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Abstract

This paper shows that distorted beliefs about asset prices can amplify unemployment fluc-
tuations through corporate hiring decisions. I decompose time-series variation in the aggre-
gate job filling rate into expected cash flows and discount rates. Under subjective beliefs
implied by survey forecasts, the job filling rate is driven by predictable errors in expected
cash flows, while discount rates play a limited role. In contrast, rational expectations as-
sign a dominant role to discount rates. A cross-sectional decomposition also shows that
subjective beliefs overestimate the importance of cash flows. These patterns are consistent
with a model of constant-gain learning about prices and cash flows. The learning model
can generate a realistic amount of unemployment volatility, which is an improvement over
a rational benchmark that underpredicts it by an order of magnitude.
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1 Introduction

Aggregate unemployment is an important indicator of the business cycle, and the fact that unem-
ployment rises so sharply during recessions is one of the main reasons why business cycle fluctu-
ations are viewed as undesirable. Despite its importance, the standard model of unemployment,
the search-and-matching model, struggles to account for the observed volatility in unemploy-
ment fluctuations, a disconnect known as the “unemployment volatility puzzle” (Shimer, 2005)).
Even when calibrated to plausible parameters, the search model fails to explain the magnitude
of unemployment fluctuations and the procyclicality of the job-finding rate observed in the data.

Recent work has addressed this puzzle by emphasizing the role of time-varying discount rates
under rational expectations. The discount rate is the rate of return that a firm requires when
evaluating the expected cash flows from new investments or hiring decisions, capturing both
a risk-free rate and a risk premium. Under rational expectations, discount rates rise during
recessions as risk premia increase, which reduces the present discounted value of the cash flows
expected to be generated by the newly hired worker. This mechanism amplifies unemployment
volatility by making the value of job creation sensitive to fluctuations in risk premia (Hall,
2017; Borovickova and Borovicka, 2017; [Kehoe et al., 2022). Therefore, these models predict
that, under rational beliefs, news about future discount rates should be the primary driver of
fluctuations in unemployment, not news about productivity or cash flows.

In this paper, I offer an alternative behavioral explanation to the puzzle, that distortions in
subjective beliefs can explain the volatility of unemployment fluctuations. I interpret the data
through the lens of the Diamond-Mortensen-Pissarides search and matching model of the labor
market, while allowing for beliefs to deviate from full information rational expectations. I use
the firm’s optimal hiring condition in the search model to derive an explicit link that relates
the equilibrium job filling rate with subjective expectations of the firm’s future cash flows and
discount rates. Firms in the model make hiring decisions based on their subjective expectations
about the discounted value of a newly hired worker. If deviations from rational expectations lead
firms to over-react to news about cash flows, the distortion could provide an additional source
of fluctuation to the expected value of job creation.

In particular, fluctuations in subjective cash flow expectations, marked by periods of exces-
sive optimism followed by sharp reversals, can drive boom-bust cycles in labor market activity,
even if subjective discount rates remain unchanged. During expansions, firms may become overly
optimistic about its future cash flows, leading them to post vacancies and hire more aggressively
than justified by fundamentals. But when these beliefs eventually disappoint, the economy can
enter a downturn in which pessimism overshoots to the downside, prompting firms to cut back
sharply on hiring. Figure [1] illustrates this pattern by showing that surges in unemployment
growth during recessions coincide not just with declining cash flow expectations, but with rever-

sals of earlier run-ups in optimism. The subjective expectations series, constructed from IBES



analyst survey forecasts of S&P 500 earnings growth, closely tracks these boom-bust cycles.

Figure 1: Unemployment and Subjective Cash Flow Expectations
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Notes: Figure plots U.S. unemployment growth Awu; (left axis) alongside the h = 5 year survey forecast of S&P 500 earnings
growth Fy[Ae; ¢4 p] (right axis). Unemployment growth is measured as the 12-month log difference in the U.S. unemployment rate
(UNRATE). Survey expectations are annualized S&P 500 earnings growth forecasts F¢[Ae;p] constructed from IBES median analyst
forecasts for the next four fiscal years and long-term growth (LTG). The sample is quarterly from 1983Q1 to 2022Q4. Gray shaded
areas indicate NBER recessions.

I quantify the importance of these subjective beliefs along two dimensions. First, I estimate
a time-series decomposition of the aggregate job filling rate, which is a key determinant of fluc-
tuations in aggregate unemployment (Shimer} [2012). The decomposition attributes fluctuations
in the job filling rate to either subjective expectations of future cash flows or discount rates.
Second, I extend this framework to the cross-section, decomposing variation in the hiring rate
across book-to-market sorted portfolios using subjective expectations of firms’ future discount

rates and cash flows. The decompositions I derive from the search model are analogous to the

\Campbell and Shiller| (1988)) approximate present value identity for stock market valuation ratios,

which attributes fluctuations in price-dividend and price-earnings ratios to changes in expected
future cash flows and discount rates.

To isolate the role of belief distortions embedded in subjective beliefs, I compare survey-based
subjective expectations against an undistorted benchmark based on machine learning forecasts.
The gap between the two measures captures the extent of distortion in subjective beliefs. To
measure subjective expectations of cash flows, I use survey forecasts of S&P 500 earnings growth
from financial analysts in the IBES database. For subjective discount rates, I use survey forecasts
of S&P 500 stock returns from Chief Financial Officers (CFOs). These survey responses proxy
for subjective beliefs that inform the hiring and investment decisions of firm managers. As a
proxy for rational expectations, I use out-of-sample forecasts from a Long Short-Term Memory

(LSTM) neural network. Rational expectations require agents to form beliefs by efficiently



processing all available information. A high-dimensional neural network trained on a rich set
of macroeconomic and financial variables can approximate this benchmark by learning complex
nonlinear relationships without imposing strong parametric assumptions about the underlying
data-generating process. To avoid look-ahead bias, the machine forecasts are constructed in real
time using only information available at each date.

The results reveal a stark contrast between subjective and rational expectations. In the time
series, subjective cash flow expectations at the 5-year horizon account up to 96.7% of variation
in the job filling rate, while subjective discount rates play only a limited role at -1.0%. In
the cross-section, subjective cash flow expectations at the 5-year horizon explain up to 83.3%
of cross-sectional dispersion in hiring, with limited role for subjective discount rates. Under
rational expectations, the pattern reverses: discount rates dominate both time-series and cross-
sectional variation, with rational discount rates explaining up to 69.1% and 71.6% of variation in
time-series and cross-sectional variation in hiring, respectively. This reversal is consistent with
asset pricing studies that find subjective cash flow growth expectations, rather than subjective
discount rates, to explain a large share of valuation cycles in the stock market (Nagel and Xul,
2021}, [Bordalo et al., 2024a; De La O et al. [2024). My paper extends these insights to real
decisions, showing that the same belief distortions shape both stock market valuations and labor
market outcomes.

These belief distortions can have important implications for aggregate unemployment fluc-
tuations. Incorporating subjective cash flow expectations into predictive models of the unem-
ployment rate significantly improves their explanatory power compared to models based solely
on rational discount rates. Subjective beliefs can better explain the sharp and persistent spikes
in unemployment during downturns that rational models often miss. This finding suggests that
misperceptions about future cash flows can substantially influence hiring behavior and drive
fluctuations in unemployment over the business cycle.

To interpret these findings, I develop a search-and-matching model in which firms engage
in constant-gain learning about the long-run mean of cash flow growth and stock price growth.
Firms update their subjective expectations at a slow constant learning rate and choose hiring
based on their beliefs. Simulations from the model generate patterns consistent with the empirical
decomposition. Under subjective beliefs, firms overstate job filling rate fluctuations to persistent
shifts in expected cash flows, both in the time-series and the cross-section. Importantly, the
model with belief distortions can generate about 74.6% of observed unemployment volatility, a
substantial improvement over standard models that underpredict it by an order of magnitude.

Taken together, the results show that labor market fluctuations reflect not only rational
changes in discount rates, but also systematic distortions in belief formation. Rational mod-
els that emphasize time-varying discount rates may understate the role of subjective cash flow

expectations in driving labor market volatility. These findings highlight the need for macroeco-



nomic models to incorporate subjective beliefs more explicitly, and for policy tools to address

the behavioral biases they generate.

Related Literature This paper contributes to several strands of literature on unemployment
fluctuations, labor markets, asset prices, and expectation formation.

First, it relates to the literature on the unemployment volatility puzzle in search-and-matching
models. A central challenge in macroeconomics is to explain why unemployment is highly volatile
relative to productivity (Shimer} 2005; Hagedorn and Manovskii, 2008} |Hall and Milgrom), 2008;
[Pissarides, 2009; [Elsby and Michaels, 2013; Kudlyak, 2014} |(Chodorow-Reich and Karabarbou-|
mnis, 2016 [Ljunggvist and Sargent| [2017). Traditional search and matching models struggle
to generate sufficient volatility in unemployment unless firms’ responses to shocks are ampli-
fied through mechanisms such as rational expectations of time-varying discount rates
[Yashiv], 2007; [Donangelo, [2014}; Belo et al., 2014} [Favilukis and Linl, 2015; [Hall, [2017}; [Borovickoval
land Borovickal, 2017 [Kuehn et al., 2017} Kilic and Wachter], [2018; Mitra and Xul [2019; [Donan-|
lgelo et all, [2019; Kehoe et all 2019} [Liul, 2021} [Kehoe et al., [2022; Belo et al. [2023; [Meeuwis et]
all 2023). These models assume that firms rationally process information about cash flows and

discount rates. My approach of introducing subjective expectations complements these rational

models. Belief distortions, particularly about cash flows, can better explain variation in hiring
and unemployment, offering an alternative resolution to the unemployment volatility puzzle.

A growing literature embeds non-rational expectations in macro models with labor market
frictions (Venkateswaran, 2014} |Acharya and Wee, [2020; Mueller et al., |2021; Menzio, 2023;
Faberman et al. 2022; Bhandari et al) 2024} Wang et al., |2025). Notably, Bhandari et al.
show that systematic pessimism in households and firms can explain the volatility of

unemployment fluctuations. My paper complements their findings by providing direct survey

evidence on the content and cyclicality of firm expectations, showing that over-reaction to cash
flow news is the main driver of excess unemployment volatility. The cross-sectional analysis in
my paper also adds another dimension to belief-driven labor market volatility by showing that
firms with more distorted beliefs experience larger swings in hiring.

The empirical analysis of this paper builds on existing survey-based evidence on the empirical

properties of firm expectations. Ben-David et al.| (2013) document persistent over-optimism in

CFO forecasts. |Gennaioli et al.| (2016)) document that extrapolative CFO expectations of earnings

growth predict corporate investment. Ma et al. (2020)) link systematic biases in managerial
forecasts to distortions in firm investment. |Coibion et al.| (2018) and Candia et al. (2020) find

that firm managers’ inflation expectations adjust slowly and display substantial dispersion. My

paper builds on this work by showing how distortions in survey expectations shape labor markets.

The variance decomposition and learning model in this paper builds on recent work using

survey-based expectations to reassess the drivers of asset prices (Timmermann, 1993; Barberis|




let al.; [1998; |Chen et al., 2013} |(Greenwood and Shleiter, [2014; |Collin-Dufresne et al.; 2016; Adam|
et al 2016; |Giglio et al.l 2021; [De La O and Myers| 2021; [Nagel and Xul 2022; |Jin and Sui,
2022} De La O et al, 2024} [Adam and Nagell, 2023} [Bordalo et al., [2024a; [Décaire and Grahaml,
. The variance decomposition method adapts the Campbell-Shiller framework
and Shiller} 1988; |Cochrane, 2007)), which attributes price-dividend and price-earnings ratio vari-

ation to expected cash flows and discount rates. Recent applications of this framework using

survey-based expectations have challenged traditional views about the sources of asset price

volatility. |De La O and Myers (2021)) show that subjective expectations of cash flow growth,

rather than discount rates, explain most of the variation in price-dividend and price-earnings

ratios, challenging standard decompositions that assume rational expectations. Bordalo et al.|
(2024a) find that over-reaction in long-term earnings growth expectations accounts for a sub-

stantial share of aggregate and cross-sectional return predictability. My contribution is to show

that a similar decomposition can be adapted to study real decisions by linking asset valuation to
hiring through the firm’s optimality condition, revealing that the same belief distortions operate
in both financial markets and labor markets.

Informed by this literature, I adopt a machine learning approach to measure rational expec-

tations using a dynamic real-time forecasting framework developed in Bianchi et al| (2022) and

Bianchi et al.| (2024b)). It is based on the principle that rational expectations require agents

to efficiently use the full set of real-time information available to them. The algorithm uses
high-dimensional prediction models estimated on rolling samples of real-time data to produce a
benchmark that is free from human cognitive biases and look-ahead bias, while also addressing

overfitting and structural change. The method uses tools from machine learning by training

LSTM networks with recursive re-estimation and hyperparameter tuning (Gu et al., [2020, |Cong]

et al.l [2020, Bybee et al., [2024). The resulting forecasts are fully ex-ante and provide high-

dimensional empirical counterparts to rational expectations for evaluating belief distortions.
The rest of the paper proceeds as follows. Section [2| presents a search and matching model
with belief distortions and derives a decomposition of the job filling rate. Section |3 describes the
data used in the empirical analysis. Section [] compares the predictive performance of machine
and survey forecasts. Section [5| presents the estimated variance decomposition of the aggregate
job filling rate. Section [6] presents cross-sectional evidence motivated by a firm-level extension
of the baseline model. Section [7] presents evidence that subjective cash flow expectations pre-
dict aggregate unemployment and cross-sectional hiring rates. Section [8| introduces a model of
constant-gain learning about future earnings that could match the decompositions estimated
from the data. Section [9] discusses model extensions and robustness checks. Finally, section

concludes.



2 Theoretical Framework

This section develops a search and matching model of the labor market in which firms’ expec-
tations about future cash flows and discount rates may be distorted, leading to fluctuations
in job filling rates and unemployment. The model builds on the |Diamond (1982), [Mortensen
(1982), and |Pissarides| (2009) framework but departs from the standard rational expectations

assumption, allowing firms’ hiring decisions to be influenced by biased subjective beliefs.

Environment Consider a discrete time economy populated by a representative household and
a representative firm that hires workers in a frictional labor market. The firm uses labor as a
single input to production. The household’s population is normalized to one and has a continuum
of members, where a fraction L; are employed and the rest are unemployed U; = 1 — L;. The
household’s intertemporal consumption decision gives rise to a stochastic discount factor M, .

Each period, the firm posts job vacancies at a cost x > 0 to maximize its cum-dividend value
of equity. Employment L; reflects the number of workers at the beginning of period ¢ before any
separations or new hires[| During the period, a fraction &; of employed workers separate, while
the firm posts vacancies V; to search for unemployed workers U;. Matches are formed at the end
of period t according to a matching function m(Uy, V;), with job filling rate ¢, = m(U;,V;)/V;
and job finding rate f; = m(Us, V;)/U;. These new hires enter employment at the start of period

t + 1, so employment L; and unemployment U; = 1 — L; evolve according to the law of motion:

Liyi = (1—04) L + Vi (1)
U1 = 5t(1 - Ut) + (1 - Qt9t>Ut (2)

where 6, = V; /U, denotes labor market tightness, defined as the vacancy-to-unemployment ratio.

Firm’s Technology and Cash Flow The firm produces output using a Cobb-Douglas pro-

duction function with labor L, as it input. Period cash flows (earnings) F; are given by:
Et = AtL? - WtLt - /f‘/;f (3)

where ALY is gross output with total factor productivity A; and returns to scale parameter .
Wi L; total wage payments, and xV; vacancy posting costs. I assume that the household owns
the equity of the firm and the firm pays out all of its earnings E; as dividends (Petrosky-Nadeau
et al., |2018), and that the firm’s manager has access to complete markets so that the return to

hiring equals the stock market return in equilibrium (Cochrane, 1991).

T adopt an end-of-period matching convention following [Petrosky-Nadeau et al., 2018, See Hansen et al.
(2005) and [Kogan and Papanikolaoul (2012) for similar conventions applied for the ¢ theory of investment.



Firm’s Problem The firm chooses vacancy postings V; to maximize the present discounted
value of future cash flows. The firm’s value function V satisfies the Bellman equation:

V(Ap, L) = max {E; + Fy[My V(A L)} (4)

Vi,Lt+1

subject to the employment accumulation equation . [F,[-] is the firm’s subjective expectations
conditional on information available at the beginning of period tE| These beliefs may depart
from rational expectations E;[-|, with the nature and magnitude of the deviation disciplined
using survey data. M, is the stochastic discount factor that prices the firm’s cash flows. The
firm does not observe this discount factor directly and needs to form expectations about it by

forecasting the household’s marginal utility of consumption (Venkateswaran, 2014]).

Hiring Condition Under search frictions, hiring is forward-looking investment. The firm’s op-
timal hiring decision equates the marginal cost of posting a vacancy with the expected discounted

marginal value of employment:

K OV(Ary1, Liya)

— = [, | M, 5)

4 ' r OL¢11 (5)
~— \

TV
Cost of hiring Expected discounted value of hiring

The left side represents the expected cost of hiring one additional worker, accounting for the prob-
ability ¢; that a posted vacancy will be filled. The right side captures the expected discounted
value of the marginal worker, incorporating both the firm’s subjective beliefs about future con-
ditions and the appropriate discount rate for valuing risky cash flows ]| Subjective distortions in
beliefs can thus shift the perceived value of hiring through F;[-] and affect equilibrium job filling
rates, which in turn affects unemployment through its law of motion in equation . Assuming

constant returns to scale a = 1, the marginal value of hiring coincides with its average value:

aV(At—Ha Lt—l—l) — V(At-‘rly Lt+1)
OLt 11 Ly

(6)

Define the firm’s ex-dividend market value as P, = Fy[M;1V(A11, Li11)] to derive a direct link

between the job filling rate and the firm’s market value per worker:

K P,

qt B Ly

(7)

2T use the term “firm’s beliefs” as shorthand to refer to the expectations held by decision makers within firms
(Coibion et al., |2018; |Candia et al.l 2020]).

SThe hiring equation is the labor market analogue of the optimality condition for physical capital in the ¢
theory of investment (Hayashi, [1982)), where the upfront cost of hiring x/¢; is analogous to Tobin’s marginal ¢
and the separation rate d;41 is analogous to the depreciation rate (Borovickova and Borovickay, 2017). See Lettau
and Ludvigson| (2002)) and [Kogan and Papanikolaou| (2012)) for a similar log-linearization applied for the ¢ theory
of physical capital investment.



where employment L;,; is determined at the end of date ¢t under our timing convention from

equation . Take logarithms, rearrange terms, and expand the price-employment ratio P,/ L;1:

5) (o)
lo =logk —log| — ] —lo 8
g q = log g(Et e\ (8)

Defining log price-earnings pe; = log(P;/E;) and earnings-employment el; = log(FE;/Li11):

log ¢; = log k — pe; — el; (9)

Log-linear Approximation of Price-Earnings Ratio To decompose the job filling rate
into economically meaningful components, I apply the Campbell and Shiller| (1988) present value
identity to the price-earnings ratio. Log-linearize the price-earnings ratio pe; = In(P;/E;) around

its long-run mean pe to obtain the approximate relationship:

per = Cpe — Tr41 + Aeyr1 + pperia (10)

where ¢, is a linearization constant, p = exp(pe)/(1+exp(pe)) ~ 0.98 is the time discount factor
from the log-linearization, r, 1 = log(( P14 Ey11)/P;) represents the stock return assuming that
the firm pays out its earnings as dividends, and Ae;y; denotes earnings growth. This identity
holds approximately even when earnings can differ from dividends because the payout ratio term
that will be introduced to the identity is quantitatively small and can be approximated as a
constant (De La O et al.| 2024)E] Substituting recursively for the next h periods yields the
Campbell and Shiller| (1988]) present value identity:

h h h
per = ij_lcpe - ij_lrm + ij_lAetﬂ' +p"perin (11)
j=1 j=1 j=1

Decomposition of Job Filling Rate Substitute log-linearized price-earnings from into
the hiring equation from (J)) to obtain a decomposition of the job filling rate g;:

h h
j—1 j—1 h
loggy =cq+ E Py — el + E P Al P Detth (12)
7j=1 7j=1
S~~~ ~~ 7N ~~ d ~——
Job Filling Rate Discount Rate Cash Flow Future Price-Earnings
= Tit+h = €t,t+h = PCt,t+h

_,h
where ¢, = logk — %{)p) is a constant. The job filling rate has been decomposed into three
forward-looking components: the present value of future discount rates 74y, = Z?Zl T
cash flows e, 41, = el; + 2?21 p’'Aeyj, and price-earnings ratio pey i = p'peirn. The cash

flow component consists of the current earnings-employment ratio el;, which captures short-term

4See Appendix Section |B|for a derivation.



fluctuations in cash flows, and j = 1,..., h period ahead earnings growth Ae;,;, which captures
news about future cash flows.

Since equation holds both ex-ante and ex-post, it can be evaluated under either subjective
or rational expectations. The subjective decomposition replaces ex-post realizations of future

outcomes with their ex-ante subjective expectation F;[-]:

log q; = cq + I, [rt,t—&—h} — I, [et,t+h] — I [pet,t+h] (13)

The equation implies that the job filling rate is high when firms subjectively expect future returns
to be high, expected cash flows to be low, or both. Alternatively, the rational decomposition

replaces ex-post realizations of future outcomes with their ex-ante rational expectation E,[-]:

log g: = ¢y + Ei[risen] — Eilerirn] — Eilperisn] (14)

Comparing these decompositions can quantify how belief distortions affect the job filling rate.

Estimation The econometrician can estimate the variance decomposition using predictive re-
gressions of each expected outcome on the current job filling rate. For the subjective decompo-
sition, demean each variable in equation , multiply both sides by the current log job filling

rate log ¢;, and take the sample average:

Var [log ¢;] = Cov [IF, [rt,t+h]7 log q;] — Cov [Ft[et,t-i-h]a log g;] — Cov [IF [pet,t—i-h]a log ¢¢] (15)

where Var[] and Cov[-] are sample variances and covariances based on data observed over a

historical sample. Finally, divide both sides by Var [log ¢;] to decompose its variance:

. Cov [Ft [T’t,t+h], log Qt] _ Cov [Ft [et,tJrh]a log Qt] _ Cov [Ft [pet,tJrh]a log Qt]

1= 16
Var [log q] Var [log ¢] Var [log ¢] (16)
Discount Rate News Cash Flow News Future Price-Earnings News

The left-hand side represents the full variability in job filling rates, hence is equal to one. Each
term on the right reflects the share explained by subjective expectations of discount rates, cash
flows, or future price-earnings ratios. Under stationarity, the econometrician can estimate these
shares using the OLS coefficients from regressing Fy[r: ;11], Fileri1n], and Fi[pe; 144] on the current
log job filling rate log ¢;, respectively.

Finally, the decomposition under rational expectations can be estimated similarly based on
equation by replacing the subjective expectation FFy[-] with its rational counterpart E;[-].
This comparison allows us to assess the role of belief distortions in explaining labor market
dynamics and determine whether firms systematically mis-perceive economic conditions when
making hiring decisions. Although the variance decomposition does not necessarily capture
causal relationships, it has the advantage of not requiring the researcher to take a stand on
the deep determinants of job filling rates because the evolution of discount rates and cash flows

summarize the combined effects of these deep determinants.
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3 Data

This section describes the data used to estimate the time-series and cross-sectional variance
decompositions. For each outcome variable, I use survey forecasts to measure subjective expec-
tations Fy[-] and machine learning forecasts to measure rational expectations F,[-]. The final

estimation sample is quarterly and spans 2005Q1 to 2022Q4. See Appendix [C] for more details.

Job Filling Rate Vacancies V; is measured using JOLTS job openings starting 2000:12 and
help-wanted index for earlier periods (Barnichon| 2010)). Unemployment U, is measured from the
BLS unemployment series (UNEMPLOY). The job filling rate ¢; is defined as the share of filled

vacancies out of unemployment:

v
t U,
The job finding rate f; is the share of unemployed workers that find jobs within the period:
U, —U;
—1 - =t
Ji 0

where U} is short-term unemployment less than 5 weeks (UEMPLTS5). I construct the variables
at a monthly frequency, time-aggregate to quarterly averages, and detrend using an HP filter
with a smoothing parameter of 105 to ensure stationarity (Shimer, [2005)). Labor market tightness
is defined as the vacancy-to-unemployment ratio, §; = V;/U,. The job separation rate d; uses the

corresponding series from JOLTS.

Employment Employment L;; is measured using annual total employee counts (EMP) for
S&P 500 firms from the CRSP/Compustat Merged Annual Industrial Files. I aggregate the firm-
level employment data to construct a total employment series L; for the S&P 500. I interpolate
the annual series to a quarterly frequency by using quarterly averages of the fitted values from

regressing annual S&P 500 employment on the monthly BLS nonfarm payrolls.

Earnings Quarterly earnings for the S&P 500 are sourced from IBES street earnings per share
(EPS) data that starts in 1983Q4 (Hillenbrand and McCarthy} 2024). Street earnings, which
serve as the forecast target for IBES analysts, differ from standard GAAP earnings by excluding
discontinued operations, extraordinary charges, and other non-operating items. This adjustment
makes street earnings a cleaner measure of recurring performance and a more relevant proxy
for expected cash flows. As shown by [Hillenbrand and McCarthy| 2024, street earnings exhibit
less transitory volatility and are more informative about firm fundamentals and valuation than
standard earnings measures.

To construct subjective expectations of future cash flows, I use survey forecasts of S&P
500 earnings from the IBES database (De La O and Myers, 2021; Bordalo et al. [2019). IBES

11



provides firm-level forecasts from financial analysts, which I aggregate to form market-wide
earnings expectations for the S&P 500. These forecasts reflect the views of professionals who
actively track firms for investment research and have strong reputational incentives to report
them accurately, as they are not anonymous (Cooper et al., 2001} De La O et al., 2024). Prior
research shows that these forecasts are widely followed by market participants and are priced into
asset values, supporting their use as proxies for subjective expectations (Kothari et al., 2016).E]

IBES provides monthly median analyst forecasts for earnings per share (EPS) at one through
four year horizons, as well as long-term growth (LTG) forecasts.lﬂ One through four year ahead
forecasts of annual log earnings growth Fy[Ae, ] for h = 1,2,3,4 are constructed as log dif-
ferences between level forecasts from adjacent horizons. For the five year horizon Fy[Ae; 5], 1
interpret the LTG forecast as the expected log growth in earnings from year four to five (Bianchi
et al., 2024b). The sample spans 1982 to 2021 at a monthly frequency, which are time-aggregated
to quarterly averages. The forecasts cover approximately 80% of total market capitalization, pro-

viding broad coverage of U.S. public firms.

Stock Returns Stock returns are measured using monthly Center for Research in Security
Prices (CRSP) value-weighted returns with dividends (VWRETD). Annualized cumulative h-
year log stock returns are compounded from monthly returns.

For survey expectations of aggregate stock returns, I use the quarterly CFO survey from
2001Q4 to 2022Q4. The CFO survey is a quarterly survey that asks respondents about their ex-
pectations for the S&P 500 return over the next 12 months and 10 years ahead. For intermediate
horizons between 1 and 10 years, I interpolate linearly between the 1 and 10 year ahead forecasts.
The CFO survey panel includes firms that range from small operations to Fortune 500 companies
across all major industries. Respondents include chief financial officers, owner-operators, vice
presidents and directors of finance, and others with financial decision-making roles.

For survey expectations of firm-level stock returns, I use survey data on stock price targets
(De La O et al.||2024])). Specifically, I proxy for stock return expectations by constructing expected
price growth from IBES 12-month median price targets and Value Line 3-5 year median price
targets. Iinterpret the Value Line price targets as a 5 year ahead forecast and interpolate linearly

to impute expectations for intermediate horizons between 1 and 5 years.

Price-Earnings Ratio The current price-earnings ratio is defined as PE; = P,/E,;, where

P, is the end-of-quarter S&P 500 stock price index and E; denotes quarterly total earnings for

5As a robustness check, Appendix Table considers using earnings forecasts from the CFO survey, which
reflect managerial expectations. The two series have a relatively strong correlation of 0.60 at the 1-year horizon,
suggesting that analyst and managerial beliefs are broadly aligned.

6Long-Term Growth (LTG) is defined in IBES as the “expected annual increase in operating earnings over the
company’s next full business cycle. These forecasts refer to a period of between three to five years.”
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the S&P 500. T construct subjective expectations of log price-earnings Fy[pe;,] by applying the
Campbell and Shiller| (1988]) approximate present value identity (De La O and Myers, 2021):

1 1
F, [pet+h] = Epet -

P

P (cpe + Fu[Aer ;] — Fifregj))

E

where expected returns and earnings growth come from the CFO survey and IBES, respectively.

Earnings-Employment Ratio The current earnings-employment ratio is defined as FL; =
E;/L;y1, where E; denotes quarterly total earnings for the S&P 500 and L;.; denotes total
employment for the S&P 500 at the beginning of period ¢ + 1. I measure L;,; using employment
levels as of the end of each quarter, which aligns with the timing conventions of the search model

in Section [2| while ensuring that the measure is known to firms by the end of period ¢.

Machine Learning Forecasts For each survey forecast, I construct the corresponding ma-

chine learning forecast using a Long Short-Term Memory (LSTM) neural network:

E; [yt,t+h] = G(Xt, IBh,t)

where y; 44, denotes the outcome variable (stock returns or earnings growth) to be predicted h
periods ahead of time t. A, is a large input dataset of macroeconomic, financial, and textual
predictors (Appendix . The input dataset also includes the survey forecast of y, allowing
the machine to extract intangible information and correct for potential biases embedded in the
survey responses. G(&}, 3y, ;) denotes predicted values from Long Short-Term Memory (LSTM)
neural networks that can be represented by a potentially high dimensional set of parameters 3, ;.
The parameters are estimated using a dynamic algorithm from Bianchi et al. (2022, 2024b) that
takes into account the data-rich environment in which firms operate in (Appendix .

To obtain more granular measures of undistorted expectations with a cross-sectional dimen-

sion across firms, I construct analogous machine learning forecasts at the portfolio level:

E, [yz',t,wh} = G(Xi,t, ﬁi,h,t)

where y; ;.45 is the outcome to be predicted for portfolio ¢. The predictor set X;; = &, ® C;¢
augments the aggregate predictors &; with firm-level characteristics C;; (Gu et al., 2020, Ap-
pendix . Firms are sorted into five value-weighted book-to-market portfolios, with predictor
variables aggregated to the portfolio level using market cap weights (De La O et al., 2024]).

4 Forecasting Performance

Accuracy of Machine Learning vs. Survey Forecasts To assess whether survey respon-
dents systematically misweight relevant information, Figure [2] evaluates the out-of-sample accu-

racy of machine learning forecasts relative to survey forecasts for discount rates 7+, and cash
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flows e, 14n, as defined in equation ([12)). These variables are factors that can influence the job
filling rate through the firm’s optimal hiring decision in the search model. I measure the relative
predictive performance using the ratio of mean-square-forecast-error of the machine (MSFEg)
over that of the survey (M SEp). The out-of-sample testing period spans 2005Q1 to 2022Q4.

Figure[2|shows that machine learning forecasts consistently outperform survey forecasts across
all variables and horizons, with MSE ratios well below one. The performance gap widens with
forecast horizon, indicating larger belief distortions in long-term expectations. The machine
outperforms the survey for both aggregate S&P 500 level and portfolio level forecasts across book-
to-market sorted groups, suggesting that belief distortions affect not only aggregate expectations
but also the dispersion of beliefs across firms.

These findings suggest that survey expectations about factors that influence hiring decisions
systematically deviate from an unbiased benchmark, both in the time-series and the cross-section.
If survey respondents were rational in forming their beliefs, their forecasts would have performed
at least on par with the machinem The superior performance of the machine also highlights its
ability to process a large amount of real-time data efficiently and objectively, supporting its use

as a reliable benchmark of undistorted beliefs.

Predictability of Survey Forecast Errors To assess whether survey expectations system-
atically deviate from rational expectations, panel (1) of Table [1| estimates (Coibion and Gorod-

nichenko (2015) regressions of survey forecast errors on survey forecast revisions:

Yrirh — Fe[yeirn] = Bo + BilFe[Yeivn) — Feoa[yearn]] + BoFio1[Yeivn] + € (17)

The results reveal systematic forecast errors in subjective beliefs. For cash flow expectations,
the coefficients on forecast revisions are negative across all horizons, ranging from —0.263 at the
one-year horizon to —0.968 at five years. These results indicate over-reaction. Upward revisions
in survey forecasts are followed by negative forecast errors, suggesting that survey respondents
respond too strongly to negative earnings news and generate overly pessimistic forecasts. For
discount rate expectations, the coefficients are also negative and significant at longer horizons,
with —0.998 at five years, indicating that respondents over-react to discount rate news as well.
Panel (2) repeats the analysis using machine learning forecasts in place of survey expectations.
In contrast to the strong predictability in survey forecast errors, the coefficients on machine
forecast revisions are small and statistically insignificant at all horizons, with values near zero
(0.096 for discount rates, -0.070 for cash flows). This lack of systematic forecast error is consistent

with the behavior of rational expectations, under which forecast errors should be unpredictable.

"One natural question is whether survey respondents report rational, risk-neutral expectations rather than
truly subjective beliefs. However, estimates of risk premia typically range from 5-10% annually (Adam et al.,
2021)), which is insufficient to explain the 15-30% deterioration in MSE ratios observed in Figure The magnitude
and persistence of forecast errors across horizons instead point to behavioral biases (e.g., extrapolation) rather
than rational risk compensation.
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Figure 2: Accuracy of Machine Learning vs. Survey Forecasts
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Notes: Figure plots M SEg/MSEp, the ratio of mean squared forecast errors between machine learning and survey forecasts. Lower
values indicate greater accuracy of the machine learning forecast. MSFEr and MSER refer to out-of-sample forecast errors from
machine and survey forecasts, respectively. The out-of-sample testing period is 2005Q1-2022Q4. Dark bars correspond to aggregate
time-series forecasts for the S&P 500; light bars correspond to cross-sectional forecasts across five book-to-market sorted portfolios.
The forecast target y; sy is the present discounted value of discount rates r; ¢4, and cash flows e; ¢4, as defined in equation .
Time-series survey forecasts F; come from the CFO survey (discount rates) and IBES (cash flows). Cross-sectional survey forecasts
F; come from IBES (discount rates and cash flows). Time-series and cross-sectional machine learning expectations E; are generated
using a Long Short-Term Memory (LSTM) model trained in real time on macroeconomic, financial, and textual data.

Panels (3) and (4) of Table 1| presents a complementary analysis using cross-sectional regres-
sions of forecast errors for book-to-market sorted portfolios. These regressions include portfolio
and time fixed effects, implying that the identifying variation comes from revisions in expecta-
tions that are idiosyncratic to each portfolio. At the five year horizon, the coefficients on survey
forecast revisions are large and negative for both discount rates (—0.730) and cash flows (—0.715),
indicating that survey respondents over-react to portfolio-specific news. Upward revisions in a
given portfolio’s forecasts beyond the average are associated with subsequent forecast errors in
the opposite direction. In contrast, the corresponding coefficients for machine forecasts are small
and close to zero (—0.051 for discount rates and 0.033 for cash flows), suggesting that machine
expectations do not systematically over-react to idiosyncratic information. These results rein-
force the conclusion that survey expectations exhibit predictable bias even at the cross-sectional

level, while machine expectations remain consistent with a rational benchmark.

5 Time-Series Decomposition of the Job Filling Rate

The superior forecasting performance of machine learning over survey forecasts suggests the
presence of systematic distortions in subjective expectations. This section quantifies how those
distortions affect hiring behavior by estimating the contribution of discount rate and cash flow

expectations to fluctuations in the aggregate job filling rate. Based on the search model in
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Table 1: Predictability of Survey Forecast Errors

(a) Aggregate Forecasts

Horizon h (Years) 1 2 3 4 5
(1) Survey: yerrn — Felyern] = Bo + BulFe[yeern] — Feor[yeernl] + BoFe—1[yesn] + et

Discount Rates —0.581*** —0.646** —0.658*** —0.681*** —0.998***

t-stat (—2.916) (—2.360) (—2.821) (—3.047) (—2.758)
Cash Flows —0.263 —0.463*** —0.801*** —0.833*** —0.968***

t-stat (—1.413) (—3.793) (—5.682) (—5.898) (—8.242)
N 72 72 72 72 72

(2) Machine: ygn — Et[yet+n] = Bo + B1Ee[yee+n] — Eem1[yessnl] + BoBe—1(yes4n] + et

Discount Rates 0.057 —0.005 0.109 0.010 0.096

t-stat (0.249) (—0.036) (0.710) (0.114) (0.973)
Cash Flows —0.064 —0.114 —0.056 —0.133 —0.070

t-stat (—0.507) (—1.387) (—1.255) (—1.563) (—1.594)
N 72 72 72 72 72

(b) Cross-Sectional Forecasts

Horizon h (Years) 1 2 3 4 5
(3) Survey: yiri+n — Feliti+n] = BilFe(Yiee+n] — Fem1 Uit ernl] + BoFi1[¥itrn] + i + 0p + iy
Discount Rates —0.837*** —0.853*** —0.696** —0.845*** —0.730***
t-stat (—5.883) (~6.133) (~2.354) (—5.376) (—4.124)
Cash Flows —0.665" 0581 —0.588"* 1092+ —0.715"
t-stat (~2.297) (—2.899) (~3.690) (—7.989) (—5.605)
N 360 360 360 360 360

(4) Machine: y; ¢ 110 — Etlyi o e4n] = B1Eelyi e een] — Eeo1[Yiternl] + BoBeo1[Yiirn] + i+ s + e

Discount Rates 0.038 —0.041 0.025 —0.151 —0.051
t-stat (0.838) (—0.744) (0.806) (—1.301) (—0.707)
Cash Flows —0.018 —0.004 0.027 0.025 0.033
t-stat (—1.055) (—0.143) (1.028) (0.760) (1.022)
N 360 360 360 360 360

Notes: Table reports regression coefficients from forecast error regressions of the form: forecast error regressed on the revision in
the forecast and the lagged forecast level. The forecast target is either the present discounted value of discount rates 7 ;1 or cash
flows e 4n, over horizon h, as defined in equation . Panel (a) presents results using aggregate time-series forecasts for the S&P
500: (1) survey forecast errors on survey forecast revisions, and (2) machine forecast errors on machine forecast revisions. Panel (b)
presents results from cross-sectional regressions of forecast errors on forecast revisions and lagged forecast levels for five portfolios
sorted by book-to-market ratios, including portfolio and time fixed effects. Specifications (3) and (4) report cross-sectional results
based on survey-based and machine-based forecasts, respectively. Time-series survey forecasts F¢ come from the CFO survey (discount
rates) and IBES (cash flows). Cross-sectional survey forecasts F; come from IBES (discount rates and cash flows). Time-series and
cross-sectional machine learning expectations E; are generated using a Long Short-Term Memory (LSTM) model trained in real
time on macroeconomic, financial, and textual data. The sample covers quarterly data from 2005Q1 to 2022Q4. All t-statistics
are Newey-West corrected with 4 lags in Panel (a), two-way clustering by portfolio and quarter in Panel (b). Significance levels: *
p < 0.10, ** p < 0.05, *** p < 0.01.

Section [2| the job filling rate ¢; can be decomposed as:

1 — Cov [Ft [Tt,tJrh]; log Qt] _ Cov [Ft [et,tJrh]a log Qt] _ Cov [Ft [pet,tJrh]: log Qt]
Var [log q] Var [log ¢] Var [log ¢]

(18)

vV vV vV
Discount Rate News Cash Flow News Future Price-Earnings News
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where Fy[-] represents subjective expectations measured with survey forecasts. risin, € 4n, and
per+h are h-year present discounted values of future discount rates, cash flows, and price-earnings
ratios (terminal value), respectively, as defined in equation (12)). To quantify the contribution of
each term, I estimate variance decompositions by regressing each forecasted component on log ¢;.

A similar decomposition under rational expectations can be estimated by replacing the survey
forecast F;[] with its machine learning counterpart as a proxy for rational beliefs E;[-]. Comparing
the decompositions implied by subjective and rational expectations can highlight the role of belief

distortions, which I define as the gap between the survey and machine forecasts: F; — [E;.

Rational Expectations Figure [3| presents the variance decomposition of the job filling rate,
with more detailed statistics reported in Table The figure shows that, under rational beliefs,
discount rate news is the dominant driver of variation in job filling rates. At the five-year horizon,
rational discount rates explain 69.1% of the variation in job filling rates, while rational cash flow
news accounts for 6.6%E| Consistent with the predictions of the search and matching model,
higher job filling rates are associated with higher discount rates and lower expected cash flows.
The contribution from terminal price-earnings ratios still remains sizable at the five-year horizon,
accounting for 20.1%[] The combined contribution from the three components sum to 95.8% at
the five-year horizon, a value reasonably close to 100.0% suggesting that the decomposition is
empirically accurate despite being estimated freely without imposing this constraint.

These findings are consistent with with predictions from rational search-and-matching mod-
els that emphasize time-varying risk premia. The large contribution from discount rate news
is consistent with rational models that introduce time-varying discount rates to explain unem-
ployment fluctuations (Hall, 2017)). The increasing importance of discount rate news at longer
horizons is consistent with rational models that match observed fluctuations in unemployment
by modeling hiring as a risky investment with long-duration returns (Kehoe et al.; 2022)). On the
relative importance of risk-free rates and risk premia, Figure shows that rational risk-free
rate expectations explain less than 5% of the variation in the job filling rate. This implies that
the explanatory power of discount rate news is driven primarily by the risk premium component,
consistent with rational models of labor markets with time-varying risk premia (Borovickova and
Borovicka, 2017). Finally, the small rational cash flow component aligns with the unemployment
volatility puzzle, as Shimer| (2005) showed that standard search models without time-varying
discount rates cannot generate enough unemployment volatility from productivity shocks, which

would mainly be reflected in the cash flow component.

8First-differenced estimates in Figure show similar patterns, with rational discount rates explaining 58.7%
and cash flows explaining only 10.0% of job filling rate variation. Figure uses a VAR to extend the decom-
position to the infinite horizon, showing that rational discount rates explain 78.1% of job filling rate variation.

9Hyatt and Spletzer| (2016) document that about half of U.S. workers have job tenures exceeding five years,
reflecting the prevalence of long-term employment relationships. Despite relatively long job tenures, time dis-
counting and mean-reversion in cash flows could limit the variance contribution of long-horizon cash flows.

17



Figure 3: Time-Series Decomposition of the Job Filling Rate
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Notes: Figure illustrates the discount rate, cash flow, and future price-earnings components from the time-series decomposition of
the U.S. aggregate job filling rate. Light bars show the contribution under rational expectations. Dark bars show the contribution
under subjective expectations. Subjective expectations F; are constructed from CFO survey forecasts (discount rates) and IBES
analyst forecasts (cash flows). Rational expectations E; are based on machine learning forecasts from Long Short-Term Memory
(LSTM) neural networks. z-axis denotes the forecast horizon h. The sample is quarterly from 2005Q1 to 2022Q4. Each bar shows
Newey-West 95% confidence intervals with lags = 4.

Subjective Expectations On the other hand, Figure 3| reveals a striking reversal under sub-
jective expectations. At the five-year horizon, subjective cash flow news explains 96.7% of the
variation in job filling rates, while subjective discount rate news accounts for only —1.0%H These
results suggest that firms systematically over-estimate the importance of cash flows and under-
estimate the importance of discount rates when hiring workers. The direction of the cash flow
effect aligns with rational expectations, but the discount rate effect does not. The negative sign
on the discount rate component indicates that survey respondents predict lower future returns
during recessions, contrary to a rational forecast. Since the subjective discount rate component
is small and insignificant, belief distortions appear to mainly reflect errors in magnitudes.

The contribution from the terminal price-earnings ratio falls with horizon and is negligible
by year five (2.8%), in contrast to the higher terminal value assigned under rational expecta-
tions (20.1%). This implies that subjective beliefs place excessive weight on near-term cash flows
relative to long-run fundamentals. Finally, the three components sum to 98.5% at the five-year
horizon, showing that survey expectations are internally consistent and the model’s approxima-
tion is reasonablly accurate. The smaller approximation residual under subjective expectation
(98.5 — 100.0 = 1.5% vs. 100.0 — 95.8 = 4.2%) suggests that allowing for subjective beliefs can

improve the model’s ability to explain job filling rate fluctuations more accurately, with any

10First-differenced estimates in Figure show similar results, with subjective cash flows explaining 90.6% and
discount rates explaining only -1.3% of the job filling rate. Figure uses a VAR to extend the decomposition
to the infinite horizon, showing that subjective cash flow expectations explain 95.4% of job filling rate variation.
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remaining gap likely due to measurement error in survey data (e.g., [Ma et al., |2020)).
Compared to the rational benchmark, the implied over-reaction to cash flow news is substan-
tial. Low job filling rates during expansions are associated with a significant disappointment in
future cash flows. Defining the belief distortion as the difference between subjective and rational
expectations F;, — E;, the estimates imply that, at the five-year horizon, 96.7% — 6.6% = 90.1%
of variation in job filling rates can be attributed to the fact that the job filling rate predicts
distortions in cash flows expectations with a significant positive relationship (Table . These
distortions capture systematic inefficiencies or behavioral biases in survey respondents’ subjective

beliefs that the machine learning model could have identified ex-ante.

