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Abstract
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reveals significant heterogeneity in risk premia, with macroeconomic news commanding the largest

and most persistent premium. Leveraging this insight, I construct an annually rebalanced real-time

strategy that hedges the most priced jump risk, achieving an out-of-sample Sharpe ratio of 0.84 and

delivering significant alphas relative to standard factor models. The results highlight the value of
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1 Introduction

Understanding the sources and pricing of aggregate market systematic risk is one central question

in financial economics. There has been significant progress in using textual analysis to better

understand systematic risk and ex-ante compensation (Manela and Moreira, 2017; Bybee et al.,

2023, 2024). One major feature and component of systematic risk is that it features large jumps,

which typically result from major realizations of news events, and jumps are a continuous-time

construct and therefore can only be identified using high-frequency data.

Aleti and Bollerslev (2025) provide the first high-frequency analysis of news events driving the

high-frequency systematic jumps during the intraday trading period from 9:30 a.m. to 4:00 p.m.

However, focusing only on the intraday period might suffer from an omitted variable bias, where

a significant component of systematic risk materializes during the overnight period (Glasserman

et al., 2025). What remains missing in the literature is a comprehensive, around-the-clock analysis

that captures all systematic jump events and their associated news drivers. Such a holistic approach

is essential for forming an unbiased and complete understanding of systematic jump risk and its

ex-ante pricing.

I combine three recent advances to provide the first comprehensive analysis of all systematic

jump events linked to contemporaneous real-time high-frequency news text from Dow Jones

Newswire in the U.S. equity market. First, I exploit around-the-clock high-frequency data on

both the cash equity market and the S&P 500 E-mini futures, achieving nearly 24-hour coverage

of the U.S. market over 1997–2020.

Second, I adapt the continuous-time Fama–MacBeth regression of Aı̈t-Sahalia, Jacod, and

Xiu (2025) to decompose systematic risk into continuous and topic-specific jump components,

constructing “pure-play” hedging portfolios whose betas isolate each component using a large

panel of high-frequency S&P 1500 stock returns.

Third, I harness state-of-the-art open-source reasoning LLM DeepSeek-R1 to retrieve contem-

poraneous high-frequency news narratives triggering each jump and assign each jump to one of the
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five mutually exclusive economic topics identified by the LLM: macroeconomic news, corporate

bellwethers, international spillovers, policy announcements, and geopolitical events.

The new and more advanced analytical tools, along with the comprehensive analytical

framework, yield several new findings.

Firstly, there is significant heterogeneity in risk premia in jumps belonging to different

economic categories. Unlike Aleti and Bollerslev (2025), who uncovers the monetary policy as

the most important component for risk premia, the comprehensive analysis, including overnight

news, reveals the significant role played by macroeconomic news and large macro data surprises.

The macro jump risk hedging portfolio commands an annual premium of 3.5% and a Sharpe ratio

of 0.78, which surpasses the market’s Sharpe ratio of 0.53 in the same period. Other types of jump

risks, including the monetary policy jump risk, earn smaller or statistically insignificant premia

once macro jumps are controlled for.

Secondly, because of the enhanced language understanding and reasoning ability of the

LLM, classifying jumps into distinct economic categories adds significant value to investors. A

real-time strategy that, each December, selects the pure-play jump-topic hedging portfolio with

the most significant risk premia and holds it for the next year attains an out-of-sample Sharpe

ratio of 0.84 with highly significant alphas against Fama and French (2018) six-factor models.

Placebo strategies with randomly assigned topics never match this performance, highlighting the

incremental value created by LLM-based narrative understanding.

These findings contribute to the asset pricing literature in three distinct ways. First, I offer

the first around-the-clock empirical decomposition of priced systematic jump risk using high-

frequency market data, complementing and extending prior studies that focus solely on intraday

movement and may overlook overnight dynamics. Second, I introduce a novel integration of

large language models into asset pricing, demonstrating that LLMs can provide economically

meaningful causal narrative retrieval and classification of news-based systematic jump risk in a

manner that enhances both interpretability and out-of-sample investment performance. Third, I

develop a fully automated framework for contemporaneous identification of the economic narrative
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driving each market jump using open-source LLMs, enabling transparent and replicable mapping

from raw high-frequency news to interpretable sources of systematic risk.

My work also relates to two broad strands of literature. First, a rich body of research in high-

frequency financial econometrics investigates the differential risk premia associated with various

beta estimates (Bollerslev et al., 2016; Aı̈t-Sahalia et al., 2025; Bollerslev et al., 2025). High-

frequency asset returns enable precise identification of betas, as the probability of idiosyncratic

jumps vanishes with finer sampling intervals (Li et al., 2017). This literature documents significant

risk compensation for jump betas. Building on these findings, my paper demonstrates that

linking high-frequency return jumps to news text—combined with classifying these jumps into

distinct categories using advanced LLMs—enables the identification of heterogeneous risk premia.

This categorization enhances the construction of real-time investment strategies that outperform

portfolios based on the original systematic factor.

Second, the growing adoption of LLMs in asset pricing has given rise to a rapidly expanding

literature focused on their use for interpretable financial insights. One line of research leverages

textual embeddings derived from LLMs (e.g., Jha et al. (2025), Chen et al. (2022), Sarkar (2024),

Lv (2024), He et al. (2025)). Another line uses prompt-based methods to directly instruct

LLMs to perform specific tasks (e.g., Lopez-Lira and Tang (2023), Bybee (2023), Chen et al.

(2025), Beckmann et al. (2024)). Building on this emerging literature, my paper highlights a

new application of LLMs for narrative retrieval in the context of high-frequency return jumps,

showing that this approach not only reveals heterogeneity in risk pricing but also yields substantial

improvements in portfolio performance.

In this paper, I combine around-the-clock analysis with state-of-the-art LLMs to offer a

comprehensive perspective on systematic risk. The ability to fully attribute market jumps

to specific types of economic news in real time opens up new possibilities for constructing

interpretable and adaptive investment strategies.

The rest of the paper is organized as follows. Section 2 introduces the methodology. Section

3 shows the data used in my study. Section 4 presents the main empirical results of my analysis.
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Section 5 concludes.

2 Methodology

In this section, I first describe the organizing framework for analyzing jump risk premia associated

with different systematic news topics. Next, I present the methodology for empirical estimation

of the model. Finally, I provide details on the use of the DeepSeek-R1 model for jump narrative

retrieval and topic assignment.

2.1 Organizing Framework

To study systematic risk and link it precisely to news events, I consider a continuous-time setting

with a large panel of assets driven by a systematic risk factor, dFt , following the setup in Aı̈t-Sahalia

et al. (2025).

Firstly, the dFt can be decomposed into the continuous part and the jump part in a continuous-

time scenario:

dFt = λ
C
t dt +

K

∑
k=1

λ
J,k
t dt +dFC

t +
K

∑
k=1

dFJ,k
t , (1)

where λC
t and λ J

t are the risk premia associated with continuous movement (dFC
t ) and discontin-

uous movement (dFJ
t ) in the factor. The superscript k indexes different categories of jump risks

triggered by different types of news.

With the setup of factors, I can model the individual asset’s excess returns as:

dRt =

(
β

C
t λ

C
t +

K

∑
k=1

β
J,k
t λ

J,k
t

)
dt +β

C
t dFC

t +
K

∑
k=1

β
J,k
t dFJ,k

t +dRI
t , (2)

where βC
t ∈ RN×1 and β J

t ∈ RN×K are the betas of the individual asset with the continuous and

jump movements of the factor, and dRI
t represents the idiosyncratic return movement of the asset

unspanned by the factor.
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Since dFJ
t and dFC

t are non-tradeable factors, I use continuous Fama-MacBeth regression

developed by Aı̈t-Sahalia et al. (2025) to build hedging portfolios for these distinct sources of

risks.

