Columns (1) and (2) account for time-invariant state characteristics, while columns (3) and (4) include year fixed effects. Across all columns, I find observe no statistically significant change in fossil fuel or weapon-related employment.

Given that red and blue states pursue different political goals in crafting these policies—some aiming to support, others to divest from targeted sectors—a full-sample average may mask divergent effects. Panel B addresses this by splitting the sample by political alignment. However, neither red nor blue states exhibit statistically significant changes in sectoral employment.

the appendix.

<sup>&</sup>lt;sup>31</sup> %FossilFuelEmpl includes sectors related to fossil fuel extraction and wholesale processing, such as Oil and Gas Pipeline Construction (NAICS 237120), Bituminous Coal and Lignite Surface Mining (NAICS 212111), and Petroleum Bulk Stations and Terminals (NAICS 424710), among seven others. %WeaponEmpl includes Small Arms Ammunition Manufacturing (NAICS 332994) and two additional weapon-related codes. I report more detail in

Panel C tests whether red and blue states differ in their post-restriction employment trends. Again, no significant differences are detected. Overall, Table 8 explores one potential channel through which restrictions might affect the state economy. The results suggest that these policies do not measurably alter employment levels in the targeted sectors. Re-estimating the models using a matched sample yields consistent findings.

# 6.2 Market Reaction among Restriction Targets

I examine whether the political interference studied in this paper affects the firms at the center of it. Specifically, I test whether energy companies and financial institutions named on state financial blacklists experience significant market reactions to the announcement of public pension investment restrictions. To do so, I conduct an event study using a standard market model following MacKinlay (1997). The estimation window spans 250 trading days, beginning 31 days before the event window, and requires 90 to 120 days of valid return data. I focus on four event windows: (-3,3), (0,1), (0,3), and (-1,1), where day 0 represents the date of the restriction announcement.

I begin by analyzing firms in the energy sector, as defined by the Fama-French 12 industry classification. Because restriction announcement dates vary across states, I treat each event as a separate shock and apply the same set of energy firms to each event date, pooling them into a single stacked sample. I estimate cumulative abnormal returns (CARs) around each announcement using the event study framework described above. To test whether mean CARs differ significantly from zero, I conduct a difference-in-means test and cluster standard errors at the firm level to account for cross-sectional correlation in returns. I present the results in Panel A of Table 9. Columns (1)— (4) report average cumulative abnormal returns (CARs) across the full sample of restriction announcements. I observe a statistically significant negative reaction in the (0,3) and (—1,1) windows, suggesting that investors respond unfavorably to these announcements. Figure 1

provides visual context for the timing and direction of the market reaction, helping to explain why other event windows—though negative—lack statistical significance. Overall, Panel A suggests that energy firms experience a decline in market value following this political interference.

Columns (5) – (8) reveal a more nuanced story. For each window, I report the average CARs in the sample of restrictions announced in red states versus blue states. I do so by regressing the CAR for firm *i* in window *t* on *Red*, an indicator equal to one (zero) for red state (blue state) restrictions. The idea is that red- and blue-state restrictions reflect opposing policy stances toward energy firms: red states seek to promote or shield the energy industry by removing capital from institutions that boycott fossil fuels, whereas blue states aim to reduce exposure to the energy industry through divestment mandates. These divergent approaches may elicit different investor reactions. The results are striking; across all windows, the market response is asymmetric, with statistically positive (negative) market reaction to blue (red) state restrictions. One possible explanation is that blue-state divestment mandates are largely anticipated and interpreted as symbolic, signaling a long-term policy orientation rather than triggering immediate capital withdrawal. In contrast, red-state anti-boycott laws—despite their pro-energy framing—may introduce political and regulatory uncertainty. By targeting major financial intermediaries, they may disrupt capital access or raise reputational concerns among investors, creating unintended risks for the very energy firms they aim to protect.

Panels B and C present results from an alternative event sample. I focus on publicly traded firms listed in the initial version of Oklahoma's Restricted Financial Company List, published under the Energy Discrimination Act (HB 2034). The event date corresponds to the public

announcement of the list in May 2023.<sup>32</sup> Using the same estimation parameters as in Panel A, I test whether the listed firms experienced statistically significant cumulative abnormal returns (CARs) upon the announcement.

Panel B reports average CARs across the firms on the list. The results reveal a strong negative reaction to the blacklisting of these financial institutions, consistent across all event windows. Figure 2 illustrates this clear downward trend upon the announcement of the OK law. Panel C provides firm-level CAR estimates, all of which are negative, though the magnitude varies across firms and windows. Some institutions—such as State Street—exhibit particularly large and persistent losses, with CARs of –3% or more in nearly every window. Figure 3 presents these firm-level patterns. Table 9 highlights that political interference in investment policy—particularly when highly visible and politicized—can have real market consequences. Investors react, firms bear the cost, and the impact extends beyond the pension plans themselves.

#### 7. Identification and Robustness

To ensure the validity of the baseline results, I perform robustness tests to address potential concerns. First, I re-estimate the matched sample regressions in Table 3 using alternative variables in the PSM; specifically, I add political lean to the set of matching variables and I match on fiscal year rather than fiscal year-end. The results remain robust to these alternatives.

A second robustness test is a restricted window analysis. To ensure that tabulated results are attributed to the regulation, rather than unrelated long-term trends or other external, confounding factors over time, I perform equation (1) on plan-FYE observations that are within

<sup>&</sup>lt;sup>32</sup> The financial institutions on the list included in my sample are GCM Grosvenor Inc., Stepstone Group Inc., Wells Fargo & Company, JPMorgan Chase & Company, Bank of America Corporation, State Street Corporation, and BlackRock Inc. See the appendix for a copy of the list as released by the Oklahoma State Treasurer.

five years from the date the restriction takes effect. Table A1 reports the results, corroborating my baseline findings that post-restriction, public pension funds reduce their allocation to traditional assets in exchange for taking greater risk.

Thirdly, I confront the concern that the economy-wide low equity market returns in 2022 may mechanically reduce equity allocation. While the FYE fixed effects mitigate this concern, I further validate the findings by re-estimating equation (1) using the percentage of *target*, rather than actual, asset allocations as the dependent variable. Table A2 presents the results, which align with my baseline findings, reinforcing that the observed effects are driven by the investment team's response to the investment restriction rather than poor equity performance.

#### 8. Conclusion

This study provides evidence of a fundamental governance conflict: state politicians, driven by political incentives, may prioritize their own objectives over the interests of public pension plans and the welfare of their constituents. Using state-imposed investment restrictions as a testing ground, I examine outcomes for three key actors—plans, politicians, and constituents. I find that restricted plans reallocate capital away from traditional assets, particularly equities, and toward higher-cost, less transparent alternatives such as hedge funds and real estate. These shifts are most pronounced in Republican-leaning states and in environments where politicians are especially active and assertive in pushing political agendas.

This reallocation comes at a cost. Plans forgo risk-adjusted returns from traditional assets and incur higher fees associated with alternatives, impairing overall performance. These changes appear driven not by portfolio optimization, but by political pressure to maintain assumed return targets or deflect scrutiny by investing in harder-to-monitor asset classes.

Within equities, I find that plans in blue states reduce exposure to energy and gun stocks—the specific industries targeted by their investment restrictions. In contrast, I find no evidence that red-state restrictions lead to increased investment in sectors such as energy, despite being framed as efforts to support those industries. The lack of change by red-state plans implies that these restrictions may be primarily performative—designed to publicize a political stance on ESG rather than to meaningfully shift capital allocation.

While politicians benefit by advancing their agendas and gaining media attention, the intended economic impact of these restrictions appears largely absent. I find no evidence of employment changes in the industries targeted by divestment mandates. Where political interference is most visible, however, investors respond. I document asymmetric market reactions to restriction announcements: red-state laws trigger negative CARs among energy firms and targeted financial institutions, while blue-state laws are met with modestly positive reactions. This asymmetry may stem from differences in investor expectations or perceptions about how restrictions are introduced and enforced across political contexts.

Together, these findings highlight the agency costs of political interference in public pension governance. The consequences—higher investment costs, weakened returns, and market distortions—underscore the risks of politicizing public capital. We need greater scrutiny to ensure that the burdens of incentive misalignment do not fall on the very retirees and workers the system is meant to serve.

### REFERENCES

- Addoum, J. M., van Binsbergen, J. H., Brandt, M. W., 2010. Asset allocation and managerial assumptions in corporate pension plans. Available at SSRN: https://ssrn.com/abstract=1710902.
- Akerlof, G. A., 1970. 4. The market for 'lemons': quality uncertainty and the market mechanism. *Market Failure or Success*, 66.
- Agarwal, S., Liu, C., Peng, Q., Wu, Q., Zhang, T., 2021. Do pensions have real teeth? Evidence from the state government borrowing costs. Available at SSRN: https://ssrn.com/abstract=4024651.
- Andonov, A., Bauer, R. M. M. J., Cremers, K. J. M., 2017. Pension fund asset allocation and liability discount rates. *Review of Financial Studies 30*, 2555–2595.
- Andonov, A., Hochberg, Y. V., Rauh, J. D., 2018. Political representation and governance: Evidence from the investment decisions of public pension funds. *Journal of Finance* 73, 2041–2086.
- Andonov, A., Rauh, J. D., 2022. The return expectations of public pension funds. *Review of Financial Studies* 35, 3777–3822.
- Ang, A., Chen, B., Sundaresan, S. M., 2013. Liability-driven investment with downside risk. *Journal of Portfolio Management 40*, 71–87.
- Apell, D., 2024. Moody's: Unfunded U.S. public pension liabilities fall for fourth year in a row. *Pension & Investments*, 9 July. Available at: https://www.pionline.com/pension-funds/moodys-unfunded-us-public-pension-liabilities-fall-fourth-year-row.
- Bashur, B., 2024. BlackRock divestment tracker. *Americans for Tax Reform*, 5 Apr. Available at: https://atr.org/esgradar/.
- Bradley, D., Pantzalis, C., Yuan, X., 2016. The influence of political bias in state pension funds. *Journal of Financial Economics* 119, 69–91.
- Brown, J. R., Pollet, J. M., Weisbenner, S. J., 2015. The in-state equity bias of state pension plans (No. w21020). *National Bureau of Economic Research*.
- Brown, J. R., Wilcox, D. W., 2009. Discounting state and local pension liabilities. *American Economic Review 99*, 538–542.
- Catenacci, T., 2022. Republican states are planning an all-out assault on woke banks: 'We won't do business with you.' *Fox Business*, 4 Aug. Available at: <a href="https://www.foxbusiness.com/politics/republican-states-planning-assault-woke-banks-wont-do-business">https://www.foxbusiness.com/politics/republican-states-planning-assault-woke-banks-wont-do-business</a>.
- Coronado, J. L., Engen, E. M., & Knight, B., 2003. Public funds and private capital markets: the investment practices and performance of state and local pension funds. *National Tax Journal*, 56(3), 579-594.

