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1 Introduction

The asset pricing literature struggles to reconcile two seemingly contradictory

empirical results about the riskiness of the stock market. On one hand, risk premia

on broad stock market indexes are large – puzzlingly high relative to predictions from

many macroeconomic models – suggesting investors view market returns as being very

risky. On the other hand, measures of the quantity of market risk vary considerably

yet are only tenuously linked with expected returns empirically. In the time series,

the empirical relationship between the risk premium and conditional variance of the

overall stock market is somewhat weak. In the cross-section, measures of covariance

with the market line up poorly with differences in expected excess returns across

stocks. Unlike the equity premium puzzle, these findings suggest that the market

return – or at least a sizable component of the market return – is not very risky.

While it is possible to reconcile these empirical results with theory by introducing

additional sources of risk and/or time-variation in risk prices, this paper considers

a simple and complementary explanation related to the composition of the value-

weighted equity market index itself. We argue that the market portfolio is not a

well diversified portfolio, for two reasons. First, some sectors and systematic (e.g.,

industry-specific) factors likely receive substantially higher weights in the aggregate

stock market return – a value-weighted average of publicly traded firm returns – rel-

ative to their weights in the overall economy. Second, some very large firms receive

nontrivial large weights in the portfolio. Thus, the market return includes a “granular

residual,” a weighted average of idiosyncratic shocks to large firms that do not di-

versify away (Gabaix, 2011). A component of the value-weighted market return thus

reflects shocks that are potentially unrelated to broader macroeconomic conditions,

creating a disconnect between macroeconomic fundamentals and market returns. We

call this component the “idiosyncratic financial factor” (hereafter, IFF).

In a static model in which investors only hold public equity, the marginal value

of wealth (i.e., the stochastic discount factor) is an affine transformation of the stock

market return, and all sources of variation in the market return including the IFF

carry identical risk prices. However, in the data, publicly traded US equities only com-

prise a small fraction of the total value of resources available to finance a typical in-

vestor’s consumption, especially after incorporating the value of illiquid/nontradable

assets such as private business assets, human capital, and real estate. When most in-
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vestor wealth is concentrated in these alternative asset classes, their returns dominate

the marginal value of wealth. In this case, stock market returns that do not comove

with returns on these other components of wealth become less important (Mayers,

1973; Roll, 1977). While these stock market-specific risks are large enough to move

the aggregate value of the stock market, investors may nonetheless require little risk

compensation for holding portfolios exposed to them.

In this paper, we reexamine evidence for a market risk-return tradeoff using two

different market indices. The first is the standard value-weighted market factor

(VMF) which is ubiquitous in the literature and which can be motivated by the Cap-

ital Asset Pricing Model (CAPM). The second is a dominant market factor (DMF),

which we construct as the linear projection of the VMF onto the first principal compo-

nent of a large cross-section of equal-weighted, characteristics sorted portfolios. Our

alternative index (the DMF) is constructed with the objective of purging two sources

of variation in the aggregate market return (the VMF) discussed above: large, time-

varying factor exposures specific to highly valuable firms/industries and a granular

residual. The IFF, defined as IFF ≡ VMF −DMF , reflects these two sources of a

macro-financial disconnect.

Our paper’s main contribution is to show empirically that the DMF performs

better than the VMF in tests of the market risk-return tradeoff and along many other

metrics. Our empirical results are also consistent with predictions from our theoretical

model, which provides assumptions (for which we find strong empirical support) under

which the IFF is priced differently than the DMF. We therefore propose both an

explanation for and a potential resolution to the puzzling evidence on the weak market

risk-return tradeoff in both the time series and the cross-section. We also provide a

simple explanation for the size anomaly (Fama and French, 1992) and find evidence

that one need not necessarily include size factors in workhorse empirical asset pricing

models once the DMF is used in place of the VMF.

More precisely, our paper makes five main contributions, four empirical and one

theoretical. First, we provide five stylized facts related to the existence and effects

of large firm concentration in the aggregate stock market, the VMF’s exposure to

common factors driving stock returns, and links between these common factors and

real activity. These facts motivate a theoretical distinction between DMF and IFF

risks. Second, we develop a parsimonious theoretical model to help clarify the distinc-

tion between risk prices on the DMF and the IFF, respectively, and to illustrate the

2



impact of such a distinction on standard tests of the risk-return tradeoff. Third, we

show that the DMF provides stronger evidence for a conditional risk-return tradeoff

in the time series than the VMF. Fourth, we show that exposure to the DMF ex-

plains more cross-sectional variation in expected returns than exposure to the VMF

in a multifactor setting. Fifth, we show that size factors in popular factor models are

spanned when the DMF is used in place of the VMF in each model. This result is in

line with the IFF theory we develop herein, which implies the size anomaly is related

to the mis-measurement of market risk when using the VMF as opposed to the DMF.

We now provide more details related to each of these contributions.

Regarding our first main contribution, we begin by characterizing two facts re-

lated to distribution of weights across firms in the value-weighted market. First, we

show that a small number of large firms constitute a large share of the value-weighted

market.1 Second, there are dramatic fluctuations in the industry composition across

all firms and, particularly, across the largest firms in the equity market, which may

not reflect the composition of the broader economy. These features can combine to

generate time-varying VMF loadings on factors other than the DMF and by generat-

ing a granular residual, with neither strongly related to macroeconomic fundamentals.

Thus, we call the combination of these two effects the IFF.

To motivate our definition of the DMF, our next two facts follow from perform-

ing a principal components analysis (PCA) to identify the VMF’s exposure to various

principal components (PCs) of a large set of equal-weighted characteristic-sorted port-

folios.2 These portfolios have a strong factor structure with the first PC being a level

factor: all portfolios load positively on it and all portfolios receive positive weights

in its construction. The first PC also explains a large fraction of VMF variation in

the time series (84%) and can explain essentially all of its risk premium. In contrast,

1For example, in November 2018 The Economist magazine recently reported that “some 37% of
the rise in the value of all firms in the S&P 500 index since 2013 is explained by six of its members:
Alphabet, Amazon, Apple, Facebook, Microsoft, and Netflix. About 28% of the rise in Chinese
equities over the same period is owing to two firms: Alibaba and Tencent.” Source: “Big Tech’s
sell-off”, The Economist, November 1, 2018.

2Importantly, using equal-weighted portfolios effectively imposes that any granular residuals will
be averaged out of the base portfolio returns by the law of large numbers. Therefore, the extracted
PCs are effectively free of the granular residual component of the IFF. This approach follows a
long history of literature that uses statistical factors estimated via PCA to explain the cross-section
of stock returns. Early examples include Chamberlain and Rothschild (1983) and Connor and
Korajczyk (1986, 1988). More recent examples include Kozak et al. (2018), Pukthuanthong et al.
(2019), Kelly et al. (2019), and Giglio and Xiu (2021).
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higher PCs only explain a modest amount of VMF variation. Further, the VMF’s

exposure to the first PC is stable over time. Consistent with changing composition

of large firms inducing time-variation in VMF’s systematic exposures, the VMF’s

conditional loadings on higher PCs vary dramatically over time.

As our final stylized fact, we use local projections to study links between different

components of the VMF and the real economy. First, we show that the projection

of the VMF onto the first PC (i.e., our DMF) is highly predictive of changes in nine

different macroeconomic time series in directions consistent with it earning a positive

risk premium. However, a projection of VMF onto higher PCs is not reliably linked

with any of these variables. This evidence points to a likely tenuous link between

VMF’s exposures to higher PCs and investors’ marginal value of wealth.

Our second contribution is theoretical. We build a static model featuring a small

number of very large stocks and a large number of small stocks which yields simple

expressions for how exposures to the DMF and the IFF translate to risk premia.

Our model features both of the above sources of the IFF: factor tilts specific to large

firms and a granular residual. While the model nests the CAPM as a special case,

in the empirically relevant case in which investors finance most of their consumption

from sources of income other than US stock market wealth, the model makes a sharp

distinction between the DMF and the IFF. When, as appears to be the case in the

data, the IFF comoves little with other sources of non-stock market wealth, its risk

price is small and even zero in some limiting cases. Furthermore, our model implies

small-cap portfolio betas are biased downward when estimated with respect to the

VMF, and the corresponding small-cap portfolio (IFF) alphas are positive (negative),

predictions for which we find empirical support.

In our third main contribution, we show that the DMF yields a stronger risk-

return tradeoff in the time series than does the VMF. We first replicate a familiar

result from the literature: the coefficient relating the expected VMF return to its

conditional variance is positive yet statistically insignificant (see, e.g., Nelson 1991,

Glosten et al. 1993, Koopman and Hol Uspensky 2002). Repeating the analysis using

the DMF, the risk-return tradeoff coefficient is 2 to 4 times larger and statistically

significant across a wide variety of specifications. When the IFF is not priced, it

contributes to the VMF’s conditional variance but not its risk premium, thus making

the VMF risk-return tradeoff weaker and unstable over time.

In our fourth main contribution, we find a stronger role for the DMF in explaining
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the cross-section of expected returns relative to the VMF. More precisely, working

in a multifactor setting, we find that using the DMF in place of the VMF as a

market proxy yields similar pricing performance but attributes a substantially higher

amount of variation in risk premia to market risk. The main mechanism behind this

finding is straightforward: the presence of the IFF changes estimates of market risk

exposures (i.e., betas) measured using the VMF relative to the DMF. Empirically,

and consistent with our theory, 1) the average size of stocks in a portfolio is a very

strong predictor of an attenuation bias in VMF betas relative to DMF betas and

2) downward adjustments are larger for stocks with high market risk exposures (the

attenuation effect is multiplicative).

We find quantitatively large differences between market risk exposures (i.e., betas)

estimated using the VMF and DMF market factors. It is not uncommon for portfolios

of mostly small stocks to have market betas that are biased downwards by as much as

50%, a force which leads to more dispersion in DMF betas relative to VMF betas. The

cross-sectional standard deviation of the difference between VMF and DMF betas is

large; at 0.13, it is roughly 2/3 as large as the cross-sectional standard deviation of

VMF betas themselves (0.19). Not only does the DMF yield a larger spread in betas,

it also generates a higher market risk premium estimate (5.8%) compared to that

using the VMF (4.9%), though differences are statistically insignificant.

The combination of both facts – modestly higher price of risk and substantially

higher dispersion in quantity of risk (beta) – implies that a larger fraction of average

returns in the cross section (hedged against other orthogonal factors) can be explained

by exposure to DMF risk exposures relative to VMF risk exposures. In addition to

holding across many different test portfolios, similar results obtain uniformly within

each individual set (e.g., size × book-to-market sorted portfolios) of characteristics-

sorted test portfolios. We also find similar results regardless of whether we control

for other PC-based pricing factors, characteristics-based factors, or both.

When the stock market’s share of wealth is relatively small compared to that

in other assets, our theoretical model implies the IFF has a relatively small risk

price. We test this implication directly by running bivariate cross-sectional regressions

that include separately estimated loadings on both the DMF and the IFF in the

second stage. We show the IFF either carries a negative risk premium or one that

is indistinguishable from zero depending on the specification. In other words, its

risk premium is drastically different than that on the market factor, providing direct
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evidence to our claim that the market prices the IFF differently than the DMF.

Following insights from Banz (1981) and Fama and French (1992, 1993), the size

anomaly has received much attention and most factor models contain factors related

to market capitalization (i.e., size factors). In our fifth main contribution, we further

investigate the importance of the IFF to help explain the size anomaly and the role

played by size-related pricing factors in leading factor models. In our theoretical

model, when using the VMF to estimate market risk for size-sorted portfolios, small-

cap portfolio betas are biased downwards under plausible conditions, understating

their systematic risk exposures. As a result, these stocks earn positive abnormal

risk-adjusted returns (i.e., alphas), replicating the size anomaly. We investigate this

prediction empirically in two steps.

First, when we use the DMF in place of the VMF in a number of workhorse

empirical factor models, the average absolute pricing error across test portfolios is

insensitive to whether or not we include the respective size-based pricing factors. If we

instead use the VMF as our market factor, pricing errors are often much larger when

size factors are omitted, suggesting that size factors help to address the attenuation

in market risk exposures due to the IFF. Furthermore, when we drop size factors from

these factor models and use the DMF as the market factor, the pared-down models

explain size factor average returns quite well (i.e., the size factors are spanned by

these modified models). This is not the case when the VMF is used as the market

factor.

Second, we find results consistent with our theory in factor spanning tests. Specif-

ically, the IFF has large negative alphas when we use the VMF as the market factor

and a strong negative loading on size factors, consistent with the IFF being unpriced

and the negative alpha being generated by the negative size factor loadings. Further-

more, these IFF alphas increase in magnitude when we omit size factors from the

models. In contrast, the IFF is approximately spanned when we use the DMF, which

is the case regardless of whether we include or omit size factors from the models and

is consistent with the IFF being unpriced. These results provide strong evidence that

the existence of the size premium can largely be explained by mis-measured market

risk of small stocks, which is in line with our theory and other empirical findings.

Related Literature: Our results relate to two literatures – both are quite mature

so we will not survey them here – that have found mixed results when testing for an

intertemporal risk-return tradeoff as well as a relationship between market risk and

6



expected returns in the cross-section. Many papers in the former literature have

focused on various approaches to better estimate conditional variance, and results

have been found to be sensitive to these modeling choices.3 In contrast to these

implementation issues, our critique relates to a fundamental source of misspecification

and applies even when a researcher has access to a “perfect” measure of conditional

volatility of the VMF. Accordingly, we find that adjusting the VMF to purge it of

the IFF leads to much stronger results.

In the empirical cross-sectional asset pricing literature (see, e.g., Nagel, 2013, for a

survey), the potential challenges associated with a mis-measured market proxy date

back to Roll’s (1977) critique, namely that the correct market proxy is unobserv-

able and tests of the univariate CAPM may fail without it. The apparent failure of

the CAPM has spawned a plethora of research. One tack has been to create more

accurate proxies for the marginal value of wealth, such as by including proxies for la-

bor/entrepreneurial income and/or other assets which contribute to the consumption

of the marginal investor, or by measuring covariances at different horizons.4 Despite

this evidence on a disconnect between the marginal value of wealth and the VMF

return, it is still common practice to use the VMF as a pricing factor. We point

out that the VMF includes the IFF which is more tenuously linked with investors’

marginal utility but which nonetheless has quantitatively large impacts on estimates

of assets’ risk exposures and can weaken evidence for a market risk-return tradeoff.

Another tack has been to identify other pricing factors in addition to the VMF (see,

3Using GARCH-type volatility forecasting models, for example, Bollerslev et al. (1988), Chou
(1988), Baillie and DeGennaro (1990), Campbell and Hentschel (1992), and Chou et al. (1992) find a
positive risk-return relation, whereas Nelson (1991) and Glosten et al. (1993) find a negative relation
when using extended GARCH models with so-called leverage effects in forming volatility forecasts.
Focusing on the long-run relation between the two, Lundblad (2007) provides a positive coefficient
estimate from a sample spanning from 1836 to 2003. However, using a stochastic volatility (SV)
model, Koopman and Hol Uspensky (2002) and Brandt and Kang (2004) provide empirical evidence
for a negative relation from stock indices in the United Kingdom, the United States and Japan
(former) and from CRSP value-weighted index (latter). Using alternative approaches to GARCH or
SV volatility forecasting models, French et al. (1987), Harvey (1989), Ludvigson and Ng (2007) and
Ghysels et al. (2005) find a positive relation, while Pagan and Hong (1991) and Whitelaw (1994) find
a negative relation between excess returns of stock index and its variance. Hedegaard and Hodrick
(2016) find that using multiple sets of nonoverlapping returns improves precision of estimates and
find evidence consistent with a positive risk return tradeoff. Finally, Goyal and Santa-Clara (2003)
find that, although the conditional market variance is not a reliable forecaster of market returns, an
average of the cross-sectional variance of individual stocks is.

4See, e.g., Stambaugh (1982), Kothari et al. (1995), Jagannathan and Wang (1996), Heaton and
Lucas (2000), Parker and Julliard (2005), Malloy et al. (2009), Campbell et al. (2016), Cederburg
and O’Doherty (2019), Lewis and Santosh (2021).
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e.g., Fama and French, 1993, and the many papers that followed).5 Rather than try

to identify specific anomaly-related factors to resolve this issue, Giglio and Xiu (2021)

propose a method that uses principal components analysis to consistently estimate

risk premia in the cross-section, including the market risk premium. Motivated by

this, we use PCs in our cross-sectional tests to control for exposures to latent risk

factors that might otherwise bias estimates of the market risk premium.

Our paper also relates to a broader literature on misspecification in linear factor

models in asset pricing, such as papers studying effects of spurious/weak factors (see,

e.g., Kan and Zhang, 1999; Kleibergen, 2009; Bryzgalova, 2015; Giglio et al., 2021),

due to the disconnect between characteristics-sorted factors and the asset covariance

structure (Daniel et al., 2020), or due to the way in which factors are constructed

(Cremers et al., 2013). We propose a novel form of misspecification, namely the

presence of the IFF, which provides a unified explanation for previously-documented

weak risk-return tradeoffs in both the time series and cross section.

Finally, the size anomaly has played a prominent role in the cross-sectional asset

pricing literature. There is still an active debate on whether the anomaly exists at

all, and, if so, what sources of risk it captures.6 However, as Berk (1995) points

out, because size is measured using market capitalization and (all else equal) market

capitalization is related to a firm’s discount rate, the size anomaly may simply capture

any component of discount rates that are not captured by a particular misspecified

model. Our results are consistent with this line of reasoning as we propose one

specific form of misspecification in the market factor. In line with implications from

our analysis, once we correct for this misspecification, the size factors across all models

we study are spanned by the other factors in the models.

5Relatedly, multiple recent papers emphasize machine-learning or other data-driven approaches to
identifying common factors in expected and realized returns (see, e.g., Kelly et al., 2019; Freyberger
et al., 2020; Lettau and Pelger, 2020a,b; Harvey and Liu, 2021; Gu et al., 2020; Kozak et al., 2020;
Bryzgalova et al., 2022), where a common thread is that many of the pricing factors uncovered by
these procedures are not value-weighted portfolios.

6Not only have there been periods when the size anomaly has yielded large average returns
for investors, but the existence of this anomaly can have significant implications for allocational
efficiency in the real economy (van Binsbergen and Opp, 2019). There is both an empirical debate
on the strength of the size anomaly (for a summary of and contribution to this debate, see Asness
et al., 2018), and also a theoretical debate on what sorts of risks the size premium may capture. For
instance, small-cap stocks are relatively illiquid (Amihud and Mendelson, 1986) and Acharya and
Pedersen (2005) argue that a stock’s discount rate is linked to both its own liquidity as well as the
covariance between its own return and market liquidity.
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2 Preliminaries

In this section, we begin by describing a simple linear asset pricing framework

that serves as an organizing structure for our theoretical and empirical results. Next,

we formally define the DMF and the IFF. Finally, we describe our empirical strategy

for estimating these quantities and the data we use for this purpose.

2.1 Maintained assumptions

We begin by defining the VMF. Let ri,t+1 denote the monthly excess return on

individual stock i from month t to t + 1. The VMF is a value-weighted average of

individual excess returns,

VMFt+1 =
Nt∑
i=1

wi,tri,t+1, (1)

where wi,t is the predetermined value-weight of a stock i’s return based on its market

capitalization and Nt is a number of individual stocks in the stock index return in

period t.

Next, we make the standard assumption that shocks to expected excess returns

on each asset, i, are described by a linear factor model

r̃i,t+1 = βi · f̃t+1 + ζ ′i · g̃t+1 + ηi,t+1, (2)

where ft+1 is a scalar random variable that represents the DMF, βi is asset i’s exposure

to ft+1, gt+1 is a vector of additional common factors where E(gt+1|ft+1) = 0, ζi is asset

i’s exposure to gt+1, and ηi,t+1 is an idiosyncratic shock such that E[ηi,t+1|ft+1, gt+1] =

0 and has finite variance.7 We use the tilde notation to denote deviations in excess

returns from expected values (e.g., r̃i,t+1 ≡ ri,t+1 − Et[ri,t+1]) to emphasize the fact

that (at this point) we do not take a stand on the model of expected returns.

7This is also a static factor model (i.e., constant coefficients), which is standard in the literature
when working with test assets that are portfolios as will be the case in our empirical work. This
framework has been a workhorse for empirical asset pricing studies and encompasses more specialized
models whether they be based on theory such as the CAPM (Sharpe, 1964; Lintner, 1965; and
Black, 1972) or statistical arguments such as the APT (Ross, 1976). Furthermore, it encompasses
the characteristics-based factor models that have come to dominate the empirical cross-sectional
asset pricing literature (e.g., Fama and French, 1993, among the many others that followed).
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2.2 Defining DMF and IFF

Under the strong assumptions that yield the Capital Asset Pricing Model, a value-

weighted index of all risky assets is the tangency portfolio. Owing to this intellectual

history, it is customary to define ft+1 in equation (2) as the VMF and use this as

a level factor in essentially all factor models. In the next section, we highlight five

empirical facts that motivate the perspective that the VMF may not itself be an ideal

factor for this purpose.

We separate ft+1 from the other factors gt+1 via the following rotation/normalization

restrictions:

E

[
Nt∑
i=1

wi,tβi

]
= 1, and (3)

E

[
1
Nt

Nt∑
i=1

ζi

]
= 0. (4)

In other words, the scale of ft+1 is defined so that the VMF has an unconditional

average loading of 1 on it, and the remaining factors (gt+1) are rotated so that the

average stock has zero loading on these orthogonal factors. Therefore, ft+1 captures

the common factor exposure of the average stock and gt+1 capture tilts away from

ft+1.

If we have a balanced panel of asset returns (Nt = N for all t) with constant factor

loadings, then returns on an equal-weighted portfolio of assets satisfy

r̃ew,t+1 =
1

N

N∑
i=1

(
βi · f̃t+1 + ζ ′i · g̃t+1 + ηi,t+1

)
= βew · f̃t+1 + 0 · g̃t+1 +

1

N

N∑
i=1

ηi,t+1, (5)

where βew ≡ 1
N

N∑
i=1

βi. Because Et[ηi,t+1] = 0, we know that r̃ew,t+1 will be an unbiased

estimator of f̃t+1. Since the number of stocks N is large, under some regularity con-

ditions on the idiosyncratic shocks {ηi,t+1}Ni=1, the law of large numbers holds almost

exactly and r̃ew,t+1 is also consistent for f̃t+1 up to a constant of proportionality, i.e.,

plim
N→∞

r̃ew,t+1 = βewf̃t+1 ⇐⇒ plim
N→∞

1

N

N∑
i=1

ηi,t+1 = 0, (6)

in which case r̃ew,t+1 essentially reveals (a scaled version of) f̃t+1. With the additional
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assumption of no arbitrage (which we impose later to pin down expressions for risk

premia given the assumed factor structure), rew,t+1 is also a scaled version of ft+1.

If we perform a similar aggregation exercise for the VMF itself, which is a lin-

ear combination of individual stocks with loadings βm,t ≡
∑Nt

i=1witβi and ζm,t ≡∑Nt

i=1witζi on ft+1 and gt+1, respectively, we find that

Ṽ MF t+1 = βm,t · f̃t+1 + ζ ′m,t g̃t+1 +

Nt∑
i=1

witηi,t+1

≡ f̃t+1 + (βm,t − 1) · f̃t+1︸ ︷︷ ︸
time-varying exposure

to true market factor f̃t+1

+ ζ ′m,t g̃t+1︸ ︷︷ ︸
(potentially) time-varying

exposure to other factors g̃t+1

+ ηt+1︸︷︷︸
granular
residual

≡ f̃t+1 + ϵ̃t+1︸︷︷︸
(innovation in) idiosyncratic

financial risk factor

. (7)

We define ϵt+1 ≡ VMFt+1 − ft+1 as the idiosyncratic financial risk factor (IFF),

and it is the sum of three distinct components. The first captures the fact that the

current set of large stocks may have conditional loadings on ft+1 that are above or

below the time series average loading of 1. The second captures a value weighted

average of conditional loadings on other orthogonal factors gt+1 (a deviation relative

to the equal-weighted average ζi that is normalized to zero). As the type of economic

activities conducted by the market’s largest firms changes considerably over time,

these factor exposures likely vary over time.

Following Gabaix (2011), we will refer to the third component, ηt+1, as the “gran-

ular residual,” as it captures the contribution to the VMF from idiosyncratic shocks

that are not fully diversified away. Whether or not the conditional variance of ηt+1

collapses to zero depends on the extent to which the law of large numbers applies, and

some necessary conditions are easy to test.8 As we demonstrate and discuss further

below, this condition likely does not hold for the CRSP universe of stocks in the US,

which is the dominant data source for most empirical asset pricing tests.

2.3 Identifying DMF and IFF empirically

We have defined the DMF and the IFF given our linear asset pricing framework

in equation (2). To identify the DMF and the IFF empirically, we follow standard

8For example, if κ < V ar[ηi,t+1] < κ < ∞ for all stocks and ηi,t+1 ⊥ ηj,t+1 for all i ̸= j, a

necessary condition for ηt+1
p→ 0 is limNt→∞

∑Nt

i=1 w
2
i,t = 0.
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practice in the literature and perform a PCA on the excess returns of a broad set of

standard equal-weighted characteristics-sorted portfolios so that each PC is a linear

combination of excess returns on the base portfolios.9 We obtain all portfolio data

used in our PCA from Kenneth French’s Data Library and provide a summary of the

portfolios in Online Appendix Table OA.1. The table reports a standard set of 372

portfolios having data from 1963-2021 which we use throughout the paper.10

We use the resulting PCs as (rotated) proxies for ft+1 and gt+1 in equation (2).11

Using equal-weighted portfolios ensures the PCs are orthogonal to the granular resid-

ual, ηt+1.
12 Furthermore, the first PC explains 85% of the variation in the equal-

weighted portfolio returns and 80% of the variation in value-weighted portfolio re-

turns (see Online Appendix OA.3.2). We define the DMF to be the projection of

the VMF onto the first PC, which ensures that the DMF satisfies our restriction in

equation (3) (see Online Appendix OA.3.3 for more details). The IFF is then defined

as the difference between the two (i.e., IFF ≡ VMF − DMF ), consistent with its

definition in equation (7).

3 Motivating evidence

In this section, we present five motivating facts that support the existence of the

IFF as we have defined it in the previous section. We then describe some of the time

series properties of our estimated IFF.

3.1 Five motivating facts

The extent to which the IFF is quantitatively large is an empirical question. To

support our discussion and empirical tests that follow, we provide some empirical

evidence from the U.S. stock market that suggests this is likely the case.

9Although the PCA is performed using demeaned excess returns, we apply the PCA weighting
matrix directly to portfolio excess returns to construct the PCs used in our tests so that these
represent zero net cost (ex-post) tradable portfolios that have non-zero average excess returns.

10We choose these portfolios for our PCA to balance a few tradeoffs that we discuss further in
Online Appendix section OA.3.

11See Online Appendix section OA.3 for more motivation behind using PCs for this purpose.
12This is true as long as the equal-weighted anomaly portfolios are well-diversified such that the

law of large numbers holds. In this case, asset granular residuals, ηi,t+1, will be diversified away as
in the case of rew,t+1 in equation (5). Because PCs are a linear combination of these equal-weighted
portfolios, the PCs themselves will also be orthogonal to ηi,t+1.
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3.1.1 Fact 1: The distribution of VMF weights is highly concentrated

There are at least two reasons why the standard value-weighted market may reflect

risk factors to which the typical stock is not exposed. First, the equity market is

comprised of stocks with a fat-tailed size distribution that may cause the idiosyncratic

component, ηi,t+1, in equation (2) to have a non-trivial influence on the value-weighted

market return. Second, as we show in the next subsection, the industry composition

changes drastically over time. This is particularly true among the largest stocks.

Figure 1 highlights market concentration among the largest stocks in the CRSP

value-weighted index. The figure plots the fraction of market value associated with

the largest 5, 10, 25, and 50 stocks, respectively.13 Throughout the entire sample

period from 1926 to 2021, the largest five stocks are associated with between 10 and

25 percent of overall market value. The next 20 stocks are also associated with a

substantial fraction of market value, so that the combined weight of the top 25 stocks

ranges from a high of almost 50% early in the sample to a low of about 20% during

the 1980s. As of 2021, this weight is about 35%. Stocks 26-50 constitute another

nontrivial percentage of total market value with similar overall time series variation

as the top 25 stocks.

These shares decline somewhat over the sample in part because the CRSP universe

expands, as is clear from the number of constituent stocks plotted on the right axis.

Nonetheless, the market is highly concentrated throughout the sample, and it is

striking that one can barely detect any changes in these weights even when the number

of stocks included in the index jumps dramatically upward.

Given this concentration, it is likely the value-weighted market is not well di-

versified with respect to the idiosyncratic components of individual stock returns

represented by ηi,t+1 in equation (2). Gabaix (2011) shows how such “granular resid-

uals” likely do not diversify when firms have a fat-tailed size distribution, in which

case idiosyncratic shocks affect aggregate quantities. To the extent the aggregated

13We also compute an alternative measure of concentration which allows the number of stocks in
the bin to grow as the number of listed stocks increases. Specifically, we compute the share of stocks
in the top 2.5th percentile of the market value, where this measure sums up weights for the largest
stocks whose rank in the CRSP market value distribution is less than 2.5% times the number of
stocks in the NYSE for each month. Here we use the count of stocks in the NYSE (shaded in red
on the right axis) to avoid mechanical increases in our concentration measure due to a large number
of (mostly small) AMEX and NASDAQ stocks added during the second half of our sample period.
The concentration measure lacks a downward trend, hovering between 25 and 40 percent of the total
value of the stock market over the 1926-2021 sample period.
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granular residual (i.e., the value-weighted sum of ηi,t+1’s, which we refer to as ηt)

carries a different price of risk than the DMF, it can cause issues for standard asset

pricing inference when using the VMF, which we discuss in subsequent sections below.

We also provide some motivation for why one might expect the granular residual to

be priced differently than the DMF in a theoretical model that we develop below.