Discussion Although the decomposition does not necessarily estimate causal relationships, it
can account for possible sources of variation in the job filling rate. A large estimate for subjective
cash flow news means that, whatever shocks drive the job filling rate, they must have a larger
impact on subjective cash flow expectations than subjective discount rates. Under rational
expectations, by contrast, firms correctly interpret those same shocks as signals about future risk
compensation embedded in discount rates. This divergence points to belief distortions as a key
source of job filling rate fluctuations. By over-reacting to perceived changes in future cash flows,
firms may cut hiring and vacancies too sharply during downturns, amplifying unemployment
volatility beyond what rational models predict.

Several robustness checks confirm this interpretation. The patterns persist when comparing
survey-based subjective expectations against risk-neutral expectations extracted from futures
prices, confirming that the observed distortions reflect genuine departures from rational belief
formation rather than respondents merely reporting forecasts under a rational risk-neutral mea-
sure (Figure . At the five-year horizon, cash flow expectations explain 96.7% of the variation
in job filling rates under subjective beliefs, compared to just 59.6% under risk-neutral expecta-
tions, with the gap between the two capturing the extent of over-reaction in subjective beliefs.
Additionally, extending the baseline model to introduce financial constraints does not overturn
the over-reaction in subjective cash flow expectations, suggesting that belief distortions rather
than financial frictions drive these hiring patterns (Figure .

While Table [I] has shown subjective discount rate forecasts to exhibit over-reaction, their
contribution to the variance decomposition of job filling rates remains small in Figure [3] This
can be reconciled by the fact that subjective discount rate expectations display relatively little
time-series variation, so even biased revisions have limited impact on hiring decisions. In contrast,
subjective cash flow expectations vary much more over time and across firms, making them the
primary driver of belief-driven fluctuations in hiring. Figure illustrates this point visually
by showing that subjective expectations exhibit excessive cyclicality in cash flow forecasts and

muted responses in discount rate forecasts compared to their machine-based counterparts.
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The large contribution of subjective cash flows in shaping hiring decisions is consistent with
models that introduce non-rational expectations about earnings growth to account for fluctua-
tions in asset prices (Bordalo et al., 2024a; Bianchi et al.,2024b) and the business cycle (Bordalo
et al., 2024b). This parallel implies that the belief distortions known to influence asset valuations
can also extend to real economic behavior through the labor market. The increasing contribution
at longer horizons is consistent with behavioral models in which the over-reaction grows with the
forecast horizon (Bordalo et al.; [2020; Bianchi et al., [2024a; |Augenblick et al., [2024).

On the other hand, the small and negative contribution of subjective discount rates is con-
sistent with existing survey evidence showing that subjective return expectations are acyclical
(Nagel and Xu|, 2022) or even procyclical (Greenwood and Shleifer, 2014; |Adam et al. 2016,
contrary to the countercyclical discount rate variation implied by rational models (Cochrane
2017)). In standard asset pricing models, discount rates reflect the firm’s market-based cost of
capital, such as the weighted average cost of debt and cost of equity (WACC). In contrast, survey
evidence suggests that CFOs likely rely on internal discount rates that are persistent and often
unresponsive to market conditions, even when firms are not financially constrained (Gormsen
and Huber 2025). My findings extend this evidence to labor markets, where hiring decisions

appear similarly detached from subjective beliefs about risk premia or financial constraints.

6 Cross-Sectional Decomposition of the Hiring Rate

To analyze the sources of dispersion in hiring across firms, I implement a cross-sectional de-
composition of the log hiring rate based on the same theoretical framework developed for the
time-series decomposition. The log hiring rate for each firm can be constructed using the em-
ployment accumulation equation:

; L.
hl;; = log (qzm’t) = log < £t+1 —(1- 5§7t)> (19)

it it

where L, ; uses data from Compustat number of employees (EMP) and §£,t uses JOLTS industry-
level job separation rate. The hiring rate captures the fraction of workers hired per existing
employee, conditional on vacancies filled at rate ¢;. This demeaned hiring rate is then decomposed

into three components:

h h
~ 1~ ~ i1 . h .
hliy = — E P B [Tipg] 4 |eliy + E PFAC ]|+ P"Fy ey ] (20)
j=1 j=1
-~ >4 -~ 7 A\ -~ 7
Discount Rate Cash Flow Future Price-Earnings
= Fel7i e t4n] = Fe[€s,e,6+n] = Felpe; ¢ o yn)

The first term represents cross-sectional dispersion in expected returns, which affect the discount
rate at which future expected cash flows are converted to present value. The second term

captures dispersion in the current earnings per worker, el;;, and the sum of expected earnings
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growth over the forecast horizon h. The third term is the dispersion in expected future price-
earnings ratios, which is a terminal value that captures longer-run influences not already captured
in discount rates and expected cash flows by horizon h. All expectations are formed using either
survey (subjective expectation) or machine learning forecasts (rational expectation benchmark).
To isolate cross-sectional variation, I demean each variable across firms indexed by I, defining
};li,t = hl;; — % > jer hl;, so that the decomposition isolates the extent to which deviations from
the average hiring rate can be traced to each component.

Under stationarity, the econometrician can estimate these shares using OLS coefficients from
regressing F[7 ¢ 144, Fe[€i 44 0], and Fy[pe;, ;. p] on the current log hiring rate l;li,t, respectively.
I estimate the decomposition using a panel of five value-weighted portfolios sorted by book-
to-market ratio, which serve as representative groups for capturing cross-sectional dispersion in
subjective beliefs across firms. Aggregating firms to portfolios smooth out firm-level measurement
errors and occasional negative values for earnings (De La O et al.;2024). At each point in time,
firms are assigned to one of five bins based on their book-to-market ranking, and portfolio-level
variables are computed using value weights. The sample covers all common stocks (share code
10 and 11) listed on NYSE, AMEX, and NASDAQ), restricted to firms that have sufficient data
to construct total employee counts (EMP) from Compustat and the median analyst stock return
and earnings growth forecasts at the 5-year horizon from IBES, as described in Section [3] For
each portfolio, I construct the hiring rate by fixing portfolio membership at time ¢ based on
lagged book-to-market sorting, then measuring the change in total employment from ¢ to ¢ + 1
for firms in each portfolio.

Figure 4| shows that under subjective expectations, cross-sectional dispersion in the hiring rate
is dominated by differences in expected cash flows. At the five-year horizon, 83.3% of the cross-
sectional variance is explained by the expected cash flows. In contrast, only 4.4% of the variation
is explained by discount rates, and 14.1% is attributed to differences in the terminal future price-
earnings expectation. These results indicate that firms sorted into different book-to-market
portfolios have sharply different expectations about future cash flows when expectations are
subjective, and these differences in beliefs translate into differences in perceived hiring incentives.
The combined contribution of the three components sum to 101.8% at the five-year horizon, a
value close to 100.0% suggesting that the approximations used in the decomposition is reasonably
accurate despite being freely estimated without imposing this constraint.

Under rational expectations, the decomposition reverses. At horizon five, 71.6% of cross-
sectional variation in hiring is explained by differences in expected discount rates, while only
22.6% is explained by expected cash flows. This pattern is consistent with existing estimates
showing that, under rational expectations, much of the variation across firms in asset valuations
comes from dispersion in risk premia rather than expected cash flows (De La O et al., 2024]).

Finally, the contribution of the terminal price-earnings component is 28.0%, which is limited
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Figure 4: Cross-Sectional Decomposition of the Hiring Rate
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Notes: Figure illustrates the discount rate, cash flow, and future price-earnings components from the cross-sectional decomposition
of the hiring rate. Firms have been sorted into five value-weighted portfolios by book-to-market ratio. Light bars show the contri-
bution under rational expectations. Dark bars show the contribution under subjective expectations. Subjective expectations [F; are
constructed from IBES analyst forecasts (discount rates and cash flows). Rational expectations E; are based on machine learning
forecasts from Long Short-Term Memory (LSTM) neural networks. z-axis denotes the forecast horizon h. The sample is quarterly
from 2005Q1 to 2022Q4. Each bar shows Newey-West 95% confidence intervals with lags = 4.

by still remains sizeable and is larger than the same component estimated under subjective
beliefs. Under both set of beliefs, the direction of the estimated relationship is consistent with
the predictions of the search model, suggesting that the errors in subjective beliefs are about
magnitudes, not about directions. The hiring rate is high either because future discount rates
are low, expected cash flows are high, or bothE|

Taken together, the results reveal that under subjective beliefs, cross-sectional variation in
hiring is driven primarily by firms overreacting to news about their future cash flows. This
provides a micro-foundation for the aggregate results by showing that the same type of belief
distortion that drives fluctuations in aggregate unemployment also operates at the firm level,
where hiring decisions are actually made. The result can be consistent with a model of ex-
trapolative beliefs. If expectations of future cash flows are updated sluggishly, then firms that
recently experienced positive shocks to their cash flows continue to expect strong growth, leading
to persistent differences in hiring rates across firms. Under rational expectations, such distortions

are absent, and the primary driver of hiring differences is variation in required returns.

HEigure examines the nature of this cross-sectional dispersion more closely by estimating separate time-
series decompositions of the hiring rate for each of the five book-to-market portfolios. Belief distortions are
most pronounced among growth firms with low book-to-market ratios, suggesting greater sensitivity to subjective
beliefs about long-term fundamentals. In contrast, hiring in high book-to-market (value) firms is less affected,
with cash flow expectations contributing similarly under rational and subjective benchmarks.
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7 Predictability of Unemployment and Hiring Rates

Time-Series Predictability of Aggregate Unemployment Rate To complement the de-
composition of the job filling rate, this section analyzes the unemployment rate directly. While
the job filling rate captures the main driver of unemployment dynamics in search models, the
unemployment rate is the key macroeconomic outcome of interest and the direct target of policy.

Start from the unemployment accumulation equation of the search model in Section
U1 = 0,(1 = Up) + (1 — qu0,)Uy (21)

which states that the number of unemployed workers at the beginning of next period U, equals
the number of unemployed worker who fail to find a job in the current period (1 — ¢0;)U; plus
the number of employed workers who lose their jobs due to separations d;(1 — U;). Log-linearize
around the steady state and substitute in equation , which is a decomposition of the job
filling rate ¢; into discount rate, cash flow, and future price-earnings components. As shown in

Section [B.2] the log unemployment rate w1 satisfies the following predictive relationship:

U1 = a + B,IF, [Tt,t+h] + BeIF, [et,t+h] +7'X, + Es,t+1 (22)

where X; = [uy, log 0y, 1og &;]’ collects labor market factors including the lagged log unemployment
rate u;, vacancy-to-unemployment ratio log #;, and job separation rate log d;. The coefficients of
interest, 8, and (., quantify the effect of subjective expectations about discount rates and cash
flows, respectively, on future unemployment.

To isolate the contribution of belief distortions, I further decompose each subjective expec-

tation [F; into its rational expectation E; and its distortion F; — E;:

W1 = @ + BrrBilrern] + Brr(Felreeen] — Edreisn])

(23)
+ BepEilersin) + Ber(Filerirn] — Eilersin]) + v X + Es,t4+1

I estimate equation (23) using multivariate OLS regressions, allowing the data to inform the
relative importance of each component.m To ensure stationarity and remove seasonal effects, I
estimate the regression in log growth rates relative to the same quarter of the previous year. The
regression is designed to test whether perceived shocks to discount rates or earnings forecasts
help predict fluctuations in unemployment rates. If firms form distorted beliefs about future
returns or earnings, they should manifest in hiring behavior and thus influence unemployment.

Table [2 reports the results. Column (1) predicts the unemployment rate based on a bench-
mark model using only machine-based forecasts of discount rates and cash flows. Rational

discount rates E;[r,.p] significantly predict unemployment (coefficient 0.551), consistent with

12The future price-earnings ratio term Fy[pe; ;4] has been omitted in the multivariate regression because it is
nearly collinear with future discount rates F;[r; ,+5] and cash flows Fy[e; ;4+1] as long as the |(Campbell and Shiller
(1988) present value identity holds in equation .
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rational models that introduce time-varying discount rates to generate realistic fluctuations in
unemployment. The rational cash flow expectation E.[e;;;s] is not a significant predictor (-
0.041), consistent with the unemployment volatility puzzle where productivity shocks on its own
struggle to generate sufficient unemployment fluctuations. Overall, the sign of the estimated
coefficients are consistent with the implications of the search model, since higher discount rates
or low expected cash flows depress the expected discounted value of job creation, leading to

reduced hiring and higher future unemployment.

Table 2: Time-Series and Cross-Sectional Predictability

Forecast Target: Unemployment Growth Aw;qq Forecast Target: Employment Growth A’Z;’yt_l,_l
(1) (2) (3) (4)
Ei[re e4] 0.551*** 0.236 E¢[7i ¢ t45) —0.498*** —0.119
t-stat (5.046) (0.893) t-stat (—3.058) (—0.734)
Et[et’t+h] —0.041 —0.018 Et[gi,t,#l’h} 0.154 0.053
t-stat (—0.108) (—0.050) t-stat (1.304) (0.754)
Fe[re 44n) — Ee[ree4n) —0.006 Fe[7i 0, 64n) — Ee[Ts,t,041] —0.043
t-stat (—0.033) t-stat (—0.410)
Filerirn] — Etlerrn] —0.701** Fel€iti4n] — Eel€ie1n] 0.759"
t-stat (—5.584) t-stat (6.412)
Labor Market Factors Yes Yes Labor Market Factors Yes Yes
N 72 72 N 360 360
Adj. R? 0.528 0.745 Adj. R? 0.135 0.253
00S R? 0.149 0.254 00S R? 0.207 0.447

Notes: This table reports decompositions of log annual growth in the unemployment rate from equation , under subjective
or rational expectations. Labor market factors X; include the log annual growth of lagged log unemployment rate u¢, log labor
market tightness log#; and log job separation rate logd;. The sample is quarterly from 2005Q1 to 2022Q4. OOS R? is defined
as 1 — MSFEModel/MSEBenchmark: Out-of-sample forecasts are constructed as 1-year-ahead predictions using model parameters
estimated over a rolling 10-year window. M SE\iodel/MSEBenchmark denotes the ratio of each model’s out-of-sample mean squared
forecast error to that of a benchmark, which is the Survey of Professional Forecasters (SPF) consensus for time-series predictions and
an AR(1) model for cross-sectional predictions. Newey-West corrected (time-series) and two-way clustering by portfolio and quarter
(cross-sectional) t-statistics with lags = 4 are reported in parentheses: *sig. at 10%. **sig. at 5%. ***sig. at 1%.

Column (2) extends the baseline model by incorporating belief distortions in subjective
discount rate and cash flow expectations. The distortion in subjective cash flow expectation
Filettvn) — Et[ers+n] emerges as the strongest predictor of future unemployment, with a large
statistically significant coefficient of -0.701.The inclusion of belief distortions improves model
performance substantially. The adjusted R? increases from 0.528 to 0.745 in-sample and the out-
of-sample R? increases from 0.149 to 0.254, where the out-of-sample R? implies an improvement in
the MSE ratio relative to the Survey of Professional Forecasters (SPF) by 0.254—0.149 = 0.105[5]

BTraditional labor market factors including lagged unemployment, labor market tightness, and separations
explain only a modest portion of unemployment fluctuations, with an in-sample adjusted R? of 0.260. In terms
of out-of-sample performance, a model that excludes expectations entirely performs worse than the Survey of
Professional Forecasters (SPF) benchmark with a negative OOS R? of —0.094.
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These results suggest that the distortions embedded in survey expectations contain valuable in-
formation not captured by other rational forecasts and pre-existing labor market factors.
Strikingly, distortions in subjective cash flow expectations drive out the predictive power of
the machine-based discount rate forecast, whose coefficient has been reduced to 0.236 and is
no longer statistically significant. This result suggests that behavioral factors can crowd out

rational forces in driving labor market fluctuations, consistent with models of behavioral over-

reaction where salient signals can dominate decision making (Bordalo et al.,|2020). Since machine

forecasts already incorporate a high-dimensional set of real-time predictors, this displacement
likely reflect systematic misperceptions of underlying economic shocks rather than statistical
bias due to omitted variables.

Figure [5| illustrates the result by plotting the actual annual change in unemployment against
its model-implied decomposition using both rational expectations and belief distortions based
on equation . Fluctuations in unemployment closely track the component attributed to the
distortion in expected cash flows. In particular, the cash flow distortion component captures the
sharp rise and fall in unemployment during the global financial crisis and COVID-19 recessions

with considerable precision.

Figure 5: Time-Series Decomposition of the U.S. Unemployment Rate

Unemployment Growth

1 1 1
2005 2010 2015 2020 2025

Il Discount Rate (Rational) [l Cash Flow (Rational) [l Discount Rate (Distortion) [l Cash Flow (Distortion)
I Labor Market Factors I Residual Unemployment Growth

Notes: Figure plots decompositions of log annual growth in the unemployment rate from equation , using rational expectations
E¢ and belief distortions F; — E; of expected cash flows and discount rates. Labor market factors include the log annual growth of
lagged unemployment Awug, labor market tightness Af; and job separations Ad;. Residual (dark gray) represents the variation in job
filling rates that are not captured by the other components. Subjective expectations F; are based on survey forecasts from CFOs and
IBES financial analysts. Rational expectations E; are based on machine learning forecasts from Long Short-Term Memory (LSTM)
neural networks. NBER recessions are shown with light gray shaded bars.
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Cross-Sectional Predictability of Employment Growth To complement the aggregate
analysis, I examine whether belief distortions also explain cross-sectional differences in hiring

behavior across firms. Start from the employment accumulation equation:
Ligti=1—08,)Lit+ H;y (24)

for firm ¢, where 0, is the job separation rate and H;, denotes hires. Then we can approximate

employment growth Al; ;11 = AlogL; 11 as:
Ali,t—‘rl ~ hli,t — 5,‘7,5 (25)

where h;; = H,,/L;; is the hiring rate. As shown in Section [2| the hiring rate reflects the firm’s
valuation of a job match and embeds forward-looking expectations of return, cash flow, and

terminal value:

hliy = —Furis i) + Foleisiri] + Filpei i, (26)

where expectations are formed under the firm’s subjective belief measure ;. Substituting into

the employment growth approximation yields a predictive regressionﬂ

Al:,m = o — B1F[Tiias] + BoFe[€ii45] + 535;',t + Eitt1, (27)

where «; denotes a firm fixed effect, and ¢,, is included directly as a control for firm-level
separations. The sample consists of the five book-to-market sorted portfolios, which serve as
representative groups for capturing belief heterogeneity across firms (Section @ To isolate
cross-sectional variation, I demean each variable across the five portfolios, defining z;; = x;; —
%Z?Zl x;, for variable x. This specification can be estimated using panel methods with firm
and time fixed effects. To isolate the contribution of belief distortions, I further decompose each

subjective expectation [, into its rational expectation [E; and its distortion F; — E;:

AlNi,tH = Q; — ﬁl,IEEt[?i,t,t+j] - ﬁl,IF (Ft m,t,tﬂ'] - Etm,t,tﬂ]) (28)
+ BogEil€itti] + Bor (Fel€itirs] — Eil€irst4]) + BB»S;,t + Eit1-

If firms over-react to news about cash flows, we expect significant positive coefficients on [;F,
reflecting inflated expectations of future cash flows that induce excessive hiring. Similarly, if
firms over-react to news about discount rates, we may observe large distortions in 3 .

Table column (3) predicts portfolio-level employment growth using only machine forecasts of
future returns and earnings growth. Rational return expectations E,[r; ;. ;] significantly predict
future employment growth (coefficient -0.498), consistent with the search model’s implication

that firms hire more when the expected value of a match rises due to lower discounting. In

"The terminal price-earnings term Fy[pe, ;] has been dropped due to its near collinearity with expected
returns and expected earnings growth under the |(Campbell and Shiller| (1988) present value identity.
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contrast, the rational cash flow expectation E;[€; ;14 ;] is not a significant predictor, although the
size of the estimate remains nontrivial (coefficient 0.154).

Column (4) extends the baseline model by incorporating belief distortions in subjective re-
turn and cash flow expectations. Strikingly, distortions in subjective cash flow expectations
Fi[€ite+;] — Ei[€irr4;] emerge as the dominant predictor of future employment growth, with a
large and statistically significant coefficient of 0.759. At the same time, the coefficient on the
machine return forecast falls to -0.119 and becomes statistically insignificant. The inclusion of
belief distortions substantially improves the model’s predictive accuracy. The adjusted R? rises
from 0.135 to 0.253 in-sample, and the out-of-sample R? rises from 0.207 to 0.443, indicating that
distorted expectations provide explanatory power beyond what is captured by rational bench-
marks. These cross-sectional findings reinforce the aggregate evidence that survey expectations
embed economically meaningful belief distortions driven by boom-bust cycles that help explain
differences in hiring across firms.

Figure [0] illustrates this key relationship by plotting the cross-sectional correlation between
actual hiring rates and cash flow belief distortions across the five book-to-market portfolios. The
scatter plot reveals a clear positive relationship, where portfolios with more optimistic cash flow
expectations relative to the machine learning benchmark exhibit systematically higher hiring
rates. Each point in the binned scatter represents a percentile of the joint distribution, and the
strong positive slope confirms that belief distortions in expected cash flows translate directly into
observable differences in labor demand across firms. This pattern is consistent with the large
coefficient on cash flow distortions (0.759) found in the predictive regression, demonstrating that
the statistical relationship captures an economically meaningful channel through which subjective

beliefs influence real hiring decisions.

Discussion The results can be informative about whether the survey-based subjective expecta-
tion is observationally equivalent to rational expectations. If subjective beliefs differ from rational
beliefs only through a change of measure based on a Radon-Nikodym derivative that preserves its
pricing implications, then subjective and rational forecasts should have equal predictive power
for unemployment and hiring. In that case, the difference between the two expectations should
be pure noise and should not improve predictions. However, the predictive regressions show
that the belief distortion component F, — E, has a highly significant explanatory power for both
aggregate unemployment and cross-sectional employment growth. These results reject the null
of observational equivalence and suggest that the implied stochastic discount factor under sub-
jective beliefs is distinct from the one used under rational expectations. This difference implies
that deviations from rational expectations can meaningfully influence real decisions.

In particular, the cross-sectional predictability results point to a meaningful departure from

standard search models that assume a common, rational stochastic discount factor across firms.
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Figure 6: Cross-Sectional Hiring Rates and Belief Distortions

0.2

Hiring Rate

-0.2 . . .
-0.2 -0.1 0.0 0.1 0.2
Subjective Cash Flow Expectation

Notes: Figure plots the relationship between hiring rates and belief distortions in subjective cash flow expectations across five book-to-
market portfolios (Section ?7). x-axis reports the cross-sectionally demeaned distortion in subjective expectations of future earnings,
defined as F4[€; ¢,145] — E¢[€i,¢,44+5], where Fy is based on IBES forecasts and E¢ is based on machine learning (LSTM) forecasts.
y-axis reports the corresponding cross-sectionally demeaned log hiring rate, fALdlm. Each dot is a bin scatter representing one percentile
of the pooled distribution across all observations in the sample. A positive slope implies that portfolios with upward-biased cash
flow expectations tend to hire more, consistent with the model’s prediction that belief distortions influence firm-level employment
decisions. The sample is quarterly from 2005Q1 to 2022Q4.

Rather than rational variation in discount rates, the evidence indicates that distorted beliefs
about future cash flows are the main driver of both aggregate unemployment fluctuations and
cross-sectional differences in hiring. If subjective and rational beliefs differed only by a change
of measure, they would have similar predictive power. The result that belief distortions in
cash flows predict cross-sectional differences in hiring better than rational discount rate forecasts
suggests that the distortion term varies substantially across firms. Firm-specific differences in the
distortion term implies that subjective beliefs influence the perceived value of job creation in firm-
specific ways, possibly reflecting differences in perceived patience or risk even when fundamentals
are held constant. These findings suggest the need for models that allow for heterogeneous and

biased beliefs, rather than relying on a uniform stochastic discount factor with no distortions.

8 Model of Constant-Gain Learning

In this section, I introduce a model of hiring in which firms form subjective beliefs about cash
flows and prices using a constant-gain learning rule. The evolving expectations shape firms’
vacancy posting decisions and drive variation in hiring and job filling rates. The model embeds

belief distortions in a search-and-matching framework and generates decompositions that can
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match those estimated from the data in Sections [B and [6l

Environment and Firm Problem The model features a frictional labor market in which

unemployed workers are matched with job vacancies using a Cobb-Douglas matching function:
M(U,, V) = BUPV, (29)

where M(Uy, V;) denotes the total number of matches in period ¢ and is a function of aggregate
unemployment U; and job vacancies V;. B is the matching efficiency parameter, and n € (0, 1)
governs the elasticity of matches with respect to unemployment. The probability that a firm fills
a posted vacancy, the job filling rate, is then given by:

M(U,, V) AN -

d v, v, t (30)
where 6, = V;/U; denotes labor market tightness. A firm that posts a vacancy incurs a cost
k > 0 per period. Matches dissolve at an exogenous separation rate ¢, and each firm hires new
workers by posting vacancies in anticipation of future returns. Each firm ¢ uses labor to produce

output via a constant returns to scale (CRS) production function:
Yz‘,t = Ai,tLi,t (31)

where A;; is firm-level productivity and L;; is the level of employment. The firm pays wages

Wi+, incurs hiring costs xV;;, and generates earnings:
Ei,t = Y;,t - WtLi,t - /fvi,t (32)

Earnings represent the net flow profits from operating the firm: output net of the wage bill and the
costs associated with posting vacancies. Firms maximize the expected present discounted value
of earnings. Let V(A;;, Li+) denote the value of the firm as a function of current productivity
and employment. The Bellman equation for the firm’s dynamic problem is:

V(Ait, Liy) = max {E;; +F; [My1V(Airi1, Livia)]} (33)

Vit Li e 1

The firm chooses the number of vacancies V;; to post and the resulting employment L;;.; to
maximize the sum of current earnings and the discounted continuation value, formed under sub-
jective expectations IFy[-] and a stochastic discount factor M;,;. Employment evolves according

to the accumulation equation:

Ligsr = (1= 06)Liy + @V (34)
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which states that next period’s employment depends on retained workers (1 — §)L;; and new
hires ¢;V;, from current vacancies. Under constant returns to scale, the firm’s marginal value of

labor equals average value, and the first-order condition with respect to V;; simplifies to:

B OV(Aips1, Lige1) ] Fe [My 1 V(Aips, Ligs)] Py
=y | My =

K
-~ = 35
q OL; 41 L1 Litia (35)
This condition equates the marginal cost of hiring a worker today, x/¢;, to the expected marginal
benefit of that hire, defined as the expected continuation value per worker. The term P, =

Fy [My41V(Ai 141, Lit+1)] denotes the firm’s ex-dividend market value. Rewriting in logs:

P, ) (R- t) ( Ei )
lo =logk —log| —— | =logk —In| —=— | —In [ —— 36
- g g (Li,t+1 & Ei; Lih (36)
=logk — pe;js — eliy (37)

where pe;; = log(P;+/E;;) is the log price-earnings ratio and el;; = log(E;:/L; 1) is the log

earnings per worker.

Cash Flow Process Assume that the firm’s cash flow process consists of aggregate and id-

iosyncratic components. Firm ¢’s earnings at time ¢t are given by:

Ei,t = eXp<€i,t) =FE - Ez',t (38)

where E; represents the aggregate component and E’Lt captures firm-specific variation. The log

aggregate earnings follow a random walk with drift:
Ae; =loga +loge;, loge, NN(—%,sg) (39)

while the log idiosyncratic component evolves as:

no | Ay

Ae;; =loga; + log€;s, loge; ~N(— .57 (40)

Subjective Expectations Under Constant-Gain Learning Suppose that agents do not
observe the true drift terms a and a; in the cash flow process, and the firms do not know how
their stock price P;; is determined. Instead, they form beliefs and update these beliefs recursively
as new information arrives. Firms form subjective expectations about both cash flow growth g;

and stock price growth m,,:

IF, [Ez'7t+1} = gi,tEm = gtgi,t : EtEi,t (41)
]Ft[Pz',tJrﬂ = mi,tPi,t = mtﬁ%t : Ptﬁi,t (42)
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where g;, m; denote expectations about the aggregate component and g;, m;; denote expec-
tations about the idiosyncratic component, i.e., g;; = ¢:¢;x and m;; = mym;,. 1 assume firms

employ constant-gain learning, where they update their expectations using the rule:

FE, P._
gtzgt_1+7/( ! 1_91&—1)7 mt:mt—1+y( ! 1—mt_1) (43)
Et72 Pth

for the aggregate components, and

. By o Py
9it = git—1 +V ( i gi,t—l) s Mg =My 1+ V < L mi,t—l) (44)

it—2 P2

for the idiosyncratic components, where v is the constant gain parameter that governs the speed
of learning. Note that the updating rules use the same constant gain parameter v across all
components for parsimony and interpretability. This reflects a shared degree of sluggishness in
how firms update beliefs about different components of prices and cash flows.

The learning specification for cash flow growth is supported by empirical evidence showing
that survey respondents update their long-run earnings expectations only gradually following
short-term earnings surprises (Nagel and Xu, 2021; |De La O et al., [2024). The learning specifi-
cation for stock price growth is motivated by empirical evidence showing that the implied return
expectation can reproduce the dynamics of various survey based measures of subjective return
expectations (Adam et al., 2016). Existing estimates of the constant gain parameter v are delib-
erately small, meaning that learning is slow and allows subjective beliefs to remain persistently
distorted even after observing large forecast errors (Malmendier and Nagel, [2015; |Adam et al.|
2016)). This persistence plays an important role for generating the sustained belief distortions

needed to explain fluctuations in hiring and unemployment.

Subjective Firm Valuation The firm’s equilibrium stock price under subjective beliefs is:

59z‘,t . E,, (45>

Py = BF P11 + Eipa] = 1= Bm ,
— pm;

where [ is the time discount factor. The equation shows that the firm’s value rises with expected
cash flow growth g;, and falls with expected price growth m;,. The belief distortions captured

in these expectation terms will affect the firm’s hiring decisions through its valuation.

Hiring Condition The connection to labor markets operates through the hiring condition.

Firms post vacancies until the marginal cost of hiring equals its marginal value:

P;
Z = L (46)
qt Lz‘,t+1

Cost of Hiring  Value of Hiring
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where k is the cost per vacancy, ¢ is the job filling rate, and L; ;1 represents future employment.
When firms are overly pessimistic about their expected cash flows (low g;;), this leads to lower
firm value P;;, which reduces the value of hiring and leads to fewer job postings. The resulting

decrease in vacancy creation drives up unemployment and reduces the job filling rate g;.

Cash Flow Growth and Stock Returns In this learning environment, the realized 7 > 1
period ahead log cash flow growth Ae;;; = log(E;t+;/FEirrj—1) and stock returns r;,; =
log((Pit+j + Eig+j)/ Fiprj—1) follow:

Ae;pyj = loga +loge; (47)

1_Bmit+'1) (1—5mit+'+5git+'
Tipvj = Aeéjgpj+ 1o (— ! + 1o - =t 48
4] 4] g By g 1= B, (48)

Subjective expectations of these variables reflect beliefs about future earnings and capital gains:

IF, [Aei,tJrj] =log gi. (49)
1 — Bmy 1 —pBms+ Bgiy

Filris+j| = log git +log | ——— 1 ’ ’ 50

t[riis] = 1og gis + og( Bor ) + og( = e, (50)

= —log B+ log (1 + B(gis — miy)) (51)

Realized stock returns r; ;4 ; and expected cash flow growth F:[Ae; ;1 ;] will can fluctuate substan-
tially due to large and persistent distortions in subjective beliefs embedded in g¢;;. In contrast,
expected stock returns Fy[r; ;4 ;] can show only small fluctuations because its variation depends
solely on the gap between expected cash flow growth and price growth g¢; ; —m; ;. Since both g;+
and m;,; terms adjust slowly and often move together, their difference remains relatively stable.
This generates the empirically observed pattern of high volatility in realized returns but low

volatility in expected returns, consistent with survey evidence on return expectations.

Model-Implied Decompositions [ use data simulated from the constant-gain learning model
to decompose the job filling rate at the aggregate level and hiring rates at the firm level. Under
the subjective valuation framework, firms’ hiring decisions reflect their evolving beliefs about
cash flow growth g;; and stock price growth m,;, which are updated according to the constant-

gain learning rules. The time-series decomposition of the aggregate job filling rate ¢; is given
by:

h h
log g = ij_lFt[rt-&-j] — lele + ij_lFt[Aet—i—j] - Ph]Ft [petn] (52)
j=1 j=1
Discot:r:{; Rate Casl?rFlow Future Pr;;—Earnings
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where x; = >

estimate a cross-sectional decomposition of hiring rates using simulated firm-level data:

ser it aggregates firm-level variable z;;. To analyze differences across firms, I

h h
hliy = — Z P FFiags] + | elie + Z P AG ]|+ P [I%i,t+h] (53)
j=1 j=1
Discot;,nt Rate Cas}:,Flow Future Pr;c;—Earnings

where z;; = z;; — %ZZ x;; denotes a cross-sectional deviation from the mean at time ¢. Un-
der constant-gain learning, the model generates high volatility in expected cash flow growth
Fi[Ae; ,+;] and realized stock returns r;,y; due to persistent distortions in g;, but low volatility
in expected returns Fy[r; ;] since their variation depends only on the stable gap ¢;;—m; . There-
fore, the cash flow component in the decompositions will be highly volatile while the discount
rate component remains relatively muted. Consequently, subjective expectations systematically
over-weight the role of the cash flow channel relative to the discount rate channel in both de-
compositions, generating the empirical pattern observed in the data. This contrasts sharply with
rational expectations where the cash flow component contributes zero to the variance because

expected future cash flow growth equals the constant drift term.

Simulation Details I simulate a panel of 300 firms over 500 periods, where the first 150
periods are discarded as a burn-in to eliminate the influence of initial conditions. Each firm
updates its beliefs using constant-gain learning based on the updating rules in equations
and . All expectations, returns, and decompositions are computed at an monthly frequency
using the model equations derived above. At each horizon h, I compute the model-implied
time-series decomposition of the aggregate job filling rate based on equation and the cross-
sectional decomposition of the firm-level hiring rates . I then compare these model-implied
decompositions to those estimated from the observed data from Figures [3 and [4

Model Estimation Table [3|reports the parameter values used in the quantitative model along
with the empirical moments they are calibrated to or sourced from. The drift a = 1.0035 and
volatility s = 0.0298 of aggregate earnings growth is set to match the long-run mean and standard
deviation of aggregate U.S. dividend growth (Adam et al., 2016). The drift @ = 1.00 and volatility
s; = 0.0345 of idiosyncratic earnings growth is set to match the long-run mean and standard
deviation of dividend growth across five value-weighted book-to-market sorted portfolios, after
cross-sectionally demeaning the variable. The time discount rate p = exp(pe)/(1 + exp(pe)) =
0.98 is chosen to be consistent with a steady-state price-earnings ratio from the |Campbell and
Shiller| (1988)) present value identity, where pe is the long-run average of the log price-earnings
ratio.

The speed at which agents discount past observations of realized cash flow growth depends

on the constant gain parameter v in the learning rule. This parameter is central to the analysis
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because it shapes the persistence and volatility of the price-earnings ratio and the extent of
return predictability. Rather than calibrating it to match asset prices, I take the value directly
from survey-based estimates in Malmendier and Nagel| (2015)), setting it to v = 0.018 at the
quarterly frequency. This implies that in forming expectations, agents assign a weight of 0.018
to the most recent growth surprise and 1 — v = 0.982 to their previous estimate, making the
perceived growth rate evolve slowly over time.

Labor market parameters are mainly adopted from Kehoe et al.| (2022). Following [Shimer
(2005), I normalize the value of labor market tightness 6 to one in the deterministic steady state,
which implies an an efficiency of the matching function B = 0.562 by noting from the matching
function that ¢ = B67". I set the elasticity of the matching function to n = 0.5 following
Ljungqvist and Sargent| (2017)). I use an annual job separation rate of § = 0.286, which is the
annualized value of the Abowd-Zellner corrected estimate by Krusell et al.| (2017)) based on data
from the Current Population Survey (CPS). Following [Elsby and Michaels (2013), per-worker
vacancy posting cost 0.314 is targeted to match a per-worker hiring cost /¢ equal to 14 percent
of the quarterly worker compensation. In the context of the annual calibration of this model,
this implies a value approximately equal xk = 4 x 0.14 x ¢ x el = 0.314, where 4 x 0.14 is the
annualized percent of worker compensation, while ¢ = 0.562 and el = 3.750 are long-run averages

of the log job filling rate and earnings per employee in the historical sample from 1983 to 2022.

Table 3: Model Parameters

Parameter Value Moments
v 0.018 Constant-gain learning
(Malmendier and Nagel|(2015))
a 1.0035 Mean of U.S. aggregate dividend growth
(Adam et al.|(2016))
a; 1.00 Mean of U.S. idiosyncratic dividend growth
s 0.0298 S.D. of U.S. aggregate dividend growth
(Adam et al.|(2016))
Si 0.0345 S.D. of U.S. idiosyncratic dividend growth
p 0.98 Average price-earnings ratio
B 0.562 Matching function efficiency (Kehoe et al.|(2022))
n 0.5 Matching function elasticity (Kehoe et al.|(2022))
0 0.286 Separation rate (Kehoe et al.|(2022))
K 0.314 Per worker hiring cost (Elsby and Michaels|(2013))

Notes: Table reports the parameter values used in the quantitative model along with the empirical moments they are calibrated to
or sourced from. The model is calibrated at a monthly frequency.

Model vs. Data: Variance Decompositions The model successfully replicates the empir-
ical variance decompositions from the data. Figure [7] shows that the model can reproduce the

finding that subjective beliefs over-attribute fluctuations in hiring to expected cash flows while

34



underestimating the role of discount rates.

Panel (a) presents the time-series decomposition of the job filling rate, comparing contri-
butions under subjective and rational expectations. The model captures the empirical pattern
where subjective expectations (dark bars) assign a larger role to cash flows compared to rational
expectations (light bars). The model-implied values (circles and triangles) align closely with the
empirical estimates, demonstrating the model’s quantitative accuracy.

Panel (b) shows the cross-sectional decomposition of hiring rates across firms. Again, the
model captures the empirical pattern that subjective beliefs overstate the contribution of earnings
expectations and understate the variation in firm-level discount rates. This cross-sectional fit is
particularly important as it shows that the model can explain not just aggregate patterns but

also the heterogeneity in hiring behavior across different firms.
Figure 7: Model vs. Data: Variance Decompositions

(a) Time-Series Decomposition of the Job Filling Rate
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Notes: Figure illustrates the discount rate, cash flow, and future price-earnings components of the time-series decomposition of the
aggregate job filling rate (panel (a)) and cross-sectional decomposition of the hiring rate (panel (b)). Light bars show the contribution
under rational expectations. Dark bars show the contribution under subjective expectations. The sample is quarterly from 2005Q1
to 2022Q4. Each bar shows Newey-West 95% confidence intervals with lags = 4. Circle and triangle dots show the values of rational
and subjective expectations implied by the model, respectively.

The large role of subjective cash flow news poses a quantitative challenge for existing search
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models formulated under rational expectations, which have emphasized time-varying discount
rates to match the volatility of unemployment fluctuations. Table compares the empirical
variance decomposition from Figure [3| with those implied by a selection of search-and-matching
modelsE] The Diamond-Mortensen-Pisarides and [Hall (2017) models predict that discount rate
fluctuations should explain more than 78.2% of the variance of job filling rates. The Kehoe et al.
(2022) (KLMP) model predicts a more balanced decomposition, attributing 54.3% to discount
rates and 31.9% to cash flows, consistent with the model’s amplification mechanism based on
human capital accumulation. In contrast, the empirical decomposition using survey data shows
that subjective expectations assign just -1.0% of the variation to discount rates, and 96.7% to
cash flows. These results highlight a discrepancy between the predictions of rational models and

observed survey expectations, underscoring the importance of belief distortions.

Model vs. Data: Moments Table 4] demonstrates that the constant-gain learning model
successfully matches both asset market and labor market moments, while highlighting the crucial
role of belief distortions in generating realistic economic dynamics.

Panel (a) reports time-series moments for aggregate asset prices. The learning model broadly
matches the mean and volatility of price-earnings ratios, the persistence in valuations, and the
volatility of returns and expected returns. In contrast, the rational expectations benchmark
severely understates price-earnings volatility and generates virtually no variation in expected
returns, confirming that belief distortions are essential for matching observed financial market
behavior (Adam et al., 2016).

Panel (b) reports cross-sectional moments for firm-level asset prices. The learning model
captures the cross-sectional dispersion in price-earnings ratios, expected earnings growth, returns,
and expected returns. This cross-sectional fit validates that the firm-specific learning components
Yit and Ei,t generate realistic heterogeneity in firm valuations and expectations. The rational
expectations model, by construction, produces minimal cross-sectional variation in expectations,
highlighting how constant-gain learning creates the belief heterogeneity observed in the data.

Panel (c) reports moments related to the labor market. The learning model broadly matches
key labor market statistics including the volatility and persistence of the job filling rate ¢; and
unemployment rate u;, as well as their correlation. The model only slightly undershoots the
volatility of the unemployment rate, which represents a substantial improvement over the rational
expectations benchmark, where unemployment volatility is typically an order of magnitude too
small. The stark contrast between learning and rational expectations models in labor market

moments demonstrates that belief distortions are not merely relevant for asset pricing but are

15For each model, I set a sample length of 500 periods, produce 300 simulations, and discard the first 150
periods as a burn-in sample. I use the simulated data from each model to estimate a variance decomposition of
the job filling rate according to equation , and report the average across the simulated runs. All parameter
values in the calibration use estimates from the original papers.
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Table 4: Model vs. Data: Asset Market and Labor Market Moments

(a) Asset Market (Time-Series)

Moment Data Model (Learning) Model (Rational)
Mean]pe;] 2.98 2.26 3.15
SD(pey) 47.4 53.6 0.0
AC(pey) 0.75 0.70 1.00
SD(ry) 16.0 15.1 2.0
SD(Ft[T‘t+1]) 1.1 0.0 0.0
SD(Fy¢[Aert1]) 26.8 21.4 0.0
(b) Asset Market (Cross-Section)
Moment Data Model (Learning) Model (Rational)
SD; (peiy) 22.6 28.8 0.0
SDZ(Ft[Aez,t+1]) 14.0 10.0 0.0
SD;(ri ) 5.7 8.5 8.5
SDi(Ft[Ti’t_;,_l]) 2.6 0.0 0.0
(c) Labor Market
Moment Data Model (Learning) Model (Rational)
SD(q:) (%) 8.71 8.17 0.21
AC(q) 0.94 0.97 0.98
SD(w) (%) 2.09 1.56 0.07
AC(uy) 0.91 0.87 0.98
Corr(ug, q;) 0.82 0.91 -1.00
SD; (hliy) (%) 15.70 15.23 1.13

Notes: This table compares empirical moments with model-generated moments under constant-gain learning and rational expecta-
tions. SD(-) denotes the time-series standard deviation of aggregate variables. SD;(:) denotes the cross-sectional standard deviation
across firms at each point in time, averaged over time. AC(-) denotes the first-order autocorrelation coefficient. Corr(-) denotes the
correlation between two time series. pe: is the log price-earnings ratio, r+ is the log stock return, Ae; is log earnings growth, ¢; is the
job-filling rate, u; is the unemployment rate, and hl; ¢ is the firm-level hiring rate. F¢[-] denotes subjective expectations formed at
time ¢. Data column reports empirical moments estimated from historical data. Model (Learning) reports moments from simulations
of the constant-gain learning model. Model (Rational) reports moments from the rational expectations benchmark where agents have
perfect knowledge of the earnings process.

fundamental for explaining real economic fluctuations.

The successful matching of these diverse moments demonstrates that the constant-gain learn-
ing mechanism provides a coherent explanation for both asset market and labor market phenom-
ena. The comparison with the rational expectations benchmark reveals that belief distortions in
cash flow expectations can simultaneously explain asset pricing patterns and generate realistic
labor market dynamics, while perfect knowledge fails to produce the volatility and persistence

observed in both domains.

