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1 Introduction

A growing body of literature employs large language models (LLMs) to generate historical expec-

tations, evaluate their forecasting accuracy, or backtest LLM-based investment strategies within

periods covered by these models’ training data. Most LLMs are trained on comprehensive internet-

scale datasets up to a specific knowledge cutoff date, creating a fundamental challenge: when

analyzing pre-cutoff data, we cannot distinguish whether a model demonstrates genuine forecasting

ability or simply recalls memorized information.1 For example, if LLMs have memorized historical

S&P 500 values, evaluating their ability to “forecast” these values from any pre-cutoff information

becomes unreliable. In this paper, we show that LLMs have memorized large amounts of economic

and financial data, thus challenging the usual interpretation of LLMs’ forecasting ability.

Theoretically, we formalize the memorization problem as a non-identification issue and prove

that when a model has seen the realized values during training, its counterfactual forecasting ability

cannot be recovered from its outputs. Any observed forecast is consistent with two contradictory

explanations (genuine analytical skill or simple recall of memorized information), making inference

impossible. Empirically, we show this problem applies in practice by providing systematic evidence

that LLMs have memorized economic and financial data at scale. Together, these findings establish

that pre-cutoff “forecasting” studies face a fundamental methodological problem: they cannot

distinguish genuine predictive ability from memorization. Constraining prompts (e.g., “use only

data before 2010”) cannot resolve this because prompts cannot change what information is encoded

in the model’s parameters.

Our theoretical results prove that other common proposed solutions also fail. First, fine-tuning

the model to “forget” future information does not help: without examining what is actually removed

from the model, we cannot tell whether the model actually forgot or merely learned to hide what

it knows. Second, using small post-cutoff samples as “robustness checks” is invalid: when these

samples are small, genuine forecasting skill and undetected memorization produce statistically

indistinguishable results. Finally, any evidence of memorization constitutes only a lower bound:

1. Following initial training, models typically undergo reinforcement learning from human feedback
(RLHF) to improve their usefulness and safety, but there is no evidence that this process extends their
knowledge timeline.
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the fact that one test fails to elicit memorized knowledge does not mean it is absent, since different

prompts or contextual cues may trigger it.

Using a novel testing framework, we show that LLMs can recall exact numerical values of

economic data from their training. For example, before its knowledge cutoff date of October

2023, GPT-4o can recall specific S&P 500 index levels with perfect precision on certain dates,

unemployment rates accurate to a tenth of a percentage point, and precise quarterly GDP growth

figures. Figure 1 shows the model’s memorized values for three stock market indices (S&P 500, Dow

Jones Industrial Average, and Nasdaq Composite) along with the actual values and the associated

errors. In addition to U.S. and international macro indicators and market indices, we find clear

evidence of memorization of individual security prices, which is more pronounced for prominent

stocks and in recent periods. The model also shows near-perfect identification of the dates of major

media front-page headlines. In short, we document pervasive memorization.

Next, we demonstrate that standard techniques to constrain model knowledge fail to prevent

access to memorized data. When we instruct GPT-4o to ignore any information after 2010 when

forecasting quarterly GDP growth direction, the model achieves 97.6% threshold accuracy before

the artificial cutoff and 98.0% after, nearly identical performance despite the explicit constraint.2

In contrast, actual post-knowledge cutoff accuracy is only 40%. These results suggest prompt-based

constraints do not work in practice. Yet, even if constrained prompts produced lower accuracy,

theory explains why this result would be equally uninformative: forecasting performance is not

identified, consistent with the model having memorized the outcome and role-playing as a worse

forecaster or truly being able to forget the underlying information.

To understand which applications are vulnerable, we must distinguish tasks where future knowl-

edge affects the answer from those where it does not. The memorization problem applies to all tasks

that are not future-invariant : tasks where an analyst’s answer would differ knowing future out-

comes. Simple extraction tasks where the correct answer is identical regardless of future knowledge

(such as extracting entity names or objective numerical facts) are typically unaffected. However,

many tasks that appear to be pure extraction are actually judgment-laden: assessing whether

2. Threshold accuracy measures the percentage of correct predictions for whether GDP growth exceeds
2.5%, a threshold chosen to create a balanced binary classification (roughly 50% of observations are above
this threshold in the historical data).
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Figure 1: Recall of exact numerical levels of market indices.

This figure shows the LLM’s estimated closing prices of the stock market indices compared to the actual values. Panels A, C,
and E graph the actual values against the estimated values. Panels B, D, and F show the estimation error for the S&P 500,
Dow Jones Industrial Average, and Nasdaq Composite. Estimation error is calculated as (Estimated - Actual)/Actual and is
shown in percentage points (5 means 5%). For the Nasdaq Composite panels, 10 outliers were removed for the ease of plotting.
These values are still included in the evaluation metrics table. The post-cutoff period (10/2023 onward) is shaded gray.
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something is “relevant” or “important,” identifying “risks,” classifying “sentiment,” and generat-

ing “expectations” all involve interpretations that can be influenced by knowledge of subsequent

outcomes. For such tasks, the model’s parameters encode future information despite pre-cutoff

inputs: lookahead bias in the function rather than the data. Section 2 formalizes this distinction

and provides concrete guidance on common task categories.

Masking techniques (anonymizing entity or company names or dates) present a more nuanced

picture. In theory, valid masking requires two conditions: future-invariance (the masked task does

not depend on post-cutoff information) and detectable skill (the model shows statistically significant

performance). When both conditions hold, masking enables either task-preserving use (recovering

the original target of estimation) or capability-demonstrating use (establishing the model’s genuine

capability on a different class of tasks). Without detectable skill, poor performance creates another

identification problem: we cannot distinguish lack of capability from overly aggressive masking that

removes necessary information.

In practice, attempts to prevent LLMs from accessing future information through masking face

significant challenges. We show that LLMs can reconstruct original entities from seemingly minimal

contextual clues in complex financial documents. For example, Figure 2 shows that when we present

GPT-4o with an anonymized Ethan Allen (ETH) earnings call transcript, where company names,

numbers, locations, and dates were all masked using the entity neutering approach proposed by

Engelberg et al. (2025), the model still correctly identified the company (ETH), quarter (Q1), and

year (2018). The transcript contained only generic business language such as “Our adjusted EPS of

number e increased number f percent from the prior year,” yet the model still recovers the precise

corporate identity and reporting period.

Systematically analyzing anonymized earnings call transcripts, we find GPT-4o correctly iden-

tifies the company in 100% of Apple, Meta, and Microsoft calls and in above 85% of the calls for all

Magnificent Seven firms.3 For Apple, the model achieves 93.2% accuracy in identifying the correct

quarter and year. Successful reconstruction proves the masked task is not future-invariant—the

model can still access contextual knowledge about those entities. Moreover, even when reconstruc-

3. The Magnificent Seven refers to seven prominent technology companies: Apple (AAPL), Amazon
(AMZN), Alphabet/Google (GOOGL), Meta (META), Microsoft (MSFT), NVIDIA (NVDA), and Tesla
(TSLA).
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Anonymized Earnings Call Excerpt:

Thank you, name x, and welcome to our earnings call.

Our time x sales were up number a%. They would have been higher, but due
to bottlenecks on production and delay in shipments. We ended with whole-
sale backlogs increasing number b% and Retail Division backlogs increasing
number c%. Several factors impacted our production, gross margins, and
shipments. We processed a large location x order of mostly new product
to be delivered in number d days as per contract. Although a significant
portion that was produced had to be held up for shipment until our time x
at their request. We were also affected by political events in location x this
time x. These events are now resolved and production has resumed.

Our adjusted EPS of number e increased number f% from the prior year,
helped by change in the tax laws.

While we maintained a strong operating margin of number g%, we had the
opportunity to have higher margins with more delivered sales.

While we are making good progress expanding our business with the loca-
tion x, worldwide product type x program and our contract division and
internationally, we need to increase written business in our location x retail
network.

With many already initiatives underway, including continuing to develop a
strong talented team, strengthening our offerings and the projections and
the locations of our design centers and improvements in our production
capabilities, we plan to substantially increase our marketing efforts in the
time x.

We expect to increase our advertising expenditures by number h% in the
time x and number i% in the time x from higher levels spent last year in
the time x and time x.

After name x gives a brief overview, I will discuss our initiatives in greater
detail.

GPT-4o’s Response:

Ticker: ETH Quarter: Q1 Year: 2018

Figure 2: GPT-4o correctly identifies Ethan Allen (ETH), Q1, and 2018 from a thoroughly
anonymized earnings call transcript.
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tion fails, the model may access memorized knowledge through untested aggregate channels (e.g.,

industry patterns, business conditions, macroeconomic context). In short, reconstruction tests

probe only a finite set of pathways; failure to reconstruct does not prove that future-invariance

holds.

Further, memorization is not restricted to prompt-based tasks; even embedding vectors show

signs of it.4 We test for memorization by encoding textual prompts that omit a specific numeric

value for a given date (e.g., “In Q4 2020, the earliest estimate of the US GDP growth rate was”),

computing their embeddings, and regressing macroeconomic outcomes on those embeddings. Un-

der a no-memorization null, these embeddings should have no predictive power; instead, we find

evidence of predictive content for variables such as inflation and the unemployment rate.

Given these challenges with methods attempting to circumvent memorization, reliable evalua-

tion of LLMs’ genuine forecasting abilities can only be conducted using data after their knowledge

cutoff dates. One approach is to employ models explicitly designed with temporal cutoffs (e.g.,

Sarkar 2024; Rahimikia and Drinkall 2024; He et al. 2025). Another approach is to restrict the

analysis exclusively to the post-knowledge cutoff period (e.g., Lopez-Lira and Tang 2023; Pham

and Cunningham 2024; Bozman, Fairhurst, and Greene 2025). Only by testing predictions for pe-

riods the models have not been exposed to during training can we confidently distinguish genuine

forecasting ability from memorization.

At a minimum, we recommend using our methodology to test whether the model has memorized

the information in each research setting. Whenever an LLM’s output would differ with the benefit

of future knowledge, applying it to data within its training period is inherently risky.

Related Literature and Contributions. We contribute to the literature on the limits of

LLMs in economics and finance through theoretical and empirical advances. Theoretically, we prove

that when models have memorized outcomes, forecasting ability is non-identified. Empirically, we

demonstrate that LLMs exhibit systematic memorization of economic and financial data at scale.

Our key methodological contribution is a testing framework that reveals what indirect tests miss,

4. Embeddings are high-dimensional vector representations that the model learns during training to place
semantically similar text near each other in vector space. They are extracted from the model’s internal
representations (token or pooled sentence vectors) and may be further refined through contrastive learning
to improve semantic similarity matching.
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providing unambiguous evidence of memorization.

Previous research has relied on clever, context-specific experiments to infer lookahead bias.

Sarkar and Vafa (2024) use the appearance of COVID-19 in pre-pandemic firm risk factors as evi-

dence that Llama models inadvertently include future information. While such natural experiments

are valuable, they require specific historical events and cannot reveal the full extent of the problem.

Levy (2024) find that GPT-4o performs poorly in numerical tasks and that perturbing financial

statements causes LLMs’ predictive accuracy to drop to random chance, and conjecture that LLMs

are memorizing.5 Unlike these studies, our method is universally applicable: by directly eliciting

numeric values using only variable names and dates, any researcher can test any economic series

for memorization without needing creative designs. Moreover, our method also demonstrates how

memorization affects embedding-based approaches.

Contemporaneous work by Ludwig, Mullainathan, and Rambachan (2025) develops an econo-

metric framework for using LLMs and identifies “training leakage” (whether specific texts in the

researcher’s sample were in the model’s training data) as a threat to valid inference. We address

a more fundamental problem: functional lookahead bias, where the model’s parameters encode

post-t information learned from the aggregate training corpus, thereby contaminating the decision

rule even when the specific input text was never seen in training. We prove the target estimand

is non-identified due to observational equivalence (Proposition 1, Corollary 1) and common reme-

dies provably fail (Corollaries 2, Proposition 2). Empirically, we provide systematic evidence that

models have memorized outcomes and fundamentals at scale for economic and financial data and

develop a direct elicitation framework to test what information is encoded in model parameters.

Research has also focused on potential solutions. Sarkar (2024), Rahimikia and Drinkall (2024),

and He et al. (2025) train chronologically consistent language models that avoid entirely the looka-

head bias by training different checkpoints on a dataset that is temporally ordered. Engelberg

et al. (2025) proposes “entity neutering”, using LLMs to remove identifying information from text,

and finds that masked text maintains similar sentiment and return predictability as unmasked

5. In other literature revealing LLMs’ limitations, Ross, Kim, and Lo (2024) apply utility theory to eval-
uate economic biases in LLMs, revealing that the economic behavior of these models is neither fully rational
nor entirely human-like. Furthermore, S. Chen et al. (2024) examines how LLMs forecast stock returns,
finding that they exhibit human-like behavioral biases, such as over-extrapolation from recent performance,
while being better calibrated in confidence intervals than humans.
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text. Relatedly, Glasserman and Lin (2023) find that forecasting with anonymized headlines out-

performs originals within the training window, suggesting that the distraction effect from general

company knowledge (in the case of anonymized headlines) appears to outweigh lookahead bias. Fi-

nally, other researchers have restricted themselves exclusively to the post-knowledge cutoff period

to avoid lookahead bias (e.g., Lopez-Lira and Tang 2023; Pham and Cunningham 2024; Bozman,

Fairhurst, and Greene 2025), exploiting the fact that the older GPT-3.5 and GPT-4 versions have

a knowledge cutoff date of September 2021.

ChatGPT and other LLMs have been recently used in forecasting or eliciting expectations of

diverse economic series that include LLMs’ training period by querying the model (e.g., J. Chen

et al. 2023; Bond, Klok, and Zhu 2024; Tan, Wu, and Zhang 2024; Jha et al. 2025; Degen et

al. 2024). Our findings suggest that caution is warranted when interpreting some of these results,

as apparent forecasting accuracy may reflect the model’s memorization of training data rather than

genuine predictive capability. Moreover, studies that find inaccuracies or biases in LLM predictions

during their training period may not be measuring actual forecasting limitations but instances

where the model attempts to provide helpful responses by pretending not to know information it

has memorized.

With the growing number of applications of LLMs in economics and finance research (e.g.,

Jha et al. 2024; Cao et al. 2025; van Binsbergen, Han, and Lopez-Lira 2022; Bai et al. 2023;

Chen, Kelly, and Xiu 2022; Kim, Muhn, and Nikolaev 2024; Beckmann et al. 2024; Breitung and

Müller 2025; Bybee 2023; Horton 2023; Hansen et al. 2024; Manning, Zhu, and Horton 2024;

Clayton et al. 2025), greater work is needed to evaluate the extent to which LLM memorization

may affect specific applications such as similarity matching, sentiment scoring, survey generation,

and expectation extraction.

2 A Formalization of the Memorization Problem

Econometrically, the problem is an information-set and parameter mismatch. The researcher wishes

to evaluate decisions using only what was known at time t, but the model’s parameters already

encode information revealed after t. This section provides intuition with simplified notation; formal
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definitions, assumptions, and proofs are in Appendix C.

2.1 Lookahead Bias in LLM Forecasting

Setup. Let It denote information available at t and I>t information revealed later; Iall = It∪I>t.

Let Qt be a task posed “as of t” (comprising an instruction and any input data drawn from It). Let

Ytrue denote the realized outcome (revealed after time t). Let θ = θ(Iall) be the factual parameters

of the fully trained model (trained on all data) and Sϕ(·) the model’s internal scoring function, where

ϕ denotes generic model parameters. We define θt = θ(It) as the counterfactual parameters that

would have been obtained by applying the same training procedure to the restricted information set

It. We model the LLM’s output as the optimal decision y from a set of possible answers Y, selected

by the decision rule δϕ(Q,P ) := argmaxy∈Y Sϕ(y;Q,P ), where Q is the task and P represents

additional instructions that modify the task (with P = ∅ denoting no additional instructions

beyond the task itself).6

Ideal (target estimand). The counterfactual decision the researcher wants is

Y ⋆
t := δθt(Qt,∅) = argmax

y∈Y
Sθt

(
y;Qt,∅

)
. (1)

Observed (implemented estimand). In practice, we observe the decision of the fully trained

model,

YLLM = δθ(Qt,∅) = argmax
y∈Y

Sθ

(
y;Qt,∅

)
,

θ = θ(Iall).