- Correia, M., 2023. Oklahoma hit with suit over anti-ESG blacklist barring BlackRock, others. *Pension & Investments*, 21 Nov. Available at: https://www.pionline.com/esg/oklahoma-hit-suit-over-anti-esg-blacklist-barring-blackrock-others.
- Dyck, A., Manoel, P., Morse, A., 2022. Outraged by compensation: Implications for public pension performance. *Review of Financial Studies 35*, 2928–2980.
- Garrett, D., Ivanov, I., 2024. Gas, guns, and governments: Financial costs of anti-ESG policies. Jacobs Levy Equity Management Center for Quantitative Financial Research Paper. Available at SSRN: <a href="https://ssrn.com/abstract=4123366">https://ssrn.com/abstract=4123366</a>.
- Grossman, S. J., & Hart, O. D., 1986. The costs and benefits of ownership: A theory of vertical and lateral integration. *Journal of political economy*, 94(4), 691-719.
- Eaton, T. V., & Nofsinger, J. R., 2004. The effect of financial constraints and political pressure on the management of public pension plans. *Journal of Accounting and Public Policy*, 23(3), 161-189.
- Edelman, S., 2024. Minnesota teacher pension fund under Tim Walz 'blatantly' cooked,' investigator find: 'Undetected for decade'. *New York Post*, 5 Oct. Available at: <a href="https://nypost.com/2024/10/05/us-news/minn-teacher-pension-fund-under-tim-walz-blatantly-cooked-probe/">https://nypost.com/2024/10/05/us-news/minn-teacher-pension-fund-under-tim-walz-blatantly-cooked-probe/</a>.
- Estabine, S., 2025. Illinois' economic future pressured by worst pension crisis in nation. *Illinois Policy*, 4 Feb. Available at: https://www.illinoispolicy.org/illinois-economic-future-pressured-by-worst-pension-crisis-in-nation/.
- Hart, O., & Moore, J., 1990. Property Rights and the Nature of the Firm. *Journal of political economy*, 98(6), 1119-1158.
- Hochberg, Y. V., Rauh, J. D., 2013. Local overweighting and underperformance: Evidence from limited partner private equity investments. *Review of Financial Studies* 26, 403–451.
- Lee, J., 2023. Political connections and public pension fund investments: Evidence from private equity. Available at SSRN: https://ssrn.com/abstract=4668018.
- Lu, Y., Mullally, K., Ray, S., 2022. Paying for performance in public pension plans. *Management Science* 69, 4888–4907.
- MacKinlay, A. C., 1997. Event Studies in Economics and Finance. *Journal of Economic Literature*, 35(1), 13–39.
- Mehran, H., & Stulz, R. M., 2007. The economics of conflicts of interest in financial institutions. *Journal of Financial Economics* 85(2), 267-296.
- Mitchell, O. S., & Hsin, P. L. 1994. Public sector pension governance and performance. NBER Working Paper No. 4632. *National Bureau of Economic Research*. <a href="https://www.nber.org/papers/w4632">https://www.nber.org/papers/w4632</a>.
- Mitchell, Olivia S, and Tongxuan Yang, 2005, Public pension governance, funding, and performance: a longitudinal appraisal, *Pension Research Council WP2005-2*.

- Mohan, N., Zhang, T., 2014. An analysis of risk-taking behavior for public defined benefit pension plans. *Journal of Banking & Finance 40*, 403–419.
- Munnell, A. H., Aubry, J.-P., & Crawford, C., 2016. Public pension investment update: Have alternatives helped or hurt? *Center for Retirement Research at Boston College*. https://crr.bc.edu/public-pension-investment-update-have-alternatives-helped-or-hurt/.
- Nofsinger, J. R., 1998. Why targeted investing does not make sense! *Financial Management*, 87-96.
- Novy-Marx, R., Rauh, J. D., 2009. The liabilities and risks of state-sponsored pension plans. *Journal of Economic Perspectives 23*, 191–210.
- Novy-Marx, R., Rauh, J. D., 2011. Public pension promises: How big are they and what are they worth? *Journal of Finance 66*, 1211–1249.
- Pennacchi, G., Rastad, M., 2011. Portfolio allocation for public pension funds. Journal of *Pension Economics and Finance 10*, 221–245.
- Rajgopal, S., Srivastava, A., & Zhao, R., 2024. Economic substance behind Texas political anti-ESG sanctions. *Available at SSRN 4386268*.
- Rauh, J. D., 2009. Risk shifting versus risk management: Investment policy in corporate pension plans. *Review of Financial Studies* 22, 2687–2733.
- Romano, R., 1993. Public pension fund activism in corporate governance reconsidered. *Colum. L. Rev.*, *93*, 795.
- Romano, R., 1995. The politics of public pension funds. *Public Interest 119*, 42.
- Somner, J., 2023. The risks hidden in public pension funds. *The New York Times*, 4 Aug. https://www.nytimes.com/2023/08/04/business/private-equity-public-pension-funds.html.
- Steyer, R., 2023. 3 NYC pension funds sued over fossil fuel divestment. *Pension & Investments*, 12 May. Available at: <a href="https://www.pionline.com/pension-funds/3-nyc-pension-funds-sued-over-fossil-fuel-divestment">https://www.pionline.com/pension-funds/3-nyc-pension-funds-sued-over-fossil-fuel-divestment</a>.
- Tu, J., Wen, J., Zhang, F., and Zhang, H., 2024. The invisible handshake: State pensions and corporate political contributions. Working paper, American Finance Association.
- Useem, M., & Mitchell, O. S., 2000. Holders of the purse strings: Governance and performance of public retirement systems. *Social Science Quarterly*, 489-506.
- Wang, Y., Mao, C. X., 2015. Shareholder activism of public pension funds: The political facet. *Journal of Banking & Finance 60*, 138–152.

**Figure 1. Average CAR Around Restriction Announcement**. Average cumulative abnormal return (CAR) around the announcement of public pension investment restrictions.

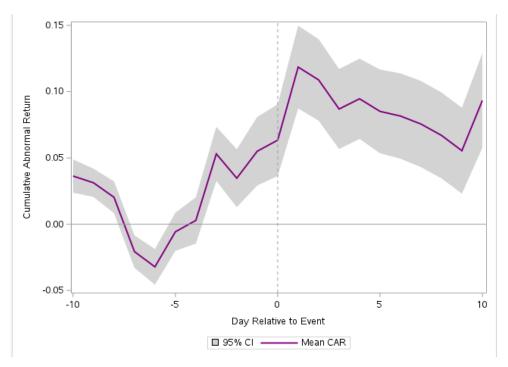



Figure 2. Average CAR for Firms on OK Restricted Financial Company List (HB 2034). Average CARs for firms targeted by Oklahoma's restricted financial company list.

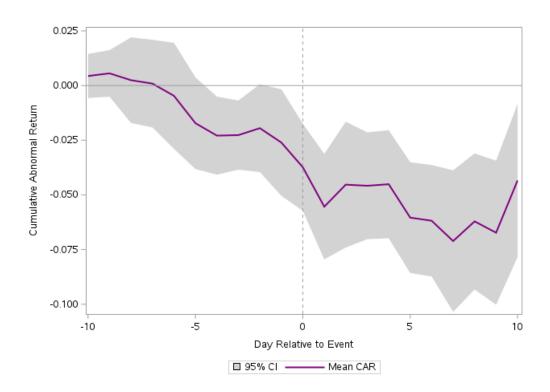
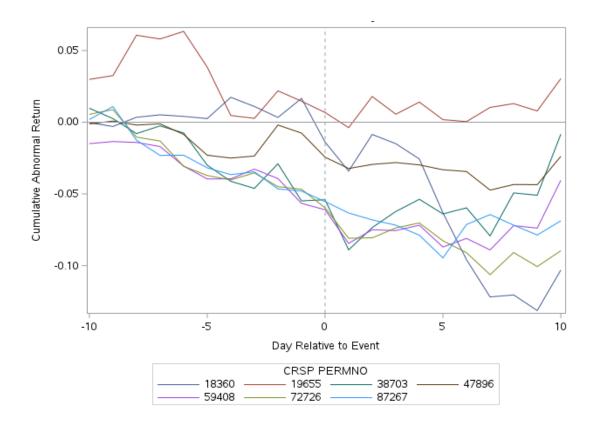




Figure 3. Firm-Level CARs for Firms on Oklahoma List. CARs by firm for companies listed on Oklahoma's restricted financial company list



| Figure 2 Legend |                      |  |  |  |  |  |  |
|-----------------|----------------------|--|--|--|--|--|--|
| Permno          | Institution          |  |  |  |  |  |  |
| 18360           | G C M GROSVENOR INC  |  |  |  |  |  |  |
| 19655           | STEPSTONE GROUP INC  |  |  |  |  |  |  |
| 38703           | WELLS FARGO & CO     |  |  |  |  |  |  |
| 47896           | JPMORGAN CHASE & CO  |  |  |  |  |  |  |
| 59408           | BANK OF AMERICA CORP |  |  |  |  |  |  |
| 72726           | STATE STREET CORP    |  |  |  |  |  |  |
| 87267           | BLACKROCK INC        |  |  |  |  |  |  |

**Table 1**. Summary Statistics. This table contains summary statistics for the variables used in this study, tabulated at the plan-fiscal year-end level. Panel A contains distributional statistics for the states and plans affected by the restrictive regulations in the sample. The panel shows the year the restriction is effective, the number of plan-year observations per state, the number of pension funds per state where *Restriction* = 1, the number of funds per state where *Post* = 1, and the type of investment restriction. *Restriction* is an indicator variable equal to one for public pension plans subject to an investment restriction. *Post* is a time-varying indicator set to one if a plan's fiscal year-end occurs after the effective date of a Restriction. Panel B contains summary statistics for the pension fund variables in the sample. All continuous variables are winsorized at the 1% and 99% level.

| States by Year of Law | N    | Number of 1    | Restriction Type |                     |
|-----------------------|------|----------------|------------------|---------------------|
| 2020                  |      | Restriction= 1 | Post = 1         |                     |
| Connecticut           | 95   | 4              | 4                | Industry Specific   |
| New York              | 184  | 8              | 8                | Industry Specific   |
| Rhode Island          | 71   | 3              | 3                | Industry Specific   |
| 2021                  |      |                |                  |                     |
| Maine                 | 46   | 2              | 2                | Industry Specific   |
| Texas                 | 299  | 13             | 13               | Financial Blacklist |
| California            | 23   | 1              | 1                | -                   |
| 2022                  |      |                |                  |                     |
| Arizona               | 115  | 5              | 5                | Divestment          |
| Florida               | 115  | 5              | 5                | Divestment          |
| Kentucky              | 92   | 4              | 4                | Financial Blacklist |
| Louisiana             | 207  | 9              | 9                | Divestment          |
| Missouri              | 322  | 14             | 14               | Divestment          |
| Oklahoma              | 138  | 6              | 6                | Financial Blacklist |
| South Carolina        | 69   | 3              | 3                | Divestment          |
| Utah                  | 46   | 2              | 2                | Divestment          |
| West Virginia         | 92   | 4              | 4                | Financial Blacklist |
| 2023                  |      |                |                  |                     |
| Arkansas              | 89   | 4              | 1                | Financial Blacklist |
| Total                 | 2003 | 87             | 84               |                     |