Specifically, once βC
t and β J

t are known, let βt = [1,βC
t ,β

J
t ] ∈ RN×(K+2), we can construct the

hedging portfolios as:

(β ′
t βt)

−1
β
′
t dRt ≡W ′

t dRt , (3)

where Wt ∈ RN×(K+2) is the portfolio weight matrix of the K +2 factors. The second to last K +1

factors satisfy the unique ‘pure-play’ property following the argument of Fama and French (2020)

and Chib et al. (2023):

w′
j1 = 0, ∀ j = 2, · · ·K +2,

w′
jβ

j
t = 1, ∀ j,

w′
jβ

k
t = 0, ∀ j ̸= k,

(4)

where w j is the j-th column of Wt matrix and β
j

t is the j-th column of βt .1

Equation 4 states that each hedging portfolio: (1) has portfolio weights summing to 0; (2)

has unit β exposure to its own sources of risk; (3) has zero β exposure to other sources of risk.

Therefore, the Fama-MacBeth regression provides a way to isolate pure-play risk-exposure and

jointly control all the other types of risks.

Moreover, if news text can provide context for the reasons of systematic jumps, the Fama-

MacBeth framework allows for interpretable attribution of systematic risks grouped into different

categories.

2.2 Empirical Estimation

The previous section offers a rationale for studying Fama-MacBeth hedging portfolios at the

population level. In this part, I discuss in detail the empirical estimation of the continuous-time

Fama-MacBeth models.

1I provide a proof to these pure-play properties of the Fama-MacBeth factors in Appendix A.
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In the first-pass time-series regression, I estimate the factor loadings. There is an important

aspect of continuous-time models compared to the low-frequency counterpart. That is to

distinguish the jump movement against the continuous movements in factor, as the exposure and

risk compensation can be different for the two components.

For this task, I follow the convention in high-frequency econometrics (Aı̈t-Sahalia and Jacod,

2014). If the movement in factor returns is larger than the following threshold, I classify the return

as a jump:

F̂J
t,i = Ft,i ×1{|Ft,i|≥un

√
τiTVt∆ϖ

n }, (5)

where un is a scaling constant, τi is the time-of-the-day volatility adjustment factor, TVt stands

for truncated variance for trading day t, ∆n is the sampling interval length, and ϖ is the exponent

parameter. The TVt is estimated by considering factor returns, truncating large movements:

TVt =
n

∑
i=1

|Ft,i|21{|Ft,i|≤un
√

τiBVt∆ϖ
n }, (6)

where BVt =
π

2
n

n−1 ∑
n
i=2 |Ft,i−1||Ft,i|. Following Aleti and Bollerslev (2025), I use a truncation

threshold un = 3 and an exponent ϖ = 0.49 in the empirical identification of jump movements.

After identifying the jump movement, I can link it to contemporaneous news text and identify

economically meaningful groups of jumps triggered by different types of news events. I leave the

discussion of using textual analysis to identify meaningful groups of jumps to the next subsection.

For now, take these topic groups as given, and I can write the topic-specific jumps as:

F̂J,k
t,i = F̂J

t,i ×1{Jump Newst,i∈Topick}. (7)

Because jumps are rare, I exploit every jump observed up to and including t to estimate β
J,k
t ,

following the procedure proposed in Li et al. (2017). Let

Jt(k) =
{
(τ, i) : τ ≤ t, F̂J,k

τ,i ̸= 0
}
,
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and stack the corresponding factor and return vectors:

FJ,k
t = (F̂J,k

τ,i )(τ,i)∈Jt(k), ∆
nRJ

m,t = (∆nRm,τ,i)(τ,i)∈Jt(k).

The real-time jump beta for asset m and topic k at time t is then:

β̂
J,k
m,t =

(
FJ,k⊤

t FJ,k
t

)−1
FJ,k⊤

t ∆
nRJ

m,t . (8)

Effectively, the estimator isolates the observations where the systematic factor jumps and uses

these time periods to uncover the β for the assets.

These jump movements in factors enable precise identification of β s because, at such times,

nearly all large asset-level price changes are driven by the corresponding large move in the

factor. As the sampling interval shrinks, the probability that an idiosyncratic jump coincides

with a systematic one converges to zero. As a result, even if the observations used are small,

the estimates can be very tight with low standard errors. I then concatenate everything together

and let β̂ J
t ∈ RNt×K denote the matrix of jump betas for the total number of Nt assets at time t

across K different jump categories.

On the other hand, I estimate the continuous βC
t of assets using a local window, which

is similar to the low-frequency counterpart as in Lewellen and Nagel (2006). Different from

the jump betas, continuous betas can be estimated using a rolling window because there are

hundreds of observations each month that provide sufficient statistical power. A shorter window

captures evolving betas without oversmoothing. The use of high-frequency data also facilitates

precise estimation with low standard errors—a theoretical advantage noted in Merton (1980) and

empirically validated by Aı̈t-Sahalia et al. (2020).

Define the set:

Ct = {(τ, i) : t − l < τ ≤ t, | Fτ,i |< un
√

τiTVτ∆
ϖ
n },

where l is the parameter controlling the rolling window length. Stack all continuous movements in
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factors and asset returns:

FC
t = (Fτ,i)(τ,i)∈Ct

, ∆
nRC

m,t =
(

∆
nRC

m,τ,i

)
(τ,i)∈Ct

.

The continuous beta can be estimated as:

β̂
C
m,t =

(
FC⊤

t FC
t

)−1
FC⊤

t ∆
nRC

m,t . (9)

After this step, let β̂C
t be the vector stacking all continuous beta estimates.

In the second-pass cross-sectional regression, I use real-time β estimates as the portfolio

weights to form the Fama-MacBeth hedging portfolios as in Equation (3). Let β̂t = [1, β̂C
t , β̂

J
t ]

be stacked β matrix of all assets available at time t. The hedging portfolio can be formed as:

(β̂ ′
t β̂t)

−1
β̂
′
t ∆

n
i Rt ∈ R(K+1)×1. (10)

These K + 1 hedging portfolios, according to Fama and French (2020), have unique pure-play

properties that isolate portfolios hedging different systematic risks.

Another key advantage of the high-frequency analytical framework lies in the inference on

the risk premia. Unlike the low-frequency models, where Shanken adjustment (Shanken, 1992) is

typically required to account for estimation errors in β s, as the sampling interval shrinks, according

to the double asymptotic theory developed by Aı̈t-Sahalia et al. (2025), we can treat β as if they

are observed without errors.

After obtaining these hedging portfolios, I can form estimates and conduct inference for the

unconditional risk premia of different interpretable risk factors. Specifically, use λC ≡ E[λC
t ] and

λ J ≡ E[λ J
t ] to denote the unconditional continuous risk premia and jump risk premia, respectively.