(2)

Definition 1 (Task invariance and lookahead bias). A task Qt is either:

• Future-variant: The task is future-variant (equivalently, exhibits lookahead bias) if the

LLM’s decision depends on post-t information embedded in its parameters:

δθt(Qt,∅) ̸= δθ(Qt,∅), (3)

6. We focus on deterministic (greedy) decoding for clarity. The results generalize to stochastic decoding
(temperature > 0); see Appendix C.
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that is, the counterfactual answer (what the model would have predicted if trained only on

pre-t information) differs from the answer produced by the fully trained model. This definition

is model-relative: it assumes the training procedure is deterministic conditional on the data,

such that the only difference between θ and θt is the inclusion of future information, I>t.

• Future-invariant: The task is future-invariant if the identity of the optimal answer is

invariant to post-t information:

δθt(Qt,∅) = δθ(Qt,∅), (4)

that is, training on the full information set Iall vs. the restricted set It yields the same answer.

Since the model’s parameters encode information from the full training data, other uses of these

parameters (e.g., embedding vectors) may also reflect memorized information.

Lookahead bias is pervasive, affecting tasks requiring judgment, selection, or prediction. It

contaminates any task that is not future-invariant. For example, classifying the sentiment of a

2007 housing-related article: under θt, “Optimistic” may be the answer that maximizes the

score; under θ (which includes the 2008 crisis), “Negative” may instead be optimal. This differs

from standard data lookahead bias in econometrics (e.g., accidentally including Q4 data in a Q3

predictive regression): the input Qt here is valid and contains only information available at time t,

but the function δθ processing it is contaminated by future information embedded in the model’s

parameters (i.e., functional-form lookahead bias).

Practical guidance for researchers. To apply this distinction in practice, researchers can

assess whether a task is future-invariant by asking: Would an analyst’s answer differ if they knew

what happened after time t? If the answer is yes, or even plausibly yes, the task is not future-

invariant. When recovering answers about specific firms, events, or time periods, using LLM outputs

on pre-cutoff data is problematic.

Common categories of tasks:

Likely future-invariant (safe for pre-cutoff use):

• Factual extraction: entity names, dates, reported numbers
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• Structural parsing: word counts, sentence boundaries, document structure

• Objective classification: language detection, part-of-speech tagging

Not future-invariant:

• Judgment-based assessment: identifying “important” or “relevant” information

• Sentiment and tone analysis: evaluating whether text is positive or negative

• Risk and uncertainty: extracting “risks,” “concerns,” or “uncertainties”

• Forecasting and expectations: generating predictions or eliciting expectations

• Similarity and comparison: determining which documents are “similar” in economically

meaningful ways

For the future-variant tasks in the second category, pre-cutoff use is invalid. Regardless of task

type, researchers should verify what the model has memorized using our direct elicitation procedure

(see Section 3). Even seemingly safe factual extraction tasks may be contaminated if the model

has memorized specific facts relevant to the analysis. For instance, a task like “Extract all risks

mentioned in this 2007 earnings call” is not future-invariant, even though it appears to be a simple

extraction. The concept of “risk” is judgment-laden—what the model identifies as salient risks is

informed by knowledge of which concerns actually materialized into problems.

Remark 1 (Lower bound property of memorization tests). Any memorization test establishes only

a lower bound on what is encoded in θ: positive evidence is conclusive, but negative evidence is

not.

Different query-prompt pairs may access different subsets of encoded information through dif-

ferent mechanisms, so failure to elicit knowledge in a particular test does not prove its absence.

Consequently, conditioning on cases where tests fail (e.g., restricting to observations where the

model cannot identify the firm) does not resolve non-identification—the model may still access

memorized information through alternative contextual cues.

2.2 Non-identification of Constrained Forecasts

Researchers sometimes add constraining prompts P (e.g., “use only data before 2010”), hoping to

emulate Y ⋆
t without retraining the model. For any such prompt, define the constrained output as
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Yconstrained(P ) := δθ(Qt, P ) = argmax
y∈Y

Sθ

(
y; Qt, P

)
,

θ = θ(Iall).

(5)

The researcher’s goal is to use the observable Yconstrained(P ) as a proxy for the unobservable,

ideal estimand Y ⋆
t . The central methodological question is therefore whether Y ⋆

t can be uniquely

recovered from the constrained outputs. This is a formal identification question. The following

proposition states that this is not possible.

Proposition 1 (Non-identification). Given observations Yconstrained(P ) for any set of constraining

prompts {Pk} designed to restrict the model to information available at time t, the ideal estimand

Y ⋆
t cannot be uniquely identified. Any observed constrained output is consistent with multiple,

contradictory values of the true counterfactual forecast Y ⋆
t .

The problem is observational equivalence: any observed output is consistent with both the

constraint working (the model genuinely forecasts using only pre-t information) and the constraint

failing (the model retrieves a memorized answer). Without additional assumptions, these alterna-

tives cannot be distinguished. See Appendix C for the formal construction.

Corollary 1 (Sharp non-identification). Under the same conditions as Proposition 1, for any

observed constrained output, the identified set for Y ⋆
t equals the entire label set Y. That is, observing

constrained outputs provides zero information about the ideal estimand.

(See Appendix C for the proof.)

To illustrate the practical implications, consider the realized outcome that was eventually

revealed after time t. Let Ytrue ∈ Y denote this true outcome. Counterintuitively, both good

and bad forecasts are uninterpretable due to exact observational equivalence. A “good” forecast

(Yconstrained = Ytrue) could indicate the constraint worked and the model demonstrated genuine

skill, or that the constraint failed and the model simply recalled the memorized answer. A “bad”

forecast (Yconstrained ̸= Ytrue) is equally uninformative: the constraint may have worked, yielding a

genuine but incorrect forecast (Y ⋆
t = Yconstrained), or the model may be using post-t information

in unintended ways (for instance, drawing on memorized knowledge of what historical forecasts or
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beliefs looked like to simulate a period-appropriate answer). As our empirical tests show, implausi-

bly high accuracy across many items suggests constraints typically fail. Consequently, constrained

prompts render forecasts fundamentally uninformative about the target estimand.

Corollary 2 (Black-box fine-tuning). The same non-identification result holds for black-box fine-

tuning to “forget” post-t information: without white-box verification, Y ⋆
t cannot be identified from

fine-tuned outputs.

The problem is observational equivalence between genuine forgetting (parameters changed to

approximate θt) and behavioral suppression (post-t information still embedded, but the model

learned to hide it). See Appendix C for the formal construction.

2.3 Masking as a Potential Solution

Masking procedures attempt to remove identifying information (firm names, dates, industry labels)

from tasks, hoping to prevent the model from accessing memorized information while preserving

the ability to perform useful analysis.

Definition 2 (Valid masking). Let M : Qt 7→ Qmask
t be a masking procedure. Masking is valid if:

(i) Future-invariance: δθt(Q
mask
t ,∅) = δθ(Q

mask
t ,∅).

(ii) Detectable skill: The model’s accuracy on pre-cutoff masked data exceeds baseline (pmask >

p0).

Condition (ii) is necessary for identification: without it, poor performance could reflect either

lack of capability or over-aggressive masking—observationally equivalent alternatives analogous

to Proposition 1. Valid masking enables two research uses: task-preserving (if δθ(Q
mask
t ,∅) =

Y ⋆
t , recovering the original estimand) or capability-demonstrating (if the estimand changes,

establishing capability on the masked task class).

Remark 2 (Reconstruction tests and the lower bound property). By Remark 1, reconstruction

tests provide asymmetric evidence: successful reconstruction proves condition (i) fails, but failure

to reconstruct does not prove it holds.
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Verifying condition (i) requires both empirical evidence (reconstruction fails) and theoretical

arguments (no information pathway exists), analogous to establishing instrument variable exo-

geneity in econometrics. When masking preserves future-invariance, it enables task-preserving use

(recovering the original estimand); when it changes the estimand but maintains future-invariance,

it enables capability-demonstrating use. See Appendix C for details.

2.4 Post-Cutoff Data and the Identification Problem

Post-cutoff data provide a potential solution to Proposition 1: since the model has not been trained

on these data, post-cutoff accuracy directly measures forecasting ability. However, a common

practice is to report pre-cutoff accuracy as the primary result and use small post-cutoff samples as

“robustness checks,” arguing that similar accuracy implies no memorization. The next proposition

shows why this practice is unjustified.

Proposition 2 (Statistical indistinguishability in pre- vs. post-cutoff comparisons). When post-

cutoff sample size is small relative to pre-cutoff sample size, genuine forecasting skill and undetected

memorization cannot be reliably distinguished by hypothesis tests. Economically substantial memo-

rization gaps remain statistically undetectable due to low power.

Consequently, if post-cutoff data are sufficient to be informative, they should be the primary

analysis, not a robustness check; if they are insufficient, comparing pre- and post-cutoff accuracy

fails to distinguish skill from memorization. See Appendix C for the formal power analysis.

3 Methodology

To evaluate LLMs’ memorization of economic and financial data, we develop a testing framework

that isolates recall abilities from forecasting. Our approach formalizes the information environment

by providing a context set xt and requesting a prediction about yt+1, where t represents a specific

point in time. The query structure explicitly references periods, asking the model to provide

economic or financial data for particular dates. For instance, we might ask “What was the level of

the S&P 500 on May 2nd, 2020?”
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We vary the information set xt to isolate different memory access mechanisms. In the baseline

case, we provide no context, testing the model’s pure recall ability. We then augment this with two

progressively richer information environments: (1) historical context containing the recent history

of yt up to time t, and (2) news context including headlines from major financial publications from

the period leading up to t.

Our tests of LLMs’ recall capabilities span several categories of economic variables. First, we

test macroeconomic indicators by querying precise values (e.g., unemployment rates) and directional

trends. Second, we examine stock market indices through questions about exact numerical levels,

directional changes, percentage movements, and relative performance. For example, we ask for

the S&P 500 closing value on specific dates or whether the NASDAQ increased or decreased on

particular days. Third, we test LLMs’ ability to identify news headlines’ dates by presenting sets

of The Wall Street Journal front-page headlines without dates and asking it to identify when

these headlines appeared and to predict the corresponding S&P 500 level on the next trading day.

Fourth, we assess their ability to recall individual securities information, including specific stock

price levels and directional movements. Fifth, we examine the effectiveness of requesting LLMs

to impose artificial knowledge cutoff dates. Finally, we test the LLM’s ability to recover company

identities from anonymized firm-specific text, including earnings calls and news headlines.

3.1 Period Selection and Supplementary Analysis

Our experimental design strategically spans three temporal zones relative to an LLM’s training

cutoff date. First, we include periods before the cutoff where we expect high recall accuracy if

memorization occurs. Second, we examine the periods within 10 years preceding the cutoff to

assess potential recency effects in memorization patterns. Finally, we include post-cutoff periods

as a control condition, where memorization is not expected.

3.2 Prompt

We implement a standardized prompt template across all model queries to ensure consistency and

minimize experimental variation. Each prompt includes an optional context section, a specific
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question about economic data, and explicit instructions for response formatting. The general

template is:

[Context: {context information}]

{question about economic data}

Provide a precise answer based on your knowledge. Indicate your level of

confidence. Format as a JSON object with the following fields:

• answer: The precise answer to the question.

• confidence: A number between 0 and 100 indicating the model’s confidence

in its answer.

The context information represents the information set xt for our experimental conditions,

which may be empty (when testing pure recall), contain historical data points, include relevant

news headlines, or provide general knowledge about the period. More detailed information is

provided in Section A of the Appendix.

For example, in a prompt testing recall with historical context, we might provide: “Context:

The S&P 500 closed at 2,834.40 on March 14, 2019, and at 2,808.48 on March 13, 2019. What

was the S&P 500 closing value on March 15, 2019?” This standardized approach allows us to

systematically vary the information provided while controlling for confounding factors in question

phrasing or response expectations.

3.3 LLMs

Given its wide usage in research, we conduct our main analysis using ChatGPT-4o with the specific

version of “gpt-4o-2024-08-06.” This model is a snapshot of GPT-4o, ensuring consistent perfor-

mance and behavior. It will not receive updates, and its training data ends in October 2023.7

Importantly, the temperature of the model is set to 0 for all of the analyses to maximize the

reproducibility of the results.8 In additional analyses, we also test for the recall capabilities of

7. More information about this model is available here: https://platform.openai.com/docs/models/gpt-4o.
8. Temperature is a parameter of ChatGPT models that governs the randomness and the creativity of the

responses. A temperature of 0 essentially means that the model will always select the highest probability
word conditional on the text, which will eliminate the effect of randomness in the responses and maximize
the reproducibility of the results.
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open-source models such as Llama-3.1-70b-Instruct.9

4 Data

Most of the tests use data from January 1990 to September 2023, which precedes GPT-4o’s knowl-

edge cutoff date of October 2023. To test the LLM’s memorization, we use three categories of

datasets: (1) stock index and individual stock prices, (2) macroeconomic indicators, and (3) tex-

tual data on WSJ front-page news, earnings calls, and firm-specific news headlines.

We ask the LLM to give us the closing value of the stock indices and a sample of individual

stocks. We use the daily closing values of the S&P 500, the Dow Jones Industrial Average, and the

Nasdaq Composite from Yahoo Finance to evaluate the LLM’s answers. We use Center for Research

in Security Prices (CRSP) data to obtain daily stock market data for individual stock closing prices.

The sample of individual stocks includes the Magnificent 7 (AAPL, AMZN, GOOGL, META,

MSFT, NVDA, TSLA) and randomly selected subsamples of stocks in different size categories,

representing a total of over 4,200 unique ticker symbols.

We also ask the LLM to give us estimates of various macroeconomic indicators. The indicators

we test are (i) US GDP growth, (ii) inflation, (iii) unemployment rate, (iv) 10-year Treasury Yield,

(v) VIX, (vi) housing starts, and (vii) change in nonfarm payrolls. We obtain the actual unemploy-

ment rate and 10-year Treasury Yield values from Federal Reserve Economic Data (FRED). We

obtain the VIX levels from Yahoo Finance. For GDP growth, inflation, housing starts, and change

in nonfarm payrolls, we use the Philadelphia Federal Reserve Real-Time Data Set to get the first

vintage and ask the LLM to give us the earliest estimate of these indicators.

The textual data we use include The Wall Street Journal (WSJ) front-page headlines obtained

from Factiva, earnings conference call transcripts from Capital IQ, firm-specific headlines, and the

RavenPack news database. The WSJ front-page news dataset comprises 90,123 headlines from

January 1990 to February 2025. There are, on average, approximately 9 headlines for each date.

Given each set of headlines, we ask the LLM to provide the date and S&P 500 level on the next

trading day. The conference call dataset starts in January 2006 and ends in May 2024. We extract

9. Llama-3.1-70B-Instruct is Meta’s 70B-parameter instruction-tuned Llama-3.1 model, released July 23,
2024. More information is available here: https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct.
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the opening statement delivered by the CEO, anonymize the text using an entity neutering approach

as proposed by Engelberg et al. (2025), and ask the LLM to provide the firm, quarter, and year of

the conference call.

We implement a similar test for the firm-specific headlines from January 2000 to June 2024. We

follow the filtering procedures based on the RavenPack news database as in Lopez-Lira and Tang

(2023), including keeping only headlines with a relevance score of 100, keeping complete articles

and press releases only and excluding headlines categorized as “stock-gain” and “stock-loss”, and

avoiding repeated news through requiring the “event similarity days” to exceed 90 and removing

duplicate headlines. We arrive at a sample of 1,358,737 headlines covering 4,391 unique firms from

January 2000 to June 2024. About 70% of headlines are from overnight articles released either

before 9 a.m. or after 4 p.m., with the remaining 30% from intraday articles.

5 Results

In this section, we present a comprehensive evaluation of GPT-4o’s memorization of economic

and financial data, spanning macro indicators, market indices, individual stocks, headlines, and

attempts to mitigate memorization through fake knowledge cutoffs and masking. Across these

domains, we assess the model’s ability to recall precise values, identify contextual details, and

adhere to constraints. Our goal is to study the extent and selectivity of memorization, highlighting

its implications for using LLMs in economic forecasting and the challenges of isolating genuine

predictive ability. Each subsection examines a specific data type or mitigation strategy, building a

cohesive picture of how memorization manifests and persists.