9 Robustness Checks and Extensions

This section presents additional results that reinforce the main finding. Across multiple ro-

bustness checks, the evidence consistently shows that firms overweight expected cash flows and
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underweight discount rates under subjective expectations.

Subjective vs. Risk-Neutral Expectations A natural question is whether subjective be-
liefs implied by survey expectations reflect a risk-neutral measure rather than genuine belief
distortions (Cochrane), 2017). While one might argue that these survey forecasts reflect a risk
premium, this interpretation is inconsistent with several lines of evidence. First, the magnitude
of the forecast errors far exceeds what standard risk premia can explain. Typical annual equity
risk premia are on the order of 5% to 10%, yet the survey forecasts exhibit mean squared errors
that are 15% to 30% larger than machine forecasts (Figure [2). Second, decompositions using
risk-neutral expectations implied by futures prices show that subjective expectations overweight
long-horizon cash flows even relative to risk-neutral counterparts (Figure . Third, survey
forecasts of stock returns consistently exceed risk-free rates, and the expected excess returns they
imply vary predictably over time (Adam et al., 2021). Moreover, rather than being systemati-
cally pessimistic, these forecasts are often predictably optimistic, contradicting the idea that they
reflect ambiguity aversion or robustness-driven pessimism. These findings are inconsistent with
rational or risk-neutral pricing and suggests that subjective beliefs reflect genuine behavioral

distortions rather than a rational risk-neutral measure.

Capital Investment Appendix Section extends the baseline framework to include firm
investment decisions, distinguishing between tangible and intangible capital. Firms choose in-
vestment and hiring jointly to maximize value, facing convex adjustment costs and forming
expectations over future productivity, returns, and earnings. A decomposition of investment
rates in Figures (time-series) and (cross-section) reveals that distortions in subjec-
tive beliefs play a central role in driving capital allocation, mirroring results for hiring. Using
IBES and Compustat data, the decomposition shows that subjective expectations substantially

overstate the role of expected earnings and understate the importance of discount rates.

Regional Model using Shift-Share Instrument Appendix Section strengthens the
causal interpretation of belief distortions by using a Bartik shift-share instrument to isolate
exogenous variation in regional hiring conditions. By leveraging national industry-level hiring
shocks weighted by historical state industry shares, the instrument generates plausibly exogenous
shifts in local job filling rates. State-level regressions reveal that subjective forecasts of earnings
growth respond strongly to these local shocks, even after controlling for state and time fixed
effects, while discount rates respond less (Table . The results confirm that belief distortions,
especially over-reaction to perceived cash flow opportunities, are not merely correlated with labor

demand, but causally influence hiring decisions across regions.
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Additional Results Table reports summary statistics for each variable used in the em-
pirical analysis. Table shows that survey respondents only partially incorporate short-term
earnings surprises into their long-run expectations, demonstrating gradual belief adjustment
consistent with constant-gain learning rather than rational expectations. The baseline variance
decomposition of the job filling rate (Table is robust to alternative specifications: Using
Vector Autoregressions (Figure, first-differences (Figure, extended sample from 1983Q4
to 2022Q4 (Figure , replacing machine learning forecasts with their ex-post realized values
(Figure , conditioning on lagged job filling rates and survey forecasts (Table , alterna-
tive survey sources (Tables and , decreasing returns to scale in the firm’s production
function (Figure [A.12), on-the-job search (Figure [A.13)), and financial constraints (Figure [A.9)).
Table [A.7] substitutes CFO survey forecasts for IBES analyst forecasts to directly capture man-
agerial expectations and, despite limited data availability, finds comparable results. Table
compares the variance decomposition against theoretical predictions from a selection of existing
search-and-matching models. Predictable deviations from rational expectations can explain a
substantial share of job filling rate variation since the job filling rate strongly predicts survey
biases (Table . Figure shows that subjective beliefs strongly overstate cash flow effects
for low book-to-market (growth) firms. The large contribution of rational discount rate is driven
by fluctuations in risk premia instead of risk-free rates (Figure . Figure and Table
show that survey-based wage expectations are far less cyclical than realized wages, leading firms
to perceive the user cost of labor as relatively rigid over the business cycle. As a result, firms
may fail to anticipate declines in wages during downturns, which keeps the perceived user cost

of labor high and discourages job creation.

10 Conclusion

This paper examines how belief distortions can resolve the unemployment volatility puzzle by
comparing survey-based subjective expectations with machine learning forecasts that proxy for
rational expectations. Motivated by the unemployment volatility puzzle, I reinterpret hiring be-
havior through the lens of a Diamond-Mortensen-Pissarides search-and-matching model, allowing
firms to form beliefs that deviate from full-information rational expectations.

Using a decomposition of the job filling rate grounded in the search model, I uncover a stark
contrast between how subjective and rational beliefs drive unemployment fluctuations. Under
subjective expectations, firms’ hiring decisions are driven almost entirely by predictable errors in
expected future cash flows, which account for up to 96.7% of variation in the aggregate job filling
rate and 83.3% of cross-sectional hiring dispersion across firms at the 5-year horizon. Subjective
discount rates play only a limited role. This pattern reverses completely under rational expec-
tations, where discount rates dominate both time-series and cross-sectional variation, explaining

up to 69.1% and 71.6% of hiring fluctuations, respectively.
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To interpret these findings, I develop a model in which firms engage in constant-gain learning
about the long-run growth of their cash flows and stock prices. Firms slowly update their beliefs
in response to forecast errors and base hiring decisions on these evolving expectations. The model
reproduces the empirical patterns observed in the data: subjective expectations over-attribute
fluctuations in the value of job creation to cash flows, both in the aggregate and across firms.
The learning model can generate realistic fluctuations in aggregate unemployment, substantially
outperforming standard rational models that fall short by an order of magnitude.

Together, the results suggest that labor market fluctuations are shaped not only by rational
responses to discount rate news, but also by systematic distortions in belief formation. Account-
ing for these distortions helps reconcile the sharp and persistent spikes in unemployment during
downturns that standard models struggle to explain. More broadly, the findings highlight a be-
havioral channel through which expectations formed under limited information and learning can
amplify unemployment volatility. Incorporating subjective beliefs into macroeconomic models

can thus offer a richer and more realistic account of labor market dynamics.
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A Appendix: Additional Results

A.1 Stylized Facts

Figure compares subjective and machine expectations for discount rates and cash flows, plotted against the job filling
rate. These series represent the specific theoretical components that drive hiring decisions in the DMP framework: discount
rates capture the firm’s intertemporal trade-offs when evaluating the present value of a new hire, while cash flows reflect
expected future productivity gains from employment. Through the lens of the decomposition in equation (12)), these
components should move systematically with job filling rates if firms correctly interpret economic conditions.

Figure A.1: Job Filling Rates, Discount Rates, and Expected Cash Flows
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Notes: Figure plots h = 5 year ahead survey forecasts F[-] and machine learning forecasts E¢[-] of discount rates r¢ ¢4 and cash flows
et t+n (left axis) against the current job filling rate g¢ (right axis). x axis denotes the date on which each forecast has been made
and the job filling rate was realized. Each series is expressed in annual log growth rates. Subjective expectations F; are based on
survey forecasts from the CFO survey for stock returns, and IBES for earnings growth. Machine expectations are based on machine
learning forecasts E; from Long Short-Term Memory (LSTM) neural networks G(X%, By, ;), whose parameters 3, , are estimated in
real time using X, a large scale dataset of macroeconomic, financial, and textual data. The out-of-sample forecast testing period is
quarterly and spans 2005Q1 to 2022Q4. NBER recessions are shown with gray shaded bars.

Machine expectations of discount rates exhibit a strong positive relationship with job filling rates, particularly around
the Global Financial Crisis. This pattern aligns with the theoretical prediction that higher discount rates (reflecting greater
compensation for risk) should coincide with lower hiring as firms perceive a lower present discounted value of employment.
Survey expectations of discount rates, by contrast, are relatively flat and display little sensitivity to the business cycle,
consistent with studies that find acyclical subjective risk premia (Nagel and Xul}2022). This disconnect suggests that firms
fail to internalize how macroeconomic conditions affect the risk-adjusted value of hiring decisions.



For cash flows, the pattern reverses. Survey expectations show exaggerated cyclical variation, becoming sharply
pessimistic during downturns, such as the Global Financial Crisis, when job filling rates are high. Machine forecasts
also vary cyclically but to a much lesser extent, indicating that survey respondents tend to over-react to macroeconomic
conditions when forming cash flow expectations. This over-reaction manifests in the decomposition as an outsized role for
subjective cash flow news in explaining job filling rate variation, even when a model under rational beliefs suggests that
discount rate changes should be the primary driver of hiring fluctuations.

Appendix Table summarizes the distributions of survey-based and machine learning forecasts for the key compo-
nents of the variance decomposition. The most notable pattern is the contrast in time-series volatility and cross-sectional
dispersion between the two sources of expectations. In the time series, 5-year survey-based discount rate expectations
Fi[rt,t+5] are substantially less volatile than machine forecasts, with standard deviations of 0.037 and 0.118, respectively.
In contrast, 5-year survey-based cash flow expectations Fi[e; ¢45] exhibit much higher volatility than machine forecasts,
with standard deviations of 0.299 and 0.058, respectively. In the cross section across book-to-market portfolios, survey-
based expectations display greater dispersion for both components: the standard deviation of F¢[r; ¢ ++5] is 0.510 versus
0.103 for machine forecasts, and for Fi[e; 5], the standard deviation is 0.079 compared to 0.038.

Table A.1: Summary statistics

Panel (a): Aggregate U.S.

Obs Mean St. Dev. Min P25 Median p75 Max
Tt t+5 72 0.284 0.283 -0.279 0.131 0.330 0.464 0.789
Fylre,i+5) 72 0.226 0.037 0.147 0.195 0.229 0.251 0.327
E¢[re,i45) 72 0.287 0.118 0.036 0.209 0.284 0.362 0.572
€t,14+5 72 3.739 0.300 2.353 3.741 3.777 3.905 4.288
Filet,i+5) 72 3.908 0.299 3.264 3.768 3.892 4.101 4.423
Eilet 145 72 3.801 0.058 3.704 3.763 3.793 3.823 3.936
Detis 72 3.553 0.294 3.084 3.332 3.527 3.642 4.594
Fy[pet i+5] 72 3.654 0.146 3.321 3.537 3.686 3.761 3.925
E:[pet,i+5] 72 3.603 0.284 2.864 3.408 3.590 3.803 4.208
Qs 72 0.596 0.236 0.211 0.408 0.587 0.731 1.202
U, 72 0.061 0.021 0.036 0.046 0.054 0.078 0.130
0, 72 0.598 0.315 0.160 0.339 0.558 0.747 1.438
&y 72 0.350 0.058 0.265 0.316 0.354 0.370 0.689

Panel (b): Book-to-Market Portfolios

Obs Mean St. Dev. Min p25 Median p75 Max
Tit t+5 360 0.168 0.185 -0.349 0.048 0.166 0.271 0.752
Fylrise+s) 360 0.136 0.051 0.024 0.097 0.137 0.178 0.243
Eo[rioies) 360 0.190 0.103 -0.101 0.124 0.189 0.262 0.428
€it t+5 360 3.912 0.042 3.796 3.885 3.911 3.941 4.016
Fyileit.t+5) 360 3.821 0.079 3.610 3.766 3.824 3.874 4.012
Etlei t,e45) 360 3.903 0.038 3.791 3.879 3.904 3.929 4.002
DC; 4145 360 3.599 0.284 2.891 3.385 3.585 3.791 4.302
T, [pei7t7t+5] 360 3.642 0.219 3.032 3.463 3.652 3.806 4.138
E; [pei’tyt%] 360 3.628 0.167 3.190 3.509 3.640 3.752 4.047
hi;+ 360 0.039 0.093 -0.220 -0.010 0.031 0.085 0.336

Notes: This table reports summary statistics for ex-post realized outcomes (Actual), subjective expectations (Survey), and machine
expectations (Machine) of key variables used in the variance decomposition. Panel (a) reports aggregate U.S. statistics, and Panel (b)
reports statistics from a sample of five value-weighted book-to-market sorted portfolios. The forecasted variables are h = 5 year present
discounted values of discount rates r; ;1 p, cash flows e; ¢4, and price-earnings ratios pe; 11, as defined in equation . Aggregate
labor market variables include the job filling rate g¢, unemployment rate U, vacancy-to-unemployment ratio 6;, and job separation
rate ;. Portfolio-level variables are constructed by aggregating employment and forecast data across firms within each book-to-
market group, holding portfolio assignment fixed at the time of portfolio formation. Subjective expectations at the aggregate level
F: are based on survey forecasts from the CFO survey for stock returns and from IBES for earnings growth. Subjective expectations
at the portfolio level F; are based on survey forecasts from the IBES survey for both stock returns and earnings growth. Machine
expectations E¢ are based on forecasts from Long Short-Term Memory (LSTM) neural networks G(X%, B}, ;), where parameters 3y, ,
are estimated in real time using X}, a large-scale dataset of macroeconomic, financial, and textual data. The sample is quarterly and
spans 2005Q1 to 2022Q4.



A.2 Gradual Adjustment of Expectations

To provide evidence on the dynamics of belief formation, this section examines how survey respondents revise their
expectations about future earnings following an earnings surprise. The following regression estimates the responsiveness
of long-horizon forecasts to short-term earnings news:

Fog [ @i trn]) — Feaj—1[Tien] = ny + Yhi (Tier1r — Fe[Tiea1]) + ajegss

where Fy4 ;[T ¢+n] denotes the expectation formed at time ¢ + j for earnings-related variable Z at horizon h, and T; +41 —
F¢[ZTi++1] captures the earnings surprise. The coefficient v; ; measures how much of the surprise is incorporated into
expectations for long-run outcomes.

Tablereports estimates for two forward-looking variables: (a) long-run earnings growth, and (b) the long-run ratio
of earnings to employment. The target horizon is fixed at h = 5 years, while the revision horizon j ranges from 1 to 4 years.
The estimated vj,; coeflicients are uniformly small and often statistically insignificant, indicating that respondents only
partially incorporate short-term earnings news into their long-run expectations. This pattern is consistent with models of
belief formation under constant-gain learning, in which agents update expectations gradually and exhibit fading memory.
In such models, a fixed updating gain leads to persistent deviations from rational expectations and a breakdown of the
law of iterated expectations.

Table A.2: Gradual adjustment of expectations

Target Horizon h (Years) 5 5 5 5
Revision Horizon j (Years) 1 2 3 4
Survey Forecast Revisions: Fyi;(T; ¢4n] — Feqj1(@ipan] = nj + Yh,i (@i 41 — Fe[Tit41]) + 0he4j
(a) Earnings Growth 0.0929 0.0934 0.1121 0.1245
(0.0734) (0.0455) (0.0776) (0.0743)
(b) Earnings to Employment 0.0600 0.0508 0.0697 0.0745
(0.1281) (0.0725) (0.0321) (0.0419)

Notes: Table shows the gradual adjustment of expectations about future earnings Z; ¢4, after an earnings surprise at ¢ + 1. Sample:
2005Q1 to 2022Q4. Newey-West t-statistics with lags = 4 reported in parentheses: *sig. at 10%. **sig. at 5%. ***sig. at 1%.



A.3 Variance Decomposition of Job Filling Rate

A.3.1 Baseline Specification
Table reports a variance decomposition of the aggregate job filling rate based on equation .

Under rational

expectations, discount rate fluctuations explain the largest share of variation, accounting for 69.1% at the 5-year horizon.
Under subjective expectations, cash flow beliefs dominate at all horizons, accounting for 96.7% in the 5-year horizon.

Table A.3: Time-Series Decomposition of the Job Filling Rate

Horizon h (Years) 1 2 3 4 5
(a) Rational Expectations: log ¢ = cq + E¢[re t4n]) — Et[ertn] — Ei[pes t1n)
Discount Rate 0.187*** 0.309*** 0.585*** 0.653*** 0.691***
t-stat (3.310) (4.708) (5.977) (6.974) (6.659)
Cash Flow 0.027 0.026 0.051 0.055 0.066
t-stat (0.090) (0.181) (0.364) (0.459) (0.472)
Price-Earnings 0.799*** 0.720*** 0.415*** 0.331*** 0.201**
t-stat (5.620) (4.322) (3.332) (2.845) (1.716)
Residual —0.013 —0.054 —0.051 —0.039 0.042
t-stat (—0.030) (—0.141) (—0.076) (—0.046) (0.049)
N 72 72 72 72 72
(b) Subjective Expectations: log gt = Cq + Ft [Tt,t+h] — Ft [6t,t+h] — Ft [pet,H_h]
Discount Rate —0.007 —0.005 —0.019 —0.014 —0.010
t-stat (—0.457) (—0.130) (—0.400) (—0.157) (—0.091)
Cash Flow 0.325*** 0.641*** 0.717** 0.892*** 0.967***
t-stat (3.939) (4.500) (4.661) (5.572) (7.097)
Price-Earnings 0.629*** 0.366*** 0.206*** 0.068 0.028
t-stat (8.383) (4.231) (2.896) (0.701) (0.313)
Residual 0.052 —0.002 0.096 0.054 0.015
t-stat (0.186) (—0.008) (0.292) (0.126) (0.039)
N 72 72 72 72 72

Notes: This table reports variance decompositions of the aggregate job filling rate under rational expectations (panel (a)) or subjective
expectations (panel (b)). Each row reports the share of the variation in job filling rates that can be explained by h-year expected
present discounted values of discount rates ry;ip, (negative) cash flows e;;15, and (negative) price-earnings ratios pe; ;yp, as
defined in equation . Residual term represents the variation in job filling rates that are not captured by the other components.
Subjective expectations F; are based on survey forecasts of CFOs and IBES financial analysts. Rational expectations E; are based
on machine learning forecasts from Long Short-Term Memory (LSTM) neural networks. The sample is quarterly from 2005Q1 to
2022Q4. Newey-West corrected t-statistics with lags = 4 are reported in parentheses: *sig. at 10%. **sig. at 5%. ***sig. at 1%.



A.3.2 Biases in Subjective Beliefs and Job Filling Rate

To directly quantify the importance of biases in subjective beliefs, I consider predictive regressions of biases in subjective
expectations of discount rates, cash flows, and price-earnings ratios on the job filling rate. I define the bias as the difference
between subjective and machine expectations. Tablereports estimates f1,p from regressing biases in subjective discount
rate, cash flow, and log price-earnings expectations on the job filling rate:

Biasi[yi,i+n] = Bo,g + Pr,5logq +er,5, y=r,¢,pe

where the Biasi[yt,t+n] = Fe[ye,e+n] — Et[ys,e+n] is defined as the difference between subjective and machine expectations
of the same variable.

The results indicate that biases in survey forecasts are important contributors to fluctuations in job filling rates,
especially at longer horizons. At the 5-year horizon, biases in cash flow expectations lead survey respondents to over-
weight 90.1% of the variation in job filling rates to the cash flow component. This mis-perception is counteracted by biases
in subjective discount rate expectations, which leads survey respondents to under-weight 70.1% of the variation in the
job filling rate. These findings emphasize the importance of belief distortions in driving labor market fluctuations. The
profile of the response across forecast horizons is broadly consistent with the profile of the MSE ratios across horizons
in Figure 2] For discount rate and cash flow expectations, the machine outperformed the survey by a wider margin over
longer horizons, suggesting that the bias in survey responses likely play a bigger role over these longer horizons.

Table A.4: Biases in Subjective Beliefs and the Job Filling Rate

Horizon h (Years) 1 2 3 4 5
Biases: Fy[yei+n] — E¢[ye,e4n] = fo,.g + Br,logq + e, y=1,¢€,pe

Discount Rate —0.194 —0.313** —0.604*** —0.667*** —0.701***
t-stat (—1.574) (—2.167) (—2.896) (—2.918) (—2.740)

(-) Cash Flow 0.299 0.615*** 0.666*** 0.837*** 0.901***
t-stat (1.421) (5.476) (5.703) (7.365) (6.665)

(-) Price-Earnings —0.170 —0.354** —0.209 —0.262 —0.174
t-stat (—0.464) (—2.373) (—0.503) (—0.479) (—0.292)

Residual —0.065 —0.052 —0.147 —0.093 0.026
t-stat (—0.148) (—0.219) (—0.306) (—0.154) (0.040)

N 72 72 72 72 72

Notes: This table reports estimates 81,p from regressing the survey bias F¢[y; t+n] — Et[ys,¢+n] on the job filling rate qr. yi¢4n
denotes the dependent variable of type j to be predicted h years ahead of time ¢. The components of the decomposition are h-year
present discounted values of discount rates 7 445, (negative) cash flows e, 45, and (negative) price-earnings ratios pey ¢4p. The
residual term captures variation in the bias that cannot be explained by the three components. Subjective expectations F; are based
on survey forecasts from the CFO survey for stock returns, and IBES for earnings growth. Machine expectations are based on machine
learning forecasts E; from Long Short-Term Memory (LSTM) neural networks G(X%, By, ;), whose parameters 3, , are estimated in
real time using Xy, a large scale dataset of macroeconomic, financial, and textual data. The bias is defined as the difference between
subjective and machine expectations: Biast = Fy — E¢. The sample is quarterly from 2005Q1 to 2022Q4. Newey-West corrected
t-statistics with lags = 4 are reported in parentheses: *sig. at 10%. **sig. at 5%. ***sig. at 1%.



A.3.3 Additional Controls

The large contribution from subjective long-term cash flow expectations in explaining the job filling rate is robust to
conditioning on additional variables that could distort the relationship. Table [AZ5] re-estimates the subjective variance
decomposition at the 5 year horizon with additional control variables on the right-hand side of the regression: 1 year lag of
the log job filling rate and the dependent variable, and the 1 year ahead survey forecast of the same variable. Controlling
for the short-term expectation Fy[y.+1] accounts for the possibility that survey respondents’ long-term forecasts could be
influenced by the short-term component of cash flows (Nagel and Xu} 2021)).

Table A.5: Variance Decomposition of Job Filling Rate: Additional Controls

Dep. Var. Discount Rate (-) Cash Flow (-) Price-Earnings
Horizon h (Years) 5 5 5
Subjective Expectations: Fy[y;:+n] = Bor + Brrlogq + Barlogqi-1 + B pFe—1[ysrn—1] + BarFilyes1] +eor

Share of job filling rate variation —0.007 0.855"** 0.049

t-stat (—0.108) (4.865) (0.455)
Adj. R? 0.456 0.514 0.533
N 72 72 72
Controls Yes Yes Yes

Notes: Table reports variance decompositions of the job filling rate under subjective expectations F; implied by survey forecasts.
Yt,t+h denotes the dependent variable of type j to be predicted h = 5 years ahead of time ¢: h year present discounted values of discount
rates (1 tq4n = Z?Zl pI~1riy;), cash flows (er ¢4 = ely + Z?:l p?~1Ae;y;), and log price-earnings ratios (pet,t+n = olhpesin).
Subjective expectations F; are based on survey forecasts from the CFO survey for stock returns, and IBES for earnings growth. The
sample is quarterly over 2005Q1 to 2022Q4. Newey-West corrected t-statistics with lags = 4 are reported in parentheses: *sig. at
10%. **sig. at 5%. ***sig. at 1%.



A.3.4 Model vs. Data

Table compares the variance decomposition obtained using survey-based subjective expectations and machine learning-
based rational expectations against the theoretical predictions from prominent search-and-matching models in the litera-
ture. [Hall| (2017)) and DMP (Diamond-Mortensen-Pisarides) models predict that discount rate fluctuations should explain
78.2% of the variance of job filling rates. [Kehoe et al| (2022) (KLMP model) predict a more balanced role for both dis-
count rates and cash flows, attributing 54.3% to discount rates and 31.9% to cash flows. Empirical results using data on
subjective expectations differ from these models, showing that firms place almost no weight on discount rates (-1.0%) and
instead attribute 96.7% of the variance to cash flows. These differences suggest that belief distortions play a substantial
role in shaping labor market fluctuations and challenge the standard rational expectations assumption in existing search
models.

Table A.6: Variance Decomposition of Job Filling Rate: Model vs. Data

Dep. Var. Discount Rate (-) Cash Flow (-) Price-Earnings Residual
Horizon h (Years) 5 5 5 5
(a) Rational Expectations: log g, = cq + Ei[re i+n] — Etlerirn] — Ei[per,i+n]
Data (Machine) 0.691*** 0.066 0.201 0.042
t-stat (3.329) (0.472) (0.245)
Model (DMP) 0.782%** 0.017** 0.201*** 0.000
t-stat (12.334) (1.992) (47.883)
Model (Hall) 0.838*** 0.073 0.088 0.000
t-stat (12.000) (1.387) (1.074)
Model (KLMP) 0.543*** 0.319 0.138*** 0.000
t-stat (4.484) (0.937) (16.392)
Model (Learning) 0.472** 0.084 0.445 0.000
t-stat (2.541) (0.922) (1.023)
(b) Subjective Expectations: log dt = Cq + Ft [Tt,t+h] — Ft [et’t_;,_h] — Ft [])et,t+h]
Data (Survey) —0.010 0.967*** 0.028 0.015
t-stat (—0.091) (7.097) (0.078)
Model (Learning) —0.001 0.740*** 0.261 0.000
t-stat (—0.011) (6.689) (1.706)

Notes: Table compares the variance decomposition estimated from the data (Table against the implied decomposition from
simulations of alternative search-and-matching models. The models are simulated annually over 500 periods and 300 firms, discarding
the first 150 periods as a burn-in, All parameter values in the calibration use estimates from the original papers. Learning: Constant-
gain learning model from Section [8f DMP: Diamond-Mortensen-Pissarides Model; Hall: [Hall (2017)); KLMP: Kehoe et al.| (2022]).
Subjective expectations F: are based on survey forecasts of CFOs and IBES financial analysts. Rational expectations E¢ are based
on machine learning forecasts from Long Short-Term Memory (LSTM) neural networks. Newey-West corrected t-statistics with lags
= 4 are reported in parentheses: *sig. at 10%. **sig. at 5%. ***sig. at 1%.



A.3.5 VAR Estimates

To validate the robustness of the variance decompositions, I estimate a Vector Autoregression (VAR) for the log job filling
rate log ¢; and its forward-looking components under subjective or rational expectations. For the case of subjective beliefs,
the VAR is estimated using survey expectations for future returns, earnings growth, and price-earnings ratios:

Xt+1 =AX, + €41, X = [Ft[Tt,t+1] F; [6t,t+1] Ft[Pet,tJrl} log Qt],-
From the theoretical framework in Section [2| the log job filling rate can be decomposed as:
log gt = cq + Fe[re,en] — Felerirn] — p"Felperin]

where the expected present values F¢[ry 1r] and Fe[es,+4n] are constructed recursively using the VAR forecast. As h — oo,
the terminal value p"F;[pe;, ] converges to zero under a transversality condition, yielding the long-run decomposition:

log gt = ¢4 + Ft[rt,t+oo] —F; [et,t+oo].
The same procedure is repeated using machine learning forecasts E;[-] to obtain the decomposition under rational expec-
tations. Figure [A-2] reports variance shares across horizons h = 1 to h = 5, as well as the full-horizon case h = co. Under

rational expectations, discount rate fluctuations explain an increasing share of variation, rising to 78.1% at long horizons.
Under subjective expectations, cash flow beliefs dominate at all horizons, accounting for 102.0% in the long run.

Figure A.2: Variance Decomposition of Job Filling Rate: VAR Estimates
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Notes: Figure reports variance decompositions of the aggregate job filling rate based on a Vector Autoregression (VAR). Each panel
reports the share of the variation in job filling rates that can be explained by h-year expected present discounted values of discount
rates r ¢4 p, (negative) cash flows e; ryp, and (negative) price-earnings ratios pe +4p, as defined in equation . Light (dark) bars
show the contribution under rational (subjective) expectations. Subjective expectations F; are based on survey forecasts of CFOs and
IBES financial analysts. Rational expectations E; are based on machine learning forecasts from Long Short-Term Memory (LSTM)
neural networks. The sample is quarterly from 2005Q1 to 2022Q4. Each bar shows bootstrapped 95% confidence intervals.



A.3.6 First Differences

The decomposition in equation may be more accurate in first differences than in levels, as low-frequency variation in
the job filling rate or subjective expectations can introduce measurement error. This concern is similar to the argument
in , who points to low-frequency changes in fundamentals as a potential source of measurement error in
the context of the g-theory of investment. Figure estimates the variance decomposition of the job filling rate from
equation in first differences:

Alog qt = AE, [Tt,t+h] — AE, [6t,t+h] — AE, [pet,t+h]
Alog gt = AF¢[re,i4n] — AF¢lesivn] — AF¢[pes,in]

Under rational expectations, discount rate fluctuations explain the largest share of variation, accounting for 58.7% at the
5-year horizon. Under subjective expectations, cash flow beliefs dominate, accounting for 90.6% at the 5-year horizon.

Figure A.3: Variance Decomposition of Job Filling Rate: First Differences

Discount Rates Cash Flows Future Price-Earnings
Q
2 1.01 1.0 1.0+
<
§
> 0.81 ] 0.8 081 ]
: I
<
& 0.6 ] |
- ] 0.6 0.64
g
£ 0 | 0.4 0.4 ]
'8 0 2,
o I 0.21 0.2
2 0.0+ + I I I ;
%’ {_ 0.0 0.04
i 2 3 4 5 i 2 3 4 5 1 2 3 4 5
Horizon (Years) Horizon (Years) Horizon (Years)
mmm Subjective Expectations Rational Expectations

Notes: Figure reports variance decompositions of the aggregate job filling rate in first differences. Each panel reports the share
of the variation in job filling rates that can be explained by h-year expected present discounted values of discount rates 7¢ ;4 p,
(negative) cash flows e; sy, and (negative) price-earnings ratios pe; ;ip, as defined in equation . Light (dark) bars show the
contribution under rational (subjective) expectations. Subjective expectations F; are based on survey forecasts of CFOs and IBES
financial analysts. Rational expectations E; are based on machine learning forecasts from Long Short-Term Memory (LSTM) neural
networks. The sample is quarterly from 2005Q1 to 2022Q4. Each bar shows Newey-West 95% confidence intervals with lags = 4
quarters.



A.3.7 Extended Sample

Figurereports the variance decomposition of the job filling rate from equation using an extended quarterly sample
from 1983Q4 to 2022Q4. Subjective cash flow expectations are measured using IBES survey forecasts of earnings growth,
available from 1983Q4. Subjective discount rate expectations are extended by extracting a common latent component
from multiple historical survey sources using a state-space model estimated via the Kalman filter, where the latent state
St = Fy[reqn] captures subjective beliefs about h-month ahead stock returns. The observation vector includes return
expectations from the Gallup/UBS, CFO, SOC, and Livingston surveys, with missing data handled through the Kalman
filter. The extended sample results are consistent with the baseline. Under rational expectations, discount rate fluctuations
explain 66.9% of job filling rate variation at the 5-year horizon. Under subjective expectations, distorted cash flow beliefs
dominate, accounting for 89.6%.

Figure A.4: Variance Decomposition of Job Filling Rate: Extended Sample 1983Q4-2022Q4
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Notes: Figure reports variance decompositions of the aggregate job filling rate using an extended sample from 1983Q4 to 2022Q4.
Each panel reports the share of the variation in job filling rates that can be explained by h-year expected present discounted values
of discount rates 7; ;p, (negative) cash flows e; sy, and (negative) price-earnings ratios pe; ¢, as defined in equation . Light
(dark) bars show the contribution under rational (subjective) expectations. Subjective expectations F; are based on survey forecasts
of CFOs and IBES financial analysts. Rational expectations E; are based on machine learning forecasts from Long Short-Term
Memory (LSTM) neural networks. The sample is quarterly from 2005Q1 to 2022Q4. Each bar shows Newey-West 95% confidence
intervals with lags = 4 quarters.
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A.3.8 Ex-post Decomposition

Since the log-linear decomposition of the job filling rate holds both ex-ante and ex-post, a variance decomposition of the
job filling rate can also be estimated using ex-post realized data, under the assumption of the firm’s perfect foresight:

1 Cov [re,i4h, log gt _ Cov [es,1+h, log qi] B Cov [pes,i+h,10g gt
Var [log g:] Var [log g Var [log g
Discount Rate news Cash Flow News Future Price-Earnings News

Table reports the estimates. For the main sample covering 2005Q1 to 2022Q4, at the 5 year horizon, 79.4% of the
variation in the job filling rate is driven by discount rate news. In contrast, cash flow news has a smaller effect, contributing
only 10.3% over the same period. For the full sample covering 1965Q1 to 2022Q4, at the 5 year horizon, 78.6% of the
variation in the job filling rate is driven by discount rate news. In contrast, cash flow news has a smaller effect, contributing
only 9.5% over the same period.

Figure A.5: Variance Decomposition of Job Filling Rate: Ex-Post Measure 1965Q1-2022Q4
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Notes: Figure reports variance decompositions of the job filling rate from equation using ex-post realized outcomes. Each panel
reports the share of the variation in job filling rates that can be explained by h-year expected present discounted values of discount
rates ¢ ¢4 p, (negative) cash flows e; 1y p, and (negative) price-earnings ratios pe; ¢4, as defined in equation . Light (dark) bars
show the contribution under rational (subjective) expectations. Subjective expectations F; are based on survey forecasts of CFOs and
IBES financial analysts. Rational expectations E; are based on machine learning forecasts from Long Short-Term Memory (LSTM)
neural networks. The sample is quarterly from 1965Q1 to 2022Q4. Each bar shows Newey-West 95% confidence intervals with lags
= 4 quarters.
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A.3.9 Risk Premia vs. Risk-Free Rate

Risk-free rates play only a small role in explaining fluctuations in job filling rates. Figureplots estimates from regressing
subjective expectations implied by forecasts from the Survey of Professional Forecasters (SPF), and machine expectations
of h year ahead annualized log 3-month Treasury bill rates on the the job filling rate. Under all measures of beliefs and
all horizons considered, the contribution from risk-free rates explain less than 5% of the variation in job filling rates. The
result suggests that the significant contribution of rational discount rates in Table [AZ3]is driven by fluctuations in risk
premia instead of risk-free rates.

Figure A.6: Variance Decomposition of Job Filling Rate: Risk Premia vs. Risk-Free Rate
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Notes: Figure plots estimates from regressing h year present discounted value of annualized log 3-month Treasury bill rates
Z?:l pj_lrf+j on the the job filling rate under alternative assumptions about the firm’s beliefs. Subjective expectations F; of
risk-free rates are based on survey forecasts from the Survey of Professional Forecasters. Subjective expectations of the equity risk
premium is defined as the difference between CFO survey S&P 500 stock return forecast and the SPF risk-free rate forecast. Machine
expectations are based on machine learning forecasts Et from Long Short-Term Memory (LSTM) neural networks G(Xt, By, 1), whose
parameters ﬁh,t are estimated in real time using X%, a large scale dataset of macroeconomic, financial, and textual data. The sample
is quarterly from 2005Q1 to 2022Q4. Each bar shows Newey-West 95% confidence intervals with lags = 4.

A.3.10 Risk-Neutral Measure Implied by Futures Prices

To address whether systematic forecast errors simply reflect risk compensation rather than belief distortions, I re-evaluate
the decomposition using risk-neutral expectations extracted from futures prices. Under risk-neutral pricing, forecast errors
should equal risk premia plus noise, with no systematic patterns beyond those explained by time-varying risk compensation.
In contrast to subjective survey forecasts, which may reflect belief distortions, risk-neutral expectations are extracted
directly from financial market prices and reflect the valuations of marginal investors in the economy. The decomposition
parallels the earlier analysis based on subjective beliefs but replaces the expectations operator Fi[-] with the risk-neutral
operator IEtQ [], where @ denotes the risk-neutral probability measure. I begin with the ex-post decomposition of the job
filling rate log g, which can be expressed as:

h h
log g: = ¢cq + Z P e — <dlt + Z leAdtH) — p"pdign
j=1

=1

where r¢4; denotes the return on the S&P 500 index, Ad+; denotes the change in log dividends, and pd; is the terminal
log price-dividend ratio. To evaluate this decomposition under the risk-neutral measure, I replace each future variable with
its risk-neutral expectation. Using the standard no-arbitrage pricing result that the futures price equals the risk-neutral
expectation of the future spot price (Ait-Sahalia et al., 2001), I compute the expected return over horizon h using log
differences of S&P 500 futures prices:

h
j—1 500 500
EP[ren] = Zﬂj (f8ey — Foen—y)

j=1
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where ffi’ioo denotes the log futures price of the S&P 500 at time ¢ for delivery at ¢ + j, and fSpE’O0 = p: is the log spot

price. Similarly, I measure expected dividend growth using dividend futures:

h
EP[de,e+1] —dltJrZPJ YR - )

=1

div

where f;7}4; is the log price of the dividend future for maturity ¢ 4 j, and fd“’ = d, is the log of current dividends. To
compute the terminal price-dividend ratio IEtQ [pdi+1], I apply a forward iteration of the log-linear price-dividend identity:

h
1 .
Ef [pdssn] = Pdt o E H(cpa + EP [Adits] — BP [re])

where cpq is a constant from the log-linearization. Since market data on futures prices is typically limited to near-term
maturities (e.g., 1-year ahead), I extrapolate longer-horizon expectations using fitted values from autoregressive models.
Specifically, I estimate AR(1) processes for the 1-year futures returns and dividend growth:

fsﬁiolo — Dt = Msp500 + Psps00 (Pt — Pr—1) + €+
fdfsvﬂ = fdiv + pdiv(de — de—1) + &4

and then forecast growth at horizons j > 1 recursively:

o J
f-sp500 sp500 Hspsoo(1 pspSOO) ]71 (fsp500 )
tt+i — Jtt+i—1 — Pspsoo\Jet+1 — P
bt bt 1= papsoo p

Hdiv(1 — p
fd?iy fdztiafl = H + Py (fii% — do)

Using these forward-imputed values, I compute the full set of risk-neutral expectations required for the decomposition.

The results of this exercise are shown in Figure [A77] Compared to subjective expectations, risk-neutral expectations
attribute a smaller role to future cash flows and a greater role to discount rates in explaining the variation in the job
filling rate. This contrast suggests that belief distortions in survey forecasts may overweight the informational content of
short-term earnings outlooks and underweight changes in risk premia, leading to distorted hiring incentives.

Figure A.7: Variance Decomposition of Job Filling Rate: Risk-Neutral Expectations
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Notes: Figure illustrates the discount rate, cash flow, and future price-earnings components of the time-series decomposition of the
aggregate job filling rate. Light bars show the contribution under risk-neutral expectations implied by S&P 500 and dividend futures.
Dark bars show the contribution under subjective expectations. The sample is quarterly from 2005Q1 to 2022Q4. Each bar shows
Newey-West 95% confidence intervals with lags = 4.
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A.3.11 Cross-Sectional Decomposition of Hiring Rate: By B/M Portfolio

Figure shows that belief distortions play a significant role in explaining the cross-sectional variation in hiring across
book-to-market portfolios. The decomposition reveals that under subjective expectations, distorted beliefs about future
cash flows account for a larger share of hiring rate variation, particularly among low book-to-market (growth) firms. This
pattern is consistent with the idea that growth firms are more sensitive to subjective beliefs about long-term fundamentals,
amplifying the role of distorted expectations in their hiring decisions. In contrast, for high book-to-market (value) firms,
the contribution of cash flow expectations remains relatively stable across subjective and rational benchmarks, suggesting
their hiring is less exposed to belief distortions.

Figure A.8: Cross-Sectional Decomposition of Hiring Rate: By B/M Portfolio
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Notes: Figure estimates time-series decomposition of hiring rate separately for each of the five book-to-market portfolios. Firms have
been sorted into five value-weighted portfolios by book-to-market ratio. Light bars show the contribution under rational expectations.
Dark bars show the contribution under subjective expectations. The sample is quarterly from 2005Q1 to 2022Q4. Each bar shows
Newey-West 95% confidence intervals with lags = 4.

A.3.12 Financial Constraints

A natural concern is that variation in hiring may reflect differences in financial constraints rather than distortions in
beliefs. In a rational expectations model, financial constraints appear as a Lagrange multiplier that tightens the firm’s
stochastic discount factor (SDF), raising internal hurdle rates and suppressing hiring (Kehoe et al.| [2019). In this setting,
constraint-induced fluctuations in hiring would be rationally attributed to higher discount rates. By contrast, under
subjective expectations, survey respondents may misattribute the effect of constraints to lower future cash flows, especially
if internal hurdle rates are persistent, upward-biased, and unresponsive to market conditions (Gormsen and Huber| 2025).
Financial constraints could also allow the effects of belief distortions to persist by limiting arbitrage that would otherwise
correct them (De La O et al. [2024)).

Measures of Financial Constraints To test these hypotheses, I incorporate firm-level financial constraint measures
into the decomposition framework:

e Firm Size (Total Assets): Firms in the bottom tertile of the asset size distribution are classified as financially
constrained, while those in the top tertile are unconstrained (Erickson and Whited] 2000).

e Payout Ratio: Defined as dividends plus stock repurchases scaled by total assets. Firms with the lowest (highest)
payout ratios are classified as constrained (unconstrained), consistent with the idea that constrained firms conserve
internal funds (Fazzari et al. [1988).

e SA Index: The size-age index developed by [Hadlock and Pierce| (2010)), constructed as SA = —0.737 - Size + 0.043 -
Size? — 0.040 - Age, where Size is log real assets and Age is years since listing. Higher SA values indicate tighter
constraints.

e Expected Free Cash Flow: Based on |Lewellen and Lewellen| (2016)), firms are sorted into constraint groups using
predicted free cash flow, estimated from cross-sectional regressions on lagged characteristics. Low expected FCF
implies tighter constraints.
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e WW Index: The Whited-Wu index (Whited and Wul 2006), a linear combination of cash flow, dividend status,
leverage, size, and sales growth, where higher index values imply greater constraints.

Each measure is updated annually and firms are classified based on terciles or continuous index values. Each measure is
aggregated to the portfolio level and standardized before entering the regression as controls.

Decomposition with Financial Constraints 1 modify the baseline decomposition regression as follows:
Fi[Aeiti4n] =B logqie + 1T - FCit + i + s + €4t

where FC;; is a vector of standardized financial constraint measures for portfolio ¢ at time ¢, aggregated from firm-
level values to five value-weighted book-to-market portfolios. As before, the parameter of interest is 8, which captures
the share of variation in the hiring rate log¢;+ explained by subjective expectations, but this time after controlling for
financial constraints. I run analogous regressions to estimate the contributions of discount rate expectations and future
price-earnings ratios. I also replace survey forecasts with machine learning forecasts to estimate the decomposition under
rational expectations, again controlling for financial constraints using the same specification.

Results Figure presents the decomposition estimates with and without financial constraint controls, under both
subjective and rational expectations. Under subjective expectations, the contribution of expected earnings to hiring
variation remains large and significant, with only a modest reduction in explanatory power after controlling for financial
constraints. This suggests that distorted beliefs about cash flows persist even after adjusting for observable constraint-
related fundamentals. These findings are consistent with the view that constrained firms over-react to cash flow news or
internalize persistent pessimism about earnings. Under rational expectations, however, the contribution of discount rate
expectations drops substantially once constraint controls are included. This is consistent with a rational model in which
financial constraints tighten the SDF and raise internal hurdle rates. When this variation is accounted for, the rational
model assigns less importance to discount rate news in explaining hiring variation. The results supports the interpretation
that financial constraints can explain a nontrivial share, but do not fully explain, variation in hiring. While rational
forecasts attribute constraint effects to discount rates, subjective expectations appear to reflect persistent pessimism about
cash flows.

Figure A.9: Cross-Sectional Decomposition of Hiring Rate: Control for Financial Constraints
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Notes: Figure estimates time-series decomposition of hiring rate separately for each of the five book-to-market portfolios, controlling
for measures of financial constraints. Firms have been sorted into five value-weighted portfolios by book-to-market ratio. Light
bars show the contribution under rational expectations. Dark bars show the contribution under subjective expectations. Financial
constraint controls include firm size, payout ratio, SA index, expected free cash flow, and the Whited-Wu index. The sample is
quarterly from 2005Q1 to 2022Q4. Each bar shows Newey-West 95% confidence intervals with lags = 4.
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A.4 Alternative Measures of Survey Expectations
A.4.1 Subjective Cash Flow Expectations

The large role played by subjective cash flow expectations in explaining the job filling rate holds more generally across al-
ternative survey forecasts of earnings growth. Table@ re-estimates the subjective variance decomposition while replacing
IBES survey forecasts of earnings growth with the corresponding forecast from the Bloomberg (BBG) survey. Table
re-estimates the subjective variance decomposition while replacing 1 year ahead IBES survey forecasts of earnings growth
with the corresponding forecast from the CFO survey. The forecast horizon for the CFO survey has been limited to h = 1
year ahead and the sample covers a shorter period over 2002Q1 to 2019Q3 due to missing earnings growth forecasts in the
CFO survey.