The estimates for these unconditional risk premia can be obtained by averaging the hedging
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portfolios’ returns:

λ̂
C =

1
T

T

∑
t=1

n

∑
i=1

[
(β̂ ′

t β̂t)
−1

β̂
′
t ∆

n
i Rt

]
2
,

λ̂
J,k =

1
T

T

∑
t=1

n

∑
i=1

[
(β̂ ′

t β̂t)
−1

β̂
′
t ∆

n
i Rt

]
k+2

,

(11)

where the subscripts index for the second entry and (k+ 2)-th entry, respectively, in factor return

vector. The standard error and confidence interval can be constructed with the volatility of the

hedging portfolio, and the final t-stat is closely related to the Sharpe ratio of the topic-specific

hedging portfolio.

2.3 Narrative Retrieval and Topic Classification

The previous section discusses the empirical estimation of the Fama-MacBeth regression model

assuming a given categorization of jumps. Obtaining an economically meaningful division of the

jump categories can be critical for generating heterogeneity in risk exposure and risk prices.

To achieve this goal, I link market jumps to high-frequency newswire data and apply state-of-

the-art large language models to analyze the concurrent news in the 15-minute interval at the jump

time.

Even though the high-frequency data is helpful for reducing the volume of concurrent news,

there can still be hundreds of news stories released in the time window of the market jump. To sift

through the large amount of text, the language model needs to possess strong reasoning skills to

identify news stories that are both systematic and aligned with the movement in the market.

Moreover, proprietary LLMs present a significant hurdle for replication studies, and feeding

newswire text to these models through the API may violate the copyright agreement of the data

vendor.

With these two considerations, I self-host and deploy the state-of-the-art open-source reasoning

language model, the DeepSeek-R1-0528, to analyze the concurrent news during the market jump.

The DeepSeek-R1 is a 685 billion parameter mixture of experts model with the strongest reasoning
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capabilities among open-source language models.2

I then feed the model with concurrent news events, time, market response direction, and

magnitude, and ask the model to identify the likely cause of the jump from the news stories using

the following prompt.

Prompt 1 (Narrative Retrieval): From {event start time} to {event end time} ET, the US

market {increases/decreases} by {event ret}%. Listed below are the news headlines in this

period from the Dow Jones Newswire. Can you find what is likely causing the jump? Output

your answer in JSON in the format of {“News id”: list[int], “Explanation”: str}. If there is no

plausible news accounting for the jump, output “News id” as an empty list.

{News IDs followed by news headlines.}

The retrieved news narratives and explanations offer interpretable signals for what is moving

the market. With this narrative retrieval step, I obtain the list of news relevant to explaining the

contemporaneous market jump and the reasoning logic behind such attribution through the LLM.

After the narrative retrieval step, I apply the language model to obtain the topic categories for

each jump event. The topic’s overall categories should satisfy three goals: (1) nearly all jumps can

be classified as one of the categories; (2) the categories should be broad so that there are enough

jumps within the category for identifying jump β s; (3) the categories should be mutually exclusive.

With the three goals, I design the following prompt to obtain overall topic categories for all the

jump events.

2According to the LLM arena https://lmarena.ai/leaderboard, the DeepSeek-R1-0528 model ranks 6th
overall and ranks 1st among open-weight models. I discuss in more detail on hosting the model in the Online Appendix
B.
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Prompt 2 (Overall Jump Topic Categories): Please read the provided explanations and

narratives for why the U.S. market jumps. Help me classify them into comprehensive and

mutually exclusive topics. Ensure nearly all jumps can be classified into one of the topics.

Output a JSON file in the format of {“Topic Name”: str, “Topic Definition”: str, “Text ID”:

list[int]}.

{Narrative IDs followed by explanation text generated in Prompt 1.}

I feed all explanations with a non-empty news ID list generated from Prompt 1 to this topic

categorization step through the same DeepSeek R1 model. After merging related topics, the

procedure yields five distinct broad topic categories for all the jump events in the market. To

allow for non-classified jumps, I include a ‘None of the Above’ category. I provide details on these

categories and their definitions in the Table 1.

After obtaining the overall jump categories, I use the same DeepSeek R1 model to zoom in on

each individual jump and classify them into one of the categories. This more focused classification

step enables the model to produce more accurate and consistent classification results.

Prompt 3 (Jump Classification): Please read the provided explanation and narrative, as well

as the relevant news for a U.S. equity market jump event, and classify the jump into one of the

following six topics:

{Topic IDs, Topic Names, Topic Definitions listed in Table 1, identified with Prompt 2}

Output your response in JSON in the format of {“Topic Category”: int, “Explanation”: str}.

Here is the explanation followed by the relevant news:

{Explanation: Explanation text generated using Prompt 1. Relevant News: News identified as

relevant using Prompt 1.}

After this step, I assign each market jump to one of the economically distinct categories defined

in Table 1. This categorization enables me to apply the decomposition framework in Equation (2)

to break down asset exposures across different sources of risk. As a result, I can construct hedging
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portfolios that yield interpretable risk premia, fully decomposing the overall market risk.

3 Data

In this section, I present the dataset used in my study. The first part introduces the high-frequency

panel data on S&P 1500 constituents returns. The second part presents the construction of the

around-the-clock market factor. The third part shows the high-frequency newswire data from the

Dow Jones.

3.1 High Frequency Return Panel Data

Successfully recovering risk premia requires access to a long time span of data, as well as a broad

cross-section of liquid assets to construct hedging portfolios that accurately mimic jump risks. To

this end, I compile a large panel of high-frequency return data for S&P 1500 constituent companies

using TAQ milisecond data from WRDS, covering an extensive sample period from September

1997 to May 2020—nearly 23 years.3

Crucially, the S&P 1500 membership for each firm is determined using the Compustat

idxcst his table, which records historical index constituents.4 This ensures that, at each point

in time, only firms that were actually included in the S&P 1500 are used for constructing returns,

reflecting the real-time available investment universe. After merging the index membership with

CRSP and applying standard exchange and share code filters, my final sample contains 3,488

unique companies, providing both a long time-series and a rich cross-section for robust asset

pricing analysis.

To clean the high-frequency data and mitigate the effects of market microstructure noise, I

follow the procedure outlined in Da and Xiu (2021). Appendix C provides further details on the

3I start the sample from September 1997 because, as will be introduced later, the S&P 500 E-mini futures product
was introduced to the market since then.

4The idxcst his table was removed from WRDS in July 2020, which limits my sample period to dates prior to
its removal.
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data preprocessing, including the aggregation of millisecond-level trades to 15-minute intervals for

the main empirical analysis.

Finally, because the TAQ data only cover intraday observations during regular trading hours

(9:30 a.m. to 4:00 p.m. ET), I supplement these data by linking TAQ with CRSP to construct a

comprehensive panel of returns that incorporates stock splits, dividend payments, and overnight

price movements. Specifically, I use the daily open and close prices from CRSP—rather than

TAQ—to ensure accurate measurement of daily returns. The overnight return is then computed as

the ratio of the CRSP close-to-close gross return to the open-to-close gross return. This approach

ensures that all adjustments for splits and dividends are fully captured in the overnight return

component. Further details on this procedure and the linking process are provided in Appendix C.

3.2 High Frequency Market Returns and S&P 500 E-mini Futures

To obtain the systematic factor, I consider the market return of the U.S. equities. It is also critical to

have full high-frequency observations of the systematic factor. This allows for full decomposition

of the systematic risks without leaving any jump risks outside the picture.

To this purpose, I construct both the high-frequency market returns for intraday variations, and

I use the S&P 500 E-mini futures returns to obtain the overnight variations of the index because

this product is traded around the clock.