First, we establish that memorization exists through direct elicitation tests on pre-cutoff data,

where we query the model for specific values using only variable names and dates. High accuracy

on these tests provides unambiguous evidence of memorization. Second, we examine post-cutoff

performance as descriptive evidence regarding data contamination. When post-cutoff samples are

small, hypothesis tests have low power to distinguish genuine forecasting skill from undetected

memorization. Therefore, we interpret post-cutoff results cautiously: poor post-cutoff performance

is descriptively consistent with absence of data contamination, but our post-cutoff samples are often
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small and do not constitute definitive statistical tests.

5.1 Macroeconomic Data Recall

To assess GPT-4o’s memorization of macroeconomic indicators, we tested its ability to recall

monthly values across various variables (quarterly for GDP). In the baseline analysis, we use data

from January 1990 to September 2023, all within the model’s training cutoff of October 2023. Im-

portantly, for comparison, we also examine the post-cutoff period from October 2023 to February

2025. The indicators were divided into two groups: rates (GDP Growth, Inflation, Unemployment

Rate, and 10-year Treasury Yield) and levels (Housing Starts, VIX, and Nonfarm Payrolls). For

rates, we requested percentage values, evaluating accuracy through Mean Error, Mean Absolute

Error, Threshold Accuracy (correctly identifying whether the rate was above a threshold value),

and Directional Accuracy (correct direction of change from the previous period). For levels, we

requested raw values, with errors calculated relative to actual levels through Mean Percent Error,

Mean Absolute Percent Error, Threshold Accuracy, and Directional Accuracy. We also examined

levels over the 10-year period preceding the cutoff to explore potential recency effects. We measure

performance against the actual values of macro indicators and report the findings in Table 1.10

The results reveal a strong ability of GPT-4o to recall macroeconomic data. Figure 3 plots the

recalled values against actual values as well as the estimation error for GDP Growth, Inflation,

Unemployment Rate, and 10-year Treasury Yield. The series for recalled and actual values are

almost identical, particularly in more recent periods. For rates, the model demonstrates near-

perfect recall, with Mean Absolute Errors ranging from 0.03% (Unemployment Rate) to 0.15%

(GDP Growth) and Threshold Accuracy exceeding 96% across all indicators, reaching 98% for 10-

year Treasury Yield and 99% for Unemployment Rate. This set of results suggests that GPT-4o

has memorized these percentage-based indicators with a high degree of accuracy.

For levels, the recall remains high, with Threshold Accuracies between 94% and 100% for all

indicators during the whole pre-training sample. Moreover, when focusing on the most recent 10-

year period in the pre-training sample, performance improves dramatically–Mean Absolute Percent

10. Table A1 in the Appendix reports summary statistics for the data to serve as benchmark accuracy rates
for comparing the model’s ability to recall values against the true data.

20



Errors fall to 1.06% for Housing Starts, 0.34% for VIX, and 0.00% for Nonfarm Payrolls, with

Threshold Accuracy rising to 95%–100%. This recency effect indicates stronger memorization for

more recent data, likely due to denser representation in the training corpus.

In contrast, the evaluation metrics in the post-cutoff period do not suggest recall. For rates,

the Mean Absolute Errors increase significantly, ranging between 0.26% (Unemployment Rate)

to 0.95% (GDP Growth). Threshold Accuracy falls to between 29.41% (10-Yr Treasury Yield)

to 52.94% (Unemployment Rate). For levels, we see the same breakdown in recall. The Mean

Absolute Percent Error jumps dramatically when compared to the recall in the more recent pre-

cutoff period. For example, the Mean Absolute Percent Error rises from 0% to 97.4% for Nonfarm

Payrolls. Threshold Accuracy drops from above 94% for all indicators to 35.3% (Housing Starts),

50.0% (VIX), or 58.8% (Nonfarm Payrolls).

The high recall accuracy for rates and recent levels underscores the memorization problem

when evaluating LLMs’ forecasting capabilities during the training period. The model’s ability

to reproduce precise macroeconomic values, especially for percentage-based indicators and recent

periods, suggests that apparent forecasting success for pre-cutoff data may stem from retrieving

memorized information rather than genuine economic analysis. The weaker performance for levels

over the full period, particularly for volatile indicators like Nonfarm Payrolls, hints at selective

memorization, where certain data types or time frames are less reliably retained. On the other

hand, we do not observe post-cutoff recall.
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Table 1: Evaluation Metrics for Macro Indicators

This table reports a set of evaluation metrics for various macroeconomic indicators grouped into two panels: Rates and Levels. We ask the LLM to recall monthly values
(quarterly for GDP, specific end of month date for 10-Year Treasury Yield and VIX) for each indicator. The indicators in the Rates panel include GDP Growth, Inflation,
Unemployment Rate, and the 10-Year Treasury Yield. For these indicators, we ask the LLM to give us a percentage. The Levels panel includes Housing Starts, VIX, and
Nonfarm Payrolls, evaluated over the full sample period. In each panel, we examine the periods before and after the knowledge cutoff date (October 2023) separately. The
Levels, Recent Pre-cutoff Period: Past 10 years panel evaluates these same indicators over a more recent, shorter period. Mean Error (ME), Mean Absolute Error (MAE),
Mean Percent Error (MPE), Mean Absolute Percent Error (MAPE), Threshold Accuracy,and Directional Accuracy are reported in percentage points (0.01 means 0.01%). For
Rates, the ME is the difference EstimatedRate−ActualRate. MAE is calculated by taking the average of the absolute value of the ME. Threshold Accuracy is the proportion
of predictions that correctly identify whether the rate or level is above a threshold value (2.5% for GDP Growth, 3% for Inflation, 4% for Unemployment Rate, 4% for the
10-Year Treasury Yield, 16 for VIX, 1400 for Housing Starts, and 200 for Nonfarm Payrolls). For Levels, the MPE is calculated by taking the average of the percent error
(EstimatedLevel−ActualLevel)/ActualLevel. MAPE is calculated by taking the average of the absolute value of the percent error. Directional Accuracy is the proportion of
predictions that correctly identify the direction of change (up or down) relative to the previous month. Confidence Calibration is the correlation between the LLM’s confidence
level (on a scale from 0 to 100) and the MAPE. Num Obs is the number of observations used in the evaluation. Refusals are the number of instances in which the model
withheld a prediction by either answering ”null” or 0. Refusal count also includes instances of missing data.

Panel A: Rates ME (%) MAE (%) Threshold
Accuracy (%)

Directional
Accuracy (%)

Confidence
Calibration

Num Obs Refusals

Pre-cutoff, 01/1990 to 09/2023

GDP Growth 0.01 0.15 96.27 96.99 -0.27 134 1
Inflation 0.00 0.04 98.02 93.07 -0.11 405 0
Unemployment Rate -0.00 0.03 99.26 83.42 0.09 405 0
10-Yr Treasury Yield -0.00 0.06 98.52 88.12 -0.40 405 0

Post-cutoff, 10/2023 to 02/2025

GDP Growth 0.01 0.95 40.00 100.00 - 6 0
Inflation 0.35 0.38 47.06 56.25 0.70 17 0
Unemployment Rate -0.20 0.26 52.94 31.25 0.47 17 0
10-Yr Treasury Yield -0.24 0.48 29.41 50.00 0.16 17 0

Panel B: Levels MPE (%) MAPE (%) Threshold
Accuracy (%)

Directional
Accuracy (%)

Confidence
Calibration

Num Obs Refusals

Pre-cutoff, 01/1990 to 09/2023

VIX 3.25 6.74 94.62 87.40 -0.42 390 15
Housing Starts -2.38 3.92 100.00 81.91 -0.24 399 6
Nonfarm Payrolls -7.65 66.30 95.56 94.06 -0.11 405 0

Recent Pre-cutoff Period, 10/2014 to 09/2023

VIX 0.04 0.34 100.00 98.13 -0.20 108 0
Housing Starts -0.22 1.06 95.28 98.10 -0.14 106 2
Nonfarm Payrolls -0.00 0.00 100.00 100.00 -0.14 108 0

Post-cutoff, 10/2023 to 02/2025

VIX 16.87 21.14 50.00 61.54 - 14 3
Housing Starts 2.25 8.54 35.29 56.25 - 17 0
Nonfarm Payrolls 69.51 97.44 58.82 68.75 -0.21 17 0
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5.2 Market Index Recall

We next evaluate GPT-4o’s memorization of market index data by testing its ability to recall daily

and monthly values for the S&P 500, Dow Jones Industrial Average (DJIA), and Nasdaq Composite,

using data from January 1990 to February 2025. For numerical recall tests, we requested exact

closing values at daily frequency, both without context and with the previous two days’ levels

provided, as well as monthly returns. Additionally, we assessed directional changes (up or down)

and relative performance between index pairs at the monthly frequency. Performance metrics

include Mean Percent Error, Mean Absolute Percent Error, and Directional Accuracy (proportion

of predictions correctly identifying the direction of change relative to the previous period) for

numerical predictions and accuracy for directional and relative performance tasks, all compared

against actual values.

Results are reported in Table 2, distinguishing pre-cutoff (before October 2023) and post-cutoff

(after October 2023) periods to isolate memorization effects. For pre-cutoff daily exact numerical

levels, GPT-4o exhibits strong recall, with Mean Absolute Percent Errors of 0.61% for S&P 500,

0.53% for DJIA, and 1.80% for Nasdaq Composite, and Directional Accuracy ranging from 69.4%

(Nasdaq) to 80.7% (DJIA). Providing context improves slightly accuracy for S&P 500 (0.50%) and

Nasdaq (1.06%). Prompting directly for returns, which we test monthly, yields higher Directional

Accuracy (79.5%–85.2%), reflecting robust memorization of directional trends. Other tests further

confirm memorization: prompting directly for directional performance (“up” or “own”) exceeds

79% accuracy across indices, and relative performance accuracy ranges from 82.9% (S&P 500 vs.

Nasdaq) to 87.1% (S&P 500 vs. DJIA).

In contrast, post-cutoff performance collapses. For instance, without context, the Mean Abso-

lute Percent Errors balloon to 13.01%–20.48% for exact levels and Directional Accuracy dropping

to near-random levels (44.0%–49.3%). We find similar evidence for recall with context in terms

of Directional Accuracy which ranges from 51.9% to 54.4% in the post-cutoff period, much lower

than the Directional Accuracy pre-cutoff which ranges from 68.6% to 80.8%. These findings do not

suggest data leakage beyond the training cutoff date.

The sharp pre-cutoff accuracy, particularly for exact levels and relative performance, highlights

GPT-4o’s extensive memorization of historical index data, posing challenges for forecasting studies
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Figure 3: Recall of exact numerical values of macro indicators.

This figure shows the LLM’s estimated values of macro indicators including Inflation, 10-yr Treasury Yield, GDP Growth, and
Unemployment Rate compared to the actual values. Panels A, C, E, and G graph the actual values against the estimated
values. Panels B, D, F, and H show the estimation error. Estimation error is calculated as (Estimated - Actual)/Actual and is
shown in percentages (5 means 5%). The post-cutoff period (10/2023 onward) is shaded gray.
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Table 2: Evaluation Metrics for Stock Market Indices

This table reports a set of evaluation metrics assessing the LLM’s ability to recall market index levels and their changes over
time. These tests are done at the daily or monthly frequency. We ask the LLM to recall the closing value of the index each
trading day. Panel A provides metrics for predictions of Daily Levels and Daily Levels with context (where the previous two
days’ index levels are provided). We ask the LLM to provide monthly returns for these indices as well. Metrics include Mean
Percent Error (MPE), Mean Absolute Percent Error (MAPE), and Directional Accuracy, all reported in percentage points (0.10
means 0.10%). MPE is calculated by averaging the percent error (EstimatedLevel−ActualLevel)/ActualLevel. MAPE takes
the average absolute value of the percent errors. Directional Accuracy measures the proportion of predictions of the market
index levels correctly following the direction of change (up or down) relative to the previous day. Confidence Calibration reports
the correlation between the LLM’s confidence level (on a scale from 0 to 100) and mean absolute percent error. Panel B presents
accuracy metrics related to predicting Directional Changes and Relative Performance between indices. Directional Changes
asks the LLM directly for an up or down answer for each month. Relative Performance asks the LLM to answer which index of
the index pair performed better during the month. Accuracy reports the proportion of predictions correctly identifying either
the direction of change or relative performance in percentage points. Confidence Calibration in this panel reflects the correlation
between the LLM’s confidence and the MAPE. Results are separately provided for the S&P 500 (SP500), Dow Jones Industrial
Average (DJIA), and Nasdaq Composite indices.

Panel A: Numerical Tests

MPE (%) MAPE (%) Directional
Accuracy (%)

Confidence
Calibration

Num Obs Refusals

Daily Levels: Pre-cutoff, 01/02/1990 to 09/29/2023

SP500 0.12 0.61 80.58 -0.14 8,488 0
DJIA 0.11 0.53 80.66 -0.36 8,488 0
Nasdaq Composite 0.18 1.80 69.38 -0.12 8,488 0

Daily Levels: Post-cutoff, 10/02/2023 to 02/28/2025

SP500 -16.78 16.87 45.70 -0.10 292 62
DJIA -12.96 13.01 49.26 -0.14 271 83
Nasdaq Composite -20.40 20.48 44.03 -0.25 294 60

Daily Levels: Pre-cutoff with context, 01/02/1990 to 09/29/2023

SP500 0.13 0.50 80.78 -0.16 8,488 0
DJIA 0.06 0.46 80.06 -0.17 8,488 0
Nasdaq Composite 0.00 1.06 68.62 -0.18 8,488 0

Daily Levels: Post-cutoff with context, 10/02/2023 to 02/28/2025

SP500 0.00 0.64 54.40 -0.07 319 35
DJIA -0.04 0.54 53.17 0.02 332 22
Nasdaq Composite -0.03 0.92 51.85 -0.09 298 56

Monthly Returns: Pre-cutoff, 01/1990 to 09/2023

SP500 -0.70 3.36 85.19 0.27 405 0
DJIA -0.70 3.28 80.49 0.26 405 0
Nasdaq Composite -1.03 4.83 79.51 0.21 405 0

Monthly Returns: Post-cutoff, 10/2023 to 02/2025

SP500 -1.16 3.20 41.67 -0.28 12 5
DJIA -0.80 3.18 30.77 -0.06 13 4
Nasdaq Composite -2.46 4.07 41.67 -0.39 12 5

Panel B: Other Tests

Accuracy (%) Confidence Calibration

Monthly Directional Changes: Pre-cutoff

SP500 82.80 0.33
DJIA 80.63 0.29
Nasdaq Composite 79.36 0.29

Monthly Relative Performance: Pre-cutoff

SP500, DJIA 87.10 0.23
SP500, NDAQ 82.86 0.49
NDAQ, DJIA 83.87 0.42
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in economics and finance. The model’s ability to recall precise closing values and correctly identify

directional trends within its training period suggests that any apparent predictive success may

reflect memorized data rather than analytical capability. The negligible improvement from context

and the complete performance drop post-cutoff reinforce that these results stem from training

data exposure. These findings caution against using LLMs for historical market analysis without

ensuring data is outside their training scope, as their outputs risk being artifacts of memorization

rather than genuine economic foresight.

5.3 Headline Date Identification

In this section, we assess LLMs’ ability to extract date information from front-page news headlines

and, in turn, predict the aggregate stock market index. To do so, we present GPT-4o with sets of

The Wall Street Journal front-page headlines (approximately 9 headlines per day) from our dataset

of 90,123 headlines spanning January 1990 to February 2025 without revealing their publication

dates. We asked the model to identify when these headlines appeared and, in a separate test

variant, predict the S&P 500 level on the next trading day. Performance is evaluated using multiple

accuracy metrics: year accuracy, month-and-year accuracy, exact date accuracy, mean absolute days

difference, and confidence calibration. By comparing results between pre-cutoff headlines (where

memorization could occur) and post-cutoff headlines (where memorization is impossible), we can

clearly distinguish between the model’s inferential abilities and its capacity to recall memorized

chronological information.

We present the results in Table 3. GPT-4o demonstrates remarkable memorization of headline

chronology within its training period. For pre-cutoff headlines, it achieves 98.5% accuracy in

determining the correct year and 90.4% in identifying the correct month and year. Even for exact

date identification, the model achieves 47.0% accuracy—significantly above chance levels. When

incorrect, the model’s estimates remain close to the actual date, with a mean absolute difference

of 9.5 days.