3.1.2 Fact 2: VMF industry composition varies drastically over time

Next, we show that the industry composition of the VMF fluctuates drastically

over time. To the extent different industries load differently on the factors in equation

(2), this could lead to time-varying loadings of the VMF on these factors. Further-

more, the industry composition of the largest stocks changes even more drastically

over time, implying that the idiosyncratic shocks that constitute the aggregated gran-

ular residual, ηt+1, change over time as well.

For each of the Fama-French 10 industries, Figure 2 plots the fraction of their

market capitalizations among the top 2.5% stocks by size (Panel 1), among all other

stocks (Panel 2), and finally among all stocks in the CRSP universe (Panel 3).14

Comparing Panels 1 and 2, we note that the industry composition of the “megacap”

group exhibits much more pronounced time series fluctuations relative to the set of

smaller firms and its industry distribution is quite unrepresentative of the rest of

the market. For instance, firms in the energy and durables categories are associated

with almost half of the market value in the top group over the first two thirds of

the sample (see Panel 1), whereas the two categories combined make up less than

20% of the sample of smaller firms throughout the entire sample period (see Panel

2). Likewise, tech firms are somewhat overrepresented, especially later in the sample

where they rise to comprise approximately 60% of the total megacap composition

in Panel 1 in 2021, whereas this industry makes up less than 20% of the sample of

smaller firms in the same sample period (see Panel 2). Panel 3 shows that the overall

VMF industry composition is somewhere between Panels 1 and 2, inheriting some

of the spikes in concentration from Panel 1. Furthermore, large overall fluctuations

in the VMF’s industry composition may lead to the value-weighted market loading

differently on factors over time, as we will show in subsection 3.1.4.

14These threshold rules typically yield between 20-35 firms included in the top 2.5% of stocks,
though the count is somewhat higher in the 1990s (peaking at 45) and is closer to 15 prior to 1940.
Results are similar for other cutoffs.
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3.1.3 Fact 3: VMF is priced by the first PC

Table 1 provides results from regressions of the CRSP value-weighted (Panel A)

and equal-weighted (Panel B) market index excess returns on various numbers of

PCs from the equal-weighted portfolio PCA. Variation in the value-weighted (equal-

weighted) market return is well-explained by its projection on the first PC with an

R-squared value of 0.84 (0.95), which increases to 0.95 (0.99) when three PCs are

included in the regression. The first PC also does a good job explaining average

returns on both the value- and equal-weighted indexes, with each having statistically

and economically insignificant annualized alphas of -0.53% and -0.46%, respectively.

These alphas can be compared to average annualized excess returns of 6.79% and

9.36%, respectively. In other words, the first PC approximately prices both the VMF

and the equal-weighted market.

Furthermore, adding more PCs to the regressions does not change the alphas

appreciably and only marginally increases the R-squared values. If anything, the

decomposition of the VMF risk premium suggests that exposures to the second and

third PCs – the main factors which add sizable explanatory power for the VMF

beyond the first PC – contribute essentially zero (a statistically insignificant 17 bp)

and -1.6% per annum to VMF expected returns in the time series, respectively.

3.1.4 Fact 4: VMF has a stable loading on the first PC but time-varying
loadings on higher PCs

Time variation in the market composition over time (e.g., through variation in

its industry composition), may cause it to have time-varying loadings on factors that

explain the cross-section of returns similar to the assumed time-varying loadings,

ζm,t, in equation (2). To explore this possibility, we plot coefficient estimates from

rolling regressions of the value-weighted (equal-weighted) market excess return on the

first five PCs constructed using equal-weighted portfolios in Figure 3, Panel 1 (Panel

2). Coefficients on the first PC are relatively stable in both cases. However, both

the value- and equal-weighted market generate time-varying loadings on higher PCs,

which is in line with the notion that compositional changes in the market may result

in it having time-varying loadings on some factors.

Results in Table 1 and Figure 3 support our definition of the DMF and our pro-

posed empirical approach to estimate the DMF as a projection of the VMF onto the

first PC in subsection 2.3. Our findings confirm that the first PC is able to explain
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variation in the VMF well. Furthermore, the VMF’s loadings on the first PC are

fairly stable over time, whereas its loadings on higher PCs are time varying.

3.1.5 Fact 5: DMF is strongly linked to macroeconomic conditions but a
projection of VMF onto higher PCs is not

In this subsection, we examine whether different components of the VMF have

differential predictive power for macroeconomic aggregates by estimating impulse

response functions (IRFs) via local projections. In particular, we estimate the IRFs

for nine macroeconomic aggregates in response to two alternative time series: 1) the

VMF projected onto the first PC (i.e., the DMF), and 2) the VMF projected onto PCs

two and three.15 The IFF includes several components, but here we emphasize only

its projection onto the first two higher PCs. We do so because this is the key term

in the IFF which generates sizable differences in estimated market risk exposures.16

Figure 4 shows the IRF estimates in response to either the DMF or the VMF pro-

jected onto PCs two and three over the 1963-2019 sample.17 The blue line and blue

confidence bands correspond to using the DMF. The red ones correspond to using

the projection of the VMF onto both the second and third PCs, which is equivalent

to projecting the IFF onto these PCs. Comparing the sets of blue and red series, the

DMF is highly informative about future macroeconomic aggregates, typically yield-

ing statistically significant impulse response coefficients in the anticipated direction.

For instance, a one-standard-deviation increase in the DMF generates a statistically

significant 0.5% (0.7%) increase in consumption (GDP) after 10 quarters. On the

15Our choice of macroeconomic aggregates are log industrial production (IP) growth, log employ-
ment growth, initial claims divided by lagged employment, log per capita consumption growth, log
compensation growth, the ADS business conditions index (Aruoba et al., 2009), the unemployment
rate, log GDP growth, and the Chicago Fed National Activity Index (CFNAI). Additional details
on the IRF estimation can be found in Online Appendix OA.4.

16We show that a projection of the VMF onto PCs yields market risk measurements that are
similar to those based on the VMF itself in Online Appendix Figure OA.5, which also implies the
granular residual component of the VMF is small (consistent with results in Online Appendix Table
OA.2) and does not impact the estimate of market risk much.

17We omit data from the COVID pandemic because of the outliers in many of the macroeconomic
time series of interest. However, we provide results using the full 1963-2021 sample in Online
Appendix Figure OA.1. We also provide results when projecting the VMF onto up to 10 PCs in
Online Appendix Figure OA.2 and when the projections are done in a rolling fashion in Online
Appendix Figure OA.3. Finally, we provide results including those for an estimate of the GR (the
residual from the regression) obtained when projecting the VMF onto five PCs when projections
are done in a rolling fashion in Online Appendix Figure OA.4. These results are quantitatively and
qualitatively similar to those presented in the main text when projecting the VMF onto the DMF
and the first two higher PCs.
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other hand, impulse responses with respect to the VMF projection onto higher PCs

are typically statistically insignificant and often go in a direction consistent with the

factor hedging increases in a representative investor’s marginal utility. For instance, a

one-standard-deviation increase in the this component of the VMF generates 0.5% de-

creases in consumption and GDP after 10 quarters, albeit in a (typically) statistically

insignificant manner. While this evidence is only suggestive, it provides motivation

that, while the DMF is likely to be tightly linked with investors’ marginal value of

wealth, such a link is more tenuous for the IFF.

3.2 Time series properties of IFF

In this subsection, we describe some of the basic properties of our estimated DMF

and the associated IFF. Our main specification constructs the DMF as a projection of

the VMF onto the first principal component as described in Subsection 2.2 using data

from 1963-2021. We also construct an alternative DMF by projecting the VMF onto

the CRSP equal-weighted market and use this as a robustness check in some analyses

since the first PC is effectively a level index that places similar (positive) weights on

all portfolios. Given a proxy for the DMF, the associated IFF is constructed as VMF

- DMF.

Table 2 reports summary statistics on the monthy excess return time series for

the VMF, the DMF, and the IFF under various specifications.18 We also report R-

squared values from regressions of the VMF on the first PC and the equal-weighted

market. Panels A, B, and C present results using data from the 1963-2021, 1963-1992,

and 1993-2021 periods, respectively.19 Our estimates indicate the IFF is negatively

skewed and has a large kurtosis relative to the normal distribution. Furthermore,

the DMF has a lower volatility than the VMF, is more positively skewed, and has

relatively higher kurtosis. Results in the table indicate the ratio of IFF standard

deviation to VMF standard deviation is 39.6%, implying that the “size” of the IFF

is moderate compared to the VMF.20

18We provide kernel density estimates of the VMF and the IFF in Online Appendix Figure OA.6
(Panel 1) for visualization.

19We choose 1992 as a cutoff for the first sub-period because it corresponds to the year before
the publication of Fama and French (1993), which corresponds to the beginning of a period of
proliferation for factor models and anomaly identification.

20We estimate the “size” of the GR in Online Appendix OA.2 and find the ratio of its standard
deviation to VMF standard deviation is approximately 1-3% depending on the specification.
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4 Theoretical framework

In this section, we motivate a theoretical distinction between risk premia on the

DMF and VMF. In the first subsection, we develop a stylized model which nests the

CAPM to motivate the assumption that components of the IFF have different risk

prices than the DMF (and, in particular, why ηt+1 likely carries a relatively small risk

price) using a simple theoretical model. In the next subsection, we impose structure

on the stochastic discount factor that allows us to derive expressions for the risk

premium on a generic asset, i, as well as those on the DMF and the VMF based on

our analytical framework described by equation (2).

4.1 A model in which IFF is priced differently than DMF

In this section, we outline some key results from a static theoretical model which

explicitly characterizes risk prices on the DMF and the IFF, relegating additional

details to Online Appendix OA.5. Our model features heterogeneous agents who

hold both tradable financial wealth and an additional source of nontradable income.

While this latter component captures many sources of additional resources available

for consumption in practice, we will refer to it as labor income to fix ideas.

We assume that realized returns in the financial sector are governed by two or-

thogonal factors f and g similar to equation (2), except we omit time subscripts and

make g is a scalar for simplicity.21 Investors can trade two types of stocks in the

financial sector: K large stocks and N −K small stocks, where N ≫ K. We assume

that expected dividends are such that each large stock comprises v̄
K

percent of the

total stock market, where the analogous weight on each small stock is 1−v̄
N−K . Recall

from section 3.1.1 that a very small number of large stocks consistently comprise a

substantial fraction of market value, a share which barely changes even when thou-

sands of smaller stocks are added to the CRSP universe. We focus on the limit in

which K is fixed and N → ∞. Thus, idiosyncratic risks to small stocks are perfectly

diversified in VMF but a granular residual emerges from large stocks.

Loadings on both factors (βi and ζi) are heterogeneous across stocks, and we

separately define the factors as follows. f is a level factor normalized such that the

21Here, we keep g as a scalar for expositional simplicity, as our objective is to price the VMF’s
exposure to systematic factors orthogonal to DMF. It is straightforward to extend the model to
allow for multiple factors. Also note that our static model abstracts away from hedging demands
which would arise in a dynamic setting.
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value-weighted market has a loading of 1 on it. g is an additional systematic factor

which, consistent with our definitions above, is rotated such that the average small

stock loading on g equals zero. Large and small stock returns feature independent

idiosyncratic error terms ηi that cannot be explained by the two factors, and aggregate

to η in the value-weighted market.

The model implies a Mayers (1973)-like formula for expected excess returns,

E[ri] = RRA · [(1− ϕ)Cov(ri, rm)) + ϕCov(ri, rh)] , (8)

where RRA is relative risk aversion and ϕ captures the expected share of future

consumption coming from nontraded income, which we will refer to as the human

wealth share.22 The VMF return, rm, is given by

rm = E[rm] + f − E[f ] + ζm · (g − E[g]) + η ≡ f + ϵ, (9)

where ζm ≡ v̄
K

∑K
i=1 ζi captures the market’s exposure to g and η ≡ v̄

K

∑K
i=1 ηi is the

granular residual, coming solely from large stocks (since the law of large numbers holds

for the small stock idiosyncratic component). In this model (and as in the data), rm

reflects the DMF (f) but also includes the IFF (ϵ), which varies due to large stocks’

nonzero exposure to g and the granular residual η. The second priced factor, rh,

captures the innovation in labor income. Consistent with evidence in section 3.1.5

that the projection of VMF onto higher PCs did not predict labor income or other

macroeconomic variables, we will suppose here that labor does not load on ϵ, in which

case rh is given by

rh = ψf (f − E[f ]) + ψξξ (10)

where the ψ’s are model constants and ξ is an aggregate labor return shock that is

assumed to be uncorrelated with the financial sector.

Turning to equation (8), when there are no nontraded assets (ϕ = 0), our model

nests the standard CAPM, the stochastic discount factor is linear in rm, and fluctu-

22Further, in Online Appendix OA.5, we also extend the model to allow for state-dependent non-
diversifiable income risk in a manner similar to Schmidt (2022), another force which can increase
the price of risk on labor income shocks. Conceptually, this amounts to reinterpreting rh as cap-
turing the innovation in average labor income plus a certainty equivalent capturing an individual’s
willingness to pay to avoid idiosyncratic income shocks.

19



ations coming from g or η shocks are priced identically to f shocks. However, when

non-traded assets like human capital and private equity are the dominant source of

current wealth and future consumption (ϕ ≈ 1), the link between the stochastic dis-

count factor and the value-weighted index becomes very weak when the nontraded

assets do not load on η. In other words, the volatility of fluctuations in wealth coming

from the IFF becomes negligible. To see this formally, we characterize risk premia.

When N → ∞ and Cov(rh, ϵ) = 0,

E[ri] =


RRA ·

[
(1− ϕ+ ϕψf )︸ ︷︷ ︸

f risk price

βiσ
2
f + ζm (1− ϕ)︸ ︷︷ ︸

g risk price

ζiσ
2
g + (1− ϕ)︸ ︷︷ ︸

ηi risk price

v
Kσ

2
i

]
for i = 1, . . . ,K

RRA ·
[
βi (1− ϕ+ ϕψf )σ

2
f + ζi (1− ϕ) ζmσ

2
g

]
, for i > K,

(11)

so each stock’s risk premium depends on its covariances with the systematic factors,

as well as the granular residual η (reflecting the fact that some large stocks’ idiosyn-

cratic returns directly contribution to aggregate wealth fluctuations). The VMF risk

premium is given by

E[rm] = RRA · (1− ϕ+ ϕψf )σ
2
f︸ ︷︷ ︸

DMF risk premium=E[f ]

+RRA
[
ζ2m (1− ϕ) σ2

g + (1− ϕ)σ2
η

]︸ ︷︷ ︸
IFF risk premium=E[ϵ]

, (12)

where ϕ is the labor share of wealth. So, realized market returns are exposed to f , g,

and η, and the market risk premium contains components related to compensation for

exposure to each of these terms. As the labor share of wealth gets large (i.e., ϕ→ 1),

only covariances with labor income drive risk premia. In that case E[f ] = RRA ·ψfσ2
f

and E[ri] = βiE[f ] for all stocks, including large stocks. Since Cov(rh, ϵ) = 0, the

risk premium on IFF vanishes – i.e., E[ϵ] = 0.

Maintaining the above assumptions and supposing ϕ > 0, the model delivers three

sets of testable predictions for which we find empirical support:

1. Attenuation of small cap betas: For a portfolio of small-cap stocks, its true

beta with respect to f , βS ≡ 1/(N −K)
∑N

i=K+1 βi, is larger than its beta with

respect to the value-weighted market (as long as βS > 0),

2. Predictions about VMF alphas: The alpha of a portfolio of small-cap stocks

is positive with respect to a CAPM model that uses rm as the market factor.

An analogous CAPM alpha estimate is negative for the IFF.
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3. Predictions about DMF alphas: When f is used rather than rm as the

market factor, alphas on the small-cap portfolio are zero regardless of the value

of ϕ and IFF alphas are zero in the limit as ϕ→ 1.

As we discuss further in Online Appendix OA.7, the data suggest that the US

stock market comprises a relatively small fraction of total wealth, even for high net

worth investors who are particularly likely to participate in stock markets. This fact,

in conjunction with our evidence in section 3.1.5 suggests that factors like g and,

particularly, η likely have substantially lower risk prices and contribute little to risk

premia, which is quite different than what would be the case in an economy entirely

comprised of US stock market wealth (i.e., ϕ → 0). Importantly, even if g and η are

priced in intermediate cases when 0 < ϕ < 1, the associated risk prices are distinct

(and likely smaller in magnitude) from the level factor in the model, f , that drives

both sectors of the economy and is the primary driver of changes in investor wealth.

4.2 Risk Premia on DMF and VMF in a Dynamic Model

In this section, we outline a set of assumptions we use to characterize risk premia in

our empirical tests. We allow for three primary differences from the above theoretical

framework: 1) we allow for time varying volatilities, 2) we allow g to be vector-

valued, and 3) we characterize risk-prices via a reduced-form SDF rather than an

explicit structural model.

We assume there are no arbitrage opportunities, which implies the existence of a

stochastic discount factor (SDF),mt+1, satisfying the law of one price: Et [mt+1ri,t+1] =

0 for ∀i in the economy. We further assume the SDF takes the form

mt+1 − Et[mt+1] = −γ · (ft+1 − Et[ft+1])Et[mt+1]− Λ(gt+1 − Etgt+1)Et[mt+1]. (13)

In addition to the fairly standard assumption of constant risk prices, the other key

restriction implied by equation (13) is that the granular residual, ηt+1, is not priced

(as is the case in the model in section 4.1 when ϕ ≈ 1). Later in the paper (in section

6.2.3), we conduct overidentification tests for our assumptions about risk prices by

formally including ϵ as an additional pricing factor. In most of these specifications, we

fail to reject the null hypothesis that it is not priced. Moreover, when these estimates

are borderline significant, the associated risk price is negative (the opposite sign from
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our large, positive, and significant estimate of γ).23

Given the SDF in equation (13), asset i’s risk premium satisfies

Et [ri,t+1] = γ · βi · σ2
f,t + Λ′Σ′

g,tΣg,tζi, (14)

where σ2
f,t and Σ′

g,tΣg,t capture the conditional variance of f and variance-covariance

matrix of the g factors, respectively. An asset’s risk premium is the product of risk

prices γ and Λ, risk quantities, and the asset’s factor exposures βi and ζi. The

conditional risk premia on the DMF and the VMF are then24

Et[DMFt+1] = Et[ft+1] = γ · σ2
f,t and (15)

Et [VMFt+1] = γ · σ2
f,t + γ · (βm,t − 1) · σ2

f,t + Λ′Σ′
g,tΣg,tζm,t, (16)

repectively. So, given our assumed factor structure and the assumption of no arbi-

trage, the evidence presented in subsection 3.1.4 regarding time-varying VMF loadings

on gt+1 implies that DMF and VMF will command different risk premia.

5 Reassessing the risk-return relationship in the

time series

In this section, we investigate how the existence of the IFF affects the risk-return

tradeoff implied by the VMF and the DMF in the time series. We first characterize

econometric biases introduced by an unpriced IFF when estimating the risk-return

tradeoff using the VMF versus the DMF. We find evidence the IFF generates an

attenuation bias that yields a relatively weak intertemporal risk-return relationship

for the VMF, whereas the risk-return relationship is more robust for the DMF.

23In our model, this could be the case if, for example, shocks that improve the profits of the largest
firms in the economy are associated with inefficiencies (e.g., due to negative externalities from weaker
competition) which actually reduce investor welfare and thus are associated with a higher marginal
value of wealth.

24These expressions combine the expression in equation (14) with the facts that DMFt+1 ≡ ft+1

and βDMF = 1.
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5.1 Econometric intuition

Suppose a researcher is trying to test the implications of equation (15), but only

has access to the VMF (and not the DMF). The existence of the IFF in the VMF leads

to upward-biased variance estimates with potentially different time series dynamics

relative to the DMF variance dynamics. To see this formally, notice that the difference

between the VMF and DMF variances is given by:

V art[VMFt+1]− σ2
f,t+1 = (β2

m,t − 1)σ2
f,t+1 + ζ ′m,tΣ

′
g,t+1Σg,t+1 ζm,t + V art[ηt+1], (17)

where we see the role of the three separate components: time-invariant exposures to

g, time-varying exposures to all factors, and the granular residual. Other than the

potentially ambiguous role of time-varying βm,t (which we argued in Figure 3 is likely

to be small), the last two terms unambiguously increase the variance of the VMF to

be higher than that of the VMF.

Next, we consider estimates of the risk-return tradeoff for the VMF. To focus

on issues with the largest importance for our estimates, we make three additional

assumptions here for expositional simplicity.25 First, we assume that βm,t = 1, which

is approximately satisfied in the data. Second, consistent with the model in section

4.1 as ϕ→ 1 and the low correlations between VMF’s projection onto higher PCs and

macroeconomic variables (Figure 4), we assume the IFF isn’t priced – i.e., Et[ϵt+1] =

0. Third, even though conventional estimates of VMF variances are likely to be

misspecified, let us abstract away from issues about estimating variances correctly and

suppose that the researcher has access to a “perfect” conditional variance estimate

for the VMF, σ2
VMF,t.

26

Under the above assumptions, if there is no IFF, we recover the true market price

of risk γ via an OLS regression of VMFt+1 on a constant and σ2
VMF,t. However, when

the IFF is present, the OLS regression coefficient will be biased, most likely towards

zero. As the simplest way to see this, the ratio of the true VMF risk premium (γ σ2
f,t+1)

to the VMF variance (given by equation 17) is smaller than γ due to the presence

25We can relax each assumption (which are not imposed in our estimation procedure), but doing
so makes expressions much more complex without adding much intuition.

26Notice that the VMF variance is a nonlinear function of time-varying loadings (whose dynam-
ics depend on shifts in the size distribution over time), multiple factor variance components, and
the variance of the granular residual. Thus, conditional variance dynamics of VMF are unlikely
to be well-described by a low-dimensional GARCH process even if the individual factor variance
components do follow such dynamics.

23



of additional unpriced sources of VMF risk. Since the regression includes a constant,

one can still correctly recover the correct coefficient as long as the difference between

VMF and DMF variances is constant – i.e., the IFF is homoskedastic. When the

IFF changes the variance dynamics of VMF relative to DMF, for which we provide

empirical evidence in subsection 5.2, OLS estimates of the slope coefficient on σ2
m,t+1

will not be consistent for γ, instead converging to

plim
T→∞

γ̂ =
Cov

[
σ2
VMF,t, V MFt+1

]
V ar

[
σ2
VMF,t

] = γ ·
V ar

[
σ2
f,t

]
+ Cov

[
σ2
f,t, σ

2
ϵ,t

]
V ar

[
σ2
f,t

]
+ V ar

[
σ2
ϵ,t

]
+ 2 · Cov

[
σ2
f,t, σ

2
ϵ,t

] , (18)

where we use σ2
f,t (σ

2
ϵ,t) to denote the conditional variance of the DMF (IFF) rather

than σ2
DMF,t (σ

2
IFF,t) for brevity. The use of a mis-measured proxy for the DMF is asso-

ciated with a downward multiplicative bias provided that V ar
[
σ2
ϵ,t

]
≥ −Cov

[
σ2
f,t, σ

2
ϵ,t

]
.27

In this empirically relevant case, the researcher would obtain a downward-biased co-

efficient estimate for γ even when using the true VMF variance as a predictor, for

which we provide evidence in the next subsection.

5.2 Risk-return tradeoff estimates

In this subsection, we investigate how accounting for the IFF affects estimates

of the market index intertemporal risk-return tradeoff relationship using GARCH

volatility forecasting models. To demonstrate the effects of the IFF, we estimate

GARCH models using either the VMF or the DMF. Our empirical tests estimate the

following specification

rt+1 = ϕ0 + ϕ1 · rt + γ · σ2
t + ut+1, (19)

ut+1 = σtvt+1, (20)

σ2
t+1 = α0 + α1u

2
t + α2σ

2
t , (21)

where rt+1 is either VMFt+1 or DMFt+1, and ut is a forecasting error from the

previous period and vt+1 has unit variance. Here the conditional variance forecasts

(σ2
t ) following the GARCH(1,1) process can be viewed as a weighted average of the

squared forecasting error and the conditional variance forecast from the previous

period, with corresponding weights being α1 and α2, respectively.

27This condition is guaranteed if σ2
f,t and σ

2
ϵ,t are positively correlated or if V ar

[
σ2
ϵ,t

]
> V ar

[
σ2
f,t

]
.

24



While we adopt the GARCH(1,1) as our baseline volatility forecasting model,

there are numerous extensions of GARCH models aimed at better capturing perva-

sive features in the data including volatility persistence, asymmetry, and the leptokur-

tic distribution of financial asset returns. Accordingly, we complement our baseline

GARCH(1,1) with estimates from two additional nonlinear GARCH models: the

threshold GARCH (GJR-GARCH(1,1)) from Glosten et al. (1993), and the expo-

nential GARCH (E-GARCH(1,1)) from Nelson (1991). These two models, whose

specifications for volatility are detailed in Online Appendix OA.9 (along with other

details about our GARCH implementation), are widely adopted in the empirical lit-

erature for the risk-return trade-off given their ability to capture “leverage effects”,

a known feature of financial asset volatility.28

We further investigate the risk-return tradeoff relationship under an alternative

model specification. Rather than using conditional variance as a proxy for time-

varying risk as in equation (19), we consider using conditional volatility as studied

by Baillie and DeGennaro (1990) and French et al. (1987) according to:

rt+1 = ϕ1 + ϕ2 · rt + γ · σt + ut+1 (22)

We provide estimates of the conditional volatility from the baseline GARCH spec-

ification in Online Appendix Figure OA.6 for visualization. As expected from the

unconditional analysis in Table 2, the conditional volatility is typically lower for the

DMF compared to the VMF. Additionally, the difference exhibits substantial vari-

ation at both high and low frequencies. This nontrivial difference lends empirical

support to our conjecture that the IFF adds noise to the lagged forecasting errors

used to generate the conditional variance forecasts within the GARCH forecasting

models.

Table 3 reports γ values estimated according to the above specifications using our

1963-2021 sample.29 Panel A provides results from the baseline GARCH specifica-

tion, whereas Panels B and C provide results for the GJR-GARCH and E-GARCH

specifications, respectively. Each column reports results using a different market in-

28For reviews of this literature, see French et al. (1987), Schwert (1990), Franses and Van Dijk
(1996), Poon and Granger (2003), and Brownlees et al. (2012).

29We find similar results in a robustness check that performs the analysis using data from 1927-
2021, which we discuss in more detail in Online Appendix OA.1.2. We present results for this
robustness check in Table OA.3.
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dex proxy. The first column uses the VMF. Column 2 uses the DMF constructed by

projecting the VMF onto the first PC. Column 3 reports results when an alternative

DMF is constructed by projecting the VMF onto the CRSP equal-weighted index for

comparison. The γ differences reported in the table take the difference between that

estimated from the VMF and each respective version of the DMF. Finally, the first

(second) set of results in the rows of each panel defines risk according to the variance

(volatility) specification in equation (19) (equation (22)).

We find positive and statistically significant estimates for γ from the DMF across

all specifications, which contrasts with the positive but always statistically insignif-

icant γ estimates from the VMF. Furthermore, consistent with the attenuation bias

discussed earlier, our estimate for γ from the VMF is always smaller than that from

the DMF. In other words, adjusting the market index to purge it of the IFF yields

a stronger risk-return tradeoff in the time series. The higher risk aversion estimates

that obtain when using the DMF are also more consistent with estimates from other

economic settings (e.g., Campbell et al., 2018; Chabi-Yo et al., 2022; and Chabi-Yo

and Loudis, 2020)

In the last column of Table 3, we estimate risk-return tradeoff coefficients when

using excess returns on the CRSP equal-weighted index as an instrument. This

version of the DMF provides similar risk-return tradeoff estimates as in our main

DMF specification. This evidence for a strong intertemporal risk-return tradeoff when

using the (scaled) equal-weighted index is, to our knowledge, new to the literature.

Given that the number of stocks in the equal weighted index is sufficiently large for

the law of large numbers to hold almost exactly, the granular residual in this index

is approximately zero. However, like the value-weighted market index and as Figure

3 shows, the equal-weighted market index features time-varying loadings on higher

PCs and is unlikely to purge the time-varying loading components associated with

the IFF (which is one reason we do not use this as our main DMF specification).

6 Explaining the cross-section of average returns

in the presence of IFF

In this section, we analyze how the presence of the IFF affects standard cross-

sectional asset pricing tests. In particular, the IFF can generate substantial differences

between estimates of stock or portfolio-level market risk (βp) when using either the
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VMF or DMF as the market proxy. This difference has implications for standard asset

pricing tests, which we highlight in this section. In subsection 6.1, we provide some

analytical results on how the IFF influences tests of the cross-sectional predictions of

the model outlined in section 4, then present our empirical results in section 6.2.

6.1 How does IFF impact estimates of market betas?

When the factors ft+1 and gt+1 are tradable portfolios, which is the case for our

proxies, the law of iterated expectations and (14) imply the expected excess return

on portfolio p is given by:

E[rp,t+1] = βp · γ · E[σ2
f,t+1] + E[Λ′Ωtζp] = βpE[ft+1] + ζ ′pE[gt+1]. (23)

Thus, the main empirical prediction of the theory is that, after controlling for expo-

sures to other orthogonal priced factors, expected returns line up with βp, where the

slope of the relationship is equal to the market risk premium.30

In order to estimate the market risk premium and discount rate from exposure to

market risk for a portfolio, we use a standard two-stage regression. In the first stage,

we estimate loadings from the following time series regression:

rp,t+1 = αp + βp · ft+1 + ζ ′p · gt+1 + ηp,t+1, (24)

where rp,t+1 is the excess portfolio return. When using the DMF as a proxy for ft+1,

we simply use higher-order PCs as proxies for gt+1 in equation (24) because they are

orthogonal to the DMF by construction. However, the PCs are not orthogonal to the

VMF, so in analyses where we use the VMF as a proxy for ft+1, we use higher-order

PCs that have themselves been orthogonalized with respect to the VMF as proxies

for gt+1.
31 We then construct portfolio returns that are hedged of their exposure to

30For ease of exposition, we slightly abuse the term “market risk premium” to refer to the risk
premium on either the VMF or the DMF, depending on context. Empirically, this distinction is
small because we cannot reject that time series averages of VMF and DMF returns are the same.