| Panel B: Public Pension Plan Statis | stics |            |                    |              |           |           |            |            |  |
|-------------------------------------|-------|------------|--------------------|--------------|-----------|-----------|------------|------------|--|
|                                     |       |            |                    | Distribution |           |           |            |            |  |
|                                     | N     | Mean       | Standard Deviation | 10th         | 25th      | 50th      | 75th       | 90th       |  |
| Plan Size (\$000)                   | 5151  | 13,600,000 | 25,300,000         | 291,545.10   | 1,053,770 | 4,030,216 | 14,000,000 | 34,300,000 |  |
| Plan Funding %                      | 5050  | 77.72%     | 19.11%             | 55.02%       | 66.89%    | 78.81%    | 90.70%     | 99.84%     |  |
| Annual Investment Return            | 5143  | 6.72%      | 10.68%             | -7.10%       | 0.37%     | 8.27%     | 13.90%     | 18.60%     |  |
| % Traditional                       | 4302  | 79.33%     | 13.76%             | 60.00%       | 70.80%    | 80.93%    | 90.00%     | 96.00%     |  |
| % Alternative                       | 4302  | 16.83%     | 12.81%             | 0.00%        | 6.42%     | 15.50%    | 25.00%     | 35.70%     |  |
| % Allocation Equity                 | 4302  | 51.73%     | 11.53%             | 36.00%       | 44.48%    | 53.00%    | 60.40%     | 66.00%     |  |
| % Allocation Fixed Income           | 4302  | 25.84%     | 8.14%              | 16.40%       | 20.53%    | 25.00%    | 30.37%     | 36.10%     |  |
| % Allocation Cash                   | 4302  | 1.76%      | 2.19%              | 0.00%        | 0.04%     | 1.00%     | 2.60%      | 4.85%      |  |
| % Allocation Private Equity         | 4302  | 6.21%      | 6.52%              | 0.00%        | 0.00%     | 4.75%     | 10.09%     | 14.90%     |  |
| % Allocation Hedge Funds            | 4302  | 4.52%      | 6.73%              | 0.00%        | 0.00%     | 0.00%     | 7.55%      | 14.60%     |  |
| % Allocation Real Estate            | 4302  | 6.10%      | 4.78%              | 0.00%        | 0.26%     | 6.30%     | 9.40%      | 12.00%     |  |
| % Allocation Commodities            | 4302  | 1.83%      | 3.57%              | 0.00%        | 0.00%     | 0.00%     | 2.10%      | 7.34%      |  |
| % Allocation Alternative Misc       | 4302  | 1.32%      | 4.46%              | 0.00%        | 0.00%     | 0.00%     | 0.00%      | 2.80%      |  |
| Equity Portfolio Return             | 4027  | 8.12%      | 16.88%             | -15.60%      | -3.22%    | 11.17%    | 20.02%     | 26.80%     |  |
| Fixed Income Portfolio Return       | 3997  | 4.63%      | 5.56%              | -1.10%       | 1.24%     | 5.27%     | 7.90%      | 10.90%     |  |
| Cash Portfolio Return               | 1647  | 1.99%      | 2.62%              | 0.10%        | 0.30%     | 1.30%     | 2.80%      | 5.30%      |  |
| Private Equity Portfolio Return     | 2512  | 11.86%     | 15.45%             | -6.72%       | 4.10%     | 12.20%    | 19.60%     | 27.01%     |  |
| Hedge Fund Portfolio Return         | 1742  | 5.13%      | 8.48%              | -4.26%       | 0.47%     | 5.41%     | 9.60%      | 14.70%     |  |
| Real Estate Portfolio Return        | 2911  | 8.69%      | 12.24%             | -4.88%       | 5.10%     | 9.87%     | 14.84%     | 21.96%     |  |
| Commodities Portfolio Return        | 1162  | 5.27%      | 11.70%             | -9.26%       | -0.20%    | 5.85%     | 12.00%     | 17.70%     |  |
| Alternative Misc Portfolio Return   | 388   | 8.63%      | 13.40%             | -7.00%       | 2.26%     | 8.75%     | 15.00%     | 22.90%     |  |

**Table 2. Paired T-Tests on Public Pension Fund Allocation.** This table reports the results of tests that compare the percentage of pension fund portfolios allocated to different asset classes before and after an investment restriction take effect. This set of tests is performed only within the sample of pension plans affected by an investment restriction (*Restriction* = 1). The main independent variable of interest is *Post*, a time-varying indicator set to one if a plan's fiscal year-end occurs after the effective date of a *Restriction*. I use Welch's test statistic adjustment.

|             |      | Asset Allocation |             |           |              |        |                |            |             |
|-------------|------|------------------|-------------|-----------|--------------|--------|----------------|------------|-------------|
|             | N    | Traditional      | Alternative | Equity    | Fixed Income | Cash   | Private Equity | Hedge Fund | Real Estate |
| Post = 0    | 1391 | 0.8084           | 0.1559      | 0.5259    | 0.2621       | 0.0205 | 0.0521         | 0.0512     | 0.0527      |
| Post = 1    | 152  | 0.6707           | 0.2672      | 0.4426    | 0.2079       | 0.0202 | 0.1091         | 0.0736     | 0.0846      |
| Difference  |      | 0.1377***        | -0.1113***  | 0.0833*** | 0.0542***    | 0.0003 | -0.057***      | -0.0224*** | -0.0319***  |
| T-Statistic |      | (11.73)          | (-9.46)     | (9.10)    | (7.99)       | (0.15) | (-8.98)        | (-3.96)    | (-7.13)     |

**Table 3. Multivariate Regressions of Public Pension Fund Allocation.** This table reports results of multivariate regressions on the allocations to different assets of pension funds. Panel A examines the allocation to traditional assets, defined as the percentage of assets allocated to equity, fixed income, and cash, as well as to alternative assets, defined as the percentage of assets allocated to hedge funds, private equity, and real estate. Panel B examines the asset allocation to individual asset classes. Panel C reports results of matched sample regressions on the allocations to different assets of pension funds. The main independent variable of interest is *Post*, a time-varying indicator set to one if a plan's fiscal year-end occurs after the effective date of a *Restriction*. The standard errors are double clustered by plan and fiscal year-end (FYE).

| Panel A: Traditional and  | Alternative Allo | cation       |             |                |            |             |
|---------------------------|------------------|--------------|-------------|----------------|------------|-------------|
|                           | (1)              | (2)          | (3)         | (4)            |            |             |
| VARIABLES                 | Traditional      | Alternative  | Traditional | Alternative    | _          |             |
|                           |                  |              |             |                | -          |             |
| Post                      | -0.057***        | 0.041***     | -0.027*     | 0.031**        |            |             |
|                           | (-4.18)          | (3.37)       | (-1.93)     | (2.31)         |            |             |
| Log Plan Size (t-1)       | -0.171***        | 0.134***     | -0.017      | 0.014          |            |             |
|                           | (-11.63)         | (10.43)      | (-0.80)     | (0.68)         |            |             |
| Plan Funding % (t-1)      | 0.298***         | -0.234***    | -0.007      | -0.000         |            |             |
|                           | (8.38)           | (-7.44)      | (-0.14)     | (-0.01)        |            |             |
|                           |                  |              |             |                |            |             |
| Plan FE                   | Yes              | Yes          | Yes         | Yes            |            |             |
| FYE FE                    | No               | No           | Yes         | Yes            |            |             |
| Observations              | 4,030            | 4,030        | 4,014       | 4,014          |            |             |
| Adj. R-squared            | 0.670            | 0.690        | 0.733       | 0.732          | _          |             |
| Panel B: Individual Asset | t Allocation     |              |             |                |            |             |
|                           | (1)              | (2)          | (3)         | (4)            | (5)        | (6)         |
| VARIABLES                 | Equity           | Fixed Income | Cash        | Private Equity | Hedge Fund | Real Estate |
|                           |                  |              |             |                |            |             |
| Post                      | -0.011           | -0.015       | -0.001      | 0.001          | 0.013**    | 0.016***    |
|                           | (-0.81)          | (-1.39)      | (-0.47)     | (0.16)         | (2.10)     | (3.63)      |
| Log Plan Size (t-1)       | -0.009           | 0.000        | -0.008**    | 0.017**        | -0.008     | 0.005       |
|                           | (-0.52)          | (0.00)       | (-2.26)     | (1.99)         | (-0.64)    | (0.62)      |
| Plan Funding % (t-1)      | 0.036            | -0.036       | -0.007      | 0.001          | 0.001      | -0.003      |
|                           | (0.84)           | (-1.10)      | (-0.85)     | (0.05)         | (0.04)     | (-0.20)     |
| Plan FE                   | Yes              | Yes          | Yes         | Yes            | Yes        | Yes         |
| FYE FE                    | Yes              | Yes          | Yes         | Yes            | Yes        | Yes         |
| Observations              | 4,014            | 4,014        | 4,014       | 4,014          | 4,014      | 4,014       |
| Adj. R-squared            | 0.671            | 0.583        | 0.422       | 0.745          | 0.574      | 0.737       |

| Panel C: Matched Sample |             |             |         |              |         |                |            |             |  |
|-------------------------|-------------|-------------|---------|--------------|---------|----------------|------------|-------------|--|
|                         | (1)         | (2)         | (3)     | (4)          | (5)     | (6)            | (7)        | (8)         |  |
| VARIABLES               | Traditional | Alternative | Equity  | Fixed Income | Cash    | Private Equity | Hedge Fund | Real Estate |  |
|                         |             |             |         |              |         |                |            |             |  |
| Post                    | -0.042***   | 0.038***    | -0.027* | -0.014       | -0.001  | 0.006          | 0.014**    | 0.018***    |  |
|                         | (-2.95)     | (3.19)      | (-1.95) | (-1.18)      | (-0.37) | (0.68)         | (2.12)     | (3.82)      |  |
| Controls                | Yes         | Yes         | Yes     | Yes          | Yes     | Yes            | Yes        | Yes         |  |
| Plan FE                 | Yes         | Yes         | Yes     | Yes          | Yes     | Yes            | Yes        | Yes         |  |
| FYE FE                  | Yes         | Yes         | Yes     | Yes          | Yes     | Yes            | Yes        | Yes         |  |
| Observations            | 2,542       | 2,542       | 2,542   | 2,542        | 2,542   | 2,542          | 2,542      | 2,542       |  |
| Adj. R-squared          | 0.719       | 0.726       | 0.660   | 0.575        | 0.428   | 0.710          | 0.573      | 0.734       |  |

**Table 4. Political influence.** This table reports results multivariate subsample regressions on the allocations to *Traditional* and *Alternative*. In Panel A, funds are divided based on whether the plan is headquartered in a *Red* or *Blue* state. In Panel B, funds are divided based on the indicator variable *Active*, set to one if a public pension plan is headquartered in a state that has signed greater or equal to the median number of multi-state coalition letters signed in the full sample. In Panel C, funds are divided based on the indicator variable *State*, equal to one if the public pension fund is a state-level plan. The main independent variable of interest is *Post*, a time-varying indicator set to one if a plan's fiscal year-end occurs after the effective date of a *Restriction*. Standard errors are double clustered by plan and fiscal year-end (FYE).