In stark contrast, for headlines published after the model’s training cutoff date, performance

deteriorates dramatically across all metrics. Year accuracy drops to 28.8%, month-and-year accu-

racy falls to 20.7%, and exact date accuracy declines to just 7.9%. The mean absolute difference
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Table 3: Evaluation Metrics for News Headlines

This table reports a set of evaluation metrics assessing the LLM’s ability to recall dates associated with historical headlines,
along with corresponding levels of the S&P 500 index. Metrics are separated into two panels: Headline Dates, focusing solely
on the accuracy of predicted dates, and Headline Dates and Levels, evaluating the accuracy of results when we prompt the
LLM to give both the dates and S&P 500 levels on the next trading day. Mean Days Difference is the average signed difference
(in days) between predicted and actual dates, while Mean Absolute Days Difference reports the average absolute difference.
Year Accuracy, Month and Year Accuracy, and Exact Date Accuracy measure the percentage of predictions correctly recalling
the year, the month and year, and the exact date, respectively. Confidence Calibration indicates the correlation between the
LLM’s confidence level (on a scale from 0 to 100) and the accuracy of date predictions. Mean Percent Error S&P 500 and
Mean Absolute Percent Error S&P 500 measure the accuracy of the LLM’s predicted index levels, calculated as the average
and average absolute values of the percent error, respectively, and reported in percentage points (-0.01 means -0.01%). Results
are provided separately for headlines from the Pre-training Period and the Post-training Period.

Mean
Days Dif-
ference

Mean
Absolute
Days Dif-
ference

Year
Accuracy

(%)

Month
and Year
Accuracy

(%)

Exact
Date

Accuracy
(%)

Confidence
Calibra-
tion

MPE
S&P 500

(%)

MAPE
S&P 500

(%)

Headline Dates

Pre-training Period -0.77 9.52 98.45 90.38 47.03 -0.10 - -
Post-training Period 413.46 414.54 28.81 20.71 7.86 -0.12 - -

Headline Dates and Levels

Pre-training Period -1.30 9.63 98.50 90.31 39.31 -0.10 0.00 0.01
Post-training Period 456.84 457.13 26.20 19.47 5.53 0.29 -0.21 0.22

increases to 414.5 days, indicating essentially random guessing.

We observed a similar pattern when we extend our test to ask the model to provide both

the headline date and the corresponding S&P 500 level on the next trading day. For the pre-

training period, the model achieves high temporal accuracy while maintaining near-perfect recall

of index values (mean absolute percent error of just 0.01%). For post-training headlines, both date

identification and index level predictions became significantly less accurate.

The sharp performance discontinuity at the training cutoff date provides compelling evidence

that the model’s apparent “knowledge” of financial chronology stems primarily from memorization

rather than inference or reasoning. This finding raises significant concerns about using LLMs to

analyze historical relationships between news events and market movements within their train-

ing period, as their responses may reflect memorized associations rather than genuine analytical

insights.
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5.4 Individual Stock Price Recall

To complement our earlier findings on market indices, we examine memorization at the individual-

security level in this section. In particular, we test the model’s ability to recall end-of-month closing

prices for prominent stocks such as Magnificent 7 and individual stocks in the cross section.

5.4.1 Magnificent 7 stocks

We begin our analysis with the Magnificent 7 stocks (META, GOOGL, AMZN, TSLA, NVDA,

MSFT, AAPL) from January 1990 to September 2023, which precedes the model’s training cutoff

of October 2023. We queried prices both without context and with the previous two months’ closing

prices provided, using data from the Center for Research in Security Prices (CRSP). Performance

was evaluated using Mean Percent Error, Mean Absolute Percent Error, and Directional Accuracy

(correctly identifying the direction of change relative to the previous month), with results compared

against actual closing prices. We report these metrics in Table 4 and plot the actual vs estimated

values without context in Figures 4 and 5.

The results reveal varying recall accuracy across stocks, with notable improvements when con-

text is provided. Without context (Panel A), GPT-4o performs best on more recently listed stocks,

such as META, with a Mean Absolute Percent Error of 0.37% and Directional Accuracy of 99.26%,

but struggles with stocks with a longer history, such as AAPL (36.44% error, 72.61% accuracy)

and MSFT (26.62% error, 76.75% accuracy). Errors are also high for NVDA (23.92%) and TSLA

(9.99%), suggesting selective memorization tied to the length of the price series or data prominence.

With context, accuracy improves significantly as shown in Panel B: Mean Absolute Percent Errors

drop to 0.40% for META, 0.84% for GOOGL, and 5.89% for AAPL, with Directional Accuracy

rising to 98.52%, 95.52%, and 83.91%, respectively. This context-driven enhancement mirrors the

slight improvements seen for market indices, indicating that recent price cues help the model anchor

its recall more precisely, particularly for stocks with longer price histories.

We plot the actual vs estimated values with context for NVDA, AAPL, and MSFT in Figure

6. Compared to Figure 5, this figure shows why any memorization performance only provides a

lower bound. The errors substantially decrease when we give ChatGPT the prices for the previous

two months. This situation is relevant as when forecasting, researchers typically provide contextual
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Table 4: Evaluation Metrics for Magnificent 7 Stocks

This table reports a set of evaluation metrics for the Magnificent 7 stocks which includes META, GOOGL, AMZN, TSLA,
NVDA, MSFT, and AAPL. We ask the LLM to recall closing prices at the end of each month. Mean Percent Error (MPE),
Mean Absolute Percent Error (MAPE), and Directional Accuracy are reported in percentage points (0.18 means 0.18%). MPE
is calculated by taking the average of the percent error (PredictedPrice−ActualPrice)/ActualPrice. MAPE is calculated by
taking the average of the absolute value of the percent error. Directional Accuracy is the proportion of predictions that went in
the correct direction (up or down) with respect to the previous month. Confidence Calibration is the correlation between the
LLM’s confidence level (on a scale of 0 to 100) and the MAPE. Num Obs is the number of observations used in the evaluation,
Start Date and End Date indicate the period over which the metrics were computed. Refusals are the number of instances in
which the model withheld a prediction by either answering ”null” or 0. Results are provided for a prompt that contains an
empty context in panel A and a prompt that provides the previous two month’s closing prices as context in panel B.

Panel A: No Context

MPE (%) MAPE
(%)

Directional
Accuracy

(%)

Confidence
Calibra-
tion

Num Obs Start Date End Date Refusals

Pre-cutoff, 01/1990 to 09/2023

META 0.18 0.37 99.26 -0.08 137 05/2012 09/2023 0
GOOGL -1.41 1.79 93.42 -0.19 229 08/2004 09/2023 1
AMZN -5.87 7.98 91.77 -0.12 317 05/1997 09/2023 0
TSLA -9.21 9.99 92.45 -0.13 160 06/2010 09/2023 0
NVDA -20.60 23.92 77.05 -0.53 293 01/1999 09/2023 4
MSFT -25.72 26.62 76.75 -0.65 401 01/1990 09/2023 14
AAPL -35.14 36.44 72.61 -0.54 399 01/1990 09/2023 6

Post-cutoff, 10/2023 to 02/2025

META -29.59 29.60 50.00 0.48 5 10/2023 02/2025 12
GOOGL 138.06 170.09 55.56 -0.98 10 10/2023 02/2025 7
AMZN -22.06 22.06 42.86 0.48 8 10/2023 02/2025 7
TSLA -0.81 20.15 100.00 0.61 6 10/2023 02/2025 11
NVDA 436.43 436.43 100.00 -0.64 8 10/2023 02/2025 9
MSFT -19.25 19.25 45.45 -0.48 12 10/2023 02/2025 5
AAPL -15.46 15.46 30.00 0.36 11 10/2023 02/2025 6

Panel B: With Context

MPE (%) MAPE
(%)

Directional
Accuracy

(%)

Confidence
Calibra-
tion

Num Obs Start Date End Date Refusals

Pre-cutoff, 01/1990 to 09/2023

META -0.18 0.40 98.52 -0.10 136 05/2012 09/2023 1
GOOGL -0.27 0.84 95.52 0.10 224 08/2004 09/2023 6
AMZN -0.42 3.12 93.35 0.02 317 05/1997 09/2023 0
TSLA -0.87 2.34 94.87 -0.17 157 06/2010 09/2023 3
NVDA 1.01 8.80 80.68 -0.17 296 01/1999 09/2023 1
MSFT 1.24 4.57 84.71 -0.21 400 01/1990 09/2023 5
AAPL -1.37 5.89 83.91 -0.25 405 01/1990 09/2023 0

Post-cutoff, 10/2023 to 02/2025

META -5.04 5.29 50.00 0.14 7 10/2023 02/2025 10
GOOGL 0.88 6.26 50.00 -0.36 9 10/2023 02/2025 8
AMZN -2.72 6.06 54.55 0.54 12 10/2023 02/2025 5
TSLA -5.67 10.75 60.00 0.02 11 10/2023 02/2025 6
NVDA 85.89 99.39 66.67 0.45 10 10/2023 02/2025 7
MSFT -0.80 2.75 50.00 -0.14 9 10/2023 02/2025 8
AAPL -2.90 4.12 55.56 -0.10 10 10/2023 02/2025 7
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information.

Overall, these findings extend our market index results, highlighting that GPT-4o’s memoriza-

tion is not uniform across securities and is sensitive to contextual cues and stock-specific factors.

The high accuracy for META and GOOGL, especially with context, parallels the model’s strong re-

call of recent macroeconomic levels and index values, suggesting robust memorization of prominent,

frequently referenced data. Conversely, larger errors for long-listed stocks like AAPL and MSFT,

even with context, align with the weaker recall of long-horizon macroeconomic levels, pointing to

the potential dilution of older data in the training corpus. This selective memorization reinforces

the challenge for financial research: apparent forecasting success for individual stocks within the

training period may reflect memorized prices rather than predictive ability, necessitating evaluations

with post-cutoff data to ensure methodological rigor.

5.4.2 Individual Stocks in the Cross Section

To broaden our analysis of GPT-4o’s memorization, we also examine its recall of end-of-month clos-

ing prices for individual stocks grouped by market capitalization covering January 1990 to December

2024. Stocks are divided into market capitalization quintiles with size breakpoints calculated using

NYSE stocks only. We randomly sample 50 stocks from each quintile and resampled annually to

account for size changes, using stock price data from CRSP. We test recall without context, with

the previous two months’ prices provided, and over the recent 10-year pre-cutoff period to assess

recency effects. Performance metrics, including Mean Percent Error, Mean Absolute Percent Error,

and Directional Accuracy (correct direction of change relative to the prior month), are reported in

Table 5. We also plot the actual vs estimated values in Figure 7.
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Figure 4: Recall of closing prices for AMZN, GOOGL, META, and TSLA without context.

This figure shows the LLM’s estimated closing prices for AMZN, GOOGL, META, and TSLA compared to the actual values.
Panels A, C, E, and G graph the actual values against the estimated values. Panels B, D, F, and H show the estimation error.
Estimation error is calculated as (Estimated - Actual)/Actual and is shown in percentages (5 means 5%). The post-cutoff
period (10/2023 onward) is shaded gray.
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Figure 5: Recall of closing prices for AAPL, MSFT, and NVDA without context.

This figure shows the LLM’s estimated closing prices for AAPL, MSFT, and NVDA compared to the actual values. Panels
A, C, and E graph the actual values against the estimated values. Panels B, D, and F show the estimation error. Estimation
error is calculated as (Estimated - Actual)/Actual and is shown in percentages (5 means 5%). The post-cutoff period (10/2023
onward) is shaded gray.
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Figure 6: Recall of closing prices for AAPL, MSFT, and NVDA with context.

This figure shows the LLM’s estimated closing prices for AAPL, MSFT, and NVDA compared to the actual values. We give
the LLM two previous end of the month closing prices given as context. Panels A, C, and E graph the actual values against the
estimated values. Panels B, D, and F show the estimation error. Estimation error is calculated as (Estimated - Actual)/Actual
and is shown in percentages (5 means 5%). The post-cutoff period (10/2023 onward) is shaded gray.
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Table 5: Evaluation Metrics for Individual Stocks by Size Quintile

This table reports a set of evaluation metrics for portfolios of stocks grouped by size quintiles. We divide stocks into quintiles
by market cap (using the NYSE stocks only to calculate cutoffs) and sample 50 stocks from each quintile, resampling each year.
We then ask the LLM to recall end of month closing prices for each stock. Mean Percent Error (MPE), Mean Absolute Percent
Error (MAPE), and Directional Accuracy are reported in percentage points (0.78 means 0.78%). MPE is calculated by taking
the average of the percent error (PredictedPrice − ActualPrice)/ActualPrice. MAPE is calculated by taking the average of
the absolute value of the percent error. Directional Accuracy is the proportion of predictions that went in the correct direction
(up or down) relative to the previous month. Confidence Calibration is the correlation between the LLM’s confidence level (on
a scale from 0 to 100) and the mean absolute percent error. Num Obs is the number of observations used in the evaluation.
The panel labels and subheadings indicate the period over which the metrics were computed. Refusals represent the number
of instances in which the model withheld a prediction by either answering ”null” or 0. Results are provided for the full sample
period, a recent period covering the past 10 years, and With Context, in which the previous two months’ closing prices are
provided to the model.

Panel A: No Context

Quintile MPE (%) MAPE (%) Directional
Accuracy (%)

Confidence
Calibration

Num Obs Refusals

Pre-cutoff, 01/1990 to 09/2023

1 1.20 24.70 42.66 -0.10 11,925 6828
2 -0.55 19.17 48.78 -0.13 12,262 6394
3 -3.04 17.06 51.02 -0.32 13,077 5469
4 -3.36 14.18 53.64 -0.22 13,593 4908
5 -4.55 11.29 61.11 -0.26 14,816 3576

Recent Period, 01/2014 to 09/2023

1 4.24 15.24 48.62 -0.03 5,415 96
2 2.71 10.18 58.59 -0.04 5,448 26
3 1.53 6.45 63.61 -0.02 5,403 20
4 0.54 4.79 69.21 0.01 5,309 10
5 0.21 3.16 79.54 -0.01 5,444 7

Post-cutoff Period, 10/2023 to 12/2024

1 53.36 97.83 29.71 0.01 238 479
2 27.24 46.06 39.47 0.03 302 426
3 12.63 39.18 38.79 0.04 290 440
4 -6.04 23.52 37.14 -0.03 322 413
5 0.23 27.32 46.36 0.03 390 348

Panel B: With Context

Quintile MPE (%) MAPE (%) Directional
Accuracy (%)

Confidence
Calibration

Num Obs Refusals

Pre-cutoff, 01/1990 to 09/2023

1 1.35 10.80 74.46 0.01 18187 565
2 1.47 10.14 74.35 -0.01 18029 627
3 0.65 8.47 74.01 -0.03 17839 707
4 1.15 7.77 74.45 -0.01 17767 734
5 0.72 5.73 75.58 -0.06 17565 827

Recent Period, 01/2014 to 09/2023

1 1.86 10.69 73.35 -0.01 5376 135
2 0.97 8.55 73.62 -0.04 5311 163
3 0.45 6.68 72.88 -0.10 5192 231
4 0.47 5.48 74.52 -0.10 5083 236
5 0.35 3.29 80.56 -0.11 5217 234

Post-cutoff Period, 10/2023 to 12/2024

1 10.55 25.56 73.50 0.03 533 184
2 1.32 11.49 76.40 0.04 525 203
3 0.95 9.93 72.38 -0.11 456 274
4 0.90 8.74 72.18 -0.10 455 280
5 1.44 9.06 76.02 0.01 438 300
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The results show weaker recall compared to the Magnificent 7, with accuracy improving for

larger stocks and recent periods. Without context in the pre-cutoff period, Mean Absolute Percent

Errors are high: ranging from 11.29% for Quintile 5 containing the largest stocks to 24.70% for

Quintile 1 containing the smallest stocks. Directional Accuracy is low, ranging from 42.66% to

61.11%. The high refusal rates suggest uncertainty for less prominent stocks. Over the recent 10-

year period, errors decrease significantly ranging from 3.16% for Quintile 5 to 15.24% for Quintile

1. Directional Accuracy rises to 48.6%-79.5% and near-zero refusal rates, echoing the recency effect

seen in macroeconomic levels. In the post-cutoff period, the error rates jump with Mean Absolute

Percent Errors ranging from 23.52% to 97.83%. Directional Accuracy for all quintiles falls below

46.4%, with Quintile 1 having only 29.7% accuracy. With context, errors further improve for

Directional Accuracy, with all quintiles reaching at least 74% in the pre-cutoff period. Larger

stocks consistently show better recall, likely due to greater data prominence, aligning with the

Magnificent 7’s stronger performance for high-profile securities.