31Ensuring the gt+1 proxies in equation (24) are orthogonal to the ft+1 proxy both conforms to
our assumptions about gt+1 and also makes it so that including addition PCs as proxies for gt+1

does not affect the estimate of βp. See Online Appendix section OA.10 for more details on the
orthogonalization procedure.
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gt+1 as follows

rhedgedp,t+1 ≡ rp,t+1 − ζ̂ ′p · gt+1. (25)

Finally, we estimate λ1 in the second-stage regression

1

T

T∑
t=1

rhedgedp,t+1 = λ0 + λ1 · β̂p + ap. (26)

While it is more common to run a multivariate regression and freely estimate λ2, the

risk premia on gt+1, the algebra is simpler – and estimates are more precise under the

null that portfolios were priced properly – if we instead impose the theoretical restric-

tion that λ2 = E[gt+1] by using rhedgedp,t+1 in the second-stage regression.32 Equation (23)

implies λ0 = 0 and λ1 = E[ft+1]. Two issues arise when estimating λ1 and testing

the latter condition. First, one faces the standard generated regressor problem when

using estimated βp’s to estimate the parameters (λ0 and λ1) in equation (26). We deal

with this issue by estimating associated standard errors in our tests according to the

bootstrap procedure described in Online Appendix OA.11. Second, in the presence

of IFF, we only have access to a noisy proxy for ft+1 (i.e., the VMF) which causes

attenuation bias in βVMF
p estimates relative to the true βp’s. We discuss this issue

next.

When using the VMF as a proxy for ft+1 in the presence of IFF, the OLS estimate

of βp in equation (24) converges to33

plim
T→∞

β̂VMF
p = βp ·

{
V ar [ft+1]

V ar [ft+1 + ϵt+1]

}
+
Cov [ϵt+1, ηp,t+1]

V ar [ft+1 + ϵt+1]
≡ βp + κp, (27)

where κp denotes the bias in β̂VMF
p relative to βp. β̂

VMF
p is affected by the IFF in

two ways: (1) an attenuation effect represented by the term in the brackets, and

(2) direct effect represented by the direct correlation between the IFF (ϵt+1) and the

idiosyncratic error term of the portfolio, ηp,t+1. In practice, we expect the direct effect

32We could also impose this constraint by running GLS and including the factors as test assets in
our second-stage regressions. However, we choose to use OLS for these regressions because it 1) is
more conventional, 2) does not necessitate the estimation of the residual covariance matrix (which
would introduce a large amount of noise given that we use 372 test assets), and 3) produces the
same asymptotic results as GLS under the model null (see Cochrane, 2005, Ch. 12.2).

33Due to the orthogonality assumption on gt+1, the univariate and multivariate estimates of βp
both converge to the same value.
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(the second term) to be larger for large stocks, given that the IFF naturally inherits

the factor exposures associated with larger stocks. Regarding the first effect, the

term in brackets is substantially less than 1, leading β̂VMF
p is likely to be attenuated

downwards for most individual stocks. However, when using value-weighted portfolios

as test assets, the direction of the bias is not immediately clear (note that these two

forces exactly offset for the VMF). We expect downward bias for portfolios of small-

cap stocks, and we expect this downward multiplicative bias to be partially nullified

or even made positive by direct IFF exposures. In practice, we use the DMF as a

proxy for ft+1, and we simply refer to the difference βVMF
p −βDMF

p as the “beta gap”

rather than calling it a “bias.”

6.2 Empirical results with PC-based pricing factors

In this subsection, we use our empirical proxy for ft+1, the DMF, to implement

standard cross-sectional asset pricing tests and provide evidence the IFF induces

differences between βDMF
p and βVMF

p (beta gaps) that are large enough to affect

inferences from such tests. We also show that the beta gap behaves in accordance

with the analytical results developed in the previous subsection.

Our asset pricing tests in this section use the same 372 characteristics-sorted

portfolios (or subsets of them) that were used to construct our PCA as test assets,

with one key distinction. To be more consistent with standard practice, we use

value-weighted versions of these portfolios in our tests (though we note that results

are similar if we instead use equal-weighted test assets).34 All analyses are at the

monthly frequency and span the 1963-2021 sample period unless otherwise specified.

6.2.1 The beta gap is often large, especially for small-cap portfolios

Equation (27) implies the beta gap is likely more severe for assets with smaller

market capitalization due to the multiplicative bias term. We begin by confirming

that βp’s estimated using the VMF are generally lower than those estimated using

the DMF in Figure 5, which plots kernel density estimates of the βVMF
p and βDMF

p

estimated across all 372 portfolios. The blue (red) curve represents the βDMF
p (βVMF

p )

34See Online Appendix Table OA.1 for a summary of these portfolios. These portfolios are con-
structed in a standardized manner and, conveniently, are also tabulated to include portfolio market
capitalization, which will be useful for testing IFF predications related to asset size. This will allow
us to test the above predictions that relate beta gap (i.e., κp) with portfolio size.
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density. The table beneath the figure displays percentiles of the beta distributions, as

well as some summary statistics for the beta gap distribution (i.e., βVMF
p − βDMF

p ).

The βDMF
p density has fatter tails, especially on the right, and is shifted rightwards

relative to the βVMF
p density. βDMF

p percentiles are mostly larger than the βVMF
p

percentiles, with differences being particularly large in the right tail. While the

average beta gap (-0.13) might not seem large relative to the average βVMF
p (1.09), it

is quite substantial relative to the cross-sectional standard deviation of βVMF
p (0.19).

Likewise, the standard deviation of the beta gap (0.14) and the standard deviation

of βDMF
p (0.28) are large relative to standard deviation of βVMF

p .

Figure 6 plots the beta gap for the following subsets of portfolios as a function of

each portfolio’s log-size: 1) 10 size-sorted portfolios, 2) 10 market-beta-sorted port-

folios, 3) 25 size-by-beta-sorted portfolios, and 4) all 372 portfolios in our sample.35

OLS best-fit lines are also plotted in red for visualization. Consistent with the in-

tuition from Equation (27), the beta gap is larger in magnitude for portfolios with

smaller market capitalization. Furthermore, the average log market capitalization of

each portfolio explains a substantial fraction of the variation in the beta gap.

Finally, Table 4 reports estimates of the beta gap from size-by-beta-sorted port-

folios over our 1963-2021 sample,36 and offers perhaps the most direct test of our

predictions about beta gap behavior. Recall from equation (27) that true betas are

attenuated downward by a multiplicative factor implying that, holding the direct

covariance between ϵt+1 and ηp,t+1 (which depends mostly on size) constant, the at-

tenuation bias is larger for portfolios with higher exposures to ft+1. Within size

quintiles, our estimates suggest that βVMF
p accurately reflect the ordering of βDMF

p ,

though a gap exists due to the presence of the IFF. Thus, we closely approximate this

comparative static by moving down columns of Table 4 (i.e., increasing beta, holding

size fixed). Indeed, beta gaps become more negative as we move down every column

in the table. Likewise, holding βp approximately constant by moving across columns

within the same row, βVMF
p increases with size, which is also consistent with intuition

from equation (27). These patterns are uniformly monotonic, holding for every cell

in the table.

35Due to their historical significance, we also provide results for the 25 size-by-book-to-market
(BM) sorted portfolios in Online Appendix Figure OA.7, Panel 1. Results are similar to those from
the other portfolio sorts presented in Figure 6.

36We also show these results are robust when using a 1993-2021 sample in Online Appendix Table
OA.4.
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6.2.2 Accounting for IFF increases the importance of market risk in ex-
plaining the cross-section

In this section, we run time series and cross-sectional regressions for each portfolio

set in our universe of portfolios using either the VMF or the DMF as a proxy for ft+1,

and study a number of related statistics including: 1) the standard deviation of βp, 2)

the market risk premium (λ1), 3) the cross-sectional standard deviation of the market-

exposure-implied discount rate across portfolios in each portfolio set (std(λ1 · βp)),
4) cross-sectional R-squared values (i.e., the fraction of variation in average hedged

portfolio excess returns explained by DMF or VMF betas), and 5) the magnitude of

time series alphas. Although we use the 1963-2021 sample and value-weighted test

assets, our results are robust to using a more modern sample from 1993-2021 and

using equal-weighted test assets.37

We present our main results in Figures 7-8 and in Table 5, which we describe briefly

here before discussing in more detail below. Figure 7 plots SML lines constructed from

two-stage regressions that use betas estimated from either the VMF or the DMF for

each of the four portfolio sets from Figure 6.38 The left panels plot results when

average raw excess portfolio returns are used as left-hand side variables in equation

(26), while the right panels plot results when the average of rhedgedt+1 from equation (25)

controlling for five PCs are used as left-hand side variables.39,40 Blue (red) numbers

plot (βp, E[rp,t]) pairs associated with the DMF (VMF). Analogously, the blue (red)

line represents the corresponding OLS-estimated SML. The theory-implied SML is

37See Online Appendix Tables OA.5 and OA.6, respectively.
38Due to their historical significance, we also provide results for the 25 size-by-book-to-market

(BM) sorted portfolios in Online Appendix Figure OA.7, Panel 2. Results are similar to those from
the other portfolio sorts presented in Figure 7.

39We provide robustness checks when estimating the all-portfolio SML with varying numbers of
hedging PCs in Online Appendix Figure OA.8. These results show that results do not change much
qualitatively or quantitatively when five or more PCs are used as controls.

40A few points should be noted when reviewing this figure. First, because the PC proxies for gt+1

are orthogonalized with respect to the VMF when generating the VMF-based SML (and the PC
proxies need not be orthogonalized with respect to DMF because the PCs are already orthogonal by
construction), the βDMF

p and βVMF
p values are the same in the left and right panels. One subtlety

is that we must drop the first PC from the set of gt+1 controls when evaluating the DMF because
it is perfectly collinear with the DMF. We find similar results (unreported) if we drop the first PC
as a control when evaluating the VMF. Second, although the βp estimates are the same whether we
control for gt+1 or not, controlling for gt+1 exposure does affect average returns. So, whereas using
either the DMF or the VMF can shift βp locations on the x-axis within each plot due to the beta

gap, using rhedgedt+1 in the right panel can shift average returns on the y-axis relative to plots in the
left panel.
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represented by the black line and is constructed using the average excess CRSP value-

weighted market return as its slope.

Figure 8 provides a visual summary of statistics related to these SML plots. In

particular, we provide the cross-sectional std(βp) (Panel 1), the market risk premium,

λ1 (Panel 2), the cross-sectional std(λ1 · βp) (Panel 3), and the cross-sectional R-

squared values (Panel 4). All statistics are estimated separately for the 16 distinct

portfolio sets in our sample of 372 portfolios (and for the set of all portfolios), and

returns are hedged of exposure to the first five PCs according to equation (25).41

Finally, Table 5 presents detailed summary statistics when all portfolios are used

as test assets and when using different numbers of PCs (up to 15) for the hedging

procedure to show robustness to this choice.

Std(βp) is uniformly higher across test asset sets when using the DMF

Figure 7 illustrates how using the DMF generates larger βp spreads than the VMF

across all portfolio sets analyzed in the figure. Focusing on the size-sorted portfolio

results in Panels 1a-b, all the βDMF
p values are larger than the corresponding βVMF

p

values (other than the largest size portfolio), which implies the attenuation term

in equation (27) dominates the additive term in all but the largest size portfolio.

Similarly, for the beta-sorted portfolio results in Panels 2a-b, the beta gap is typically

negative for high-beta portfolios, indicating that the attenuation term in equation

(27) dominates in these cases. The opposite is true for low-beta portfolios indicating

the additive bias term in equation (27) dominates for these portfolios. These results

are consistent with those presented in Figure 6 and Table 4. Panel 1 in Figure 8

shows that std(βDMF
p ) is uniformly higher than std(βVMF

p ) among all portfolio sets

we investigate. Finally, the first column of Panel B in Table 5 shows that the difference

std(βDMF
p )−std(βVMF

p ) = 0.10 is statistically significant with a standard error of 0.01

when all portfolios are used as test assets.

DMF yields modestly larger, more stable market risk premium estimates

that are closer to theoretical predictions

The slopes of the blue and red lines in Figure 7 represent market risk premium

41Results are qualitatively and quantitatively similar when we impose the normalization restric-
tions on PCs from subsection 4.2 such that E[

∑Nt

i=1 wi,tβi] = 1 and E[ 1
Nt

∑Nt

i=1 ζi] = 0. This is
not surprising because, as we discuss in Online Appendix section OA.3, the DMF (without these
restrictions) is highly correlated with the alternative DMF when imposing these restrictions. We
provide analogous results under this normalization restriction in Online Appendix Figure OA.9 for
comparison.
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estimates using either the DMF or the VMF, respectively, for each portfolio set in the

different panels. Those estimated using the DMF are typically closer to the theoretical

SML slope in black and higher than those estimated using the DMF. One point to

note is that both market risk premium estimates become better approximations of the

theoretical market risk premium when using hedged returns that control for exposure

to other factors in the right panel.42 Focusing on the size-sorted portfolio results in

Panel 1, the more accurate slope estimates under the DMF specification result in

lower pricing errors with respect to the theoretical SML (vertical distances between

expected returns and the black line). The pricing errors are almost uniformly smaller

in this case relative to the VMF specification, implying accounting for the IFF weakens

the size anomaly.

We now focus on the all-portfolio case in Panels 4a-b. When we use no controls

(Panel 4a) we get the well-known result that the VMF-based SML is flat. Using the

DMF improves this slightly, yielding a small but positive slope. Importantly, using

the DMF yields a larger spread in betas than is achieved using the VMF. When we

hedge for exposure to the first five PCs (Panel 4b), both SML lines conform more to

the theoretical SML line, with the SML based on the DMF being closer.

Echoing the conclusions for the representative portfolio sets considered in Panels

1-3 of Figure 7, Panel 2 in Figure 8 shows that the market risk premium estimates are

typically higher and more stable across all portfolio sets when using the DMF relative

to when using the VMF as the market proxy. Panel A in Table 5 reports market risk

premium (λ1) estimates using all 372 portfolios as test assets and using a range of

PC controls. λ1 point estimates based on the DMF are typically higher than those

based on the VMF and closer to their theory-based targets (i.e., time series averages

of the DMF and the VMF). However, we cannot reject the null hypothesis that the

time series averages of the DMF and the VMF are the same. This result may seem

surprising, but is not inconsistent with the IFF theory we develop, provided that

other PCs absorb additional sources of confounding variation in priced risk.

DMF explains a larger fraction of average return variation

Given our findings that SML slopes are similar (or modestly larger) but more

stable, and that dispersion in market betas increases when we use the DMF as our

42This result is related to a point made by Giglio and Xiu (2021). Namely, we can estimate
consistent risk premia on a factor of interest when we properly control for exposure to all other
factors that explain average returns in the cross section.
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market proxy, it follows that the dispersion in risk premia (λ1 · βp) explained by

market exposures increases. Once again, this conclusion turns out to be remarkably

stable across different test portfolios. Panel 3 in Figure 8 shows that estimates of

std(λ1 ·βp) are uniformly higher across portfolio sets when the DMF is used, implying

that a larger fraction of the overall variation in average returns can be explained by

exposure to the DMF relative to that which can be explained by exposure to the VMF.

Panel B in Table 5 shows that this result is robust across the number of PC hedging

controls we consider, and that the differences are statistically significant whenever

five or more PCs are used as controls. In other words, as long as we control for

enough other sources of priced risk, exposure to the DMF explains a higher fraction

of cross-sectional variation in average returns relative to exposure to the VMF in a

statistically significant way.

Panel 4 in Figure 8 displays cross-sectional R-squared values when different port-

folio sets are used as test assets, and Panel C in Table 5 reports cross-sectional

R-squared values when all portfolios are used as test assets but varying the number

of PC hedging controls. In both cases, R-squared values generated using the DMF

are uniformly higher than those generated using the VMF.43

DMF and VMF yield similar time-series alphas

Panel D in Table 5 reports the mean absolute pricing error (MAPE) across all

portfolios from time series regressions, which are similar when using either the DMF

or the VMF. Although using the DMF does not improve these alphas relative to using

the VMF, the IFF theory does not imply an improvement in alphas. However, it is

reassuring that we can replace the standard VMF with our DMF without significantly

affecting the alphas.

6.2.3 IFF is not priced in bivariate overidentification tests

Table 6 provides cross-sectional regression results from a bivariate model that

includes both the DMF and the IFF. It also provides statistics from the univariate

DMF model (repeated from Table 5) for comparison. Introducing the IFF as a control

increases the market risk premium estimate relative to that under the univariate

model so that it is closer to the theoretical (time series average) target (see Panel A).

43A model’s R-squared value is a common measure of performance in cross-sectional regressions.
To avoid issues associated with the R-squared distributions (see Kan et al., 2013), we test for
differences in R-squared values using the bootstrap procedure described in Online Appendix OA.11.
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The IFF does not generate a statistically or economically significant risk premium

when using hedged portfolio returns. Interestingly, when using unhedged returns,

the IFF risk premium is actually statistically and economically significant at -2.73%

(annualized). The fact that the IFF commands a negative risk premium under this

model implies that it is priced quite differently by investors than the market return,

providing more evidence that our empirical measure of the IFF is distinct from the

market itself. Panel B shows that the bivariate model generates more variation in

market-exposure-implied discount rates than under the univariate model due to the

relatively high market risk premium estimates under the former model. Panels C

and D display cross-sectional R-squared values and time series alphas, respectively,

implied by each model, which are similar across models. These results imply that

controlling for the IFF does not actually help the model’s ability to price test assets.

7 Incorporating characteristics-based factors

As noted by Kozak et al. (2018), PCs that explain a significant amount of time

series variation in returns may still play no role in pricing. To explore robustness

to this possible shortcoming, in this section we conduct additional analyses using

characteristics-based factors that are frequently used in the literature. In particu-

lar, we study factors from the following seven models (listed in order of publication

date): 1) the Fama and French (1993) three-factor model (“FF3”), 2) the Carhart

(1997) four-factor model (“FF3C”), 3) the Fama and French (2015) five-factor model

(“FF5”), 4) the Hou et al. (2015) four-factor model (“q4”), 5) the Stambaugh and

Yuan (2017) four-factor model (“SY”), 6) the Daniel et al. (2020) three-factor model

(“DHS”), and 7) the Hou et al. (2021) five-factor model (“q5”). Additionally, we

explore whether insights from the IFF theory that we develop affects inference in

these factor models with respect to the importance of the size anomaly.

7.1 Conclusions from Section 6 are similar when controlling
for standard factors

To begin, Table 7 reproduces results from Table 5, but hedges for exposure to

factors in each model described above in addition to five PCs. Results are similar to

those in Table 5, and we conclude that controlling for these factors does not affect

our interpretation of results from the previous section. We also provide analogous
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results without hedging the first five PCs in Online Appendix Table OA.7. In this

case, the market risk premium estimate is less volatile, the std(λ1 · βp) statistic is

typically larger, and the cross-sectional R-squared is typically larger when using the

DMF compared to using the VMF.

7.2 The size premium disappears when accounting for IFF

All of these factor models include a size factor (except the DHS model). The bias

in βp highlighted in equation (27) implies the measured market risk will be too low

on small-cap portfolios when using the VMF as a market proxy. We therefore expect

the size premium embodied by size factors in these models to be reduced when using

the DMF as a market proxy compared to using the VMF, which is also consistent

with implications from our theoretical model. To document the reduced role of size

factors in these models when the IFF is accounted for, we run factor spanning tests

for the size factors in each model.

Table 8 reports size factor alphas from regressions of size factors in each model on

the other model factors when using either the DMF or the VMF as the market factor.

If the resulting size factor alphas are small and statistically insignificant, this implies

adding the size factors to these models provides little improvement in a model’s ability

to price test assets (Barillas and Shanken, 2017). Panel A provides results over the

1963-2021 sample. In this case, when we use the DMF, the size factors in all models

are spanned by the other factors (i.e., the size factor alphas are both economically

and statistically insignificant). However, when we use the VMF, the size factor alphas

are both statistically and economically significant in all models except for the FF3

and FF3C models. We also report βs of the size factors with respect to both the

DMF and the VMF. In line with our theory, size factors have higher loadings on the

DMF than the VMF, which allows for models with the DMF to span size factors.

Results are similar in the 1963-1992 (Panel B) and 1993-2021 (Panel C) sub-samples.

So, using a market factor that is adjusted to account for the IFF effectively allows us

to remove the size factors from all of these models without impacting their pricing

implications.
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7.3 IFF has a negative alpha and is largely explained by size
factors

To further explore how the IFF is related to size factors in these models, we run

spanning tests for the IFF either including or excluding the size factors. As implied

by the previous subsection, we expect the IFF to be closely related to size factors in

each of these models. In particular, because the IFF contains information associated

with large cap stocks, we expect the IFF to be negatively correlated with size factors.

Table 9 presents results from these spanning tests where we regress the IFF on

model factors using either the VMF (Panel A) or the DMF (Panel B) as the market

factor. Within each panel, we also run tests where we either include or exclude the

size factor in each model as a right-hand-side variable. Starting with Panel A, the IFF

alphas are always negative and typically statistically significant with the magnitude

increasing when size factors are omitted. On the other hand, when we use the DMF

as the market proxy, we cannot reject the null that the IFF alphas are equal to zero

whether we include size factors or not.44 Overall, these results are consistent with the

IFF not being priced when using the DMF. However, when using the VMF (on which

the IFF has a mechanical positive loading), including size factors helps improve IFF

pricing because of the IFF’s negative loading on size.

7.4 VMF-based results are sensitive to including size factors
but DMF-based results are not

Finally, to investigate how the IFF and size factors interact in the cross-section,

we repeat the analysis from Figure 8 when hedging test portfolio returns of exposure

to model factors either including or excluding size factors as part of the controls and

without using any PC controls. We drop the PC controls here to avoid including any

controls that may correlate with size factors and present results for this analysis in

Figure 9.45 The dark (light) red bars represent statistics that obtain when hedging

44This is with the exception that alphas under the q4 and q5 models are marginally significant,
which is due to the fact that the IFF has strong negative loadings on factors with positive risk
premia in these models.

45We also provide an analogous figure when hedging the first five PCs in addition to factors from
the models in Online Appendix Figure OA.10. However, results are very similar between models
that control for the size factors versus those that do not, which is an indication that the first five
PCs span the size factors in these models. Furthermore, we provide detailed summary statistics
related to this figure in Online Appendix Tables OA.8 and OA.9.
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for all factors (all factors excluding the size factor) in a given model and when the

VMF is used. The dark (light) blue bars are analogous, but use the DMF.

Panel 1 displays market risk premium estimates, λ1, for these various specifica-

tions. When using the VMF, including size factor results in a more volatile (across

models) risk premium estimate that is often far too high (and always higher than the

market risk premium estimate from models that include the size factor controls).

Contrarily, when using the DMF, market risk premium estimates are reasonable

in magnitude and similar whether size factor controls are included or not. Simi-

lar patterns obtain in Panel 2, which displays the cross-sectional standard deviation

in market-exposure-implied risk premia associated with these models, std(λ1 · βp).
Panel 3 displays R-squared values from these regressions. In all cases, R-squared

values are higher when using the DMF rather than the VMF whether size factors are

included or not. Additionally, aside from the FF3 and FF3C model cases, the high-

est R-squared values correspond with cases that use the DMF and exclude the size

factors. Panel 4 displays the mean absolute pricing errors (MAPE) from time series

regressions. When the VMF is used (red bars), the MAPE is always markedly higher

when the size factor is excluded as a control. On the other hand, when the DMF is

used (blue bars), the MAPE is comparable between models that include or exclude

the size factors. Importantly, when excluding the size factors, the DMF always gen-

erates MAPEs that are lower than when using the VMF.46 All-in-all, results indicate

these statistics of interest are sensitive to controlling for size factors when using the

VMF, but are relatively insensitive to this choice when using the DMF. Furthermore,

the DMF generally performs better than the VMF. These results further support our

claim that purging the market factor of the IFF reduces the role of the size-related

risk in explaining average returns in the cross section.

8 Conclusion

In this paper, we provide evidence that the standard value-weighted market factor

is not well diversified and, while most of its variation can be explained by a dominant

market factor (DMF), it is also driven by nontrivial, time-varying exposures to factors

46The astute reader will notice that dark red bars in Panel 4 of Figure 9 are often slightly lower than
their dark blue DMF counterparts, though differences in magnitudes are small. Online Appendix
Figure OA.11 shows that this pattern reverses (i.e., MAPEs are lower with the DMF as the market
proxy) if we use equal-weighted portfolios as test assets.
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on which the average firm and macroeconomic variables do not load. As we argue

through analytical calculations and empirical results, the presence of the IFF can

lead a researcher to be more likely to reject predictions of standard asset pricing

theory. Quantitatively, after purging the VMF of the IFF, we find stronger evidence

of a link between the conditional mean and volatility of the market portfolio. In

addition, we demonstrate that estimated market exposures can often be substantially

biased in the cross-section and provide evidence that correcting for the presence of

the IFF outperforms the standard value-weighted index across a number of standard

asset pricing statistics. Finally, we consider the implications of the IFF for standard

factor models, and we find that using our DMF in place of the value weighted market

portfolio eliminates the need to include size factors across all models we investigate.

While value-weighting has many advantages (e.g., lower rebalancing, theoretical

justification from CAPM), we uncover one potential disadvantage. We focus on em-

pirical asset pricing tests related to the market return. However, we have not explored

implications for value-weighted portfolios that are often used as test assets, which we

leave for future research. Indeed, we find the IFF loads on other standard pricing

factors. Further, our mechanism may help to make sense of potentially “puzzling”

results such as the observation that the CAPM works better on announcement days

(Savor and Wilson, 2014), or that the CAPM works well for jumps in market returns

but not well for diffusive shocks (Bollerslev et al., 2016).47

Similarly, the fat-tailed size distribution likely implies that other aggregate mea-

sures commonly used in empirical asset pricing may be affected by instability coming

from the changing composition of large firms. For instance, making similar correc-

tions to the aggregate price-dividend ratio could generate stronger return/cash flow

predictability. Changing large firm composition can contaminate aggregate valuation

ratios with terms unrelated to the key source of predictability of interest, which is

related to the more standard argument about confounding effects of cash flow pre-

dictability as discussed by Kelly and Pruitt (2013).48 The main point we highlight in

is that value weighted indices may reflect many sources of risk which are not impor-

47While ours is not the only potential explanation, the basic intuition for these types of results
within our framework is that the relative variance of the DMF relative to the IFF could be larger in
these cases, causing standard measures to more accurately reflect the quantity of risk during such
isolated time periods.

48Indeed, Kelly and Pruitt (2013)’s approach of extracting a common factor from many portfolios
may help to address these composition effects.
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tant for the average firm and that stripping out these factors can lead to appreciably

different conclusions when testing related theories.
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Figure 1: Combined weights of largest stocks in the CRSP value-weighted index
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Note. This figure, on the left axis, plots combined weights of individual stocks for the 5, 10, 25, and 50 largest stocks
in the CRSP value-weighted index respectively. The top 2.5% line, also on the left axis, plots the cumulative market
value associated with stocks whose rank in the cross-sectional market value distribution is less than 2.5% times the
number of stocks in the NYSE (using the NYSE to compute this breakpoint avoids generating mechanical increases
in the series as many small AMEX and NASDAQ firms are added to the database). The right axis plots the total
number of stocks included in the CRSP index as well as the NYSE only, where the former includes two large jumps
as the CRSP sample coverage expands. One can visually confirm that combined weights from a very small number of
large firms dominate the rest of firms in the CRSP value-weighted index.
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Figure 2: Industry composition of megacaps vs other stocks in CRSP value-weighted
index

Note: This figure plots the share of total market value within each industry, by year, of stocks in the top 2.5% of
the market value distribution (Panel 1), that for all other stocks (Panel 2), and that for all stocks (Panel 3) in the
CRSP universe. Industries are defined using the Fama-French 10 industry classification using firm SIC codes, see
Kenneth French’s website for detailed definitions. We take the SIC code from Compustat when available; otherwise,
we use the SIC code from CRSP. We use the number of stocks in the NYSE to classify stocks as belonging to the top
2.5% of the market value distribution to avoid generating mechanical increases in the composition of firms in the top
category as many small AMEX and NASDAQ firms are added to the database. The Other category includes mining,
construction, building materials, transportation, hotels, business services, entertainment, and finance.
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Figure 3: Rolling coefficients of market index on the first three cross-sectional PCs

Panel 1: VW market on EW PCs

Panel 2: EW market on EW PCs

Note. This figure plots normalized coefficients from rolling regressions of the prior 60 months of excess market returns
on five principal components constructed from a large cross-section of equal-weighted, characteristics-sorted portfolios.
For ease of interpretation, coefficients are scaled by their full sample, OLS counterparts. Panel 1 plots estimates when
using the CRSP value-weighted market return, and Panel 2 plots estimates when using the CRSP equal-weighted
market return. All data are from the 1963-2021 sample.
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Figure 4: Impulse response functions to PCs

Note. This figure displays impulse response functions of selected macroeconomic aggregates (see Online Appendix
OA.4 for more details) to scaled versions of the DMF and to a linear projection of VMF onto PCs two and three
where the weights are obtained from a full-sample multivariate linear regression of the CRSP value-weighted market
excess returns on PCs one through three as described by equation (OA.5). Monthly returns are compounded to the
quarterly frequency to match that of the macroeconomic aggregates. The point estimates represent the impact of a
standard deviation increase in the predictor variable on each macroeconomic aggregate. The initial point estimates
(i.e., when the horizon is equal to one) correspond to the contemporaneous response of each macroeconomic aggregate
to each predictor variable. The error bars indicate 95% confidence intervals computed using Newey-West standard
errors with 10 lags. The descriptions of the macroeconomic variables can be found in the main text. All data are
from the 1963-2019 sample. Additional details on the estimation procedure can be found in Online Appendix OA.4.
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Figure 5: Distribution of βVMF
p and βDMF

p for a large number of test assets

Market Beta Percentile
Mean Stdev. 1 5 10 25 50 75 90 95 99

βDMF
p 1.22 0.28 0.59 0.81 0.87 1.02 1.22 1.40 1.60 1.73 1.94
βVMF
p 1.09 0.19 0.67 0.78 0.88 0.99 1.08 1.21 1.34 1.43 1.60

βVMF
p − βDMF

p -0.13 0.13 0.08 0.06 0.05 -0.03 -0.13 -0.22 -0.30 -0.33 -0.42

Note. This figure plots kernel density estimates of market betas estimated using the VMF and DMF. The VMF is
the CRSP value-weighted market index and the DMF is that constructed using one PC. Color-coded vertical lines
indicate the 5th, 50th, and 95th percentiles of the two distributions. We also tabulate a number of univariate summary
statistics for each distribution. All data are from the 1963-2021 sample.
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Figure 6: Beta gap relationship for various portfolio sets of interest

Panel 1: 10 Size Ports. Panel 2: 10 Beta Ports.