(2)

Blue

(1)

(2)

Panel A: Asset Allocation Changes *Red* versus *Blue* States *Red* 

(1)

| VARIABLES            | Traditional           | Alternative          | VARIABLES        | Traditional        | Alternative        |
|----------------------|-----------------------|----------------------|------------------|--------------------|--------------------|
| VARIABLES            | Traditional           | Atternative          | VARIABLES        | Traditionar        | Atternative        |
| Post                 | -0.034**              | 0.047***             | Post             | -0.009             | 0.007              |
| 1 050                | (-2.03)               | (2.69)               | 1 050            | (-0.39)            | (0.39)             |
|                      | (2.03)                | (2.05)               |                  | (0.37)             | (0.57)             |
| Controls             | Yes                   | Yes                  | Controls         | Yes                | Yes                |
| Plan FE              | Yes                   | Yes                  | Plan FE          | Yes                | Yes                |
| FYE FE               | Yes                   | Yes                  | FYE FE           | Yes                | Yes                |
| Observations         | 2,223                 | 2,223                | Observations     | 1,848              | 1,848              |
| Adj. R-squared       | 0.759                 | 0.729                | Adj. R-squared   | 0.700              | 0.753              |
| Panel B: Asset Allo  | ocation Changes in A  | ctive versus Non-A   | active States    |                    |                    |
|                      | Active = 1            |                      |                  | Active = 0         |                    |
|                      | (1)                   | (2)                  |                  | (1)                | (2)                |
| VARIABLES            | Traditional           | Alternative          | VARIABLES        | Traditional        | Alternative        |
|                      |                       |                      |                  |                    |                    |
| Post                 | -0.037*               | 0.042**              | Post             | -0.028             | 0.025              |
|                      | (-1.84)               | (2.31)               |                  | (-1.32)            | (1.53)             |
|                      |                       |                      |                  |                    |                    |
| Controls             | Yes                   | Yes                  | Controls         | Yes                | Yes                |
| Plan FE              | Yes                   | Yes                  | Plan FE          | Yes                | Yes                |
| FYE FE               | Yes                   | Yes                  | FYE FE           | Yes                | Yes                |
| Observations         | 1,892                 | 1,892                | Observations     | 2,179              | 2,179              |
| Adj. R-squared       | 0.772                 | 0.732                | Adj. R-squared   | 0.699              | 0.737              |
| Danal C: Assat Alla  | ocation Changes in St | enta vargus I agal E | unda             |                    |                    |
| Tallet C. Asset Alle | State                 | ate versus Local I   | unus             | Local              |                    |
|                      | (12)                  | (13)                 | -                | (1)                | (2)                |
| VARIABLES            | (12)<br>Traditional   | Alternative          | VARIABLES        | (1)<br>Traditional | (2)<br>Alternative |
| VARIABLES            | Traditional           | Alternative          | VARIABLES        | Traditionar        | Alternative        |
| Post                 | -0.054**              | 0.058**              | Post             | 0.008              | -0.005             |
|                      | (-2.60)               | (2.54)               |                  | (0.34)             | (-0.27)            |
| Controls             | Yes                   | Yes                  | Controls         | Yes                | Yes                |
| Plan FE              | Yes                   | Yes                  | Plan FE          | Yes                | Yes                |
| FYE FE               | Yes                   | Yes                  | FYE FE           | Yes                | Yes                |
| Observations         | 2,507                 | 2,507                | Observations     | 1,549              | 1,549              |
| Adj. R-squared       | 0.748                 | 0.739                | Adj. R-squared   | 0.723              | 0.715              |
| 11aj. It bquared     | 0.710                 | 0.757                | 114]. 10 5444104 | 0.725              | 0.715              |

**Table 5. Performance Effects of the Investment Restrictions.** This table reports results of multivariate regressions on pension plans' investment performance across different asset classes. The main performance measure is *Peer-Adjusted Return*, calculated by subtracting the average return of the other plans during the same fiscal year from a plan's return. The main independent variable of interest is *Post*, a time-varying indicator set to one if a plan's fiscal year-end occurs after the effective date of a *Restriction*. The standard errors are double clustered by plan and fiscal year-end (FYE).

|                |        | Peer-Adjusted Return |             |        |              |         |        |            |             |  |
|----------------|--------|----------------------|-------------|--------|--------------|---------|--------|------------|-------------|--|
|                | (1)    | (2)                  | (3)         | (4)    | (5)          | (6)     | (7)    | (8)        | (9)         |  |
| VARIABLES      | 1 Year | Traditional          | Alternative | Equity | Fixed Income | Cash    | PE     | Hedge Fund | Real Estate |  |
| Post           | 0.003  | 0.007***             | -0.004*     | 0.005  | 0.013***     | -0.001  | 0.004  | -0.023**   | -0.006      |  |
|                | (0.75) | (3.43)               | (-1.97)     | (1.24) | (3.74)       | (-0.20) | (0.48) | (-1.99)    | (-0.80)     |  |
| Controls       | Yes    | Yes                  | Yes         | Yes    | Yes          | Yes     | Yes    | Yes        | Yes         |  |
| Plan FE        | Yes    | Yes                  | Yes         | Yes    | Yes          | Yes     | Yes    | Yes        | Yes         |  |
| FYE FE         | Yes    | Yes                  | Yes         | Yes    | Yes          | Yes     | Yes    | Yes        | Yes         |  |
| Observations   | 4,009  | 1,463                | 1,212       | 3,698  | 3,667        | 1,383   | 2,266  | 1,487      | 2,621       |  |
| Adj. R-squared | 0.0373 | 0.0691               | 0.0247      | 0.0256 | -0.0181      | 0.0323  | 0.0093 | -0.0206    | -0.0021     |  |

**Table 6. Equity Holdings Analysis.** This table reports of multivariate regressions on pension plans' equity holdings within the sample of pension plans affected by an investment restriction. Panel A examines the full sample, while Panel B examines subsamples of blue and red state plans, and Panel C compares blue to red plans. Energy (Guns)%\_MV is the proportion of a plan's equity holdings invested in energy (gun) stocks. Energy (Guns)\_Count is the number of energy (guns) stocks held. The main independent variable of interest is Post, a time-varying indicator set to one if a plan's fiscal year-end occurs after the effective date of a Restriction. The standard errors are clustered by plan and the period is 2000-2023.

| Panel A: Energy and | d Guns Holdings |              |          |            |
|---------------------|-----------------|--------------|----------|------------|
|                     | (1)             | (2)          | (3)      | (4)        |
| VARIABLES           | Energy%_MV      | Energy_Count | Guns%_MV | Guns_Count |
| Post                | 0.000           | 0.002        | -0.000   | -0.001*    |
| Tost                | (0.20)          | (0.46)       | (-0.87)  | (-1.84)    |
| LogHV               | -0.012          | -0.011**     | -0.000   | -0.000     |
|                     | (-1.77)         | (-2.52)      | (-0.61)  | (-0.68)    |
| Year-Quarter FE     | Yes             | Yes          | Yes      | Yes        |
| Plan FE             | Yes             | Yes          | Yes      | Yes        |
| Observations        | 759             | 759          | 759      | 759        |
| Adj. R-squared      | 0.8256          | 0.4993       | 0.3762   | 0.5193     |

|                 |            | Red          | !          |          |            | Blue         |            |          |  |  |  |
|-----------------|------------|--------------|------------|----------|------------|--------------|------------|----------|--|--|--|
|                 | (1)        | (2)          | (3)        | (4)      | (5)        | (6)          | (7)        | (8)      |  |  |  |
| VARIABLES       | Energy%_MV | Energy_Count | Guns_Count | Guns%_MV | Energy%_MV | Energy_Count | Guns_Count | Guns%_MV |  |  |  |
| Post            | -0.003     | -0.001       | -0.000     | -0.001   | -0.000     | -0.004*      | -0.001*    | -0.000*  |  |  |  |
|                 | (-1.10)    | (-0.22)      | (-0.34)    | (-0.63)  | (-2.00)    | (-4.00)      | (-3.02)    | (-4.15)  |  |  |  |
| LogHV           | -0.014*    | -0.010*      | 0.000      | -0.000   | 0.005      | -0.015**     | -0.001     | -0.001   |  |  |  |
|                 | (-2.23)    | (-2.16)      | (0.57)     | (-1.07)  | (1.19)     | (-8.87)      | (-1.74)    | (-1.86)  |  |  |  |
| Year-Quarter FE | Yes        | Yes          | Yes        | Yes      | Yes        | Yes          | Yes        | Yes      |  |  |  |
| Plan FE         | Yes        | Yes          | Yes        | Yes      | Yes        | Yes          | Yes        | Yes      |  |  |  |
| Observations    | 500        | 500          | 500        | 500      | 258        | 258          | 258        | 258      |  |  |  |
| Adj. R-squared  | 0.7614     | 0.4279       | 0.4166     | 0.2718   | 0.9885     | 0.8397       | 0.8089     | 0.9375   |  |  |  |

| Panel C: Red versus Blue |            |              |          |            |  |  |  |  |  |
|--------------------------|------------|--------------|----------|------------|--|--|--|--|--|
|                          | (1)        | (2)          | (3)      | (4)        |  |  |  |  |  |
| VARIABLES                | Energy%_MV | Energy_Count | Guns%_MV | Guns_Count |  |  |  |  |  |
|                          |            |              |          |            |  |  |  |  |  |
| Post                     | 0.001      | 0.006        | -0.000   | -0.001*    |  |  |  |  |  |
|                          | (0.28)     | (0.72)       | (-0.59)  | (-2.14)    |  |  |  |  |  |
| Post*Blue                | -0.002     | -0.011       | -0.000   | 0.000      |  |  |  |  |  |
|                          | (-0.28)    | (-1.08)      | (-0.88)  | (0.68)     |  |  |  |  |  |
| LogHV                    | -0.012     | -0.011**     | -0.000   | -0.000     |  |  |  |  |  |
|                          | (-1.70)    | (-2.37)      | (-0.71)  | (-0.59)    |  |  |  |  |  |
| Year-Quarter FE          | Yes        | Yes          | Yes      | Yes        |  |  |  |  |  |
| Plan FE                  | Yes        | Yes          | Yes      | Yes        |  |  |  |  |  |
| Observations             | 759        | 759          | 759      | 759        |  |  |  |  |  |
| Adj. R-squared           | 0.8254     | 0.503        | 0.3762   | 0.519      |  |  |  |  |  |

**Table 7. Media Attention of Politicians.** This table reports regressions estimating changes in media coverage of politicians after investment restrictions. The analysis is limited to states with public pension plans subject to such restrictions, using media coverage data from 2018-2023. The dependent variable, *Total Articles*, is defined as the number of news articles in which a politician is mentioned in the same article as an ESG- or restriction-related term. Panel A presents estimates comparing preand post-restriction media attention using OLS and matched samples. Panel B divides the sample by state political lean (Red vs. Blue). Panel C compares red and blue states. Standard errors are clustered by state.

|                                       | OLS        | S       | Matched sample                              |                  |
|---------------------------------------|------------|---------|---------------------------------------------|------------------|
|                                       | (1)        | (2)     | (3)                                         | (4)              |
| VARIABLES                             |            | To      | otal Articles                               |                  |
| Post                                  | 2.900***   | 1.356   | 2.905***                                    | 1.963***         |
|                                       | (3.95)     | (1.15)  | (4.08)                                      | (2.98)           |
| Election Cycle                        | 0.770      | -0.251  | 0.164                                       | -0.194           |
|                                       | (1.53)     | (-0.29) | (0.61)                                      | (-0.45)          |
| Year FE                               | No         | Yes     | No                                          | Yes              |
| State FE                              | Yes        | Yes     | Yes                                         | Yes              |
| Observations                          | 96         | 96      | 192                                         | 192              |
| Adj. R-squared                        | 0.27       | 0.2995  | 0.2802                                      | 0.3094           |
| Panel B: Red and Blue Subs            | •          | 7       | N 1                                         | 1 1              |
|                                       | OLS<br>Red | S Blue  | Red                                         | ned sample  Blue |
|                                       | (1)        | (2)     | (3)                                         | (4)              |
| VARIABLES                             | (1)        |         | otal Articles                               | (7)              |
|                                       |            |         |                                             |                  |
| Post                                  | 0.309      | 0.696   | 2.120**                                     | 1.094            |
|                                       | (0.13)     | (0.65)  | (2.52)                                      | (1.11)           |
| Election Cycle                        | -0.069     | 0.561   | -0.084                                      | 0.090            |
|                                       | (-0.08)    | (0.28)  | (-0.18)                                     | (0.19)           |
| Year FE                               | Yes        | Yes     | Yes                                         | Yes              |
| State FE                              | Yes        | Yes     | Yes                                         | Yes              |
| Observations                          | 66         | 30      | 132                                         | 60               |
| Adj. R-squared                        | 0.3427     | 0.3932  | 0.3193                                      | 0.4487           |
| Panel C: Media Coverage in            |            | ~       |                                             |                  |
|                                       | OLS        |         |                                             | ned sample       |
| VARIABLES                             | (1)        | (2)     | (3)<br>otal Articles                        | (4)              |
| · · · · · · · · · · · · · · · · · · · |            | 10      | O. C. 1 11 11 11 11 11 11 11 11 11 11 11 11 |                  |
| Post                                  | 1.552**    | 0.250   | 1.615*                                      | 0.789            |
|                                       | (1.87)     | (0.17)  | (1.83)                                      | (0.84)           |
| Post*Red                              | 2.065      | 2.051*  | 1.98                                        | 1.863            |
|                                       | (1.57)     | (1.78)  | (1.55)                                      | (1.53)           |
| Election Cycle                        | 0.843      | -0.078  | 0.197                                       | -0.126           |
| •                                     | (1.63)     | (-0.09) | (0.72)                                      | (-0.30)          |
| Year FE                               | No         | Yes     | No                                          | Yes              |
| State FE                              | Yes        | Yes     | Yes                                         | Yes              |
| Observations                          | 96         | 96      | 192                                         | 192              |
| Adj. R-squared                        | 0.1957     | 0.3142  | 0.2966                                      | 0.3231           |