To summarize the alternative survey measures into a single series, Filtered Investor (FI) expectations extract the
common component of subjective discount rates using a Kalman filter. The state variable is a latent h-month ahead
expected stock return capturing investors’ subjective beliefs S; = Fy[r¢1], which evolves according to an AR(1) state
equation Sy = C(0)+T(0)S;—1 + R(O)et, where C, T, R are matrices of the model’s primitive parameters © = («, p, 0.)’.
€: is an innovation to the latent expectation that was unpredictable from the point of view of the forecaster. « is the
intercept, p is the persistence, and o, is the standard deviation of the latent innovation error. The Observation equation
takes the form Xy = D + ZS; + Uv:, where h is a fixed forecast horizon. The observation vector X; contains measures
of survey expected cash flows from IBES, BBG, and CFO surveys over the next h periods. v; is a vector of observation
errors with standard deviations in the diagonal matrix U. Z and D are parameters that have been set to 1s and Os,
respectively. I use the Kalman filter to estimate the remaining parameters «, p, 0., U. Since some of our observable series
are not available at all frequencies and/or over the full sample, the state-space estimation fills in missing values using the
Kalman filter.

Table A.7: Variance Decomposition of Job Filling Rate: Alternative Subjective Cash Flow Expectations

Horizon h (Years) 1 2 3 4 5

Subjective Expectations: log q; = ¢; + Fi[rei4n] — Feler,i+n] — Felperi+n)

(a) Filtered Investor (FI) Expectations

(-) Cash Flow 0.578*** 0.625*** 0.684*** 0.887*** 0.933***
t-stat (3.046) (4.275) (4.804) (6.019) (7.612)

N 72 72 72 72 72

(b) Bloomberg (BBG) Survey

(-) Cash Flow 0.586*** 0.830*** 0.851*** 0.896** 0.949***
t-stat (8.476) (8.317) (7.213) (5.288) (4.541)

N 72 72 72 72 72

(c) CFO Survey
(-) Cash Flow 0.637*
t-stat (1.934)
N 71

Notes: Table reports variance decompositions of the job filling rate while replacing IBES earnings growth forecast with alternative
surveys as measures of subjective cash flows. FI summarizes the alternative survey measures into a single series using a Kalman
filter. The sample for BBG and FI is quarterly from 2005Q1 to 2022Q4. The sample for CFO is quarterly from 2002Q1 to 2019Q3.
Newey-West corrected t-statistics with lags = 4 are reported in parentheses: *sig. at 10%. **sig. at 5%. ***sig. at 1%.
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A.4.2 Subjective Discount Rates

The small role played by subjective discount rate expectations in explaining the job filling rate holds more generally across
alternative survey forecasts of stock returns. Table[A 8| reports estimates from regressing 1 year ahead survey expectations
of stock returns Fi[r ;+r] on the log job filling rate ¢: under alternative survey forecasts of stock returns. In all survey
measures, the estimates suggest a weak relationship between subjective stock return expectations F§[r. :+x] and the job
filling rate g.

r¢,14+n denotes h year CRSP stock returns (with dividends) or S&P 500 price growth from time ¢ to t + h, depending
on the concept that survey respondents are asked to predict: log stock returns for CB, SOC, Gallup/UBS, and CFO; log
price growth for Livingston. F§[r ] denotes subjective expectations of stock returns or price growth from survey s. CoC
and Hurdle denotes corporate cost of capital and hurdle rates constructed in |Gormsen and Huber| (2023)). The forecast
horizon has been limited to 1 year ahead due to limited data availability in the alternative surveys. The sample is quarterly
over 2005Q1 to 2022Q4 when considering the NX, CB, SOC, and CFO surveys, 2005Q1 to 2008Q4 for Gallup/UBS, and
semi-annual over 2005Q1 to 2022Q4 from Q2 and Q4 of each calendar year for Livingston.

To summarize the alternative survey measures into a single series, I extract the common component of subjective
discount rates using a Kalman filter. The state variable is a latent h-month ahead expected stock return capturing investors’
subjective beliefs S; = Fy[riyp], which evolves according to an AR(1) state equation Sy = C(©) + T(0)Si—1 + R(O)e,
where C, T, R are matrices of the model’s primitive parameters © = (a, p,0.)’. & is an innovation to the latent expectation
that was unpredictable from the point of view of the forecaster. « is the intercept, p is the persistence, and o. is the
standard deviation of the latent innovation error. The Observation equation takes the form X, = D + ZS; + Uv, where
h = 12 months is a fixed forecast horizon. The observation vector X; contains measures of survey expected returns listed
above over the next h periods. v; is a vector of observation errors with standard deviations in the diagonal matrix U. Z
and D are parameters that have been set to 1s and Os, respectively. I use the Kalman filter to estimate the remaining
parameters «, p, oe, U. Since some of our observable series are not available at all frequencies and/or over the full sample,
the state-space estimation fills in missing values using the Kalman filter.

Table A.8: Variance Decomposition of Job Filling Rate: Alternative Discount Rates

Horizon h (Years) 1 1 1 1 1 1 1 1
Subjective Expectations: logq; = ¢q + Fi[rei4n] — Feleri+n] — Felper,i1n]
Survey s FI NX CB SOC Gallup Liv CoC Hurdle
Discount Rate 0.013 —0.011 0.026 0.002 —0.065 0.067 0.024 0.013
t-stat (0.614)  (—0.249)  (0.504)  (0.103)  (—0.922)  (0.181)  (0.734)  (0.522)
Adj. R? 0.070 0.012 0.069 0.009 0.216 0.045 0.232 0.154
N 72 72 72 72 16 40 72 72

Notes: Table reports slope (/1) estimates from regressing h = 1 year ahead survey expectations of stock returns F¢[r; +y] on the log
job filling rate q¢. 74 ¢4 denotes h year CRSP stock returns (with dividends) or S&P 500 price growth from time ¢ to t+h, depending
on the concept that survey respondents are asked to predict: log stock returns for CB, SOC, Gallup/UBS, and CFO; log price growth
for Livingston. F§[r; +yn] denotes subjective expectations of stock returns or price growth from survey s. CoC and Hurdle denotes
corporate cost of capital and hurdle rates constructed in |Gormsen and Huber] (2023). Filtered Investor (FI) expectations summarize
the alternative survey measures into a single series using a Kalman filter. The sample is quarterly over 2005Q1 to 2022Q4 when
considering the NX, CB, SOC, and CFO surveys, 2005Q1 to 2008Q4 for Gallup/UBS, and semi-annual over 2005Q1 to 2022Q4 from
Q2 and Q4 of each calendar year for Livingston. Newey-West corrected t-statistics with lags = 4 are reported in parentheses: *sig.
at 10%. **sig. at 5%. ***sig. at 1%.
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A.5 Regional Model and Shift-Share Instrument

The aggregate analysis in Section [5| shows that belief distortions in subjective expectations play an important role in
explaining hiring fluctuations. This section extends that analysis by exploiting cross-sectional variation in state-level data
to strengthen identification and test whether the theoretical mechanism generalizes beyond aggregate dynamics.

Overview While the aggregate-level variance decompositions are informative, they cannot establish causality. The
limited number of business cycles in the time series also restricts inference. This section addresses these challenges by
extending the aggregate model to a regional framework. In estimating the regional model, I introduce a Bartik shift-share
instrument for survey expectations to address endogeneity challenges in identifying the relative importance of subjective
discount rate and cash flow expectations. Specifically, I investigate whether regional labor markets characterized by more
distorted subjective cash flow expectations experience larger swings in job filling rates. This analysis is motivated by
empirical evidence of substantial geographic variation in unemployment dynamics, especially during crises (Beraja et al.
2019, Kehoe et al.;|2019; |(Chodorow-Reich and Wieland), |2020)). While existing work studies these regional differences under
a rational expectations framework, differences in subjective beliefs may also be an important explanatory factor.

Regional Model To guide the empirical strategy, I extend the baseline search model to a multi-region, multi-sector
environment, building from the models in [Kehoe et al| (2019) and |Chodorow-Reich and Wieland| (2020). The economy
consists of a continuum of islands indexed by s. Each island produces a differentiated variety of tradable goods that is
consumed everywhere and a nontradable good. Both of these goods are produced using intermediate goods. Each consumer
is endowed with one of two types of skills which are used in different intensities in the nontradable and tradable goods
sectors. Labor is immobile across islands but can switch sectors. This assumption aligns with empirical evidence indicating
that labor markets are predominantly local in nature (Manning and Petrongolo, 2017). Consumers receive utility from
a composite consumption good that is either purchased in the market or produced at home. Consumers and firms are
ex-ante homogeneous and share the same subjective expectation F.[-]. The islands only differ in the shocks that hit them.

Predictability of Regional Unemployment Rates In this environment, the log unemployment rate us:+1 in
region s approximately satisfies the following predictive relationship (Section [B.3]):

Us,t+1 = BrFe[rs e e4n] + BeFiles,t 4n] + v Xst + as + o + 541 (A1)

where X, ; = [us,,log0s.¢,log §S,t]’ collects standard labor market controls: the lagged unemployment rate us:, the log
vacancy-to-unemployment ratio log s+, and the log separation rate logds +. The cross-sectional unit s corresponds to U.S.
states, and time ¢ is measured at the monthly frequency. Following Korniotis| (2008), each firm is assigned to the state in
which it is headquartered. The regression includes state fixed effects as to absorb time-invariant regional heterogeneity
and time fixed effects o to capture national shocks. The coefficients of interest, 3, and ., quantify the effect of subjective
expectations about discount rates and cash flows, respectively, on future unemployment.

This regional equation extends the aggregate specification in equation , and is designed to test whether perceived
shocks to discount rates or earnings forecasts help explain variation in unemployment across local labor markets. If firms
form biased beliefs about future returns or earnings, those belief distortions should manifest in regional hiring behavior
and thus influence unemployment at the state level. A counterpart regression can be estimated under rational expectations
by replacing FF;[-] with machine learning-based forecasts E¢[-].

Empirical Specification: OLS As a baseline, I estimate the regression above using multivariate OLS applied to
a panel of state-level data. This allows for a direct assessment of whether variation in firm-level beliefs, aggregated to
the state level, predicts changes in unemployment. The future price-earnings ratio term Fi[pes ; ¢+n] is omitted from
the regression due to its near collinearity with forecasted discount rates and cash flows via the present-value identity of
Campbell and Shiller| (1988]). State-level forecasts of discount rates Fi[rs . +n] are constructed from IBES price target
forecasts. These targets are used to infer expected returns by back-solving from analysts’ price projections. Forecasts are
assigned to states based on firm headquarters and then aggregated using value-weighted averages. Expected cash flows
Fi[es,t,t+n] are constructed analogously from IBES analyst forecasts of earnings per share.

Regional labor market variables are constructed from publicly available BLS datasets. Unemployment rates us: are
sourced from the Local Area Unemployment Statistics (LAUS). The vacancy-to-unemployment ratio 6s: is computed
using job openings from the state-level Job Openings and Labor Turnover Survey (JOLTS) combined with unemployment
counts from LAUS. Separation rates ds,; are also taken from JOLTS. Monthly series are time-aggregated to the quarterly
frequency by averaging values within each quarter.

Empirical Specification: Bartik Shift-Share Instrument A key challenge in estimating the regional decompo-

sition is that regional labor market conditions and subjective expectations may be jointly determined, potentially leading
to biased estimates. For example, firms might revise their beliefs in response to local shocks in unemployment or hiring,
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making it difficult to separate cause from effect. Additionally, state-level aggregates of firm-level forecasts may suffer from
measurement error if the geographic scope of a firm’s operations does not align with the location of its headquarters.

To address these concerns, I construct a leave-one-out Bartik-style shift-share instrument Fi[ys.+r] that isolates
plausibly exogenous variation in subjective expectations at the regional level, while avoiding mechanical feedback between
local shocks and the national forecast component:

~ —s Lsi
Folyororn] = D boiet Fi Warernl,  Poin ot

==—5— yefrel (A-2)
el Zi’e] Ls,i/,t

Here, ¢s,i,+ denotes the lagged employment share of industry 4 in state s, sourced from the Quarterly Census of
Employment and Wages (QCEW). F; °[y; +,t+n] is the national IBES forecast for industry ¢ constructed by excluding
all firms headquartered in state s. The leave-one-out structure ensures that local shocks in state s do not mechanically
influence the national industry-level forecasts used to construct the instrument, strengthening the validity of the exogeneity
assumption. Using the leave-one-out Bartik instrument, I estimate the following predictive regression:

Us t+1 = Br@t [Ps,t,e4n] + @j‘\t [€s,t,t4h] + 'Yle,t + as + ot + €511 (A.3)

The coefficients B, and . now reflect the causal effect of variation in subjective discount rate and earnings expectations
that is exogenous to state-specific labor market conditions.

Identification Assumptions Compared to the OLS specification, the Bartik approach offers stronger identification
by addressing both measurement error and endogeneity concerns. First, it reduces measurement error by replacing noisy
state-level aggregates of firm-level forecasts with industry-level forecasts weighted by predetermined employment shares.
Second, it mitigates endogeneity by exploiting the fact that national industry trends in expectations are unlikely to respond
to contemporaneous state-level labor market shocks.

For example, consider a scenario where national energy sector earnings expectations surge due to geopolitical devel-
opments. The shift-share instrument would assign Texas (with high energy employment shares) a much larger increase
in instrumented expectations than Vermont (with minimal energy exposure). Crucially, this variation stems from pre-
determined industrial composition interacted with national sectoral trends, rather than from endogenous responses to
Texas-specific labor market conditions or measurement error in aggregating individual firm forecasts within Texas.

The identifying assumption is that, conditional on fixed effects and controls, there are no omitted factors that si-
multaneously affect both national industry-level expectations and local hiring behavior in states more exposed to those
industries. While many shift-share designs rely on the exogenous shocks assumption, in our setting the exogenous shares
assumption is likely more appropriate. In sectors where specific regions have large exposures to (e.g., Texas in oil energy),
national energy industry-level expectations Fi[e; ¢ yr] may be influenced by news from firms headquartered in those re-
gions. For example, a slowdown in hiring or disappointing earnings guidance from large Texas energy firms could cause
IBES analysts to revise downward their national energy sector earnings forecasts. If so, the national shock would be en-
dogenous to Texas-specific developments, violating the exogenous shock assumption. In contrast, the state-level industry
shares ss,i,+—1, measured using lagged QCEW employment data, reflect slow-moving industrial structure and are plausibly
predetermined. We therefore treat industry shares as conditionally exogenous and interpret our identification through the
lens of the exogenous shares assumption following |[Borusyak et al.| (2025).

This assumption would be violated, for example, if pre-existing trends in local demand systematically coincided with
national shocks. To mitigate this concern, I include a rich set of controls and fixed effects. Specifically, state fixed effects s
absorb time-invariant differences in labor market characteristics across states. Time fixed effects o account for common
national shocks such as business cycles or federal policy changes. By leveraging only the cross-sectional variation in
state exposure to national shocks, the Bartik specification helps isolate the exogenous component of belief-driven hiring
fluctuations.

Cross-Sectional Decomposition of the Regional Job Filling Rate Table reports regression estimates
that evaluate the predictive power of state-level expectations for future unemployment. Each column adds different
combinations of rational or subjective forecasts for discount rates and cash flows, with all specifications controlling for
standard labor market factors and including both state and time fixed effects.

The estimates demonstrate that subjective earnings expectations are not only informative about regional unemploy-
ment but crowd out the predictive power of rational components. Column (1) shows that rational discount rate expec-
tations E¢[rs :.+5] significantly predict unemployment, with a coefficient of 0.725 and R? of 0.414. This implies that a
one standard deviation increase in rational discount rate expectations predicts a 0.240 percentage point increase in the
unemployment rate. Column (2) shows that among subjective forecasts, only expected earnings F¢[es ¢,++5] matter, with
a large negative coefficient (—0.817) and higher explanatory power (R? = 0.558). A one standard deviation increase in
expected earnings predicts a 0.129 percentage point decrease in the unemployment rate. Column (3) includes both sets
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of expectations. Subjective earnings dominate: their coefficient remains significant (—0.791), while rational expectations
become insignificant.

Column (4) repeats the rational-only regression using Bartik instruments; the discount rate remains significant (0.572),
implying a 0.181 percentage point increase in unemployment per standard deviation increase in instrumented discount rate
expectations. In Column (5), only instrumented subjective earnings are significant (—0.690), with a standard deviation
of 0.168 implying a 0.116 percentage point decrease in unemployment. Column (6) confirms that instrumented subjective
earnings expectations (—0.708) continue to drive out all other predictors, implying a 0.119 percentage point decline in
unemployment for a one standard deviation increase.

The shift-share estimates are generally smaller in magnitude than their OLS counterparts, as expected, since the shift-
share instrument isolates only variation that is plausibly exogenous to regional labor market conditions. The attenuation
suggests that some of the OLS signal reflects endogenous responses to regional shocks, such as changes in local labor supply,
that amplify belief-driven dynamics. Nevertheless, the fact that the earnings coefficient remains large and significant
under instrumentation supports a causal interpretation: belief distortions about cash flows play a central role in driving
unemployment fluctuations across regions.

Taken together, the results provide robust evidence that distorted beliefs about future earnings are a key driver of re-
gional labor market volatility. The strong and consistent link between subjective earnings expectations and unemployment,
even when instrumented, suggests that firms’ hiring decisions are shaped not only by fundamentals but also by biased
beliefs. Regions where firms over-react to cash flow news experience deeper hiring cuts during downturns and more aggres-
sive expansions during booms, thereby driving business cycle volatility. These findings indicate that persistent regional
differences in unemployment may arise not only from structural characteristics such as industry mix or demographics, but
also from variation in how firms perceive and respond to economic signals.

Table A.9: Predictability of the State-Level Unemployment Rate

Dependent Variable: Log Unemployment Rate ;41

OLS Shift-Share Instrument
(1) (2) (3) (4) (5) (6)
Et[rs,t,t4n) 0.725*** 0.470 0.572%** 0.207
(0.235) (0.780) (0.222) (0.240)
Eiles,t,t+n) -0.247 -0.065 -0.064 0.005
(0.499) (0.182) (0.075) (0.168)
Ft [Ts,t,t+h] 0248 0.233 0.052 0.052
(0.297) (0.300) (0.228) (0.228)
Fyles,t,e+n) -0.817*** -0.791%** -0.690*** -0.708***
(0.236) (0.242) (0.160) (0.200)
R? 0.414 0.558 0.558 0.414 0.549 0.549
State FE Yes Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes Yes
Labor Market Factors Yes Yes Yes Yes Yes Yes
N 4,358 4,358 4,358 4,358 4,358 4,358

Notes: Labor market factors include the log annual growth of lagged log unemployment rate us ¢, log labor market tightness log 6+
and log job separation rate logds:. The sample is quarterly from 2005Q1 to 2022Q4. Newey-West corrected t-statistics with lags
= 4 are reported in parentheses: *sig. at 10%. **sig. at 5%. ***sig. at 1%.

A.6 Capital Investment

This section extends the baseline model by incorporating firm investment decisions and distinguishing between tangible
and intangible capital. I show how belief distortions about future returns and earnings influence not only hiring decisions,
but also capital investment behavior. I then decompose the investment rate into components associated with discount
rates and cash flows.

Model Setup I assume firms produce output using a Cobb-Douglas production function that depends on both capital
and labor inputs:

a rl-—a
Yie = Ai KLy
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where A; + denotes total factor productivity, K; ; = K E };y + K ;“tt is total capital input composed of tangible and intangible
capital, and L; is labor input. Following Halll (2001) and Hansen et al.| (2005, I treat tangible and intangible capital as
perfect substitutes. Earnings are defined as:

I;
Biy=Yis—WiitLiy—6Vig—lLit — ¢ (—t) Ki
K

where W;; is the wage rate, kV;; is the vacancy posting cost, I;; = Ii‘j}tly + Iﬂt is total investment, and ¢(-) denotes
convex adjustment costs. I adopt a piecewise-quadratic specification for ¢(-) with different coefficients for expansion and
contraction:

N2

- (#L) i La>0
2

(II(:’tf) if I;; <0

Firms choose investment I; ; and vacancies V;; to maximize firm value:

V(Ait, Kit,Lit) = max {Ej++ Fy [Mep1V(Ait41, Kipg1, Liey1)]}

I; +,Vit
subject to both capital and employment accumulation equations:

Kity1=(01- 6§,t)Ki,t + Lt
Liti1=(1- 5£,t)Li,t + ¢t Vit

The first order condition with respect to investment implies:

14 <Ki,t+1 —(1— 6zk,t)Ki,i) Py

K11
where P; s = Fy[M¢41V (As 141, Kit+1)] is the ex-dividend firm value.

Recovering Intangible Capital To estimate intangible capital, I construct a panel of five value-weighted portfolios
sorted by book-to-market ratio. For each portfolio, I measure realized data on physical capital K 5 ?y , tangible investment
I Zp ?y , depreciation rates 55, +, and market value P; ;. The physical capital stock K f, }t“y is measured using Compustat’s PPEGT
item, and tangible investment I E ?y is measured using capital expenditures (CAPX). The depreciation rate 55, ¢ is calculated
as depreciations (DP) as a share of physical capital stock (PPEGT), and applied to both tangible and intangible capital
(Halll [2001)). T construct the firm’s total market value P; ; as the sum of the market value of equity, the book value of debt,
minus current assets. Starting from an initial value Kj; 197001 = Pi,1970Q1, I recursively solve the first order condition for
K 111, using observed investment, depreciation, and market value. Intangible capital is then recovered as the residual:

int __ phy
Ki,t - Ki,t - Kiﬂg

Decomposition of Investment Rates Taking logs and linearizing the first order condition:

Li Ii ) ( Py )
log|{1l+c¢ : ~ logck + lo . =log | ——
& ( kKi,t) &k & (Ki,t & K41

I decompose the right-hand side into price-to-earnings and earnings-to-capital terms:

L+ P Eiy
lo : = —logck + lo =) +log [ ——
& (Ki,t) Bk T8 (Et> & (Ki,m)
—_———

ik ¢ pe;t ekt

Using a|Campbell and Shiller| (1988)) log-linear approximation for the price-earnings ratio:

h
j—1 h
peit = E P’ (cpe + Aeijttj — Tittj) + p Deitn
=1
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Substituting yields the final decomposition:

h h
tkie = cik, — ij_lri,t+j + <eki,t + Zp]_lAei,t+j> + phpei,t+h
j=1 j=1

— Cpe(l_ph)

where c¢;i i

— logcr. To separately analyze tangible and intangible investment, I define ik;; = log( ’f) and

m

s = log(ki) so that:

ikiy = siy +ikiy, m = phy,int

implying the decomposition structure remains unchanged up to an additive shift s;;. I estimate the decomposition
separately for tangible and intangible investment. The time-series decomposition of the aggregate investment rate is:

h
ik~ = P T Fefreg] + (61% + Z P Aetﬂ}) + p"Filpersn]
j=1

where x¢ = Y. _; x;+ aggregates firm-level variable z; ;. For the cross-section, demeaned variables yield:

ier
~ h .
ikiy ~ — Z P R[] <€ki,t +Y PR [Aéi,tﬂ]) + p"Fi[pe; 4]
j=1

where T+ = it — ), it cross-sectionally demeans variable x; ;.

Results The empirical results mirror those for hiring rates, both in the time series (Figure and the cross-section
(Figure|A.11]). Subjective expectations substantially overstate the contribution of cash flows and understate that of discount
rates, both for tangible and intangible investment. Notably, the distortions are stronger for intangible investment, consistent
with greater uncertainty and measurement error in expectations about intangible value creation. These findings highlight
how belief distortions affect not only labor demand but also capital allocation decisions across asset types.

A.7 Decreasing Returns to Scale and Composition Effects

Stock market valuations reflect average profits, while hiring decisions depend on marginal profits (Borovickova and
Borovickal, [2017)). Decreasing returns to scale can amplify unemployment fluctuations even under a rational framework
by making the marginal value of hiring more sensitive to productivity shocks, prompting firms to adjust vacancies more
aggressively in response (Elsby and Michaels| 2013} |[Kaas and Kircher] 2015)). Allowing for decreasing returns to scale
introduces the notion of firm size. Changes in the equilibrium firm size distribution can thus introduce a composition effect
that also contributes to fluctuations in the job filling rate (Solon et al.| (1994))).

This section relaxes the constant returns to scale (CRS) assumption by allowing for decreasing returns to scale (DRS)
in the production function. Assume that firm ¢’s output is Y; s = F(L;) = Ai,tLﬁt, where A; + is an exogenous productivity
process and 0 < o < 1. This introduces a “DRS wedge” between marginal and average profits:

«
mieLliy — kVig = 0AitLiy — WisLit — kVig = Eip — (1 —a)Yis

where F;; = Il;; — kV;; is the firm’s earnings, Il; s = Y — Wit Li: = Ai,thft — Wi+ L, is the total profit before wages

W+ Li,+ and vacancy posting costs «kVj ¢, and m;,; = ZFLIZ L is the marginal profit from hiring. The second term (1 — «)Y; ¢

is a “DRS wedge” that captures the gap between the average profit and marginal profit. Under DRS, the firm’s hiring
condition becomes:

. Y: .

i, t+7 i,t+J

E — — (1 —a)————
Rz t,t+j ( L; Jt+1 ( )Li,t+1 ):|

where firm i takes the aggregate job filling rate ¢: as given. Express aggregate earning-employment and output-employment
ratios as the employment-weighted average of firm-level ratios:

n[SE gl (f - w ) b

1 t+1 Ll,t+l
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Figure A.10: Time-Series Decomposition of Capital Investment

(a) Tangible Capital Investment Rate
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Notes: Figure illustrates the discount rate, cash flow, and future price-earnings components of the time-series decomposition of the
aggregate tangible and intangible capital investment rate. Light bars show the contribution under rational expectations. Dark bars
show the contribution under subjective expectations. The sample is quarterly from 2005Q1 to 2022Q4. Each bar shows Newey-West
95% confidence intervals with lags = 4.

Define S; 141 = Lthit:ll as the employment share, EL;++; = E;4j/Lit+1 the earnings-employment ratio, and Y L;¢1; =

Yi t+5/Lit+1 the output-employment ratio of firm i. Log linearize the expression around the steady state:

logq: = Z Z Fi [wrijriteri] = Felwerijelipr;] + Felwyiegylir;] — Fi [ws,ijsies] (A.4)
=1

Discount Rate Cash Flow Cash Flow Employment Share
(Earnings-Employment) (Output-Employment)

where 7 ¢,¢4j, €lit+5, Ylit+5, and s; 141 denote log deviations of R; ¢4+, ELit+j, Y Lit+j, and S; ¢+1 from the steady state
g (EL;+(1-a)YL,;)-S; o g EL, gYL;-S;
P EZ y Welyi,j = 3 i3] P EZ

are functions of steady-state values and linearization constants. «a = 0.72 comes friom the labor share, £ = 0.133 comes
from the flow vacancy cost (Elsby and Michaels| [2013). § = 0.631, R; = 1.04, EL = 0.014, YL = 0.074 are long-run

sample averages. Finally, approximate the infinite sum by truncating up to h periods.

_ gFBL;5;

state, respectively. The coefficients wy;; = ws.,; ,and wy . = (1 — )
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Figure A.11: Cross-Sectional Decomposition of Capital Investment

(a) Tangible Capital Investment Rate
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(b) Intangible Capital Investment
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Notes: Figure illustrates the discount rate, cash flow, and future price-earnings components of the cross-sectional decomposition to the
dispersion of the current tangible and intangible capital investment rate. Firms have been sorted into five value-weighted portfolios
by book-to-market ratio. Light bars show the contribution under rational expectations. Dark bars show the contribution under
subjective expectations. The sample is quarterly from 2005Q1 to 2022Q4. Each bar shows Newey-West 95% confidence intervals with
lags = 4.

The expected output-employment ratio Fy[yl; ¢++,] captures the DRS wedge, and the employment share s; ;41 captures
composition effects of changes in the firm size distribution. I measure the expected output-employment ratio F¢[yl; ¢+;] by
using IBES sales forecasts. Figure shows that under subjective expectations, the output-employment term accounts
for roughly 30% of the variation in the job filling rate, while the earnings-employment term explains slightly less than 60%.
The compositional term is small. These results confirm that even under DRS, subjective cash flow expectations, whether
expressed in average or marginal terms, remain the dominant driver of hiring fluctuations.

A.8 On-the-Job Search

The baseline model assumes that all hires come from the pool of unemployed workers. However, measured earnings
and hiring flows reflect contributions from both unemployed-to-employed (UE) and job-to-job (J2J) transitions. To better
capture the sources of observed hiring, this section extends the baseline model to allow for on-the-job search. This
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Figure A.12: Time-Series Decomposition of the Job Filling Rate: Decreasing Returns to Scale
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Notes: This figure illustrates the components of the time-series decomposition of aggregate job filling rate under decreasing returns
to scale, based on equation . The components of the decomposition are expected present discounted values of discount rate,
earnings-employment ratio, output-employment ratio, and the employment share. The light bars show the contributions to the job
filling rate obtained under rational expectations. The dark bars show the contributions to the time-series variation in the job filling
rate obtained in subjective expectations. Subjective expectations F; are based on survey forecasts of CFOs and IBES financial
analysts. Rational expectations E; are based on machine learning forecasts from Long Short-Term Memory (LSTM) neural networks.
The sample is quarterly from 2005Q1 to 2022Q4. Each bar shows Newey-West 95% confidence intervals with lags = 4.

modification draws on recent work modeling labor market flows with job-to-job transitions (Kuhn et al., 2021} Faberman|
2022). Let a fraction ¢ of employed workers search for jobs each period, in addition to the unemployed. The total
number of searchers is:

S =U+ oLy = Uy + ¢(1 — Uy), (A.5)

where U, is the unemployment rate and L; = 1 — U, is the employment rate. Vacant firms post V; vacancies, and matches
form via a constant returns to scale matching function M (S, V4). Not all on-the-job searchers who receive an offer accept
it. Let x € (0,1) denote the fraction of employed searchers who accept a job offer. The effective hiring efficiency from the
firm’s perspective is:

Ui+ xo(1 - Uy)

ot = Tt o(l=T) (A.6)

The law of motion for employment becomes:
Liyr = (1= 6)Li + quoeVi, (A7)
where 0; is the separation rate and ¢ = M is the job filling rate. The Bellman equation for the firm’s value is

t
updated to reflect turnover due to J2J transitions:

V(A¢, L) = max {E; + (1 — ¢xfe)Fe [Mey1V(Avya, Lega)]}, (A.8)

Vi, Liy1

subject to the employment accumulation equation above. The term 1 — ¢x f: reflects the retention rate, accounting for
voluntary separations from employed workers who successfully switch jobs. Under constant returns to scale, the firm’s
optimal vacancy posting condition implies:

K

= (1= gxfr) -

, A9
qit Pt Lt+1 ( )

where P, = Fy [My11V(Ai41, Li41)] is the ex-dividend firm value and « is the flow cost of posting a vacancy. Taking logs
and rearranging, the log job filling rate can be written as:

log gt = c¢q —log(1 — ¢xft) + Fe[re,e4n] — Felee,e4n] — Fe[per,itnl], (A.10)
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where ¢, = logk —log p; — %ﬁph) is a constant, 7,y is the present value of expected discount rates, es ¢+ is expected
cumulative earnings growth, and pe¢ ¢4 is the expected terminal price-earnings ratio. This decomposition extends the
|Campbell and Shiller| (1988) present value identity to account for hiring frictions due to job-to-job transitions. The job
filling rate ¢; is computed as the ratio of total hires to vacancies ¢; = % using JOLTS data for hires and job openings.
The total search pool S; includes both unemployed and a fraction ¢ = 0.12 of employed workers, based on estimates
from [Kuhn et al| (2021)) and [Faberman et al. (2022)). The job ﬁndlng rate is then inferred from the matching function as
ft = q¢ - 0¢, where labor market tightness is defined as 6; = S—t = m I assume that x = 0.75 of employed job
seekers accept offers. These parameter values imply an endogenous efficiency term ¢: and a retention rate 1 — ¢x ft, which
are used to adjust the firm’s hiring incentives and derive the decomposition. Subjective expectations of earnings growth
are from IBES, which aggregates analyst forecasts of total firm earnings and therefore reflect both UE and J2J hires.
Figure presents the decomposition of the job filling rate under this extended model with on-the-job search.
Consistent with the baseline analysis, the cash flow component remains the dominant driver of variation in the job filling
rate under subjective expectations. However, accounting for job-to-job transitions modestly shifts the decomposition:
the log retention rate term log(1 — ¢x f:) explains 8.9% of the variation in logg;. This adjustment reflects the influence
of selective separations on firms’ incentives to post vacancies. Overall, the results reinforce the finding that distorted
cash flow expectations are the primary driver of hiring fluctuations. The extension confirms that even when allowing
for endogenous separations due to on-the-job search, subjective belief distortions about firm-level earnings continue to

dominate the variation in hiring behavior.

Figure A.13: Time-Series Decomposition of the Job Filling Rate: On-the-Job Search
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Notes: Figure illustrates the discount rate, cash flow, and future price-earnings components of the time-series decomposition of the
aggregate job filling rate. Light bars show the contribution under rational expectations. Dark bars show the contribution under
subjective expectations. The sample is quarterly from 2005Q1 to 2022Q4. Each bar shows Newey-West 95% confidence intervals with
lags = 4.

A.9 Subjective User Cost of Labor

Overview The previous sections show that firms’ hiring decisions are heavily influenced by subjective cash flow ex-
pectations. This section examines whether expectations about the user cost of labor also contribute to hiring behavior,
since it is a key component of the firm’s cash flows. Using survey data, I show that subjective wage expectations are
significantly less cyclical than realized wages, implying that firms perceive labor costs as more rigid than they actually
are. To account for the possibility that wages depend on the economic conditions at the start of the job, I use survey
expectations from the SCE to measure the user cost of labor under subjective expectations. See Section [C] for more details
about its measurement.

In the search and matching model, the user cost of labor is the difference in the expected present value of wages
between two firm-worker matches that are formed in two consecutive periods. Existing work assumes full information
rational expectations and show that this user cost is more cyclical than flow wages, as workers hired in recessions earn
lower wages both when hired and over time (Kudlyak} 2014} Bils et al.| [2023)). This section relaxes that assumption by using
survey-based measures of subjective wage expectations. If firms and workers perceive the future path of wages as rigid,
the subjective user cost of labor may remain high even during recessions, dampening hiring and amplifying unemployment

fluctuations.
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Time-series evidence Figure compares realized real wage growth with 1-year-ahead subjective wage growth
forecasts from three sources: the Livingston Survey, the CFO Survey, and the Survey of Consumer Expectations (SCE).
Actual wage growth is clearly cyclical, with declines during downturns and strong rebounds during recoveries. In contrast,
subjective wage forecasts are far more stable over time. Even during major shocks, such as the 2008 financial crisis and
the COVID-19 recession, survey respondents anticipated only modest wage adjustments. Forecast errors are persistent
and systematically biased: wage growth forecasts overestimate during downturns and underestimate during expansions.

Figure A.14: Real Wage Growth: Actual vs. Subjective Expectations
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Notes: This figure plots ex-post realized outcomes (Actual) and 1-year ahead subjective expectations (Survey) of real wage growth.
x axis denotes the date on which actual values were realized and the period on which the survey forecast is made, making the vertical
distance between the actual and survey lines the forecast error. Subjective expectations F; are based on survey forecasts. Left panel
compares actual values of annual log real wage growth against the median consensus forecasts from the Livingston survey, where
wages are measured using average weekly earnings of production and nonsupervisory employees, manufacturing (CES3000000030).
Right panel compares annual log real wage growth against median consensus forecasts from the CFO survey and the subjective user
cost of labor measured from the Survey of Consumer Expectations (SCE), where wages are measured using average hourly earnings
of production and nonsupervisory employees, total private (CEU0500000008). Actual values are deflated using the Consumer Price
Index (CPIAUCSL). Livingston, CFO, and SCE survey expectations of nominal wage growth are deflated using median consensus
forecasts of CPI inflation from the Livingston, SPF, and SCE surveys, respectively. The sample period for Livingston is semi-annual
spanning 1961S1 to 2022S2, CFO survey is quarterly spanning 2001Q4 to 2022Q4, SCE is monthly spanning 2015M5 to 2022M12.
NBER recessions are shown with gray shaded bars.

To formally assess the cyclicality of real wage growth, Table panel (a) compares the relationship between changes
in the unemployment rate and real wage growth across rational and subjective expectations. As a rational expectations
benchmark, I use historical data on actual real wage growth to estimate the following regression, replicating existing
estimates in the literature (e.g., [1985} [Solon et al., 1994} |Gertler et all [2020):

Alogw; = Bo + B1Aus + &

where A log w; represents the actual annual log growth rate of real wages, Au; is the annual change in the unemployment
rate, and &; is the error term. B is the coefficient of interest and captures the cyclicality of real wage growth.
Under subjective expectations, I use survey data on expected real wage growth to estimate:

Fi_1[Alogw:] = Bo + L1 Fi—1[Auy] + €4

where F;_i[Alogw,] is the median survey forecast for the annual log growth rate of real wages, where the surveys are
either from Livingston, CFO, or SCE. F;_1[Auy] is the median survey forecast of the annual change in the unemployment
rate from the Survey of Professional Forecasters (SPF). The coefficient of interest 81 measures the cyclicality of expected
real wage growth as perceived by survey respondents.

Table panel (a) reports the estimates. Under rational expectations, actual real wage growth is clearly cyclical
since it is significantly negatively related to changes in unemployment rates. The magnitude of the estimate is also
consistent with prior estimates in the literature, with elasticities ranging from -3.05 to -3.46 depending on the sample
period (Solon et all [1994)). In contrast, subjective wage growth expectations are acyclical, with small and statistically
insignificant coefficients across all survey sources and sample periods. Notably, the magnitude of the estimated elasticity
is an order of magnitude smaller, ranging from -0.20 to -0.97 depending on the survey measure and sample period.
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Table A.10: Cyclicality of Real Wage Growth: Actual vs. Subjective Expectations

(a) Aggregate Time-Series
Actual: Alogw; = By + B1ldus + &4
Subjective: Fi_1[Alogw:] = Bo + S1Fi—1[Aus] + &+

196151-2022S2 2001Q4-2022Q4 2015M5-2022M12
Survey Survey Survey
Median Median User Cost
Actual (Liv) Actual (CFO) Actual (SCE)
(1) (2) (3) (4) (5) (6)
Unemployment Rate ~ —0.0340*** —0.0020 —0.0305*** 0.0006 —0.0346*** —0.0086
t-stat (—3.8684) (—0.1568) (—4.2477) (0.0800) (—6.6994) (—1.6332)
Adj. R? 0.1021 0.0003 0.2557 0.0001 0.4719 0.0498
N 124 124 85 85 92 92
Frequency SA SA Q Q M M
Sector Mfg Mfg Pvt Pvt Pvt Pvt

(b) Worker-Level New Hire Effect
Subjective: ]Ft—l [A IOg wiyt] = ﬁ() =+ ,BlFt_l[Aut] =+ Ft—l[H{Ni,t = 1}] . [BQ =+ ﬁg]Ft_l[Aut]] + gi,t

2015M5-2022M12

Survey Survey
(SCE) (SCE)
(1) (2)
First Fixed
Difference Effects
Unemployment Rate -0.0048 -0.0028
(0.0029) (0.0026)
New Hire 0.0036*** 0.0003
(0.0009) (0.0013)
Unemployment Rate x New Hire -0.0026 -0.0059
(0.0020) (0.0035)
Adj. R? 0.0011 0.0036
N 39,832 39,832
Frequency M M
Sector Pvt Pvt

Notes: Table reports estimates from time-series and worker-level regressions of annual log real wage growth on unemployment
growth. Subjective expectations F; are based on survey forecasts. Panel (a) reports estimates from time-series regressions using
the aggregate series. Panel (a) Columns (1)-(2) compare actual values of annual log real wage growth against the median consensus
forecasts from the Livingston survey, where wages are measured using average weekly earnings of production and nonsupervisory
employees, manufacturing (CES3000000030). Panel (a) Columns (3)-(6) compare compares annual log real wage growth against
median consensus forecasts from the CFO survey and the subjective user cost of labor measured from the Survey of Consumer
Expectations (SCE), where wages are measured using average hourly earnings of production and nonsupervisory employees, total
private (CEU0500000008). Panel (b) reports worker-level estimates from regressions of SCE survey expectations of wage growth on
survey expectations of unemployment growth, an indicator of whether the worker is a new hire, and the interaction between the two.
Actual wage growth is deflated using the Consumer Price Index (CPIAUCSL). Livingston, CFO, and SCE survey expectations of
nominal wage growth are deflated using median consensus forecasts of CPI inflation from the Livingston, SPF, and SCE surveys,
respectively. Subjective expectations of unemployment rates are from 1-year ahead consensus median forecasts from the SPF. The
sample period for Livingston is semi-annual spanning 1961S1 to 202252, CFO survey is quarterly spanning 2001Q4 to 2022Q4, SCE
is monthly spanning 2015M5 to 2022M12. Panel (a): Newey-West corrected t-statistics with lags 2 (semi-annual), 4 (quarterly), 12
(monthly) are reported in parentheses; Panel (b): Standard errors clustered by worker are reported in parentheses. *sig. at 10%.
**sig. at 5%. ***sig. at 1%.
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Cross-Sectional evidence To explore these patterns at the individual level, I use microdata from the SCE to estimate
subjective wage cyclicality separately for new hires and incumbents. The regression specification relaxes the rational
expectations assumption from |Gertler et al| (2020)) and includes an interaction between expected unemployment growth
and the probability of being a new hire:

Fi_1[Alogwi ] = Bo + BiFi—1[Aus] + Fe1 [I{Niy = 1}] - [B2 + BsFe—1[Awe]] + €4

where F;_1 [A log w; ¢] represents the time ¢t —1 subjective expectation of wage growth for worker ¢ at time ¢t. Fy_1[Awuy] is the
survey expectation of aggregate unemployment growth. The indicator variable I{V; ; = 1} equals one if the worker is newly
hired and zero otherwise. Its expectation Fy—1[I[{N;; = 1}] is thus the subjective probability that the worker will be newly
hired next period. The interaction term Fy_1[I{N;+ = 1}] - F+—1[Au¢] captures the differential sensitivity of expected wage
growth to unemployment changes for new hires relative to incumbents. The error term &;; accounts for individual-level
deviations in expectations. The coefficient 51 captures the overall cyclicality of subjective wage expectations, reflecting how
much workers expect wages to change in response to shifts in aggregate unemployment. The coefficient S2 measures the
baseline difference in expected wage growth between new hires and existing workers. The interaction term (3 determines
whether new hires expect wages to be more sensitive to unemployment fluctuations than incumbents do.

The results in Table panel (b) column (1) show that, even after controlling for differences between job stayers
and new hires, subjective wage expectations are highly rigid and exhibit weak cyclicality. The coefficient 51 is negative but
small, confirming the aggregate result in panel (a) that workers that are not new hires expect only mild wage adjustments
in response to unemployment fluctuations. The estimate for §2 is positive, suggesting that, on average, new hires expect
higher wage growth than job stayers. The interaction term f3 is negative but small in magnitude, implying that new
hires do not expect substantially greater cyclicality in wages compared to incumbents. Column (2) extends column (1)
by including worker fixed effects to find similar results. These findings extend the results from aggregate regressions by
showing that subjective wage expectations are highly rigid even at the individual level, regardless of job transitions. Both
new hires and incumbents perceive only weak cyclical variation in wages.

Implications for macroeconomic models These findings could have important implications for macroeconomic
models of unemployment fluctuations. If firms do not expect wages to fall during downturns, then the subjective user
cost of labor remains high even as demand declines, suppressing job creation. This mechanism is consistent with models
that rely on wage rigidity to explain labor market volatility (Shimer, |2005; Hall, 2005; |Christiano et al. 2016). These
results suggest that it could be reasonable for macroeconomists to introduce rigid wages under subjective expectations to
explain the volatility of business cycle fluctuations. Moreover, the persistence of subjective wage expectations may reflect
underlying frictions in information processing. Survey data on wage expectations can help distinguish between alternative
theories of wage formation. Unlike rational models where the timing of wage payments is irrelevant (Barrol [1977)), models
with sticky or inattentive expectations, such as those in Mankiw and Reis| (2002) or |Coibion and Gorodnichenko| (2015]),
can be better suited to capture the persistent behavior of expected wages. Finally, the finding that subjective cost of labor
is rigid suggests that volatile subjective cash flow expectations are unlikely to be driven by fluctuations in the user cost of
labor. Instead, firms may be over-reacting to other components of profitability, such as revenue expectations or perceived
demand conditions, rather than expected changes in labor costs.