Panel 3: 25 Size by Beta Ports. Panel 4: All Ports.

Note. This figure compares the beta gap (βV MF
p −βDMF

p ) as a function of each portfolio’s average log market equity.
The VMF is the CRSP value-weighted market index and the DMF is that constructed using one PC. The title of each
plot is the name of the portfolio sort used to construct the colored SMLs. The red line in each plot is the OLS best
fit line. Log-size is computed as the average of each portfolio’s monthly log market capitalization. All data are from
the 1963-2021 sample.
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Figure 7: Expected return-beta relationship for various portfolio sets of interest
Panel 1a: 10 Size Ports. (No controls) Panel 1b: 10 Size Ports. (5 PC controls)

Panel 2a: 10 Beta Ports. (No controls) Panel 2b: 10 Beta Ports. (5 PC controls)

Panel 3a: 25 Size-Beta Ports. (No controls) Panel 3b: 25 Size-Beta Ports. (5 PC controls)

Panel 4a: All Ports. (No controls) Panel 4b: All Ports. (5 PC controls)

Note. This figure displays SML estimates for various portfolio sets, with and without the hedging procedure described
by equation (25). The left column uses unhedged portfolio returns, while the right uses returns that are hedged of
exposure to the first five PCs. The title of each plot is the name of the portfolio sort used to construct the colored
SMLs. The red (blue) line is constructed from full-sample market betas estimated using the VMF (DMF). The VMF
is the CRSP value-weighted market index and the DMF is that constructed using one PC. The black line is the
SML implied by the average of VMF. In Panels 1-3, each number refers to the portfolio number in the sort. For
the 25 portfolio sorts, the first number refers to the first sorting variable (size), and the second number refers to the
second sorting variable (beta). For example, the size-by-beta-sorted portfolios, portfolio “15” is “small-high-beta”
and portfolio “51” is “large-low-beta.” In Panel 4, we use all 372 portfolios from the PCA as test assets in this case,
which are described in Online Appendix Table OA.1. In this case, we denote each portfolio using a circle marker to
avoid cluttering the graphs with numbers. All data are from the 1963-2021 sample.
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Figure 8: Asset pricing statistics by portfolio set

Panel 1: StdDev of market exposures, Std(βp) Panel 2: Market risk premium estimates, λ1

Panel 3: StdDev of estimated risk premia, Std(λ1 · βp) Panel 4: R2 from Expected Return-βp regression

Note. This figure plots comparisons of statistics related to SMLs implied by the VMF and DMF using specific sets
of test assets (described on the x axes) to construct various respective SMLs. All portfolio returns are hedged with
respect to five PCs using the procedure described by equation (25). The VMF is the CRSP value-weighted market
index and the DMF is that constructed using one PC. The test asset groups are based on portfolio sets are based
portfolios obtained from Kenneth French’s webpage and described in Online Appendix Table OA.1. The “all” group
uses all portfolios as test assets. Panel 1 plots the standard deviation of market betas of each portfolio group using
each respective market proxy. Panel 2 plots the cross-sectional-regression-implied market risk premium from each set
of test assets. Panel 3 plots the standard deviation of the risk premia for portfolios in each test asset set implied
by each model. Panel 4 plots R-squared values implied by each cross-sectional regression. All data are from the
1963-2021 sample.
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Figure 9: Asset pricing statistics by factor model

Panel 1: Market risk premium estimates, λ1 Panel 2: StdDev of estimated risk premia, Std(λ1 · βp)

Panel 3: R2 from Expected Return-βp regression Panel 4: Mean absolute pricing error (MAPE)

Note. This figure plots comparisons of asset pricing statistics implied by the VMF and the DMF. In this case we use
portfolio returns that are hedged with respect to factors from popular factor models rather than PCs as in Figure 8,
but still according to equation (25). In all cases, we remove the market factor from each model and replace it with the
VMF or the DMF. In results “ex Size” we remove the size factor from each model (except for the DHS model, which
does not include a size factor). The VMF is the CRSP value-weighted market index and the DMF is that constructed
using one PC. We use all 372 value-weighted portfolios as test assets, which were obtained from Kenneth French’s
webpage and described in Online Appendix Table OA.1. Panel 1 plots the cross-sectional-regression-implied market
risk premium from each factor model. Panel 2 plots the standard deviation of the risk premia for portfolios in each
test asset set implied by each factor model. Panel 3 plots r-squared values implied by each cross-sectional regression.
Panel 4 plots the mean absolute pricing error (α) from time series regressions of portfolio returns on all factors using
each respective market proxy for each factor model. All data are from the 1963-2021 sample.
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Table 1: Loadings of value- and equal-weighted market indexes on cross-sectional PCs

Variable Sharpe ratio (1) (2) (3) (4) (5) βPCi
· E [PCi]

Panel A: VW CRSP index excess returns (VMF)
VMF 0.44*** 6.79***

(0.14) (2.00)
PC1 0.52*** 4.07*** 4.07*** 4.07*** 4.07*** 4.07*** 7.31***

(0.14) (0.10) (0.07) (0.06) (0.06) (0.03) (1.79)
PC2 0.04 1.29*** 1.29*** 1.29*** 1.29*** 0.17

(0.13) (0.07) (0.06) (0.06) (0.04) (0.60)
PC3 0.80*** -0.58*** -0.58*** -0.58*** -1.62**

(0.13) (0.06) (0.06) (0.05) (0.73)
PC4 0.17 0.47*** 0.47*** 0.27

(0.14) (0.06) (0.05) (0.29)
PC5 0.65*** 0.52*** 1.17

(0.15) (0.04) (0.76)
α -0.53 -0.70 0.93* 0.65 -0.52

(0.77) (0.55) (0.51) (0.48) (0.37)
R2 (univariate) 0.843 0.085 0.017 0.011 0.014
R2 (multivariate) 0.843 0.928 0.945 0.957 0.970

Panel B: EW CRSP index excess returns
EW index 0.48*** 9.36***

(0.13) (2.51)
PC1 0.52*** 5.47*** 5.47*** 5.47*** 5.47*** 5.47*** 9.82***

(0.14) (0.06) (0.04) (0.04) (0.04) (0.04) (2.46)
PC2 0.04 -0.91*** -0.91*** -0.91*** -0.91*** -0.12

(0.13) (0.04) (0.04) (0.05) (0.05) (0.41)
PC3 0.80*** -0.12*** -0.12*** -0.12*** -0.34

(0.13) (0.03) (0.03) (0.03) (1.02)
PC4 0.17 0.22*** 0.22*** 0.13

(0.14) (0.03) (0.03) (0.22)
PC5 0.65*** 0.19*** 0.44

(0.15) (0.03) (1.02)
α -0.46 -0.34 0.00 -0.13 -0.56*

(0.48) (0.31) (0.31) (0.29) (0.29)
R2 (univariate) 0.958 0.027 0.000 0.002 0.001
R2 (multivariate) 0.958 0.984 0.985 0.986 0.987

Note: This table provides results from regressions from the unadjusted index excess return on PCs. PCs are signed
to have positive average returns and scaled to have unit standard deviation. Panel A provides results when using the
CRSP value-weighted market and Panel B provides results when using the CRSP equal-weighted market. The first
column provides annualized Sharpe ratios for each variable. Columns 2-6 provide results from multivariate regressions
of monthly excess market returns on the PCs. Coefficients are normalized such that they represent the percent increase
in the excess market return induced by a one standard deviation increase in the respective PCs. The last column
provides the contribution of each PC to the average market return (annualized, %). The first row in the last column
provides the average excess market return for comparison (annualized, %). The third to last rows in each panel provide
the alphas from each regression (annualized, %). The last two rows provide r-squared values from either a univariate
or multivariate regression of the excess market return on PCs. Standard errors are in parenthesis and are computed
using the bootstrap procedure described in Online Appendix OA.11. */**/*** represent statistical significance at
90%, 95%, and 99%, respectively. All data are from the 1963-2021 sample.
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Table 2: Summary statistics of excess index returns and IFFs

Variable Mean Stdev. Skew. Kurt. Median IQR Rsq

Panel A: 1963-2021 sample
VMF 6.79 15.36 -0.56 5.07 11.12 18.70
DMF (1PC) 7.31 14.10 -0.35 5.83 9.69 15.98 0.84
IFF (1PC) -0.53 6.09 -0.37 5.22 0.52 6.85
DMF (EW) 6.43 13.29 -0.23 6.10 8.78 14.71 0.75
IFF (EW) 0.36 7.70 -0.33 6.00 1.42 8.23

Panel B: 1963-1992 sample
VMF 4.81 15.59 -0.40 5.41 6.60 19.35
DMF (1PC) 6.32 14.34 -0.30 5.99 7.92 16.71 0.85
IFF (1PC) -1.51 6.14 -0.24 5.72 -0.94 6.03
DMF (EW) 5.57 13.34 -0.14 6.23 6.92 14.79 0.73
IFF (EW) -0.77 8.08 0.02 5.76 -0.82 8.64

Panel C: 1993-2021 sample
VMF 8.80 15.12 -0.73 4.73 14.74 18.22
DMF (1PC) 8.26 13.86 -0.39 5.67 13.25 14.59 0.84
IFF (1PC) 0.54 6.05 -0.52 4.76 2.26 7.30
DMF (EW) 7.42 13.28 -0.34 5.74 10.81 14.24 0.77
IFF (EW) 1.39 7.23 -0.76 7.18 2.53 8.01

Note: This table provides summary statistics for monthly excess returns on the VMF, DMF variants constructed
using either the first PC (constructed from equal-weighted portfolios described in Online Appendix Table OA.1) or
the CRSP equal-weighted index, respectively, and the respective IFFs. The VMF is the CRSP value-weighted market
index and the DMF variants are obtained by projecting the VMF onto the either the first PC or the CRSP equal-
weighted market index, as indicated in the table. The PCs are constructed from equal-weighted portfolios described
in Online Appendix Table OA.1. The IFFs are obtained by subtracting the respective DMF variants from the VMF.
All returns are in excess of the risk-free rate. We report the mean, standard deviation, skewness, kurtosis for these
objects using the 1963-2021 sample (Panel A), the 1963-1992 sub-sample (Panel B), and the 1993-2021 sub-sample
(Panel C). Given the high skewness and excess kurtosis of these distributions, we also report median and interquartile
range (IQR) as robust measures of location and scale. We also report r-squared values, which are obtained from
the regression of the VMF on each DMF proxy over each sample. All statistics are annualized and in percent. We
annualize the Mean and Median (Standard Deviation and IQR) statistics by multiplying monthly frequency values
by 12 (

√
12).
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Table 3: Risk-return tradeoff coefficient (γ) across GARCH models (1963-2021)

Risk defn. Parameter VMF DMF (1PC) DMF (EW)

Panel A: GARCH
Variance γ 2.47 7.98*** 7.01***(

σ2
t

)
(2.01) (2.61) (2.54)

γVMF − γDMF -5.51 -4.53
Volatility γ 0.19 0.68*** 0.56***

(σt) (0.18) (0.22) (0.20)
γVMF − γDMF -0.49 -0.38

Panel B: GJR-GARCH
Variance γ 1.01 4.17** 5.29***(

σ2
t

)
(1.88) (1.67) (1.94)

γVMF − γDMF -3.16 -4.28
Volatility γ 0.15 0.44*** 0.49***

(σt) (0.19) (0.16) (0.17)
γVMF − γDMF -0.29 -0.34

Panel C: E-GARCH
Variance γ 1.61 6.17*** 5.78**(

σ2
t

)
(1.88) (2.08) (2.26)

γVMF − γDMF -4.56 -4.17
Volatility γ 0.18 0.46*** 0.39**

(σt) (0.17) (0.17) (0.17)
γVMF − γDMF -0.28 -0.22

Note: This table compares γ estimates and standard errors (in parentheses) from the VMF with those from DMF
variants. The first column corresponds with results using the VMF, which is the CRSP value-weighted index. Columns
two and three correspond to results from DMF variants that are constructed using either the first PC from the PCA
on equal-weighted portfolios described in Online Appendix Table OA.1 or the CRSP equal-weighted market index. All
returns are in excess of the risk-free rate. We consider three popular GARCH volatility forecasting models such as a
GARCH (1,1) (Panel A), a Threshold GARCH model of Glosten et al. (1993) (Panel B) and an exponential GARCH
model of Nelson (1991) (Panel C). Within each panel, the first (second) set of results is based on the conditional
variance (volatility) as a proxy for risk. Rows labeled γV MF − γDMF report the difference between γ’s estimated
using the VMF and the respective DMF variants. We report outer product standard errors (Hamilton, Time Series
Analysis, 1994, pp. 133-148) in parentheses. */**/*** represent statistical significance at 90%, 95%, and 99%,
respectively. All data are from the 1963-2021 sample.
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Table 4: Difference between VMF and DMF betas for size × beta-sorted portfolios

Market beta Size quintile
quintile Small 2 3 4 Large Small - Large
Low -0.23 -0.15 -0.08 -0.02 0.08 -0.31

(0.03) (0.02) (0.02) (0.02) (0.02) (0.04)
2 -0.25 -0.19 -0.13 -0.06 0.06 -0.31

(0.03) (0.03) (0.02) (0.02) (0.02) (0.03)
3 -0.30 -0.21 -0.15 -0.09 0.03 -0.32

(0.03) (0.03) (0.03) (0.03) (0.02) (0.03)
4 -0.31 -0.24 -0.19 -0.12 -0.02 -0.29

(0.03) (0.03) (0.03) (0.03) (0.03) (0.03)
High -0.40 -0.31 -0.23 -0.17 -0.05 -0.35

(0.04) (0.04) (0.04) (0.04) (0.03) (0.04)
High-Low -0.17 -0.15 -0.15 -0.15 -0.14

(0.03) (0.02) (0.03) (0.03) (0.03)

Note: This table reports estimates of the bias induced in market betas associated with the presence of the IFF
in cross-sectional asset pricing tests, which tests the predictions of equation (27). In particular, this table reports
βV MF − βDMF . The VMF is the CRSP value-weighted market index and the DMF is that constructed using one
PC. Our model predicts this difference is increasing in β and decreasing in size, consistent with the results in the
table. Estimates are from monthly returns on 25 size-by-beta-sorted portfolios from Kenneth French’s data library.
Standard errors are in parentheses and are computed using the bootstrap procedure described in Online Appendix
OA.11. All data are from the 1963-2021 sample.
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Table 5: Comparing VMF and DMF asset pricing statistics

Number of orthogonalization PCs
0 3 5 7 10 15

Panel A: Market risk premium estimates (λ1)
DMF 1.05 3.74* 5.75*** 5.60*** 5.40*** 5.64***
[E
[
rDMF
t+1

]
= 7.31, se = 1.83] (2.34) (2.04) (1.91) (1.88) (1.90) (1.88)

VMF -0.59 4.10* 4.86** 4.67** 4.60** 4.80**
[E
[
rVMF
t+1

]
= 6.79, se = 2.00] (3.20) (2.28) (2.22) (2.17) (2.11) (2.09)

DMF - VMF 1.64 -0.36 0.89 0.93 0.80 0.84
[E
[
rDMF
t+1 − rVMF

t+1

]
= 0.53, se = 0.79] (1.12) (1.38) (1.02) (1.01) (0.98) (0.95)

p (DMF < VMF ) 0.06 0.62 0.22 0.21 0.24 0.21
Panel B: Cross-sectional dispersion in estimated risk premia (std (λ1 · βp))

DMF 0.30 1.06* 1.63*** 1.59*** 1.53*** 1.60***
[std

(
βDMF
p

)
= 0.28, se = 0.01] (0.43) (0.56) (0.56) (0.55) (0.55) (0.55)

VMF 0.11 0.77* 0.91** 0.88** 0.86** 0.90**
[std

(
βVMF
p

)
= 0.19, se = 0.01] (0.38) (0.41) (0.41) (0.40) (0.39) (0.39)

DMF - VMF 0.19 0.29 0.72** 0.71** 0.66** 0.70**
[std

(
βDMF
p

)
− std

(
βVMF
p

)
= 0.10, se = 0.01] (0.39) (0.34) (0.28) (0.28) (0.28) (0.27)

p (DMF < VMF ) 0.45 0.22 0.01 0.01 0.01 0.01
Panel C: SML R-squared

DMF 0.01 0.21 0.46*** 0.43*** 0.48*** 0.52***
(0.08) (0.14) (0.16) (0.16) (0.17) (0.17)

VMF 0.00 0.12 0.20* 0.18 0.21* 0.23*
(0.07) (0.09) (0.12) (0.11) (0.12) (0.13)

DMF - VMF 0.01 0.09 0.26** 0.26** 0.27** 0.29**
(0.07) (0.09) (0.08) (0.08) (0.09) (0.09)

p (DMF < VMF ) 0.45 0.23 0.01 0.01 0.01 0.01
Panel D: Mean absolute pricing error (α)

DMF 2.06*** 1.55*** 1.30*** 1.43*** 1.28*** 1.23***
(0.25) (0.14) (0.09) (0.09) (0.09) (0.08)

VMF 2.61*** 1.40*** 1.29*** 1.41*** 1.28*** 1.25***
(0.41) (0.10) (0.08) (0.08) (0.09) (0.07)

DMF - VMF -0.55 0.16* 0.01 0.02 0.00 -0.02
(0.36) (0.11) (0.03) (0.04) (0.02) (0.02)

p (DMF < VMF ) 0.90 0.03 0.33 0.23 0.46 0.77

Note: This table presents asset pricing statistics when using all value-weighted portfolios as test assets and hedging
their returns with respect to different numbers of PCs using the hedging procedure described by equation (25). We use
all 372 value-weighted portfolios (obtained from Kenneth French’s data library and described in more detail in Online
Appendix Table OA.1) as test assets. Panel A reports the cross-sectional-regression-implied market risk premium.
The first column in Panel A also reports time series averages of the DMF (E[rDMF

t+1 ]), the VMF (E[rV MF
t+1 ]), and

their difference. The VMF is the CRSP value-weighted market index and the DMF is that constructed using one PC.
Panel B reports the standard deviation of the risk premia on all portfolios implied by each model. The first column in
Panel B also reports the standard deviation of portfolio exposures to the DMF (std(βDMF

p )), the VMF (std(βV MF
p )),

and their difference. Panel C reports R-squared values implied by each full-sample cross-sectional regression. Panel
D reports the mean absolute pricing error (αp) across all portfolios from time series regressions that use either the
DMF or VMF, as well as their difference. The last row in each panel reports the p-value associated with the test
that the reported DMF statistics are less than the VMF statistics based on the bootstrap procedure described in
Online Appendix OA.11. Results presented in Panels A, B, and D are annualized and in percent. */**/*** represent
statistical significance at 90%, 95%, and 99%, respectively. All data are from the 1963-2021 sample.
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Table 6: Comparing DMF asset pricing statistics when controlling for IFF

Number of orthogonalization PCs
0 3 5 7 10 15

Panel A: Risk premium estimates (λ)
DMF (univariate) 1.05 3.74* 5.75*** 5.60*** 5.40*** 5.64***
[E
[
rDMF
t+1

]
= 7.31, se = 1.83] (2.34) (2.04) (1.91) (1.88) (1.90) (1.88)

DMF (bivariate) -2.78 6.23*** 6.83*** 6.85*** 6.63*** 6.98***
(2.38) (1.93) (1.96) (1.92) (1.86) (1.85)

IFF -2.73*** 0.42 0.48 0.67 0.47 0.71
[E [IFF ] = -0.53, se = 0.79] (0.99) (0.87) (0.84) (0.83) (0.80) (0.79)
Univar. - Bivar. 3.83** -2.49*** -1.08** -1.25*** -1.23*** -1.34***

(1.39) (0.80) (0.48) (0.48) (0.38) (0.36)
p (Univar. < Bivar.) 0.01 1.00 0.99 1.00 1.00 1.00

Panel B: Cross-sectional dispersion in estimated risk premia (std (λ1 · βp))
DMF (univariate) 0.30 1.06* 1.63*** 1.59*** 1.53*** 1.60***
[std

(
βUni.
p

)
= 0.28, se = 0.01] (0.43) (0.56) (0.56) (0.55) (0.55) (0.55)

DMF (bivariate) 0.79 1.77*** 1.93*** 1.94*** 1.88*** 1.98***
[std

(
βBivar.
p

)
= 0.28, se = 0.01] (0.57) (0.55) (0.56) (0.55) (0.53) (0.53)

Univar. - Bivar. -0.49 -0.70*** -0.31** -0.36** -0.35** -0.38***
(0.77) (0.24) (0.15) (0.15) (0.13) (0.12)

p (Univar. < Bivar.) 0.66 1.00 0.98 0.99 0.99 1.00
Panel C: SML R-squared

DMF (univariate) 0.01 0.21 0.46*** 0.43*** 0.48*** 0.52***
(0.08) (0.14) (0.16) (0.16) (0.17) (0.17)

DMF (bivariate) 0.23** 0.41*** 0.51*** 0.48*** 0.55*** 0.57***
(0.12) (0.15) (0.15) (0.15) (0.16) (0.16)

Univar. - Bivar. -0.22*** -0.19*** -0.05 -0.05 -0.06 -0.05
(0.10) (0.06) (0.07) (0.06) (0.07) (0.07)

p (Univar. < Bivar.) 1.00 1.00 0.81 0.83 0.87 0.82
Panel D: Mean absolute pricing error (α)

DMF (univariate) 2.06*** 1.55*** 1.30*** 1.43*** 1.28*** 1.23***
(0.25) (0.14) (0.09) (0.09) (0.09) (0.08)

DMF (bivariate) 2.14*** 1.40*** 1.29*** 1.41*** 1.28*** 1.25***
(0.25) (0.10) (0.08) (0.08) (0.09) (0.07)

Univar. - Bivar. -0.08 0.16* 0.01 0.02 0.00 -0.02
(0.11) (0.11) (0.03) (0.04) (0.02) (0.02)

p (Univar. < Bivar.) 0.69 0.03 0.33 0.23 0.46 0.77

Note: This table presents asset pricing statistics controlling for the IFF and using all value-weighted portfolios as test
assets and hedging their returns with respect to different numbers of PCs using the hedging procedure described by
equation (25). We use all 372 value-weighted portfolios (obtained from Kenneth French’s data library and described in
more detail in Online Appendix Table OA.1) as test assets. Rows labeled as “Univariate” include only the DMF as a
factor (constructed using one PC), whereas rows labeled “Bivariate” include the IFF as a control. Panel A reports the
cross-sectional-regression-implied market risk premium. The first column in Panel A also reports time series averages
of the DMF (E[rDMF

t+1 ]). Panel B reports the standard deviation of the risk premia on all portfolios implied by each
model. The first column in Panel B also reports the standard deviation of portfolio exposures to the DMF in the
univariate model (std(βUnivar.

p )) and that from the bivariate model (std(βBivar.
p )). Panel C reports R-squared values

implied by each full-sample cross-sectional regression. Panel D reports the mean absolute pricing error (αp) across all
portfolios from time series regressions that use either the univariate or the bivariate model, as well as their difference.
The last row in each panel reports the p-value associated with the test that the reported univariate model statistics
are less than the bivariate model statistics based on the bootstrap procedure described in Online Appendix OA.11.
Results presented in Panels A, B, and D are annualized and in percent. */**/*** represent statistical significance at
90%, 95%, and 99%, respectively. All data are from the 1963-2021 sample.
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Table 7: Comparing VMF and DMF asset pricing statistics (with factor model con-
trols)

Factor model control
None FF3 FF3C FF5 q4 SY DHS q5

Panel A: Market risk premium estimates (λ1)
DMF 5.75*** 5.98*** 5.87*** 6.54*** 6.27*** 5.34*** 5.87*** 7.02***
[E
[
rDMF
t+1

]
= 7.31, se = 1.83] (1.91) (1.86) (1.88) (1.84) (1.94) (2.02) (2.08) (1.93)

VMF 4.86** 5.23** 4.91** 6.13*** 5.66** 3.98* 5.20** 6.45***
[E
[
rVMF
t+1

]
= 6.79, se = 2.00] (2.22) (2.15) (2.16) (2.10) (2.22) (2.32) (2.38) (2.21)

DMF - VMF 0.89 0.74 0.96 0.41 0.61 1.36 0.67 0.57
[E
[
rDMF
t+1 − rVMF

t+1

]
= 0.53, se = 0.79] (1.02) (0.93) (0.92) (0.86) (0.95) (1.01) (1.10) (0.94)

p (DMF < VMF ) 0.22 0.24 0.17 0.33 0.27 0.10 0.29 0.28
Panel B: Cross-sectional dispersion in estimated risk premia (std (λ1 · βp))

DMF 1.63*** 1.69*** 1.66*** 1.85*** 1.77*** 1.51*** 1.67*** 1.98***
[std

(
βDMF
p

)
= 0.28, se = 0.01] (0.56) (0.55) (0.55) (0.54) (0.57) (0.59) (0.61) (0.57)

VMF 0.91** 0.98** 0.92** 1.15*** 1.07** 0.75* 0.98** 1.21***
[std

(
βVMF
p

)
= 0.19, se = 0.01] (0.41) (0.40) (0.40) (0.40) (0.42) (0.41) (0.45) (0.42)

DMF - VMF 0.72** 0.71*** 0.74*** 0.70*** 0.71** 0.76** 0.69** 0.77***
[std

(
βDMF
p

)
− std

(
βVMF
p

)
= 0.10, se = 0.01] (0.28) (0.26) (0.26) (0.24) (0.27) (0.30) (0.30) (0.26)

p (DMF < VMF ) 0.01 0.00 0.00 0.00 0.01 0.01 0.01 0.00
Panel C: SML R-squared

DMF 0.46*** 0.48*** 0.51*** 0.51*** 0.49*** 0.41** 0.47*** 0.54***
(0.16) (0.15) (0.16) (0.15) (0.15) (0.16) (0.16) (0.14)

VMF 0.20* 0.22* 0.23* 0.28** 0.25** 0.14 0.22* 0.30**
(0.12) (0.12) (0.12) (0.12) (0.12) (0.11) (0.12) (0.12)

DMF - VMF 0.26** 0.25*** 0.28*** 0.23*** 0.24** 0.27** 0.24** 0.24***
(0.08) (0.07) (0.08) (0.06) (0.07) (0.09) (0.08) (0.06)

p (DMF < VMF ) 0.01 0.00 0.00 0.00 0.01 0.01 0.01 0.00
Panel D: Mean absolute pricing error (α)

DMF 1.30*** 1.29*** 1.20*** 1.36*** 1.33*** 1.39*** 1.32*** 1.31***
(0.09) (0.08) (0.08) (0.09) (0.09) (0.11) (0.10) (0.11)

VMF 1.29*** 1.29*** 1.20*** 1.29*** 1.31*** 1.37*** 1.32*** 1.28***
(0.08) (0.07) (0.07) (0.08) (0.08) (0.10) (0.09) (0.10)

DMF - VMF 0.01 0.01 0.00 0.07 0.02 0.02 0.01 0.04
(0.03) (0.04) (0.04) (0.06) (0.05) (0.03) (0.04) (0.06)

p (DMF < VMF ) 0.33 0.40 0.46 0.11 0.21 0.17 0.40 0.14

Note: This table presents asset pricing statistics when using all value-weighted portfolios as test assets and hedging
their returns with respect to five PCs as well as factors from prominent models using the hedging procedure described
by equation (25). We use all 372 value-weighted portfolios (obtained from Kenneth French’s data library and described
in more detail in Online Appendix Table OA.1) as test assets. Each column corresponds to controlling for a factors
in different models (where the acronyms are defined in the text) in addition to the five PCs. Panel A reports the
cross-sectional-regression-implied market risk premium. The first column in Panel A also reports time series averages
of the DMF (E[rDMF

t+1 ]), the VMF (E[rV MF
t+1 ]), and their difference. The VMF is the CRSP value-weighted market

index and the DMF is that constructed using one PC. Panel B reports the standard deviation of the risk premia on
all portfolios implied by each model. The first column in Panel B also reports the standard deviation of portfolio
exposures to the DMF (std(βDMF

p )), the VMF (std(βV MF
p )), and their difference. Panel C reports R-squared values

implied by each full-sample cross-sectional regression. Panel D reports the mean absolute pricing error (αp) across
all portfolios from time series regressions that use either the DMF or VMF, as well as their difference. The last row
in each panel reports the p-value associated with the test that the reported DMF statistics are less than the VMF
statistics based on the bootstrap procedure described in Online Appendix OA.11. Results presented in Panels A, B,
and D are annualized and in percent. */**/*** represent statistical significance at 90%, 95%, and 99%, respectively.
All data are from the 1963-2021 sample.
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Table 8: Size factor spanning tests

Factor model
FF3 FF3C FF5 q4 SY q5

Panel A: 1963-2021 sample
αDMF -0.41 -1.38 0.14 0.78 0.85 1.60

[-0.37] [-1.29] [0.12] [0.53] [0.68] [1.03]
βDMF
Size 0.43*** 0.46*** 0.42*** 0.41*** 0.46*** 0.39***

[18.27] [17.38] [14.91] [12.72] [13.86] [11.04]
αVMF 1.44 1.47 3.26** 4.56*** 6.47*** 7.39***

[1.08] [1.11] [2.45] [2.79] [4.40] [4.23]
βVMF
Size 0.19*** 0.19*** 0.15*** 0.14*** 0.09** 0.09**

[6.16] [6.02] [4.32] [4.07] [2.32] [2.41]
Panel B: 1963-1992 sample

αDMF -0.24 0.27 1.12 3.43* 2.57 3.41*
[-0.17] [0.18] [0.71] [1.92] [1.48] [1.73]

βDMF
Size 0.49*** 0.49*** 0.47*** 0.43*** 0.48*** 0.43***

[17.43] [17.63] [13.87] [11.34] [12.50] [10.68]
αVMF 1.85 3.08 5.31*** 8.34*** 8.73*** 10.06***

[1.06] [1.54] [2.79] [3.69] [4.21] [4.18]
βVMF
Size 0.25*** 0.24*** 0.18*** 0.18*** 0.11** 0.16***

[5.54] [5.38] [3.73] [3.79] [1.96] [3.08]
Panel C: 1993-2021 sample

αDMF -1.61 -3.16* -0.44 -0.46 -0.89 0.97
[-0.92] [-1.94] [-0.26] [-0.22] [-0.49] [0.44]

βDMF
Size 0.41*** 0.49*** 0.34*** 0.39*** 0.46*** 0.35***

[11.40] [10.31] [8.34] [7.04] [8.67] [5.81]
αVMF 0.25 -0.11 3.06* 3.44 4.84** 6.35***

[0.13] [-0.06] [1.68] [1.53] [2.38] [2.74]
βVMF
Size 0.17*** 0.18*** 0.06 0.08 0.06 0.02

[4.29] [4.12] [1.29] [1.41] [1.42] [0.37]

Note: This table presents factor spanning tests for the size factors in each factor model when either the VMF or
the DMF is used as the market factor in each model. The VMF is the CRSP value-weighted market index and the
DMF is that constructed using one PC. αDMF (αV MF ) represents the alpha when the DMF (VMF) is used, and
is annualized and in percent. βDMF

Size (βV MF
Size ) represents the size-factor market βs when the DMF (VMF) is used.