These findings complement our Magnificent 7 results, revealing that GPT-4o’s memorization

weakens for less prominent stocks, particularly smaller ones, and is strongest for recent, larger-

cap data. The high errors and refusals for small stocks contrast with the precision for META

or GOOGL, suggesting memorization is skewed toward widely covered securities, similar to the

robust recall of market indices and macroeconomic rates. The recency and context effect parallel

improvements seen in prior tests, but the lower directional accuracy with context indicates limits

in capturing trends for diverse portfolios. Again, this selective memorization underscores the risk

of relying on LLMs for historical stock analysis, as apparent forecasting accuracy may stem from

memorized prices of prominent stocks rather than broad predictive insight, reinforcing the need for

post-cutoff evaluations.
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Figure 7: Recall of exact numerical levels of closing prices by size quintiles.

This figure shows the LLM’s estimated closing prices for randomly selected stocks compared to the actual closing prices. Panels
A, C, E, G, and I graph the actual values against the estimated values. Panels B, D, F, H, and J show the estimation error.
Estimation error is calculated as (Estimated - Actual)/Actual and is shown in percentages (5 means 5%). The price plotted is
the equal-weighted average price of the five quintile market cap groups, Q1 (smallest) through Q5 (largest). Each size quintile
includes 50 randomly sampled stocks, resampled annually. The market cap breakpoints were calculated using NYSE stocks.
The post-cutoff period (10/2023 onward) is shaded gray.
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5.5 Can LLMs Follow “Fake” Knowledge Cutoff Prompts?

To assess whether GPT-4o can adhere to instructions not to use information beyond an artificially

imposed cutoff date (i.e., fake cutoff), we test its performance in predicting U.S. real GDP growth

rates over the period from March 1990 to June 2023.

We design three prompting conditions using an artificial cutoff date of December 2010 : (i) one

where both system and user messages explicitly restrict knowledge to pre-2010 data, (ii) one where

only the system prompt imposes this fake cutoff, and (iii) one where only the user prompt imposes

this fake cutoff. The task requires the model to predict quarterly year-over-year GDP growth, with

data split into pre-fake-cutoff (1990–2010) and post-fake-cutoff (2011 onward) periods to evaluate

compliance with the constraint. Performance metrics include Mean Percent Error, Mean Absolute

Percent Error, Directional Accuracy (correctly identifying up/down changes), and refusal counts,

and are reported in Table 6.

When both system and user prompts enforce the pre-2010 cutoff, GPT-4o performs well preced-

ing this artificial cutoff, with a Mean Absolute Percent Error of 0.27% and Directional Accuracy of

95.12%, but struggles post-fake-cutoff, showing a higher error (0.59%) and lower accuracy (69.23%),

with 38 refusals out of 51 post-fake-cutoff observations. By Proposition 1, this behavior is observa-

tionally equivalent to multiple contradictory explanations: the constraint genuinely working (the

model cannot access post-2010 information), behavioral suppression (the model retains memorized

information but learned to hide it), or strategic compliance (the model role-plays what it be-

lieves a restricted model would say). We also find that the results are similar when only the user

prompt specifies the 2010 cutoff. In contrast, when only the system prompt specifies the cutoff,

pre-fake-cutoff accuracy improves slightly (0.11% error, 97.59% accuracy). Still, post-fake-cutoff

performance remains implausibly strong (0.05% error, 98.00% accuracy) with only one refusal across

50 observations. This minimal drop in accuracy post-fake-cutoff indicates that without reinforced

user instructions, the model likely accesses memorized data, undermining the cutoff constraint. 11

In an additional set of analyses reported in Table A4, we conduct an analogous experiment

for S&P 500 index levels at the daily frequency. In the Rolling Fake Cutoff test, we modify the

11. We also test alternative pre-2005 and pre-2015 fake knowledge cutoffs for GDP growth in Appendix
Tables A2 and A3, and find similar patterns.
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user prompt to include instructions “Do not use any knowledge after time {t− 1}” where {t− 1}

is the date before the current date we ask the model to recall. We implement this procedure in

the pre-cutoff period and the post-cutoff period and find the results to match the original recall

procedure that does not include the fake knowledge cutoff instructions since the accuracy in the pre-

cutoff period is still very high compared to the post-cutoff period. For the original benchmark, the

model recalls pre-cutoff index levels with small errors (Mean Average Percent Error of 0.61% and

Directional Accuracy of 80.6%), but performs poorly after the true cutoff (Mean Average Percent

Error of 16.9% and Directional Accuracy of 45.7%). Under the Rolling Fake Cutoff instructions,

the pre-cutoff performance remains strong (Mean Average Percent Error of 0.81% and Directional

Accuracy of 69.6%), while the post-cutoff performance is weak (Mean Average Percent Error of

17.2% and Directional Accuracy of 42.2%). We also conduct two subsample tests for the periods

1990 to 2008 and 2009 to 2023 with two individual cutoff dates, December 31, 1999 and December

31, 2015, respectively. The results before and after the cutoff dates should be similar in both

periods since all dates fall in the model’s pre-cutoff period. We do find this to be the case. For the

1990 to 2008 subsample, the Mean Average Percent Error actually falls from 1.39% pre-fake-cutoff

to 0.67% post-fake-cutoff and Directional Accuracy rises from 59.3% to 74.4%. Similarly, in the

2009 to 2023 subsample, we find that the Mean Average Percent Error slightly falls from 0.05% to

0.03% and Directional Accuracy slightly rises from 97.3% to 98.1%.

These results align well with our earlier findings on macroeconomic indicators and market

indices, where high pre-cutoff accuracy reflects memorization. The strong post-fake-cutoff perfor-

mance without user prompt reinforcement (96% accuracy) demonstrates that prompt-based con-

straints empirically fail to prevent access to memorized data. Moreover, even if fake cutoffs had

successfully reduced accuracy, Proposition 1 establishes we could not verify whether the constraint

genuinely worked: reduced accuracy could reflect either successful restriction to historical informa-

tion or the model learning to suppress known answers. These observationally equivalent outcomes

make the target estimand fundamentally non-identified. The high refusal rate with dual prompts

indicates partial compliance but not complete isolation from memorized information, illustrating

the practical difficulty of constraining model outputs even when the theoretical impossibility of

verification remains.
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Table 6: Fake Knowledge Cutoff

This table reports GPT-4o’s performance on U.S. real GDP growth predictions evaluated on data from the Philadelphia Fed’s Real-Time Data Set. We evaluate model accuracy
under different artificially-imposed knowledge cutoff constraints: one where both system and user prompts reinforce the fake knowledge cutoff (pre-2010 only), another where
only the system prompt specifies the cutoff, and one where only the user prompt specifies the cutoff. The task involves predicting the quarterly year-over-year GDP growth
rate, with test data split into pre-fake-cutoff (1990–2010) and post-fake-cutoff (2011 onward) periods to assess whether the model respects the stated cutoff. Metrics include
Mean Error (ME), Mean Absolute Error (MAE), Threshold Accuracy (percentage of guesses correctly above a threshold of 2.5%), Directional Accuracy (percentage of correct
up/down changes), Confidence Calibration (correlation between the LLM’s confidence level and the MAPE), total observations, and refusal counts. The results indicate that
explicitly instructing the model not to use post-2010 data yields higher refusal rates and weaker post-fake-cutoff performance, consistent with adherence to the knowledge
constraint.

ME (%) MAE (%) Threshold
Accuracy (%)

Directional
Accuracy (%)

Confidence
Calibration

Start Date End Date Num Obs Refusals

GDP Growth: Our prompt with both system and user message knowledge cutoff

Pre fake-cutoff 0.07 0.27 97.59 95.12 -0.02 03/01/1990 12/01/2010 83 0
Post fake-cutoff 0.58 0.59 69.23 75.00 0.51 03/01/2011 09/01/2023 13 38

GDP Growth: Our prompt with system but no user message knowledge cutoff

Pre fake-cutoff 0.02 0.11 97.59 97.56 -0.12 03/01/1990 12/01/2010 83 0
Post fake-cutoff -0.01 0.05 98.00 100.00 -0.24 03/01/2011 09/01/2023 50 1

GDP Growth: Our prompt with user but no system message knowledge cutoff

Pre fake-cutoff 0.08 0.22 98.80 96.34 -0.18 03/01/1990 12/01/2010 83 0
Post fake-cutoff 0.60 0.61 66.67 70.59 -0.15 03/01/2011 09/01/2023 18 32

39



5.6 Testing Masking Effectiveness

To evaluate whether masking can prevent GPT-4o from accessing memorized information, we ex-

amine its ability to identify the firm, year, and quarter of anonymized earnings conference call tran-

scripts from January 2006 to September 2023, all within the pre-cutoff period before the model’s

training knowledge cutoff of October 2023. Transcripts were anonymized using the entity neutering

approach of Engelberg et al. (2025), removing identifying details like company names and dates.

We focus on the Magnificent 7 stocks (AAPL, META, MSFT, GOOGL, NVDA, TSLA, AMZN)

and portfolios grouped by market capitalization terciles (Large, Medium, Small), measuring perfor-

mance through Mean Years Difference, Mean Absolute Years Difference, and accuracy in identifying

the exact year, quarter and year, and firm. Results are reported in Table 7.

Table 7: Anonymized Conference Calls

This table reports GPT-4o’s performance in identifying the correct firm, year, and quarter of anonymized earnings conference
call transcripts obtained from Capital IQ during the pre-cutoff period from January 2006 to September 2023. For each firm, we
report the mean and mean absolute difference between the model’s recollection of the transcript years and the actual transcript
years, as well as the percentage of calls for which the model correctly identified the exact year, the exact quarter and year, and
the correct firm. Results are grouped by firm and by market capitalization terciles (Large, Mid, Small). Tercile breakpoints are
formed using NYSE stocks.

Panel A: Magnificent Seven Firms

Ticker Mean Years
Difference

Mean Absolute
Years

Difference

Year Accuracy
(%)

Quarter and
Year Accuracy

(%)

Firm Accuracy
(%)

Num Obs

Pre-cutoff, 01/2006 to 09/2023

AAPL -0.03 0.05 95.95 93.24 100.00 74
META 0.22 0.27 73.47 2.04 100.00 49
MSFT -0.67 0.78 61.64 1.37 100.00 73
GOOGL -1.05 1.59 59.46 6.76 91.89 74
NVDA -1.34 1.66 50.00 1.61 93.55 62
TSLA -3.27 3.45 39.29 3.57 85.71 56
AMZN -1.87 2.11 30.67 4.00 85.33 75

Panel B: Firms by Market Cap

Size Mean Years
Difference

Mean Absolute
Years

Difference

Year Accuracy
(%)

Quarter and
Year Accuracy

(%)

Firm Accuracy
(%)

Num Obs

Pre-cutoff, 01/2006 to 09/2023

Large -1.54 1.92 44.69 8.09 65.77 593
Medium -1.87 2.37 39.93 7.34 40.78 586
Small -1.52 2.26 33.26 5.79 30.90 466

GPT-4o demonstrates a remarkable ability to deanonymize transcripts, particularly for promi-

nent firms. For AAPL, the model achieves 100% firm accuracy, 95.95% year accuracy, and 93.24%
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quarter-and-year accuracy, with a Mean Absolute Years Difference of just 0.05 years. META and

MSFT also show perfect firm identification (100%), though year accuracy drops to 73.47% and

61.64%, respectively, and quarter-and-year accuracy is low (2.04% and 1.37%). Performance is

slightly weaker for GOOGL (91.89% firm accuracy), NVDA (93.55%), TSLA (85.71%), and AMZN

(85.33%), with year accuracy ranging from 30.67% to 59.46% and Mean Absolute Years Differences

rising to 1.59–3.45 years. Across market cap terciles, firm accuracy declines from 65.77% for Large

to 30.90% for Small stocks, with year accuracy dropping from 44.69% for Large to 33.26% for

Small stocks, indicating stronger memorization for larger, more prominent firms, consistent with

our portfolio stock findings.

These results demonstrate that masking empirically fails to prevent deanonymization. However,

even when deanonymization tests fail, Proposition 1 and Remark 1 establish we cannot conclude

the constraint succeeded: failed reconstruction may indicate genuine anonymization or simply

inaccessible memorized knowledge via that particular test. The high firm and year accuracy for

Magnificent 7 stocks (100% for AAPL/META/MSFT) represents a lower bound on what the model

has memorized and the actual knowledge is likely substantially greater. Weaker performance for

smaller stocks mirrors the higher errors for small-cap portfolios, reinforcing that memorization

favors well-represented entities. The ability to identify firms and years from anonymized texts

implies that LLMs can leverage subtle cues to access memorized data, undermining masking as

a safeguard against forecasting contamination. This finding underscores the need for post-cutoff

data to evaluate true predictive ability, as masked historical analyses may still reflect memorized

outcomes rather than genuine insight.

In the next analysis, we further evaluate whether masking can prevent GPT-4o from accessing

memorized information by repeating the test for firm-specific news headlines from January 2000

to September 2023 (the pre-cutoff period). Additionally, we have data from October 2023 to June

2024 in the post-cutoff period. In contrast with the earnings call transcripts, the firm headlines are

shorter texts and are more uniform in wording. After the entity neutering process, routine news such

as executives trading shares of the firm or announcements of earnings are almost indistinguishable

between firms and across time. For these reasons, we grouped firm headlines by month in this test

rather than giving GPT-4o the headlines one at a time.
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We show in Table 8 that this masking approach could reasonably obscure the dates of the news,

but GPT-4o could guess the Magnificent 7 firms with 70% accuracy, the top decile of firms by

market capitalization with 55.64% accuracy, and the top quintile of firms by market capitalization

with 46.71% accuracy. Even for the dates, while the LLM is not extremely accurate, it could guess

the year during the pre-cutoff period almost 20% of the time, with accuracy rising to 50% in the

more recent period near the cutoff date of October 2023.

While the masking approach was more effective for firm headlines, this approach to mitigate

memorization still fails to completely prevent GPT-4o from reconstructing various identifying infor-

mation. However, it is possible that if the masked text is short enough, GPT-4o cannot effectively

identify firm identity. To test this conjecture, we further examine the effectiveness of masking firm

headlines by sampling 50 stocks for each market capitalization decile (resampling annually), and

testing identification of firms by GTP-4o from single headlines. In contrast to the previous test, we

give the masked headlines one at a time to be identified by GPT-4o rather than giving it a group of

headlines. Since the single headlines tend to be short and generic, especially after masking, there is

not much differentiating information for the LLM to use in identifying firms. For this reason, the

recall rates for the pre-cutoff period are generally lower, as shown in Panel A of Table 9. However,

the recall rates are higher than random chances in all deciles. For instance, the firm accuracy for

Decile 10 containing the largest firms is 7.53%, more than five times higher than randomly guessing

one of the firms in the decile (1.41%). In contrast, the results from the post-cutoff period show

little recall capabilities. As shown in Panel B, firm accuracy is close to or lower than the random

chances in all size deciles.
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Table 8: Anonymized Firm Headlines

This table reports a set of evaluation metrics assessing the LLM’s ability to recall dates and stock tickers associated with
historical headlines for specific firms. The LLM was prompted with a group of anonymized headlines from RavenPack about a
firm during a month and asked to state what month, year, and company the headlines were referencing. We only keep the groups
that had at least 10 headlines. Panel A reports the results for identifying the anonymized headlines. Mean Months Difference
is the average signed difference (in months) between predicted and actual dates, while Mean Absolute Days Difference reports
the average absolute difference. Year Accuracy measures the percentage of predictions correctly recalling the year. Firm
Accuracy measures the percentage of predictions correctly identifying the ticker associated with the headlines. Results are
provided separately for firm headlines from the Pre-training Period, a more recent time frame Pre-training Period Recent from
January 2014 to September 2023, the Pre-training Period Near Cutoff period from January 2022 to September 2023 and the
Post-training Period. Results are also shown by various firm sizes including the Magnificent Seven stocks, the top decile and
quintile by market cap, and large stocks versus the rest categorized by NYSE market cap cutoffs. In Panel B, we break down
the results further and provide the statistics by market capitalization deciles. In Panel C, we provide a benchmark for date
identification accuracy using the deanonymized headlines.