B Model Details
B.1 Representative Agent Model

In this section, I present a search and matching model based on [Diamond| (1982), Mortensen| (1982, and |Pissarides
(2009). The model introduces subjective beliefs that may depart from rational expectations, thereby capturing the impact
of belief distortions on labor market dynamics. See |Petrosky-Nadeau et al.| (2018]) for a standard search and matching
model formulated under rational expectations. Consider a discrete time economy populated by a representative household
and a representative firm that uses labor as a single input to production.

Representative Household The household has a continuum of mass 1 members who are either employed L; or
unemployed U; at any point in time. The population is normalized to 1, i.e., Ly + U = 1, meaning that L; and U, are
also the rates of employment and unemployment, respectively. The household’s consumption decision implies a stochastic
discount factor Mi41. The household pools the income of all members before making its consumption decision. Assume
that the household has perfect consumption insurance and its members have access to complete contingent claims against
aggregate risk. Risk sharing implies each member consumes the same amount regardless of idiosyncratic shocks.

Search and Matching At the start of period ¢, the employment stock L; reflects the total number of workers carried

over from the previous period before any separations or new hires in period t. A fraction §; of these workers separate
during the period, so the number of continuing employees becomes (1 — d:)L¢. The representative firm posts job vacancies
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V; and engage in search over the course of the period to attract unemployed workers U;. Matches are formed at the end of
period ¢ according to a matching function m(Uy, V;), where ¢¢ = m(Uy, V;)/ Vi is the job filling rate, and fi = m(Us, Vi) /Uy
is the job finding rate. These new matches become part of the workforce starting in period ¢t + 1, so employment evolves
according to the employment accumulation equation:

Liy1=(1—06:)L: + q: Vi (A.11)

The job filling rate ¢: maps vacancy posting decisions made during period ¢ into employment outcomes observed at the
beginning of period ¢ + 1. The variance decomposition does not require us to fully specify the the matching function m.
Posting a vacancy costs the firm x > 0 per period, reflecting fixed hiring costs such as training and administrative setup.
Jobs are destroyed at a time-varying job separation rate ;. Unemployment U; = 1 — L; evolves according to:

Ut+1 = 6t(1 — Ut) + (1 — Qtat)Ut (A12)
where 0; = V;/U; denotes labor market tightness, defined as the vacancy-to-unemployment ratio.

Representative Firm The firm has access to a production function F' which uses labor L; as an input to produce
output Y; = F(L;). Dividends to the firm’s shareholders E; are defined as Ey = II; — xV;, where II; = Y; — W, L, is the
total profit before vacancy posting costs kV; and W, is the wage rate. As in|Petrosky-Nadeau et al.| (2018), I assume that
the representative household owns the equity of the firm, and that the firm pays out all of its earnings as dividends. I also
assume that firms have the same unconstrained access to financing as investors in the financial market. The firm posts the
optimal number of vacancies to maximize the cum-dividend market value of equity S:

St = max ]Ft Mt,t+ 'Et+ i A].3

{Vt+j’Lt+j}l;?C:O ; J J ( )
subject to the employment accumulation equation (A.11). The firm takes the wage rate W;, household’s stochastic discount
factor My, = [[2_, Miys, and job filling rate ¢, as given. F[-] denotes expectations conditional on information available
at period t, computed based on the firm’s possibly distorted beliefs. These beliefs may depart from rational expectations
E:[], with the nature and magnitude of the deviation disciplined using survey data.

Hiring Equation The firm’s optimal hiring decision equates the expected discounted value of hiring a marginal worker
with its marginal cost. Rewrite the firm’s problem in equation (A.13]) from infinite-horizon to recursive form:

St = max Ht — Ii‘/t -+ ]Ft [Mt+1St+1] (A14)
Vi, Lyt
s.t. Lt+1 = (1 — 5t)Lt + Qt‘/t (A15)

The first-order condition with respect to V; is:

o8
- + Iy |:Mt+1

O L] n16

OLiy1 OV;

Substitute agf,jl = q; and ({%7]";1 = (1 — ¢é¢) from the employment accumulation equation lb and rearrange l) in

terms of the marginal cost of hiring x/g::

% =T, {Mtﬂ gii] (A.17)
Next, differentiate S; with respect to Ly:
% = ZILIZ +F, {Mtﬂgii 8;};} (A.18)
Substitute ngl = (1 — ¢é¢) from the employment accumulation equation :
g%i = % (1—6,)F, {Mtﬂgiﬂ (A.19)
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Substitute equation (A.19)) for period ¢ + 1 into equation (A.17):

K 8Ht+1 8St+2
— =TF; | M, 1-6 F M, A.20
” t [ t4+1 <8Lt+1 +( 1) Fepr { t+2 OLots ( )
Finally, substitute in (A.17)) for period ¢ + 1 to arrive at the hiring equation:
K K
— =T; |:Mt+1 (ﬂ't+1 + (1 — 6t+1) ):| (A.Ql)
qt qt+1
v
Cost of hiring Expected discounted value of hiring

where 7 = Oty

= 5L is the profit flow from the marginal hired worker. The hiring equation relates the marginal cost of hiring
i with the expected marginal value of hiring to the firm, which equals the future expected marginal benefits of hiring
discounted to present value with the stochastic discount factor M;41. The future marginal benefits of hiring include 741,
the future marginal product of labor net of the wage rate, plus the future marginal value of hiring, which equals the

future marginal cost of hirin (1 = 8¢41). During recessions, job filling rates ¢; are high, which

makes the cost of hiring k/q: low The low cost of hiring must be rationalized by either low expected discounted profit
flows F¢[Miy1mey1] or low future value of hiring (1 — 5t+1) ey . The hiring equation is the labor market analogue of the
optimality condition for physical capital in the g theory of investment (Hayashi, [1982), where x/q: is the upfront cost of
investment analogous to Tobin’s marginal ¢ and d:4+1 is the depreciation rate.

Constant Returns to Scale (CRS) Next, I derive the firm’s stock price implied by the optimal hiring decision.
Assume a constant returns to scale (CRS) production function so that marginal profits equal average profits:

Tit1 L1 = i Litv1 =141 (A.22)
+

Multiply both sides of the hiring equation by the number of employees Li41:
K K
— Ly =T [Mt+1 <7Tt+1Lt+1 +(1- 5t+1)7Lt+1>:| (A.23)
qt qt+1
Substitute in the employment accumulation equation (A.15) and rearrange terms:
K K
—Lit1 =T [Mt+1 <7Tt+1Lt+1 + 7(Lt+2 - Qt+1Vt+1)>] (A-24)
qt qt+1
=T [Mt+l <7Tt+lLt+1 — kVig1 + qLLHz)} (A.25)
t+1

Use the constant returns to scale assumption to simplify w41 Li41 — kVig1 = g1 — kVig1 = Erga:

qﬁLt+1 =T, |:Mt+1 (Ez+1 + Lt+2):| (A.26)
t

qt+1

Substitute the equation recursively:

*Lt+1 =F [Z Myt Bt

j=1

=+ hm Fy |:Mt t+Tq7Lt+T+1:| (A27)
+

The first term on the right-hand side is the firm’s stock price P, = S; — E:, which is the firm’s ex-dividend equity value.
Take the second term to zero by applying a transversality condition to arrive at an equation that relates the total cost of
hiring with the firm’s stock price:

K
th+1 == Pt (A28)
qt

where employment L;y; is determined at the end of date ¢ under our timing convention from equation (A.11). Take
logarithms of both sides of the firm’s stock price equation (A.28) and rearrange terms:

i =lo & —lo
L.  8E, % L s

log k — log q: = log = per — ely (A.29)

for notational convenience.

where I define pe; = log P’ and el; = log Lot
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Log-linear Approximation of Price-Earnings Ratio To express the price-earnings ratio pe; in terms of forward-
looking variables, start by log-linearizing the price-dividend ratio pd: = log(P:;/D:) around its long-term average pd
(Campbell and Shiller} [1988)):

pdy = cpa + Adir1 — re41 + ppdita (A.30)

is the log stock return (with dividends), and p = exp(pd)/(1+

. . .. Pio1+D
where cpq is a linearization constant, 7441 = log(%f‘“)

exp(pd)) = 0.98 is a persistence parameter that arises from the log linearization. Rewrite the equation in terms of log
price-earnings instead of log price-dividends by using the identity pe; = pd; + de:, where de: log payout ratio:

per = Cpa + Aeryr — Tep1 + ppest1 + (1 — p)des s (A.31)

Since 1 — p &~ 0 and the payout ratio de; is bounded, (1 — p)de;+1 can be approximated as a constant, i.e., cpe =
cpd + (1 — p)det4+1 (De La O et al.| [2024):

pet X Cpe + Aert1 — i1 + ppet+1 (A.32)
Recursively substitute for the next h periods
pee =Y 0" (Cpe + Dty —Teig) + p"perin (A.33)
j=1

Decomposition of Job Filling Rate Substitute the log-linearized price-earnings ratio in equation (A.33)) into the
hiring equation in equation (A.29):

h
log g+ = logk — pe: — el = log k — |:Z pjfl(cpe + Aery; — Tegj) + phpeH_h} — el (A.34)

Jj=1

Rearrange and collect terms to obtain an ex-post decomposition of the job filling rate:

h h
log g: = cq + Zp‘7_1rt+j — |ely + Zp]_lAetﬂ] —p"pein (A.35)
Jj=1 j=
——
Tt,t+h €t,t+h Pet t+h
_ h
where ¢, = logk — %ﬁf) is a constant. The equation decomposes the job filling rate into future discount rates

Ttirh = 2?21 pjflrtﬂ, cash flows e;+n = ely + Z?:l M71A6t+j, and price-earnings pe; ¢+pn = phpeH_h. The cash
flow component consists of one period ahead log earnings-employment el:, which captures news about current cash flow
fluctuations, and j = 1,..., h period ahead log earnings growth Ae;4;, which captures news about future cash flows. The
earnings-employment ratio can be interpreted as a measure of the marginal product of labor under constant returns to
scale (David et al.l 2022). pet:+n is a terminal value that captures other long-term influences beyond h periods into the
future not already captured in discount rates and cash flows. Since equation holds both ex-ante and ex-post, it can
be evaluated under either subjective or rational expectations. The subjective decomposition replaces ex-post realizations
of future outcomes with their subjective expectations:

logg: = ¢4 +ZP "Fi[rees] —

j=1

elt + Zp Ft A€t+J]:| —p Ft [p€t+h] (A36)

Fi[rt,e4n] Fielet,t4n] Fe[pes,t4n]
Alternatively, the rational decomposition replaces ex-post realizations of future outcomes with their rational expectations:

h
logge = cq+ Y o' Eufrers] —

j=1

elt + Zp Et A6t+J]:| —p ]Et [p€z+h] (A37)

Etlre,e4n] Eiles,t4n] Et[pes t4n)

Comparing these decompositions can quantify how belief distortions affect the job filling rate.
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Estimation The econometrician can estimate the variance decomposition using predictive regressions of each expected
outcome on the current job filling rate. For the subjective decomposition, demean each variable in equation (A.36]), multiply
both sides by the current log job filling rate log q:, and take the sample average:

Var [log qi] = Cov [Fi[re,i4n],10g q:] — Cov [Feler,t+n], log g] — Cov [Fi[pet,t+n], log g (A.38)

where Var[-] and Cov[-] are sample variances and covariances based on data observed over a historical sample. Finally,
divide both sides by Var [log ¢:] to decompose its variance:

_ Cov[Fifreeqn] logg]  Cov[Fileresn],logq]  Cov[Filper,eqn], log ]

1= A.39
Var [log g4 Var [log g4 Var [log g4 ( )

Discount Rate News Cash Flow News Future Price-Earnings News

The left-hand side represents the full variability in job filling rates, hence is equal to one. Each term on the right reflects the
share explained by subjective expectations of discount rates, cash flows, or price-earnings ratios. Under stationarity, the
econometrician can estimate these shares using the OLS coefficients from regressing F¢[r t+r], Fe[et,t+n], and Fe[pet,s4+n] on
the current log job filling rate log g;, respectively. Finally, the decomposition under rational expectations can be estimated
similarly based on equation by replacing the subjective expectation Fy[-] with its rational counterpart E¢[-]:

_ Cov[Et[ri,in],logg:] — Cov[Etlerin],loggi] — Cov[Et[per,iin],loggi]

1
Var [log g4 Var [log g4 Var [log g4

(A.40)

Discount Rate News Cash Flow News Future Price-Earnings News

Under stationarity, the econometrician can estimate these shares using the OLS coefficients from regressing E¢[r: ¢+n],
Et[et,t+n], and E¢[pet 4] on the current log job filling rate log g:, respectively.

B.2 Decomposition of Unemployment Rates

The unemployment rate can be decomposed into components similar to the decomposition for job filling rates from
equation (A.36)). Log linearize the unemployment accumulation equation from equation :

Ut+1 = (St(l — Ut) —+ (1 — qtet)Ut (A41)
Denote the steady state values without time subscripts: U, J, ¢, and 6. Define log deviations from steady state as

¢ = log(X:) — log(X) for some variable X. Log-linearizing the accumulation equation around the steady state involves
taking a first-order Taylor approximation:

Uet+! ~ 668‘(1 —Ue™) +(1— q(9e'§’5+ét)Ue{“5 (A.42)
Use the approximation Xe®* = X (1 + x:), expand, and simplify:

Use the steady state equation and collect terms with log deviations:

Utpi1 =~ 6(1 — U)d; — Uty — qOU G — qOU B, + U (1 — qf) iy (A.44)
Divide both sides by U:
Qg1 & L{;U)& — 8ty — q0G; — q00; + (1 — q0) s (A.45)
The steady state relationship §(1 — U) = ¢0U implies: w = gf. Substitute this back into our equation:
tes1 ~ —q0Gs 4+ (1 — 6 — 0 — q00; + qb6; (A.46)

Finally, substitute in equation (A.36)), which is a decomposition of the job filling rate ¢; into discount rate, cash flow, and
future price-earnings under subjective expectations:

’(ALt+1 ~ 7q0'Ft['ﬁt,tﬁ»h}‘i’qe'Ft[ét,t+h]+ qG-Ft[]fet,t+h} + (1 767(]0) 'ﬂt 7q9ét+q95t (A47)

Discount Rate Cash Flow Future Price-Earning Lag Unemployment, Tightness, Separations
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The equation holds both ex-ante and ex-post. Therefore, I compare results from evaluating the equation under subjective
F¢[] or rational E.[-] expectations. The decomposition can be estimated using regressions of the log unemployment rate
on each of the components shown in the equation:

U1 = Po + Brue + B2 log 0: + B3 log ¢ + LaFi[re,t+n] + BsFeler,t+n] + €41 (A.48)

where lowercase variables denote log deviations from steady state. I estimate the decomposition using multivariate OLS
regressions to jointly identify the relative contributions of each component to observed unemployment fluctuations. To
ensure stationarity and remove seasonal effects, I estimate the regression in log annual growth rates relative to the same
quarter of the previous year. The future price-earnings ratio term AF¢[pe; yr] has been omitted in the multivariate
regression because it is nearly collinear with future discount rates AFy[r::+n] and cash flows AF¢les ¢+n] through the
Campbell and Shiller| (1988) present value identity in equation . Similarly, the equation can also be estimated under
rational expectations by replacing F:[-] with its rational expectations counterpart E.[-] based on machine learning forecasts.

B.3 Regional Model

Model Setup This section presents a multi-area, multi-sector search-and-matching model with imperfect mobility
across sectors, building from the models in |[Kehoe et al.| (2019) and |Chodorow-Reich and Wieland| (2020). The economy
consists of a continuum of islands indexed by s. Each island produces a differentiated variety of tradable goods that is
consumed everywhere and a nontradable good. Both of these goods are produced using intermediate goods. Each consumer
is endowed with one of two types of skills which are used in different intensities in the nontradable and tradable goods
sectors. Labor is immobile across islands but can switch sectors. This assumption aligns with empirical evidence indicating
that labor markets are predominantly regional in nature (Manning and Petrongolo, 2017). Consumers receive utility from
a composite consumption good that is either purchased in the market or produced at home. Consumers and firms are
ex-ante homogeneous and share the same subjective expectation F.[-]. The islands only differ in the shocks that hit them.

Preferences and demand The composite consumption good on island s is produced from nontradable goods X v,
and tradable goods X, 7+

K
Xoy = [T%(XS,N,t)1*% . ﬂﬁ(xam)l*ﬁ} AT (A.49)

where p is the elasticity of substitution between tradable and nontradable goods. Demand for nontradable and tradable
goods on island s is

Ps Nt e Psrt e
Xs,N,t =T — X.s,t, X.s,T,t = (1 - 7') — XS,t (A50)
Ps,t Ps,t

where Ps n, is the price of the nontradable good and Ps 1, is the world price of the composite tradable good. The price
of the composite consumption good on island s is

_1
Poy= [rP) 3, + (L= )Pl ] T r (A.51)

The tradable good is a composite of varieties of differentiated tradable goods produced in all islands s’

HrT
pp—1

pp—1 ,
XS,T,t = |:/XS,T,t,s’ rT ds (A52)

where X 1, is the amount of the variety of tradable good produced on island s’ and consumed on island s. pr is
the elasticity of substitution between varieties produced on different islands. Let Py r: be the price of tradable variety
produced on island s’. Assume that there are no costs of shipping goods from one island to another, so that the law of one
price holds and all islands purchase the variety s at the common price Ps 7. The price of the composite tradable good is
common to all islands

1
Tpr
Pr.= [ / P;,;f?ds] “T (A.53)

The demand on island s’ for a tradable variety produced on island s is therefore

Ps,T,t HT
X.S’,T,t,s = Pr, Xs’,T,t (A54)
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so that the world demand for tradable goods produced by island s is

Ps —HT
Yo = /Xs’ reds’ = | =200 Yr. (A.55)
Tt Pr

where Yr: = [ Xo 1.:ds’ is the world demand for the composite tradable good. Since any individual island is of measure
zero, shocks to an individual island do not affect either the world aggregate price of tradables Pr; or the world demand
for tradables Y7 ;. Normalize the constant world price of the composite tradable good Pr: to one so that the composite
tradable good is the numeraire.

Family’s problem Each family of workers on island s chooses sequences for consumption {Cs .} and assets {As 41}
to maximize the present discounted value of consumption

oo

t
max u(C A.56
Cs,t)As t+1 ; ﬁ ( s,t) ( )
where the family’s consumption Cs ; = X, ¢+ + bs,: is the sum of goods purchased in the market X+, and produced at home
bs,: which can be consumed only by that family. The budget constraint is

P Xst + qAAs,z+1 =Y+ Est + Ast (A.57)

where Ps; is the price of the composite consumption good on the island, A, are the family’s assets, and the family saves
or borrows at a constant world bond price ¢* > 8. Y., is the income of the family’s workers in the form of wages

Yot = Z Ws,itLs,it (A.58)
i€{N,T}

and E; . are profits from the firms the family owns on island s

Es: = Z Es it = Z [(zs,6,6 — We,i,t) Ls,ist — KV i) (A.59)
i€{N,T} i€{N,T}

where z,,; ¢ is a sectoral labor productivity shock, ws ;¢ is the wage of an employed worker, L ; ; is the measure of employed
workers, and V; ;; is the measure of vacancies for producing intermediate goods of type ¢ on island s. From the first-order
condition for the family’s problem, we can derive the shadow price of the composite consumption good at date ¢ in units
of the composite consumption good at date 0 on island s as

t u,(Cs,t)/Ps,t

M =
>t /8 u/(CS,O)/PS,O

(A.60)

Technology Nontradable and tradable goods are produced with locally produced intermediate goods. These interme-
diate goods are used by the nontradable and tradable sectors in different proportions. This setup effectively introduces
costs of sectoral reallocations of workers because it implies a curved production possibility frontier between nontradable
and tradable goods. The economy has two types of intermediate goods: Type A and type 7 goods. The technology for
producing nontradable goods disproportionately uses type AN goods, whereas the technology for producing tradable goods
disproportionately uses type T goods according to the production technologies

Yone = AN (VN )™ Yore = AV ) (Y 10)” (A.61)

with v > 1/2. ijw and Y;j}fp’t denote the use of intermediate inputs of type A in the production of nontradable and
tradable goods, whereas YSTN,t and YSTT¢ denote the use of intermediate inputs of type 7 in the production of nontradable
and tradable goods. Both nontradable goods producers and tradable goods producers are competitive and take as given
the price of their goods, Ps n,: and Ps 7,:. The demands for intermediate inputs in the nontradable goods sector are

1—v v

N Pl T Pl

Yine=v PN Yo, N, Yinve=(01-v) P Ys Nt (A.62)
s,t s,t

where PS/% and PZ; are prices of the intermediate goods A/ and 7. The equation was derived under the normalization
A=v""(1 —v)'7". Likewise, the demands for intermediate inputs in the tradable goods sector are

v 1—v
N Py, T Pl
Yir:=(1-v) T Y 1,t, Yire=v PN Yot (A.63)
s,t s,t
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Adding up the demands for each type of intermediate good by the two sectors gives the total demand on island s for
intermediate goods of type i

Y= Ysi,N,t + Ysi,T,t (A.64)

)

Production of these intermediate goods is given by
or = Zs,ist - Lot (A.65)

where Lg;: is the measure of employed workers producing intermediate goods of type i on island s. zs,;: represents
exogenous labor productivity for producing intermediate goods of type ¢ on island s. Zero profit conditions in nontradable
and tradable goods sectors imply

Ponge = (PY)Y(PI)'™, Pore= (P (P (A.66)

N N

Assume that there are measures of consumers 7 and 77 = 1 — 7V in occuprations A" and 7 who supply labor to
produce the two types of intermediate goods N and T, respectively. Consumers in occupation N can produce good N,
and consumers in occupation 7 can produce good 7. Consumers are hired by intermediate goods firms that produce
intermediate goods of either type A or 7. These goods are then sold at competitive prices Pﬁé and PST,t to firms in
the nontradable and tradable goods sectors. It is equivalent to think that the consumers in each occupation work in the
sector that purchases the goods they produce. Under this interpretation, we can think of consumers in occupation T
as being employed in sectors N and T and consumers in occupation N as also being employed in sectors N and T in
different proportions. Sector N employs consumers in occupation N relatively more intensively, whereas sector T employs
consumers in occupation 7 relatively more intensely.

This setup captures in a simple way the idea that switching sectors is relatively easy, whereas switching occupations
is difficult. Note that any individual consumer faces no cost of switching sectors. But if a positive measure of consumer
moves from one sector to the other, then the marginal revenue product of the consumers in the new sector falls and so do
wages. This reduction in marginal revenue products acts like a switching cost in the aggregate.

Labor market Firms that produce intermediate good i € {N,7T} post vacancies for consumers in occupation i,
who produce intermediate good ¢ when matched. Assume that consumers cannot switch occupations, so the measure of
consumers in each occupation is fixed. The values of consumers in occupation ¢ of island s are

Ws,i,t(zs,i,t) = ws,i,t(zs,i,t) (A67)
+(1- 5)Ft[Ms,t,t+1W5,i,t+1(Zs,i,t+1)] (A.68)
+ 5Ft[Ms,t,t+1ﬁs,i,t+1(Zs,i,t+1)] (A.69)
for employed consumers, and
ﬁs,i,t(zs,i,t) = Pibs,t(2s,it) (A.70)
+ F [Ms,t,H-lfs,i,t(Zs,i,t)ws,i,t-&-l(Zs,i,t—o—l)} (A.71)
+ Fy[Moe41(1 — fs,i,t(z.s,i,t))ﬁs,i,t+1(Zs,i,t+l)] (A.72)

for nonemployed consumers. ws.;+(2s,i,¢) is the wage received by a consumer in occupation i. fs i +(2s,,¢) is the job-finding
probability of a consumer in occupation i. bs:(2s,,:) is the output of a consumer when not employed. 4 is an exogenous
separation probability. Subjective expectations F[-] are with respect to next period’s productivity zs,:,¢+1.

The value of a firm producing intermediate good ¢ matched with a consumer in occupation ¢ with productivity zs ;¢ is

Js,i,t(Zs,i,t) = Ps,i,tzs,i,t - ws,i,t(zs,i,t) + (1 - 6)Ft [Ms,t,t+1t73,i,t+1(Zs,i,t+1)] (A-73)

A consumer in occupation ¢ matched with a firm in intermediate good sector i produces zs,; : units of good i, which sells
for Ps;t2s,i,, and the firm pays the consumer ws,; (zs,i,:). The cost of posting a vacancy is x units of the composite
tradable good. Free entry for intermediate goods producers in the labor market for workers in occupation ¢ implies

K= Qs,i,t(2s,i,t) - Fu [Ms,t,H—l js,i,t+1(zs,i,z+1)] (A.74)
The matches of firms that produce intermediate good ¢ with consumers are

Us,i,t(zs,i,t)‘/s,i,t (Zs,i t)
[Us,it(26,i,6)" + Vi it (2s,5,6)7]1/7

Ls,i,t(zs,i,t) = (A75)
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where Us ;,t(2s,i,¢) is the measure of nonemployed consumers and Vs ; +(zs,i¢) is the measure of posted vacancies to attract
such consumers. The parameter n governs the sensitivity of fs i ¢(2s,i,t) to s,:. The worker job-finding rate fsi.+(2s,:,t)
and firm job-filling rate g¢s,i ¢(2s,:,:) are

Foseonia) = G = g (A79
Gs,i,t(2s,i,t) = ‘L/::z((j::)) = i +9s,i,t(1Zs,z‘,t)"}1/" (A.77)
where 0s;t(2s,it) = Vs,i,t(2s,5,t) /Us,i,t(2s,5,t) is the vacancy to nonemployment ratio.
The Nash bargaining problem determines the wage ws;,1(zs,i,¢) in any given match
max (Wit (2s.0) = Usive(25.00] Tt (z5,00) 7 (A.78)

where 7 is a consumer’s bargaining weight. Defining the surplus of a match between a firm and a consumer as gs,i,t(zs,i,t) =
Wit (2s,it) — Us,irt(2s,5,6) + Js,i,t(2s,5,t), Nash bargaining implies that firms and consumers split this surplus according to

Weit(Zs,i) = Usiit(Zs,00) = ¥sit(2eit)y Joe(zsie) = (1 =) (25,00) (A.79)
Equilibrium Market clearing for the two types of intermediate goods requires that
Vet = 2syist - Lojig = YN+ Yip,, i€{N,T} (A.80)

the left side of this equation is the total amount of intermediate goods of type ¢ produced by employed workers in occupation
i on island s, L ;. The right side is the total amount of these intermediate goods used by firms in the nontradable and
tradable goods sectors on that island. Employment in the nontradable goods sector on island s is

N T

Yiine Yo
Nt p s Nt A.81
Y;‘A{t’ Nt t+ YsTt Tt ( )

Employment in the tradable goods sector on island s is

Y Y7,
Ve Ls,./\f,t + e Ls,T,t (A82)
YN Y7,

The relative demand effect on employment in the two sectors captures the idea that, since Y;', Nt/ Yeie + Y;T¢ /Ysir=1
for i € {N, T}, any shift in demand from the nontradable goods sector on an island, holding fixed total employment on the
island, decreases employment in the nontradable goods sector and increases it in the tradable goods sector on the island.

Market clearning for nontradable goods requires that the demand for nontradable goods on island s equal the amount
on nontradable goods produced on island s

Xone = AV ) (V)™ (A.83)

Similarly, market clearing for tradable goods requires that the world demand for tradable goods produced from island s
equal the amount of tradable goods produced on island s

Yoo = A(Ksj,\é‘,t)l_y(}{sTT,t)” (A.84)

Decomposition of Regional Job Filling Rates Combine the value of the worker to the firm with the zero-profit
condition for entering firms, and substitute recursively:

K

~ K
=F[Mst141Js,6,041] = Fe |:Ms,t,t+1 (Ps,i,t+lzs,i,t+l — Ws,ie41 + (1 — §)q >] (A.85)
s,1,t+1

q.s,i,t
Multiply both sides by employment Ls ; ++1, and substitute in the law of motion Ls ;41 = (1 — ) Ls,i,t + Gs,i,t Vs,i,t

K
Qs,i,t

Lsii41 =Ty {Ms,t,tﬂ <(Ps,z‘,t+lzs,i,t+1 — Ws,i,t41) Lsier1 — £V i 041 + Ls,i,t+2):| (A.86)

Qs,it+1
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Define earnings as profits after vacancy posting costs Es i+ = (Ps,i,t2s,i,t — Ws,i,¢)Ls,i,t — £Vs,i,¢, and substitute recursively:

. T-1 / j
Lsity1 =T [Z <H Ms,t+k:—1,t+k:> Esittj

Gs.it j=1 \k=1

L t+7+1 (A.87)

+ F |:Ms,t+T—1,t+T

qs,i, t+T

Take limits as 7" — oo while applying a transversality condition to rule out bubbles

) J
K
——Lsi041 =y |:Z (H Ms,t+k1,t+k> Es,i,t+j:| = PSE,i,t (A.88)

syt j=1 \k=1

where Rfi,t is the firm’s ex-dividend value. Aggregate hiring condition to regional level as employment-weighted averages:

E
K P
— s (A.89)
gsit  Lsisr
) _ Lsit+1 _ Ls,it+1 sk . . . _ 1 ) -1
where S5 ;141 = Lo = Sverlowm o industry i’s employment share in region s. Define s+ = (3, mss’zytﬁﬁl) ,

Pft =Y el Rfi,t, and Est =), ., Es,i,¢ as the employment-weighted job filling rate, total equity value, and total earnings
of firms in region s. Take logarithms on both sides and expand the price-employment ratio Pft /Ls 41

PE
log ¢s,+ = log k — log (Es’t> — log ( s ) =logk — pes,t — €els,t (A.90)

s,t s,t+1

where pes; = log(PF,/Es.) is the log price-earnings ratio and els,; = log(Es,/Ls+1) is the log earnings-employment
ratio. Next, log-linearize the price-earnings ratio by first log-linearizing the price-dividend ratio pds,; around its long-term
average pd (Campbell and Shiller} |1988)):

pds,t = Cpa + Ads,t41 — T's,p+1 + ppds 41 (A.91)
where c¢,q is a linearization constant, rsi+1 = log(}%"%’?s"“) is the log stock return (with dividends), and p =

exp(pd)/(1 + exp(pd)) = 0.98 is a persistence parameter that arises from the log linearization. Rewrite the equation in
terms of log price-earnings by using the identity pes: = pds,+ + des,:, where des,; is the log payout ratio:

DPest = Cpd + Aes i1 — Ts,i41 + ppes,i+1 + (1 — p)des, 41 (A.92)

Since 1 — p =~ 0 and the payout ratio des,; is bounded, (1 — p)des++1 can be approximated as a constant, i.e., cpe
cpa + (1 — p)des, 41 (De La O et al., 2024):

Des,t R Cpe + Aes 41 — Tst+1 + PPEs,t+1 (A.93)

Recursively substitute for the next h periods
h N
Pesi =D 0" H(cpe + Desiry — Toitg) + o pesiin (A.94)
j=1

Substitute log-linearized price-earnings into the hiring equation:

h h
j—1 j—1 h
108 Gst = cq+ D 0" oy — |eloi+ D 07 Aes iy | — ppesiin (A.95)
j=1 j=1
——
Ts,t,t+h €s,t,t+h Pes t,t+h
Cpe(l_ph>

where ¢ = logk — 1=, — is a constant. 75 n captures news about discount rates. e+ captures news about cash
flows. pes+n is a terminal value that captures other long-term influences beyond h years into the future that is not
already captured in discount rates and cash flows. The decomposition above holds both ex-ante and ex-post. I consider
ex-ante decompositions under subjective expectations Fq[-]:

log qs,t = cq + Fe[rse,e4n] — Feles,t,ern] — Fe[pes,t e+n] (A.96)

where Fy[zs,+,1+5] denotes the h period ahead subjective conditional expectation of variable z for the firm in region s.

38



Predictability of Regional Unemployment Rates To derive implications for unemployment at the regional
level, start with the disaggregated accumulation equation:

Us,ijt+1 = 0s,i,6(1 — Us,i;t) + (1 — fs,i,6)Usit (A.97)

where Us ; + denotes the measure of unemployed workers in occupation i region s. Aggregate across the occupations to get
total regional unemployment U; s =Y., Us,i¢:

iel
Ust41 =0s:(1 —Ust) + (1 — fot)Uspt (A.98)
where it is assumed that ds,i,t = s,¢, fs,i,6 = fs,t- A log-linearization around steady state similar to Section @ gives us:

Us,p4+1 = q0logds s + (1 — 3§ — gO)us,t — qOloggs,: — qf log O, (A.99)

where lower-cased variables denote log deviations from steady state. Finally, substitute in equation (A.96]), which is a
decomposition of the job filling rate log gs,: into discount rate, cash flow, and future price-earnings components:

Usjiy1 = — qOcg —qO -Fi[rs e vn] +q0 - Files e ivn] + G0 - Fe[pes,,en) (A.100)
Constant Discount Rate Cash Flow Future Price-Earning
+(1—-86—qb) ust—qb-logbs: + qb - log ds.¢ (A.101)

Lag Unemployment, Tightness, Separations

The equation holds both ex-ante and ex-post. Therefore, I compare results from evaluating the equation under subjective
F.[-] or rational E.[-] expectations. The decomposition can be estimated using regressions of the log unemployment rate
on each of the components shown in the equation:

Us,t41 = BrFe[rs e e4n] + BeFiles,t,t4n] + ’Y/Xs,t + as + oy + Es,t4+1 (A.102)

where X+ = [us,t,log0st,log 657t]’ collects the labor market factors. I estimate the decomposition using multivariate
regressions to jointly identify the relative contributions of each component to observed unemployment fluctuations. To
ensure stationarity and remove seasonal effects, I estimate the regression in log annual growth rates relative to the same
quarter of the previous year. The future price-earnings ratio term F:[pes¢:+r] has been omitted in the multivariate
regression because it is nearly collinear with future discount rates Fi[rs.:+r] and cash flows Fi[es¢+4n] through the
Campbell and Shiller| (1988) present value identity in equation . Similarly, the equation can also be estimated under
rational expectations by replacing Fy[-] with its rational expectations counterpart E;[-] based on machine learning forecasts.

C Data Detalils

This section describes the time-series and cross-sectional data sources used in the estimation. I use quarterly data on
the variables represented in the decomposition from equations and : employment L;, unemployment U, job
filling rates ¢, stock returns ¢+, earnings growth Aes ¢4, price-earnings ratio pe:yn, and earnings-employment ratio
eliyn. For each dependent variable of the decomposition, I also construct their corresponding survey expectations F; and
machine expectations E;.

C.1 Employment

For realized values of employment, I first construct an annual series for the aggregate number of employees (EMP) of
the S&P 500 constituents by using accounting information from the CRSP and Compustat Merged Annual Industrial Files.
The data spans 1970 to 2022 and was downloaded from WRDS on July 26, 2023. I aggregate the firm-level employment
data to construct a total employment series for the S&P 500. I interpolate this series to a monthly frequency by using
the fitted values from real-time regressions of log annual Compustat employment series on the log monthly BLS series
for total nonfarm payrolls (PAYEMS). The regressions are estimated over recursively expanding samples from an initial
monthly sample that begins on 1970:01 and ends on the month of the data release for each month’s total nonfarm payrolls.
To ensure that the fitted values do not use future information not available on each data release, I align each monthly
BLS nonfarm payroll release with the annual Compustat S&P 500 employment series from the previous calendar year. To
obtain a measure of employment L;y1 at the beginning of period ¢ + 1, I convert the monthly interpolated values to a
quarterly frequency by taking the value of the series as of the last month of each calendar quarter. This timing assumption
ensures that the measures are consistent with the timing conventions from Section [B] while still remaining known to firms
by the end of period ¢t. Data on nonfarm payrolls was downloaded through FRED on May 15, 2024.
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C.2 Job Filling Rate

I construct a monthly series for the number of vacancies V; following |Barnichon/ (2010)), by using JOLTS job openings
starting 2000:12 (JTS00000000JOL) and extending the series back in time using the help-wanted index before 2000:12.
The vacancies data has been downloaded from available on the author’s website on May 19, 2024. For realized values of
unemployment Uy, I use the BLS monthly series for the unemployment level (UNEMPLOY), downloaded through FRED
on May 15, 2024. Labor market tightness 6; = V; /U, is the ratio between vacancies and unemployment. The job separation
rate J; uses the corresponding series from JOLTS.

I follow |Shimer| (2012)) in constructing the job separation rate &, job finding rate f;, and job filling rate ¢;. Job
separation rate is the share of short-term unemployed out of total employment §; = U; /L, where U is the BLS series for
the number of unemployed less than 5 weeks (UEMPLTS) that was downloaded through FRED on May 15, 2024. The job
finding rate is:

U —U;

Ui—1

The expression for the job finding rate follows from the unemployment accumulation equation:

fi=1

U= (1— fo)Ui—1 + Uy

which states that unemployment Uy consists of either the previously unemployed U;—1 who did not find a job (1 — f), or
the short-term unemployed U that lost a job during the current period. The job filling rate is defined as the share of filled
vacancies fiV; out of unemployment Uy:

fe Ve

Qt Ut
I first construct the job filling rate ¢; at the monthly frequency. To remove high-frequency fluctuations that likely reflect
measurement errors, I time-aggregate the monthly series to a quarterly frequency by taking a 3-month trailing average
that ends on the first month of each calendar quarter. This timing assumption ensures that the survey and machine
expectations in the variance decomposition do not use advance information about job filling rates that were not published

at the time of each forecast. To ensure that all variables used in the variance decomposition are stationary, I follow |[Shimer
(2012) by detrending the quarterly job filling rate g; using an HP filter with a smoothing parameter of 10°.

C.3 Wages

To assess the cyclicality of subjective wage expectations, I use publicly available survey and macroeconomic data
to construct measures of actual real wage growth, subjective wage expectations, and unemployment rate changes. The
Livingston Survey (semi-annual, 196151-2022S52), the CFO Survey (quarterly, 2001Q4-2022Q4), and the Survey of Con-
sumer Expectations (SCE) (monthly, 2015M5-2022M12) provide the necessary data. I derive subjective wage growth
expectations from median consensus forecasts of nominal wage growth in these surveys. The Livingston Survey forecasts
are deflated using its own median CPI inflation forecast, while the CFO and SCE survey forecasts are deflated using CPI
inflation expectations from the Survey of Professional Forecasters (SPF).

To account for the possibility that wages depend on the economic conditions at the start of the job, I use survey
expectations from the SCE to measure the user cost of labor UCY¥ under subjective expectations. In the search and
matching model, the user cost of labor is the difference in the present value of wages between two firm-worker matches
that are formed in two consecutive periods. Existing work measures the user cost of labor under full information rational
expectations and finds that the user cost is more cyclical than the flow wage, suggesting that workers hired in recessions
earn lower wages not only when hired but also in subsequent periods (Kudlyak, |2014; Bils et al.| [2023). The survey-based
measure this this paper relaxes the rational expectations assumption maintained in existing work. Consider the free-entry
condition in the search and matching model:

qt

K
— = Jis
qt

where a firm must pay a per vacancy cost of k and vacancies are filled with probability g;. J¢ - is the value of a firm with
a worker at time 7 such that the productive match started at time t¢:

Jt,r = 2t — Wit + Z (B(1—68))""'F: [2r — wi,r]

T=t+1

where F.[-] denotes subjective expectations based on survey data. 8 = 0.9569 is a discount factor and § = 0.295 is the
probability that a employment relationship is terminated, both from [Kudlyak| (2014)). Each period 7, a firm-worker match
produces a per period output of zr and an employed worker received wage w;,r where ¢ is the period when the worker is
hired. wy,; is the new-hire wage. Note that the free entry condition is only required to hold for newly created matches for
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7 = t. The expected difference between the firm’s value of a newly created match in time ¢ and the discounted value of a
newly created match in period ¢ + 1 is

Jit — B — 0)F[Jeg1,e41]) = 20 — we e + Z (B(1— 5))T7t]Ft[Z-r — w7
T=t+1

—B(L=0)Fs {241 — wiprep + D (BA=8) Iz — wign o]

T=t+2
Apply the Law of Iterated Expectations and collect terms
- T—1
Jit — 5(1 - 5)Ft[Jt+1,t+1] =2t — Wt — Z (ﬂ(l - 5)) Fy [wt,r - wt+1,T]
T=t+1

Substitute the free-entry condition to the left-hand side

[eS)
K K T—t
— = B(1 = d)F, { } =z —|wet Y (B(1L=8)"Fielwer — weirs]
qt qt+1 el
~—~
Non-wage component of user cost UCtV Benefit Wage component of user cost UCtVV

The equation shows that the firm faces two sources of costs from a match: wage payments to a worker UC}¥ and vacancy
opening costs UCY . The firm creates jobs as long as the marginal benefit from adding a worker exceeds the user cost of
labor. Note that the wage component of the user cost of labor UCYY, not the wage w; ¢, is the allocative price of labor.

I use worker-level data from the Survey of Consumer Expectations (SCE) to construct the user cost of labor UC}”
under the survey respondents’ subjective expectations. The SCE asks respondents about: the month and year on which
their current employment relationship started (i.e., t in wy - ); “annual earnings, before taxes and other deductions, on your
[current/main] job” (wy,-); short-term expectations on what their “annual earnings will be in 4 months” (F¢ [wt,t-«—%}) and
long-term expectations on “annual earnings to be at your current job in 10 years” (F¢[ws,t+10]). 1 obtain survey expectations
about medium-term earnings between 4 months to 10 years by linearly interpolating between the two horizons:

10— h h— <&
Fielwe,een] = To_ 4 iFt [wt,t-k%} + oL li]Ft [witr10], h=1,2,...,10
12 12

The user cost of labor formulation assumes infinitely lived firms and workers, while empirical data are inherently finite.
I truncate the horizon at 10 years given the availability of the survey data. Longer horizons reduce the weight of future
terms due to discounting and job separations. In addition, if unemployment follows a mean-reverting process, wages in
long-term employment relationships will eventually converge to the long-term mean, which after discounting would limit
the size of very long-term influences (Kudlyakl 2014).

I measure actual real wage growth using two BLS wage series. The Livingston Survey forecasts target annual
log real wage growth based on average weekly earnings of production and nonsupervisory employees in manufacturing
(CES3000000030). The CFO and SCE surveys target annual log real wage growth based on average hourly earnings of
private-sector employees (CEU0500000008). I deflate nominal wages using the Consumer Price Index (CPIAUCSL) to
adjust for purchasing power.

For unemployment rates used to assess the cyclicality of wages, I use both actual data and subjective forecasts.
Actual seasonally adjusted U.S. unemployment rate (UNRATE) comes from the BLS Current Population Survey (CPS).
Subjective unemployment expectations are derived from median consensus SPF forecasts of future unemployment rates.

C.4 Stock Returns

C.4.1 Realized Stock Returns

Stock market returns use monthly data on CRSP value-weighted returns including dividends (VWRETD) from the
Center for Research in Security Prices (CRSP). I compute annualized log stock returns by compounding the monthly
returns using riyp = %Z;i}; log(1 + VIWRETD,, ;/12). The data was downloaded from WRDS on February 12, 2023.
When evaluating the MSE ratios of the machine relative to that of a benchmark survey, I compute machine forecasts for
either annual CRSP returns or S&P 500 price growth depending on which value most closely aligns with the concept that
survey respondents are asked to predict. To measure one-year stock market price growth, I use the one-year log cumulative
growth rate of the S&P 500 index, Apt11 = log (Pi4+1/P:). The monthly S&P index series spans the period 1957:03 to
2022:12 and was downloaded from WRDS on January 24, 2024 from the Annual Update data of the Index File on the S&P

500.
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C.4.2 Survey Expectations of Stock Returns

CFO Survey I use survey forecasts of S&P 500 stock returns from the CFO survey to measure subjective return
expectations. The CFO survey is a quarterly survey that asks respondents about their expectations for the S&P 500 return
over the next 12 months and 10 years ahead, obtained from https://www.richmondfed.org/-/media/RichmondFedOrg/
research/national_economy/cfo_survey/current_historical_cfo_data.xlsx. I use the mean point forecast for the
value of the “most likely” future stock return in the estimation. More specifically, the survey asks the respondent “over
the next 12 months, I expect the average annual SEP 500 return will be: Most Likely: I expect the return to be: ___%”.
The survey question for stock return expectations 10 years ahead is “over the mext 10 years, I expect the average annual
SEP 500 return will be: Most Likely: I expect the return to be: ___%”. The CFO survey panel includes firms that range
from small operations to Fortune 500 companies across all major industries. Respondents include chief financial officers,
owner-operators, vice presidents and directors of finance, and others with financial decision-making roles. The CFO panel
has 1,600 members as of December 2022.