Panels A, B, and C display results from the 1963-2021, 1963-1992, and 1993-2021 samples, respectively. T-statistics
are reported in brackets and are based on the bootstrap procedure described in Online Appendix OA.11. */**/***
represent statistical significance at 90%, 95%, and 99%, respectively.
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Table 9: IFF spanning tests

Factor model
FF3 FF3C FF5 q4 SY q5
Panel A: VMF as the market factor

α (w/ Size) -0.31 -1.34*** -0.51 -1.40*** -1.24** -2.06***
[-0.99] [-4.50] [-1.37] [-2.74] [-2.55] [-4.03]

βVMF
IFF (w/ Size) 0.23*** 0.25*** 0.24*** 0.25*** 0.28*** 0.26***

[22.48] [29.18] [24.85] [20.75] [28.52] [22.36]
βSize
IFF (w/ Size) -0.48*** -0.48*** -0.48*** -0.43*** -0.48*** -0.42***

[-17.54] [-21.43] [-25.73] [-14.19] [-25.11] [-13.57]
α (w/o Size) -1.00 -2.04*** -2.09*** -3.37*** -4.33*** -5.18***

[-1.44] [-2.74] [-2.95] [-4.29] [-4.97] [-6.23]
βVMF
IFF (w/o Size) 0.14*** 0.16*** 0.17*** 0.19*** 0.24*** 0.22***

[7.74] [9.33] [9.46] [11.30] [10.44] [12.54]
Panel B: DMF as the market factor

α (w/ Size) -0.06 -1.39*** -0.16 -1.08 -0.58 -1.49**
[-0.16] [-3.63] [-0.35] [-1.59] [-0.90] [-2.21]

βDMF
IFF (w/ Size) 0.24*** 0.28*** 0.25*** 0.25*** 0.28*** 0.26***

[11.16] [17.07] [12.64] [9.28] [15.06] [9.63]
βSize
IFF (w/ Size) -0.57*** -0.60*** -0.59*** -0.52*** -0.60*** -0.52***

[-14.24] [-17.09] [-20.00] [-10.77] [-21.91] [-10.69]
α (w/o Size) 0.17 -0.57 -0.24 -1.48* -1.09 -2.32**

[0.23] [-0.71] [-0.32] [-1.71] [-1.09] [-2.51]
βDMF
IFF (w/o Size) -0.01 0.01 0.00 0.04* 0.01 0.06**

[-0.60] [0.46] [0.05] [1.87] [0.25] [2.56]

Note: This table presents factor spanning tests for the IFF using each factor model when either the VMF or the DMF
is used as the market factor in each model. Panel 1 (Panel 2) presents results when the VMF (DMF) is used as the
market factor. The VMF is the CRSP value-weighted market index and the DMF is that constructed using one PC.
Within each panel, we run test using models that include their size factors (designated as “w/ Size”) and that exclude
their size factors (designated as “w/o Size”). α is annualized and in percent. βV MF

IFF (βDMF
IFF ) represents IFF market

βs when the VMF (DMF) is used as the market proxy. βSize
IFF represents IFF exposure to size factors (in models where

we include the size factors). T-statistics are reported in brackets and are based on the bootstrap procedure described
in Online Appendix OA.11. */**/*** represent statistical significance at 90%, 95%, and 99%, respectively. All data
are from the 1963-2021 sample.
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Online Appendix

“Idiosyncratic financial risk and a reevaluation of the
risk-return tradeoff”

Sung Je Byun, Johnathan A. Loudis, and Lawrence D.W. Schmidt

OA.1 Summary of additional results and robust-

ness

In this section, we summarize figures and tables in the Online Appendix related

to additional results and robustness checks referenced in the main text. Please see

references to these figures and tables in the main text for more context, explanation,

and interpretation.

OA.1.1 Figures

• Figure OA.1 presents IRF results similar to those in Figure 4 from the main text,

except in this case data spans 1963-2021 (i.e., including the COVID pandemic)

rather than 1963-2019 as in the main text.

• Figure OA.2 presents IRF results similar to those in Figure 4 from the main text,

except in this case we provide results when the CRSP value-weighted market is

projected on up to the first 10 PCs.

• Figure OA.3 presents IRF results similar to those in Figure 4 from the main text,

except in this case we provide results when the CRSP value-weighted market

is projected on up to the first 10 PCs and the projection is done in a rolling

fashion.

• Figure OA.4 presents IRF results similar to those in Figure 4 from the main text,

except in this case we provide results when the CRSP value-weighted market is

projected on the first five PCs, the projection is done in a rolling fashion, and

we provide IRF estimates for the GR (which is estimated as the residual from

these projections).
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• Figure OA.5 compares portfolio betas estimated using different proxies for the

market portfolio to those estimated using the VMF. The main takeaway from

these comparisons is that the differences in betas computed using the DMF

relative to those using the VMF is driven by the first PC, and that a projection

of the VMF onto PCs yields beta estimates similar to those using the VMF

itself (as could be inferred from results in Table 1 where we show that the VMF

is explained well by a small number of PCs). Additionally, market risk (as

measured with respect to the VMF) can largely be explained by a projection

of VMF onto PCs rather than by the residual from those projections, which

represents an estimate of the granular residual. The intuition here is that the

granular residual is “small” (see Table OA.2) and therefore does not affect

estimates of VMF-based market risk much.

• Figure OA.6 (Panel 1) provides a visualization of results from Table 2. We plot

kernel density estimates of the VMF and the IFF as estimated from our baseline

specification with one PC as well as when using the equal-weighted index as

an instrument. Panels 2 and 3 in Figure OA.6 plot the log of the estimated

volatilities and their differences when using either the VMF or the DMF under

the GARCH(1,1) specification. As expected from the unconditional analysis in

Table 2, the conditional volatility is typically lower for the DMF compared to

the VMF. As is clear from Panel 3, the difference exhibits substantial variation

at both high and low frequencies. This nontrivial difference lends empirical

support to our conjecture that the IFF adds noise to the lagged forecasting

errors used to generate the conditional variance forecasts within the GARCH

forecasting models.

• Figure OA.7 presents beta gap and SML plots similar to those in Figures 6 and

7, respectively, from the main text, except in this case we provide results for the

25 size-by-book-to-market-sorted portfolios. Panel 1 shows the beta gap plot,

which demonstrates results similar to those from Figure 6 when using size-by-

book-to-market-sorted portfolios. In Panel 2a, which shows SMLs constructed

without hedging returns of their exposure to gt+1, the VMF-based SML has

a negative slope indicating a negative risk-return relationship. Contrarily, the

DMF-based SML has a positive slope and portfolios’ expected returns move
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closer to the theory-implied SML.49 Once again, this happens because most

expected returns lie above the theoretical SML and most of the βDMF
p are

noticeably larger than their βVMF
p counterparts. All βDMF

p shift to the right

relative to their corresponding βVMF
p (aside from a few from the largest size

category) and the shift is usually larger for the smaller portfolios, consistent

with our theory. Hedging for exposure to gt+1 in Panel 2b makes the red and

blue lines more similar to each other and to the theory-implied SML, as with

results in Figure 7 from the main text.

• Figure OA.8 presents SML plots similar to those in Figure 7 from the main

text (for the all-portfolio case), except in this case we provide results using

varying numbers of PCs as hedging controls. Each panel uses the same set of

all 372 portfolios as test assets, but uses progressively more PCs for constructing

the gt+1 controls ranging from zero (Panel 1) to 15 (Panel 6) to demonstrate

robustness to this choice. In the case where we use no controls (Panel 1), we

get a well-known result. Namely, the VMF-based SML is flat. Using the DMF

improves this slightly, yielding a small but positive slope. Importantly, using

the DMF yields a larger spread in betas than is achieved using the VMF. As

we add progressively more PCs to the gt+1 construction, the SMLs produced by

both the DMF and the VMF conform more with the theory-implied SML. In

fact, there are very few qualitative changes in results once five or more PCs are

used in the analysis. In all cases, the DMF-based SML maintains a higher slope

(market risk premium estimate) than the VMF-based SML despite having a

larger spread in betas. This implies that, after controlling for exposure to other

factors, gt+1, using the DMF implies that the market factor explains more of

the spread in portfolio average returns than when using the VMF. In other

words, using the DMF results in the market factor inducing more spread in

implied discount rates. This is what allows the DMF-based SML to fit the

theory-implied SML despite inducing a higher spread in betas relative to those

from the VMF. This need not have been the case, and implies that the DMF is

able to explain more variation in average returns compared to the VMF.

• Figure OA.9 presents asset pricing statistics similar to those in Figure 8 from

49This is with the exception of the small-growth portfolio, whose expected returns are notoriously
hard to explain (see, e.g., Fama and French (1993))
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the main text, except in this case we construct DMF using the dominant factor

from a set of factors based on the first five PCs that have been rotated to satisfy

the assumed restrictions in equations (3) and (4).

• Figure OA.10 presents asset pricing statistics related to controlling for factors

from prominent factor models similar to those in Figure 9 from the main text,

except in this case we also control for the first five PCs (in addition to the

factors from the models) when constructing hedged portfolio returns used in

the tests.

• Figure OA.11 presents asset pricing statistics related to controlling for factors

from prominent factor models similar to those in Figure 9 from the main text,

except in this case we use equal-weighted portfolios as test assets.

OA.1.2 Tables

• Table OA.3 presents time series risk-return tradeoff estimates similar to those

in Table 3 from the main text, except in this case data spans 1927-2021 rather

than 1963-2019 as in the main text. One downside to this estimation is that

we have fewer portfolios for the PCA analysis and hence may lose some im-

portant contributors to the first principal component.50 On the other hand,

the longer time series allows us to check robustness with respect to dropping

some portfolios as well as to test whether our results are robust to the explosion

of new stocks that entered the CRSP value-weighted index in the 1960s (see

Figure 1). Results for this robustness are similar to those from the 1963-2021

sample reported in Table 3, with a few slight differences. As before, γ values

estimated using various the DMF are always larger than those estimated using

the VMF. However, the estimated γ values are smaller in magnitude to those

estimated from the 1963 sample, which is likely a consequence of high volatility

and low realized returns during the Great Depression period. All-in-all, results

from the 1927 sample support the conclusion that using the DMF helps recover

a stronger risk-return tradeoff than using the VMF.

50In this sample, we estimate the PCA using 103 equal-weighted anomaly portfolios returns that
are available in 1927 according to our portfolio summary in Online Appendix Table OA.1. Despite
this, the correlation between the first PC constructed from the 1927-2021 sample and that from the
1963-2021 sample (over the latter period) is 0.9995.
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• Table OA.4 presents differences between betas estimated using VMF and DMF

across size-by-beta-sorted portfolios similar to those in Table 4 from the main

text, except in this case data spans 1993-2021 rather than 1963-2019 as in the

main text.

• Table OA.5 presents asset pricing statistics similar to those in Table 5 from the

main text, except in this case data spans 1993-2021 rather than 1963-2019 as

in the main text.

• Table OA.6 presents asset pricing statistics similar to those in Table 5 from the

main text, except in this case we use equal-weighted portfolios as test assets

rather than value-weighted portfolios as in the main text.

• Table OA.7 presents asset pricing statistics similar to those in Table 7 from the

main text, except in this case we only hedge test portfolio of exposure to factors

from the models as opposed to both factors from the models and PCs as in the

main text.

• Tables OA.8 and OA.9 present asset pricing statistics related to either including

or excluding size factors from each model as controls when evaluating using the

VMF or the DMF, respectively. These tables provide more details on statistics

summarized in Figure 9 from the main text.

OA.2 How large is the granular residual?

In this section, we estimate the GR “size” relative to the VMF and the IFF.

Specifically, we estimate the ratios of the GR variance and standard deviation to

those from the VMF and the IFF.

Equation (7) provides a framework for estimating the GR from the IFF and our

PCs. The IFF can be decomposed into three components according to the equation:

1) time-varying loadings on the DMF (f̃t+1), 2) time-varying loadings on other factors

(g̃t+1), and 3) the GR (ηt+1). Since, according to our maintained assumptions, f̃t+1 is

spanned by the first PC and g̃t+1 are spanned by the remaining PCs, we can estimate

ηt+1 by projecting the IFF onto PCs and treating the residual as a proxy for ηt+1.

Using this framework, we estimate the GR in two ways. First, we assume IFF loadings
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on PCs are constant and run full-sample regressions of the IFF on various numbers of

PCs. The residuals are then estimates of the GR. Second, we assume IFF loadings on

PCs are time varying and run centered rolling regressions with a 60-month window

to estimate the GR each month, t, as the residual from the rolling regression in that

month.51

Table OA.2 provides GR summary statistics for the full-sample analysis (Panel A)

and the rolling analysis (Panel B). Focusing first on the full-sample analysis in Panel

A, when only one PC is used in the regression the estimate of the GR is equivalent

to the IFF because the IFF is orthogonal to the first PC. In this case, the GR has

the same volatility as the IFF (6.09%, annualized), the variance ratio σ2
GR/σ

2
IFF is

100%, and σ2
GR/σ

2
VMF is the same as the σ2

IFF/σ
2
VMF ratio (15.71%). As we increase

the number of PCs used in the regressions, the GR size shrinks as more variation in

the IFF is attributed to constant loadings on the PCs. To avoid overfitting issues,

the maximum number of PCs we use is 15. Results from the full-sample regressions

with between 5 and 15 PCs indicate that the GR standard deviation is approximately

2.21-1.65% (annualized), and that its variance (standard deviation) is approximately

2-3% (13-19%) of the VMF variance (standard deviation) and 14-17% (36-43%) of

the IFF variance (standard deviation).

Focusing now on the rolling analysis in Panel B, results using one PC to estimate

the GR now do not mechanically reproduce the IFF. This is because we are now

accounting for the effect of possible time-varying IFF loading on f̃t+1. The fact that

σ2
GR/σ

2
IFF < 100% in this case (it is 89.63%) implies the IFF has some time-varying

loading on f̃t+1. Allowing for time-varying coefficients allows us to better estimate the

potentially time-varying loadings of the IFF on these PCs, but increases the possibility

of overfitting so again limit the maximum number of PCs in the regressions to 15.

Results from the rolling regressions with between 5 and 15 PCs indicate that the GR

standard deviation is approximately 1.61-2.21% (annualized), and that its variance

(standard deviation) is approximately 1-2% (7-13%) of the VMF variance (standard

deviation) and 10-14% (27-36%) of the IFF variance (standard deviation).

51In any 60-month window, if month t is the month of interest for estimating the GR, the regression
is estimated using data from months t− 30 to t+ 29.
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OA.3 PCA: Additional details

In this section, we discuss some additional details related to our PCA described in

section 2.3 and the use of PCA more generally as it applies to the study of financial

economics.

OA.3.1 PCA details

It is well-known that equity returns follow a strong factor structure (see, for ex-

ample, Kozak et al., 2018). When asset returns follow a factor structure, it is also

well-known that average returns can be described by a linear relationship with factor

loadings (Ross 1976, 1977). Given these insights, Chamberlain and Rothschild (1983)

and Connor and Korajczyk (1986, 1988) pioneered work related to using PCs to ex-

plain average asset returns. Using PCs as factors can be thought of as a statistical

and complementary method to what has become the de facto method of constructing

factors from portfolios sorted on stock characteristics.52 Indeed, Kozak et al. (2018)

conclude that there is nothing special about such factor models and their ability to

explain average returns and note that a model with a small number of PCs does about

as well explaining average returns as any of the extant factor models they study. Most

importantly, asymptotic properties of these estimators are well-understood and one

can obtain consistent estimates of common factors with a large number of portfolios

and time periods.53

52Some notable recent extensions of the basic PCA framework include Kelly et al. (2019), who
develop an instrumented principal components analysis that helps provide a link between factors
constructed from characteristics to those constructed from PCs. Lettau and Pelger (2020b) show
how imposing restrictions via their “risk premium PCA” allows their constructed factors to better
fit the cross-section of expected returns in addition to explaining time series variation in returns as
with a regular PCA. Giglio and Xiu (2021) show how PCs can be used to consistently estimate risk
premia on both traded and non-traded factors.

53Bai and Ng (2006) proved that errors associated with estimating factors do not affect the limiting
distribution of factor-augmented vector autoregression (FAVAR) estimators, which nests our model
as a special case. In other words, estimates of factors are consistent and subsequent regression
estimates which use estimated principal components have the same asymptotic properties as if the
true unobserved factors were used instead. This property holds when T

N → 0 as N,T → ∞. Sample
sizes which are used to construct estimates of factors and loadings usually involve a number of
stocks which is an order of magnitude larger than the number of time periods, so this condition
approximately holds. Even when this condition fails, estimated factors can be treated as data and√
T -consistent estimates of second stage regression parameters obtain when

√
T

N → 0, but standard
errors need to be corrected to reflect the fact that a generated regressor is used. Stock and Watson
(2002) provide conditions under which factors are consistently estimable even when loadings exhibit
moderate time-variation.
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We choose the 372 portfolios represented by the portfolio sorts described in Online

Appendix Table OA.1 for our PCA to balance a few tradeoffs. First, we would like

to get as broad of a cross-section of portfolios as possible. Second, we need both

equal-and value-weighted versions of the portfolios. The equal-weighted portfolios

are used for the PCA, and the value-weighted portfolios are used in our main asset

pricing tests (as per standard convention). Third, we would like the portfolios to

be as standard and easily accessible as possible. Most portfolios are based on 5x5

double-sorts. However, we include two sets of single-sorted portfolios (size and beta)

because our theory has special implications for the characteristics of these portfolios,

which are discussed in subsection 6.1. Note that these are a superset of the equity

portfolios used for the PCA analysis in Giglio and Xiu (2021).

Strictly speaking, our estimated PCs are a rotation of ft+1 and gt+1, which we use

for parsimony. However, if we rotate the PCs so as to impose the restrictions that

E[
∑Nt

i=1wi,tβi] = 1 and E[ 1
Nt

∑Nt

i=1 ζi] = 0 and furthermore assume the true ft+1 can

be constructed by the first five or fewer PCs, the correlations between these restricted

ft+1 values and the original first PC range between 0.989 and 0.990. Furthermore,

we find the average loadings across all portfolios on higher PCs are close to zero.

Additionally, by construction, the first PC is orthogonal to higher PCs, consistent

with our assumption that gt+1 are orthogonal to ft+1. In other words, the PCs them-

selves approximately conform to our assumptions about ft+1 and gt+1. We provide

evidence in Online Appendix Figure OA.12 that the PCs approximately conform to

the assumptions about loadings on ft+1 and gt+1 in equations (3) and (4). Namely,

the value-weighted loading of value-weighted portfolios on the DMF are 0.993, and

the average loadings of these portfolios on higher PCs are approximately zero.

OA.3.2 Equal-weighted portfolios have a stronger factor struc-
ture than value-weighted portfolios

There is a strong factor structure in the returns of characteristics-sorted portfo-

lios, with one dominant factor that can be interpreted as a level factor. The factor

structure is even stronger in equal-weighted portfolios relative to value-weighted port-

folios.

To help get a sense for the strength of the factor structure in our data, we provide

plots of the explained variation in returns as a function of the number of PCs from our

main 1963-2021 sample when using equal-weighted portfolios in the PCA in Figure
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OA.13 (Panel 1). For a comparison, the plot also shows results from a PCA that

uses value-weighted portfolios. The cross-section of equal-weighted portfolios has a

stronger factor structure than that of value-weighted portfolios.54 For instance, in the

case of the equal-weighted (value-weighted) portfolio PCA, the first PC explains about

85% (82%) of the variation in excess returns. This result is not surprising given our

results from the previous subsections. First, to the extent value-weighted portfolios

are plagued by granular residuals, we expect these portfolios to have a weaker factor

structure as long as the granular residuals themselves do not have a strong factor

structure. Second, if value-weighted portfolios have time-varying loadings on low-

order PCs from the equal-weighted portfolio PCA, these would manifest as variation

that is unexplained by the low-order PCs. The first PC in both cases places positive

weights that are similar in magnitude on all portfolios, which is a desirable property

when viewing this as a (scaled) level factor that proxies for the DMF.

Panel 2 provides the fraction of variation in the value-weighted portfolios that can

be explained by PCs constructed from the equal-weighted portfolios as a function of

the number of PCs used. PCs constructed from equal-weighted portfolios explain a

large fraction of variation in the value-weighted portfolios with the first five PCs ex-

plaining about 90% of the variation in the value-weighted portfolio returns. However,

even all 372 PCs constructed from equal-weighted portfolios cannot explain all the

variation in their value-weighted counterparts, which is expected if the value-weighted

portfolios contain granular residuals but the equal-weighted portfolios do not.

OA.3.3 Identifying DMF and IFF empirically: Additional
details

We construct the empirical DMF by projecting the VMF onto the first PC, which

ensures that the DMF satisfies our restriction in equation (3). In other words, we run

the following regression

VMFt+1 = a+ b · PC1,t+1 + εVMF,t+1, (OA.1)

54That is, for a given number of PCs, the equal-weighted PCA is always able to explain more
variation in equal-weighted portfolios than the value-weighted PCA is able to explain for value-
weighted portfolios. In unreported results, we find this to be a robust result across many different
sets of base portfolios used in the PCA.
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where PC1,t+1 is the first PC. We then define the DMF as

DMFt+1 ≡ b · PC1,t+1. (OA.2)

Given our estimate of the DMF, we construct our empirical proxy for the IFF as

IFFt+1 ≡ VMFt+1 −DMFt+1, (OA.3)

which is consistent with the definition of the IFF in equation (7).

The first PC effectively serves as an instrumental variable (IV) for identifying ft+1

from the observable VMF and higher PCs are used as proxies for gt+1.
55 Instrumenting

the VMF with just the first PC from our equal-weighted portfolio PCA solves two

issues in the signal extraction problem implied by equation (7). First, the equal-

weighted PCA results in an IV estimate of ft+1 that is effectively purged of ηt+1.

Second, instrumenting with just the first PC limits the effect of time-varying exposures

to higher PCs represented by ζm,t, for which we provide evidence in section 3.1.4.

OA.4 Impulse response functions: Additional de-

tails

Suppose the DMF goes up by one standard deviation unit. By how much would

an econometrician revise her forecast about future macroeconomic conditions on the

basis of that information? Suppose instead that the component of market returns

explained by higher PCs increases by one standard deviation unit. By how much, if

at all, would these forecasts change? To answer these questions, we follow the method

in Schmidt (2022), which is itself related to Jordà (2005).56 While we refer the reader

to those papers for further details, the main result is that if we have a variable Yt, we

can estimate a quantity analogous to an impulse response in a VAR to a shock, zt+1

55Strictly speaking, our estimated PCs are a rotation of ft+1 and gt+1. However, we discuss how
the PCs approximately conform to our assumptions about ft+1 and gt+1 in Online Appendix section
OA.3 and in Online Appendix Figure OA.12.

56The identifying assumptions proposed in Schmidt (2022) rely on correct specification of the
mean of returns and allow for the conditional expectation of the macro variable Yt+h to potentially
be misspecified. This is advantageous given that returns are much closer to random walks than
many of the macro variables in the consideration set.
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at horizon h = 1, ..., H by running the following regression:

Yt+h = αh + βhzt+1 + γhYt + ϕh(L)Yt + ϵt+h (OA.4)

where in our context zt+1 is the market return component of interest, ϕ(L) is a lag

polynomial, and ϵt+h is the forecast error. The IRF is simply {βh}Hh=1. Our choice

of Y variables are log industrial production (IP) growth, log employment growth,

initial claims divided by lagged employment, log per capita consumption growth, log

compensation growth, the ADS business conditions index (Aruoba et al., 2009), the

unemployment rate, log GDP growth, and the Chicago Fed National Activity Index

(CFNAI).

To construct the two specifications of zt+1 described above, we regress the CRSP

value-weighted market excess return (i.e., the VMF) on the DMF (i.e., a scaled version

of the first PC) and PCs two through N as follows:

rt+1 = a+ β ·DMFt+1 + ζ ′2→N · PC2→N,t+1 + ηt+1 , (OA.5)

where PC2→N,t+1 is a vector of PCs two through N . We estimate this regression in

the full-sample with three PCs using data from 1963-2019 in our main specification

(Figure 4) on a monthly frequency then aggregate the time series within each quarter

to match the observation frequency of the macroeconomic aggregates. We show these

results are robust to using data from 1963-2021 (Figure OA.1), using more PCs (Fig-

ure OA.2), using a rolling estimation window (Figure OA.3), and for the GR when

estimated as the residual from the rolling regression with five PCs (Figure OA.4).

OA.5 Motivating theoretical model

Consider a static exchange economy populated by a continuum (with unit mass)

of ex-ante identical investors indexed by j ∈ [0, 1]. Investors choose portfolios to max-

imize expected utility over terminal consumption Cj and have identical preferences

with constant absolute risk aversion A > 0: Uj ≡ −E[exp(−ACj)].
Investors receive identical endowments ofN stocks, each of which pays a stochastic

and normally-distributed dividend Di at the end of the period. Let Pi denote the

price of stock i and 1 + ri = Di/Pi denote its realized gross return. Each stock is

available in unit net supply, and there is a risk-free asset available in zero net supply.
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Therefore, total financial wealth W is given by the total stock market capitalization,

W =
∑N

i=1 Pi.

Stocks i = 1, . . . , K are assumed to be “large” stocks that together account for a

share v ∈ (0, 1) of the total stock market capitalization, i.e.
∑K

i=1 Pi/W = v. Stocks

i = K + 1, . . . , N are “small” and account for the remaining share 1− v of the total

stock market value. For simplicity, all large stocks are assumed to have the same price

P1 = · · · = PK = vW/K, and all small stocks are assumed to have the same price

PK+1 = · · · = PN = (1−v)W/(N −K).57 Throughout this section we assume that K

is much smaller than N . In the limiting case, we will let the total number of traded

stocks N increase to infinity while holding fixed both the number of large stocks K

and the share v that these stocks contribute to the total stock market capitalization.

Excess returns for all stocks i = 1, . . . , N are assumed to follow a two-factor

model:58

ri − E[ri] = βi (f − E[f ]) + ζi (g − E[g]) + ηi (OA.6)

where f ∼ N(E[f ], σ2
f ) and g ∼ N(E[g], σ2

g) are common factors, βi and ζi are the load-

ings of stock i’s return on the common factors, and ηi ∼ N(0, σ2
i ) is an idiosyncratic

component that satisfies E[ηi|f, g] = 0. The common factors themselves are assumed

to be tradable excess returns on an asset that is available in zero net supply,59 and

their means (E[f ] and E[g]) will be pinned down by equilibrium conditions. Idiosyn-

cratic components are assumed to be uncorrelated across stocks: E[ηiηi′ |f, g] = 0 for

all i ̸= i′. Without loss of generality, f is assumed to be scaled so that

v

K

K∑
i=1

βi +
1− v

N −K

N∑
i=K+1

βi = 1, (OA.7)

which implies that the loading of the market portfolio’s return on f is equal to 1. We

57This assumption can be easily relaxed to allow for arbitrary weights of individual large stocks
in the market index. However, our main focus is to determine how the pricing of risks differs across
large and small stocks, not within the set of large stocks. Expected dividends are assumed to be
sufficiently large or small to justify all stock valuations.

58This can be generalized to include more gt+1 factors without changing the main implications of
the model, so we limit the model to having two factors for parsimony.