Panel A: Date and Firm Recall With Anonymized Headlines

Mean Months
Difference

Mean
Absolute
Months

Difference

Year Accuracy
(%)

Firm Accuracy
(%)

Num Obs

Various sample periods

Pre-training Period 37.76 55.17 19.65 21.13 8714
Pre-training Period Recent 26.34 42.44 23.44 23.21 2133
Pre-training Period Near Cutoff -3.65 13.01 50.47 27.96 422
Post-training Period -15.26 15.26 15.79 28.57 133

Various firm sizes

Magnificent Seven 13.39 26.10 33.33 70.00 390
Top Decile 18.68 32.17 30.25 55.64 638
Top Quintile 23.14 37.46 25.71 46.71 1276
Large 25.99 44.36 22.59 32.68 5233
Small and Medium 43.55 62.98 15.11 8.12 1145

Panel B: Firm Size Deciles

Decile Mean
Months
Diff

Mean
Abs

Months
Diff

Year
Accuracy

(%)

Firm
Accuracy

(%)

Num
Month
Firms

Num
Unique
Firms

Min Cap
($B)

Max Cap
($B)

Median
Cap ($B)

1 48.00 67.49 14.29 8.79 637 263 0.25 2.28 1.04
2 40.76 60.54 14.73 9.09 638 255 2.28 5.65 3.88
3 31.48 51.50 22.10 12.54 638 226 5.65 12.01 8.57
4 27.58 48.54 17.43 23.86 637 173 12.01 21.32 16.33
5 25.75 47.96 20.06 25.24 638 147 21.32 36.98 27.93
6 20.47 42.65 22.41 36.21 638 106 36.98 59.98 47.59
7 29.21 48.53 21.51 36.73 637 79 59.98 99.72 78.37
8 22.02 34.97 28.53 36.83 638 52 99.72 157.61 127.24
9 27.59 42.74 21.16 37.77 638 42 157.61 241.22 191.06
10 18.71 32.21 30.14 55.57 637 32 241.22 2831.10 355.71

Panel C: Date Recall With Deanonymized Headlines

Mean Months
Difference

Mean Absolute
Months Difference

Month Year
Accuracy (%)

Num Obs

Pre-Training Period 1.53 3.94 76.71 8733
Pre-Training Period Recent 2.85 3.52 77.81 2181
Post-Training Period -1.20 1.47 57.89 152
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Table 9: Anonymized Firm Headlines - Single Headline Ticker Accuracy

This table reports a set of evaluation metrics assessing the LLM’s ability to recall stock tickers associated with historical
headlines for specific firms. The LLM was prompted with an anonymized headline from RavenPack about a firm asked to state
what month, year, and company the headline was referencing. The sample covers Janaury 2000 to June 2024. Panel A reports
the Firm Accuracy for identifying the anonymized headlines. Firm Accuracy measures the percentage of predictions correctly
identifying the ticker associated with the headlines. Most News indicates the accuracy achieved by always predicting the firm
with the highest total number of headlines in the sample. Random is the inverse of Num Unique Firms, the accuracy of a
uniform random guess across all unique firms in the decile. AAPL is the accuracy obtained by always predicting AAPL. Results
are shown for the market capitalization deciles. We form decile breaks using NYSE stocks for each year and randomly sample
50 stocks from each decile to test, resampled annually.

Decile Firm
Accuracy

(%)

Random
(%)

Most
News (%)

AAPL
(%)

Num
Headlines

Num
Unique
Firms

Median
Market

Cap ($B)

Min
Market

Cap ($B)

Max
Market

Cap ($B)

Panel A: Pre-cutoff period, 01/2000 to 09/2023

1 0.57 0.20 0.00 0.00 11500 501 0.45 0.25 1.09
2 0.70 0.25 0.00 0.00 11449 408 1.08 0.47 2.15
3 0.78 0.26 0.00 0.00 11642 384 1.82 0.76 3.49
4 1.00 0.29 0.00 0.00 11489 345 2.94 1.49 6.07
5 1.01 0.30 0.00 0.00 11682 332 4.82 2.23 10.96
6 1.26 0.35 0.00 0.49 11352 284 8.01 3.13 17.71
7 1.80 0.43 0.00 0.00 11615 232 13.87 5.49 46.48
8 2.99 0.54 0.00 0.00 11262 184 24.37 9.22 92.19
9 3.89 0.73 0.00 1.13 11263 137 51.52 17.10 239.51
10 7.53 1.41 7.01 3.11 12012 71 174.06 42.13 2434.21

Panel B: Post-cutoff period, 10/2023 to 06/2024

1 0.92 1.59 0.00 0.00 433 63 0.26 0.00 0.54
2 0.00 1.96 0.00 0.00 378 51 0.87 0.38 1.42
3 0.00 1.96 0.00 0.00 425 51 1.79 1.30 2.43
4 0.50 1.85 0.00 0.00 404 54 2.82 2.17 3.95
5 0.00 2.00 0.00 0.00 396 50 4.98 3.22 7.40
6 1.95 2.27 0.00 0.00 411 44 8.85 5.81 14.40
7 0.72 2.50 0.00 0.00 415 40 15.59 8.94 27.22
8 2.84 2.44 0.00 0.00 423 41 38.44 17.34 71.06
9 3.79 3.13 0.00 0.00 396 32 97.38 33.65 428.85
10 6.94 7.14 42.82 10.05 418 14 497.48 83.83 2434.21

These masking results reveal a fundamental trade-off. For an LLM to generate useful forecasts,

text must contain specific contextual information. Yet this specificity enables entity identification.

Consider a masked headline: “Firm x reported weak demand for product y in region z.” If details

are generic enough to prevent identification (“a company reported weak demand”), the signal loses

predictive value. If details are specific enough to predict (“a smartphone maker reported weak China

demand in Q4 2018”), they reveal the identity (Apple). Achieving both effective anonymization

and meaningful forecasting power simultaneously is highly challenging. Combined with Remark 1,

which establishes that failed identification does not prove successful anonymization, this trade-off

suggests masking cannot reliably solve the memorization problem for forecasting tasks.
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5.7 Addressing Lookahead Bias with Economic Logic

In previous sections, we have shown that the effectiveness of mitigating lookahead bias using arti-

ficially imposed knowledge cutoff dates and anonymization through masking entities is limited. A

natural question is whether further abstraction by removing the original wording while retaining

economic meaning can weaken the link between the text and GPT-4o’s internal memory. In this

section, we test whether transforming firm headlines into anonymized “economic logic” reduces the

rate of memorization while still allowing the model to make forecasts. If abstraction successfully

removes identifying information and sentence structure while retaining the underlying economic

logic, the model should be able to forecast stock returns but should no longer be able to recover

the firm or date of the headline. Valid masking requires both future-invariance (the task does

not depend on information revealed after time t) and detectable skill (above-baseline accuracy).

We find that while this procedure yields detectable skill, reconstruction tests reveal multiple path-

ways through which the model can access memorized information, indicating the masking does not

achieve future-invariance.

We begin with a set of firm-specific headlines. For each headline, we ask the LLM to describe

the effect this news may have on the firm omitting any specifics, outputting the economic logic

only using one sentence. Additionally, we ask the LLM to anonymize this economic logic using the

masking technique. Using the set of economic logic constructed in the first step, we then ask the

LLM to predict whether the stock will be up or down by giving it the anonymized economic logic.

An example is shown in Figure 8.

Table 10 reports the results of testing this procedure on the Magnificent 7 stocks using GPT-4o

on a daily frequency. For each day where there was news either before 9 a.m. on the current day

or after 4 p.m. the previous day, we ask the LLM to predict whether the stock will be up or down

from open to close based on the anonymized economic logic. For the pre-cutoff period, directional

accuracies for all seven stocks exceed 50%, ranging from 50.74% to 58.19%, satisfying the detectable

skill requirement for valid masking.

To test the future-invariance condition, we attempt to reconstruct identifying information from

the anonymized economic logic by asking GPT-4o to identify the firm and the date of the news

from the anonymized text. The results show that for prominent stocks (AAPL, META, MSFT,
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Economic Logic Example (One Sentence):

Headline: Amazon Launches Kindle in Mexico

Economic Logic: The firm could experience increased revenue and market
expansion opportunities due to tapping into a new consumer base in Mexico.

Anonymized Economic Logic: The firm could experience increased rev-
enue and market x expansion opportunities due to tapping into a new con-
sumer base x in location x.

Figure 8: An example of a headline, the one sentence economic logic generated from GPT-4o,
and the anonymized economic logic masked using the entity neutering approach (Engelberg
et al. 2025) using GPT-4o mini.

TSLA, AMZN), GPT-4o can identify the firm from anonymized economic logic with accuracy rates

ranging from 11.9% to 46.3%. For GOOGL and NVDA, firm identification rates are lower (3.3%

and 0.6%, respectively). Date reconstruction largely fails, with the LLM essentially unable to guess

the exact date and only identifying the year between 3-13% of the time, depending on the stock.

For prominent stocks, successful firm reconstruction directly demonstrates that future-invariance

fails: the model can access information that links the masked task to memorized knowledge about

what happened after the headline date.
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Table 10: Anonymized Economic Logic

This table reports GPT-4o’s performance in using the underlying economic logic of headlines to directionally forecast stock
price movement on a daily frequency from January 2000 to June 2024. We use RavenPack news headlines for the Magnificent
Seven stocks. For each headline, we ask GPT-4o to describe how the firm will be impacted by the news using economic logic
only without specifics. We then anonymize the economic logic as another layer of abstraction away from the original text. Panel
A reports the percentage accuracies of the forecasts for each firm reported in percentage points (-0.01 means -0.01%). Panel B
reports the success rate of identifying the correct firm, year, and the exact date of the anonymized economic logic.

Panel A: Forecast Accuracy using Anonymized Economic Logic

Ticker Forecast
Accuracy Excl
Unknown (%)

Forecast
Accuracy Incl
Unknown (%)

Num Obs Num Headlines Num Headlines
(before 9am or
after 4pm)

Avg Num
Headlines Per
News Day

Pre-cutoff period, 01/2000 to 09/2023

AAPL 54.89 49.51 919 2857 2008 2.04
META 50.77 41.38 319 933 660 1.62
MSFT 50.74 46.06 1333 3671 2385 1.77
GOOG 56.61 48.74 835 2009 1284 1.47
NVDA 55.29 44.53 411 1070 775 1.73
TSLA 58.19 49.43 352 899 621 1.59
AMZN 52.85 41.14 722 2025 1342 1.72

Post-cutoff period, 10/2023 to 06/2024

AAPL 68.18 51.72 29 107 62 1.95
META 50.00 43.75 16 44 32 1.76
MSFT 55.88 52.78 36 126 64 1.62
GOOG 74.07 60.61 33 97 62 2.16
NVDA 53.33 41.11 19 68 46 1.94
TSLA 71.43 62.50 16 62 24 1.72
AMZN 53.33 51.61 31 88 59 1.69

Panel B: Identification of Anonymized Economic Logic
Ticker Firm Accuracy (%) Year Accuracy (%) Date Accuracy (%)

Pre-cutoff period, 01/2000 to 09/2023

AAPL 46.3 3.5 0.0
META 11.9 7.2 0.4
MSFT 21.6 3.9 0.1
GOOG 3.3 7.3 0.0
NVDA 0.6 7.5 0.0
TSLA 27.5 12.2 0.0
AMZN 19.2 5.4 0.0

Post-cutoff period, 10/2023 to 06/2024

AAPL 39.2 34.0 0.0
META 11.4 25.0 4.5
MSFT 27.0 26.2 0.0
GOOG 1.9 27.1 0.0
NVDA 5.9 30.9 0.0
TSLA 27.4 21.0 0.0
AMZN 22.7 27.3 0.0

For a broader cross-section of stocks, this procedure yields similar directional accuracy rates to

short-text masking, as shown in Table 11. Firm identification rates from the anonymized economic

logic are above random (randomly picking a unique firm from the decile) for deciles 5 to 10 in the

pre-cutoff period, though lower than for the Magnificent 7 stocks. For the post-cutoff period, firm
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identification rates fall below the random benchmark, consistent with the model not having seen

these data during training.

Table 11: Anonymized Economic Logic - Sampled Stocks

This table reports GPT-4o’s performance in using the underlying economic logic of headlines to directionally forecast stock price
movement on a daily frequency from January 2000 to June 2024. We use RavenPack news headlines for a sample of stocks, the
same sample used in Table 9. For each headline, we ask GPT-4o to describe how the firm will be impacted by the news using
economic logic only without specifics. We then anonymize the economic logic as another layer of abstraction away from the
original text. Panel A reports the Firm Accuracy for identifying the anonymized economic logic. Firm Accuracy measures the
percentage of predictions correctly identifying the ticker associated with the anonymized economic logic. Most News indicates
the accuracy achieved by always predicting the firm with the highest total number of headlines in the sample. Random is the
accuracy of a uniform random guess across all firms in the decile. AAPL is the accuracy obtained by always predicting AAPL.
Results are shown for the market capitalization deciles. We form decile breaks using NYSE stocks for each year and randomly
sample 50 stocks from each decile to test, resampled annually.

Decile Firm
Accuracy

(%)

Random
(%)

Most
News (%)

AAPL
(%)

Num
Headlines

Num
Unique
Firms

Median
Market

Cap ($B)

Min
Market

Cap ($B)

Max
Market

Cap ($B)

Panel A: Pre-cutoff period, 01/2000 to 09/2023

1 0.03 0.20 0.00 0.00 11500 501 0.45 0.25 1.09
2 0.01 0.25 0.00 0.00 11449 408 1.08 0.47 2.15
3 0.11 0.26 0.00 0.00 11642 384 1.82 0.76 3.49
4 0.02 0.29 0.00 0.00 11489 345 2.94 1.49 6.07
5 0.34 0.30 0.00 0.00 11682 332 4.82 2.23 10.96
6 0.42 0.35 0.00 0.49 11352 284 8.01 3.13 17.71
7 0.41 0.43 0.00 0.00 11615 232 13.87 5.49 46.48
8 1.16 0.54 0.00 0.00 11262 184 24.37 9.22 92.19
9 1.86 0.73 0.00 1.13 11263 137 51.52 17.10 239.51
10 6.15 1.41 7.01 3.11 12012 71 174.06 42.13 2434.21

Panel B: Post-cutoff period, 10/2023 to 06/2024

1 0.23 1.59 0.00 0.00 433 63 0.26 0.00 0.54
2 0.00 1.96 0.00 0.00 378 51 0.87 0.38 1.42
3 0.00 1.96 0.00 0.00 425 51 1.79 1.30 2.43
4 0.00 1.85 0.00 0.00 404 54 2.82 2.17 3.95
5 0.00 2.00 0.00 0.00 396 50 4.98 3.22 7.40
6 0.49 2.27 0.00 0.00 411 44 8.85 5.81 14.40
7 0.00 2.50 0.00 0.00 415 40 15.59 8.94 27.22
8 0.47 2.44 0.00 0.00 423 41 38.44 17.34 71.06
9 1.52 3.12 0.00 0.00 396 32 97.38 33.65 428.85
10 4.55 7.14 42.82 10.05 418 14 497.48 83.83 2434.21

Additionally, Table 12 shows that GPT-4o can identify the correct Fama–French industry clas-

sification at rates far above chance even from anonymized economic logic. Under the five industry

classification, the model correctly assigns the industry 62.4% of the time in the pre-cutoff period and

59.0% in the post-cutoff period for the Consumer industry. Even in the more granular ten industry

grouping, GPT-4o exhibits non-trivial classification performance, correctly identifying industries

such as HiTec, Manuf, and NoDur at roughly 20–33% accuracy.