I take a stand on the information set of respondents when each forecast was made, and I assume that respondents
could have used all data released before they completed the survey. Because the CFO survey releases quarterly forecasts
at the end of each quarter, I conservatively set the response deadline for the machine forecast to be the first day of the
last month of each quarter (e.g., March 1st). The data spans the periods 2001Q4 to 2021Q1 and were downloaded on
August 8th, 2022. Mean point forecasts before 2020Q3 are available in column sp_1_exp of sheet through_Q1_2020; mean
point forecasts from 2020Q3 and onwards are available in column sp_12moexp_2 of sheet CFO_SP500. The forecast is not
available in 2019Q1, 2019Q4, 2020Q1, and 2020Q2. I impute the missing forecast for 2019Q1 by linearly interpolating
between the available forecasts from 2018Q4 and 2019Q2. I impute the missing forecasts for 2019Q4, 2020Q1, and 2020Q2
by interpolating with the nearest available forecast between 2019Q3 and 2020Q3. Following |[Nagel and Xu/(2022]), I assume
that the forecasted S&P 500 return includes dividends and capture expectations about annualized cumulative simple net
returns compounded from time ¢ to ¢ + h, i.e., F¢[R; ¢4+5]. To obtain survey expectations of log returns Fi[log(1 + r¢ 41 )]
from a survey expectation of net simple returns F¢[R¢,1+1], I use the approximation Fi[log(1+7¢¢1r)] & log(1+F¢[Re t+n])-

To obtain long-horizon survey expectations of annualized cumulative log S&P 500 returns over the next 1 < h < 10
years, | interpolate the forecasts across annualized 1 year and 10 year cumulative log return expectations:

-1
Fe[ree+10], h=1,2,...,10

10— h
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Finally, I use the difference between cumulative long-horizon log return expectations between adjacent years (i.e., Fe[re,t4n—1]
and Fy[rs ¢4+n]) to obtain Fi[riys], the survey expectation of forward one-year log stock returns h years ahead:

F [Tt+h] = h x F; [Tt,t-l»h] — (h — 1) x [y [Tt,t-l»h—l}’ h= 1, 2, ey 10

IBES and Value Line I proxy expected firm-level stock returns using price growth expectations following |De La O
et al.| (2024)). Specifically, I construct expected price growth from IBES 12-month median price targets and Value Line 3-5
year median price targets, interpolating linearly for intermediate horizons.

To construct expected price growth, I combine short- and long-term price targets from two sources. For the short
horizon, I use the 12-month median price targets from the Institutional Brokers Estimate System (IBES) database. For
longer horizons, I use the median price targets from Value Line, which provide the expected stock price level approximately
3-5 years into the future for each firm. These targets reflect analysts’ consensus expectations for each firm’s stock price.
I interpret the Value Line price target as the expected price level five years ahead and interpolate linearly between the
IBES 12-month price target and the Value Line five-year price target to construct expected price growth for intermediate
horizons between one and five years. For each firm 4, expected annualized price growth over horizon h is given by:

1 Fe[P; t4n)

Fi|rs ~ —log | ———

tlrieen] = 7 log < P

where F:[P; 4] is the forecasted price at horizon h, constructed through linear interpolation of IBES and Value Line

targets, and P; ; is the observed stock price at time ¢. As shown in|De La O et al.| (2024])), using price growth expectations

to approximate expected firm-level stock returns is reasonably accurate, as dividends represent a relatively small component
of total returns for most firms.

Gallup/UBS Survey The UBS/Gallup is a monthly survey of one-year-ahead stock market return expectations. I
use the mean point forecast in our estimation and compare these to machine forecasts of the annual CRSP return. Gallup
conducted 1,000 interviews of investors during the first two weeks of every month and results were reported on the last
Monday of the month. The first survey was conducted on 1998:05. Until 1992:02, the survey was conducted quarterly on
1998:05, 1998:09, and 1998:11. The data on 1998:06, 1998:07, 1998:08, 1998:10, 1998:12, 1999:01, and 2006:01 are missing
because the survey was not conducted on these months. I follow |Adam et al.| (2021)) in starting the sample after 1999:02
due to missing values at the beginning of the sample.
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For each month when the survey was conducted, respondents are asked about the return they expect on their own
portfolio. The survey question is “What overall rate of return do you expect to get on your portfolio in the next twelve
months?” Before 2003:05, respondents are also asked about the return they expect from an investment in the stock market
during the next 12 months. The survey question is “Thinking about the stock market more generally, what overall rate of
return do you think the stock market will provide investors during the coming twelve months?” For each month, I calculate
the average expectations of returns on their own portfolio and returns on the market index. When calculating the average,
survey respondents are weighted by the weight factor provided in the survey. I exclude extreme observations where a
respondent reported expected returns higher than 95% or lower than -95%.

In order to construct a consistent measure of stock market return expectations over the entire sample period, I
impute missing market return expectations using the fitted values from two regressions. First, I impute missing values
during 1999:02-2005:12 and 2006:02-2007:10 with the fitted value from regressing expected market returns on own portfolio
expectations contemporaneously, where the regression is estimated using the part of the sample where both are available.
Second, I impute the one missing observation in both market and own portfolio return expectations for 2006:01 with the
fitted value from regressing the market return expectations on the lagged own portfolio return expectations, where the
coefficients are estimated using part of the sample where both are available, and the fitted value combines the estimated
coefficients with lagged own portfolio expectations data from 2005:12. Following Nagel and Xu| (2022), T assume that
the forecasted stock market return includes dividends and capture expectations about annual simple net stock returns
Fi[R¢+1]. To obtain survey expectations of annual log returns Fi[log(1 + r¢+1)] from a survey expectation of annual net
simple returns F¢[R¢+1], I use the approximation F¢[log(1 + r+41)] =~ log(1 + F¢[R¢+1]). After applying all the procedures,
the Gallup market return expectations series spans the periods 1999:02 to 2007:10. The data were downloaded on August
1st, 2024 from Roper iPoll: http://ropercenter.cornell.edu/ubs-index-investor-optimism/.

I take a stand on the information set of respondents when each forecast was made, and I assume that respondents
could have used all data released before they completed the survey. Since interviews are in the first two weeks of a month
(e.g., February), I conservatively set the response deadline for the machine forecast to be the first day of the survey month
(e.g., February 1st), implying that I allow the machine to use information only up through the end of the previous month
(e.g., through January 31st). This ensures that the machine only sees information that would have been available to all
UBS/Gallup respondents for that survey month (February). This approach is conservative in the sense that it handicaps
the machine, since all survey respondents who are being interviewed during the next month would have access to more
timely information than the machine. Since the survey asks about the “one-year-ahead” I interpret the question to be
asking about the forecast period spanning from the current survey month to the same month one year ahead.

Michigan Survey of Consumers (SOC) The SOC contains approximately 50 core questions, and a minimum of
500 interviews are conducted by telephone over the course of the entire month, each month. Table 20 of the SOC reports
the probability of an increase in stock market in next year. The survey question was “The next question is about investing
in the stock market. Please think about the type of mutual fund known as a diversified stock fund. This type of mutual fund
holds stock in many different companies engaged in a wide variety of business activities. Suppose that tomorrow someone
were to invest one thousand dollars in such a mutual fund. Please think about how much money this investment would be
worth one year from now. What do you think the percent chance that this one thousand dollar investment will increase in
value in the year ahead, so that it is worth more than one thousand dollars one year from now?” When using this survey
forecast to compare to machine forecasts, I impute a point forecast for stock market returns using the method described
in Section below. I compare the imputed point forecast to machine forecasts of CRSP returns.

For the SOC, interviews are conducted monthly typically over the course of an entire month. (In rare cases, interviews
may commence at the end of the previous month, as in February 2018 when interviews began on January 31st 2018.) I take
a stand on the information set of respondents when each forecast was made, and I assume that respondents could have used
all data released before they completed the survey. Since interviews are almost always conducted over the course of an entire
month (e.g., February), I conservatively set the response deadline for the machine forecast to be the first day of the survey
month (e.g., February 1st), implying that I allow the machine to use information only up through the end of the previous
month (e.g., through January 31st). This ensures that the machine only sees information that would have been available to
all respondents for that survey month (February). This approach is conservative in the sense that it handicaps the machine,
since all survey respondents who are being interviewed during the next month would have access to more timely information
than the machine. Since the survey asks about the “year ahead” I interpret the question to be asking about the forecast
period spanning the period running from the current survey month to the same month one year ahead. The data spans
2002:06 to 2021:12. The SOC responses were obtained from https://data.sca.isr.umich.edu/data-archive/mine.php
and downloaded on August 13th, 2022.

Livingston Survey Stock Price Forecast I obtain the Livingston Survey S&P 500 index forecast (SPIF) from the
Federal Reserve Bank of Philadelphia, and use the mean values in our structural and forecasting models. I compare the
one-year growth in these forecasts to machine forecasts of S&P 500 price growth. Our sample spans 1947:06 to 2021:06.
The forecast series were downloaded on September 20, 2021.

The survey provides semi-annual forecasts on the level of the S&P 500 index. Participants are asked to provide
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forecasts for the level of the S&P 500 index for the end of the current survey month, 6 months ahead, and 12 months
ahead. I use the mean of the respondents’ forecasts each period, where the sample is based on about 50 observations.
Most of the survey participants are professional forecasters with “formal and advanced training in economic theory and
forecasting and use econometric models to generate their forecasts.” Participants receive questionnaires for the survey in
May and November, after the Consumer Price Index (CPI) data release for the previous month. All forecasts are typically
submitted by the end of the respective month of May and November. The results of the survey are released near the
end of the following month, on June and December of each calendar year. The exact release dates are available on the
Philadelphia Fed website, at the header of each news release. I take a stand on the information set of the respondents when
each forecast was made by assuming that respondents could have used all data released before they completed the survey.
Since all forecasts are typically submitted by the end of May and November of each calendar year, I set the response
deadline for the machine forecast to be the first day of the last month of June and December, implying that I allow the
machine to use information only up through the end of the May and November.

I follow |[Nagel and Xu(2021)) in constructing one-year stock price growth expectations from the level forecasts. Starting
from June 1992, I use the ratio between the 12-month level forecast (SPIF_12M;) and 0-month level nowcasts (SPIF_ZM;) of
the S&P 500 index. Before June 1992, the 0-month nowcast is not available. Therefore I use the annualized ratio between
the 12-month (spil2,) and 6-month (spi6,) level forecast of the S&P 500 index

S P sernao, if ¢ > 199206
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where P; is the S&P 500 index and t indexes the survey’s response deadline. To obtain a survey expectation of the log
change in price growth I use the approximation F;(Ap;y1) & log(F¢[Pi+1]) — log(P;).

Conference Board (CB) Survey Respondents provide the categorical belief of whether they expect stock prices to
“increase,” “decrease,” or stay the “same” over the next year. Since the survey asks respondents about stock prices in the
“year ahead,” I interpret the question to be asking about the forecast period from the end of the current survey month to
the end of the same month one year ahead. When we use this qualitative survey forecast to compare to machine forecasts,
we impute a point forecast for stock market returns using the method described in Section below. I compare the
imputed point forecast to machine forecasts of CRSP returns.

The survey is conducted monthly and I use the survey responses over 1987:04 to 2022:08. The data was downloaded
on September 26, 2022. The survey uses an address-based mail sample design. Questionnaires are mailed to households
on or about the first of each month. Survey responses flow in throughout the collection period, with the sample close-
out for preliminary estimates occurring around the 18th of the month. Any responses received after then are used to
produce final estimates for the month, which are published with the following month’s data. Conversations with those
knowledgeable about the survey suggested that most panelists respond early. Any responses received after around the 20th
of the month-regardless of when they are filled out—are included in the final (but not preliminary) numbers.

I take a stand on the information set of the respondents when each forecast was made by assuming that respondents
could have used all data released before they completed the survey. Since questionnaires reach households on or about the
first of each month (e.g., February 1st) and most respondents respond early, I conservatively set the response deadline for
the machine forecast to be the first day of the survey month (e.g., February 1st), implying that I allow the machine to use
information only up through the end of the previous month (e.g., January 31st).

Converting Qualitative Forecasts to Point Forecasts (SOC and CB) I use the SOC probability to impute
a quantitative point forecast of stock returns using a linear regression of CFO point forecasts for returns onto the SOC
probablity of a price increase. The SOC asks respondents about the percent chance that an investment will “increase in
value in the year ahead.” I interpret this as asking about the ex dividend value, i.e., about price price growth. The CFO
survey is conducted quarterly, where the survey quarters span 2001Q4 to 2021Q1. The SOC survey is conducted monthly,
where survey months span 2002:06 to 2021:12. Since the CFO is a quarterly survey, the regression is estimated in real-time
over a quarterly overlapping sample. Since the CFO survey is conducted during the last month of the quarter while the
SOC is conducted monthly, I align the survey months between CFO and SOC by regressing the quarterly CFO survey
point forecast with the qualitative SOC survey response during the last month of the quarter.

Since the SOC survey question is interpreted as asking about S&P 500 price growth while the CFO survey question
asks about stock returns including dividends, I follow Nagel and Xu| (2021)) in subtracting the current dividend yield of
the CRSP value weighted index from the CFO variable before running the regression. After estimating the regression, I
then add back the dividend yield to the fitted value to obtain an imputed SOC point forecast of stock returns including
dividends. Specifically, at time ¢, I assume that the CFO forecast of stock returns, FOFO [r¢,t+1], minus the current dividend
yield, D/ P, is related to the contemporaneous SOC probability of an increase in the stock market next year, Ptsﬁ_cl, by:

IFSFO [re,e41] — D¢/ Py = Bo + 51Pts,?f1 Tep
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The final imputed SOC point forecast is constructed as Ftsoc[rt7t+1] = /3’0 +31Pt§?+cl +D;/P;. 1 first estimate the coefficients
of the above regression over an initial overlapping sample of 2002Q2 to 2004Q4, where the quarterly observations from the
CFO survey is regressed on the SOC survey responses from the last month of each calendar quarter. Using the estimated
coefficients and the SOC probability from 2005:03 gives us the point forecast of the one-year stock return from 2005Q1 to
2006Q1. I then re-estimate this equation, recursively, adding one quarterly observation to the end of the sample at a time,
and storing the fitted values. This results in a time series of SOC point forecasts F$O€ [r¢,t+1] spanning 2005Q1 to 2021Q1.

The same procedure is done for the Conference Board Survey, except I replace Pts,g_cl by Pt?t}il, a ratio of the proportion
of those who respond with “increase” to the sum of “decrease” and “same.” The CB survey asks respondents to provide
the categorical belief of whether they expect stock prices to “increase,” “decrease,” or stay the “same” over the next year.
I interpret this as asking about price price growth. Since the CB survey question is interpreted as asking about S&P 500
price growth while the CFO survey question asks about stock returns including dividends, I follow Nagel and Xu| (2021)
in subtracting the current dividend yield of the CRSP value weighted index from the CFO variable before running the
regression. After estimating the regression, I then add back the dividend yield to the fitted value to obtain an imputed
CB point forecast of stock returns including dividends.

The CFO survey is conducted quarterly, where the survey quarters span 2001Q4 to 2021Q1. The CB survey is con-
ducted monthly, where survey months span 1987:04 to 2022:08. The regression is first estimated over an initial overlapping
sample of 2001Q4 to 2004Q4, where the quarterly observations from the CFO survey is regressed on the CB survey re-
sponses from the last month of each calendar quarter. Using the estimated coefficients and the CB survey response PffH
from 2005:03 gives us the point forecast of the stock return from 2005Q1 to 2006Q1. I then re-estimate this equation,
recursively, adding one observation to the end of the sample at a time, and storing the fitted values. This results in a time
series of CB point forecasts FY2[r;,111] over 2005Q1 to 2021Q1.

Nagel and Xu Individual Investor Expectations [Nagel and Xu(2021)’s individual investor expectations series
for returns covers 1972-1977 (Annual) and 1987Q2-2022Q4 (Quarterly) and combine data from the following surveys:

1. UBS/Gallup: 1998:06-2007:10; Survey captures respondents’ expected stock market returns, in percent, over a
1-year horizon.

2. Michigan Survey of Consumers (SOC): 2002:04-2022:12; Respondents provide the probability of a rise in the stock
market over a 1-year horizon.

3. Conference Board (CB): 1987:04-2022:08; Respondents provide the categorial opinion whether they expect stock
prices to rise, or stay about where they are, or decline over the next year.

4. Vanguard Research Initiative (VRI): 2014:08; Survey captures respondents’ expected stock market returns, in
percent, over a l-year horizon.

5. Roper: 1974-1977, annual, observed June of each calendar year; Respondents provide the categorial opinion whether
they expect stock prices to rise, or stay about where they are, or decline over the next year.

6. Lease, Lewellen, and Schlarbaum (1974, 1977): 1972-1973, annual, observed July of each calendar year; Survey
captures respondents’ expected stock market returns, in percent, over a 1-year horizon.

Among these sources, UBS/Gallup and VRI provide direct, point forecasts of expected stock returns, while SOC, CB, and
Roper offer qualitative or probabilistic information that requires conversion to consistent return expectations. |Nagel and
Xu| (2021)) construct their final series using the following procedure:

1. Start with UBS/Gallup for 1998:06-2007:10 and VRI for 2014:08 since they capture the respondents’ expected stock
returns relatively closely (other surveys only provide qualitative measures).

2. Regress SOC on UBS/Gallup and VRI using periods of overlapping coverage (2002:04-2007:10). Use the fitted
values from this regression to impute missing data for 2007:11-2022:12 (excluding 2014:08).

3. Regress CB on UBS/Gallup and VRI using periods of overlapping coverage (1998:06-2007:10). Use the fitted values
from this regression to impute missing data for 1987:04-1998:05 (using CB) and 1974-1977 (using Roper).

4. Use the coefficients from regressing CB on UBS/Gallup and VRI (from step 3) to compute fitted values that convert
the probabilistic forecast from Roper into point forecasts of stock returns.

5. Convert expected returns to expected excess returns by subtracting the average 1-year Treasury yield measured at
the beginning of the survey month.

6. Aggregate monthly series to a quarterly frequency by taking the average expectation within calendar quarters.
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C.5 Risk-Free Rates

Realized Risk-Free Rates As a measure of realized risk-free rates 7/, I obtain daily series for the annualized three-
month Treasury bill rate (DTB3), downloaded from FRED on May 15, 2024. To match the definition used as the target
variable in the Survey of Professional Forecasters (SPF), I time-aggregate the daily realized risk-free rate series to a
quarterly frequency by taking the quarterly average, as discussed below.

Survey Expectations of Risk-Free Rates I obtain subjective expectations about risk-free rates from median
forecasts for the annualized three-month Treasury bill rate from the Survey of Professional Forecasters (SPF). The SPF
provides forecasts at the one and ten year horizons. For one year ahead forecasts (TBILL), respondents are asked to provide
quarterly forecasts of the quarterly average three-month Treasury bill rate, in percentage points, where the forecasts are
for the quarterly average of the underlying daily levels. I interpret the survey to be asking about annual net simple rates
Fy [R{t+1], and approximate the expected log risk-free rate as Fy [7"{,H-1] ~ log(1 + IFy [R,{;t_,_l]). For ten year ahead forecasts
(BILL10), respondents are asked to provide forecasts for the annual-average rate of return to three-month Treasury bills
over the next 10 years, in percentage points. The ten year ahead forecasts are available only for surveys conducted in
the first quarter of each calendar year. I interpret the survey to be asking about annualized cumulative net simple rates
compounded from the survey quarter to the same quarter that is ten years after the survey year F; [R{’t +10), and approximate
the expected log risk-free rate as F, [rtf v410) ~ log(1+TF; [Rf ++10))- To obtain long-horizon survey expectations of annualized
log three-month Treasury bill rates over the next 1 < h < 10 years, I interpolate the forecasts across annualized 1 year
and 10 year return expectations:
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Finally, I use the difference between the cumulative annualized long-horizon log three-month Treasury bill rate expectations
between adjacent years (i.e., Fy [r{,HhA] and Ty [riHh]) to obtain Fy [r,iLh]7 the time ¢ survey expectation of annualized
forward log three-month Treasury bill rate h years ahead:
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The surveys are sent out at the end of the first month of each quarter, and collected in the second or third week of the
middle month of each quarter. When constructing machine learning forecasts for the risk-free rate, I assume that forecasters
could have used all data released before the survey deadlines for the SPF, which are posted online at the Federal Reserve
Bank of Philadelphia website. Since surveys are typically sent out at the end of the first month of each quarter, I make
the conservative assumption that respondents only had data released by the first day of the second month of each quarter.

C.6 Earnings

C.6.1 Realized Earnings

To measure corporate earnings, I use quarterly S&P 500 IBES street earnings per share (EPS) data that starts in
1983Q4 from |[Hillenbrand and McCarthy| (2024). Street earnings differ from GAAP earnings by excluding discontinued
operations, extraordinary charges, and other non-operating items. According to the IBES user guide, analysts submit
forecasts after backing out these transitory components, and IBES constructs the realized series to align with those
forecasts. While analysts have some discretion over which items to exclude, Hillenbrand and McCarthy] (2024)) demonstrate
that the target of these forecasts corresponds closely to earnings before special items in Compustat, suggesting that street
earnings accurately reflect the measure analysts are targeting.

To convert EPS to total earnings, I multiply the resulting quarterly EPS series by the quarterly S&P 500 divisor,
available at: https://ycharts.com/indicators/sp_500_divisor|l Finally, to obtain a monthly S&P 500 earnings series,
we linearly interpolate the resulting quarterly total earnings series. The final monthly total earnings series spans the period
1983:12 to 2021:12. T obtained quarterly IBES street earnings data from the authors of [Hillenbrand and McCarthy| (2024)
on June 3, 2025. The divisor data were downloaded on March 13, 2022. To extend the sample back to 1965Q1, I use
quarterly Compustat data on earnings before special items. As noted in [Hillenbrand and McCarthy| (2024)), this measure
closely tracks IBES street earnings, indicating it accurately reflects analysts’ forecast targets.

C.6.2 Survey Expectations of Earnings

I obtain monthly survey data for the median analyst earnings per share forecast and actual earnings per share from the
Institutional Brokers Estimate System (IBES) via Wharton Research Data Services (WRDS). The data spans the period
1976:01 to 2021:12 and was downloaded on October 2022.

46


https://ycharts.com/indicators/sp_500_divisor

Short-Term Growth (STG) Expectations 1 build measures of aggregate S&P 500 earnings expectations growth
using the constituents of the S&P 500 at each point in time following De La O and Myers| (2021)). I first construct expected
earnings expectations for aggregate earnings h-months-ahead as:

Fi[Evyn) =2 | Y Fi[EPSi 0] S| /Divisor,

€T h

where FF is the median analyst survey forecast, E is aggregate S&P 500 earnings, EPS; is earning per share of firm ¢ among
all S&P 500 firms x;1p for which I have forecasts in IBES for ¢ + h, S; is shares outstanding of firm i, and Divisor; is
calculated as the S&P 500 market capitalization divided by the S&P 500 index. I obtain the number of outstanding shares
for all companies in the S&P500 from Compustat. All data from Compustat were downloaded on November 17th, 2022.
IBES estimates are available for most but not all S&P 500 companies. Following |De La O and Myers| (2021)), T multiply
this aggregate by (245, a ratio of total S&P 500 market value to the market value of the forecasted companies at ¢ + h to
account for the fact that IBES does not provide earnings forecasts for all firms in the S&P 500 in every period.

IBES database contains earning forecasts up to five annual fiscal periods (FY1 to FY5) and as a result, I interpolate
across the different horizons to obtain the expectation over the next 12 months. This procedure has been used in the
literature, including [De La O and Myers (2021). Specifically, if the fiscal year of firm XYZ ends nine months after the
survey date, I have a 9-month earning forecast Fi[F49] from FY1 and a 21-month forecast Fi[E¢y21] from FY2. I then
obtain the 12-month ahead forecast by interpolating these two forecasts as follows,
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To convert the monthly forecast to quarterly frequency, I use the forecast made in the middle month of each quarter, and
construct one-year earnings expectations from 1976Q1 to 2022Q4 and the earning expectation growth is calculated as an
approximation following following |[De La O and Myers| (2021):

]Ft (A€t+12) ~ In (]Ft [Et+12}) — €t

where e; is log earnings for S&P 500 at time ¢ calculated as e; = log (EPS; - Divisor,), where EPS; is the earnings per
share for the S&P 500 obtained from Shiller’s data depository and S&P Global, as described above.

Long-Term Growth (LTG) Expectations I construct long term expected earnings growth (LTG) for the S&P
500 following [Bordalo et al. (2019). Specifically, T obtain the median firm-level LTG forecast from IBES, and aggregate
the value-weighted firm-level forecasts,

LTG, = E:LTG” Pt Qi
i=1 Zz 1P1tQ1t

where S is the number of firms in the S&P 500 index, and where P; ; and Qs are the stock price and the number of shares
outstanding of firm 7 at time ¢, respectively. LT G ; is the median forecast of firm ¢’s long term expected earnings growth.
The data spans the periods from 1981:12 to 2021:12. All data were downloaded in February 2023.

Finally, I use the difference between survey expectations of log earnings between adjacent years (i.e., F¢[e;4rn—1] and
Fi[ei+n]) to obtain Fy[Aeryn] = Feler+n] —Fi[errn—1], the time ¢ survey expectation of forward one-year log earnings growth
h = 1,2,3,4 years ahead. For the h = 5 year horizon, I interpret the IBES’s Long-Term Growth (LTG) forecast as the
5-year forward annual log earnings growth from 4 to 5 years ahead:

_ JFilerrn] — Feleryn—] if h=1,2,3,4 years
Fi[Aeyyn] = {LTGt if h =5 years

To estimate any biases in IBES analyst forecasts, the dynamic machine algorithm takes as an input a likely date cor-
responding to information analysts could have known at the time of their forecast. IBES does not provide an explicit
deadline for their forecasts to be returned. Therefore I instead use the “statistical period” day (the day when the set of
summary statistics was calculated) as a proxy for the deadline. I set the machine deadline to be the day before this date.
The statistical period date is typically between day 14 and day 20 of a given month, implying that the machine deadline
varies from month to month. As the machine learning algorithm uses mixed-frequency techniques adapted to quarterly
sampling intervals, while the IBES forecasts are monthly, I compare machine and IBES analyst forecasts as of the middle
month of each quarter, considering 12-month ahead forecast from the beginning of the month following the survey month.
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C.7 Price-Earnings Ratio

I construct a quarterly series for the price-earnings ratio PE; = P;/FE; using the end-of-quarter S&P 500 stock price
index P; and the S&P 500 quarterly total earnings F:. I infer subjective expectations of the log price-earnings ratio
Fi[pet+n] by combining the current log price-earnings ratio pe; with h year ahead subjective expectations of annual log
stock returns F¢[r¢1,] and annual log earnings growth F:[Ae;ys], following the approach used in [De La O and Myers
(2021)). Rearrange the |(Campbell and Shiller| (1988|) present value identity for the price-earnings ratio in equation
to express the future log price-earnings ratio as a function of current log price-earnings, log earnings growth, and log stock
returns:

h
1 1 i
Peuth = “pper = > 07 epe + Deviy —Teey)
=1

where the equation holds both ex-ante and ex-post. Apply subjective expectations F: on both sides of the equation:

1
oh

h
p > 0 epe + Fi[Aerys] — Falreys] ) (A.103)
=1 — —

Survey (IBES) Survey (CFO)

1
I [p€t+h] = ﬁpet -

where subjective expectations about j years ahead forward annual log stock returns F;[r.;] and forward annual log earnings
growth Fy[Ae; ;] use survey forecasts from the CFO survey and IBES, respectively. I construct firm-level price-earnings
expectations by applying the same log-linear approximation to firm-level expectations of stock returns (from IBES and
Value Line) and earnings growth (from IBES).

C.8 Earnings-Employment Ratio

The current earnings-employment ratio is defined as FL; = Fy/Liy1, where E; denotes quarterly total earnings for
the S&P 500 and L:11 is the employment stock at the beginning of period ¢ + 1. I measure L;y1 using end-of-period
employment levels within each quarter. This timing assumption ensures that the measures are consistent with the timing
conventions from Section [B| while still remaining known to firms by the end of period t.

C.9 Machine Learning Forecasts

For each survey forecast, I also construct their corresponding machine learning forecast by estimating a Long Short-
Term Memory (LSTM) neural network:

E; [yt,t+h] = G(Xta ﬁh,t)

where y¢ 145 denotes the variable y to be predicted h years ahead of time ¢, and A; is a large input dataset of right-
hand-side variables including the intercept. G(X:, 8 ;) denotes predicted values from a LSTM neural network that can
be represented by a (potentially) high dimensional set of finite-valued parameters 3, ;. The machine learning model is
estimated using an algorithm that takes into account the data-rich environment in which firms operate in (Bianchi et al.
2022| and [Bianchi et al., [2024b)). When constructing machine learning forecasts of each variable, I allow the machine to
use only information that would have been available to all survey respondents at the time of each forecast. See Section
for details about the machine learning algorithm and predictor variables. Machine expectations about the price-earnings
ratio E¢[pe;yp] is constructed similarly to the survey counterpart, by replacing the survey forecasts of stock returns and
earnings growth on the right-hand side of equation with the corresponding machine learning forecasts.

For the cross-sectional decomposition, I construct analogous machine learning forecasts of returns, earnings growth,
and price-earnings ratios at the portfolio level using the same LSTM framework, applied to portfolio-specific predictors
and outcomes. Firms are first sorted into five value-weighted portfolios based on book-to-market ratios, and all firm-level
variables are aggregated to the portfolio level using market capitalization weights prior to estimation.

D Machine Learning

D.1 Machine Algorithm Details

The basic dynamic algorithm follows the six step approach of Bianchi et al.| (2022|) of 1. Sample partitioning, 2.
In-sample estimation, 3. Training and cross-validation, 4. Grid reoptimization, 5. Out-of-sample prediction, and 6. Roll
forward and repeat. We refer the interested reader to that paper for details and discuss details of the implementation
here only insofar as they differ. At time ¢, a prior sample of size T is partitioned into two subsample windows: a training
sample consisting of the first Tr observations, and a hold-out wvalidation sample of Ty subsequent observations so that
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T =Tg + Tyv. The training sample is used to estimate the model subject to a specific set of tuning parameter values, and
the validation sample is used for tuning the hyperparameters. The model to be estimated over the training sample is

Ytorn = G (X, Bl 1) + €tyn-

where y; ¢+ is a time series indexed by j whose value in period h > 1 the machine is asked to predict at time ¢, X; is a large
input dataset of right-hand-side variables including the intercept, and G°(-) is a machine learning estimator that can be
represented by a (potentially) high dimensional set of finite-valued parameters 3 ,. We consider two estimators for G*(-):
Elastic Net G*N(X;,85)), and Long Short-Term Memory (LSTM) network G**™ (x;, B53™). The e € {EN,LSTM}
superscripts on 3 indicate that the parameters depend on the estimator being used (See the next section for a description
of EN and LSTM). A} always denotes the most recent data that would have been in real time prior to the date on which
the forecast was submitted. To ensure that the effect of each variable in the input vector is regularized fairly during the
estimation, we standardize the elements of X such that sample means are zero and sample standard deviations are unity.
It should be noted that the most recent observation on the left-hand-side is generally available in real time only with a
one-period lag, thus the forecasting estimations can only be run with data over a sample that stops one period later than
today in real time. The parameters 3 , are estimated by minimizing the mean-square loss function over the training
sample with L; and Lo penalties

Tg K K
1 2 2
LB Xpy AD) = 72 > (ren = G (X B.0)) "+ M0 D B ] + 25,0 D (B )
r=1 k=1 k=1
Mean Square Error L1 Penalty Lo Penalty

where X1, = (Yt—1g,- - -, Yt, X{,TE7 ..., X/)" is the vector containing all observations in the training sample of size Tr. The
estimated 3} , is a function of the data X 7, and a non-negative regularization parameter vector Af = ( $4, A5 ¢, )\(];,fTM )/
where A&f TM is a set of hyperparameters only relevant when using the LSTM estimator for G°(-) (see below). For the

EN case there are only two hyperparameters, which determine the optimal shrinkage and sparsity of the time ¢ machine
specification. The regularization parameters A{ are estimated by minimizing the mean-square loss over pseudo-out-of-
sample forecast errors generated from rolling regressions through the validation sample:

xe. g1y | Tv —h —

A 1 Tp+Ty —h N 5 K K
A, T, Ty = argmin { Z (yr+h - G* (vaﬁj,h,T(XTEv Af))) + Ai,t Z |18§htk} + )\S,t Z(ﬂjhtk)2}
k=1

T=Tg

L1 Penalty Lo Penalty

where Bj,”() for e € {EN, LSTM} is the time 7 estimate of 35 ), given A{ and data through time 7 in a training sample

of size Tg. Denote the combined final estimator ,@;t(XfE, )\:), where the regularization parameter Xf is estimated using
cross-validation dynamically over time. Note that the algorithm also asks the machine to dynamically choose both the
optimal training WindOWAj—\’E and the optimal validation window T\V by minimizing the pseudo-out-of-sample MSE.

The estimation of ﬁ;t(X fE’)‘:) is repeated sequentially in rolling subsamples, with parameters estimated from

information known at time ¢. Note that the time ¢ subscripts of ﬁzt and 3\: denote one in a sequence of time-invariant
parameter estimates obtained from rolling subsamples, rather than estimates that vary over time within a sample. Likewise,
we denote the time ¢ machine belief about vy i+ as Ef[y,i4n], defined by

Effyern] = G (%, Bt (X5, X))

Finally, the machine MSE is computed by averaging across the sequence of squared forecast errors in the true out-of-sample
forecasts for periods t = (T + h),..., T where T is the last period of our sample. The true out-of-sample forecasts used
for neither estimation nor tuning is the testing subsample used to evaluate the model’s predictive performance.

On rare occasions, one or more of the explanatory variables used in the machine forecast specification assumes a value
that is order of magnitudes different from its historical value. This is usually indicative of a measurement problem in the
raw data. We therefore program the machine to detect in real-time whether its forecast is an extreme outlier, and in that
case to discard the forecast replacing it with the historical mean. Specifically, at each ¢, the machine forecast E [ys ¢+n]
is set to be the historical mean calculated up to time ¢ whenever the former is five or more standard deviations above its
own rolling mean over the most recent 20 quarters.

We include the contemporaneous survey forecasts F¢ [y¢, 4] for the median respondent only for inflation and GDP
forecasts, following [Bianchi et al.| (2022). This procedure allows the machine to capture intangible information due to
judgement or private signals. Specifically, for these forecasts of inflation and GDP growth, we consider the following
machine learning empirical specification for forecasting y: ++n given information at time ¢, to be benchmarked against the
time t survey forecast of respondent-type X, where this type is the median here:

Ye,irn = G (Ze) + vinmFe [Ye,e+n) + €cqn, h>1

where 7,5u is a parameter to be estimated, and where G;nm (Z¢) represents a ML estimator as function of big data. Note
that the intercept a;n from Bianchi et al. (2022) gets absorbed into the Gf;, (Z:) in LSTM via the outermost bias term.

49



D.1.1 Elastic Net (EN)

We use the Elastic Net (EN) estimator, which combines Least Absolute Shrinkage and Selection Operator (LASSO)
and ridge type penalties. The model can be written as:

’ EN
Yt,t+h = th,Bj’h + €t+n

where X; = (1, X1t,...,Xx:)  include the independent variable observations (Fy [ys:+nr],Zj,¢) into a vector with “1”7 and
ﬁ;m;z = (aj.n, Bj.nr, vec (Bjnz)) = (Bo, B1,...8x)" collects all the coefficients.

It is customary to standardize the elements of X; such that sample means are zero and sample standard deviations
are unity. The coefficient estimates are then put back in their original scale by multiplying the slope coefficients by their
respective standard deviations, and adding back the mean (scaled by slope coefficient over standard deviation.) The EN
estimator incorporates both an L; and L2 penalty:

Tg K

K
Bflz = argmin Ti > (yT” - X;ﬂj,h)Q FM D Byl A2 D (Bynn)?
k=1

Bo:B1s--Br LB T h—1

LASSO ridge

By minimizing the MSE over the training samples, we choose the optimal A; and A, values simultaneously.

In the implementation, the EN estimator is sometimes used as an input into the algorithm using the LSTM estimator.
Specifically, we ensure that the machine forecast can only differ from the relevant benchmark if it demonstrably improves
the pseudo out-of-sample prediction in the training samples prior to making a true out-of-sample forecast. Otherwise, the
machine is replaced by the benchmark calculated up to time ¢. In some cases the benchmark is a survey forecast, in others
it could be a historical mean value for the variable. However, for the implementation using LSTM, we also use the EN
forecast as a benchmark.

D.1.2 Long Short-Term Memory (LSTM) Network

An LSTM network is a type of Recurrent Neural Network (RNN), which are neural networks used to learn about
sequential data such as time series or natural language. In particular, LSTM networks can learn long-term dependencies
between across time periods by introducing hidden layers and memory cells to control the flow of information over longer
time periods. The general case of the LSTM network with up to /N hidden layers is defined as

N
GU™ (X, B = w ) B b Output layer
( hﬁg,h ) t y ( p yer)
1x1 IXDyN D, nx1  1x1
hi = o Otanh( ¢ ) (Hidden layer)
~—~ ~—~ ~—~
Dpn x1 Dpn x1 Dpn x1
ct = fi' ® i+ if O ¢ (Final memory)
N~~~ N~~~ ~—~ S~~~
Dpn x1 Dpnx1l  Dpnxl Dpnxl  Dpnxl
~n (™R n—1 (c™h™) n
¢y = tanh(W hi + W hi1 + ben ) (New memory)
~—~ —_— =~ ~—— ~—
Dpn x1 Dpn XDjyn—1 Dy n—1x1 Dpn XDpn Dpnx1 Dpnxl
_ fnhnfl) n—1 (f"hn) n
mo=o(w' h +W hi 1 + b ) (Forget gate)
N~ ——— —— N—— ~—~
Dpn x1 DpnXDyn-1 D, _1x1  DPrnXDrnpx1 Dpnxl
npn—1 _ inpn
i =Wt W R 4 b ) (Input gate)
~—~ S—— S ——~ ~~
Djpn x1 Dhn,thn,l Dh”*1><1 Dpn XDpn Dpn x1 Dpn x1
nyn—1 _ nyn
of =oa( LS YAnE R f fACAEUP A R S ) (Output gate)
~—~ —— ——~ — ~—~
Dpn x1 DpnXDypn—1 Dyn—1X1 DpnXDpn p,nx1 Dpnx1
where n = 1,..., N indexes each hidden layer. A} € RP2" is the n-th hidden layer, where Dyn» is the number of neurons

or nodes in the hidden layer. The 0-th layer is defined as the input data: h? = X;. The memory cell ¢ allows the

LSTM network to retain information over longer time periods. The output gate o controls the extent to which the

memory cell ¢ maps to the hidden layer hi'. The forget gate f.* controls the flow of information carried over from the

final memory in the previous timestep ci' ;. The input gate iy controls the flow of information from the new memory

cell 7. The initial states for the hidden layers (h§)A_; and memory cells (c§)3_; are set to zeros. o(:) and tanh(:) are

activation functions that introduce non-linearities in the LSTM network, applied elementwise. o 1 R — R is the sigmoid
er—1

function: o(x) = (1 4+ e ®)"!'. tanh : R — R is the hyperbolic tangent function: tanh(z) = %71 The © operator
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refers to elementwise multiplication. ﬁ;iTM = (((vee(W

nhn71>

npmn N
)lvvec(W(g " >)l7bfq")gE{C,f,i,O})g:lvUeC(W(yh ))/7by)l

are parameters to be estimated. We will refer to parameters indexed with W as weights; parameters indexed with b are
biases. We estimate the parameters ,B;jiTM for the LSTM network using Stochastic Gradient Decent (SGD), which is an
iterative algorithm for minimizing the loss function and proceeds as follows:

1.

2.

3.

Initialization. Fix a random seed R and draw a starting value of the parameters ﬁgo,z randomly, where the superscript
(0) in parentheses indexes the iteration for an estimate of ﬂ;iTM.

npn—1
(a) Initialize input weights W9 """ ") ¢ RPr*Pun—1 for g € {¢, f,i, 0} using the Glorot initializer. Draw from
a uniform distribution with zero mean and a variance that depends on the dimensions of the matrix:

npnely g 6 6
WV(Q h 1) ’}\‘/i U |-
Y Dpn + Dpyn—1 "\ Dpn + Dyn-1

foreachi=1,...,Dpn and j=1,...,Dpn-1.

(b) Initialize the recurrent weights W h") g RPanxPrn for g € {¢c, f,i,0} using the Orthogonal initializer. Use
the orthogonal matrix obtained from the QR decomposition of a Dpn X Dpn matrix of random numbers
drawn from a standard normal distribution.

(c) Initialize biases (bgn)ge{c,f,i,0}, hidden layers hj, and memory cells ¢ with zeros.
Mini-batches. Prepare the input data by dividing the training sample into a collection of mini-batches.

(a) Suppose that we have a multi-variate time-series training sample with dimensions (Tx, K) whose time steps
t are indexed by t = 1,...,Tg and K is the number of predictors. We transform this training sample into a
3-D tensor with dimensions (Ng, M, K) where

e Ng = Total number of sequences in training sample
e M = Sequence length, i.e., number of time steps in each sequence
e K = Input size, i.e., number of predictors in each time step

This can be done by creating overlapping sequences from the time series:

e Sequence 1 contains time steps 1,..., M

e Sequence 2 contains time steps 2,..., M + 1

e Sequence 3 contains time steps 3,..., M + 2

e ...

e Sequence Tg — M contains time steps Tg — M, ..., T — 1

Sequence Ns =Tg — M + 1 contains time steps T — M +1,..., Tk

(b) Randomly shuffle the Ng sequences by randomly sampling a permutation without replacement.

(c) Partition the Ng shuffled sequences into [Ns/Np| mini-batches. We partition the Ng sequences in the
training sample ((Ng, M, K) tensor) into a list of [Ng/Npg]| mini-batches. A mini-batch is a (Np, M, K)-
dimensional tensor containing Np out of Ng randomly shuffled sequences. When Ng/Np is not a whole
number, |Ns/Ng]| of the mini-batches will be 3-D tensors with dimensions (Ng, M, K). One batch will
contain leftover sequences and will have dimensions (Ns%Ng, M, K) where % is the modulus operator. Let
B<1), ..., BINs/NB1 denote the list of mini-batches.

e Ng = Total number of sequences in training sample

Np = Mini-batch size, i.e., number of sequences in each partition.
e M = Sequence length, i.e., number of time steps in each sequence
e K = Input size, i.e., number of predictors in each time step

Repeat until the stopping condition is satisfied (k =1,2,3,...):

(a) Dropout. Apply dropout to the mini-batch. To obtain the n-th hidden layer under dropout, multiply the
current value of the n— 1-th hidden layer h?~' and the lagged value of the n-th hidden layer h? ; with binary

. (k) D, (k) D . . .
masks rt,h?* € R”r7—1 and Tinp | € R*“"™  respectively:

—n—1 k —1 k iid . .
he =" o m N Bernoulli(p,n-1), i=1,...,Dpn-1
—— t,hy —— t,hy i t
Dy n—1x1 v~ Dypn—1x1
Dhn_l x1 v

) n (k) iid . .

hi_1 = iy O hi_1, Tinn i ™ Bernoulli(ppy_), 4=1,...,Dpn

Dpnx1 T Dynxl
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where t € B® and n = 1,..., N indexes the hidden layer and it is understood that the 0-th layer is the
input vector h? = X;. Pyt ,ph;z L € [0, 1] is the probability that time ¢ nodes in the n — 1-th hidden layer

and time t — 1 nodes in the n-th hidden layer are retained, respectively.

(b) Stochastic Gradient. Average the gradient over observations in the mini-batch

L(ﬂ;?h71)7 )\LSTM Z VI I@(k 1) X, )\LSTM)

teB<k>

where VL(,thfl),Xt,)\LSTM) is the gradient of the loss function with respect to the parameters ,B;i:l)
evaluated at the time ¢ observation X = (y¢ 141, Xs)" after applying dropout.
(¢) Learning rate shrinkage. Update the parameters to ,ng,z using the Adaptive Moment Estimation (Adam)

algorithm. The method uses the first and second moments of the gradients to shrink the overall learning rate
to zero as the gradient approaches zero.

m®

(k) (k—=1)
B =3 -V
J,h J.h /U(k) te

where m® and v®) are weighted averages of first two moments of past gradients:
k 1 k— k—1 S
m® = T (mm® ™ + (1 =) VLB Y, X g, AXT™)
1 _
® — — (72 oD 1- M)VL(I@UC 1) XB(k)’)\LSTM)Q)
— T

7% denotes the k-the power of m € (0,1), and /, v/-, and (-)? are applied elementwise. The default values
of the hyperparameters are m® = ¢(® = 0 (initial moment vectors), v = 0.001 (initial learning rate),
(71, m2) = (0.9,0.999) (decay rates), and € = 10~7 (prevent zero denominators).