59We ignore agents’ holdings of this asset in the portfolio choice problem that follows. Market
clearing conditions imply that these holdings must be equal to zero for all agents in equilibrium
because agents are ex ante identical and thus choose identical portfolios. Alternatively, we can think
of these factors as specific portfolios of the individual assets over which the agents are choosing
optimal allocations.
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also assume that the average small stock has a loading of zero on g so that60

1

N −K

N∑
i=K+1

ζi = 0. (OA.8)

The market portfolio is then a function of both the common factors and a weighted

average of idiosyncratic components, ηi, of individual stocks that may or may not be

diversified away as the number of stocks increases:

rm =
v

K

K∑
i=1

ri +
1− v

N −K

N∑
i=K+1

ri

=

(
v

K

K∑
i=1

E[ri] +
1− v

N −K

N∑
i=K+1

E[ri]

)
︸ ︷︷ ︸

=E[rm]

+

(
v

K

K∑
i=1

βi +
1− v

N −K

N∑
i=K+1

βi

)
︸ ︷︷ ︸

=1

·(f − E[f ])

+

(
v

K

K∑
i=1

ζi+

)
︸ ︷︷ ︸

≡ζm

·(g − E[g]) +

(
v

K

K∑
i=1

ηi +
1− v

N −K

N∑
i=K+1

ηi

)
︸ ︷︷ ︸

≡η

= E[rm] + f − E[f ] + ζm · (g − E[g]) + η.

(OA.9)

Note that we have used the restrictions in equations OA.7 and OA.8 to set the market

loading on f to 1 and in the definition of ζm. So, in this economy the market is a

contaminated proxy for f that also contains terms related to the other factor, g, as

well as a potentially undiversified aggregated granular residual, η.

In addition to dividend income, each investor receives labor income Yj ≡ Y + εj,

where Y is aggregate labor income and εj is an idiosyncratic component that is

independent and identically distributed across investors j. Aggregate labor income is

given by

Y = Y + ϕf (f − E[f ]) + ϕg(g − E[g]) + ϕη
v

K

K∑
i=1

ηi + ξ (OA.10)

60This assumption means that we can interpret g as an equal-weighted long-short portfolio of
small stocks. If the number of small stocks is high relative to large stocks, the average stock does
not load on g and we can think of this (approximately) as an equal-weighted long-short portfolio of
all assets.
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where ξ is a mean zero random variable that is independent of f, g, η1, . . . , ηN . Aggre-

gate labor income is thus correlated with both the common factors and the idiosyn-

cratic shocks η1, . . . , ηK to the returns of the large stocks. The idiosyncratic labor in-

come component εj has zero mean conditional on all common shocks, E[εj|f, g, η1, . . . , ηN , ξ] =
0. However, the distribution of εj across investors can depend on the realization of

these common shocks. To accomodate flexible relationships between aggregate shocks

and the cross-sectional income distribution, we assume that the conditional moment-

generating function Mε(t|f, g, η1, . . . , ηN , ξ) ≡ E[exp(tεj)|f, g, η1, . . . , ηN , ξ] is expo-

nentially affine in the common shocks (excluding the idiosyncratic components of

returns for small stocks):

Mε(t|f, g, η1, . . . , ηN , ξ) = exp

(
γ0(t) + γf (t)f + γg(t)g +

K∑
i=1

γi(t)ηi + γξ(t)ξ

)
(OA.11)

where the coefficients γ0(t), γ1(t), . . . , γK(t), γf (t), γg(t), γξ(t) may depend on t ∈ R.
We can then define “idiosyncratic risk-adjusted” labor income as the following affine

function of these common shocks:

Ỹ ≡ Y − 1

A
logE[exp(−Aεj)|f, g, η1, . . . , ηN , ξ]

=

(
Y + ϕf (f − E[f ]) + ϕg(g − E[g]) + ϕη

1− v

K

K∑
i=1

ηi + ξ

)

− 1

A

(
γ0(−A) + γf (−A)f + γg(−A)g +

K∑
i=1

γi(−A)ηi + γξ(−A)ξ

)

≡ E
[
Ỹ
]
·

(
1 + ψf (f − E[f ]) + ψg(g − E[g]) + ψη

K∑
i=1

ηi + ψξξ

)
(OA.12)

for constants ψf , ψg, ψη, and ψξ.

Let θj ∈ RN denote the fraction of investor j’s total wealth W invested in each

stock i = 1, . . . , N , with the remaining net wealth share 1 −
∑N

i=1 θ
j
i invested (or

borrowed) at the risk-free rate rf . Terminal consumption is then given by the sum of

labor income and financial income:

Cj = Yj+W (1+rp(θ
j)) = Yj+W

(
N∑
i=1

θji (1 + ri) +

[
1−

N∑
i=1

θji

]
(1 + rf )

)
(OA.13)
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where rp(θ
j) denotes the realized net return on investor j’s portfolio conditional on the

choice of portfolio θj. In Online Appendix OA.6 we show that investor j’s portfolio

choice problem can be rewritten in the following form:

argmax
θj∈RN

{−E[exp(−ACj)]} = argmax
θj∈RN

{
E[rp(θj)]− AW

(
1− ϕ

2
V ar(rp(θ

j)) + ϕCov(rh, rp(θ
j))

)}
(OA.14)

where ϕ ≡ E[Ỹ ]

E[Ỹ ]+W
∈ (0, 1) is a measure of the importance of human capital in total

(human and financial) wealth, 1 + rh ≡ Ỹ /E[Ỹ ] can be interpreted as a “return” on

human capital, and W ≡ E[Ỹ ] +W . Online Appendix OA.6 derives the following

first-order condition for θji , the portfolio share of any stock i = 1, . . . , N :

E[ri]− rf = AW
[
(1− ϕ)Cov(ri, rp(θ

j)) + ϕCov(ri, rh)
]

(OA.15)

This first-order condition can be interpreted as a simple modification of the traditional

CAPM expected return-beta relationship to account for human capital risk. In fact,

the traditional CAPM holds in the special case where ϕ = 0 and human capital

represents a negligible share of total wealth. Note that AW is equivalent to relative

risk aversion (RRA).
Investors are identical ex-ante, so in equilibrium they all choose the same optimal

portfolio. With a unit mass of investors, market clearing implies that this optimal
portfolio is the market portfolio: θj∗1 = · · · = θj∗K = v/K, θj∗K+1 = · · · = θj∗N =
(1 − v)/(N − K), and rm = rp(θ

j∗). Plugging in these values (and noting that
βp(θ

j∗) = 1 and ζp(θ
j∗) = ζm by market clearing), we obtain closed-form expressions

for equilibrium expected excess returns for each stock:

E[ri]−rf =

AW
[
(1− ϕ)

(
βiσ

2
f + ζiζmσ

2
g +

v
Kσ

2
i

)
+ ϕ

(
βiψfσ

2
f + ζiψgσ

2
g + ψη

v
Kσ

2
i

)]
for i = 1, . . . ,K

AW
[
(1− ϕ)

(
βiσ

2
f + ζiζmσ

2
g +

1−v
N−Kσ

2
i

)
+ ϕ

(
βiψfσ

2
f + ζiψgσ

2
g

)]
for i = K + 1, . . . , N

(OA.16)

Throughout we have ignored the fact that the common factors are assumed to be

tradable excess returns on assets that are available in zero net supply. Therefore, they

satisfy the same pricing equation (OA.15). This equation pins down average returns

on f , g, and η:

E[f ] = AW (1− ϕ+ ϕψf )σ
2
f (OA.17)

E[g] = AW ((1− ϕ) ζm + ϕψg)σ
2
g (OA.18)

E[rη] = AW
(
(1− ϕ)σ2

η + ϕψησ
2
η,K

)
, (OA.19)
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where rη is an η-mimicking portfolio, σ2
η is the variance of the market-level granular

residual, η, in equation (OA.9) and σ2
η,K is the variance of the value-weighted large

stock granular residuals. We can also use equation (OA.15) to pin down the expected

excess return on the market:

E[rm]− rf = E[f ] + ζm · E[g] + E[rη], (OA.20)

We can then express the equilibrium expected returns for individual stocks as

E[ri]− rf =

βiE[f ] + ζiE[g] + AW(1− ϕ+ ϕψη)
v
K
σ2
i for i = 1, . . . , K

βiE[f ] + ζiE[g] + AW(1− ϕ) 1−v
N−Kσ

2
i for i = K + 1, . . . , N

(OA.21)

Having derived equilibrium risk-return relationships when investors trade a finite

number of stocks, we now consider the limiting case where the number of stocks N

increases to infinity, while a fixed number K of large stocks still account for a fixed

share v > 0 of the total stock market capitalization.

Proposition 1. (Expected excess returns)

In the limit as the total number of stocks N → +∞, equilibrium expected excess

returns on all stocks are given by

E[ri]− rf =

βiE[f ] + ζiE[g] + AW (1− ϕ+ ϕψη)
v
K
σ2
i for i = 1, . . . , K

βiE[f ] + ζiE[g] for i = K + 1, K + 2, . . .

(OA.22)

Furthermore, the market risk premium is given by

E[rm]− rf = E[f ] + ζm · E[g] + E[rη]. (OA.23)

If we specialize equation (OA.10) such that labor income does not load on g or the

granular residuals, we have that ϕg = 0, ϕη = 0, ψg = 0, and ψη = 0. In this case,

the risk premium expressions become in the limit as N → +∞):

E[f ] = AW (1− ϕ+ ϕψf )σ
2
f , (OA.24)

E[g] = AW ((1− ϕ) ζm)σ
2
g , (OA.25)

E[rη] = AW (1− ϕ)σ2
η, (OA.26)

79



E[ri]− rf =

βiE[f ] + ζiE[g] + AW (1− ϕ) v
K
σ2
i for i = 1, . . . , K

βiE[f ] + ζiE[g], for i = K + 1, K + 2, . . .

(OA.27)

and the market risk premium is still as given in equation (OA.23).

The following two propositions provide testable implications implied by the model,

and we provide the related derivations in Online Appendix OA.6.

Proposition 2 (Beta gap)

Let βmp and βfp represent the betas of a portfolio p of stocks. In the limit as N → +∞, if

the portfolio is comprised of all small stocks in the economy (i.e., i = K+1, K+2 . . .),

then the beta gap is given by

βmS − βfS = −

(
σ2
ϵ

σ2
f + σ2

ϵ

)
βS, (OA.28)

where σ2
ϵ is the variance of the IFF in the model economy (i.e., ϵ ≡ ζmg+rη and σ

2
ϵ ≡

ζ2mσ
2
g +σ

2
η). Furthermore, if βS > 0 (i.e., the empirically relevant case), βmS −βfS < 0.

If the portfolio is comprised of all large stocks in the economy (i.e., i = 1, 2, . . . K),

then the beta gap is given by

βmL − βfL =
1

ν

[
σ2
ϵ

σ2
f + σ2

ϵ

− βL
ζ2mσ

2
g − νσ2

i

σ2
f + σ2

ϵ

]
. (OA.29)

The sign of the large stock portfolio beta gap is ambiguous and depends on a number

of model parameters.

Proposition 3 (Small cap portfolio and IFF alphas)

Let αmj and αfj represent the alphas of an asset j with respect to a capital asset pricing

model (i.e., one-factor model) that uses either the value-weighted market excess return,

rm − rf , or f as its single factor. In the limit as N → +∞ and assuming the labor

income does not load on g or the granular residuals (i.e., ϕg = ϕη = ψg = ψη = 0),
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then the alphas on the portfolio of all small stocks in the economy are given by

αmS = βSE [f ]

[
ϕψfσ

2
ϵ

(1− ϕ+ ϕψf )σ2
f + (1− ϕ+ ϕψf )σ2

ϵ

]
ϕ→1→ σ2

ϵ

σ2
f + σ2

ϵ

βSE [f ] , and (OA.30)

αfS = 0. (OA.31)

Furthermore, assuming βS > 0 and ψf > 0 (i.e., the empirically-relevant cases),

αmS > 0. The alphas on the IRF are given by

αmϵ = AW

(
σ2
f

σ2
f + σ2

ϵ

)(
(1− ϕ+ ϕψf )σ

2
f + (1− ϕ) ζ2mσ

2
g + (1− ϕ)σ2

η

)
−AW (1− ϕ+ ϕψf )σ

2
f

ϕ→1→ −AW

(
σ2
ϵ

σ2
f + σ2

ϵ

)
ψfσ

2
f , and (OA.32)

αfϵ = AW (1− ϕ) ζ2mσ
2
g + AW (1− ϕ)σ2

η

ϕ→1→ 0. (OA.33)

Furthermore, assuming ψf > 0 (i.e., the empirically-relevant case), αmϵ < 0.
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OA.6 Details of model derivations

Using the definition of Ỹ , we can simplify the calculation of investor j’s expected

utility by applying the law of iterated expectations conditional on the common shocks:

− E[exp(−ACj)]

= −E[exp(−A[Yj +W (1 + rp(θ
j))])]

= −E[exp(−A[Y + εj +W (1 + rp(θ
j))])]

= −E
[
E[exp(−A[Y + εj +W (1 + rp(θ

j))])|f, η, ξ]
]

= −E

exp(−AY ) · E[exp(−Aεj)|f, η, ξ]︸ ︷︷ ︸
=exp(−AỸ )

· exp(−AW (1 + rp(θ
j)))


= −E

[
exp(−A[Ỹ +W (1 + rp(θ

j))])
]

(OA.34)

In the last line, the term that replaces Cj within the expectation is a function of only

common (not idiosyncratic) shocks, and can be computed as a weighted average of

returns on aggregate human capital rh ≡ Ỹ /E[Ỹ ] and financial assets rp(θ
j):

Ỹ +W (1 + rp(θ
j)) =

(
E
[
Ỹ
]
+W

)
︸ ︷︷ ︸

≡W

×


E
[
Ỹ
]

E
[
Ỹ
]
+W︸ ︷︷ ︸

≡ϕ

× Ỹ

E
[
Ỹ
]

︸ ︷︷ ︸
≡1+rh

+
W

E
[
Ỹ
]
+W︸ ︷︷ ︸

≡1−ϕ

×(1 + rp(θ
j))


= W

(
ϕ(1 + rh) + (1− ϕ)(1 + rp(θ

j))
)

(OA.35)

Moreover, rh and rp(θ
j) are both affine functions of independent normally-distributed

shocks; therefore, these returns are also normally distributed and expected utility is
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given by

− E
[
exp(−A[Ỹ +W (1 + rp(θ

j))])
]

= −E
[
exp(−AW [ϕ(1 + rh) + (1− ϕ)(1 + rp(θ

j))])
]

= − exp

(
−AW(1− ϕ)

(
1 + E[rp(θ

j)]− AW
2

(1− ϕ)V ar(rp(θ
j)) + AWϕCov(rh, rp(θ

j))

))
. . .

· · · × exp

(
−AWϕ(1 + E[rh]) +

A2W2

2
ϕ2V ar(rh)

)
(OA.36)

where the term appearing in the final line does not depend on investor j’s portfo-

lio choice θj. Therefore, after applying a monotone transformation to investor j’s

expected utility function and ignoring additive terms that do not depend on θj, we

obtain equation (OA.14) of the main text:

argmax
θj∈RN

{−E[exp(−ACj)]} = argmax
θj∈RN

{
E[rp(θ

j)]− AW
(
1− ϕ

2
V ar(rp(θ

j)) + ϕCov(rh, rp(θ
j))

)}
Next, we compute moments for portfolio returns. The realized return rp(θ

j) on

investor j’s stock portfolio is related to the common shocks by

rp(θ
j) =

N∑
i=1

θji ri +

[
1−

N∑
i=1

θji

]
rf

= rf +
N∑
i=1

θji (ri − rf )

= rf +
N∑
i=1

θji (E[ri]− rf ) +
N∑
i=1

θji (ri − E[ri])

= E[rp(θ
j)] +

N∑
i=1

θji (βi(f − E[f ]) + ζi(g − E[g]) + ηi)

= E[rp(θ
j)] +

(
N∑
i=1

θjiβi

)
· (f − E[f ]) +

(
N∑
i=1

θji ζi

)
· (g − E[g]) +

(
N∑
i=1

θji ηi

)
≡ E[rp(θ

j)] + βp(θ
j)(f − E[f ]) + ζp(θ

j)(g − E[g]) + ηp(θ
j)

(OA.37)
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The variance of the realized return is given by

V ar(rp(θ
j)) =

[
βp(θ

j)
]2
σ2
f +

[
ζp(θ

j)
]2
σ2
g +

K∑
i=1

[
θji
]2
σ2
i (OA.38)

while the covariance with the return on human capital rh is given by

Cov(rp(θ
j), rh) =

βp(θj)ψfσ2
f + ζp(θ

j)ψgσ
2
g +

v
K
ψη
∑K

i=1 θ
j
iσ

2
i if i = 1, . . . , K

βp(θ
j)ψfσ

2
f + ζp(θ

j)ψgσ
2
g if i = K + 1, . . . , N

(OA.39)

Partial derivatives of these moments with respect to the portfolio weight θji for stock

i are given by
∂

∂θji
E[rp(θ

j)] = E[ri]− rf (OA.40)

∂

∂θji
V ar(rp(θ

j)) = 2
[
βp(θ

j)βiσ
2
f + ζp(θ

j)ζiσ
2
g + θjiσ

2
i

]
(OA.41)

∂

∂θji
Cov(rp(θ

j), rh) =

βiψfσ2
f + ζiψgσ

2
g +

v
K
ψησ

2
i for i = 1, . . . , K

βiψfσ
2
f + ζiψgσ

2
g for i = K + 1, . . . , N

(OA.42)

For large stocks i = 1, . . . , K, the first-order condition for θji in the portfolio choice
problem (OA.14) is

0 =
∂

∂θji

[
E[rp(θ

j)]−AW
(
1− ϕ

2
V ar(rp(θ

j)) + ϕCov(rh, rp(θ
j))

)]
= E[ri]− rf −AW

[
(1− ϕ)

(
βp(θ

j)βiσ
2
f + ζp(θ

j)ζiσ
2
g + θjiσ

2
i

)
+ ϕ

(
βiψfσ

2
f + ζiψgσ

2
g +

v

K
ψησ

2
i

)]
= E[ri]− rf −AW

[
(1− ϕ)Cov(ri, rp(θ

j)) + ϕCov(ri, rh)
]

= E[ri]− rf −AW
[
βi
(
(1− ϕ)βp(θ

j) + ϕψf

)
σ2
f + ζi

(
(1− ϕ)ζp(θ

j) + ϕψg

)
σ2
g +

(
(1− ϕ)θji + ϕ

v

K
ψη

)
σ2
i

]
(OA.43)
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For small stocks i = K + 1, . . . , N the first-order condition for θji is

0 =
∂

∂θji

[
E[rp(θ

j)]−AW
(
1− ϕ

2
V ar(rp(θ

j)) + ϕCov(rh, rp(θ
j))

)]
= E[ri]− rf −AW

[
(1− ϕ)

(
βp(θ

j)βiσ
2
f + ζp(θ

j)ζiσ
2
g + θjiσ

2
i

)
+ ϕ

(
βiψfσ

2
f + ζiψgσ

2
g

)]
= E[ri]− rf −AW

[
(1− ϕ)Cov(ri, rp(θ

j)) + ϕCov(ri, rh)
]

= E[ri]− rf −AW
[
βi
(
(1− ϕ)βp(θ

j) + ϕψf

)
σ2
f + ζi

(
(1− ϕ)ζp(θ

j) + ϕψg

)
σ2
g + (1− ϕ)θjiσ

2
i

]
(OA.44)

Therefore, the first-order condition (OA.15) holds for all stocks. To obtain the equi-

librium risk-return relationship stated in equation (OA.16), we plug in the equilibrium

portfolio shares θj∗1 = · · · = θj∗K = v/K and θj∗K+1 = · · · = θj∗N = (1− v)/(N −K) into

the above first-order conditions. The normalization (OA.7) implies that β(θj∗) = 1,

and equation (OA.16) then follows immediately.

The proof of Proposition 1 is straightforward. The expected return on large stocks

i = 1, . . . , K does not change as N increases, so we only need to prove that the

expected excess return on each small stock i = K+1, K+2, . . . is given by E[ri]−rf =
βiE[f ]. Taking limits in the expression from equation (OA.21) directly gives the

desired result:

E[ri]− rf = βiE[f ] + AW(1− ϕ)
1− v

N −K
σ2
i︸ ︷︷ ︸

→0 as N→+∞

→ βiE[f ] (OA.45)

To get the result for the market risk premium, combine equation (OA.20) with the

fact that σ2
η → σ2

eta,K as N → ∞. In this case, we use σ2
η and σ2

η,K interchangeably

for notational simplicity.

OA.6.1 Derivations of model-implied beta gaps

In this subsection, we derive the expression for the beta gaps for the portfolio of

all large-cap and the portfolio of all small-cap stocks in our model economy. Equation

(OA.6) implies the return on a value-weighted portfolio of all large-cap stocks in the

economy is given by:

rL − E [rL] = βL (f − E [f ]) + ζL (g − E [g]) + ηL, (OA.46)
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where βL ≡ 1
K

K∑
i=1

βi, ζL ≡ 1
K

K∑
i=1

ζi ≡ ζm
ν
, and ηL ≡ 1

K

K∑
i=1

ηi. Similarly, returns on a

value-weighted portfolio of all small-cap stocks in the economy is given by:

rS − E [rS] = βS (f − E [f ]) + ηS, (OA.47)

where βS ≡ 1
N−K

N∑
i=K+1

βi and ηS ≡ 1
N−K

N∑
i=K+1

ηi. The assumption that 1
N−K

N∑
i=K+1

ζi =

0 implies that the small-cap portfolio return does not load on g. The large-cap

portfolio beta with respect to the value-weighted market return given in equation

(OA.9) is given by:

βmL =
COV (rL − E [rL] , rm − E [rm])

VAR (rm − E [rm])

=
COV (βLf + ζLg + ηL, f + ζmg + η)

VAR (f + ζmg + η)

=

COV
(
βLf + ζm

ν
g + 1

K

K∑
i=1

ηi, f + ζmg +
ν
K

K∑
i=1

ηi +
1−ν
N−K

N∑
i=K+1

ηi

)
σ2
f + ζ2mσ

2
g + σ2

i

[
ν2

K
+ (1−ν)2

N−K

]
=

βLσ
2
f +

ζ2m
ν
σ2
g +

ν
K
σ2
i

σ2
f + ζ2mσ

2
g + σ2

i

[
ν2

K
+ (1−ν)2

N−K

] . (OA.48)

The small-cap portfolio beta with respect to the value-weighted market return in

equation (OA.9) is given by:

βmS =
COV (rS − E [rS] , rm − E [rm])

VAR (rm − E [rm])

=
COV (βSf + ηS, f + ζmg + η)

VAR (f + ζmg + η)

=

COV
(
βSf + 1

N−K

N∑
i=K+1

ηi, f + ζmg +
ν
K

K∑
i=1

ηi +
1−ν
N−K

N∑
i=K+1

ηi

)
σ2
f + ζ2mσ

2
g + σ2

i

[
ν2

K
+ (1−ν)2

N−K

]
=

βSσ
2
f +

1−ν
N−Kσ

2
i

σ2
f + ζ2mσ

2
g + σ2

i

[
ν2

K
+ (1−ν)2

N−K

] . (OA.49)
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It is straighforward to show that the betas of the large- and small-cap portfolio with

respect to f are just βL and βS, respectively.

We define the beta gap as the difference between the VMF beta and the DMF

beta (i.e., for an asset i the beta gap is βVMF
i −βDMF

i or, in the context of the model,

the beta gap is βmi − βfi ). Therefore, the beta gap for the large-cap portfolio is given

by:

βmL − βfL =
βLσ

2
f + ζ2mσ

2
g +

ν
K
σ2
i

σ2
f + ζ2mσ

2
g + σ2

i

[
ν2

K
+ (1−ν)2

N−K

] − βL

=
(1− βL) ζ

2
mσ

2
g +

(
ν
K
− βL

)
νσ2

i

σ2
f + ζ2mσ

2
g + σ2

i

[
ν2

K
+ (1−ν)2

N−K

] 1

ν

=
ζ2mσ

2
g +

ν2

K
σ2
i − βL

(
ζ2mσ

2
g − νσ2

i

)
σ2
f + ζ2mσ

2
g + σ2

i

[
ν2

K
+ (1−ν)2

N−K

] 1

ν
. (OA.50)

In the limit as N → ∞, the large-cap portfolio beta gap is given by:

lim
N→∞

βmL − βfL =
1

ν

[
σ2
ϵ

σ2
f + σ2

ϵ

− βL
ζ2mσ

2
g − νσ2

i

σ2
f + σ2

ϵ

]
(OA.51)

where σ2
ϵ is the variance of the IFF in the model economy (i.e., ϵ ≡ ζmg + rη and

σ2
ϵ ≡ ζ2mσ

2
g + σ2

η). So, the sign of the large-cap portfolio beta gap is ambiguous in the

context of the model, and depends on a number of parameters (e.g., βL, ζm, σg, σi,

ν, etc.). The beta gap for the small-cap portfolio is given by:

βmS − βfS =
βSσ

2
f +

1−ν
N−Kσ

2
i

σ2
f + ζ2mσ

2
g + σ2

i

[
ν2

K
+ (1−ν)2

N−K

] − βS

=
(1− βS (1− ν)) 1−ν

N−Kσ
2
i − βS

(
σ2
i
ν2

K
+ ζ2mσ

2
g

)
σ2
f + ζ2mσ

2
g + σ2

i

[
ν2

K
+ (1−ν)2

N−K

] . (OA.52)
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In the limit as N → +∞, the small-cap portfolio beta gap is given by:

lim
N→∞

βmS − βfS = −

(
ζ2mσ

2
g + σ2

i
ν2

K

σ2
f + ζ2mσ

2
g + σ2

i
ν2

K

)
βS

≡ −

(
σ2
ϵ

σ2
f + σ2

ϵ

)
βS, (OA.53)

So, the small cap portfolio beta gap is unambiguously less than zero as long as there is

a large number of small-cap stocks and as long as βS > 0 (i.e., the empirically-relevant

case). Furthermore, the beta gap is proportional to the true small-cap portfolio beta

where the constant of proportionality is the ratio of the IFF variance to that of the

value-weighted market portfolio variance.

OA.6.2 Derivations of model-implied small-cap portfolio and
IFF CAPM alphas

In this subsection, we derive the CAPM alphas of the small-cap portfolios and the

IFF (i.e., ϵ ≡ ζmg + rη) with respect to the CAPM when either the value-weighted

market factor, rm − rf , is used as the market factor in the CAPM, or f is used. We

assume we are in the case where N → +∞, and labor income does not load on g or

the granular residuals (i.e., ϕg = ϕη = ψg = ψη = 0). We proceed by first stating

the expected excess returns on the small-cap portfolio and the IFF. Next, we state

expected returns on each asset under the CAPM when either rm − rf or f is used as

the market factor. The difference between the true expected excess return and the

model-based expected excess returns are the implied alphas under each factor model.

Equation (OA.27) implies the expected excess return on the small-cap portfolio

is:

E [rS]− rf = βSE [f ] . (OA.54)

The assumption that 1
N−K

N∑
i=K+1

ζi = 0 implies that the small-cap portfolio expected

excess return does not load on g. The expected excess return on the IFF is:

E [ϵ] = ζmE [g] + E [rη] (OA.55)
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When f is used as the market factor, the measured small-cap portfolio exposure to

the market is given by βS so that the implied alpha is:

αfS = E [rS]− rf − βS (E [f ])

= βSE [f ]− βSE [f ]

= 0 (OA.56)

In other words, f correctly prices the small-cap portfolio, as expected. When rm is

used as the market factor, the measured small-cap portfolio exposure to the market

is given in equation (OA.49) so that the implied alpha is:

αmS = E [rS]− rf − βmS (E [rm]− rf )

= βSE [f ]− βS

(
σ2
f

σ2
f + ζ2mσ

2
g + σ2

i
ν2

K

)
(E [f ] + ζmE [g] + E [rη])

where the second line makes use of the expression for the expected excess return on

rm in equation (OA.20). Making use of the expressions for E [f ], E [g], and E [rη] in

equations (OA.24)-(OA.26) and simplifying:

αmS = βSE [f ]− βS

 E[f ]
AW(1−ϕ+ϕψf)

E[f ]
AW(1−ϕ+ϕψf)

+ ζm
E[g]

AW(1−ϕ) +
E[rη ]

AW(1−ϕ)

 (E [f ] + ζmE [g] + E [rη])

= βSE [f ]

1− E [f ] + E [ϵ]

E [f ] + E [ϵ]
(1−ϕ+ϕψf)

(1−ϕ)


= βSE [f ]

1− (1− ϕ+ ϕψf )σ
2
f + (1− ϕ) ζ2mσ

2
g + (1− ϕ)σ2

η

(1− ϕ+ ϕψf )σ2
f +

(
(1− ϕ) ζ2mσ

2
g + (1− ϕ)σ2

η

) (1−ϕ+ϕψf)
(1−ϕ)


Converting back to variances using equations (OA.24)-(OA.26) and noting the defi-
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nition σ2
ϵ ≡ ζ2mσ

2
g + σ2

η, and simplifying:

αmS = βSE [f ]

1− (1− ϕ+ ϕψf )σ
2
f + (1− ϕ) ζ2mσ

2
g + (1− ϕ)σ2

η

(1− ϕ+ ϕψf )σ2
f +

(
(1− ϕ) ζ2mσ

2
g + (1− ϕ)σ2

η

) (1−ϕ+ϕψf)
(1−ϕ)


= βSE [f ]

1− (1− ϕ+ ϕψf )σ
2
f + (1− ϕ)σ2

ϵ

(1− ϕ+ ϕψf )σ2
f + (1− ϕ)σ2

ϵ
(1−ϕ+ϕψf)

(1−ϕ)


= βSE [f ]

[
1−

(1− ϕ+ ϕψf )σ
2
f + (1− ϕ)σ2

ϵ

(1− ϕ+ ϕψf )σ2
f + (1− ϕ+ ϕψf )σ2

ϵ

]

= βSE [f ]

[
ϕψfσ

2
ϵ

(1− ϕ+ ϕψf )σ2
f + (1− ϕ+ ϕψf )σ2

ϵ

]
> 0. (OA.57)

Assuming βS > 0 and ψf > 0 (which are the empirically-relevant cases). As ϕ → 1,

we have:

lim
ϕ→1

αmS =
σ2
ϵ

σ2
f + σ2

ϵ

βSE [f ] > 0. (OA.58)

So, as wealth in the economy becomes more concentrated in sources other than fi-

nancial wealth, the measured αmS converges to the (negative) beta gap in equation

(OA.53) (multiplied by the expected return on f).