**Table 8. State-level Sectoral Employment.** This table reports state-level regressions estimating changes in employment within sectors targeted by investment restrictions. The analysis is limited to states with public pension plans subject to such restrictions. *%FossilFuelEmpl* denotes the share of a state's workforce employed in fossil fuel-related industries (e.g., oil, gas, coal), while *%WeaponEmpl* captures the share employed in firearms and ammunition manufacturing. Panel A reports pre/post estimates across the full sample. Panel B presents results by political alignment. Panel C tests for differential effects between red and blue states. Standard errors are clustered at the state level. The sample period is 2018–2023.

| 2023.              |                             |                    |                 |             |
|--------------------|-----------------------------|--------------------|-----------------|-------------|
| Panel A: Employme  | ent in Fossil Fuel and Weap | on-related Sectors |                 |             |
|                    | (1)                         | (2)                | (3)             | (4)         |
| VARIABLES          | %FossilFuelEmpl             | %WeaponEmpl        | %FossilFuelEmpl | %WeaponEmpl |
| Post               | -0.011                      | -0.001             | 0.169           | 0.012       |
| 1 081              | (-0.14)                     | (-0.12)            | (1.26)          | (0.69)      |
|                    | (-0.14)                     | (-0.12)            | (1.20)          | (0.07)      |
| State FE           | Yes                         | Yes                | Yes             | Yes         |
| Year FE            | No                          | No                 | Yes             | Yes         |
| Observations       | 96                          | 90                 | 96              | 90          |
| Adj. R-squared     | 0.882                       | 0.6811             | 0.9003          | 0.7079      |
| Panel B: Red and B | •                           |                    |                 |             |
|                    |                             | ed                 | Blu             |             |
|                    | (1)                         | (2)                | (3)             | (4)         |
| VARIABLES          | %FossilFuelEmpl             | %WeaponEmpl        | %FossilFuelEmpl | %WeaponEmpl |
| Post               | 0.095                       | 0.026              | 0.008           | -0.003      |
|                    | (0.51)                      | (0.90)             | (1.28)          | (-0.21)     |
|                    |                             |                    |                 |             |
| State FE           | Yes                         | Yes                | Yes             | Yes         |
| Year FE            | Yes                         | Yes                | Yes             | Yes         |
| Observations       | 66                          | 66                 | 30              | 24          |
| Adj. R-squared     | 0.8846                      | 0.7270             | 0.7523          | 0.6162      |
| Panel C: Sector Em | ployment in Red vs. Blue s  |                    | <u> </u>        |             |
| VADIADIEC          | (1)                         | (2)                |                 |             |
| VARIABLES          | %FossilFuelEmpl             | %WeaponEmpl        | _               |             |
| Post               | 0.230                       | -0.001             |                 |             |
|                    | (1.61)                      | (-0.06)            |                 |             |
| Post*Red           | -0.109                      | 0.021              |                 |             |
|                    | (-0.84)                     | (1.37)             |                 |             |
| State FE           | Yes                         | Yes                |                 |             |
| Year FE            | Yes                         | Yes                |                 |             |
| Observations       | 96                          | 90                 |                 |             |
| 4 1: D             | 0.0000                      | 0.71.60            |                 |             |

0.7169

Adj. R-squared

0.8998

**Table 9. Firm Market Reaction to Investment Restrictions.** This table reports cumulative abnormal returns (CARs) for firms around investment restriction announcements. Panel A presents average CARs for firms in the energy sector, pooling all restriction announcements. Columns (1)-(4) reports results for the full sample; columns (5)-(8) split the sample based on whether the restriction is announced in a red or blue state. Standard errors are clustered by firm. Panel B focuses on the Oklahoma Restricted Financial Company List (HB2034), reporting mean CARS for affected firms. Panel C displays firm-level CARs for each company named on Oklahoma's restricted list. All estimates are centered on the relevant state's announcement date.

|                | (1)     | (2)     | (3)       | (4)       | (5)       | (6)       | (7)       | (8)       |
|----------------|---------|---------|-----------|-----------|-----------|-----------|-----------|-----------|
| _              |         |         |           | Event W   | indow     |           |           |           |
| _              | (-3,3)  | (0,1)   | (0,3)     | (-1,1)    | (-3,3)    | (0,1)     | (0,3)     | (-1,1)    |
| CAR            | -0.002  | -0.003  | -0.009*** | -0.006*** |           |           |           |           |
| T-Statistic    | (-0.62) | (-1.60) | (-3.93)   | (-2.36)   |           |           |           |           |
| CAR_Blue       |         |         |           |           | 0.029***  | 0.025***  | 0.009***  | 0.036***  |
| T-Statistic    |         |         |           |           | (4.39)    | (7.60)    | 2.11)     | (7.87)    |
| CAR_Red        |         |         |           |           | -0.012*** | -0.012*** | -0.014*** | -0.018*** |
| T-Statistic    |         |         |           |           | (-3.23)   | (-5.07)   | (-5.02)   | (-7.01)   |
| Observations   | 1267    | 1267    | 1267      | 1267      | 1267      | 1267      | 1267      | 1267      |
| Adj. R-squared | 0.0003  | 0.0024  | 0.0097    | 0.0052    | 0.0217    | 0.0585    | 0.02      | 0.0947    |
| F-statistic    | 0.39    | 2.56    | 15.47     | 5.58      | 15.09     | 42.32     | 13.5      | 57.93     |

| Panel B: Market Re | eaction to Oklahoma | 's Financial ( | Company | Blacklist Announcement |
|--------------------|---------------------|----------------|---------|------------------------|
|--------------------|---------------------|----------------|---------|------------------------|

| _              | (1)          | (2)       | (3)       | (4)       |  |  |  |  |  |
|----------------|--------------|-----------|-----------|-----------|--|--|--|--|--|
| _              | Event Window |           |           |           |  |  |  |  |  |
| _              | (-3,3)       | (0,1)     | (0,3)     | (-1,1)    |  |  |  |  |  |
| CAR            | -0.023***    | -0.029*** | -0.020*** | -0.036*** |  |  |  |  |  |
| T-Statistic    | (-3.85)      | (-6.56)   | (-5.88)   | (-6.80)   |  |  |  |  |  |
| Observations   | 7            | 7         | 7         | 7         |  |  |  |  |  |
| Adj. R-squared | 0.7122       | 0.8776    | 0.852     | 0.8851    |  |  |  |  |  |
| F-statistic    | 14.84        | 43.03     | 34.53     | 46.21     |  |  |  |  |  |

Panel C: Firm-Level CARs for Companies Named in Oklahoma's Blacklist

| _                   | (1)    | (2)     | (3)    | (4)    |
|---------------------|--------|---------|--------|--------|
| Firms               |        | Event V | Vindow |        |
|                     | (-3,3) | (0,1)   | (0,3)  | (-1,1) |
| GCM GROSVENOR       | -0.032 | -0.051  | -0.032 | -0.037 |
| STEPSTONE GROUP     | 0.001  | -0.018  | -0.009 | -0.026 |
| WELLS FARGO & CO    | -0.021 | -0.034  | -0.007 | -0.06  |
| JPMORGAN CHASE & CO | -0.003 | -0.025  | -0.021 | -0.03  |
| BANK OF AMERICA     | -0.036 | -0.028  | -0.019 | -0.045 |
| STATE STREET        | -0.033 | -0.034  | -0.027 | -0.036 |
| BLACKROCK           | -0.035 | -0.015  | -0.024 | -0.017 |

### **APPENDIX**

**Table A1. Multivariate Regressions of Public Pension Fund Allocation in a 5-Year Window**. This table reports results of multivariate regressions of pension funds for plan-fiscal year-end observations within a five-year window from the date the restriction is effective. The dependent variable is fund allocation across different asset classes. The main independent variable of interest is *Post*, a time-varying indicator set to one if a plan's fiscal year-end occurs after the effective date of a *Restriction*. The standard errors are double clustered by plan and fiscal year-end (FYE).

|                | (1)         | (2)         | (3)     | (4)          | (5)     | (6)            | (7)        | (8)         |
|----------------|-------------|-------------|---------|--------------|---------|----------------|------------|-------------|
| VARIABLES      | Traditional | Alternative | Equity  | Fixed Income | Cash    | Private Equity | Hedge Fund | Real Estate |
|                |             |             |         |              |         |                |            |             |
| Post           | -0.029**    | 0.017*      | -0.007  | -0.018*      | -0.005  | 0.004          | 0.006      | 0.008*      |
|                | (-2.23)     | (1.73)      | (-0.57) | (-1.94)      | (-1.22) | (0.66)         | (1.14)     | (1.71)      |
|                |             |             |         |              |         |                |            |             |
| Controls       | Yes         | Yes         | Yes     | Yes          | Yes     | Yes            | Yes        | Yes         |
| Plan FE        | Yes         | Yes         | Yes     | Yes          | Yes     | Yes            | Yes        | Yes         |
| FYE FE         | No          | No          | No      | No           | No      | No             | No         | No          |
| Observations   | 485         | 485         | 485     | 485          | 485     | 485            | 485        | 485         |
| Adj. R-squared | 0.861       | 0.905       | 0.849   | 0.779        | 0.502   | 0.869          | 0.830      | 0.852       |
|                | (1)         | (2)         | (3)     | (4)          | (5)     | (6)            | (7)        | (8)         |
| VARIABLES      | Traditional | Alternative | Equity  | Fixed Income | Cash    | Private Equity | Hedge Fund | Real Estate |
|                |             |             |         |              |         |                |            |             |
| Post           | -0.019*     | 0.015*      | -0.011  | -0.007       | -0.001  | -0.008         | 0.014***   | 0.009*      |
|                | (-1.99)     | (1.69)      | (-0.89) | (-0.62)      | (-0.15) | (-1.19)        | (5.64)     | (1.82)      |
|                |             |             |         |              |         |                |            |             |
| Controls       | Yes         | Yes         | Yes     | Yes          | Yes     | Yes            | Yes        | Yes         |
| Plan FE        | Yes         | Yes         | Yes     | Yes          | Yes     | Yes            | Yes        | Yes         |
| FYE FE         | Yes         | Yes         | Yes     | Yes          | Yes     | Yes            | Yes        | Yes         |
| Observations   | 485         | 485         | 485     | 485          | 485     | 485            | 485        | 485         |
| Adj. R-squared | 0.861       | 0.906       | 0.860   | 0.781        | 0.520   | 0.871          | 0.820      | 0.858       |