(d) Stopping Critera. Stop iterating and return ,B(Vk) if one of the following holds:

e Farly stopping. At each iteration, use the updated ,B(k) to calculate the loss from the validation sample.
Stop when the validation loss has not improved for S steps where S is a “patience” hyperparameter. By
updating the parameters for fewer iterations, early stopping shrinks the final parameters 3, ; towards

the initial guess ﬂgo})” and at a lower computational cost than ¢ regularization.

o Maximum number of epochs. Stop if the number of iterations reaches the maximum number of epochs
E. An epoch happens when the full set of the training sample has been used to update the parameters.
If the training sample has Tr observations and each mini-batch has M observations, then each epoch
would contain [Tg/M] iterations (after rounding up as needed). So the maximum number of iterations
is bounded by E x [Tg/M].

4. Ensemble forecasts. Repeat steps 1. and 2. over different random seeds R and save each of the estimated parameters
~LSTM
T (XTE, ALSTM ,R). Then construct out-of-sample forecasts using the top 10 out of 20 starting values with

the best performance in the validation sample. Ensemble can be considered as a regularization method because it
aims to guard against overfitting by shrinking the forecasts toward the average across different random seeds. The
random seed affects the random draws of the parameter’s initial starting value ,@g?,)” the sequences selected in each

mini-batch B*), and the dropout mask rﬁk)

Hyperparameters Let A™™ = [\;, Xy, v, 71,72, p, N, (Dpn)3_y1, M, E, S|’ collect all the hyper-parameters that con-
trol the LSTM network’s complexity and prevent the model from overfitting the data. The number of hidden layers N
and the number of neurons Dy1,..., Dy~ in each hidden layer are hyper-parameters that characterize the network’s archi-
tecture. To choose the number of neurons in each layer, we apply a geometric pyramid rule where the dimension of each
additional hidden layer is half that of the previous hidden layer. We select the best LSTM architecture iteratively by min-
imizing the pseudo out-of-sample mean-squared error from rolling forecasts over the validation sample. Table reports
the hyper-parameters for the LSTM network and its estimation. Hyper-parameters reported as a range or a set of values
are cross-validated. The hyper-parameters are estimated by minimizing the mean-square loss over pseudo out-of-sample
forecast errors generated from rolling regressions through the validation sample. The pseudo out-of-sample forecasts are
ensemble averages implied by parameters based on different random seeds R.
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Adaptive Architecture Selection We allow the LSTM architecture to evolve over time using a simple, adaptive
updating procedure. At each period in the testing sample, the machine selects the architecture (number of hidden layers
and neurons per layer) that minimized out-of-sample forecast errors in the preceding period. The candidate architectures
considered span various combinations of hidden layers and neurons per layer, as listed in Table The architecture is
updated quarterly by using the forecast performance from the most recent quarter. This systematic approach allows the
machine to adjust its specification over time based on evolving patterns in the data, while avoiding look-ahead bias or
overfitting to future outcomes.

Table A.11: Candidate hyper-parameters for the machine learning forecast

Variable Earnings Earnings Earnings Stock Price CPI
Growth Growth Growth Returns Growth Inflation
Horizon (Years) 1,2,3,4 4-5 LTG 1-10 LTG 1,2,3,4,5 1,2,3,4,5 1,2,3,4,5
(a) Elastic Net
L1 penalty A1 [1072,107] [1072,107] [10=2,10']  [107%,1072] [107%,1072] [10—%,107]
Lo penalty A2 [10-2,101] [10—2,101] [10—2,10'] [107%,1072] [1076,1072 [10—4,101]
Training window Tg 4,6,8,10 4,6,8,10,12  4,6,8,10,12 5,7 5,7 3,4,5,6,7
Validation window Ty 4,6,8,10 4,6,8,10,12  4,6,8,10,12 5,7,20 5,7,20 6,7,...,14,15
(b) Long Short-Term Memory Network
L1 penalty A\; [10=6,1072] [107°,101] [107>,10°1] [107%,1072] [1076,1072] [1075,1072]
Lo penalty A2 [10-%,1072] [1075,10'] [1075,10"'] [107%,1072] [107%,1072] [1076,1072]
Learning rate ~y 0.001 0.001 0.001 0.001 0.001 0.001
Gradient decay 71, T2 0.9,0.999 0.9,0.999 0.9,0.999 0.9,0.999 0.9,0.999 0.9,0.999
Dropout input p; 0.8 0.8 0.8 0.8 0.8 0.8
Dropout recurrent py, 0.8 0.8 0.8 0.5 0.5 0.5
Hidden layers N 1,3,5 1,3,5 1,3,5 1,3,5 1,3,5 1
Neurons per layer 16, 32,64 16, 32,64 16, 32,64 4,8,16 4,8,16 4
Mini-batch size M 4 4 4 4 4 4
Max epochs E 10,000 10,000 10,000 10,000 10,000 10,000
Early stopping S 20 20 20 80 20 20
Random seeds R 1,...,20 1,...,20 1,...,20 1,...,20 1,...,20 1,...,20
Training window Tg 4,8,12 3,7,12 3,7,12 5,7 5,7 5,7
Validation window Ty, 4,8,12 3,7,12,20 3,7,12,20 5,7,20 5,7,20 6,9,12,15

Notes: This table reports the hyperparameters considered in the machine learning algorithm for each estimator.

D.2 Data Inputs for Machine Learning Algorithm
D.2.1 Macro Data Surprises

These data are used as inputs into the machine learning forecasts. I obtain median forecasts for GDP growth
(Q/Q percentage change), core CPI (Month/Month change), unemployment rate (percentage point), and nonfarm payroll
(month/month change) from the Money Market Service Survey. The median market survey forecasts are compiled and
published by the Money Market Services (MMS) the Friday before each release. I apply the approach used in Bauer
and Swanson| (2023) and define macroeconomic data surprise as the actual value of the data release minus the median
expectation from MMS on the Friday immediately prior to that data release. The GDP growth forecasts are available
quarterly from 1990Q1 to 2022Q1. The core CPI forecast is available monthly from July 1989 to April 2022. The median
forecasts for the unemployment rate and nonfarm payrolls are available monthly from Jan 1980 to May 2022, and Jan.
1985 to May 2022, respectively. All survey forecasts were downloaded from Haver Analytics on December 17, 2022. To
pin down the timing of when the news was actually released I follow the published tables of releases from the Bureau of
Labor Statistics (BLS), discussed below.

The macro news events are indexed by their date and time of the data release, while the machine learning algorithm
is adapted to quarterly sampling frequencies. When including the macro data surprises as additional predictors for the
machine forecast, I time-aggregate the macro data surprises to a quarterly frequency by taking the sum of the surprises
across data releases that occurred before the response deadline set for the machine. For example, if the response deadline
is set to the first day of the middle month of each quarter (e.g., February 1st), I take the sum of the surprises from data
releases up to the day before the deadline, the last day of the first month of each quarter (e.g., January 31st).

D.2.2 FOMC Surprises

FOMUC surprises are defined as the changes in the current-month, 1, 2, 6, 12, and 24 month-ahead federal funds futures
(FFF) contract rate and changes in the 1, 2, 4, and 8 quarter-ahead Eurodollar (ED) futures contract rate, from 10 minutes
before to 20 minutes after each U.S. Federal Reserve Federal Open Market Committee (FOMC) announcement. The data
on FFF and ED were downloaded on June 3rd 2022. When benchmarking against a survey, I use the last FOMC meeting
before the survey deadline to compute surprises. For surveys that do not have a clear deadline, I compute surprises using
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from the last FOMC in the first month of the quarter. When benchmarking against moving average, I use the last FOMC
meeting before the end of the first month in each quarter to compute surprises.

When including the FOMC surprises as additional predictors for the machine forecast, I time-aggregate the FOMC
surprises to a quarterly frequency by taking the sum of the surprises across FOMC announcements that occurred before
the response deadline set for the machine. For example, if the response deadline is set to the first day of the middle month
of each quarter (e.g., February 1st), I take the sum of the surprises from FOMC announcements up to the day before the
deadline, the last day of the first month of each quarter (e.g., January 31st).

D.2.3 S&P 500 Jumps

As a measure of the market’s reaction to news shocks, I use the jump in the S&P 500 pre- and post- a 30-minute
window around major news events. The events in our analysis include (i) 1,482 macroeconomic data releases for U.S.
GDP, Consumer Price Index (CPI), unemployment, and payroll data spanning 1980:01-2021:12, (ii) 16 corporate earnings
announcement days spanning 1999:03-2020:05, and (iii) 219 Federal Open Market Committee (FOMC) press releases from
the Fed spanning 1994:02-2021:12. The corporate earnings news events are from [Baker et al.| (2019) who conduct textual
analyses of Wall Street Journal articles to identify days in which there were large jumps in the aggregate stock market
that could be attributed to corporate earnings news with high confidence. The jump in the S&P 500 for a given event is
defined as j, = Dr+6post — Pr—6pre, Where 7 indexes the time of an event and p- = log(Pr) is the log S&P 500 index. dpre
and Jpost denote the pre and post event windows, which is 10 minutes before and 20 minutes after the event, respectively.
I obtain data on P: using tick-by-tick data on the S&P 500 index from tickdata.com. The series was purchased and
downloaded on 7/2/2022 from https://www.tickdata.com/. I create the minutely data using the close price within
each minute. I supplement the S&P 500 index using S&P500 E-mini futures for events that occur in off-market hours.
I use the current-quarter contract futures. I purchased the S&P 500 E-mini futures from CME group on 7/2/2022 at
https://datamine.cmegroup.com/. Our sample spans 1/2/1986 to 6/30/2022.

For each event, I separate out the events for which the S&P 500 increased over the window ( jﬁ) > 0) and those for
which the market decreased (jg_) < 0). I aggregate the event-level jumps to monthly time series by summing over all
the relevant events within the month, where the events are partitioned into two groups based on the sign of the jump:
Jt(ﬂ = Zrez(z) jﬁ), Jt(ﬂ = Zrez(t) j$7)7 where ¢ indexes the month and x(t) is the set of all events that occurred within

month t. The procedure results in two monthly variables, Jt(ﬂ and J,ff), which capture total market reaction to news
events in either direction during the quarter. The series spans the period 1994:02 to 2022:03. Separating out the events
based on the sign of the jump allows us to capture any differential effects on return predictability based on whether the
market perceived the news as good or bad. The partition also allows us to accurately capture the total extent of over-
or under-reaction. Otherwise, mixing all the events would only capture the net effect of the jumps and bias the market
reaction towards zero.

When used as additional predictors in the for the machine forecast, the jumps need to be converted to quarterly
time series because the machine learning algorithm is adapted to a quarterly sampling frequency. The set of events in
z(t) is chosen so that the machine only sees the news events that would have been available to the real-time firm. When
combining the events within a quarter, I impose the response deadline used to produce the machine forecast. For example,
if the response deadline is set to the first day of the middle month of each quarter (e.g., February 1st), I use the jumps
from the events up to the day before the deadline, the last day of the first month of each quarter (e.g., January 31st).

D.2.4 Real-Time Macro Data

This section gives details on the real time macro data inputs used in the machine learning forecasts. A subset of these
series are used in the structural estimation. At each forecast date in the sample, I construct a dataset of macro variables
that could have been observed on or before the day of the survey deadline. I use the Philadelphia Fed’s Real-Time Data Set
to obtain vintages of macro variables. The real-time data sets are available at https://www.philadelphiafed.org/research-
and-data/real-time-center /real-time-data/data-files. These vintages capture changes to historical data due to periodic
revisions made by government statistical agencies. The vintages for a particular series can be available at the monthly
and/or quarterly frequencies, and the series have monthly and/or quarterly observations. In cases where a variable has both
frequencies available for its vintages and/or its observations, I choose one format of the variable. For instance, nominal
personal consumption expenditures on goods is quarterly data with both monthly and quarterly vintages available; in this
case, | use the version with monthly vintages.

Table [AT12] gives the complete list of real-time macro variables. Included in the table is the first available vintages for
each variable that has multiple vintages. I do not include the last vintage because most variables have vintages through
the present. For variables BASEBASAQVMD, NBRBASAQVMD, NBRECBASAQVMD, and TRBASAQVMD, the last
available vintage is 2013Q2. Table [AT12] also lists the transformation applied to each variable to make them stationary
before generating factors. Let X;; denote variable ¢ at time ¢ after the transformation, and let Xf}t be the untransformed
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series. Let A = (1 — L) with LX,; = X;;:—1. There are seven possible transformations with the following codes:

1 Code lv: X = X{?t

2 Code Alv: X; ¢ = X{?t - Xi

3 Code A’lv: X, , = A*X[Y

4 Code In: X, = In(X7y)

5 Code Aln: X; 4 = ln(Xft) —In(X{_1)

6 Code A%In: X;, = A%In(X7,)

7 Code Alv/lv: Xiy = (X7 — X{t_1)/ X,

Table A.12: List of Macro Dataset Variables

No.  Short Name Source Tran Description First Vintage
Group 1: Output and Income
1 IPMMVMD Philly Fed Aln Ind. production index - Manufacturing 1962M11
2 IPTMVMD Philly Fed Aln Ind. production index - Total 1962M11
3 CUMMVMD Philly Fed lv Capacity utilization - Manufacturing 1979M8
4 CUTMVMD Philly Fed lv Capacity utilization - Total 1983M7
5 NCPROFATMVQD Philly Fed Aln Nom. corp. profits after tax without IVA/CCAdj  1965Q4
6 NCPROFATWMVQD Philly Fed Aln Nom. corp. profits after tax with IVA/CCAdj 1981Q1
7 OPHMVQD Philly Fed Aln Output per hour - Business sector 1998Q4
8 NDPIQVQD Philly Fed Aln Nom. disposable personal income 1965Q4
9 NOUTPUTQVQD Philly Fed Aln Nom. GNP/GDP 1965Q4
10 NPIQVQD Philly Fed Aln Nom. personal income 1965Q4
11 NPSAVQVQD Philly Fed Alv Nom. personal saving 1965Q4
12 OLIQVQD Philly Fed Aln Other labor income 1965Q4
13 PINTIQVQD Philly Fed Aln Personal interest income 1965Q4
14 PINTPAIDQVQD Philly Fed Aln Interest paid by consumers 1965Q4
15 PROPIQVQD Philly Fed Aln Proprietors’ income 1965Q4
16 PTAXQVQD Philly Fed Aln Personal tax and nontax payments 1965Q4
17 RATESAVQVQD Philly Fed Alv Personal saving rate 1965Q4
18 RENTIQVQD Philly Fed Alv Rental income of persons 1965Q4
19 ROUTPUTQVQD Philly Fed Aln Real GNP/GDP 1965Q4
20 SSCONTRIBQVQD Philly Fed Aln Personal contributions for social insurance 1965Q4
21 TRANPFQVQD Philly Fed Aln Personal transfer payments to foreigners 1965Q4
22 TRANRQVQD Philly Fed Aln Transfer payments 1965Q4
23 CUURO000SAOE BLS A2ln Energy in U.S. city avg., all urban consumers, not
seasonally adj
Group 2: Employment
24 EMPLOYMVMD Philly Fed Aln Nonfarm payroll 1946M12
25 HMVMD Philly Fed lv Aggregate weekly hours - Total 1971M9
26 HGMVMD Philly Fed lv Agg. weekly hours - Goods-producing 1971M9
27 HSMVMD Philly Fed lv Agg. weekly hours - Service-producing 1971M9
28 LFCMVMD Philly Fed Aln Civilian labor force 1998M11
29 LFPARTMVMD Philly Fed lv Civilian participation rate 1998M11
30 POPMVMD Philly Fed Aln Civilian noninstitutional population 1998M11
31 ULCMVQD Philly Fed Aln Unit labor costs - Business sector 1998Q4
32 RUCQVMD Philly Fed Alv Unemployment rate 1965Q4
33 WSDQVQD Philly Fed Aln Wage and salary disbursements 1965Q4
Group 3: Orders, Investment, Housing
34 HSTARTSMVMD Philly Fed Aln Housing starts 1968 M2
35 RINVBFMVQD Philly Fed Aln Real gross private domestic inv. - Nonresidential 1965Q4
36 RINVCHIMVQD Philly Fed Alv Real gross private domestic inv. - Change in pri- 1965Q4
vate inventories
37 RINVRESIDMVQD Philly Fed Aln Real gross private domestic inv. - Residential 1965Q4
38 CASESHILLER S&P Aln Case-Shiller US National Home Price index/CPI 1987M1
Group 4: Consumption
39 NCONGMMVMD Philly Fed Aln Nom. personal cons. exp. - Goods 2009M8
40 NCONHHMMVMD Philly Fed Aln Nom. hh. cons. exp. 2009M8
41 NCONSHHMMVMD Philly Fed Aln Nom. hh. cons. exp. - Services 2009M8
42 NCONSNPMMVMD Philly Fed Aln Nom. final cons. exp. of NPISH 2009M8
43 RCONDMMVMD Philly Fed Aln Real personal cons. exp. - Durables 1998M11
44 RCONGMMVMD Philly Fed Aln Real personal cons. exp. - Goods 2009M8
45 RCONHHMMVMD Philly Fed Aln Real hh. cons. exp. 2009M8
46 RCONMMVMD Philly Fed Aln Real personal cons. exp. - Total 1998M11
47 RCONNDMVMD Philly Fed Aln Real personal cons. exp. - Nondurables 1998M11
48 RCONSHHMMVMD Philly Fed Aln Real hh. cons. exp. - Services 2009M8
49 RCONSMMVMD Philly Fed Aln Real personal cons. exp. - Services 1998M11

55



No.  Short Name Source Tran Description First Vintage

50 RCONSNPMMVMD Philly Fed Aln Real final cons. exp. of NPISH 2009M8
51 NCONGMVQD Philly Fed Aln Nom. personal cons. exp. - Goods 2009Q3
52 NCONHHMVQD Philly Fed Aln Nom. hh. cons. exp. 0209Q3
53 NCONSHHMVQD Philly Fed Aln Nom. hh. cons. exp. - Services 2009Q3
54 NCONSNPMVQD Philly Fed Aln Nom. final cons. exp. of NPISH 2009Q3
55 RCONDMVQD Philly Fed Aln Real personal cons. exp. - Durable goods 1965Q4
56 RCONGMVQD Philly Fed Aln Real personal cons. exp. - Goods 2009Q3
57 RCONHHMVQD Philly Fed Aln Real hh. cons. exp. 2009Q3
58 RCONMVQD Philly Fed Aln Real personal cons. exp. - Total 1965Q4
59 RCONNDMVQD Philly Fed Aln Real pesonal cons. exp. - Nondurable goods 1965Q4
60 RCONSHHMVQD Philly Fed Aln Real hh. cons. exp. - Services 2009Q3
61 RCONSMVQD Philly Fed Aln Real personal cons. exp. - Services 1965Q4
62 RCONSNPMVQD Philly Fed Aln Real final cons. exp. of NPISH 2009Q3
63 NCONQVQD Philly Fed Aln Nom. personal cons. exp. 1965Q4
Group 5: Prices
64 PCONGMMVMD Philly Fed AZln Price index for personal cons. exp. - Goods 2009M8
65 PCONHHMMVMD Philly Fed A2ln Price index for hh. cons. exp. 2009M8
66 PCONSHHMMVMD Philly Fed A2ln Price index for hh. cons. exp. - Services 2009M8
67 PCONSNPMMVMD Philly Fed A2ln Price index for final cons. exp. of NPISH 2009M8
68 PCPIMVMD Philly Fed A2ln Consumer price index 1998M11
69 PCPIXMVMD Philly Fed A2ln Core consumer price index 1998M11
70 PPPIMVMD Philly Fed A2ln Producer price index 1998M11
71 PPPIXMVMD Philly Fed A2ln Core producer price index 1998M11
72 PCONGMVQD Philly Fed A2ln Price index for personal. cons. exp. - Goods 2009Q3
73 PCONHHMVQD Philly Fed A2ln Price index for hh. cons. exp. 2009Q3
74 PCONSHHMVQD Philly Fed A2ln Price index for hh. cons. exp. - Services 2009Q3
75 PCONSNPMVQD Philly Fed A2ln Price index for final cons. exp. of NPISH 2009Q3
76 PCONXMVQD Philly Fed A2ln Core price index for personal cons. exp. 1996Q1
s CPIQVMD Philly Fed A2ln Consumer price index 1994Q3
78 PQVQD Philly Fed A2ln Price index for GNP/GDP 1965Q4
79 PCONQVQD Philly Fed A2ln Price index for personal cons. exp. 1965Q4
80 PIMPQVQD Philly Fed A2ln Price index for imports of goods and services 1965Q4
Group 6: Trade and Government
81 REXMVQD Philly Fed Aln Real exports of goods and services 1965Q4
82 RGMVQD Philly Fed Aln Real government cons. and gross inv. - Total 1965Q4
83 RGFMVQD Philly Fed Aln Real government cons. and gross inv. - Federal 1965Q4
84 RGSLMVQD Philly Fed Aln Real government cons. and gross. inv. - State and  1965Q4
local
85 RIMPMVQD Philly Fed Aln Real imports of goods and services 1965Q4
86 RNXMVQD Philly Fed Alv Real net exports of goods and services 1965Q4
Group 7: Money and Credit
87 BASEBASAQVMD Philly Fed AZln Monetary base 1980Q2
88 M1QVMD Philly Fed A2ln M1 money stock 1965Q4
89 M2QVMD Philly Fed A2ln M2 money stock 1971Q2
90 NBRBASAQVMD Philly Fed Alv/lv Nonborrowed reserves 1967Q3
91 NBRECBASAQVMD Philly Fed Alv/lv Nonborrowed reserves plus extended credit 1984Q2
92 TRBASAQVMD Philly Fed A2ln Total reserves 1967Q3
93 DIVQVQD Philly Fed Aln Dividends 1965Q4

D.2.5 Monthly Financial Data

The 147 financial series in this data set are versions of the financial dataset used in Jurado et al. (2015) and Ludvigson
et al. (2021). It consists of a number of indicators measuring the behavior of a broad cross-section of asset returns, as well
as some aggregate financial indicators not included in the macro dataset. These data include valuation ratios such as the
dividend-price ratio and earnings-price ratio, growth rates of aggregate dividends and prices, default and term spreads,
yields on corporate bonds of different ratings grades, yields on Treasuries and yield spreads, and a broad cross-section of
industry equity returns. Following Fama and French (1992), returns on 100 portfolios of equities sorted into 10 size and 10
book-to-market categories. The dataset X7 also includes a group of variables we call “risk-factors,” since they have been
used in cross-sectional or time-series studies to uncover variation in the market risk-premium. These risk-factors include
the three Fama and French (1993) risk factors, namely the excess return on the market M KT}, the “small-minus-big”
(SMB;) and “high-minus-low” (HM L) portfolio returns, the momentum factor UM D,, and the small stock value spread
R15 — R11.

The raw data used to form factors are always transformed to achieve stationarity. In addition, when forming forecasting
factors from the large macro and financial datasets, the raw data (which are in different units) are standardized before
performing PCA. When forming common uncertainty from estimates of individual uncertainty, the raw data (which are in
this case in the same units) are demeaned, but we do not divide by the observation’s standard deviation before performing
PCA. Throughout, the factors are estimated by the method of static principal components (PCA). Specifically, the T' X rp
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matrix ﬁt is /T times the rp eigenvectors corresponding to the rr largest eigenvalues of the T' x T" matrix xm'/(TN) in
decreasing order. In large samples (when /T /N — co), Bai and Ng (2006) show that the estimates F; can be treated as
though they were observed in the subsequent forecasting regression. All returns and spreads are expressed in logs (i.e., the
log of the gross return or spread), are displayed in percent (i.e., multiplied by 100), and are annualized by multiplying by
12. That is, if x is the original return or spread, we transform to 1200 x log(1+x/100). Federal Reserve data are annualized
by default and are therefore not re-annualized. Note that this annualization implies that the annualized standard deviation
(volatility) is equal to the data standard deviation divided by v/12. The data series used in this dataset are listed below
by data source. Additional details on data transformations are given below the table.

We convert monthly data to quarterly by using either the beginning-of-quarter or end-of-quarter values. The decision
to use beginning-of-quarter or end-of-quarter depends on the survey deadline of a particular forecast date. If the survey
deadline is known to be in the middle of the second month of quarter ¢, then it is conceivable that the forecasters would have
information about the first month of quarter ¢. Therefore, we use the first month of that quarter’s values. Alternatively, a
few anomalous observations have unknown survey deadlines (e.g., the SPF deadlines for 1990Q1). In such cases, we allow
only information up to quarter ¢ — 1 to enter the model. Thus, we use the last month of the previous quarter’s values in
these cases. Let X;: denote variable i observed at time t after, e.g., logarithm and differencing transformation, and let
X7, be the actual (untransformed) series. Let A = (1 — L) with LX;; = X;,—1. There are six possible transformations
with the following codes:

1 Code lv : X, = X7

2 Code Alv: X1 = X{?t - Xﬁtfl

3 Code A?lv : Xt = AQX;}t

4 Code In : X, = log(X{})

5 Code Aln : X;+ = log(Xf}t) - 10g(X{?t71)
6 Code A%ln : X;, = A% log(X7)

Xih — X{ia

A
it—1

7 Code Alv/lv : X;¢ =

Table A.13: List of Financial Dataset Variables

No.  Short Name Source Tran Description
Group 1: Prices, Yields, Dividends
1 D_log(DIV) CRSP Aln 1 log Dy, see additional details below
2 D_log(P) CRSP Aln 1 log P, see additional details below
3 D_DIVreinvest CRSP Aln 1 log D:e’*7 see additional details below
4 D_Preinvest CRSP Aln 1 log Ptre’*, see additional details below
5 d-p CRSP In log D¢ — P, see additional details below
Group 2: Equity Risk Factors
6 R15-R11 Kenneth French lv (Small, High) minus (Small, Low) sorted on (size, book-to-market)
7 Mkt-RF Kenneth French v Market excess return
8 SMB Kenneth French lv Small Minus Big, sorted on size
9 HML Kenneth French lv High Minus Low, sorted on book-to-market
10 UMD Kenneth French v Up Minus Down, sorted on momentum
Group 3: Industries
11 Agric Kenneth French v Agric industry portfolio
12 Food Kenneth French lv Food industry portfolio
13 Beer Kenneth French v Beer industry portfolio
14 Smoke Kenneth French v Smoke industry portfolio
15 Toys Kenneth French lv Toys industry portfolio
16 Fun Kenneth French v Fun industry portfolio
17 Books Kenneth French v Books industry portfolio
18 Hshld Kenneth French lv Hshld industry portfolio
19 Clths Kenneth French v Clths industry portfolio
20 MedEq Kenneth French v MedEq industry portfolio
21 Drugs Kenneth French v Drugs industry portfolio
22 Chems Kenneth French v Chems industry portfolio
23 Rubbr Kenneth French lv Rubbr industry portfolio
24 Txtls Kenneth French v Txtls industry portfolio
25 BldMt Kenneth French v BldMt industry portfolio
26 Cnstr Kenneth French lv Cnstr industry portfolio
27 Steel Kenneth French v Steel industry portfolio
28 Mach Kenneth French v Mach industry portfolio
29 ElcEq Kenneth French v ElcEq industry portfolio
30 Autos Kenneth French v Autos industry portfolio
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No.  Short Name Source Tran Description
31 Aero Kenneth French v Aero industry portfolio
32 Ships Kenneth French lv Ships industry portfolio
33 Mines Kenneth French v Mines industry portfolio
34 Coal Kenneth French v Coal industry portfolio
35 Oil Kenneth French lv Oil industry portfolio
36 Util Kenneth French v Util industry portfolio
37 Telcm Kenneth French lv Telcm industry portfolio
38 PerSv Kenneth French lv PerSv industry portfolio
39 BusSv Kenneth French lv BusSv industry portfolio
40 Hardw Kenneth French lv Hardw industry portfolio
41 Chips Kenneth French v Chips industry portfolio
42 LabEq Kenneth French lv LabEq industry portfolio
43 Paper Kenneth French lv Paper industry portfolio
44 Boxes Kenneth French v Boxes industry portfolio
45 Trans Kenneth French v Trans industry portfolio
46 Whlsl Kenneth French lv Whisl industry portfolio
47 Rtail Kenneth French v Rtail industry portfolio
48 Meals Kenneth French v Meals industry portfolio
49 Banks Kenneth French lv Banks industry portfolio
50 Insur Kenneth French v Insur industry portfolio
51 RIEst Kenneth French lv RlEst industry portfolio
52 Fin Kenneth French lv Fin industry portfolio
53 Other Kenneth French lv Other industry portfolio

Group 4: Size/BM
54 1.2 Kenneth French lv (1, 2) portfolio sorted on (size, book-to-market)
55 14 Kenneth French lv (1, 4) portfolio sorted on (size, book-to-market)
56 1.5 Kenneth French lv (1, 5) portfolio sorted on (size, book-to-market)
57 1.6 Kenneth French v (1, 6) portfolio sorted on (size, book-to-market)
58 1.7 Kenneth French lv (1, 7) portfolio sorted on (size, book-to-market)
59 1.8 Kenneth French lv (1, 8) portfolio sorted on (size, book-to-market)
60 19 Kenneth French v (1, 9) portfolio sorted on (size, book-to-market)
61 1_high Kenneth French lv (1, high) portfolio sorted on (size, book-to-market)
62 2_low Kenneth French lv (2, low) portfolio sorted on (size, book-to-market)
63 2.2 Kenneth French v (2, 2) portfolio sorted on (size, book-to-market)
64 2.3 Kenneth French lv (2, 3) portfolio sorted on (size, book-to-market)
65 2.4 Kenneth French lv (2, 4) portfolio sorted on (size, book-to-market)
66 2.5 Kenneth French lv (2, 5) portfolio sorted on (size, book-to-market)
67 2.6 Kenneth French v (2, 6) portfolio sorted on (size, book-to-market)
68 2.7 Kenneth French lv (2, 7) portfolio sorted on (size, book-to-market)
69 2.8 Kenneth French lv (2, 8) portfolio sorted on (size, book-to-market)
70 29 Kenneth French v (2, 9) portfolio sorted on (size, book-to-market)
71 2_high Kenneth French v (2, high) portfolio sorted on (size, book-to-market)
72 3_low Kenneth French lv (3, low) portfolio sorted on (size, book-to-market)
73 32 Kenneth French lv (3, 2) portfolio sorted on (size, book-to-market)
74 3.3 Kenneth French v (3, 3) portfolio sorted on (size, book-to-market)
75 34 Kenneth French lv (3, 4) portfolio sorted on (size, book-to-market)
76 3.5 Kenneth French lv (3, 5) portfolio sorted on (size, book-to-market)
7 3.6 Kenneth French lv (3, 6) portfolio sorted on (size, book-to-market)
78 3.7 Kenneth French lv (3, 7) portfolio sorted on (size, book-to-market)
79 3.8 Kenneth French lv (3, 8) portfolio sorted on (size, book-to-market)
80 39 Kenneth French lv (3, 9) portfolio sorted on (size, book-to-market)
81 3_high Kenneth French lv (3, high) portfolio sorted on (size, book-to-market)
82 4_low Kenneth French v (4, low) portfolio sorted on (size, book-to-market)
83 4.2 Kenneth French lv (4, 2) portfolio sorted on (size, book-to-market)
84 4.3 Kenneth French lv (4, 3) portfolio sorted on (size, book-to-market)
85 4.4 Kenneth French v (4, 4) portfolio sorted on (size, book-to-market)
86 4.5 Kenneth French lv (4, 5) portfolio sorted on (size, book-to-market)
87 4.6 Kenneth French lv (4, 6) portfolio sorted on (size, book-to-market)
88 4.7 Kenneth French v (4, 7) portfolio sorted on (size, book-to-market)
89 4.8 Kenneth French lv (4, 8) portfolio sorted on (size, book-to-market)
90 4.9 Kenneth French lv (4, 9) portfolio sorted on (size, book-to-market)
91 4_high Kenneth French lv (4, high) portfolio sorted on (size, book-to-market)
92 5_low Kenneth French v (5, low) portfolio sorted on (size, book-to-market)
93 5.2 Kenneth French lv (5, 2) portfolio sorted on (size, book-to-market)
94 5.3 Kenneth French lv (5, 3) portfolio sorted on (size, book-to-market)
95 5.4 Kenneth French v (5, 4) portfolio sorted on (size, book-to-market)
96 5.5 Kenneth French v (5, 5) portfolio sorted on (size, book-to-market)
97 5.6 Kenneth French lv (5, 6) portfolio sorted on (size, book-to-market)
98 5.7 Kenneth French lv (5, 7) portfolio sorted on (size, book-to-market)
99 5.8 Kenneth French v (5, 8) portfolio sorted on (size, book-to-market)
100 5.9 Kenneth French lv (5, 9) portfolio sorted on (size, book-to-market)
101 5_high Kenneth French lv (5, high) portfolio sorted on (size, book-to-market)
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102 6_low Kenneth French v (6, low) portfolio sorted on (size, book-to-market)

103 6.2 Kenneth French lv (6, 2) portfolio sorted on (size, book-to-market)
104 6.3 Kenneth French v (6, 3) portfolio sorted on (size, book-to-market)
105 64 Kenneth French v (67 4) portfolio sorted on (size, book-to-market)
106 6.5 Kenneth French lv (6, 5) portfolio sorted on (size, book-to-market)
107 6.6 Kenneth French lv (6, 6) portfolio sorted on (size, book-to-market)
108 6.7 Kenneth French v (6, 7) portfolio sorted on (size, book-to-market)
109 6.8 Kenneth French lv (6, 8) portfolio sorted on (size, book-to-market)
110 629 Kenneth French lv (6, 9) portfolio sorted on (size, book-to-market)
111 6.-high Kenneth French lv (6, high) portfolio sorted on (size, book-to-market)
112 7_low Kenneth French lv (7, low) portfolio sorted on (size, book-to-market)
113 722 Kenneth French lv (7, 2) portfolio sorted on (size, book-to-market)
114 7.3 Kenneth French lv (7, 3) portfolio sorted on (size, book-to-market)
115 74 Kenneth French v (7, 4) portfolio sorted on (size, book-to-market)
116 75 Kenneth French v (7, 5) portfolio sorted on (size, book-to-market)
117 76 Kenneth French lv (7, 6) portfolio sorted on (size, book-to-market)
118 7.7 Kenneth French lv (7, 7) portfolio sorted on (size, book-to-market)
119 78 Kenneth French v (7, 8) portfolio sorted on (size, book-to-market)
120 79 Kenneth French lv (7, 9) portfolio sorted on (size, book-to-market)
121 8.low Kenneth French lv (8, low) portfolio sorted on (size, book-to-market)
122 822 Kenneth French v (8, 2) portfolio sorted on (size, book-to-market)
123 8.3 Kenneth French lv (8, 3) portfolio sorted on (size, book-to-market)
124 84 Kenneth French lv (8, 4) portfolio sorted on (size, book-to-market)
125 8.5 Kenneth French lv (8, 5) portfolio sorted on (size, book-to-market)
126 86 Kenneth French v (8, 6) portfolio sorted on (size, book-to-market)
127 8.7 Kenneth French v (8, 7) portfolio sorted on (size, book-to-market)
128 88 Kenneth French lv (8, 8) portfolio sorted on (size, book-to-market)
129 89 Kenneth French v (8, 9) portfolio sorted on (size, book-to-market)
130 8-high Kenneth French v (8, high) portfolio sorted on (size, book-to-market)
131 9_low Kenneth French lv (9, low) portfolio sorted on (size, book-to-market)
132 9.2 Kenneth French lv (9, 2) portfolio sorted on (size, book-to-market)
133 9.3 Kenneth French v (9, 3) portfolio sorted on (size, book-to-market)
134 94 Kenneth French lv (9, 4) portfolio sorted on (size, book-to-market)
135 9.5 Kenneth French lv (9, 5) portfolio sorted on (size, book-to-market)
136 9.6 Kenneth French lv (9, 6) portfolio sorted on (size, book-to-market)
137 9.7 Kenneth French lv (9, 7) portfolio sorted on (size, book-to-market)
138 9.8 Kenneth French lv (9, 8) portfolio sorted on (size, book-to-market)
139 9_high Kenneth French lv (9, high) portfolio sorted on (size, book-to-market)
140  10_low Kenneth French lv (10, low) portfolio sorted on (size, book-to-market)
141 1022 Kenneth French v (10, 2) portfolio sorted on (size, book-to-market)
142 103 Kenneth French lv (10, 3) portfolio sorted on (size, book-to-market)
143 104 Kenneth French lv (10, 4) portfolio sorted on (size, book-to-market)
144 105 Kenneth French v (10, 5) portfolio sorted on (size, book-to-market)
145 106 Kenneth French lv (10, 6) portfolio sorted on (size, book-to-market)
146 107 Kenneth French lv (10, 7) portfolio sorted on (size, book-to-market)
147 VXO Fred MD lv VXOCLS

CRSP Data Details Value-weighted price and dividend data were obtained from the Center for Research in Se-
curity Prices (CRSP, Center for Research in Security Prices (1926-2022)). From the Annual Update data, we obtain
the monthly value-weighted return series vwretd (with dividends) and vwretx (excluding dividends). These series have
the interpretations: VW RET; % VWRETX, = P;;rl. From these series, a normalized price series P; can
be constructed recursively as: Pop = 1, P, = Pi_1 X VWRETXt 1. A dividend series can then be constructed using:
Dy =P_1 x VWRET;_1 — VWRETthl). In order to remove seasonality of dividend payments from the data, instead
of D; we use the series: D; = 11—2 2]1.1:0 D;_j, i.e., the moving average over the entire year. For the price and dividend
series under “reinvestment,” we calculate the price under reinvestment, P;¢, as the normalized value of the market port-
folio under reinvestment of dividends, using the recursion: Py¢ =1, P/®* = P,_1 x VW RET;_;. Similarly, we can define
dividends under reinvestment, Dj°, as the total dividend payments on this portfolio (the number of “shares” of which have
1ncreased over tlme) using: D{¢ = P[¢;, X (VWRET;—1 — VWRETX;_1). As before, we can remove seasonality by using:

=13 Z . Five data series are constructed from the CRSP data as follows: D_1og(DIV): Alog(D;); D_log(P):
Alog(Pt) DJ)IVrelnvest Alog(D;¢); D_Preinvest: Alog(P;¢); d-p: log(D:) — log(P;).

Kenneth French Data Details The following data are obtained from the data library of Kenneth French’s Dart-
mouth website (French (1926-2022)):

e Fama/French Factors: From this dataset we obtain the series RF, Mkt-RF, SMB, and HML.
e 25 Portfolios Formed on Size and Book-to-Market (5 x 5): From this dataset we obtain the series R15-R11, which

is the return spread between the (small, high book-to-market) and (small, low book-to-market) portfolios.
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e Momentum Factor (Mom): From this dataset we obtain the series UMD, which is equal to the momentum factor.

e 49 Industry Portfolios: From this dataset we use all value-weighted series, excluding any series that have missing
observations from January 1960 onward. This yields the series Agric through Other. The omitted series are Soda,
Hlth, FabPr, Guns, Gold, and Softw.

e 100 Portfolios Formed on Size and Book-to-Market: From this dataset we use all value-weighted series, excluding
any series that have missing observations from January 1960 onward. This yields variables with names X_Y, where
X denotes the size index (1,2,...,10) and Y denotes the book-to-market index (Low,2,3,...,8,9,High). The
omitted series are 1_low, 1.3, 7_high, 9.9, 108, 10_9, and 10_high.

VXO Data Details VXO data is obtained from the Monthly Database for Macroeconomic Research (FRED-MD,
McCracken (2015-2022)).

D.2.6 Daily Financial Data

Daily Data and construction of daily factors These data are used in the machine learning forecasts. The daily
financial series in this data set are from the daily financial dataset used in |Andreou et al| (2013). I create a smaller
daily database which is a subset of the large cross-section of 991 daily series in their dataset. Our dataset covers five
classes of financial assets: (i) the Commodities class; (ii) the Corporate Risk category; (iii) the Equities class; (iv) the
Foreign Exchange Rates class and (v) the Government Securities. The dataset includes up to 87 daily predictors in a
daily frequency from 23-Oct-1959 to 24-Oct-2021 (14852 trading days) from the above five categories of financial assets. 1
remove series with fewer than ten years of data and time periods with no variables observed, which occurs for some series
in the early part of the sample. For those years, I have less than 87 series. There are 39 commodity variables which include
commodity indices, prices and futures, 16 corporate risk series, 9 equity series which include major US stock market indices
and the 500 Implied Volatility, 16 government securities which include the federal funds rate, government treasury bills of
securities from three months to ten years, and 7 foreign exchange variables which include the individual foreign exchange
rates of major five US trading partners and two effective exchange rate. I choose these daily predictors because they are
proposed in the literature as good predictors of economic growth.

I construct daily financial factors in a quarterly frequency in two steps. First, I use these daily financial time series to
form factors at a daily frequency. The raw data used to form factors are always transformed to achieve stationarity and
standardized before performing factor estimation (see generic description below). I re-estimate factors at each date in the
sample recursively over time using the entire history of data available in real time prior to each out-of-sample forecast.
In the second step, I convert these daily financial indicators to quarterly weighted variables to form quarterly factors by
selecting an optimal weighting scheme according to the method described below (see the weighting scheme section). The
data series used in this dataset are listed below in Table by data source. The tables also list the transformation
applied to each variable to make them stationary before generating factors. The transformations used to stationarize a
time series are the same as those explained in the section “Monthly financial factor data”.