Figure 1 Intraday and Overnight Jump Identification Timeline
This figure presents the timeline and instruments we used to identify the market jumps for the intraday period and
overnight periods

Firstly, for the intraday market return factor, I follow the construction procedure of Mkt-Rf

factor from Fama and French (1993), which is based on value-weighted returns of common stocks
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listed on the NYSE, NASDAQ, and AMEX.

For the overnight market return factor, I leverage the S&P 500 E-mini futures data from the

CME DataMine database, which provides the tick-level high-frequency data of the product with a

long span of history.5 The E-mini futures contract is the most liquid equity index futures product

globally, trading nearly 24 hours a day and facilitating continuous price discovery outside of regular

U.S. equity market hours. Its deep liquidity and global participation make it a primary venue

for incorporating and reflecting new information—especially systematic news events—during

periods when the underlying cash equity market is closed. By utilizing E-mini futures, I capture

the overnight market response to news releases, geopolitical developments, and macroeconomic

events, ensuring a comprehensive measure of market-wide return dynamics around the clock.

Similar to the intraday market factor, I sample the S&P 500 E-mini futures at a 15-minute

frequency.

Figure 1 provides an illustration of the timeline I used to identify intraday and overnight jumps.

Specifically, I divide each trading day into two parts: the intraday observations from 9:30 a.m. to

4:00 p.m. ET and the overnight period that spans from 4:00 p.m. to the next day’s opening at

9:30 a.m. I then calculate the truncated estimator for realized volatility defined in Equation (6)

using separately the intraday and overnight observations. I then use the two RV estimators as the

truncation threshold for identifying intraday and overnight jumps as defined in Equation (5).

I don’t merge the intraday and overnight observations because the two have different diurnal

patterns. Also, the separate estimation enables direct comparison with high-frequency finance

literature, which focuses on the intraday component of the return to identify jumps (Aı̈t-Sahalia

and Jacod, 2014).

I then use a threshold of 0.5% to filter out large jump observations for empirical analysis. In

the robustness check section, I provide evidence on alternative thresholds for large jumps.

5I discuss in detail the procedure for data cleaning and constructing a continuously rolling-over return series for
the E-mini futures in Appendix C.
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3.3 Dow Jones Newswire

I use the Dow Jones Newswire to retrieve contemporaneous news released around the time of

systematic market jumps. The Dow Jones Newswire is a real-time, timely, and comprehensive

news service widely used by institutional investors via platforms such as Bloomberg.

This dataset offers two key advantages. First, it provides precise time stamps indicating exactly

when a news item reaches the market, enabling accurate alignment with high-frequency return

data. Second, it offers broad and reliable coverage of market-relevant news through reputable

media outlets such as The Wall Street Journal, Barron’s, MarketWatch, among others.

These features make the Dow Jones Newswire particularly well-suited for identifying market-

moving narratives in conjunction with high-frequency financial data.

In contrast to Aleti and Bollerslev (2025), who apply extensive filtering using the anchor

phrase methodology,6 I retain all news items released during the identified market jump intervals.

Their approach filters the newswire to isolate systematic content, which requires substantial pre-

processing. In my approach, I take advantage of recent advances in LLMs and directly prompt the

model to process the raw news text and identify truly market-relevant items without pre-filtering.

To ensure that all relevant news fits within the LLM’s context window, I restrict attention to

jumps occurring in 15-minute intervals and exclude those during futures maintenance windows or

after-hours periods. Over 95% of the identified jumps occur within 15-minute windows,7 so this

restriction maintains comprehensive coverage of systematic jump events.

4 Empirical Results

In this section, I present the main empirical results. Firstly, I provide a summary of evidence on

what news triggers a market jump. Next, I present risk-premia estimates of ex-ante compensation

6See Hoberg and Manela (2025) for a detailed overview of the anchor phrase method.
7Some jumps fall in intervals with length larger than 15 minutes because these are times for brief trading halts,

futures daily clearing sessions, or weekend closures with no high-frequency price data. These account for a small
fraction of total identified jumps and typically reflect mechanical rather than news-driven price adjustments.
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for bearing different risks. Then I show investors can improve their utility using LLM to understand

the systematic risk compensation in real time and build a portfolio to outperform the market. Lastly,

I dive into the mechanism and forces driving the difference in risk compensation.

4.1 What Triggers Market Jump?

Figure 2 presents a visualization of all market jumps occurring in my sample. I divide them into

two categories: (1) jumps occurring in the intraday period; (2) jumps occurring in the overnight

period.

One prominent feature stands out from the figure: the vast majority of market jumps occur

overnight. I find that the intraday jumps account for less than 8.7% of the total observations.

The evidence highlights the importance of taking a holistic, ‘around-the-clock’ view to include

overnight observations to better understand systematic jump risk affecting the equity market.

Otherwise, the risk premia estimates might suffer from omitted variable bias.

Linking the news with the jumps, I run each jump and corresponding news through Prompt

1 to Prompt 3. With the overall categories listed in Table 1, I map each jump into one of the

categories. As a first step sanity check, I examine whether the topic classification from the LLM is

consistent with the theme of each topic.

Figure 3 plots the word clouds of the news items identified as relevant by the LLM for triggering

the jump. I find consistent patterns within each topic category and distinct word distributions across

categories. The top words occurring within each cluster match the theme of the topic, suggesting

the LLM does a good job in allocating each jump-triggering news to relevant categories.

Next, Table 2 provides an overview of different types of news events’ contributions to driving

the stock market jump. Firstly, I find that more than 88% of jump events can be explicitly linked

to news stories. The number is consistent with findings from Baker et al. (2021). The evidence

suggests that at the aggregate market level, the systematic jumps are mainly triggered by public

information rather than private trading with hidden information.
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Among the jumps that can be linked to news, I find that the unclassified category only accounts

for less than 3% of the total observations. This means the overall categories identified by LLM

using Prompt 2 are comprehensive to cover most of the jump observations.

For the five groups of classified jumps, the ‘international market spillovers’ topic accounts for

most of the observations, representing 33% of total jumps. This is followed by the ‘U.S. macro

data surprises’ category, which takes up 1/5 of the total jump observations. Another prominent

category is the spillover from bellwether or systematically important firms’ earnings, accounting

for 16% of total jumps. The last two categories, policy and geopolitical tensions, each contribute

around 7 to 8% of total observations. However, the policy-triggered jumps are more volatile than

other categories. In the R2 space, it ranks third in variation accounted, only below international

spillover and macro data surprises.

The prominent role played by international market spillover and macro data release again

suggests the importance of overnight observations for understanding U.S. market jump risks. This

is because international news usually happens when the U.S. market is closed, and the macro data

releases usually happen before the U.S. market opens.

In the next section, I apply the Fama-MacBeth regression approach to quantify the importance

of the different types of risk for ex-ante risk premia.

4.2 What Risks are Priced?

To quantify risk prices, I first estimate the real-time jump and continuous betas of the S&P 1500

panel of stocks using Equations (8) and (9). Continuous betas are updated monthly using a 1-month

rolling estimation window, and jump betas are updated annually using an expanding estimation

window.

Figure 4 plots the time series of percentile estimates for both continuous and topic-specific

jump betas. The median continuous beta hovers around 1, exhibiting notable time-series variation.

In contrast, the topic jump betas display more muted variation over time due to their lower update
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frequency and the use of expanding window estimation.

Notably, the jump betas for macroeconomic, corporate, and international topics rise signif-

icantly following the 2008 financial crisis. This increase likely reflects the surge in systematic

jump events during the crisis and heightened comovement between individual stocks and the

corresponding jump risk factors. Toward the end of the sample period, the geopolitics jump beta

also rises, consistent with elevated geopolitical tensions during the Trump administration.