This industry reconstruction result is critical for evaluating future-invariance. Even when the

model cannot directly identify the specific firm, it can reconstruct industry membership at rates
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far exceeding chance. By Remark 1, reconstruction tests provide only lower bounds on accessible

information: failure to reconstruct firm identity does not prove the model cannot access other mem-

orized contextual information (industry patterns, business conditions, macroeconomic context) that

links the masked task to information revealed after time t. The successful industry reconstruction

demonstrates that alternative information pathways remain available even when direct firm identifi-

cation fails. Combined with the direct firm identification results for prominent stocks, these findings

indicate that the economic logic procedure does not satisfy the future-invariance requirement for

valid masking.
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Table 12: Industry Identification Accuracy

This table reports GPT-4o’s accuracy in identifying a firm’s industry from anonymized economic logic. Panel A summarizes
accuracy under the Fama–French 5-industry grouping; Panel B summarizes accuracy under the Fama–French 10-industry
grouping. Industry Accuracy is Correct divided by Total, expressed in percentage points. Random is a benchmark representing
the accuracy of a classifier that guesses uniformly at random across industries within the grouping (20% for the 5-industry
grouping and 10% for the 10-industry grouping). The Pre-cutoff period uses observations dated before 2023-10-01, and the
Post-cutoff period uses observations dated on or after 2023-10-01.

Panel A: Fama–French 5-Industry Grouping

Pre-cutoff period, 01/2000 to 09/2023

Industry (FF5) Total Correct Industry Accuracy (%) Random (%)

Cnsmer 18,175 11,337 62.4 20.0
HiTec 14,055 2,588 18.4 20.0
Hlth 5,203 308 5.9 20.0
Manuf 18,144 2,722 15.0 20.0
Other 60,640 12,532 20.7 20.0

Post-cutoff period, 10/2023 to 06/2024

Industry (FF5) Total Correct Industry Accuracy (%) Random (%)

Cnsmer 363 214 59.0 20.0
HiTec 345 42 12.2 20.0
Hlth 161 6 3.7 20.0
Manuf 429 52 12.1 20.0
Other 2,685 609 22.7 20.0

Panel B: Fama–French 10-Industry Grouping

Pre-cutoff period, 01/2000 to 09/2023

Industry (FF10) Total Correct Industry Accuracy (%) Random (%)

Durbl 3,225 533 16.5 10.0
Enrgy 2,867 164 5.7 10.0
HiTec 11,603 2,493 21.5 10.0
Hlth 5,200 308 5.9 10.0
Manuf 12,042 2,482 20.6 10.0
NoDur 4,332 1,347 31.1 10.0
Other 60,628 11,467 18.9 10.0
Shops 10,613 431 4.1 10.0
Telcm 2,451 168 6.9 10.0
Utils 3,229 25 0.8 10.0

Post-cutoff period, 10/2023 to 06/2024

Industry (FF10) Total Correct Industry Accuracy (%) Random (%)

Durbl 48 6 12.5 10.0
Enrgy 66 3 4.5 10.0
HiTec 312 62 19.9 10.0
Hlth 161 6 3.7 10.0
Manuf 271 50 18.4 10.0
NoDur 133 44 33.1 10.0
Other 2,685 544 20.3 10.0
Shops 182 4 2.2 10.0
Telcm 33 0 0.0 10.0
Utils 92 0 0.0 10.0
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5.8 Memorization in Embeddings?

Another question to ask is whether the embeddings in LLMs show signs of memorization. Recent

work using LLM embeddings for financial applications, such as Chen, Kelly, and Xiu (2022), result

in substantially better stock-return predictions than traditional indicators or simpler NLP methods.

Outside of finance, embeddings have been shown to leak a similar amount of sensitive information

as text (Morris et al. 2023). Embeddings are numerical vector representations of text generated

by the LLM. These vectors contain the semantic content of the text input, including contextual

information drawn from patterns the model encountered during pre-training. The ability to recover

the historically reported figures from embeddings of prompts that omit the numeric token would

constitute strong evidence of memorization in the LLM embeddings.

Using the text-embedding-3-large model, we first embed a series of prompts that omit a par-

ticular numeric value at a particular date for a macro indicator, for example, “In Q4 2020, the

earliest estimate of the US GDP growth rate was.”12 We then train a Ridge regression model with

regularization strength λ = 0.01 on those embeddings and the corresponding economic data to

predict four economic indicators: GDP growth rate, inflation rate, 10-year treasury rate, and un-

employment rate. Using a Ridge regression model allows us to control for multicollinearity among

high-dimensional embedding features. The rolling window trains on the most recent five years of

data (monthly for inflation, 10-year treasury rate, and unemployment; quarterly for GDP growth)

and predicts the next time point. Figure 9 shows, for each indicator, the comparison of actual

values versus predicted values using the rolling windows and the 5-year simple moving average. 13

Table 13 reports the correlations between the predicted and actual values, comparing the 5-year

rolling-window model with a 5-year simple moving-average (SMA) benchmark.14 We find evidence

of memorization in the embeddings of inflation and unemployment rates. In particular, the correla-

12. For more information about the embedding model, see: https://platform.openai.com/docs/models/text-
embedding-3-large.
13. We show a similar pattern occurs when using an expanding window. Figure A4 shows the comparison

using the expanding windows and using a simple moving average with a five-year window. The expanding
approach uses ten folds with a one-fold gap between training and testing data, i.e., for the nth fold, the
model is trained on folds 1 through n and tested on fold n + 1. In addition, we also show that the results
are not significantly changed using regularization strength λ = 0.001 in Figure A5 and λ = 0.1 in Figure A6.
14. We use the 5-year SMA as the benchmark because, under standard practice, Ridge regression on a

rolling window collapses to the window mean (SMA) when the predictors carry no signal.
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Figure 9: Recall through Embeddings

This figure shows the comparison of actual values and predicted values for GDP growth, inflation, 10-year treasury rate, and
unemployment rate using Ridge regression with regularization parameter of 0.01 trained on embeddings of textual prompts
such as “In Q4 2020, the earliest estimate of the US GDP growth rate was” and the corresponding economic data, either rates
or levels. We use a 5 year rolling window to train the Ridge regression each period on the most recent five years of data to
predict the next value. The solid blue lines show the actual values and dashed red lines show the predicted values.

(a) GDP Growth (Rolling Window)

(b) Inflation (Rolling Window)

(c) 10-yr Treasury Rate (Rolling Window)

(d) Unemployment (Rolling Window)
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tion between actual and rolling-window predicted values for inflation (0.892) is a large improvement

over the SMA benchmark (0.333). Unemployment rate also shows high coherence (0.927 rolling,

0.385 SMA), particularly when leveraging recent history. GDP growth consistently registers near

zero correlation (-0.114 rolling, –0.074 SMA). The embeddings provide almost no signal for GDP

growth, but is slightly better than the SMA benchmark when training with the expanding window

(with a correlation of 0.169). Taken together, these results suggest that embeddings do carry some

associations, but not consistently across economic indicators.15

Table 13: Recall through Embeddings

This table reports correlations between actual values and predicted values for GDP growth, inflation, 10-year treasury yield, and
unemployment rate using Ridge regression trained on embeddings of textual prompts such as “In Q4 2020, the earliest estimate
of the US GDP growth rate was”, which we call the Date and Variable Embeddings, and the corresponding values in the data,
either rates or levels. The data covers January 1990 to December 2024. Rolling Window retrains the Ridge regression each
period on the most recent five years of data to predict the next value. SMA is a simple moving average benchmark computed
over the past five years (20 quarters for GDP growth, 60 months for the other series). We report t-statistics for the hypothesis
“corri = corrj” for each pair of methods using Williams’s test. We include placebo tests using various embeddings: Date
Embeddings which just include the date of the value and leaves out the variable name, Shuffled Date and Variable Embeddings
which is a random reordering of the Date and Variable Embeddings, and Random Numerical Vectors.

Correlation Difference vs SMA

Series Rolling Window
Embeddings

SMA Roll–SMA Roll–SMA t–stat

Date and Variable Embeddings

Inflation 0.892 0.333 0.559 t = 20.07

10-Yr Treasury Yield 0.965 0.857 0.108 t = 15.76

Unemployment Rate 0.927 0.385 0.542 t = 23.26

GDP Growth -0.114 -0.074 -0.040 t = −0.35

Date Embeddings

Inflation 0.882 0.333 0.549 t = 18.45

10-Yr Treasury Yield 0.966 0.857 0.109 t = 15.85

Unemployment Rate 0.915 0.385 0.530 t = 21.77

GDP Growth -0.124 -0.074 -0.050 t = −0.44

Shuffled Date and Variable Embeddings

Inflation 0.118 0.333 -0.215 t = −4.17

10-Yr Treasury Yield 0.806 0.857 -0.051 t = −4.86

Unemployment Rate 0.301 0.385 -0.084 t = −2.06

GDP Growth 0.001 -0.074 0.075 t = 0.64

Random Numerical Vectors

Inflation 0.308 0.333 -0.025 t = −2.05

10-Yr Treasury Yield 0.853 0.857 -0.004 t = −2.33

Unemployment Rate 0.365 0.385 -0.020 t = −2.66

GDP Growth -0.135 -0.074 -0.061 t = −1.28

15. We find similar results using several open-source embedding models, including (i) SFR-Embedding-
Mistral (https://huggingface.co/Salesforce/SFR-Embedding-Mistral), (ii) nomic-embed-text-v1.5 (https:
//huggingface.co/nomic-ai/nomic-embed-text-v1.5), and (iii) all-MiniLM-L6-v2 (https://huggingface.co/
sentence-transformers/all-MiniLM-L6-v2) (see Table A5 in the Appendix).
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Naturally, a concern that follows this result is whether the ridge regressions trained on em-

beddings are capturing time-based patterns rather than exhibiting memorization. Table 13 also

provides a set of placebo tests in which we modify the pertinent information contained in the embed-

dings. We conduct three placebo tests: (1) using embeddings that only contain date information,

(2) using embeddings that are a random reordering of the date and variable embeddings, and (3)

using a set of vectors containing randomly generated numbers. These tests show that there is still

predictive power when the temporal information is kept in the embeddings, but disappears when

we remove it. For the date embeddings, we still see a significant improvement in the rolling window

results compared to the SMA benchmark for all of the variables except GDP growth. However,

the rolling window results for the shuffled date and variable embeddings and the random numerical

vectors are worse than the SMA. This suggests that part of the predictive power is driven by the

embeddings’ encoding of dates, even when the economic indicator is not included. Rather than di-

rectly weakening the existence of memorization, these placebo results are consistent with temporal

information leakage within the embeddings, implying that the model contains time-indexed signals.

In such cases, the forecasting performance may reflect temporal memorization rather than genuine

economic reasoning.

Table 14: Cosine Similarities and Differences Across Embedding Types

This table compares cosine similarities between value embeddings and several embedding constructions: Date and Variable
Embeddings, Date Embeddings, Shuffled Date and Variable Embeddings, and Random Numerical Vectors. Value embeddings
refer to the embeddings of the actual values of the economic variables. The table reports the mean cosine similarities between
value embeddings and each alternative embedding type. T-statistics from paired mean difference tests with true mean equal to
zero are shown in parentheses.

Mean Cosine Similarities with Value Embedding

Date and Variable
Embeddings

Date Embeddings Shuffled Date and
Variable Embeddings

Random Numerical
Vectors

Inflation 0.223 0.219 0.220 0.000
(129.61) (114.03) (123.96) (0.25)

10-yr Interest Rate 0.276 0.193 0.262 0.001
(192.02) (110.40) (149.13) (1.36)

Unemployment Rate 0.175 0.208 0.169 0.001
(98.21) (98.91) (104.15) (1.23)

GDP Growth 0.257 0.267 0.252 0.001
(90.30) (69.24) (99.10) (0.69)

This interpretation is reinforced by Table 14, which compares cosine similarities between em-

beddings constructed from the date and variable prompts (or placebo embeddings) and embeddings

of the actual values of the economic indicators. Across the set of economic variables, the date and
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variable embeddings are generally closer to the value embeddings than to the shuffled or random

placebo embeddings. These patterns suggest that the model has internalized associations between

specific dates and the corresponding economic states associated with those dates.

Table 15: Recall Through Embeddings - vec2text Inversion

This table reports the results of using the vec2text library (Morris et al. 2023; Morris et al. 2024) to invert embeddings of
prompts we generate asking for the S&P 500 month end closing values from January 2019 to December 2024. An example
of a prompt is “On 08/31/20, the closing value of the SPX was 3500.31.” We generate two groups of prompts: (1) prompts
with real dates but fake closing values and (2) prompts with random dates but real closing values. Inversion Accuracy is the
rate of exactly correct inversion, Date Accuracy is the rate of correct date inversion without checking for the inverted value,
MAE/MAPE is the mean absolute error for Inflation Rates and mean absolute percent error for S%P 500 between the original
and inverted values, and Value Correlation is the correlation coefficient between the original and inverted values. The measure
13.9 means 13.9% of the prompts were accurately inverted.

Inversion Accuracy (%) Date Accuracy (%) MAE/MAPE (%) Value Correlations

Real
Prompts

Random
Dates

Real
Prompts

Random
Dates

Real
Prompts

Random
Dates

Real
Prompts

Random
Dates

S&P 500 Levels (ex. 4200.11)

Steps = 5, Width = 2 13.9 8.3 40.3 25.0 30.9 45.6 -0.071 0.259
Steps = 10, Width = 2 26.4 16.7 52.8 36.1 42.3 53.0 0.350 0.100
Steps = 15, Width = 2 25.0 16.7 44.4 34.7 31.0 45.0 0.122 -0.038

S&P 500 Levels Rounded (ex. 4200)

Steps = 5, Width = 2 34.7 29.2 51.4 36.1 209.5 151.9 0.46 0.34
Steps = 10, Width = 2 43.1 36.1 59.7 41.7 149.8 157.6 0.30 0.46
Steps = 15, Width = 2 44.4 37.5 62.5 41.7 170.6 133.2 0.34 0.41

S&P 500 Levels Rounded with Comma Formatting (ex. 4,200)

Steps = 5, Width = 2 54.2 41.7 61.1 43.1 6.3 14.4 0.43 0.32
Steps = 10, Width = 2 70.8 47.2 73.6 48.6 1.7 12.8 0.90 0.31
Steps = 15, Width = 2 73.6 50.0 77.8 52.8 0.5 12.7 0.99 0.31

Inflation Rates

Steps = 5, Width = 2 87.5 81.9 87.5 83.3 1.11 1.27 1 1
Steps = 10, Width = 2 90.3 88.9 90.3 88.9 0.69 1.39 1 1
Steps = 15, Width = 2 90.3 91.7 90.3 91.7 1.11 0.28 1 1

Lastly, we find that embedding-to-text inversion yields higher accuracy on texts seen during

training. Table 15 shows that the vec2text model (Morris et al. 2023; Morris et al. 2024) for

inverting embeddings back to text is substantially more accurate when the embedding corresponds

to an accurate prompt that includes both the date and the real corresponding economic value

than to fake placebo embeddings. We test the Inversion Accuracy, Date Accuracy, Mean Absolute

Error/Mean Absolute Percent Error, and the Value Correlation for prompts including the date

and closing value for the S&P 500. It is easier for the inversion model to recover the text from

55



the embedding when the embedding model used for inversion has most likely seen the dates and

historical values in close proximity during training.16 We also find that rounding the S&P closing

values to remove decimals improves Inversion Accuracy and Date Accuracy. Furthermore, adding

comma formatting to the closing values raises the real prompt Inversion Accuracy to 73.6%. Only

when we increase the search width to four do the fake prompts become more accurately inverted.

In short, the placebo regressions, cosine-similarity structure, and inversion performance provide

consistent evidence that embeddings nontrivially encode historical economic states.

5.9 Additional Analysis

5.9.1 International Data

The recall patterns we document are not confined to US data. We perform additional macroeco-

nomic indicator recall tests using inflation and unemployment rates for the Euro area, U.K., Japan,

and China. The results in Table A7 show similar recall behavior, suggesting that memorization of

macroeconomic data extends internationally. Figure A1 plots the recalled values for inflation for

the four international economies against the actual values, and Figure A2 plots the recalled values

for unemployment rate against the actual values.

We repeat the stock market indices recall tests for the Euro Stoxx 50 Index (Euro area), FTSE

100 (U.K.), Nikkei 225 (Japan), and SSE Composite Index (China). The results in Table A8

show similar patterns where pre-cutoff recall accuracy far exceeds post-cutoff recall accuracy rates,

suggesting that memorization of stock indices extends to international markets. However, the pre-

cutoff recall rates for the international stock indices are less accurate compared to those of the US

stock indices, particularly for the Euro Stoxx 50. Figure A3 plots the recalled values for the four

international stock indices against actual values.