**Table A2. Multivariate Regressions of Public Pension Fund Target Allocation**. This table reports results of multivariate regressions of pension funds' target allocations to different asset classes. The main independent variable of interest is *Post*, a time-varying indicator set to one if a plan's fiscal year-end occurs after the effective date of a *Restriction*. The standard errors are double clustered by plan and fiscal year-end (FYE).

|                | Asset Allocation |             |          |              |         |                |            |             |  |
|----------------|------------------|-------------|----------|--------------|---------|----------------|------------|-------------|--|
|                | (1)              | (2)         | (4)      | (5)          | (6)     | (7)            | (8)        | (9)         |  |
| VARIABLES      | Traditional      | Alternative | Equity   | Fixed Income | Cash    | Private Equity | Hedge Fund | Real Estate |  |
|                |                  |             |          |              |         |                |            |             |  |
| Post           | -0.044***        | 0.057***    | -0.028** | -0.016*      | -0.001  | -0.000         | 0.031***   | 0.026***    |  |
|                | (-3.52)          | (4.86)      | (-1.99)  | (-1.70)      | (-0.44) | (-0.04)        | (4.12)     | (3.28)      |  |
| Controls       | Yes              | Yes         | Yes      | Yes          | Yes     | Yes            | Yes        | Yes         |  |
| Plan FE        | Yes              | Yes         | Yes      | Yes          | Yes     | Yes            | Yes        | Yes         |  |
| FYE FE         | Yes              | Yes         | Yes      | Yes          | Yes     | Yes            | Yes        | Yes         |  |
| Observations   | 3,688            | 3,688       | 3,688    | 3,688        | 3,688   | 3,688          | 3,688      | 3,688       |  |
| Adj. R-squared | 0.758            | 0.747       | 0.707    | 0.593        | 0.566   | 0.701          | 0.591      | 0.694       |  |

**Table A3. Political Lean of Multi-State Coalition Signers.** This table reports results of a subsample multivariate regression of pension funds' allocations to traditional and alternative assets. Funds are divided into subsamples based on the indicator variables *Red (Blue) Signer*, set to one if a public pension plan is headquartered in a state where a Republican (Democratic) political official signs at least one multi-state coalition letter. The main independent variable of interest is *Post*, a time-varying indicator set to one if a plan's fiscal year-end occurs after the effective date of a *Restriction*. The standard errors are double clustered by plan and fiscal year-end (FYE).

|                | Asset Allocation |             |                |             |             |  |  |  |  |  |
|----------------|------------------|-------------|----------------|-------------|-------------|--|--|--|--|--|
|                | Red Signer       |             | Blue Signer    |             |             |  |  |  |  |  |
|                | (1)              | (2)         |                | (1)         | (2)         |  |  |  |  |  |
| VARIABLES      | Traditional      | Alternative | VARIABLES      | Traditional | Alternative |  |  |  |  |  |
| Post           | -0.058**         | 0.067***    | Post           | -0.024      | 0.025*      |  |  |  |  |  |
|                | (-2.43)          | (3.88)      |                | (-1.46)     | (1.70)      |  |  |  |  |  |
| Controls       | Yes              | Yes         | Controls       | Yes         | Yes         |  |  |  |  |  |
| Plan FE        | Yes              | Yes         | Plan FE        | Yes         | Yes         |  |  |  |  |  |
| FYE FE         | Yes              | Yes         | FYE FE         | Yes         | Yes         |  |  |  |  |  |
| Observations   | 2,050            | 2,050       | Observations   | 2,063       | 2,063       |  |  |  |  |  |
| Adj. R-squared | 0.7707           | 0.7408      | Adj. R-squared | 0.6951      | 0.7392      |  |  |  |  |  |

**Table A4. Performance Effects of Investment Restrictions—Full Model.** This table presents the full multivariate regression results corresponding to Table 5. Standard errors are double clustered by plan and fiscal year-end.

|                                         | Peer-Adjusted Returns |             |             |          |              |         |                |            |             |
|-----------------------------------------|-----------------------|-------------|-------------|----------|--------------|---------|----------------|------------|-------------|
|                                         | (1)                   | (2)         | (3)         | (4)      | (5)          | (6)     | (7)            | (8)        | (9)         |
| VARIABLES                               | 1 Year                | Traditional | Alternative | Equity   | Fixed Income | Cash    | Private Equity | Hedge Fund | Real Estate |
| Post                                    | 0.003                 | 0.007***    | -0.004*     | 0.005    | 0.013***     | -0.001  | 0.004          | -0.023**   | -0.006      |
|                                         | (0.75)                | (3.43)      | (-1.97)     | (1.24)   | (3.74)       | (-0.20) | (0.48)         | (-1.99)    | (-0.80)     |
| Log Plan Size (t-1)                     | -0.003                | -0.004      | 0.008       | -0.006   | -0.000       | 0.004   | -0.011         | 0.012      | 0.021       |
|                                         | (-1.21)               | (-0.98)     | (1.43)      | (-1.29)  | (-0.11)      | (0.83)  | (-0.78)        | (0.25)     | (1.25)      |
| Plan Funding % (t-1)                    | -0.020***             | 0.001       | -0.007      | -0.005   | -0.002       | -0.004  | 0.096***       | -0.025     | -0.035      |
|                                         | (-2.86)               | (0.10)      | (-0.64)     | (-0.42)  | (-0.24)      | (-0.40) | (2.69)         | (-0.30)    | (-1.26)     |
| Peer-Adjusted (t-1)                     | -0.079                | , ,         |             | , ,      | ` '          | , , ,   | , ,            | , ,        |             |
|                                         | (-1.30)               |             |             |          |              |         |                |            |             |
| % Equity Allocation (t-1)               | 0.003                 | 0.010       |             |          |              |         |                |            |             |
|                                         | (0.12)                | (0.90)      |             |          |              |         |                |            |             |
| % Fixed Income Allocation (t-1)         | -0.025                | -0.008      |             |          |              |         |                |            |             |
| ` '                                     | (-1.14)               | (-0.61)     |             |          |              |         |                |            |             |
| % Cash Allocation (t-1)                 | -0.070*               | -0.056*     |             |          |              |         |                |            |             |
| , ,                                     | (-1.79)               | (-1.74)     |             |          |              |         |                |            |             |
| % Private Equity Allocation (t-1)       | 0.002                 |             | -0.024      |          |              |         |                |            |             |
|                                         | (0.06)                |             | (-1.16)     |          |              |         |                |            |             |
| % Hedge Fund Allocation (t-1)           | -0.048*               |             | 0.003       |          |              |         |                |            |             |
| ,                                       | (-1.88)               |             | (0.35)      |          |              |         |                |            |             |
| % Real Estate Allocation (t-1)          | -0.004                |             | -0.023      |          |              |         |                |            |             |
| ` ,                                     | (-0.16)               |             | (-1.02)     |          |              |         |                |            |             |
| % Commodity Allocation (t-1)            | -0.032                |             |             |          |              |         |                |            |             |
| •                                       | (-0.77)               |             |             |          |              |         |                |            |             |
| % Alternatives Misc Allocation (t-1)    | 0.005                 |             |             |          |              |         |                |            |             |
| ` ,                                     | (0.20)                |             |             |          |              |         |                |            |             |
| Peer-Adj. Equity (t-1)                  | ` ′                   | -0.052      |             | -0.121** |              |         |                |            |             |
| /                                       |                       | (-1.30)     |             | (-1.99)  |              |         |                |            |             |
| Peer-Adj. Fixed Income (t-1)            |                       | 0.012       |             | ` /      | -0.054       |         |                |            |             |
| ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |                       | (0.56)      |             |          | (-0.73)      |         |                |            |             |
| Peer-Adj. Cash (t-1)                    |                       | 0.067***    |             |          | . ,          | 0.120   |                |            |             |

|                                |        | (3.10) |          |        |        | (1.19) |        |         |         |
|--------------------------------|--------|--------|----------|--------|--------|--------|--------|---------|---------|
| Peer-Adj. Risky                |        |        | •        |        |        |        |        |         |         |
|                                |        |        | (.)      |        |        |        |        |         |         |
| Peer-Adj. Private Equity (t-1) |        |        | 0.003    |        |        |        | 0.024  |         |         |
|                                |        |        | (0.44)   |        |        |        | (0.52) |         |         |
| Peer-Adj. Hedge Fund (t-1)     |        |        | -0.012*  |        |        |        |        | -0.066  |         |
|                                |        |        | (-1.67)  |        |        |        |        | (-0.75) |         |
| Peer-Adj. Real Estate (t-1)    |        |        | -0.032** |        |        |        |        |         | -0.029  |
|                                |        |        | (-2.15)  |        |        |        |        |         | (-0.58) |
| Plan FE                        | Yes    | Yes    | Yes      | Yes    | Yes    | Yes    | Yes    | Yes     | Yes     |
| FYE FE                         | Yes    | Yes    | Yes      | Yes    | Yes    | Yes    | Yes    | Yes     | Yes     |
| Observations                   | 4,009  | 1,463  | 1,212    | 3,698  | 3,667  | 1,383  | 2,266  | 1,487   | 2,621   |
| Adj. R-squared                 | 0.0461 | 0.0722 | 0.1832   | 0.0313 | 0.0284 | 0.053  | 0.0614 | -0.0235 | 0.0482  |