Table A.14: List of Daily Financial Dataset Variables

No. Short Name Source Tran Description
Group 1: Commodities
1 GSIZSPT Data Stream Aln  S&P GSCI Zinc Spot - PRICE INDEX
2 GSSBSPT Data Stream Aln  S&P GSCI Sugar Spot - PRICE INDEX
3 GSSOSPT Data Stream Aln  S&P GSCI Soybeans Spot - PRICE INDEX
4 GSSISPT Data Stream Aln  S&P GSCI Silver Spot - PRICE INDEX
5 GSIKSPT Data Stream Aln  S&P GSCI Nickel Spot - PRICE INDEX
6 GSLCSPT Data Stream Aln  S&P GSCI Live Cattle Spot - PRICE INDEX
7 GSLHSPT Data Stream Aln  S&P GSCI Lean Hogs Index Spot - PRICE INDEX
8 GSILSPT Data Stream Aln  S&P GSCI Lead Spot - PRICE INDEX
9 GSGCSPT Data Stream Aln  S&P GSCI Gold Spot - PRICE INDEX
10 GSCTSPT Data Stream Aln  S&P GSCI Cotton Spot - PRICE INDEX
11 GSKCSPT Data Stream Aln  S&P GSCI Coffee Spot - PRICE INDEX
12 GSCCSPT Data Stream Aln  S&P GSCI Cocoa Index Spot - PRICE INDEX
13 GSIASPT Data Stream Aln  S&P GSCI Aluminum Spot - PRICE INDEX
14 SGWTSPT Data Stream Aln  S&P GSCI All Wheat Spot - PRICE INDEX
15 EIAEBRT Data Stream Aln  Europe Brent Spot FOB U$/BBL Daily
16 CRUDOIL Data Stream Aln  Crude Oil-WTI Spot Cushing U$/BBL - MID PRICE
17 LTICASH Data Stream Aln  LME-Tin 99.85% Cash U$/MT
18 CWFCS00 Data Stream Aln  CBT-WHEAT COMPOSITE FUTURES CONT. - SETT. PRICE
19 CCFCS00 Data Stream Aln  CBT-CORN COMP. CONTINUOUS - SETT. PRICE
20 CSYCS00 Data Stream Aln  CBT-SOYBEANS COMP. CONT. - SETT. PRICE
21 NCTCS20 Data Stream Aln  CSCE-COTTON #2 CONT.2ND FUT - SETT. PRICE
22 NSBCS00 Data Stream Aln  CSCE-SUGAR #11 CONTINUOUS - SETT. PRICE
23 NKCCS00 Data Stream Aln  CSCE-COFFEE C CONTINUOUS - SETT. PRICE
24 NCCCS00 Data Stream Aln  CSCE-COCOA CONTINUOUS - SETT. PRICE
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No.  Short Name Source Tran Description

25 CZLCS00 Data Stream Aln  ECBOT-SOYBEAN OIL CONTINUOUS - SETT. PRICE

26 COFCo01 Data Stream Aln  CBT-OATS COMP. TRcl - SETT. PRICE

27 CLDCS00 Data Stream Aln  CME-LIVE CATTLE COMP. CONTINUOUS - SETT. PRICE

28 CLGCO01 Data Stream Aln  CME-LEAN HOGS COMP. TRcl - SETT. PRICE

29 NGCCS00 Data Stream Aln  CMX-GOLD 100 OZ CONTINUOUS - SETT. PRICE

30 LAH3MTH Data Stream Aln  LME-Aluminium 99.7% 3 Months U$/MT

31 LED3MTH Data Stream Aln  LME-Lead 3 Months U$/MT

32 LNISMTH Data Stream Aln  LME-Nickel 3 Months U$/MT

33 LTISMTH Data Stream Aln LME-Tin 99.85% 3 Months U$/MT

34 PLNYD www.macrotrends.net Aln  Platinum Cash Price (U$ per troy ounce)

35 XPDD www.macrotrends.net Aln  Palladium (US$ per troy ounce)

36 CUS2D www.macrotrends.net Aln  Corn Spot Price (U$/Bushel)

37 SoybOil www.macrotrends.net Aln  Soybean Oil Price (U$/Pound)

38 OATSD www.macrotrends.net Aln  Oat Spot Price (US$/Bushel)

39 WTIOilFut US EIA Aln  Light Sweet Crude Oil Futures Price: 1St Expiring Contract Set-
tlement ($/Bbl)

Group 2: Equities

40 S&PCOMP Data Stream Aln  S&P 500 COMPOSITE - PRICE INDEX

41 ISPCS00 Data Stream Aln  CME-S&P 500 INDEX CONTINUOUS - SETT. PRICE

42 SP5EIND Data Stream Aln  S&P500 ES INDUSTRIALS - PRICE INDEX

43 DJINDUS Data Stream Aln DOW JONES INDUSTRIALS - PRICE INDEX

44 CYMCS00 Data Stream Aln  CBT-MINI DOW JONES CONTINUOUS - SETT. PRICE

45 NASCOMP Data Stream Aln NASDAQ COMPOSITE - PRICE INDEX

46 NASA100 Data Stream Aln NASDAQ 100 - PRICE INDEX

47 CBOEVIX Data Stream lv CBOE SPX VOLATILITY VIX (NEW) - PRICE INDEX

48 S&P500toVIX  Data Stream Aln  S&P500/VIX

Group 3: Corporate Risk

49 LIBOR FRED Alv Overnight London Interbank Offered Rate (%)

50 1MLIBOR FRED Alv  1-Month London Interbank Offered Rate (%)

51 3MLIBOR FRED Alv  3-Month London Interbank Offered Rate (%)

52 6MLIBOR FRED Alv  6-Month London Interbank Offered Rate (%)

53 1YLIBOR FRED Alv  One-Year London Interbank Offered Rate (%)

54 1MEuro-FF FRED lv 1-Month Eurodollar Deposits (London Bid) (% P.A.) minus Fed
Funds

55 3MEuro-FF FRED v 3-Month Eurodollar Deposits (London Bid) (% P.A.) minus Fed
Funds

56 6MEuro-FF FRED lv 6-Month Eurodollar Deposits (London Bid) (% P.A.) minus Fed
Funds

57 APFNF- Data Stream v 1-Month A2/P2/F2 Nonfinancial Commercial Paper (NCP) (% P.

AANF A.) minus 1-Month Aa NCP (% P.A.)

58 APFNF-AAF Data Stream v 1-Month A2/P2/F2 NCP (% P.A.) minus 1-Month Aa Financial
Commercial Paper (% P.A.)
59 TED Data Stream, FRED lv 3Month Thill minus 3-Month London Interbank Offered Rate (%)
60 MAaa-10YTB Data Stream lv Moody Seasoned Aaa Corporate Bond Yield (% P.A.) minus Y10-
Tbond
61 MBaa-10YTB Data Stream lv Moody Seasoned Baa Corporate Bond Yield (% P.A.) minus Y10-
Tbond
62 MLA-10YTB Data Stream, FRED lv Merrill Lynch Corporate Bonds: A Rated: Effective Yield (%)
minus Y10-Tbond

63 MLAA-10YTB  Data Stream, FRED v Merrill Lynch Corporate Bonds: Aa Rated: Effective Yield (%)
minus Y10-Tbond

64 MLAAA- Data Stream, FRED lv Merrill Lynch Corporate Bonds: Aaa Rated: Effective Yield (%)

10YTB minus Y10-Tbhond
Group 4: Treasuries

65 FRFEDFD Data Stream Alv  US FED FUNDS EFF RATE (D) - MIDDLE RATE

66 FRTBS3M Data Stream Alv  US T-BILL SEC MARKET 3 MONTH (D) - MIDDLE RATE

67 FRTBS6M Data Stream Alv  US T-BILL SEC MARKET 6 MONTH (D) - MIDDLE RATE

68 FRTCM1Y Data Stream Alv  US TREASURY CONST MAT 1 YEAR (D) - MIDDLE RATE

69 FRTCM10 Data Stream Alv  US TREASURY CONST MAT 10 YEAR (D) - MIDDLE RATE

70 6MTB-FF Data Stream lv 6-month treasury bill market bid yield at constant maturity (%)
minus Fed Funds

71 1YTB-FF Data Stream lv 1-year treasury bill yield at constant maturity (% P.A.) minus Fed
Funds

72 10YTB-FF Data Stream lv 10-year treasury bond yield at constant maturity (% P.A.) minus
Fed Funds

73 6MTB-3MTB Data Stream lv 6-month treasury bill yield at constant maturity (% P.A.) minus
3M-Thills

74 1YTB-3MTB Data Stream lv 1-year treasury bill yield at constant maturity (% P.A.) minus
3M-Thills

75 10YTB-3MTB Data Stream lv 10-year treasury bond yield at constant maturity (% P.A.) minus

3M-Thills
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No.  Short Name Source Tran Description

76 BKEVENO05 FRB lv US Inflation compensation: continuously compounded zero-
coupon yield: 5-year (%)

77 BKEVEN10 FRB lv US Inflation compensation: continuously compounded zero-
coupon yield: 10-year (%)

78 BKEVEN1F4 FRB v BKEVEN1F4

79 BKEVEN1F9 FRB lv BKEVENI1F9

80 BKEVENS5FS5 FRB lv US Inflation compensation: coupon equivalent forward rate: 5-10
years (%)

Group 5: Foreign Exchange (FX)

81 US_.CWBN Data Stream Aln  US NOMINAL DOLLAR BROAD INDEX - EXCHANGE IN-
DEX

82 US_.CWMN Data Stream Aln US NOMINAL DOLLAR MAJOR CURR INDEX - EXCHANGE
INDEX

83 US_CSFR2 Data Stream Aln  CANADIAN § TO US $ NOON NY - EXCHANGE RATE

84 EU_USFR2 Data Stream Aln  EURO TO US$ NOON NY - EXCHANGE RATE

85 US_-YFR2 Data Stream Aln  JAPANESE YEN TO US $ NOON NY - EXCHANGE RATE

86 US_SFFR2 Data Stream Aln  SWISS FRANC TO US $ NOON NY - EXCHANGE RATE

87 US_UKFR2 Data Stream Aln UK POUND TO US $ NOON NY - EXCHANGE RATE

From Daily to Quarterly Factors: Weighting Schemes After we obtain daily financial factors Gp ¢, we use
weighting schemes proposed in the literature on Mixed Data Sampling (MIDAS) regressions to form quarterly factors,
denoted Gg,t. Let GP denote a factor in daily frequency formed from the daily financial dataset, and let G? denote a
quarterly aggregate of the corresponding daily factor time series. Let GgD_j’dt,t denote the value of a daily factor on the
j-th day counting backwards from the survey deadline d; in quarter ¢. Hence, the day d: of quarter ¢ corresponds to j = 0,
so the daily factor on the survey deadline is G% D,d, ¢t For simplicity, we suppress the subscript d;, writing GR D—jt-

We compute the quarterly aggregate of a daily financial factor as a weighted average of observations over the ND
business days before the survey deadline. This means that the forecaster’s information set includes daily financial data up
to the previous N D business days before the survey deadline. The quarterly factor G’tQ is defined as:

ND

GP(w) = w; x GRp_j.

j=1

where w; is a weight. We consider the following three types of weighting schemes to convert daily factor observations to
quarterly aggregates. Each weighting scheme weights information by some function of the number of days prior to the
survey deadline.

1. w; =1 for i =1 and w; = 0 otherwise. This weighting scheme places all weight on the data from the last business
day before the survey deadline and zero weight on any data prior to that day.

2. w; =6/ 3207 67, where we consider a range of § values with § € {0.1,0.2,0.3,0.7,0.8,0.9,1.0}. The smaller the
0, the more rapidly information prior to the survey deadline is down-weighted. This down-weighting is progressive
but not non-monotonic. The case d = 1 corresponds to a simple average of observations across all days.

3. The third parameterization uses two parameters § = (61,62)" and allows for non-monotonic weighting of past
information. The weights are defined as:

f (5:01,02)

w(t;01,02) = -
(:0002) = S50 (o 60.00)

where f(z;a,b) = 2 (1 — )" Fr(gl);ffg), and I'(a) is the gamma function I'(a) = [ % te™" dz. The weights
w(i; 01,02) are the Beta polynomial MIDAS weights of Ghysels et al. (2007), based on the Beta function. This

weighting scheme is flexible enough to generate a wide range of possible shapes with only two parameters.

We consider these possible weighting schemes and choose the optimal weighting scheme w* from 24 candidate weighting
schemes for each daily financial factor G¥ by minimizing the sum of squared residuals in a regression of y; ;45 on G? :

Yitan =+ B X G (W) + usn

This procedure is conducted in real time using recursive regressions. We re-estimate the weights at each date in the sample
recursively over time, using the entire history of data available in real time prior to each out-of-sample forecast. We assume
that ND = 14, which implies that forecasters use daily information from at most the past two weeks before the survey
deadline. This process is repeated for each daily financial factor in Gp; to form quarterly factors th.
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D.2.7 LDA Data

The LDA data are used as inputs into the machine learning forecasts. The database for our Latent Dirichlet Allocation
(LDA) analysis contains around one million articles published in Wall Street Journal between January 1984 to June 2022.
The current vintage of the results reported here is based a randomly selected sub-sample of 200,000 articles over the same
period, one-fifth size of the entire database. The sample selection procedures follows [Bybee et al.| (2021). First, I remove
all articles prior to January 1984 and after June 2022 and exclude articles published in weekends. Second, I exclude articles
with subject tags associated with obviously non-economic content such as sports. Third, I exclude articles with the certain
headline patterns, such as those associated with data tables or those corresponding to regular sports, leisure, or books
columns. I filter the articles using the same list of exclusions provided by Bybee et al.[(2021)). Last, I exclude articles with
less than 100 words.

Processing of texts The processing of the texts can be summarized into five steps:
1. Tokenization: parse each article’s text into a white-space-separated word list retaining the article’s word ordering.

2. Idrop all non-alphabetical characters and set the remaining characters to lower-case, remove words with less than 3
letters, and remove common stop words and URL-based terms. I use a standard list of stop words from the Python
library gensim.parsing.preprocessing.

3. Lemmatization and Stemming: lemmatization returns the original form of a word using external dictionary

Textblob. Word in Python and based on the context of the word. For instance, as a verb, “went” is converted

“go”. Stemming usually refers to a heuristic process that remove the trailing letters at the end of the words, such

as from “assesses” to “assess’, and “really” to “real”. I use the Python library Textblob. Word to implement the

lemmatization and SnowballStemmer for the stemming. The results are not very sensitive to the particular Python
packages being used.

4. From the first three steps, I obtain a list of uni-grams which are a list of singular words. For example, “united” and
“states” are uni-grams from “united states”. From the list of uni-grams, I generate a set of bi-grams as all pairs of
(ordered) adjacent uni-grams. For example, “united states” together is one bi-gram. I then exclude uni-grams and
bi-grams appearing in less than 0.1% of articles.

5. Last, I convert an article’s word list into a vector of counts for each uni-gram and bi-gram. For example, the vector
of counts [5, 7, 2] corresponds to the number of times the words [” federal”,” reserve”,” bank”] appear in the article.

The LDA Model The LDA model Blei et al.| (2003) essentially achieves substantial dimension reduction of the word
distribution of each article using the following assumptions. I assume a factor structure on the vectors of word counts.
Each factor is a topic and each article is a parametric distribution of topics, specified as follows,

VXK Kx1
Vx1 A
~ =~ / /
w; ~ Mult [ 0; , N;
~—~ N~ ~—~ ~—~
word dist of article ¢ topic-word dist.topic dist.

# of words

where Mult is the multinomial distribution. In the above equation, w; is a vector of word counts of each unique term
(uni-gram or bi-gram) in article 4, whose size is equal to the number of unique terms V. K is the number of factors in
article . In the estimation, I assume K = 180 following Bybee et al|(2021). ® is a matrix sized K x V', whose kth row
and vth column is equal to the probability of the unique term v showing up in topic k. 0; stores the weights of all k topics
contained in article 4, which sum up to one. Dimension reduction is achieved as long as K << V (the number of topics are
significantly smaller than the number of unique terms). More specifically, it reduces the dimension from T X V to T x K
(the size of ) + K x V (the size of ).

Real-time news factors. I also generate real-time news factors for each month ¢ starting from January 1991. In theory,
I could train the LDA model using each real-time monthly vintage but it is computationally challenging. Instead, I simplify
the procedure by training the LDA model using quarterly vintages t, t + 3, t 4+ 6, etc, and use the LDA model parameters
estimated at ¢ to filter news paper articles within the quarter and generate news factors for those months. More specifically,
given every article’s word distribution w; ¢4s,for s = 0,1, 2, and the estimated real-time topic- word distribution parameters
<I>t using articles till date ¢, one can obtain the filtered topic distribution of each article 01 ,t+s, as follows,

VXK Kx1

Vx1 N A
—_—— -, -
Wi, t+s ~ Mult ® Y 0i11+8 ) Ni,t+5
word dist of article ¢ at time t+s topic-word dlSt‘topic dist.

# of words
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LDA Estimation I use the built-in LDA model estimation toolbox in the Python library https://pypi.org/project/
gensim/Gensim to implement the model estimation. The model requires following initial inputs and parameters and it
is estimated using Bayesian methods. In theory, maximum-likelihood estimation is possible but it is computationally
challenging.

1. I create a document-term matrix W as a collection of w; for all articles ¢ in the sample. The number of rows in
W is equal to the number of articles in our sample and the number of columns in W is equal to the number of
unique uni-gram and bi-grams (after being filtered) across all articles. The matrix W is used as an input for the
LDA model estimation. I then follow Bybee et al.|(2021) and set the number of topics K to be 180. The authors
used Bayesian criteria to find 180 to be an optimal number of topics.

2. In the Python library Gensim, the key parameters of the LDA estim are o and 8.With a higher value of «, the
documents are composed of more topics. With a higher values of 3, each topic contains more terms (uni- or bi-
grams). In the implementations, I do not impose any explicit restrictions on initial values of those parameters and
set them to be “auto”. These two parameters, alongside ®' and {6;},, are estimated by the toolbox from Python
library https://pypi.org/project/gensim/Gensim.

Real-time LDA Factors With the estimated topic weights 0;: of each article ¢ from the LDA model, I fruther
construct time series of the overall news attention to each topic, or a news factor. The value of the topic k£ at time ¢ is the
average weights of topic k of all articles published at ¢, specified as follows,

Zi éi,k,t
Foo=—F—""—
# of articles at ¢

for all topics k.

D.2.8 Machine Variables to Be forecast

Returns and price growth When evaluating the MSE ratio of the machine relative to that of a benchmark survey,
we use the machine forecast for the return or price growth measure that most closely corresponds to the concept that
survey respondents are asked to predict:

1. CFO survey asks respondents about their expectations for the S&P 500 return over the next 12 months. Following
Nagel and Xu| (2021)), we interpret the survey to be asking about rf, t+12, the one-year CRSP value-weighted return
(including dividends) from the current survey month to the same month one year ahead.

2. Gallup/UBS survey respondents report the return (including dividends) they expect on their own portfolio one
year ahead. We interpret the survey to be asking about rf, +112, the one-year CRSP value-weighted return(including
dividends) from the current survey month to the same month one year ahead.

3. Livingston survey respondents provide 12-month ahead forecasts of the S&P 500 index. We convert the level
forecast to price growth forecast by taking the log difference between the 12-month ahead level forecast and the
nowcast of the S&P 500 index for the current survey month. Therefore, we interpret the survey to be asking about
the one-year price growth in the S&P 500 index.

4. Bloomberg Consensus Forecasts asks survey respondents about the end-of-year closing value of the S&P 500 index.
We interpret the survey to be asking about the h-month price growth in the S&P 500 index. The horizon of the
forecast changes depending on when in the year the panelists are answering the survey.

5. Michigan Survey of Consumers (SOC) asks respondents about their perceived probability that an investment in a
diversified stock fund would increase in value in the year ahead. We interpret the question to be asking about the
one-year price growth in the S&P 500 index.

6. Conference Board (CB) survey asks respondents about their categorical belief on whether they expect stock prices

to increase, decrease, or stay the same over the next year. We interpret the question to be asking about the one-year
price growth in the S&P 500 index.
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Earnings growth (IBES “Street” Earnings) For earnings growth forecasts, we use a quarterly S&P 500 total
earnings series based on IBES street earnings per share (EPS), as described above. Street earnings exclude discontinued
operations, extraordinary charges, and other non-operating items, making them better aligned with the earnings measure
targeted by survey respondents. We convert EPS to total earnings using the S&P 500 index divisor and use the resulting
quarterly series directly, prior to any monthly interpolation, since the machine learning algorithm operates at a quarterly
frequency. The IBES street earnings series spans 1983Q4 to 2021Q4.

For Long-Term Growth (LTG) forecasts, IBES defines LTG as the “expected annual increase in operating earnings
over the company’s next full business cycle. These forecasts refer to a period of between three to five years.” We compare
survey responses of LTG against machine forecasts under alternative interpretations of LTG. First, we consider machine
forecasts of annual five-year forward growth, i.e., annual earnings growth from four to five years ahead (Bianchi et al.
(2024b))). Second, we consider machine forecasts of annualized 5-year growth, i.e., annual earnings growth from current
quarter to five years ahead, following the interpretation in [Bordalo et al.| (2019). Third, we consider machine forecasts of
annualized earnings growth from one to 10 years ahead, following the interpretation in |Nagel and Xu| (2021))

Inflation We construct forecasts of annual inflation defined as 744+ = In (?575;;;4), where PGDP; is the quarterly

level of the chain-weighted GDP price index. Following|Coibion and Gorodnichenko| (2015), we use the vintage of inflation
data that is available four quarters after the period being forecast.

D.2.9 Economic Names of Factors

Macro, Financial, Daily Factors Any labeling of the factors is imperfect because each is influenced to some degree
by all the variables in the large dataset, and the orthogonalization means that no one of them will correspond exactly to a
precise economic concept like output or unemployment. Following Ludvigson and Ngj (2007)), we relate the factors to the
underlying variables in the large dataset. For each time period in our evaluation sample, we compute the marginal R? from
regressions of each of the individual series in the panel dataset onto each factor, one at a time. Each series Z;; is assigned
the group name in the data appendix tables naming all series, e.g., non-farm payrolls are part of the Employment group
(EMP). If series Z;; has the highest average marginal R? over all evaluation periods for factor Gy, we label G} according
to the group to which Z;+ belongs, e.g., Gk is an Employment factor. We further normalize the sign of each factor so that
an increase in the factor indicates an increase in Z;;. Thus, in the example above, an increase in Gy; would indicate a rise
in non-farm payrolls. Table reports the series with largest average marginal R? for each factor of each large dataset.

Table A.15: Economic Interpretation of the Factors

Series with Largest R?

Macro Factors Label
G1,m,t Nonfarm Payrolls Macro Factor: Employment
G2 uv,¢  Interest paid by consumers Macro Factor: Money and Credit

G3,nm,t Agg. Weekly hours - Service-producing  Macro Factor: Employment
Gy,mt  Agg. Weekly hours - Good-producing Macro Factor: Employment

Gs,n,t Nonborrowed Reserves Macro Factor: Money and Credit
Ge,m,t  Housing Starts Macro Factor: Housing
Gr7,m,t  Change in private inventories Macro Factor: Orders and Investment
Gg vt PCE: Service Macro Factor: Consumption
Financial Factors Label
Gi,rt D_log(P) Financial Factor: Prices, Yield, Dividends
Ga it SMB Financial Factor: Equity Risk Factors
G3.rt HML Financial Factor: Equity Risk Factors
Gy, F R15_R11 Financial Factor: Equity Risk Factors
G5t D_DIVreinvest Financial Factor: Prices, Yield, Dividends
Ge,Ft Smoke Financial Factor: Industries
Gr.mt UMD Financial Factor: Equity Risk Factors
Gg.Ft Telcm Financial Factor: Industries
Daily Factors Label
Gi,D,t ECBOT-SOYBEAN OIL Daily Factor: Commodities
Ga.p,t A Rated minus Y10 Tbond Daily Factor: Corporate Risk
G3,D,t 6-month US T-bill Daily Factor: Treasuries
Gy4,p,t 6-month treasury bill minus 3M-Thills Daily Factor: Treasuries
Gs.p,t CBT-MINI DOW JONES Daily Factor: Equities
Ge,D,t Corn Daily Factor: Commodities
G7.p,t APFNF-AAF Daily Factor: Corporate Risk
Gg. Dt US nominal dollar broad index Daily Factor: FX

Note: This table reports the series with largest marginal R? for the factor specified in the first column. The marginal R? is computed
from regressions of each of the individual series onto the factor, one at a time, for the time period that the factor shows up as relevant
for the median bias.
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LDA Factors We follow Bybee et al.| (2021) in assigning economic names to the Latent Dirichlet Allocation (LDA)
factors. The kth LDA factor Fj,. at period t is defined as the average attention weight 6; » : allocated to topic k across
all articles published during the period. A topic is a probability distribution over words. Formally, the kth topic is a
V-dimensional vector ¢y . in the kth row of the topic-word distribution ®; = [¢1 ¢, ..., Pk,:]’, where K is the total number
of topics and V' is the number of unique words in the corpus. Since the parameters 6; 1. and ¢ are estimated recursively
over real-time quarterly vintages of news articles, the estimates may vary over the training samples and are likewise
denoted with a t subscript. To summarize the economic content of the topic that prevailed the most consistently across
time, we select the key word that is expected to occur with the highest average probability across our testing subsample of
interest, i.e., the largest element in the V-dimensional vector % 23;1 ¢r,+ where t indexes the time periods of the evaluation
sample of length 7. We use Table 6 of Bybee et al.| (2021)) to map the top key word for each topic to their topic label.
The authors have manually assigned a label to each topic based on their reading of the key terms list. We also use the
same table to categorize each topic label into broader meta-topics. For example, the key word “clinton” has the highest
average probability of occurring under topic k = 1 across an testing subsample of 2005Q1 to 2021Q4. Therefore, we label
Fy + according to the label for which “clinton” belongs to, which is the topic label “Clintons” that falls under a broader
meta-topic label “Political Leaders.”

Table A.16: Economic Interpretation of LDA Factors

Factor Meta-Topic Topic Factor Meta-Topic Topic
LDA1 Politics Clintons LDAge,t Fin Mkts Trading
LDAs Fin Mkts Intl exchanges LDA27: Fin Mkts Trading
LDA3; Industry Couriers LDA3s ¢ Banks Mortgages
LDA4 Fin Mkts Options/VIX LDAgg ¢ Activism Futures/indices
LDAs Fin Mkts FX/metals LDA3o0,¢ Banks NPLs
LDAg ¢ Asset Mgrs Mutual funds LDA31¢ Fin Mkts Payouts
LDA7 Fin Mkts Exchanges LDA32 Govt Public/private
LDAsg ¢ Fin Mkts FX/metals LDA33¢ Banks Mortgages
LDAg ; Fin Mkts Intl exchanges  LDA3z4 Fin Mkts Exchanges
LDAo,;  Asset Mgrs Mutual funds LDA3s5¢ Fin Mkts IPOs
LDA11,¢ Fin Mkts Trading LDA3zg.¢ Banks Mortgages
LDA12;: Activism Futures/indices ~LDA37 ¢ Fin Mkts Trading
LDA;13,¢ Fin Mkts Trading LDA3zg ¢ Activism Futures/indices
LDA4 Transport Automotive LDA3g ¢ Fin Mkts Exchanges
LDA;15¢ Banks Mortgages LDAso,¢ Banks NPLs
LDA;6,t Govt Public/private LDA4s1 Asset Mgrs Mutual funds
LDA17: Transport Automotive LDAs2 ¢ Fin Mkts Trading
LDA1g¢ Banks Mortgages LDA43 Banks Mortgages
LDA19,: Transport Airlines LDAsg Fin Mkts Trading
LDA3 ¢ Fin Mkts Trading LDAys ¢ Industry Chemicals/paper
LDA21¢ Transport Automotive LDAge,¢ Govt ‘Watchdogs
LDA2s ¢ Fin Mkts Exchanges LDA47: Mideast/Terror Nuclear/NK
LDA23 Transport Airlines LDAug ¢ Intl Affairs UK
LDA24 Fin Mkts Trading LDAsg ¢ Activism Futures/indices
LDAss ¢ Fin Mkts Options/VIX LDAso,¢ Fin Mkts Exchanges

Notes: This table summarizes the economic interpretation of each LDA factor. Meta-topic and topic labels are based on keyword
distributions following [Bybee et al|(2021). Abbreviations: Fin Mkts = Financial Markets, Asset Mgrs = Asset Managers/I-Banks,
FX = Currencies/Metals, NPLs = Nonperforming Loans, NK = North Korea, Govt = Government.

D.2.10 Machine Input Data: Predictor Variables
N ’
The vector Zj; = (yj7t7 Gi, Wét) is an r = 1+ rg + rw vector which collects the data at time ¢ with

/
_ Al Al ’ ’
2 = (yj,t,,..,yj,t,,,y,Gt,...,Gt_pG,Wﬂ, ...,th_,,w)
!

a vector of contemporaneous and lagged values of Z;;, where py, pa, pw denote the total number of lags of y; ., CA}Q, ity
respectively. The predictors below are listed as elements of y; ¢, G;-t, or W;t for variables.

Stock return and price growth predictor variables and specifications For y; equal to CRSP value-weighted
returns or S&P 500 price index growth, we first predict the one-year log stock return or price growth that is expected to
occur h quarters into the future from time t+h—4 to t+h, i.e., E¢[ri4n—a,¢+1]. For horizons longer than one year, since the
h-quarter long horizon return is the sum of one-year returns between time ¢ to ¢t + h, we first forecast the forward one-year
returns separately and then add the components together to get machine forecasts of h-quarter long horizon returns. The
forecasting model considers the following variables. Lags of the dependent variable:
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1. yt+—1,yt—2 one and two quarter lagged stock returns or price growth.
The factors in G;t are formed from three large datasets separately:

1. Gari_g, for k = 0,1 are factors formed from a real-time macro dataset D™ with 92 real-time macro series; includes
both monthly and quarterly series, with monthly series converted to quarterly according to the method described
in the data appendix.

2. Gr,i—x, for k =0,1 are factors formed from a financial data set DY with 147 monthly financial series.

3. Gg,F x> for k = 0 are quarterly factors formed from a daily financial dataset DP of 87 daily financial indicators.
The raw daily series are first converted to daily factors Gp,: (w) and the daily factors are aggregated up to
quarterly observations GQD’t (w) using a weighted average of daily factors, with the weights w dependent on two
free parameters that are chosen to minimize the sum of squared residuals in a regression of y;++n on Gp (W).

The variables in W7, include:

1. LDA topics Fjt—j, for topic k = 1,2,...50 and j = 0, 1. The value of the topic k at time ¢ is the average weights of
topic k of all articles published at ¢.

2. Macro data surprises from the money market survey. The macro news include, GDP growth (Q/Q percent-
age change), core CPI (Month/Month change), unemployment rate (percentage point), and nonfarm payroll
(month/month change). We include first release, second release, and final release for GDP growth. This con-
stitutes six macro data surprises per quarter.

3. FOMC surprises are defined as the changes in the current-month, 1, 2, 6, 12, and 24 month-ahead federal funds
futures (FFF) contract rate and the changes in the 1, 2, 4, and 8 quarter-ahead Eurodollar (ED) futures contracts,
from 10 minutes before to 20 minutes after each FOMC announcement. When benchmarking against a survey, we
use the last FOMC meeting before the survey deadline to compute surprises. For surveys that do not have a clear
deadline, we compute surprises using from the last FOMC in the first month of the quarter. When benchmarking
against moving average, we use the last FOMC meeting before the end of the first month in each quarter to compute
surprises. This leaves 10 FOMC surprise variables per quarter.

4. Stock market jumps are accumulated 30-minute window negative and positive jumps in the S&P 500 around news
events over the previous quarter.

5. Long-term growth of earnings: 5-year growth of the SP500 earnings per share.

6. Short rates. When forecasting returns or price growth, the machine controls for the current nominal short rate,
In(1 + 3MTB;/100), imposing a unit coefficient. This is equivalent to forecasting the future return minus the
current short rate.

The 92 macro series in D™ are selected to represent broad categories of macroeconomic time series. The majority of these
are real activity measures: real output and income, employment and hours, consumer spending, housing starts, orders and
unfilled orders, compensation and labor costs, and capacity utilization measures. The dataset also includes commodity
and price indexes and a handful of bond and stock market indexes, and foreign exchange measures. The financial dataset
D7 is an updated monthly version of the of 147 variables comprised solely of financial market time series used in [Ludvigson
and Ng| (2007). These data include valuation ratios such as the dividend-price ratio and earnings-price ratio, growth
rates of aggregate dividends and prices, default and term spreads, yields on corporate bonds of different ratings grades,
yields on Treasuries and yield spreads, and a broad cross-section of industry, size, book-market, and momentum portfolio
equity returns. A detailed description of the series is given in the Data Appendix of the online supplementary file at
www.sydneyludvigson.com/s/ucc_data_appendix.pdf. The 87 daily financial indicators in DP include daily time series on
commodities spot prices and futures prices, aggregate stock market indexes, volatility indexes, credit spreads and yield
spreads, and exchange rates.

Earning growth predictor variables and specifications For y; equal to S&P 500 log earning growth, we
construct a forecasted value for y:, denoted 9.—p, based on information known up to time ¢ using the following variables.
Lags of the dependent variable:

1. yt—1,yt—2 one and two quarter lagged earnings growth.

The factors in G;t are formed from three large datasets separately:
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1.

G,t—k, for k = 0,1 are factors formed from a real-time macro dataset DM with 92 real-time macro series; includes
both monthly and quarterly series, with monthly series converted to quarterly according to the method described
in the data appendix.

Gr i, for k= 0,1 are factors formed from a financial data set D¥ with 147 monthly financial series.

G%,t— x> for k = 0 are quarterly factors formed from a daily financial dataset DP of 87 daily financial indicators.
The raw daily series are first converted to daily factors Gp,: (w) and the daily factors are aggregated up to
quarterly observations Gg,t (w) using a weighted average of daily factors, with the weights w dependent on two
free parameters that are chosen to minimize the sum of squared residuals in a regression of y;+ on Gp .+ (w).

The variables in W7, include:

1.

LDA factors Fy—j, for topic k = 1,2,...50 and j = 0,1. The value of the topic k at time ¢ is the average weights
of topic k of all articles published at t.

Macro data surprises from the money market survey. The macro news include, GDP growth (Q/Q percent-
age change), core CPI (Month/Month change), unemployment rate (percentage point), and nonfarm payroll
(month/month change). We include first release, second release, and final release for GDP growth. This con-
stitutes six macro data surprises per quarter.

FOMC surprises are defined as the changes in the current-month, 1, 2, 6, 12, and 24 month-ahead federal funds
futures (FFF) contract rate and the changes in the 1, 2, 4, and 8 quarter-ahead Eurodollar (ED) futures contracts,
from 10 minutes before to 20 minutes after each FOMC announcement. When benchmarking against a survey, we
use the last FOMC meeting before the survey deadline to compute surprises. For surveys that do not have a clear
deadline, we compute surprises using from the last FOMC in the first month of the quarter. When benchmarking
against moving average, we use the last FOMC meeting before the end of the first month in each quarter to compute
surprises. This leaves 10 FOMC surprise variables per quarter.

Stock market jumps are accumulated 30-minute window negative and positive jumps in the S&P 500 around news
events over the previous quarter.

Inflation predictor variables For y; equal to inflation, the forecasting model considers the following variables. Lags
of the dependent variable:

1.

Yt—1,t—h—1 one quarter lagged inflation.

The factors in G;t are formed from three large datasets separately:

1.

Gr,t—k, for k = 0,1 are factors formed from a real-time macro dataset DM with 92 real-time macro series; includes
both monthly and quarterly series, with monthly series converted to quarterly according to the method described
in the data appendix.

Gr_x, for k= 0,1 are factors formed from a financial data set D¥ with 147 monthly financial series.

Gg,t— ., for k = 0 are quarterly factors formed from a daily financial dataset D” of 87 daily financial indicators.
The raw daily series are first converted to daily factors Gp,: (w) and the daily factors are aggregated up to
quarterly observations G%,t (w) using a weighted average of daily factors, with the weights w dependent on two
free parameters that are chosen to minimize the sum of squared residuals in a regression of y;:+» on Gp (w).

The variables in W;-t include:

1.

F;ilk[yjt_'_h_k], lagged values of the ith type’s forecast, where k = 1,2

ngf? [yjt+n—1], lagged values of other type’s forecasts, s # i
vary (Fifl[yjprh,l]), where vary (-) denotes the cross-sectional variance of lagged survey forecasts

skewn (ngl[yjt+h,1]), where skewn (-) denotes the cross-sectional skewness of lagged survey forecasts

68



pri—2+ (1 — p)mi—1,p=0.95 if t <1991Q4
CPI104—1 if t >1991Q4
SPF forecast of annualized average inflation over the current and next nine years. Trend inflation is intended to
capture long-run trends. When long-run forecasts of inflation are not available, as is the case pre-1991Q4, we us a
moving average of past inflation.

5. Trend inflation measured as 741 = { , where CPI10 is the median

6. GDP;_1 = detrended gross domestic product, defined as the residual from a regression of GDP;_; on a constant
and the four most recent values of GDP as of date t — 8. See Hamilton (2018).

7. EMP,_, = detrended employment, defined as the residual from a regression of EMP,_; on a constant and the
four most recent values of EM P as of date t — 8. See Hamilton (2018).

8. Ngi)[m,t,h} = Nowecast as of time ¢ of the ith percentile of inflation over the period ¢t — h to t.

D.3 Cross-Sectional Forecasts for Book-to-Market Portfolios

I construct machine learning forecasts of stock returns for five value-weighted portfolios sorted by book-to-market
ratios. For each portfolio, I re-estimate the time-series Long Short-Term Memory (LSTM) model separately, applying
the dynamic machine learning procedure described in Section The stock universe consists of all firms listed on the
NYSE, AMEX, and NASDAQ with available IBES analyst coverage for one- and two-year ahead earnings expectations
and long-term growth forecasts. Monthly total returns for these firms are obtained from CRSP. The sample spans March
1965 to December 2024.

To construct predictors, I follow the cross-sectional asset pricing literature and compile a broad set of stock-level
characteristics. Specifically, I include 94 firm characteristics, of which 61 are updated annually, 13 quarterly, and 20
monthly. These characteristics span valuation ratios, profitability, investment, size, momentum, volatility, and other firm-
level attributes, based on the definitions in |Green et al.| (2013). Book equity and operating profitability follow |Fama
and French| (2015)). I rank-transform each characteristic cross-sectionally within each month to the [—1, 1] interval, as in
Gu et al. (2020). I also include 74 industry dummies based on two-digit Standard Industrial Classification (SIC) codes.
Table provides further details on these predictors. To avoid forward-looking bias, I apply realistic reporting lags:
monthly characteristics are assumed available with a one-month delay, quarterly characteristics with at least a four-month
delay, and annual characteristics with at least a six-month delay. Missing values are replaced with the cross-sectional
median at each period.

Following |Gu et al.| (2020]), I construct an expanded set of predictors that interact portfolio-level characteristics with
aggregate macroeconomic state variables. Let C; ¢+ denote the vector of value-weighted portfolio characteristics for portfolio
i, and let A} denote the vector of aggregate predictors, which includes a constant and the same macroeconomic variables
used to forecast aggregate returns, price growth, and earnings growth, respectively. The final predictor set for portfolio i
at time ¢ is given by X;+ = A ® C;+, where ® denotes the Kronecker product. This structure generates interaction terms
that capture how aggregate economic conditions influence the effect of portfolio-level characteristics on expected returns.

Table A.17: Details of Firm Characteristics

No. Acronym Characteristic Authors Source Frq.
1 absacc Absolute accruals Bandyopadhyay, Huang, Wirjanto 2010 Compustat Y
2 acc ‘Working capital accruals Sloan 1996 Compustat Y
3 aeavol Abnormal earnings ann volume Lerman, Livnat, Mendenhall 2007 Compustat/CRSP Q
4 age Years since first coverage Jiang, Lee, Zhang 2005 Compustat Y
5 agr Asset growth Cooper, Gulen, Schill 2008 Compustat Y
6 baspread Bid-ask spread Amihud, Mendelson 1989 CRSP M
7 beta Beta Fama, MacBeth 1973 CRSP M
8 betasq Beta squared Fama, MacBeth 1973 CRSP M
9 bm Book-to-market Rosenberg, Reid, Lanstein 1985 Compustat/CRSP Y
10 bm.a Industry-adj book-to-market Asness, Porter, Stevens 2000 Compustat/CRSP Y
11  cash Cash holdings Palazzo 2012 Compustat Q
12 cashdebt Cash flow to debt Ou, Penman 1989 Compustat Y
13 cashpr Cash productivity Chandrashekar, Rao 2009 Compustat Y
14  cfp Cash flow to price ratio Desai, Rajgopal, Venkatachalam 2004 Compustat Y
15 cfp.a Industry-adj cash flow to price ratio Asness, Porter, Stevens 2000 Compustat Y
16  chatoia Industry-adj chg asset turnover Soliman 2008 Compustat Y
17 chcsho Chg shares outstanding Pontiff, Woodgate 2008 Compustat Y
18 chempia Industry-adj chg employees Asness, Porter, Stevens 1994 Compustat Y
19  chinv Chg inventory Thomas, Zhang 2002 Compustat Y
20  chmom Chg 6-month momentum Gettleman, Marks 2006 CRSP M
21 chpmia Industry-adj chg profit margin Soliman 2008 Compustat Y
22 chtx Chg tax expense Thomas, Zhang 2011 Compustat Q
23 cinvest Corporate investment Titman, Wei, Xie 2004 Compustat Q
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No. Acronym Firm Characteristic Authors Source Freq.
24 convind Convertible debt indicator Valta 2016 Compustat Y
25  currat Current ratio Ou, Penman 1989 Compustat Y
26 depr Depreciation over PP&E Holthausen, Larcker 1992 Compustat Y
27  divi Dividend initiation Michaely, Thaler, Womack 1995 Compustat Y
28 divo Dividend omission Michaely, Thaler, Womack 1995 Compustat Y
29  dolvol Dollar trading volume Chordia, Subrahmanyam, Anshuman 2001 CRSP M
30 dy Dividend-to-price ratio Litzenberger, Ramaswamy 1982 Compustat Y
31 ear Earnings announcement return Kishore, Brandt, Santa-Clara, Venkat- Compustat/CRSP Q
achalam 2008
32  egr Gr common shareholder equity Richardson, Sloan, Soliman, Tuna 2005 Compustat Y
33 ep Earnings-to-price ratio Basu 1977 Compustat Y
34 gma Gross profitability Novy-Marx 2013 Compustat Y
35 grCAPX Gr capex Anderson, Garcia-Feijoo 2006 Compustat Y
36  grltnoa Gr long-term net operating assets Fairfield, Whisenant, Yohn 2003 Compustat Y
37  herf Industry sales concentration Hou, Robinson 2006 Compustat Y
38  hire Employee gr rate Bazdresch, Belo, Lin 2014 Compustat Y
39 idiovol Idiosyncratic return volatility Ali, Hwang, Trombley 2003 CRSP M
40 il Illiquidity Amihud 2002 CRSP M
41  indmom Industry momentum Moskowitz, Grinblatt 1999 CRSP M
42 invest Capital expenditures and inventory Chen, Zhang 2010 Compustat Y
43 lev Leverage Bhandari 1988 Compustat Y
44 lgr Gr long-term debt Richardson, Sloan, Soliman, Tuna 2005 Compustat Y
45  maxret Maximum daily return Bali, Cakici, Whitelaw 2011 CRSP M
46 moml2m 12-month momentum Jegadeesh 1990 CRSP M
47  momlm 1-month momentum Jegadeesh, Titman 1993 CRSP M
48 mom36m 36-month momentum Jegadeesh, Titman 1993 CRSP M
49  mom6m 6-month momentum Jegadeesh, Titman 1993 CRSP M
50 ms Financial statement score Mohanram 2005 Compustat Q
51  mvell Size Banz 1981 CRSP M
52  mve_ia Industry-adj size Asness, Porter, Stevens 2000 Compustat Y
53  nincr Number of earnings increases Barth, Elliott, Finn 1999 Compustat Q
54  operprof Operating profitability Fama, French 2015 Compustat Y
55  orgcap Organizational capital Eisfeldt, Papanikolaou 2013 Compustat Y
56  pchcapx.ia Industry-adj % chg capex Abarbanell, Bushee 1998 Compustat Y
57  pchcurrat % chg current ratio Ou, Penman 1989 Compustat Y
58  pchdepr % chg depreciation Holthausen, Larcker 1992 Compustat Y
59  pchgm % chg gross margin - % chg sales Abarbanell, Bushee 1998 Compustat Y
pchsale
60  pchquick % chg quick ratio Ou, Penman 1989 Compustat Y
61  pchsale % chg sales - % chg inventory Abarbanell, Bushee 1998 Compustat Y
pchinvt
62  pchsale % chg sales - % chg receivables Abarbanell, Bushee 1998 Compustat Y
pchrect
63  pchsale % chg sales - % chg SG&A Abarbanell, Bushee 1998 Compustat Y
pchxsga
64 pchsaleinv % chg sales-to-inventory Ou, Penman 1989 Compustat Y
65  pctacc Percent accruals Hafzalla, Lundholm, Van Winkle 2011 Compustat Y
66  pricedelay  Price delay Hou, Moskowitz 2005 CRSP M
67 ps Financial statement score Piotroski 2000 Compustat Y
68  quick Quick ratio Ou, Penman 1989 Compustat Y
69 rd R&D increase Eberhart, Maxwell, Siddique 2004 Compustat Y
70  rd_mve R&D to market capitalization Guo, Lev, Shi 2006 Compustat Y
71  rd_sale R&D to sales Guo, Lev, Shi 2006 Compustat Y
72 realestate  Real estate holdings Tuzel 2010 Compustat Y
73 retvol Return volatility Ang, Hodrick, Xing, Zhang 2006 CRSP M
74  roaq Return on assets Balakrishnan, Bartov, Faurel 2010 Compustat Q
75  roavol Earnings volatility Francis, LaFond, Olsson, Schipper 2004 Compustat Q
76  roeq Return on equity Hou, Xue, Zhang 2015 Compustat Q
77  roic Return on invested capital Brown, Rowe 2007 Compustat Y
78  rsup Revenue surprise Kama 2009 Compustat Q
79  salecash Sales to cash Ou, Penman 1989 Compustat Y
80  saleinv Sales to inventory Ou, Penman 1989 Compustat Y
81  salerec Sales to receivables Ou, Penman 1989 Compustat Y
82  secured Secured debt Valta 2016 Compustat Y
83 securedind Secured debt indicator Valta 2016 Compustat Y
84  sgr Sales gr Lakonishok, Shleifer, Vishny 1994 Compustat Y
85 sin Sin stocks Hong, Kacperczyk 2009 Compustat Y
86 sp Sales to price Barbee, Mukherji, Raines 1996 Compustat Y
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No. Acronym Firm Characteristic Authors Source Freq.
87 std_dolvol  Volatility liquidity dollar volume Chordia, Subrahmanyam, Anshuman 2001  CRSP M
88  std_turn Volatility liquidity share turnover Chordia, Subrahmanyam, Anshuman 2001  CRSP M
89 stdacc Accrual volatility Bandyopadhyay, Huang, Wirjanto 2010 Compustat Q
90  stdcf Cash flow volatility Huang 2009 Compustat Q
91 tang Debt capacity / firm tangibility Almeida, Campello 2007 Compustat Y
92 tb Tax income to book income Lev, Nissim 2004 Compustat Y
93 turn Share turnover Datar, Naik, Radcliffe 1998 CRSP M
94  zerotrade Zero trading days Liu 2006 CRSP M
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