When f is used as the market factor, the measured IFF exposure to the market

is given by:

βfϵ =
COV (ϵ, f)

VAR (f)

=
COV (ζmg + rη, f)

VAR (f)

= 0. (OA.59)

When rm is used as the market factor, the measured IFF exposure to the market is
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given by:

βmϵ =
COV (ϵ, rm)

VAR (rm)

=
COV (ζmg + rη, rm)

VAR (rm)

=

COV
(
ζmg +

ν
K

K∑
i=1

ηi, f + ζmg +
ν
K

K∑
i=1

ηi

)
σ2
f + ζ2mσ

2
g +

ν2

K
σ2
i

=
ζ2mσ

2
g +

ν2

K
σ2
i

σ2
f + ζ2mσ

2
g +

ν2

K
σ2
i

=
σ2
ϵ

σ2
f + σ2

ϵ

(OA.60)

Given the expression for the expected return on ϵ in equation (OA.55), the expres-

sion for βfϵ in equation (OA.59), and the expression for the expected return on f in

equation (OA.24), the alpha implied when f is used as the market factor is:

αfϵ = E [ϵ]− βfϵ E [f ]

= ζmE [g] + E [rη]

= AW (1− ϕ) ζ2mσ
2
g + AW (1− ϕ)σ2

η (OA.61)

In the limit as ϕ→ 1, this yields:

lim
ϕ→1

αfϵ = 0. (OA.62)

Given the expression for the expected return on ϵ in equation (OA.55), the expression

for βmϵ in equation (OA.60), and the expression for the expected excess return on rm
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in equation (OA.20), the alpha implied when rm − rf is used as the market factor is:

αmϵ = E [ϵ]− βmϵ (E [rm]− rf )

= ζmE [g] + E [rη]−

(
σ2
ϵ

σ2
f + σ2

ϵ

)
(E [f ] + ζmE [g] + E [rη])

= −

(
σ2
ϵ

σ2
f + σ2

ϵ

)
E [f ] + ζmE [g]

(
1− σ2

ϵ

σ2
f + σ2

ϵ

)
+ E [rη]

(
1− σ2

ϵ

σ2
f + σ2

ϵ

)

=

(
σ2
f

σ2
f + σ2

ϵ

)
E [f ] + ζmE [g]

(
σ2
f

σ2
f + σ2

ϵ

)
+ E [rη]

(
σ2
f

σ2
f + σ2

ϵ

)
− E [f ]

=

(
σ2
f

σ2
f + σ2

ϵ

)
(E [f ] + ζmE [g] + E [rη])− E [f ]

Making use of the expressions for E [f ], E [g], and E [rη] in equations (OA.24)-(OA.26)

and simplifying:

αmϵ = AW

(
σ2
f

σ2
f + σ2

ϵ

)(
(1− ϕ+ ϕψf )σ

2
f + (1− ϕ) ζ2mσ

2
g + (1− ϕ)σ2

η

)
−AW (1− ϕ+ ϕψf )σ

2
f < 0. (OA.63)

In the limit as ϕ→ 1, this yields:

lim
ϕ→1

αmϵ = −AW

(
σ2
ϵ

σ2
f + σ2

ϵ

)
ψfσ

2
f < 0. (OA.64)

OA.7 Evidence on the share of non-public-equity

market wealth

According to the intuition developed in our theoretical model from the previous

section (OA.5), we expect the granular residual to have a relatively small price of

risk when the labor share of wealth in the economy (ϕ) is close to one. In the limit,

the granular residual’s price of risk should go to zero. More generally, this argument

applies in the real economy when sources of investor wealth other than public equity

dominate the wealth portfolio (assuming the granular residual associated with large
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cap stocks is uncorrelated with these other sources of wealth). In this section, we

highlight some evidence from the US economy that suggests public equity comprises

a relatively small fraction of the overall wealth portfolio.

First, public firms are an important part, but not the only part, of the U.S.

economy. For example, Davis et al. (2006) estimate using Census data that public

firms comprised only about 30% of total employment in the U.S. over their sample.

For many investors, news about expected labor and/or entrepreneurial income (and

potentially uninsurable risk associated with these factors) may be more important

than dividends from investments in public firms. In the US, where stock market

participation is particularly high relative to most other developed countries, SCF

data indicate that the average household has about one fifth of total financial wealth

in the stock market. While equity shares are higher among wealthier households,

the increase is purely driven by equity in private businesses in which the survey

respondent has a role in managing (see, e.g., Gomez, 2017). Piketty et al. (2017)

report that approximately 70% of total national income is labor income, and Lustig

et al. (2013) estimate that stock market wealth and total non-human wealth only

comprise 1% and 8% of total wealth, respectively. Along these lines, van Binsbergen

and Opp (2019) report that that firm net payout has never exceeded 20% of U.S.

personal consumption expenditures.

Next, as we show in Figure 2, the industry distribution of “megacap” firms (those

in the top 2.5% of the market value distribution, using NYSE market cap break-

points) is not even representative of the industry distribution of the rest of the public

equity market and exhibits much more pronounced and volatile time-variation. It

also unlikely that idiosyncratic shocks to these megacap firms are representative of

other sources of wealth in the economy, and therefore are not priced by the marginal

utility of the representative investor.

Finally, in a world where US public equity is only a small portion of many sources

of macroeconomic risk – such as those associated with other traded financial assets,

private equity, real estate, uninsurable idiosyncratic risk, and human capital returns

– that can enter the stochastic discount factor, there are many other examples (other

than our theoretical model from section OA.5) in which changes in the value of public

equity induced by idiosyncratic shocks to large public firms do not command high

risk premia. See, e.g., Mayers (1973), Fama and French (1996), Campbell (1996),

Heaton and Lucas (2000), Malloy et al. (2009), Campbell et al. (2016), and Schmidt
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(2022), among many others.

So, given the above evidence that the majority of investor wealth in the US econ-

omy is not comprised of public equities (let alone megacaps), it is likely that any

granular residual generated by these megacaps has a low price of risk that differs

substantially from that of the dominant market factor as in our theoretical model.

OA.8 Additional motivating evidence on granular-

ity

To support our discussion and empirical tests in the main text, here we provide

some empirical examples of information releases which were associated with large

single-day changes in the CRSP value-weighted index.

Given the significant market concentration among largest stocks, drastic changes

in a large company’s stock price can singlehandedly pull down entire market returns

by nontrivial amounts. Figure OA.14 plots cumulative abnormal stock returns for

four megacap companies around the events of interest (blue lines) along with their

counterfactual impacts on the value-weighted market index return (red lines). The

cumulative abnormal returns are constructed by aggregating residuals obtained from

a single market factor model. To do so, we estimate a stock’s exposure on the market

factor (i.e., beta) from an ordinary least squares regression of excess individual stock

returns on the excess CRSP value-weighted index returns, using daily observations

from 5 months to 1 month prior to the event. To demonstrate a megacap company’s

nontrivial contribution to the value-weighted market index return, we estimate its

counterfactual impacts as differences in returns of the value-weighted market index

with the stock of interest and without the stock. This latter calculation captures

the direct impact of each company-specific market return on the index relative to a

counterfactual in which it had had identical returns as the value-weighted average of

other firms over the same period. The red vertical lines indicate the event date of

interest.

Starting from the top-left quadrant and moving clockwise, we have the following

events. The first three examples are associated with earnings announcements of

Microsoft (positive news), GE (negative news), and Apple (positive earnings, but

below expectations, triggering a selloff).61 Prior to these announcements, their stocks

61For more details, see Fisher, “Microsoft’s Profit Up 75% in Quarter.” New York Times, January
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accounted for sizable shares in the CRSP value-weighted index; Microsoft, GE, and

Apple had weights of 2.8%, 2.5%, and 3.2% of the index. Each of these announcements

was associated with a change in market value of around 15-20%; thus, the difference

between the index with and without each stock in each month is 0.4%, -0.3%, and

-0.4%, respectively. The last example comes from IBM, against which a Federal

court, in favor of Telex, handed down an antitrust ruling.62 Given the IBM’s weight

of 5.3% prior to the announcement, its 20% abnormal returns associated with the

announcement triggered an additional 1% decline in the index in September 1973.

As discussed above, the distinction between aggregate and idiosyncratic shocks

becomes quite blurry when one considers a large shock experienced by one of the

largest firms in the economy. Large changes in large firms’ valuations (e.g., earnings

announcements) may act as bellwethers for other firms. In our examples above, GE’s

disappointing earnings announcement, which was driven by losses in its financial ser-

vices division in the spring of 2008, may indeed have provided a negative signal about

the fortunes of other companies in the financial services sector prior to the burst of

the financial crisis. Likewise, Microsoft’s surprisingly positive earnings announcement

in 1999 was likely to be perceived as conveying positive news for other tech stocks

as well, and perhaps the Telex ruling conveyed some useful information about future

antitrust policy which might have aggregate implications.63 Nonetheless, it seems

reasonable to assume that investors likely viewed fluctuations in the market index

driven by these shocks in a different way from more systematic drivers of returns.

OA.9 GARCH models: Additional details

We estimate parameters in the GARCH volatility forecasting models by numerical

maximum likelihood estimation (MLE). After estimating parameters, we calculate

their asymptotic standard errors by approximating the first and second derivatives

of the log-likelihood function at maximum likelihood estimates. Reported standard

20, 1999; Associated Press, “Shares Sink as G.E. Disappoints.” New York Times, April 12, 2008;
and Wingfield, “Heady Returns”, New York Times, January 24, 2014.

62See, e.g., Vartan, “Stocks Rise Again in Heavy Trading.” New York Times, September 26, 1973
and Vartan “Prices of Stocks Climb Despite Plunge by I.B.M.” New York Times, September 18,
1973.

63Note that, to the extent that the news conveyed by these announcements had a large impact on
valuations of other stocks, the differences between the index return with and without the stocks in
question would be pushed towards zero.

95



errors are computed using the “outer product” method. Details for numerical MLE

estimation and calculation of asymptotic standard errors can be found in Hamilton

(Time Series Analysis, 1994, pp. 133-148)).

The non-trivial difference between the DMF- and the VMF-based volatility fore-

casts supports our conjecture that the IFF adds noise to the lagged forecasting errors

used to generate conditional variance forecasts when using the VMF. Additional evi-

dence for this conjecture can be found in Byun (2016), who shows that cross-sectional

dispersion in the returns of different stocks, a measure of aggregate idiosyncratic risk,

does not help forecast volatility of the S&P 500 index when using the cross-sectional

dispersion as an additional explanatory variable in GARCH forecasting models. See

Byun (2016) for a detailed explanation and also for an alternative approach through

which cross-sectional dispersion measures can improve volatility forecasts indirectly.

OA.9.1 Alternative GARCH models

This section provides more details related to the GJR-GARCH and E-GARCH

models. In a study of the relationship between expected excess stock returns and

volatility, Glosten et al. (1993) introduced the GJR-GARCH model, which allows

for a larger feedback from prior squared negative returns relative to positive returns.

Denoting by It an indicator variable for a positive forecasting error in period t, the

conditional variance is given by

σ2
t+1 = α0 + α1u

2
t + α2σ

2
t + α3Itu

2
t , (OA.65)

where It = 1 for ut > 0 and 0 otherwise.

Next, Nelson (1991) proposed the EGARCH model, which specifies the conditional

variance in logarithmic form as

ln(σ2
t+1) = α0 + α1 (|ũt| − E |ũt|) + α2 ln(σ

2
t ) + α3ũt, (OA.66)

where ũt = ut/σt is a standardized forecast error in period t and E |ũt| = 2/π for a

normally distributed ũt. Note that the above asymmetric GARCH models capture

the leverage effect through α3: with α3 < 0, the conditional variance (σ2
t+1) is higher

for a negative than for a positive forecasting error (ut).
64

64The recognition of the leverage effect goes back to Black (1976), noting a negative correlation
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OA.10 Constructing and controlling for orthogo-

nal factors, gt+1

Even if we estimate βp consistently, our second-stage estimates of the market

risk premium, λ1, in equation (26) will be biased unless we control for exposure to

other common, priced factors gt+1, or if it happens to be the case that βp and ζp are

uncorrelated in the cross-section, or if λ2 = 0. To address this issue, we use results

from the PCA analysis to hedge test asset exposure to these gt+1 factors.

We assume that the PCs adequately span gt+1. This is reasonable given our test

assets because the PCs are constructed to span the space of test asset returns by

construction, and therefore they will also span the unobservable gt+1 in our sample.

By assumption and to consistently estimate λ1, we need gt+1 to be orthogonal to ft+1

in our tests (i.e., cases where we consider either VMF or DMF as proxies for ft+1).

Accordingly, in tests that use the VMF, we orthogonalize PCs to this factor in our

full sample (1963-2021) and take these as our empirical proxies for gt+1. In tests that

use the DMF, we need not orthogonalize the PCs because they are already orthogonal

to the DMF by construction.

Using our PCs as proxies for gt+1 has a few advantages. First, as noted above, these

PCs span the unobservable gt+1 in our sample. Second, controlling for gt+1 allows

us to consistently estimate the market risk premium, λ1, for reasons similar to those

articulated in Giglio and Xiu (2021). Third, PCs offer a statistical characterization

of factors that explain average returns in the cross-section, and this obviates the need

for us to take a stand on which extant factor model should be used for such a purpose.

Given the empirical proxies for the factors, gt+1, we would like to construct test

asset returns that are hedged of exposure to these factors so that we can use these

hedged returns to estimate λ1 in standard cross-sectional regressions and to avoid

the need to estimate risk premia associated with the gt+1 (which effectively imposes

our model’s null hypothesis that risk premia on gt+1 are equal to their time series

averages), which reduces noise in the estimated λ1 (under the null). We do this

in a manner such that the hedged returns represent returns on (ex post) tradable

portfolios given g1+t. Specifically, for each portfolio we estimate equation (24) using

our full data (1963-2021), which yields estimates of βp and ζp. We then construct the

between current returns and future volatility, and is further investigated by Christie (1982). Ac-
cording to the leverage effect, a reduction in the equity value would raise the debt-to-equity ratio,
hence raising the riskiness of the firm’s equity as manifested by an increase in future volatility.
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month-t+1 hedged returns, rhedgedp,t+1 according to equation (25). We construct separate

rhedgedp,t+1 for both the VMF and the DMF, and use these in the respective tests of each

factor.

In our main analysis, we choose to use five PCs to construct gt+1 for parsimony,

although our results are insensitive to this choice.65 We also provide results without

hedging gt+1 (i.e., when ft+1 is the only factor in equation (24)), and find our main

conclusions about the beta gap are insensitive to this choice.

OA.11 Bootstrap procedure for estimating stan-

dard errors and p-values

We use the following bootstrap procedure to estimate standard errors and p-values

whenever indicated in our tables. We begin by assuming that our PCs, the DMF, and

the IFF are fixed within a given sample of data (i.e., we do not sample from portfolio

returns then recompute the PCA, the DMF, and the IFF within each simulated

sample). We then sample the same number of periods of data as in our sample of

interest (with replacement) 10,000 times, recomputing the statistic of interest each

time. Reported standard errors are simply the standard deviation of the simulated

statistics. P-values are the number of simulated statistics that satisfy whatever testing

criterion in which we are interested (as a fraction of the total number of simulations).

This bootstrap procedure effectively adjusts for the generated regressor problem when

computing standard errors and p-values in our cross-sectional two-stage regressions.

65This is true as long as we use approximately three or more PCs so that we can adequately span
the return space not spanned by market return proxies.
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Figure OA.1: Impulse response functions to PCs (including COVID pandemic)

Note. This figure displays impulse response functions of selected macroeconomic aggregates (see Online Appendix
OA.4 for more details) to scaled versions of the DMF and to a linear projection of VMF onto PCs two and three
where the weights are obtained from a full-sample multivariate linear regression of the CRSP value-weighted market
excess returns on PCs one through three as described by equation (OA.5). Monthly returns are compounded to the
quarterly frequency to match that of the macroeconomic aggregates. The point estimates represent the impact of a
standard deviation increase in the predictor variable on each macroeconomic aggregate. The initial point estimates
(i.e., when the horizon is equal to one) correspond to the contemporaneous response of each macroeconomic aggregate
to each predictor variable. The error bars indicate 95% confidence intervals computed using Newey-West standard
errors with 10 lags. The descriptions of the macroeconomic variables can be found in the main text. All data are
from the 1963-2021 sample. Additional details on the estimation procedure can be found in Online Appendix OA.4.
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Figure OA.2: Impulse response functions to PCs (additional PCs)

Note. This figure displays impulse response functions of selected macroeconomic aggregates (see Online Appendix
OA.4 for more details) to scaled versions of the DMF and to a linear projection of VMF onto PCs two through
three, two through five, and two through ten where the weights are obtained from a full-sample multivariate linear
regression of the CRSP value-weighted market excess returns on PCs as described by equation (OA.5). Monthly
returns are compounded to the quarterly frequency to match that of the macroeconomic aggregates. The point
estimates represent the impact of a standard deviation increase in the predictor variable on each macroeconomic
aggregate. The initial point estimates (i.e., when the horizon is equal to one) correspond to the contemporaneous
response of each macroeconomic aggregate to each predictor variable. The error bars indicate 95% confidence intervals
computed using Newey-West standard errors with 10 lags. The descriptions of the macroeconomic variables can be
found in the main text. All data are from the 1963-2019 sample. Additional details on the estimation procedure can
be found in Online Appendix OA.4.
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Figure OA.3: Impulse response functions to PCs (additional PCs, rolling estimation)

Note. This figure displays impulse response functions of selected macroeconomic aggregates (see Online Appendix
OA.4 for more details) to scaled versions of the DMF and to a linear projection of VMF onto PCs two through three,
two through five, and two through ten where the weights are obtained from a rolling multivariate linear regression of
the CRSP value-weighted market excess returns on PCs as described by equation (OA.5) using a centered 60-month
rolling window. Monthly returns are compounded to the quarterly frequency to match that of the macroeconomic
aggregates. The point estimates represent the impact of a standard deviation increase in the predictor variable on
each macroeconomic aggregate. The initial point estimates (i.e., when the horizon is equal to one) correspond to the
contemporaneous response of each macroeconomic aggregate to each predictor variable. The error bars indicate 95%
confidence intervals computed using Newey-West standard errors with 10 lags. The descriptions of the macroeconomic
variables can be found in the main text. All data are from the 1963-2019 sample. Additional details on the estimation
procedure can be found in Online Appendix OA.4.
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Figure OA.4: Impulse response functions to PCs (including GR, rolling estimation)

Note. This figure displays impulse response functions of selected macroeconomic aggregates (see Online Appendix
OA.4 for more details) to scaled versions of the DMF, to a linear projection of VMF onto PCs two through five where
the weights are obtained from a rolling multivariate linear regression of the CRSP value-weighted market excess
returns on PCs as described by equation (OA.5), and to the associated estimated granular residual (i.e., the residual
from the regression) using a centered 60-month rolling window. Monthly returns are compounded to the quarterly
frequency to match that of the macroeconomic aggregates. The point estimates represent the impact of a standard
deviation increase in the predictor variable on each macroeconomic aggregate. The initial point estimates (i.e., when
the horizon is equal to one) correspond to the contemporaneous response of each macroeconomic aggregate to each
predictor variable. The error bars indicate 95% confidence intervals computed using Newey-West standard errors
with 10 lags. The descriptions of the macroeconomic variables can be found in the main text. All data are from the
1963-2019 sample. Additional details on the estimation procedure can be found in Online Appendix OA.4.
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Figure OA.5: Beta comparison between various market proxies and the VMF
Panel 1: DMF. Panel 2: VMF projection (3 PCs)

Panel 3: VMF projection (5 PCs) Panel 4: VMF projection (10 PCs)

Note. This figure compares portfolio betas estimated using different proxies for the market portfolio to those estimated
using the VMF. Panel 1 uses the DMF as a market proxy and Panels 2-4 use the VMF projected onto various numbers
of PCs (3, 5, and 10, respectively) using the projection described in equation (OA.5). Projections of the VMF onto
PCs are done using either the full sample of data or using a centered rolling window of 60 months. The VMF is the
CRSP value-weighted market index and the DMF is that constructed using one PC. Each data point represents an
estimated beta from among our full (value-weighted) 372 portfolio set. The red dotted line in each plot is a 45 degree
line. All data are from the 1963-2021 sample.
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Figure OA.6: Time-series behavior of VMF, DMF, and IFFs estimated from alterna-
tive models

Panel 1: CRSP VW index and IFF

Panel 2: GARCH volatility (log σt) Panel 3: Differences (log σDMF
t − log σV MF

t )

Note. This figure highlights the magnitudes of estimated IFFs and estimated volatilities of related indexes. Panel
1 plots kernel density estimates of monthly excess returns on the CRSP value-weighted index (VMF) together with
densities for IFFs from DMFs estimated using either the first PC or the CRSP equal-weighted market index. Panel
2 plots in-sample forecasts for the conditional volatility of the VMF (on a log scale), obtained by estimating a
GARCH(1,1) model. The blue dotted line represents the conditional volatility forecasts obtained from the DMF
(using a model with one PC), whereas red solid line represents those from the VMF. Panel 3 plots log differences in
those volatility forecasts. All data are from the 1963-2021 sample.
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Figure OA.7: Beta gap and expected return-beta relationship for 25 size-by-book-to-
market-sorted portfolios

Panel 1: Beta gap

Panel 2a: No controls Panel 2b: 5 PC controls

Note. This figure plots the beta gap (βV MF
p − βDMF

p ) as a function of each portfolio’s average log market equity
(Panel 1), and SML estimates with and without the hedging procedure described by equation (25) (Panel 2) for
size-by-book-to-market-sorted portfolios. Panel 1: The red line in each plot is the OLS best fit line. Log-size is
computed as the average of each portfolio’s monthly log market capitalization. Panel 2: Panel 2a uses unhedged
portfolio returns, while Panel 2b uses returns that are hedged of exposure to the first five PCs. The red (blue) line in
is constructed from full-sample market betas estimated using the VMF (DMF). The VMF is the CRSP value-weighted
market index and the DMF is that constructed using one PC. The black line in is the SML implied by the average
of VMF. Each number refers to the portfolio number in the sort. The first number refers to the first sorting variable
(size), and the second number refers to the second sorting variable (book-to-market). For example, portfolio “15” is
“small-value” and portfolio “51” is “large-growth.” All data are from the 1963-2021 sample.
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Figure OA.8: Expected return-beta relationship for all portfolios (with varying num-
ber of PCs used for hedging)

Panel 1: No controls Panel 2: 3 PC controls

Panel 3: 5 PC controls (Baseline) Panel 4: 7 PC controls

Panel 5: 10 PC controls Panel 6: 15 PC controls

Note. This figure displays SML estimates for various portfolio sorts, with and without the hedging procedure de-
scribed by equation (25) using up to 15 PCs as controls. The red (blue) line is constructed from full-sample market
betas estimated using the VMF (DMF). The VMF is the CRSP value-weighted market index and the DMF is that
constructed using one PC. The black line is the SML implied by the average of VMF. We use all 372 portfolios from
the PCA as test assets in this case, which are described in Online Appendix Table OA.1. All data are from the
1963-2021 sample.
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Figure OA.9: Asset pricing statistics by portfolio set (imposing normalization restric-
tions)

Panel 1: StdDev of market exposures, Std(βp) Panel 2: Market risk premium estimates, λ1

Panel 3: StdDev of estimated risk premia, Std(λ1 · βp) Panel 4: R2 from Expected Return-βp regression

Note. This figure plots comparisons of statistics related to SMLs implied by the VMF and the DMF using specific
sets of test assets (described on the x axes) to construct various respective SMLs. In this case, we rotate the first five
PCs so that they satisfy the normalization restrictions in equations (3) and (4). All portfolio returns are hedged with
respect to the rotated PCs using the procedure described by equation (25). The VMF is the CRSP value-weighted
market index and the DMF is that constructed using one PC. The test asset groups are based on portfolio sets are
based portfolios obtained from Kenneth French’s webpage and described in Online Appendix Table OA.1. The “all”
group uses all portfolios as test assets. Panel 1 plots the standard deviation of market betas of each portfolio group
using each respective market proxy. Panel 2 plots the cross-sectional-regression-implied market risk premium from
each set of test assets. Panel 3 plots the standard deviation of the risk premia for portfolios in each test asset set
implied by each model. Panel 4 plots R-squared values implied by each cross-sectional regression. All data are from
the 1963-2021 sample.
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Figure OA.10: Asset pricing statistics by factor model

Panel 1: Market risk premium estimates, λ1 Panel 2: StdDev of estimated risk premia, Std(λ1 · βp)

Panel 3: R2 from Expected Return-βp regression Panel 4: Mean absolute pricing error (MAPE)

Note. This figure plots comparisons of asset pricing statistics implied by the VMF and the DMF. In this case we use
portfolio returns that are hedged with respect to factors from popular factor models along with the usual five PCs
using the procedure described by equation (25). In all cases, we remove the market factor from each model and replace
it with the VMF or the DMF. In results ”ex Size” we remove the size factor from each model (except for the DHS
model, which does not include a size factor). The VMF is the CRSP value-weighted market index and the DMF is that
constructed using one PC. We use all 372 value-weighted portfolios as test assets, which were obtained from Kenneth
French’s webpage and described in Online Appendix Table OA.1. Panel 1 plots the cross-sectional-regression-implied
market risk premium from each factor model. Panel 2 plots the standard deviation of the risk premia for portfolios
in each test asset set implied by each factor model. Panel 3 plots r-squared values implied by each cross-sectional
regression. Panel 4 plots the mean absolute pricing error (α) from time series regressions of portfolio returns on all
factors using each respective market proxy for each factor model. All data are from the 1963-2021 sample.
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Figure OA.11: Asset pricing statistics by factor model (equal-weighted test assets)

Panel 1: Market risk premium estimates, λ1 Panel 2: StdDev of estimated risk premia, Std(λ1 · βp)

Panel 3: R2 from Expected Return-βp regression Panel 4: Mean absolute pricing error (MAPE)

Note. This figure plots comparisons of asset pricing statistics implied by the VMF and the DMF. In this case we use
portfolio returns that are hedged with respect to factors from popular factor models rather than PCs as in Figure 8,
but still according to equation (25). In all cases, we remove the market factor from each model and replace it with the
VMF or the DMF. In results “ex Size” we remove the size factor from each model (except for the DHS model, which
does not include a size factor). The VMF is the CRSP value-weighted market index and the DMF is that constructed
using one PC. We use all 372 equal-weighted portfolios as test assets, which were obtained from Kenneth French’s
webpage and described in Online Appendix Table OA.1. Panel 1 plots the cross-sectional-regression-implied market
risk premium from each factor model. Panel 2 plots the standard deviation of the risk premia for portfolios in each
test asset set implied by each factor model. Panel 3 plots r-squared values implied by each cross-sectional regression.
Panel 4 plots the mean absolute pricing error (α) from time series regressions of portfolio returns on all factors using
each respective market proxy for each factor model. All data are from the 1963-2021 sample.
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Figure OA.12: Value-weighted portfolio loadings on PCs

Note. This figure plots the average loadings of all 372 value-weighted portfolios we use as test assets (described in
Online Appendix Table OA.1 on scaled PCs. In particular, the first PC is simply the DMF (i.e., a projection of VMF
onto the first PC). Higher PCs are scaled to have the same volatilities as the VMF. The average loading of portfolios
on the first (scaled) PC is computed according to equation (3) where the weights, wi are computed as using average
market capitalizations of each portfolio over the entire sample, and takes on a value of 0.993. Average portfolio
loadings on higher (scaled) PCs are computed as equal-weighted averages according to equation (4). All data are from
the 1963-2021 sample.
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Figure OA.13: PCA explained variation

Panel 1: EW and VW PCA explained variation

Panel 2: VW explained by EW

Note. Panel 1: This figure plots the cumulative share of variance explained by the first k principal components as
a function of k, for two large sets of characteristic-sorted portfolios over the post-1963 sample. The black line plots
this share of variance explained from a PCA using equal-weighted portfolios, while the green line plots the analogous
object for value-weighted portfolios. Panel 2: This figure plots the same cumulative shares of variance from Panel 1
for all PCs, and plots the share of VW PC variance explained by k EW PCs. These PCAs use 372 portfolios described
in Online Appendix Table OA.1. All data are from the 1963-2021 sample.
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Figure OA.14: Examples of aggregate effects of announcements for megacap compa-
nies
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Table OA.1: Portfolios Used in Cross-Sectional Tests

Sorting variables Abbreviation Start year No. ports.
Size/Book-to-market sizeBM 1926 25
Size/Operating profitability sizeOP 1963 25
Size/Investment sizeINV 1963 25
Book-to-market/Investment BMINV 1963 25
Operating profitability/Investment OPINV 1963 25
Size/Momentum sizeMOM 1927 25
Size/Short-term reversal sizeSTREV 1926 25
Size/Long-term reversal sizeLTREV 1931 25
Size/Accruals sizeACC 1963 25
Size/Market beta sizeBeta 1963 25
Size/Net share issues sizeNI 1963 35
Size/Variance sizeVAR 1963 25
Size/Residual variance sizeRESVAR 1963 25
Industry industry 1926 17
Size size 1926 10
Market beta beta 1963 10

Note: This table lists the portfolio sorts from Kenneth French’s website used for both the principal components
analysis (equal-weighted versions of the portfolios) as well as the cross-sectional asset pricing tests (value-weighted
versions of the portfolios). This provides a total of 372 portfolios over our main sample period, which spans 1963-2021.
The listed abbreviations are those used for plotting.
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Table OA.2: How Large is the Granular Residual?