**Table A5. Political Leaning by State.** 

| Alabama       88       California       330         Alaska       66       Colorado       110         Arizona       110       Connecticut       91         Arkansas       88       Delaware       88         Florida       110       District of Columbia       44         Georgia       110       Hawaii       22         Idaho       22       Illinois       223         Indiana       66       Maine       44         Iowa       66       Maryland       110         Kansas       66       Massachusetts       68         Kentucky       88       Minnesota       148         Louisiana       198       New Hampshire       44         Michigan       110       New Jersey       88         Missouri       308       New York       176         Montana       44       Oregon       22         Nebraska       88       Rhode Island       68         Nevada       44       Vermont       88         North Carolina       88       Virginia       110         Ohio       114       Total       2028         Oklahoma       132                                                                                                                                                  | Red States     | Plan-FYEs | Blue States          | Plan-FYEs |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------|----------------------|-----------|
| Alaska       66       Colorado       110         Arizona       110       Connecticut       91         Arkansas       88       Delaware       88         Florida       110       District of Columbia       44         Georgia       110       Hawaii       22         Idaho       22       Illinois       223         Indiana       66       Maine       44         Iowa       66       Maryland       110         Kansas       66       Massachusetts       68         Kentucky       88       Minnesota       148         Louisiana       198       New Hampshire       44         Michigan       110       New Jersey       88         Missouri       308       New York       176         Montana       44       Oregon       22         Nebraska       88       Rhode Island       68         Nevada       44       Vermont       88         North Carolina       88       Virginia       110         North Dakota       88       Washington       110         Ohio       114       Total       2028         Oklahoma       132 <td></td> <td></td> <td></td> <td></td>                                                                                                     |                |           |                      |           |
| Arizona         110         Connecticut         91           Arkansas         88         Delaware         88           Florida         110         District of Columbia         44           Georgia         110         Hawaii         22           Idaho         22         Illinois         223           Indiana         66         Maine         44           Iowa         66         Maryland         110           Kansas         66         Massachusetts         68           Kentucky         88         Minnesota         148           Louisiana         198         New Hampshire         44           Michigan         110         New Jersey         88           Mississippi         22         New Mexico         44           Missouri         308         New York         176           Montana         44         Oregon         22           Nebraska         88         Rhode Island         68           Nevada         44         Vermont         88           North Carolina         88         Virginia         110           Ohio         114         Total         2028 <t< td=""><td>Alabama</td><td>88</td><td>California</td><td>330</td></t<>   | Alabama        | 88        | California           | 330       |
| Arkansas         88         Delaware         88           Florida         110         District of Columbia         44           Georgia         110         Hawaii         22           Idaho         22         Illinois         223           Indiana         66         Maine         44           Iowa         66         Maryland         110           Kansas         66         Massachusetts         68           Kentucky         88         Minnesota         148           Louisiana         198         New Hampshire         44           Michigan         110         New Jersey         88           Missouri         308         New York         176           Montana         44         Oregon         22           Nebraska         88         Rhode Island         68           Nevada         44         Vermont         88           North Carolina         88         Virginia         110           North Dakota         88         Washington         110           Oklahoma         132         Pennsylvania         156           South Carolina         66         66           South Dak                                                           | Alaska         | 66        | Colorado             | 110       |
| Florida         110         District of Columbia         44           Georgia         110         Hawaii         22           Idaho         22         Illinois         223           Indiana         66         Maine         44           Iowa         66         Maryland         110           Kansas         66         Massachusetts         68           Kentucky         88         Minnesota         148           Louisiana         198         New Hampshire         44           Michigan         110         New Jersey         88           Mississippi         22         New Mexico         44           Missouri         308         New York         176           Montana         44         Oregon         22           Nebraska         88         Rhode Island         68           Nevada         44         Vermont         88           North Carolina         88         Washington         110           Ohio         114         Total         2028           Oklahoma         132           Pennsylvania         156           South Carolina         66           South Dakota </td <td>Arizona</td> <td>110</td> <td>Connecticut</td> <td>91</td> | Arizona        | 110       | Connecticut          | 91        |
| Georgia         110         Hawaii         22           Idaho         22         Illinois         223           Indiana         66         Maine         44           Iowa         66         Maryland         110           Kansas         66         Massachusetts         68           Kentucky         88         Minnesota         148           Louisiana         198         New Hampshire         44           Michigan         110         New Jersey         88           Missouri         308         New Jersey         88           Moscouri         308         New York         176           Montana         44         Oregon         22           Nebraska         88         Rhode Island         68           Nevada         44         Vermont         88           North Carolina         88         Washington         110           North Dakota         88         Washington         110           Ohio         114         Total         2028           Oklahoma         132         Pennsylvania         156           South Dakota         66         66           South Dakota                                                                     | Arkansas       | 88        | Delaware             | 88        |
| Idaho       22       Illinois       223         Indiana       66       Maine       44         Iowa       66       Maryland       110         Kansas       66       Massachusetts       68         Kentucky       88       Minnesota       148         Louisiana       198       New Hampshire       44         Michigan       110       New Jersey       88         Mississippi       22       New Mexico       44         Missouri       308       New York       176         Montana       44       Oregon       22         Nebraska       88       Rhode Island       68         Nevada       44       Vermont       88         North Carolina       88       Washington       110         North Dakota       88       Washington       110         Okiahoma       132       Pennsylvania       156         South Carolina       66       South Dakota       66         Tennessee       88       Tennessee       88         Texas       286       Utah       44         West Virginia       88       Wisconsin       66                                                                                                                                                       | Florida        | 110       | District of Columbia | 44        |
| Indiana         66         Maine         44           Iowa         66         Maryland         110           Kansas         66         Massachusetts         68           Kentucky         88         Minnesota         148           Louisiana         198         New Hampshire         44           Michigan         110         New Jersey         88           Mississisppi         22         New Mexico         44           Missouri         308         New York         176           Montana         44         Oregon         22           Nebraska         88         Rhode Island         68           Nevada         44         Vermont         88           North Carolina         88         Virginia         110           North Dakota         88         Washington         110           Ohio         114         Total         2028           Oklahoma         132         Pennsylvania         156           South Carolina         66         South Carolina         66           Texas         286         Utah         44           West Virginia         88         Wisconsin         66 <td>Georgia</td> <td>110</td> <td>Hawaii</td> <td>22</td>    | Georgia        | 110       | Hawaii               | 22        |
| Iowa         66         Maryland         110           Kansas         66         Massachusetts         68           Kentucky         88         Minnesota         148           Louisiana         198         New Hampshire         44           Michigan         110         New Jersey         88           Mississisppi         22         New Mexico         44           Missouri         308         New York         176           Montana         44         Oregon         22           Nebraska         88         Rhode Island         68           Nevada         44         Vermont         88           North Carolina         88         Virginia         110           North Dakota         88         Washington         110           Ohio         114         Total         2028           Oklahoma         132         Pennsylvania         156           South Dakota         66         Tennessee         88           Texas         286         Utah         44           West Virginia         88         Wisconsin         66                                                                                                                           | Idaho          | 22        | Illinois             | 223       |
| Kansas       66       Massachusetts       68         Kentucky       88       Minnesota       148         Louisiana       198       New Hampshire       44         Michigan       110       New Jersey       88         Mississippi       22       New Mexico       44         Missouri       308       New York       176         Montana       44       Oregon       22         Nebraska       88       Rhode Island       68         Nevada       44       Vermont       88         North Carolina       88       Wirginia       110         North Dakota       88       Washington       110         Ohio       114       Total       2028         Oklahoma       132         Pennsylvania       156       South Carolina       66         South Dakota       66       66         Texas       286       Utah       44         West Virginia       88         Wisconsin       66                                                                                                                                                                                                                                                                                               | Indiana        | 66        | Maine                | 44        |
| Kentucky       88       Minnesota       148         Louisiana       198       New Hampshire       44         Michigan       110       New Jersey       88         Mississisppi       22       New Mexico       44         Missouri       308       New York       176         Montana       44       Oregon       22         Nebraska       88       Rhode Island       68         Nevada       44       Vermont       88         North Carolina       88       Virginia       110         North Dakota       88       Washington       110         Ohio       114       Total       2028         Oklahoma       132       Pennsylvania       156         South Carolina       66       South Dakota       66         Texas       286       Utah       44         West Virginia       88       Wisconsin       66                                                                                                                                                                                                                                                                                                                                                                | Iowa           | 66        | Maryland             | 110       |
| Louisiana 198 New Hampshire 44 Michigan 110 New Jersey 88 Mississippi 22 New Mexico 44 Missouri 308 New York 176 Montana 44 Oregon 22 Nebraska 88 Rhode Island 68 Nevada 44 Vermont 88 North Carolina 88 Virginia 110 North Dakota 88 Washington 110 Ohio 114 Total 2028 Oklahoma 132 Pennsylvania 156 South Carolina 66 South Dakota 66 Tennessee 88 Texas 286 Utah 44 West Virginia 88 Wisconsin 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Kansas         | 66        | Massachusetts        | 68        |
| Michigan         110         New Jersey         88           Mississippi         22         New Mexico         44           Missouri         308         New York         176           Montana         44         Oregon         22           Nebraska         88         Rhode Island         68           Nevada         44         Vermont         88           North Carolina         88         Virginia         110           North Dakota         88         Washington         110           Ohio         114         Total         2028           Oklahoma         132           Pennsylvania         156         South Carolina         66           South Dakota         66         66           Texas         286         Utah         44           West Virginia         88           Wisconsin         66                                                                                                                                                                                                                                                                                                                                                         | Kentucky       | 88        | Minnesota            | 148       |
| Mississippi       22       New Mexico       44         Missouri       308       New York       176         Montana       44       Oregon       22         Nebraska       88       Rhode Island       68         Nevada       44       Vermont       88         North Carolina       88       Virginia       110         North Dakota       88       Washington       110         Ohio       114       Total       2028         Oklahoma       132         Pennsylvania       156         South Carolina       66         South Dakota       66         Texas       286         Utah       44         West Virginia       88         Wisconsin       66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Louisiana      | 198       | New Hampshire        | 44        |
| Missouri       308       New York       176         Montana       44       Oregon       22         Nebraska       88       Rhode Island       68         Nevada       44       Vermont       88         North Carolina       88       Wirginia       110         North Dakota       88       Washington       110         Ohio       114       Total       2028         Oklahoma       132         Pennsylvania       156         South Carolina       66         South Dakota       66         Texas       286         Utah       44         West Virginia       88         Wisconsin       66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Michigan       | 110       | New Jersey           | 88        |
| Montana       44       Oregon       22         Nebraska       88       Rhode Island       68         Nevada       44       Vermont       88         North Carolina       88       Virginia       110         North Dakota       88       Washington       110         Ohio       114       Total       2028         Oklahoma       132       Pennsylvania       156         South Carolina       66       50uth Dakota       66         Tennessee       88       7exas       286         Utah       44       44         West Virginia       88         Wisconsin       66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mississippi    | 22        | New Mexico           | 44        |
| Nebraska88Rhode Island68Nevada44Vermont88North Carolina88Virginia110North Dakota88Washington110Ohio114Total2028Oklahoma132Pennsylvania156South Carolina66South Dakota66Tennessee88Texas286Utah44West Virginia88Wisconsin66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Missouri       | 308       | New York             | 176       |
| Nevada         44         Vermont         88           North Carolina         88         Virginia         110           North Dakota         88         Washington         110           Ohio         114         Total         2028           Oklahoma         132         Pennsylvania         156           South Carolina         66         South Dakota         66           Tennessee         88         Texas         286           Utah         44         West Virginia         88           Wisconsin         66         66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Montana        | 44        | Oregon               | 22        |
| North Carolina         88         Virginia         110           North Dakota         88         Washington         110           Ohio         114         Total         2028           Oklahoma         132         Pennsylvania         156           South Carolina         66         South Dakota         66           Tennessee         88         Texas         286           Utah         44         West Virginia         88           Wisconsin         66         66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Nebraska       | 88        | Rhode Island         | 68        |
| North Dakota         88         Washington         110           Ohio         114         Total         2028           Oklahoma         132         Pennsylvania         156           South Carolina         66         South Dakota         66           Tennessee         88         Texas         286           Utah         44         West Virginia         88           Wisconsin         66         66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Nevada         | 44        | Vermont              | 88        |
| Ohio         114         Total         2028           Oklahoma         132         Pennsylvania         156           South Carolina         66         66           South Dakota         66         66           Tennessee         88         7           Utah         44         44           West Virginia         88           Wisconsin         66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | North Carolina | 88        | Virginia             | 110       |
| Oklahoma 132 Pennsylvania 156 South Carolina 66 South Dakota 66 Tennessee 88 Texas 286 Utah 44 West Virginia 88 Wisconsin 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | North Dakota   | 88        | Washington           | 110       |
| Pennsylvania 156 South Carolina 66 South Dakota 66 Tennessee 88 Texas 286 Utah 44 West Virginia 88 Wisconsin 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ohio           | 114       | Total                | 2028      |
| South Carolina 66 South Dakota 66 Tennessee 88 Texas 286 Utah 44 West Virginia 88 Wisconsin 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Oklahoma       | 132       |                      |           |
| South Dakota 66 Tennessee 88 Texas 286 Utah 44 West Virginia 88 Wisconsin 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pennsylvania   | 156       |                      |           |
| Tennessee 88 Texas 286 Utah 44 West Virginia 88 Wisconsin 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | South Carolina | 66        |                      |           |
| Texas 286 Utah 44 West Virginia 88 Wisconsin 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | South Dakota   | 66        |                      |           |
| Utah 44 West Virginia 88 Wisconsin 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Tennessee      | 88        |                      |           |
| West Virginia 88 Wisconsin 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Texas          | 286       |                      |           |
| Wisconsin 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Utah           | 44        |                      |           |
| Wisconsin 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | West Virginia  | 88        |                      |           |
| Wyoming 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | · ·            | 66        |                      |           |
| w young 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Wyoming        | 22        |                      |           |
| Total 2,998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                | 2,998     | •                    |           |

**Table A6. Anecdotal Evidence on the Costs of Investment Restrictions**. This table provides the transactional details for three public pension plans affected by an investment restriction. It summarizes what the restriction targets, along with the type of restriction, divested amounts, and fees (expressed as a percentage of investment market value) associated with both the divestment and subsequent investments.