Using the real-time beta estimates, I then form the jump hedging portfolios using Equation (10)

and calculate risk-premia estimates using Equation (11). Table 3 presents the estimates, standard

errors, and Sharpe ratios of topic hedging portfolios. Firstly, the continuous risk premia is large in

magnitude, accounting for more than 47% of the total market risk premia. However, because of its

high volatility, the hedging portfolio has low Sharpe ratios.

Among the topic-specific jump risks, the macroeconomic category commands the highest

premium, with an annualized return of 3.54% and a t-statistic of 2.78. Importantly, the macro jump-

hedging portfolio achieves a Sharpe ratio of 0.78, outperforming the contemporaneous market’s

Sharpe ratio of 0.53, reflecting its high return and relatively low volatility after controlling for

other systematic jump risk exposures and continuous risk exposures.

Other topic-specific jump risks with positive risk premia include the corporate bellwether

and international market spillover categories, with annualized returns of 2.32% and 0.87%,

respectively. While the international topic accounts for the largest share of contemporaneous jump

events, it offers limited explanatory power for ex-ante risk compensation. The corporate topic

delivers a better risk-return tradeoff than the international category, but the estimated premium is

statistically insignificant, suggesting that investors may find it difficult to identify and act on this

risk factor in real time.

Figure 5 displays the cumulative returns of the three jump risk-hedging portfolios. Both the

corporate and international portfolios exhibit higher volatility than the macro portfolio. Given their

lower premia and greater volatility, the macroeconomic topic emerges as the only one that delivers

a statistically and economically significant source of priced jump risk.
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An important question is whether priced jump risk arises from overnight or intraday returns.

Table 4 provides supporting evidence. Panel A examines portfolios that hold market exposure

exclusively during either the overnight or intraday window. The results show that nearly all

U.S. equity risk premia accrue overnight, underscoring the importance of overnight risk. Panel B

applies the real-time Fama–MacBeth regression framework to separately estimate risk premia for

continuous returns, overnight jumps, and intraday jumps. Again, the evidence points to overnight

jump risk as the primary source of compensation.

To further validate this result, I consider the GANs-based SDF constructed in Aleti and

Bollerslev (2025), following the methodology of Chen et al. (2024). The Fama–MacBeth

regression confirms that overnight jump risk earns the most significant premium. These findings

suggest that focusing solely on intraday returns may lead to biased estimates of priced risk.

4.3 Real-time Jump Risk Management

Building on the risk premia estimates in Section 4.2, a natural question is whether investors can

identify the heterogeneity in risk compensation across different types of systematic risk in real-time

and construct hedging portfolios that outperform the market.

In this section, I evaluate the performance of a real-time optimal jump-topic hedging strategy.

At the end of each year, I use Equation (11) to estimate the cross-sectional prices of jump risk,

substituting in the most up-to-date jump betas computed using all available data. I then select the

jump topic with the highest Sharpe ratio, i.e., the most significantly priced jump risk, as the basis

for the hedging portfolio in the subsequent year.

Figure 6 illustrates the performance of this real-time maximum Sharpe ratio jump-topic

hedging portfolio. The macroeconomic (macro) topic consistently emerges as the dominant source

of priced jump risk from the early years of the sample and continues to exhibit strong performance

toward the end. The resulting portfolio delivers an out-of-sample Sharpe ratio of 0.84, substantially

exceeding the market Sharpe ratio of 0.53.
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To assess whether these jump-topic hedging portfolios capture new dimensions of risk beyond

traditional asset pricing factors, I regress their returns on standard risk factors commonly used

in the literature. Table 5 reports the results for both the macro hedging portfolio and the real-

time selected topic portfolio. In all specifications, the estimated alphas remain highly significant,

indicating that these portfolios are not simply repackaging exposures to known risk factors but

rather capture distinct sources of priced jump risk.

An important follow-up question concerns the economic value added by using large language

models (LLMs) to classify jumps into distinct categories based on contemporaneous news. To

address this, I conduct a placebo analysis in which I randomly assign each jump to one of the

six categories, drawn from a uniform distribution. Using the same methodology, I construct real-

time hedging portfolios that invest in the jump category with the highest Sharpe ratio within the

estimation sample.

Figure 6 includes 20 such placebo strategies, shown as faint lines corresponding to random

seeds from 1 to 20. None of the placebo portfolios achieves a Sharpe ratio as high as the LLM-

based strategy. The average Sharpe ratio across placebo portfolios is 0.24, which is significantly

lower than that of the market. The highest Sharpe ratio among the placebo strategies is 0.66, over

20% lower than the LLM-based optimal portfolio.

Taken together, these results suggest that LLMs add substantial economic value by identifying

jump events linked to similar underlying economic risks. Because these risks exhibit stable pricing

over time, investors can exploit real-time information to construct hedging portfolios that deliver

superior out-of-sample performance relative to the market.

4.4 What Drives Macro Jump Risk?

The preceding analyses identify macroeconomic jump risk as the most significantly priced source

of systematic jump risk, both statistically and economically. A natural follow-up question is: what

specific macroeconomic indicators are responsible for these market-moving jumps? To shed light
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on the underlying drivers, I examine the detailed composition of macro-related news that triggers

U.S. market jumps.

Table 6 presents a breakdown of macroeconomic jump events into high-level categories and

sub-categories based on LLM analysis of contemporaneous news articles.

Three primary macro categories dominate: Labor Market, Inflation, and Growth and Real

Activity. Among these, the labor market stands out as the most frequent driver, accounting for

50 of the 153 macro jumps. Within this group, the Non-farm Payroll (NFP) report, commonly

referred to as the Employment Situation release, alone explains 34 jumps. This reflects the report’s

central role in shaping investor expectations about the real economy and the future stock market.

In total, 153 market jump events within the macroeconomic category are successfully attributed

to specific indicators using LLM-guided classification. This evidence reinforces the notion

that systematic jump risk priced in the market stems from a well-defined set of high-frequency

economic data releases. These releases tend to occur in the pre-market period, further validating

the earlier finding that overnight jump risk is the primary driver of the equity risk premia in the

U.S.

5 Conclusion

In this paper, I present the first comprehensive, around-the-clock analysis of systematic jump risk

in the U.S. equity market by integrating high-frequency financial data with contemporaneous news

narratives retrieved and interpreted using a state-of-the-art LLM. By decomposing systematic risk

into interpretable, topic-specific jump components, I provide new insights into the sources, pricing,

and management of jump risk.

The empirical evidence yields several key findings. First, this classification reveals significant

heterogeneity in risk premia: macroeconomic jump risk commands a sizeable and statistically

significant premium, outperforming the market in terms of Sharpe ratio, while other types of risk

carry limited compensation.
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Second, I demonstrate that this interpretable risk decomposition has substantial economic value

for investors. A real-time trading strategy that dynamically allocates to the most significantly

priced jump-topic portfolio each year achieves an out-of-sample Sharpe ratio of 0.84, exceeding

that of the aggregate market. Importantly, placebo analyses confirm that this performance cannot

be replicated by randomly assigned jump categories, underscoring the value added by LLM-based

narrative understanding.