Variable Stdev. (%) Skew. Kurt. IQR (%) σ2
i /σ

2
VMF σ2

i /σ
2
IFF σi/σVMF σi/σIFF

Panel A: Full-sample regressions
VMF 15.36 -0.56 5.07 18.70 100.00 636.42 100.00 252.27
IFF 6.09 -0.37 5.22 6.85 15.71 100.00 39.64 100.00

GR (1 PC) 6.09 -0.37 5.22 6.85 15.71 100.00 39.64 100.00
GR (2 PC) 4.12 -0.42 6.89 3.81 7.21 45.86 26.85 67.72
GR (3 PC) 3.59 -0.48 5.33 3.74 5.47 34.79 23.38 58.98
GR (5 PC) 2.65 -0.32 6.05 2.80 2.97 18.88 17.23 43.45
GR (7 PC) 2.62 -0.30 5.78 2.83 2.90 18.47 17.03 42.97
GR (10 PC) 2.48 -0.38 6.19 2.80 2.60 16.56 16.13 40.69
GR (15 PC) 2.21 -0.45 5.50 2.56 2.08 13.23 14.42 36.38

Panel B: Rolling regressions
VMF 15.36 -0.56 5.07 18.70 100.00 636.42 100.00 252.27
IFF 6.09 -0.37 5.22 6.85 15.71 100.00 39.64 100.00

GR (1 PC) 5.76 -0.31 6.03 6.42 14.08 89.63 37.53 94.67
GR (2 PC) 3.76 -0.23 5.92 3.56 6.01 38.22 24.51 61.82
GR (3 PC) 3.29 -0.53 5.19 3.64 4.58 29.14 21.40 53.98
GR (5 PC) 2.21 -0.21 5.14 2.58 2.06 13.14 14.37 36.24
GR (7 PC) 2.11 -0.09 4.65 2.45 1.89 12.00 13.73 34.65
GR (10 PC) 1.92 -0.10 4.80 2.22 1.55 9.89 12.47 31.45
GR (15 PC) 1.61 -0.17 4.73 1.92 1.10 7.02 10.51 26.50

Note: This table presents summary statistic for the granular residual (GR) estimated as the residual from regressing
IFF on progressively more PCs. It also provides summary statistics for the VMF and the IFF for comparison. The
VMF is the CRSP value-weighted market index and the IFF is that implied when the DMF is constructed using
one PC. The IFF is the sum of two components: 1) time-varying market exposure to the first PC, 2) time-varying
market exposures to higher PCs, and 2) the GR. We estimate the GR by regressing the IFF on various numbers of
PCs listed in columns of the table, and computing the implied GR as GR ≈ IFF − IFFproj where IFFproj is the
projection of the IFF onto the specified number of PCs. Panel A presents results that run full-sample regressions,
effectively imposing that IFF loadings on PCs are constant. Panel B presents results using centered rolling regressions
of the IFF on the specified number of PCs with a 60-month window (i.e., in any 60-month window, if month t is the
month of interest for estimating the GR, the regression is estimated using data from months t − 30 to t + 29). The
last four columns present variance or standard deviation estimates of the variance and standard deviation of each
variable in column one relative to those from two benchmarks: the VMF and the IFF. σi represents the resulting time
series standard deviation with i ∈ {GR, VMF, IFF} and where GR is estimated as described above. All statistics
are annualized and in percent. We annualize the Standard Deviation and IQR statistics by multiplying monthly
frequency values by

√
12. All data are from the 1963-2021 sample.
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Table OA.3: Risk-return tradeoff coefficient (γ) across GARCH models (1927-2021)

Risk defn. Parameter VMF DMF (1PC) DMF (EW)

Panel A: GARCH
Variance γ 1.47* 2.56*** 2.51***(

σ2
t

)
(0.76) (0.73) (0.77)

γVMF − γDMF -1.09 -1.04
Volatility γ 0.16 0.35*** 0.32***

(σt) (0.11) (0.09) (0.09)
γVMF − γDMF -0.19 -0.16

Panel B: GJR-GARCH
Variance γ 1.25* 3.21*** 3.06***(

σ2
t

)
(0.67) (0.50) (0.57)

γVMF − γDMF -1.96 -1.81
Volatility γ 0.12 0.33*** 0.31***

(σt) (0.10) (0.08) (0.08)
γVMF − γDMF -0.21 -0.19

Panel C: E-GARCH
Variance γ 1.78** 3.60*** 3.60***(

σ2
t

)
(0.78) (0.72) (0.76)

γVMF − γDMF -1.82 -1.82
Volatility γ 0.14 0.23*** 0.26***

(σt) (0.10) (0.09) (0.09)
γVMF − γDMF -0.09 -0.11

Note: This table compares γ estimates and standard errors (in parentheses) from the VMF with those from DMF
variants. The first column corresponds with results using the VMF, which is the CRSP value-weighted index. Columns
two and three correspond to results from DMF variants that are constructed using either the first PC from the PCA
on equal-weighted portfolios described in Online Appendix Table OA.1 or the CRSP equal-weighted market index. All
returns are in excess of the risk-free rate. We consider three popular GARCH volatility forecasting models such as a
GARCH (1,1) (Panel A), a Threshold GARCH model of Glosten et al. (1993) (Panel B) and an exponential GARCH
model of Nelson (1991) (Panel C). Within each panel, the first (second) set of results is based on the conditional
variance (volatility) as a proxy for risk. Rows labeled γV MF − γDMF report the difference between γ’s estimated
using the VMF and the respective DMF variants. We report outer product standard errors (Hamilton, Time Series
Analysis, 1994, pp. 133-148) in parentheses. */**/*** represent statistical significance at 90%, 95%, and 99%,
respectively. All data are from the 1927-2021 sample.
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Table OA.4: Difference between unadjusted and adjusted index betas for size × beta-
sorted portfolios (1993-2021)

Market beta Size quintile
quintile Small 2 3 4 Large Small - Large
Low -0.24 -0.17 -0.08 -0.02 0.08 -0.32

(0.06) (0.04) (0.04) (0.04) (0.03) (0.07)
2 -0.25 -0.19 -0.13 -0.06 0.05 -0.30

(0.04) (0.04) (0.04) (0.03) (0.04) (0.04)
3 -0.28 -0.21 -0.15 -0.10 0.03 -0.31

(0.05) (0.04) (0.04) (0.04) (0.03) (0.04)
4 -0.30 -0.25 -0.19 -0.14 -0.01 -0.30

(0.05) (0.05) (0.05) (0.04) (0.04) (0.04)
High -0.40 -0.32 -0.23 -0.18 -0.04 -0.36

(0.06) (0.06) (0.05) (0.05) (0.04) (0.06)
High-Low -0.15 -0.15 -0.15 -0.16 -0.12

(0.06) (0.03) (0.03) (0.04) (0.03)

Note: This table reports estimates of the bias induced in market betas associated with the presence of the IFF
in cross-sectional asset pricing tests, which tests the predictions of equation (27). In particular, this table reports
βV MF − βDMF . The VMF is the CRSP value-weighted market index and the DMF is that constructed using one
PC. Our model predicts this difference is increasing in β and decreasing in size, consistent with the results in the
table. Estimates are from monthly returns on 25 size-by-beta-sorted portfolios from Kenneth French’s data library.
Standard errors are in parentheses and are computed using the bootstrap procedure described in Online Appendix
OA.11. All data are from the 1993-2021 sample.
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Table OA.5: Comparing VMF and DMF asset pricing statistics (1993-2021 sample)

Number of orthogonalization PCs
0 3 5 7 10 15

Panel A: Market risk premium estimates (λ1)
DMF 0.29 3.39 5.04* 6.46** 6.41** 6.59**
[E
[
rDMF
t+1

]
= 8.26, se = 2.51] (3.18) (2.77) (2.66) (2.62) (2.62) (2.60)

VMF -0.69 4.82 5.04* 6.84** 6.57** 6.99**
[E
[
rVMF
t+1

]
= 8.80, se = 2.79] (4.22) (3.08) (3.06) (2.97) (2.94) (2.92)

DMF - VMF 0.98 -1.43 0.00 -0.38 -0.16 -0.41
[E
[
rDMF
t+1 − rVMF

t+1

]
= -0.54, se = 1.11] (1.34) (1.78) (1.43) (1.30) (1.29) (1.27)

p (DMF < VMF ) 0.23 0.77 0.50 0.60 0.54 0.60
Panel B: Cross-sectional dispersion in estimated risk premia (std (λ1 · βp))

DMF 0.09 1.08 1.61* 2.06** 2.04** 2.10**
[std

(
βDMF
p

)
= 0.32, se = 0.02] (0.64) (0.79) (0.85) (0.87) (0.87) (0.86)

VMF 0.16 1.09* 1.14* 1.54** 1.48** 1.58**
[std

(
βVMF
p

)
= 0.23, se = 0.02] (0.59) (0.66) (0.67) (0.69) (0.68) (0.68)

DMF - VMF -0.06 -0.01 0.47 0.52 0.56 0.52
[std

(
βDMF
p

)
− std

(
βVMF
p

)
= 0.09, se = 0.01] (0.34) (0.49) (0.42) (0.39) (0.40) (0.39)

p (DMF < VMF ) 0.46 0.42 0.12 0.08 0.06 0.07
Panel C: SML R-squared

DMF 0.00 0.19 0.41** 0.55*** 0.55*** 0.55***
(0.13) (0.17) (0.20) (0.19) (0.19) (0.19)

VMF 0.01 0.21 0.25 0.38** 0.36** 0.37**
(0.12) (0.14) (0.16) (0.17) (0.17) (0.17)

DMF - VMF 0.00 -0.02 0.17 0.17 0.19 0.19*
(0.07) (0.11) (0.10) (0.09) (0.09) (0.09)

p (DMF < VMF ) 0.46 0.47 0.12 0.08 0.06 0.05
Panel D: Mean absolute pricing error (α)

DMF 2.55*** 2.09*** 1.64*** 1.51*** 1.52*** 1.54***
(0.49) (0.26) (0.17) (0.13) (0.13) (0.12)

VMF 2.59*** 1.66*** 1.64*** 1.53*** 1.53*** 1.61***
(0.58) (0.18) (0.15) (0.12) (0.12) (0.12)

DMF - VMF -0.04 0.43** 0.00 -0.02 -0.01 -0.06
(0.47) (0.21) (0.07) (0.05) (0.05) (0.04)

p (DMF < VMF ) 0.54 0.01 0.43 0.58 0.60 0.91

Note: This table presents asset pricing statistics when using all value-weighted portfolios as test assets and hedging
their returns with respect to different numbers of PCs using the hedging procedure described by equation (25). We use
all 372 value-weighted portfolios (obtained from Kenneth French’s data library and described in more detail in Online
Appendix Table OA.1) as test assets. Panel A reports the cross-sectional-regression-implied market risk premium.
The first column in Panel A also reports time series averages of the DMF (E[rDMF

t+1 ]), the VMF (E[rV MF
t+1 ]), and

their difference. The VMF is the CRSP value-weighted market index and the DMF is that constructed using one PC.
Panel B reports the standard deviation of the risk premia on all portfolios implied by each model. The first column in
Panel B also reports the standard deviation of portfolio exposures to the DMF (std(βDMF

p )), the VMF (std(βV MF
p )),

and their difference. Panel C reports R-squared values implied by each full-sample cross-sectional regression. Panel
D reports the mean absolute pricing error (αp) across all portfolios from time series regressions that use either the
DMF or the VMF, as well as their difference. The last row in each panel reports the p-value associated with the
test that the reported DMF statistics are less than the VMF statistics based on the bootstrap procedure described in
Online Appendix OA.11. Results presented in Panels A, B, and D are annualized and in percent. */**/*** represent
statistical significance at 90%, 95%, and 99%, respectively. All data are from the 1993-2021 sample.
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Table OA.6: Comparing VMF and DMF asset pricing statistics (equal-weighted test
assets)

Number of orthogonalization PCs
0 3 5 7 10 15

Panel A: Market risk premium estimates (λ1)
DMF 1.06 5.28*** 6.94*** 7.05*** 6.75*** 6.95***
[E
[
rDMF
t+1

]
= 7.31, se = 1.83] (2.50) (1.88) (1.86) (1.84) (1.84) (1.84)

VMF -2.21 4.55** 6.05*** 6.22*** 5.80*** 6.12***
[E
[
rVMF
t+1

]
= 6.79, se = 2.00] (3.10) (2.08) (2.07) (2.04) (2.01) (2.01)

DMF - VMF 3.27*** 0.72 0.89 0.83 0.94 0.83
[E
[
rDMF
t+1 − rVMF

t+1

]
= 0.53, se = 0.79] (1.21) (1.07) (0.84) (0.82) (0.80) (0.79)

p (DMF < VMF ) 0.00 0.25 0.16 0.17 0.14 0.16
Panel B: Cross-sectional dispersion in estimated risk premia (std (λ1 · βp))

DMF 0.28 1.39*** 1.82*** 1.85*** 1.77*** 1.83***
[std

(
βDMF
p

)
= 0.28, se = 0.01] (0.43) (0.52) (0.52) (0.51) (0.52) (0.51)

VMF 0.40 0.83** 1.10*** 1.13*** 1.05*** 1.11***
[std

(
βVMF
p

)
= 0.19, se = 0.01] (0.41) (0.38) (0.39) (0.38) (0.38) (0.38)

DMF - VMF -0.12 0.56** 0.73*** 0.72*** 0.72*** 0.71***
[std

(
βDMF
p

)
− std

(
βVMF
p

)
= 0.10, se = 0.01] (0.58) (0.28) (0.24) (0.24) (0.24) (0.23)

p (DMF < VMF ) 0.55 0.02 0.00 0.00 0.00 0.00
Panel C: SML R-squared

DMF 0.01 0.29** 0.48*** 0.50*** 0.54*** 0.58***
(0.06) (0.13) (0.14) (0.14) (0.14) (0.14)

VMF 0.02 0.14 0.25** 0.27** 0.29** 0.33**
(0.07) (0.09) (0.11) (0.12) (0.13) (0.13)

DMF - VMF -0.01 0.15* 0.23*** 0.23*** 0.25*** 0.24***
(0.08) (0.08) (0.06) (0.06) (0.07) (0.06)

p (DMF < VMF ) 0.55 0.04 0.00 0.00 0.00 0.00
Panel D: Mean absolute pricing error (α)

DMF 2.41*** 1.58*** 1.35*** 1.28*** 1.20*** 1.11***
(0.24) (0.11) (0.08) (0.07) (0.06) (0.05)

VMF 3.31*** 1.47*** 1.36*** 1.29*** 1.20*** 1.11***
(0.59) (0.09) (0.08) (0.07) (0.06) (0.05)

DMF - VMF -0.90* 0.11* -0.01 -0.01 -0.01 0.00
(0.52) (0.07) (0.01) (0.01) (0.01) (0.01)

p (DMF < VMF ) 0.97 0.03 0.75 0.58 0.65 0.68

Note: This table presents asset pricing statistics when using all equal-weighted portfolios as test assets and hedging
their returns with respect to different numbers of PCs using the hedging procedure described by equation (25). We use
all 372 value-weighted portfolios (obtained from Kenneth French’s data library and described in more detail in Online
Appendix Table OA.1) as test assets. Panel A reports the cross-sectional-regression-implied market risk premium.
The first column in Panel A also reports time series averages of the DMF (E[rDMF

t+1 ]), the VMF (E[rV MF
t+1 ]), and

their difference. The VMF is the CRSP value-weighted market index and the DMF is that constructed using one PC.
Panel B reports the standard deviation of the risk premia on all portfolios implied by each model. The first column in
Panel B also reports the standard deviation of portfolio exposures to the DMF (std(βDMF

p )), the VMF (std(βV MF
p )),

and their difference. Panel C reports R-squared values implied by each full-sample cross-sectional regression. Panel
D reports the mean absolute pricing error (αp) across all portfolios from time series regressions that use either the
DMF or the VMF, as well as their difference. The last row in each panel reports the p-value associated with the
test that the reported DMF statistics are less than the VMF statistics based on the bootstrap procedure described in
Online Appendix OA.11. Results presented in Panels A, B, and D are annualized and in percent. */**/*** represent
statistical significance at 90%, 95%, and 99%, respectively. All data are from the 1963-2021 sample.
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Table OA.7: Comparing VMF and DMF asset pricing statistics (only factor model
controls)

Factor model control
None FF3 FF3C FF5 q4 SY DHS q5

Panel A: Market risk premium estimates (λ1)
DMF 1.05 2.28 3.90* 5.42*** 7.04*** 5.33** 6.09** 8.23***
[E
[
rDMF
t+1

]
= 7.31, se = 1.83] (2.34) (1.96) (2.04) (1.86) (2.05) (2.20) (2.60) (2.09)

VMF -0.59 -0.94 1.99 4.58** 7.07*** 5.70** 12.86*** 9.17***
[E
[
rVMF
t+1

]
= 6.79, se = 2.00] (3.20) (2.38) (2.44) (2.22) (2.46) (2.64) (3.39) (2.54)

DMF - VMF 1.64 3.22*** 1.91** 0.84 -0.02 -0.37 -6.77*** -0.94
[E
[
rDMF
t+1 − rVMF

t+1

]
= 0.53, se = 0.79] (1.12) (0.99) (0.95) (0.91) (1.01) (1.03) (1.45) (1.03)

p (DMF < VMF ) 0.06 0.00 0.02 0.17 0.49 0.64 1.00 0.80
Panel B: Cross-sectional dispersion in estimated risk premia (std (λ1 · βp))

DMF 0.30 0.65 1.10* 1.54*** 1.99*** 1.53** 1.70** 2.33***
[std

(
βDMF
p

)
= 0.28, se = 0.01] (0.43) (0.47) (0.56) (0.55) (0.61) (0.65) (0.74) (0.62)

VMF 0.11 0.18 0.37 0.86** 1.34*** 1.09** 2.38*** 1.73***
[std

(
βVMF
p

)
= 0.19, se = 0.01] (0.38) (0.29) (0.35) (0.41) (0.48) (0.51) (0.67) (0.50)

DMF - VMF 0.19 0.47 0.73 0.68** 0.66*** 0.44* -0.68** 0.59**
[std

(
βDMF
p

)
− std

(
βVMF
p

)
= 0.10, se = 0.01] (0.39) (0.59) (0.38) (0.25) (0.26) (0.26) (0.32) (0.26)

p (DMF < VMF ) 0.45 0.32 0.08 0.01 0.00 0.05 0.98 0.01
Panel C: SML R-squared

DMF 0.01 0.08 0.26 0.37** 0.57*** 0.42** 0.50*** 0.65***
(0.08) (0.10) (0.16) (0.15) (0.15) (0.18) (0.19) (0.14)

VMF 0.00 0.01 0.04 0.17 0.39*** 0.28* 0.48*** 0.51***
(0.07) (0.05) (0.09) (0.11) (0.14) (0.15) (0.12) (0.14)

DMF - VMF 0.01 0.07 0.22 0.20** 0.18** 0.13 0.02 0.15**
(0.07) (0.12) (0.10) (0.07) (0.07) (0.07) (0.15) (0.07)

p (DMF < VMF ) 0.45 0.33 0.08 0.01 0.01 0.06 0.56 0.02
Panel D: Mean absolute pricing error (α)

DMF 2.06*** 1.76*** 1.56*** 1.38*** 1.66*** 1.63*** 1.50*** 1.69***
(0.25) (0.18) (0.16) (0.11) (0.26) (0.24) (0.28) (0.31)

VMF 2.61*** 1.77*** 1.58*** 1.31*** 1.27*** 1.17*** 2.92*** 1.49***
(0.41) (0.17) (0.19) (0.10) (0.12) (0.12) (0.74) (0.18)

DMF - VMF -0.55 0.00 -0.02 0.07* 0.39* 0.45** -1.42* 0.20
(0.36) (0.09) (0.19) (0.07) (0.22) (0.23) (0.71) (0.27)

p (DMF < VMF ) 0.90 0.45 0.53 0.05 0.04 0.02 0.97 0.22

Note: This table presents asset pricing statistics when using all value-weighted portfolios as test assets and hedging
their returns with respect to factors from prominent models using the hedging procedure described by equation (25)
(and not controlling for any PCs). We use all 372 value-weighted portfolios (obtained from Kenneth French’s data
library and described in more detail in Online Appendix Table OA.1) as test assets. Each column corresponds to
controlling for factors in different models where the acronyms are defined in the text. Panel A reports the cross-
sectional-regression-implied market risk premium. The first column in Panel A also reports time series averages of the
DMF (E[rDMF

t+1 ]), the VMF (E[rV MF
t+1 ]), and their difference. The VMF is the CRSP value-weighted market index and

the DMF is that constructed using one PC. Panel B reports the standard deviation of the risk premia on all portfolios
implied by each model. The first column in Panel B also reports the standard deviation of portfolio exposures to
the DMF (std(βDMF

p )), the VMF (std(βV MF
p )), and their difference. Panel C reports R-squared values implied by

each full-sample cross-sectional regression. Panel D reports the mean absolute pricing error (αp) across all portfolios
from time series regressions that use either the DMF or the VMF, as well as their difference. The last row in each
panel reports the p-value associated with the test that the reported DMF statistics are less than the VMF statistics
based on the bootstrap procedure described in Online Appendix OA.11. Results presented in Panels A, B, and D are
annualized and in percent. */**/*** represent statistical significance at 90%, 95%, and 99%, respectively. All data
are from the 1963-2021 sample.
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Table OA.8: Comparing VMF asset pricing statistics with and without size factors

Factor model control
None FF3 FF3C FF5 q4 SY DHS q5

Panel A: Market risk premium estimates (λ1)
VMF (w/ size factor) -0.59 -0.94 1.99 4.58** 7.07*** 5.70** 12.86*** 9.17***
[E
[
rVMF
t+1

]
= 6.79, se = 2.00] (3.20) (2.38) (2.44) (2.22) (2.46) (2.64) (3.39) (2.54)

VMF (w/o size factor) 1.39 4.37 9.16*** 12.85*** 14.03*** 18.34***
(3.17) (3.32) (2.86) (3.16) (3.33) (3.29)

w/ Size. - w/o Size -2.33 -2.38 -4.58** -5.79*** -8.33*** -9.16***
(2.11) (2.11) (1.84) (2.04) (1.98) (2.21)

p (w/Size. < w/oSize) 0.84 0.84 0.99 1.00 1.00 1.00
Panel B: Cross-sectional dispersion in estimated risk premia (std (λ1 · βp))

VMF (w/ size factor) 0.11 0.18 0.37 0.86** 1.34*** 1.09** 2.38*** 1.73***
(0.38) (0.29) (0.35) (0.41) (0.48) (0.51) (0.67) (0.50)

VMF (w/o size factor) 0.26 0.82 1.72*** 2.43*** 2.67*** 3.47***
(0.39) (0.54) (0.55) (0.62) (0.67) (0.65)

w/ Size. - w/o Size -0.08 -0.45 -0.86** -1.09*** -1.59*** -1.73***
(0.43) (0.40) (0.35) (0.39) (0.39) (0.42)

p (w/Size. < w/oSize) 0.59 0.80 0.99 1.00 1.00 1.00
Panel C: SML R-squared

VMF (w/ size factor) 0.00 0.01 0.04 0.17 0.39*** 0.28* 0.48*** 0.51***
(0.07) (0.05) (0.09) (0.11) (0.14) (0.15) (0.12) (0.14)

VMF (w/o size factor) 0.01 0.15 0.35*** 0.47*** 0.49*** 0.50***
(0.07) (0.13) (0.12) (0.11) (0.11) (0.09)

w/ Size. - w/o Size -0.01 -0.11 -0.18** -0.08* -0.21** 0.01
(0.07) (0.08) (0.06) (0.06) (0.09) (0.08)

p (w/Size. < w/oSize) 0.58 0.80 0.99 0.96 0.99 0.75
Panel D: Mean absolute pricing error (α)

VMF (w/ size factor) 2.61*** 1.77*** 1.58*** 1.31*** 1.27*** 1.17*** 2.92*** 1.49***
(0.41) (0.17) (0.19) (0.10) (0.12) (0.12) (0.74) (0.18)

VMF (w/o size factor) 1.96*** 1.88*** 2.20*** 2.79*** 3.44*** 4.48***
(0.29) (0.37) (0.48) (0.64) (0.73) (0.77)

w/ Size. - w/o Size -0.19 -0.30 -0.89*** -1.52*** -2.27*** -2.99***
(0.23) (0.32) (0.47) (0.62) (0.75) (0.74)

p (w/Size. < w/oSize) 0.90 0.86 1.00 1.00 1.00 1.00

Note: This table presents asset pricing statistics when using all value-weighted portfolios as test assets and hedging
their returns with respect to factors from prominent models using the hedging procedure described by equation (25)
(and not controlling for any PCs). In this case, we only consider models that use the VMF (the CRSP value-weighted
excess market return) and compare results when controlling for models including or excluding their size factors. We use
all 372 value-weighted portfolios (obtained from Kenneth French’s data library and described in more detail in Online
Appendix Table OA.1) as test assets. Each column corresponds to controlling for factors in different models where the
acronyms are defined in the text. Panel A reports the cross-sectional-regression-implied market risk premium. The
first column in Panel A also reports the time series average of the VMF (E[rV MF

t+1 ]). Panel B reports the standard
deviation of the risk premia on all portfolios implied by each model. Panel C reports R-squared values implied by
each full-sample cross-sectional regression. Panel D reports the mean absolute pricing error (αp) across all portfolios
from time series regressions that either include or exclude each model’s size factor, as well as their difference. The last
row in each panel reports the p-value associated with the test that the reported statistics from including size factors
are less than statistics from excluding size factors based on the bootstrap procedure described in Online Appendix
OA.11. Results presented in Panels A, B, and D are annualized and in percent. Note that the DHS model does not
include a size factor. */**/*** represent statistical significance at 90%, 95%, and 99%, respectively. All data are from
the 1963-2021 sample.
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Table OA.9: Comparing DMF asset pricing statistics with and without size factors

Factor model control
None FF3 FF3C FF5 q4 SY DHS q5

Panel A: Market risk premium estimates (λ1)
DMF (w/ size factor) 1.05 2.28 3.90* 5.42*** 7.04*** 5.33** 6.09** 8.23***
[E
[
rDMF
t+1

]
= 7.31, se = 1.83] (2.34) (1.96) (2.04) (1.86) (2.05) (2.20) (2.60) (2.09)

DMF (w/o size factor) 1.79 2.22 5.57** 7.84*** 6.25** 9.87***
(2.33) (2.40) (2.24) (2.54) (2.52) (2.63)

w/ Size. - w/o Size 0.49 1.68 -0.15 -0.80 -0.92 -1.64
(1.30) (1.29) (1.26) (1.50) (1.34) (1.58)

p (w/Size. < w/oSize) 0.31 0.09 0.51 0.67 0.73 0.84
Panel B: Cross-sectional dispersion in estimated risk premia (std (λ1 · βp))

DMF (w/ size factor) 0.30 0.65 1.10* 1.54*** 1.99*** 1.53** 1.70** 2.33***
(0.43) (0.47) (0.56) (0.55) (0.61) (0.65) (0.74) (0.62)

DMF (w/o size factor) 0.51 0.63 1.58** 2.22*** 1.79** 2.79***
(0.48) (0.52) (0.65) (0.75) (0.74) (0.78)

w/ Size. - w/o Size 0.14 0.48 -0.04 -0.23 -0.26 -0.46
(0.35) (0.41) (0.36) (0.43) (0.38) (0.45)

p (w/Size. < w/oSize) 0.40 0.17 0.51 0.67 0.73 0.84
Panel C: SML R-squared

DMF (w/ size factor) 0.01 0.08 0.26 0.37** 0.57*** 0.42** 0.50*** 0.65***
(0.08) (0.10) (0.16) (0.15) (0.15) (0.18) (0.19) (0.14)

DMF (w/o size factor) 0.05 0.11 0.38** 0.60*** 0.50*** 0.69***
(0.10) (0.14) (0.16) (0.16) (0.19) (0.13)

w/ Size. - w/o Size 0.03 0.15 -0.01 -0.03 -0.09 -0.04
(0.07) (0.10) (0.08) (0.07) (0.10) (0.06)

p (w/Size. < w/oSize) 0.41 0.18 0.51 0.66 0.73 0.83
Panel D: Mean absolute pricing error (α)

DMF (w/ size factor) 2.06*** 1.76*** 1.56*** 1.38*** 1.66*** 1.63*** 1.50*** 1.69***
(0.25) (0.18) (0.16) (0.11) (0.26) (0.24) (0.28) (0.31)

DMF (w/o size factor) 1.80*** 1.56*** 1.39*** 1.81*** 1.70*** 2.05***
(0.22) (0.18) (0.15) (0.34) (0.30) (0.43)

w/ Size. - w/o Size -0.04 -0.01 -0.01 -0.14 -0.07 -0.36
(0.14) (0.17) (0.11) (0.25) (0.15) (0.33)

p (w/Size. < w/oSize) 0.75 0.66 0.72 0.67 0.76 0.84

Note: This table presents asset pricing statistics when using all value-weighted portfolios as test assets and hedging
their returns with respect to factors from prominent models using the hedging procedure described by equation (25)
(and not controlling for any PCs). In this case, we only consider models that use the DMF (the CRSP value-weighted
excess market return projected onto the first PC) and compare results when controlling for models including or
excluding their size factors. We use all 372 value-weighted portfolios (obtained from Kenneth French’s data library
and described in more detail in Online Appendix Table OA.1) as test assets. Each column corresponds to controlling
for factors in different models where the acronyms are defined in the text. Panel A reports the cross-sectional-
regression-implied market risk premium. The first column in Panel A also reports the time series average of the
DMF (E[rDMF

t+1 ]). Panel B reports the standard deviation of the risk premia on all portfolios implied by each model.
Panel C reports R-squared values implied by each full-sample cross-sectional regression. Panel D reports the mean
absolute pricing error (αp) across all portfolios from time series regressions that either include or exclude each model’s
size factor, as well as their difference. The last row in each panel reports the p-value associated with the test that
the reported statistics from including size factors are less than statistics from excluding size factors based on the
bootstrap procedure described in Online Appendix OA.11. Results presented in Panels A, B, and D are annualized
and in percent. Note that the DHS model does not include a size factor. */**/*** represent statistical significance
at 90%, 95%, and 99%, respectively. All data are from the 1963-2021 sample.
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