Panel A: Missouri State Employees' Retirement System

| Category    | Description                                                               | Divestment                             | Investment                                                                                                                                             | Fee Delta (\$)   | Fee % Change |
|-------------|---------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------|
| Туре        | Board policy<br>(6/2022) leads<br>to BlackRock<br>divestment<br>(10/2022) | Commingled fund holding Blackrock Inc. | <u>Hedge Funds:</u> Blue Diamond Asset (\$75 M); DE Shaw (\$22,349,548.77); Eisler (\$206,760,449.65); Millennium (\$52.5 M); Aberdeen (\$118,171,691) |                  |              |
| Amount (\$) |                                                                           | \$ 500,000,000.00                      | \$ 474,781,689.42                                                                                                                                      |                  |              |
| Fee (\$)    |                                                                           | \$ 2,548,740.00                        | \$ 30,398,488.00                                                                                                                                       | \$ 27,849,748.00 | 10.93%       |
| Fee (%)     |                                                                           | 0.51%                                  | 6.40%                                                                                                                                                  | 5.89%            | 11.56%       |

Panel B: Texas Employees' Retirement System

| Category    | Description                                                                   | Divestment                | Investment                                                  | Fee Delta (\$)  | Fee % Cha | ange |
|-------------|-------------------------------------------------------------------------------|---------------------------|-------------------------------------------------------------|-----------------|-----------|------|
| Type II     | Financial<br>Institution<br>Blacklist<br>legislation<br>effective<br>(9/2021) | <u>Individual Public</u>  | Public Equity Manager: GQG Partners 10/1/22                 |                 |           |      |
|             |                                                                               | Securities held by        | (\$99,996,808.71); Global Transition 3/1/23 (\$4,720.17).   |                 |           |      |
|             |                                                                               | external manager: BNP     | Private Credit: Benefit St Ptnr Opps T LP 9/1/22            |                 |           |      |
|             |                                                                               | Paribas SA held by GQG    | (\$752,103.12); Benefit St Ptn II 4/1/22 (\$161,53,079.50); |                 |           |      |
|             |                                                                               | Partners Intl and Svenska | VWH Master Fund III LP 12/1/21 (\$8,505,265.92); All Seas   |                 |           |      |
|             |                                                                               | Handelsbanken AB held     | Capital I SCSP 12/1/21 (\$31,976,042.59). Hedge Funds:      |                 |           |      |
|             |                                                                               | by Arrowstreet Intl;      | Tenor Capital Management 11/1/21 (\$75,369,823.55); Lijaro  |                 |           |      |
|             |                                                                               | External Manager          | VI Global Equity Master Fund 12/1/21 (\$59,810,948);        |                 |           |      |
|             |                                                                               | Contracts: Pzena and      | Cinctive Global Macro 5/1/22 (\$103,433,372); Tresidor      |                 |           |      |
|             |                                                                               | BlackRock (Public         | European Cred Fd 6/1/23 (\$75 M); Newton Dynamic US Eq      |                 |           |      |
|             |                                                                               | equity)                   | 6/1/23 (\$105,319,394.91); Serenitas Credit Gamma FD        |                 |           |      |
|             |                                                                               |                           | 9/1/23 9/1/23 (\$50 M)                                      |                 |           |      |
| Α           |                                                                               | ¢ (45,000,070,00          | Φ (24, 221, 550, 47,                                        |                 |           |      |
| Amount (\$) |                                                                               | \$ 645,899,676.29         | \$ 626,321,558.47                                           |                 |           |      |
| Fee (\$)    |                                                                               | \$ 2,488,886.45           | \$ 5,052,559.89                                             | \$ 2,563,673.44 | 1.03%     |      |
| Fee (%)     |                                                                               | 0.39%                     | 0.81%                                                       | 0.42%           | 1.0       | 09%  |

Panel C: Texas Municipal Retirement System

| Category    | Description              | Divestment              | Investment                                                            | Fee | Delta (\$)   | Fee % Change |
|-------------|--------------------------|-------------------------|-----------------------------------------------------------------------|-----|--------------|--------------|
|             | Financial<br>Institution | <u>External Manager</u> | Private Credit: TCW Brazos Fund 12/22 (\$200 M); Arrow                |     |              |              |
|             |                          | Contract: BlackRock for | Credit Opportunities II USD Feeder SCSp 3/23 (\$150 M);               |     |              |              |
|             |                          | Core Fixed Income       | Pemberton Mid-Market Debt Fund 10/22 (\$50 M); Real Estate:           |     |              |              |
|             |                          | (Separately Managed     | Oak Street Capital 12/22 (\$150 M); Stonepeak RE Partners             |     |              |              |
|             |                          | Account)                | 10/22 (\$100 M); Platform TX fund 8/22 (\$150 M); <i>Real Asset</i> : |     |              |              |
|             |                          |                         | Appian Natural Resource (UST) Fund III LP 12/22 (\$100 M);            |     |              |              |
| Torre       | Blacklist                |                         | Warren Equity Partners Fund IV, L.P. 9/22 (\$100 M); Other            |     |              |              |
| Type        | legislation              |                         | Alternative: Ara Fund III, LP 10/22 (\$75 M); Ara Co-                 |     |              |              |
|             | effective<br>(9/2021)    |                         | Investment T, LP 10/22 (\$75 M); Gamut Investment Fund                |     |              |              |
|             |                          |                         | Bluebonnet Co-Invest 9/22 (\$60 M); Gamut Investment Fund             |     |              |              |
|             |                          |                         | II, L.P. 8/22 (120 mill); Oberland Capital Healthcare 8/22            |     |              |              |
|             |                          |                         | (\$110 M); Oberland Capital Healthcare III Brazos Co-Invest,          |     |              |              |
|             |                          |                         | LP 8/22 (\$55 M); Private Equity: Greenoaks Capital                   |     |              |              |
|             |                          |                         | Opportunities Fund V LP 8/22 (\$60 M)                                 |     |              |              |
| Amount (\$) |                          | \$ 1,520,659,794.10     | \$ 1,555,000,000.00                                                   |     |              |              |
| Fee (\$)    |                          | \$ 8,223,356.83         | \$ 15,101,161.30                                                      | \$  | 6,877,804.47 | 0.84%        |
| Fee (%)     |                          | 0.54%                   | 0.97%                                                                 |     | 0.43%        | 0.80%        |

## **Table 6 Supplementary Details**

## 13F Manager Names

alaska retirement mgmt bd arizona state retirement sys calif public emp. ret. calif state teachers ret colorado public emp ret employees retirement sys of tx florida st board/admin. kentucky ret systems ins tr fd kentucky teachers retrm maryland state retirement pens michigan state treasurer new mexico educ. ret. bd new york st common ret. new york st teachers ret ohio public emp ret sys ohio state teach ret brd oregon public emp ret fd nle pennsylvania public school emp retirement systems of alabama south dakota invt council state nj common pension fd d state nj common pension fd e state of tn, treasury dept texas teacher retmt sys treasurer of the state of nc utah retirement systems washington state investment bd wisconsin invst board

## **SIC Codes for Industry Holdings Measures**

| Guns and Defense (Guns%_MV/Guns_Count) | Energy (Energy%_ | MV)/Energy_count) |
|----------------------------------------|------------------|-------------------|
| 3480–3489                              | 1200-1299        | 4924–4925         |
| 3760–3769                              | 1300-1399        | 4930-4931         |
| 3795                                   | 2900–2999        | 4932              |
|                                        | 4610-4629        | 4939              |
|                                        | 4920-4922        | 5160-5169         |
|                                        | 4923             | 5170-5172         |

**Table 8 Supplementary Details** 

# **NAICS Codes for Employment Measures**

| -      |                                                     |        |                                                                                               |
|--------|-----------------------------------------------------|--------|-----------------------------------------------------------------------------------------------|
|        | Firearms and Ammunition                             |        | Fossil Fuels                                                                                  |
| 332994 | Small Arms, Ordnance, and Accessories Manufacturing | 211120 | Crude Petroleum Extraction                                                                    |
| 332992 | Small Arms Ammunition<br>Manufacturing              | 211130 | Natural Gas Extraction                                                                        |
| 332993 | Ammunition (except Small Arms) Manufacturing        | 212111 | Bituminous Coal and Lignite Surface Mining                                                    |
|        |                                                     | 213111 | Drilling Oil and Gas Wells                                                                    |
|        |                                                     | 221210 | Natural Gas Distribution                                                                      |
|        |                                                     | 221112 | Fossil Fuel Electric Power Generation                                                         |
|        |                                                     | 237120 | Oil and Gas Pipeline Construction                                                             |
|        |                                                     | 423520 | Coal and Other Mineral and Ore Merchant<br>Wholesalers                                        |
|        |                                                     | 424710 | Petroleum Bulk Stations and Terminals                                                         |
|        |                                                     | 424720 | Petroleum and Petroleum Products Merchant<br>Wholesalers (Except Bulk Stations and Terminals) |
|        |                                                     | 325110 | Petrochemical Manufacturing                                                                   |

TODD Russ STATE TREASURER



2300 N. LINCOLN BLVD., ROOM 217 OKLAHOMA CITY, OK 73105

### RESTRICTED FINANCIAL COMPANY LIST

Pursuant to 74 O.S. § 12003 (A) of the Energy Discrimination Elimination Act of 2022, the Oklahoma State Treasurer is required to prepare and maintain a list of financial institutions that boycott energy companies as defined in 74 O.S. §12002(A)(I). Financial companies included on the list are referred to herein as "Restricted Financial Companies."

Pursuant to 74 O.S. §12003(B), not later than the thirtieth day after a state governmental entity receives notice of this list of Restricted Financial Companies, the state governmental entity shall notify the Treasurer of the Restricted Financial Company(s) in which the state governmental entity owns direct or indirect holdings, and, send a written notice to the Restricted Financial Company(s) as prescribed in 74 O.S. § 12003(C)(I)(a-c).

Not later than 90 days of a Restricted Financial Company's receipt of notice under 74 O.S. §12003(C)(2), the financial company must cease engaging in the energy company boycott to avoid qualifying for divestment by the state governmental entity.

The State Treasurer shall, at a minimum; update this list on a per annum basis.

Pursuant to 74 O.S. § 12002, et seq., and based upon thorough review of responses to a questionnaire requesting written verification sent by the Oklahoma State Treasurer, publicly available statements, commitments, and/or any company's failure to respond to the questionnaire required under 74 O.S. § 12003(A)(1)(2), the Oklahoma State Treasurer's Office has determined that the financial companies listed below are engaging in energy company boycotts. Accordingly, each is hereby placed on the Oklahoma State Treasurer's Restricted Financial Companies List.

- BLACKROCK, INC
- WELLS FARGO & CO.
- JPMORGAN CHASE & CO.
- BANK OF AMERICA N.A.
- STATE STREET CORP.
- GCM
- GROSVENOR
- LEXINGTON PARTNERS

- FIRSTMARK FUND PARTNERS
- STEPSTONE VC GLOBAL PARTNERS
- WCM INVESTMENT MANAGEMENT
- WILLIAM BLAIR
- ACTIS
- CLIMATE FIRST BANK

Signed:

Effective Date: May 3, 2023

todd.russ@treasurer.ok.gov • (405) 521-3191