These results contribute to the literature on systematic risk, high-frequency econometrics, and

the growing field of LLM applications in finance. Methodologically, I extend the continuous-

time Fama–MacBeth regression framework to allow for interpretable decomposition of risk based

on contemporaneous news content. Empirically, I provide a transparent and replicable approach

for mapping high-frequency news to market movements using open-source LLMs. Practically,

the findings offer new tools for constructing real-time, interpretable, and economically significant

hedging strategies.

Future work could apply similar techniques to study cross-sectional asset pricing implications,

explore firm-level jump exposures, or extend the analysis to global markets and asset classes.

As LLMs continue to evolve in their reasoning and interpretability capabilities, their integration

with high-frequency financial data promises to unlock even deeper understanding of how markets

process information and price risk.
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Figure 2 Intraday and Overnight Jump
This figure displays the time series of intraday and overnight jump returns identified using Equation (5). Blue
dots indicate intraday jumps, while orange dots represent overnight jumps. Shaded gray areas denote NBER dated
recessions. The sample period covers September 1997 to May 2020.
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Figure 3 Word Clouds for Different Systematic Risk Topics
This figure displays word clouds generated from news headlines associated with each category of market jumps listed
in Table 1. The word size reflects the frequency of each term within the headlines attributed to a given topic. The
sample spans from September 1997 to May 2020.
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Figure 4 Continuous and Jump Betas over Time
This figure displays the time series of percentile estimates for continuous betas and topic jump betas. The first panel
presents the continuous beta estimates, while the following five panels show the jump beta estimates for the five
interpretable topics listed in Table 1. The sample covers the out-of-sample estimation period from January 2007 to
May 2020. The blue line denotes the cross-sectional median, and the light blue shaded area indicates the interquartile
range (25th to 75th percentiles). Continuous betas are updated monthly using a rolling window, whereas jump betas
are updated annually using an expanding window.
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Figure 5 Cumulative Returns of Risk Hedging Portfolios
This figure plots the cumulative returns of portfolios designed to hedge against jump risks associated with three types
of systematic events: (1) U.S. macroeconomic data surprises, (2) corporate earnings and forward guidance, and (3)
international market spillovers. The sample covers the out-of-sample period from January 2007 to May 2020.
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Figure 6 Economic Value of Jump Classification with LLM
This figure plots the cumulative returns of trading strategies that, in real time, invest in the jump risk hedging
portfolio with the highest Sharpe ratio. The red line represents the strategy using jump categories classified based
on contemporaneous newswire and LLM analysis. The lighter lines depict placebo strategies where jump categories
are randomly assigned from a uniform distribution. To ensure comparability, all portfolios are volatility-scaled to
match the strategy based on LLM-classified jumps. The sample spans the out-of-sample period from January 2007 to
May 2020.
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Table 1 Definitions of Topic Categories

This table provides information on the overall jump topic categories identified using the Prompt 2. This classification
information is then provided in the Prompt 3 to assign each jump into one of the categories.

Topic ID Topic Name Topic Definition

1 U.S. Policy Actions (Monetary,
Fiscal, & Political)

Federal Reserve rate moves, emergency facilities, policy
statements, and major fiscal or political event.

2 U.S. Macro Data Surprises Releases of macroeconomic information such as retail
sales, GDP, inflation, payrolls, jobless claims, etc., that
diverge sharply from consensus.

3 Geopolitical & Security Events Developments in cross-border negotiations or ten-
sions. Terror attacks, war-risk headlines, or news that
eases/tightens military tensions.

4 Corporate Earnings &
Guidance

Earnings/Warnings from bell-wether firms or industries
that drag or lift the whole market.

5 International Market Spillovers Significant moves or outlook changes in major foreign
equity markets, commodities, energy prices, or FX rates.
Overseas monetary/fiscal policy shifts, trade measures,
capital-flow controls, or other cross-border actions that
carry global risk implications.

6 None of the Above Material news that do not fit the above definitions.
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Table 2 Summary Statistics of the Jumps by Categories

This table reports summary statistics for jumps classified into seven categories. The six main categories—Policy,
Macro, Geopolitics, Corporate, International, and Unclassified—correspond to those defined in Table 1. An additional
category, ‘Unattributable’, includes jumps for which no corresponding narrative is identified in the contemporaneous
newswire. The final column reports aggregate statistics across all jumps. For each category, the following statistics are
reported: the number of jumps (N), the proportion of total jumps (%), the proportion of positive jumps (Prop Pos), the
mean return (Mean), mean absolute return (Mean Abs), standard deviation (Std), interquartile range (IQR), skewness
(Skew), and the variance explained (R2), calculated as the sum of squared returns in that category divided by the total
sum of squared returns across all jumps. The sample period spans from September 1997 to May 2020.

Policy Macro Geopol. Corp. Intl. Unclass. Unattrib. All

N 54 153 63 114 242 17 87 730
% 7.40 20.96 8.63 15.62 33.15 2.33 11.92 100.00
Prop Pos (%) 61.11 49.67 44.44 40.35 38.43 35.29 57.47 45.48
Mean (%) 0.37 -0.04 -0.23 -0.18 -0.20 -0.22 0.13 -0.08
Mean Abs (%) 1.03 0.79 0.93 0.75 0.78 0.90 0.87 0.82
Std (%) 1.19 0.85 1.06 0.79 0.82 1.04 0.96 0.91
IQR (%) 1.52 1.37 1.43 1.34 1.36 1.35 1.45 1.38
Skew 0.27 0.06 -0.38 0.09 0.38 -0.15 -0.10 0.19
R2 13.46 17.97 11.99 12.06 28.25 3.00 13.28 100.00
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Table 3 Risk Premia Estimates

This table reports annualized risk premia estimates, standard errors, and Sharpe ratios for seven Fama-MacBeth
hedging portfolios, based on the continuous-time Fama-MacBeth regression described in Equation (11). Risk
premia and standard errors are expressed in percentage points. The annualized Sharpe ratio is computed using the
corresponding hedging portfolio returns. The final row reports results for the contemporaneous market excess return
as a benchmark. The sample covers the out-of-sample period from January 2007 to May 2020.

Ann RP(%) Std Err(%) SR

Continuous 4.06 (5.31) 0.21
Policy -1.95 (1.65) -0.33
Macro 3.54 (1.27) 0.78
Geopolitics -0.67 (1.13) -0.16
Corporate 2.32 (1.65) 0.39
International 0.87 (1.81) 0.13
Unclassified 1.09 (1.02) 0.29

Market 8.48 (4.35) 0.53
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Table 4 Overnight and Intraday Risk Premia

This table presents the decomposition of annualized risk premia. Panel A reports the breakdown into overnight and
intraday components, where each is computed by holding the factor during the corresponding time window. Panel B
further decomposes the risk premia into three components: the continuous part, overnight jumps, and intraday jumps,
based on the real-time Fama–MacBeth regression specified in Equation (11). I report results for two systematic factors:
(1) the high-frequency market excess return (Mkt-RF), and (2) the high-frequency GANs-based SDF constructed by
Aleti and Bollerslev (2025), following the methodology of Chen et al. (2024). For each factor, I report the annualized
risk premia (Ann RP) and their corresponding standard errors (Std Err), both in percentage points. Asterisks *, **,
and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively. The sample period spans from
September 1997 to May 2020.

Panel A: Risk Premia Decomposition

Mkt-RF SDF
Ann RP(%) Std Err(%) Ann RP(%) Std Err(%)

Overnight 7.68*** (2.31) 6.63*** (2.04)
Intraday -0.25 (3.39) 9.48** (3.74)

Panel B: Jump Risk Premia Decomposition

Mkt-RF SDF
Ann RP(%) Std Err(%) Ann RP(%) Std Err(%)

Continuous 2.11 (3.01) 10.37* (5.52)
JumpOvernight 7.96** (3.41) 9.31** (4.11)
JumpIntraday 0.51 (2.64) 4.01 (3.59)
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Table 5 Regression against Risk Factors

This table presents the results from regressions of topic-based hedging portfolios on standard risk factors. Two test
assets are evaluated: (i) a hedging portfolio constructed to offset exposure to the macroeconomic topic risk, and (ii) a
real-time portfolio that dynamically invests in the topic associated with the most significant t-statistic from the Fama-
MacBeth regression each month. For each specification, we report the monthly abnormal return (α), expressed in
percentage points, in the first row. Regressions incrementally control for the Fama and French (2015) factors—market
excess return (Mkt-RF), size (SMB), value (HML), profitability (RMW), investment (CMA), as well as momentum
(MOM). Standard errors are reported in parentheses. Asterisks *, **, and *** indicate statistical significance at the
10%, 5%, and 1% levels, respectively. The sample spans January 2007 to May 2020.

Macro Topic Real-time Topic
(1) (2) (3) (4) (5) (6)

Alpha (%) 0.30*** 0.29*** 0.25*** 0.39*** 0.31*** 0.27**
(0.10) (0.10) (0.09) (0.12) (0.11) (0.10)

Mkt-RF 0.01 0.02 0.11*** 0.11***
(0.04) (0.03) (0.04) (0.03)

SMB 0.15*** 0.11***
(0.02) (0.04)

HML -0.11*** -0.09**
(0.03) (0.04)

RMW -0.05 0.04
(0.07) (0.10)

CMA 0.17*** -0.10
(0.06) (0.11)

MOM 0.04* -0.01
(0.02) (0.05)

Months 161 161 161 161 161 161
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Table 6 Counts of Macro News Categories Triggering U.S. Market Jumps

This table presents the category counts of the main macro indicator explaining the market jump within the
macroeconomic topic. The macroeconomic topic is identified using DeepSeek-R1 with Prompt 1 to Prompt 3. The
sample spans from September 1997 to May 2020.

High-level Categories Indicator Sub-category Number of Occurrences

Labor Market Non-farm Payroll / Employment Situation 34
Weekly Initial Jobless Claims 13
ADP Private Payrolls 3
Subtotal 50

Inflation Consumer Price Index (CPI) 13
Producer Price Index (PPI) 7
Employment Cost Index (ECI) 4
Import/GDP Price Deflators 3
Subtotal 27

Growth and Real Activities Retail Sales 12
Durable Goods Orders 9
GDP 8
Industrial Production / Capacity Utility 4
Housing Starts / Building Permits 3
Manufacturing Surveys 2
Trade Balance 1
Subtotal 39

Financial Conditions Credit Spread 5
Subtotal 5

Sector Specific Semiconductor Sales 1
Subtotal 1

Total 153
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Online Appendix for

“Interpretable Systematic Risk around the Clock”

Not for Publication

A Additional Results

Proof of Pure-play Property of Fama-MacBeth Hedging Factors:

Proof. Each Fama-MacBeth cross-section regression regresses the excess returns dRt on an
intercept and lagged β s. Writing the stacked design matrix as βt = [1,βC

t ,β
J
t ].

The portfolio weighting matrix Wt satisfies:

W ′
t βt = IK+2.

By design, the j-th column of Wt satisfies Equation (4). Therefore, the portfolio w′
jdRt is the return

on a portfolio purely driven by exposure to the corresponding risk and is immunized against all
other sources of risk.
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B Hosting and Serving DeepSeek-R1

This section describes the deployment and serving setup for the DeepSeek-R1-0528 language
model, which is used throughout this study to analyze high-frequency financial news and attribute
market jumps.

Model Overview

DeepSeek-R1-0528 is a 685-billion parameter Mixture-of-Experts (MoE) reasoning large language
model (LLM), released by DeepSeek and currently the top-ranked open-weight model in reasoning
on the LLM Arena Leaderboard.8 Its architecture is designed for strong logical reasoning, robust
retrieval, and high-capacity multitask learning. In this paper, I utilize the AWQ-quantized version,
which offers high inference throughput with reduced memory requirements, making it well-suited
for self-hosting at scale. The model supports a native context window of up to 128K tokens,
allowing input of all contemporaneous market news at the jump time.

Thinking and Reasoning

Beyond sheer scale, DeepSeek-R1’s performance stems from a training pipeline that explicitly

rewards reasoning. After a brief supervised “cold-start” stage, the model is optimised end-to-end
with Group-Relative Policy Optimisation (GRPO), a variant of PPO run over large number of
RL steps. The reward signal scores intermediate chain-of-thought traces on diverse math, code,
and logic tasks, encouraging the policy to “think out loud” and converge on verifiably correct
solutions.9

Because the objective values answer quality more than brevity, the learned policy naturally
allocates more tokens—and therefore more FLOPs—to harder questions, mirroring the compute-
adaptive effects first noted by Wei et al. (2022). In this study we exploit that capability by
enabling more thinking tokens for market jump reason attribution. With more thinking and
reasoning, DeepSeek-R1 can weigh multiple candidate narratives, evaluate temporal precedence
and sentiment consistency, and output the most plausible driver of the market jump.

8See https://lmarena.ai/leaderboard for live rankings.
9See Guo et al. (2025) for details.
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Deployment Environment

The model is hosted using vLLM, an open-source, high-throughput inference engine tailored for
large transformer models. I use the AWQ version of DeepSeek-R1-0528, which enables efficient
quantized inference.

The deployment is carried out on a cluster with eight NVIDIA H100 GPUs, each with 80GB
of VRAM, providing a total of 640GB of GPU memory. This hardware is required to load the full
DeepSeek-R1-0528-AWQ model and serve concurrent inference requests at low latency.

Model Loading and Serving Details

The hosting workflow consists of the following steps:

1. Model Download: The quantized model weights are downloaded from Hugging Face (https:
//huggingface.co/cognitivecomputations/DeepSeek-R1-0528-AWQ) and stored locally.

2. Environment Setup: The serving environment uses Python 3.10+, CUDA 12.x, and installs
dependencies via pip install vllm.

3. Launching the Server: The vLLM engine is initialized with

python -m vllm.entrypoints.openai.api_server \

--model /data/models/dsr1-0528-awq \

--served-model-name deepseek-r1-0528 \

--tensor-parallel-size 8 \

--pipeline-parallel-size 1 \

--max-model-len 131072 \

--gpu-memory-utilization 0.95 \

--enable-chunked-prefill \

--enable-prefix-caching \

--trust-remote-code \

--port 8000 --host 0.0.0.0

Here, tensor-parallel-size 8 enables model parallelism across all 8 H100 GPUs.

4. API Serving: vLLM serves an OpenAI-compatible API endpoint on localhost:8000 (by
default). This endpoint is used for all downstream inference tasks described in Section 2.3.
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This hosting and serving setup ensures high-throughput, low-latency LLM inference for
complex, high-frequency market news analysis, and is fully open for academic replication within
reasonable hardware constraints.
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C Processing High-frequency Data

C.1 Cleaning of Raw Trade and Quote Data

My intraday sample covers all NYSE, AMEX, and NASDAQ common stocks from 09/01/1997
through 05/31/2020.10 Because the millisecond data do not begin until late 2003, I use MTAQ for
09/01/1997–09/09/2003 and DTAQ thereafter. The identical cleaning filters are applied to each
feed. To construct a 15-minute panel of equity returns, I apply the following steps:

Step 1: Trade & quote filters. Starting from the raw TAQ millisecond files, I follow the
procedures of Holden and Jacobsen (2014) and Da and Xiu (2021) to filter the raw trade and
quote records.

• Quote records – keep only the six “regular-market” condition codes (Qu Cond) A,B,H,O,R,W;
drop all quotes flagged as cancelled (Qu Cancel = B). For the timing range, we keep
09:00–16:00 ET so that the opening National Best Bid and Offer (NBBO) is available at
09:30 ET.

• Trade records – retain original, uncancelled prints (Tr Corr = 00) and the immediately
corrected versions (01); discard all other correction codes.

Step 2: NBBO construction and trade matching. We reconstruct the official National Best
Bid and Offer (NBBO) by combining TAQ’s NBBOM and CQM snapshots, ordering by descending
sequence number, and removing duplicate micro-second stamps to leave exactly one quote per
time-stamp. Quotes with spread > $5 or bid> ask are likewise deleted. Each trade is then paired
with the NBBO that was in force one nanosecond earlier; any trade whose subsequent NBBO is
locked or crossed is discarded.

Step 3: Extreme-value filters. Matched trades whose prices fall outside the day’s NBBO range
are removed.

Step 4: Sampling to 15-minute frequency. Prices are sampled on an equal-spaced 15-minute
grid from 09:30 to 16:00 ET using the cleaned trade data. The last trade observed at or before each
grid point is carried forward (previous-tick method).

The procedure yields an extensive panel of 15-minute stock prices from high-quality trade
prices aligned to the prevailing NBBO with minimal contamination from stale quotes, odd lots,

10Daily TAQ (“DTAQ”)—time-stamped to the millisecond—first becomes available on WRDS on 09/10/2003,
whereas the earlier Monthly TAQ (“MTAQ”) product provides second-level stamps beginning 01/01/1993.
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corrections, or extreme outliers.

C.2 Linking TAQ to CRSP

The next step is to link this high-frequency panel to CRSP, which provides the overnight returns
necessary to construct around-the-clock returns for all stocks. In this section, I describe in detail
the procedures used to merge the TAQ database with CRSP and outline the steps taken to verify
the quality of the linkage.

I first filter the CRSP stocks to consider only ordinary common shares listed on the three
primary U.S. exchanges (exchcd ∈ {1 (NYSE),2 (AMEX),3 (NASDAQ)}, shrcd ∈ {10,11}).
After filtering, I merge each security to the TAQ using the CUSIP within the valid date ranges.

Finally, to further clean the merged database, I compare the intraday trade prices against the
ASKHI and BIDLO from CRSP. Any intraday price that falls outside the interval [BIDLO,ASKHI] is
set to missing, as such violations almost surely reflect data errors rather than true trades. Missing
prices are then forward-filled from the most recent valid observation to preserve the regular 15-
minute grid.

For daily open and close prices, I use the CRSP values in place of those from TAQ. I also use
the CRSP information to calculate the overnight returns for stocks that account for stock mergers
and splits, as well as returns from dividend payments.

To verify the quality of the link between the two databases, I follow Aı̈t-Sahalia et al.
(2020) to build high-frequency Fama-French factors and compare the return series against the
daily frequency factors downloaded from Kenneth French’s website at https://mba.tuck.

dartmouth.edu/pages/faculty/ken.french/data_library.html.

Specifically, I follow the open-source replication of Fama-French factor construction from
Freda Song at https://www.fredasongdrechsler.com/data-crunching/fama-french to
first obtain the Fama-French factor portfolio constituents over time.

After this, I use the constructed linking table to merge the portfolio constituents to high-
frequency return observations and construct the six Fama-French factors: Mkt-RF, SMB, HML,
RMW, CMA, and MOM, using two-by-three sorting with cutting threshold and portfollio
rebalancing rules following exactly the same procedure as Fama and French (2015) and Fama
and French (2018).

Finally, I aggregate the constructed high-frequency factors to daily frequency and compare
them against the official version from Kenneth French. If the linking is successful for most stocks
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Figure A1 Comparison of High-Frequency Fama-French Factors against Low-Frequency
Counterpart
This figure plots the cumulative returns of the high-frequency Fama-French factors against the daily frequency version
from Kenneth French’s data library. The factors considered include: Mkt-RF, SMB, HML, RMW, CMA, and MOM.
The high-frequency factors are aggregated to daily frequency for comparison with the low-frequency counterpart. The
sample period is from 09/01/1997 to 05/31/2020.
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used to construct the factors, the two versions should closely align with each other. Otherwise,
if there are large amounts of mismatch or unmatched stocks, there will exist large discrepancies
between the two.

Figure A1 presents the cumulative returns of the high-frequency Fama-French factors versus
the daily counterpart. From the figure, I find a close alignment of the two, suggesting that the
matching of the two datasets is of high quality.

Furthermore, the paired return series also exhibit nearly perfect correlations. I find the
correlation coefficients between the high-frequency factor and daily counterpart for the six factors
(Mkt-RF, SMB, HML, RMW, CMA, and MOM) are: 0.9996, 0.9942, 0.9648, 0.9783, 0.9624, and
0.9593, respectively.

C.3 Cleaning and Rollover of the S&P 500 E-mini Futures

My analysis of overnight market jumps is based on high-frequency data from the S&P 500 E-mini
futures, which trade nearly 24 hours a day and thus provide a natural proxy for the market’s pricing
of overnight risk. To construct a continuous time series of futures prices, I roll over the futures with
different time to maturities.

Rather than rolling on a fixed calendar date, the front contract is rolled on the first trading
day after the second-nearest contract becomes more liquid than the current front contract, where
liquidity is measured by daily trading volume (or by trade count when early-sample volume
is missing). Once the book is rolled forward, contracts never move “backwards”, preserving
chronological ordering of front, second, and third positions.

Because the second contract is typically priced above or below the expiring front contract, we
scale position size on the roll date to keep notional exposure unchanged. If nt front contracts priced
at f 1

t are replaced by the second contract priced at f 2
t , the new position size is:

nt+1 = nt
f 1
t

f 2
t
.

This guarantees that the strategy is self-financing and the overnight roll return from t to t + 1 is
simply f 1

t+1
f 2
t
−1.

The resulting high-frequency futures factor tracks the S&P 500 cash index extremely closely:
the contemporaneous correlation in overlapping intraday windows is 0.9589. Such a high
correlation confirms that the rolled E-mini series captures the same aggregate risk as the underlying
index—including overnight price discovery—and is therefore a reliable instrument for studying
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market-wide jumps.

Figure A2 compares the cumulative returns of the E-mini futures with those of the spot market.
The left panel displays total cumulative returns, while the right panel restricts to intraday periods
with overlapping high-frequency observations. In both cases, the futures closely mirror the returns
of the aggregate equity market. Notably, the cumulative return over the overnight period is nearly
flat, underscoring the role of overnight risk in shaping equity risk premia.

Figure A2 Comparison of Cumulative Returns of E-mini Futures against the Spot
This figure compares the cumulative returns of S&P E-mini futures and the spot market. The left panel plots the total
cumulative returns using all available observations. The right panel shows cumulative returns using only intraday
observations where both series have overlapping high-frequency data. The shaded gray areas indicate NBER-dated
recessions. The sample period spans from September 1997 to May 2020.
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