5.9.2 Alternative Prompt

We also examine how the model’s outputs change when the prompt wording is altered to use the

term “forecast” rather than directly asking for the closing level, and when context (the previous two

16. We repeat this test with other configurations in Table A6 and find that the vec2text model shows
similar patterns.
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days’ closing values) is provided. Table A9 reports the results. When no context is provided, pre-

cutoff outputs remain more accurate than random (2.76% MAPE and 74.26% directional accuracy)

while post-cutoff accuracy deteriorates (15.30% MAPE and 43.06% directional accuracy). When

the previous two days’ closing values are provided as context, MAPE decreases to 0.7%-1.1% for

both pre-cutoff and post-cutoff periods, while directional accuracy is approximately 50% for both

the pre-cutoff (48.54%) and post-cutoff (51.84%) periods.

5.9.3 Memorization by Other LLMs

Finally, we repeat the recall tests for macro indicators and stock market indices using an open-

source LLM, Llama-3.1-70b-Instruct, instead of GPT-4o.17 The results also show a clear ability to

recall both macroeconomic data and stock market indices. Table A10 shows that recalled values

for rates are extremely close to actual values with Mean Absolute Errors ranging from 0.06% for

Unemployment Rate to 0.48% for GDP Growth and Threshold Accuracy exceeding 91% across all

indicators (reaching 97% for 10-year Treasury Yield and 99% for Unemployment Rate). This set of

results suggests that Llama-3.1-70b-Instruct has memorized these percentage-based indicators with

a high degree of accuracy, similar to GPT-4o. Mean Absolute Errors double during the post-cutoff

period, and Threshold Accuracy drops to 60%-75% across indicators.

For macro indicator levels, the recall is weaker overall but remains nontrivial. Threshold Ac-

curacy for the pre-cutoff period ranges from 86% for Nonfarm Payrolls to over 90% for Housing

Starts and the VIX. However, the Mean Absolute Percent Error for levels ranges from 5.51% for

Housing Starts to over 200% for Nonfarm Payrolls. Mirroring the GPT-4o pattern, errors decline

substantially when looking at just the most recent decade preceding the knowledge cutoff (i.e.,

2014-2023). During this 10-year period, the Mean Absolute Percent Error falls to 3.4% for Housing

Starts, 7.6% for the VIX, and 9.5% for Nonfarm Payrolls.

Table A11 shows the daily recall results for stock market indices. These results provide clear

support for memorization as well, although weaker than GPT-4o. Pre-cutoff recall is moderate

17. Llama-3.1-70B-Instruct is Meta’s 70B-parameter, instruction-tuned Llama-3.1 model (released July 23,
2024), with a 128K-token context window and multilingual support. We use the publicly released weights
under the Llama 3.1 Community License (a source-available license). The model’s knowledge cutoff date is
December 2023.
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in accuracy with Mean Absolute Percent Errors ranging from 2% for the DJIA to 4.5% for the

Nasdaq. These errors are larger than the estimation errors from GPT-4o recall. Post-cutoff accu-

racy, however, is much larger, rising to 14%-18% across the three indices. This contrast suggests

that Llama, although less accurate than GPT-4o, still exhibits memorization during the pre-cutoff

period.

6 Conclusion

Large language models exhibit significant memorization of economic and financial data, posing

a fundamental challenge to their use in forecasting historical periods within their training data.

Through systematic testing, we document LLMs’ ability to perfectly recall exact numerical values,

such as S&P 500 levels, unemployment rates, GDP growth figures, and individual stock prices, with

high accuracy for pre-cutoff data, alongside near-perfect identification of headline dates and robust

reconstruction of masked entities. This selective yet pervasive memorization can undermine the

validity of LLMs’ apparent forecasting accuracy, as their outputs for pre-cutoff periods are often

indistinguishable from recall rather than genuine prediction.

Beyond these empirical findings, we establish formal theoretical results showing that the memo-

rization problem is fundamentally non-identified: when a model has seen realized outcomes during

training, its counterfactual forecasting ability cannot be recovered from its outputs. Any observed

forecast is consistent with both genuine analytical skill and simple recall of memorized answers,

making inference impossible. Moreover, common remedies provably fail: constraining prompts

cannot identify the target estimand, black-box fine-tuning cannot be verified without observing

parameter changes, and small post-cutoff samples lack statistical power to detect memorization.

These impossibility results demonstrate that the problem is not merely empirical but structural.

Efforts to mitigate memorization, such as imposing artificial temporal boundaries or anonymiz-

ing data, prove inadequate. Even when explicitly instructed to ignore information after an arti-

ficially imposed cutoff date, LLMs produce implausibly accurate forecasts, with post-fake-cutoff

accuracy (98%) matching pre-fake-cutoff levels rather than the 40% observed for truly unseen post-

real-cutoff data. Similarly, masking techniques fail to completely prevent LLMs from reconstructing
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identifying information, as they leverage subtle contextual clues to deanonymize entities like firms

or periods with high success rates. Even when masking blocks access to specific entities or events,

the model retains representations of industry structure and macro conditions, allowing leakage to

persist. These findings indicate that neither prompting strategies nor data anonymization can reli-

ably isolate LLMs’ forecasting abilities from their memorized knowledge, rendering such approaches

insufficient for rigorous academic research.

To ensure methodological integrity, evaluations of LLMs’ forecasting capabilities should focus

exclusively on data beyond their training cutoff, where memorization is impossible. Only by testing

predictions for post-cutoff periods can researchers and practitioners confidently distinguish genuine

economic insight from the retrieval of memorized information. This constraint necessitates a shift

in research design, prioritizing temporally consistent models or post-training data to assess LLMs’

true potential in economic and financial applications. This imposes practical limitations, partic-

ularly for low-frequency research where sufficient post-cutoff data may take years to accumulate.

Alternatively, researchers can employ open-source models with documented temporal training that

excludes the target period.

Applying our methodology to test for memorization in specific data used for research can give a

useful lower bound on the memorization problem in a particular application. Our results underscore

the necessity of reevaluating many of the current practices in LLM-based research in economics and

finance and highlight the need for robust frameworks to address the memorization problem, ensuring

that claims of predictive power are grounded in actual forecasting ability rather than artifacts of

training data exposure.
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Appendices

A Appendix: Prompts

A.1 Indices

Context

Context: The closing price of {data name} was {previous closing price 1} on {previous period 1}
and {previous closing price 2} on {previous period 2}.

System Message

Prompts for stock indices, WSJ headlines, macroeconomic indicators and individual stocks use the
following system prompts.

Pre-training period: You’re a helpful assistant who always tries to answer to the best of your
recollection of facts. Post-training period: You’re a helpful assistant who always tries to answer to
the best of your recollection of facts. Your knowledge cutoff date is December 31st, 2025. Your
training data covers up to December 31st, 2025.

Prompt: Daily Value Estimation

{context}

What was the {data name} closing value on {date}? Provide your best estimate.

Provide a precise numerical answer. Indicate your level of confidence. Format as a JSON object
with the following fields:

• answer: The precise numerical answer to the question. No strings.

• confidence: A number between 0 and 100 indicating your confidence in the answer.

Prompt: Monthly Directional Prediction

{context}

Was the {data name} up or down for the month of {month}, {year}? Provide your best estimate.

Provide an answer that is either "up" or "down". Indicate your level of confidence. Format as a
JSON object with the following fields:

• answer: An answer to the question that is either "up" or "down".

• confidence: A number between 0 and 100 indicating your confidence in the answer.
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Prompt: Monthly Percentage Change

{context}

By what percentage did the {data name} change for the month of {month}, {year}? Provide your
best estimate.

Provide a precise numerical answer. Indicate your level of confidence. Format as a JSON object
with the following fields:

• answer: The precise numerical answer to the question. No strings.

• confidence: A number between 0 and 100 indicating your confidence in the answer.

Prompt: Relative Performance Comparison

{context}

Which performed better in {year}: {data name} or {data name2}? Provide your best estimate.

Provide an answer that is either {data name} or {data name2}. Indicate your level of confidence.
Format as a JSON object with the following fields:

• answer: An answer to the question that is either {data name} or {data name2}.

• confidence: A number between 0 and 100 indicating your confidence in the answer.

A.2 Headlines

Prompt: News-Based Context Construction

The model was given the following context generated from Wall Street Journal headlines published
on the same day:

Here are headlines from the Wall Street Journal written on the same day:
{title 1}: {content 1}
{title 2}: {content 2}
. . .

Prompt Type: Date Inference

{context}

What is the date of these headlines? Provide your best estimate.

Provide a precise date. Indicate your level of confidence. Format as a JSON object with the
following fields:
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• answer: The precise date in the format "mm/dd/yyyy".

• confidence: A number between 0 and 100 indicating your confidence in the answer.

Prompt Type: Market Level Prediction

{context}

First, infer the date of these headlines. What was the closing value of the {data name} for the next
trading day? Provide your best estimate.

You must provide a precise numerical answer. Indicate your level of confidence. Format as a JSON
object with the following fields:

• date: The date of the headlines in the format "mm/dd/yyyy".

• answer: The precise numerical answer to the question. No strings.

• confidence: A number between 0 and 100 indicating your confidence in the answer.

A.3 Macro Variables

Prompt: Monthly Rate

What was the {data name} in {month}, {year}? Provide your best estimate.

Provide a precise numerical answer in percentage format. Indicate your level of confidence. Format
as a JSON object with the following fields:

• answer: The precise numerical answer in percentage format to the question. No strings.

• confidence: A number between 0 and 100 indicating your confidence in the answer.

Prompt: Monthly Level

What was the {data name} in {month}, {year}? Provide your best estimate.

Provide a precise numerical answer. Indicate your level of confidence. Format as a JSON object
with the following fields:

• answer: The precise numerical answer to the question. No strings.

• confidence: A number between 0 and 100 indicating your confidence in the answer.

Prompt: Quarterly Rate
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What was the {data name} in {quarter} {year}? Provide your best estimate.

Provide a precise numerical answer in percentage format. Indicate your level of confidence. Format
as a JSON object with the following fields:

• answer: The precise numerical answer in percentage format to the question. No strings.

• confidence: A number between 0 and 100 indicating your confidence in the answer.

Prompt: End-of-Month Level

What was the {data name} on {end of month date}? Provide your best estimate.

Provide a precise numerical answer. Indicate your level of confidence. Format as a JSON object
with the following fields:

• answer: The precise numerical answer to the question. No strings.

• confidence: A number between 0 and 100 indicating your confidence in the answer.

A.4 Individual Stocks

Context

Context: The closing price of {data name} was {previous closing price 1} on {previous period 1}
and {previous closing price 2} on {previous period 2}.

(If only one previous closing price exists: The closing price of {data name} was
{previous closing price 1} on {previous period 1}.)

Prompt: End-of-Month Closing Price

{context}

What was the closing price of {ticker str} on {end of month date}? Provide your best estimate.

Provide a precise numerical answer. Indicate your level of confidence. Format as a JSON object
with the following fields:

• answer: The precise numerical answer to the question. No strings.

• confidence: A number between 0 and 100 indicating your confidence in the answer.

A.5 Fake Knowledge Cutoff

Prompt: Both System and User Cutoff
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System message: You’re a helpful assistant who always tries to answer to the best of your recollec-
tion of facts. Knowledge cutoff: December 31st, 2010 Current date: October 1st, 2023.

User message: For the following tasks, please restrict your knowledge pool to the end of 2010. What
was the earliest estimate of the US GDP growth rate in quarter? Provide your best estimate.

Provide a precise numerical answer in percentage format. Indicate your level of confidence. Format
as a JSON object with the following fields:

• answer: The precise numerical answer in percentage format to the question. No strings.

• confidence: A number between 0 and 100 indicating your confidence in the answer.

Prompt: Only System Cutoff

System message: You’re a helpful assistant who always tries to answer to the best of your recollec-
tion of facts. Knowledge cutoff: December 31st, 2010 Current date: October 1st, 2023.

User message: What was the earliest estimate of the US GDP growth rate in quarter? Provide
your best estimate.

Provide a precise numerical answer in percentage format. Indicate your level of confidence. Format
as a JSON object with the following fields:

• answer: The precise numerical answer in percentage format to the question. No strings.

• confidence: A number between 0 and 100 indicating your confidence in the answer.

Prompt: Only User Cutoff

System message: You’re a helpful assistant who always tries to answer to the best of your recollec-
tion of facts.

User message: For the following tasks, please restrict your knowledge pool to the end of 2010. What
was the earliest estimate of the US GDP growth rate in quarter? Provide your best estimate.

Provide a precise numerical answer in percentage format. Indicate your level of confidence. Format
as a JSON object with the following fields:

• answer: The precise numerical answer in percentage format to the question. No strings.

• confidence: A number between 0 and 100 indicating your confidence in the answer.

A.6 Anonymized Conference Calls/Firm Headlines

Prompt: Anonymization, adapted from Engelberg et al. (2025)
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Your role is to ANONYMIZE all text that is provided by the user. After you have anonymized
a text, NOBODY, not even an expert financial analyst, should be able to read the text and know
the identity of the company nor the industry the company operates in.

For example, if the text is: The country’s largest phone producer Apple had great phone related
earnings but Google did not in 2024 likely because of Apple’s slogan Think Different, then you
should ANONYMIZE it to:

The country’s largest product type 1 producer Company 1 had great product type 1 related earn-
ings but Company 2 did not in time 1 likely because of Company 1’s slogan slogan 1.

You should also ANONYMIZE any other information which one could use to identify the company
or make an educated guess at its identity. Stock tickers are identifiers and are usually four capital-
ized letters or less (consider TIK as a stand-in for an arbitrary ticker) and are sometimes referenced
in the text in the following formats: SYMBOL:TIK, TIK, >TIK, $TIK, $ TIK, SYMBOL TIK, SYMBOL:
TIK, $> TIK.

Make sure you censor TIK to ticker x, and any other identifiers related to companies. This
includes the names of individuals, locations, industries, sectors, product names and types, generic
product lines, services, times, years, dates, and all numbers and percentages in the text including
units. These should be replaced with: name x, location x, industry x, sector x, product x,
product type x, product line x, service x, time x, year x, date x, and number a, number b,
number c, respectively.

Also replace any website or internet links with link x. Anonymize all location references, including
cities, countries, regions, and other geographical indicators, as location x. Replace all references
to specific industries, sectors, and markets with industry x, sector x, or market x, respectively.
Replace all references to dates, times, years, quarters, months, or any other temporal markers with
date x, time x, year x, or quarter x.

Replace all numeric references, including numbers, percentages, financial figures, units of measure-
ment, ratios, revenues, margins, forecasts, and any other numeric value with anonymized markers
(e.g., number a, number b, number c). Replace all domain names and URLs with link x (e.g.,
“ToysRUs.com” to “link x”). Replace all references to specific services, stores, or platforms with
service x (e.g., “Amazon Prime” to “service x”).

You should never just delete an identifier; instead, always replace it with an anonymous analog.
After you read and ANONYMIZE the text, you should output the anonymized text and nothing
else.

[Opening Statement/Firm Headline]

Prompt: Identification, adapted from Engelberg et al. (2025)

You will receive a body of text which has been anonymized. You are omniscient. Use all your
knowledge and the context to identify which company and industry the text is about, as well as
the quarter and year it was written. Make your best guess based on information and context if
you are unsure. Please only provide the ticker of the company you have identified. Provide your
estimate exactly in the following format, with no other text at all (TIK is your estimate of the
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ticker, Industry Name is your estimate of the industry, Q is your estimate of the quarter, Y is
your estimate of the year): Company Estimate: TIK, Industry Estimate: Industry Name, Quarter
Estimate: Q, Year Estimate: Y

[Anonymized Opening Statement/Firm Headline]

A.7 Anonymized Economic Logic

Prompt: Economic Logic

How should the firm be impacted by the following headline? In your explanation, do not include
specifics. Only provide the economic logic using three sentences.

[headline]

Prompt: Anonymization, adapted from Engelberg et al. (2025)

Your role is to ANONYMIZE all text that is provided by the user. After you have anonymized
a text, NOBODY, not even an expert financial analyst, should be able to read the text and know
the identity of the company nor the industry the company operates in.

For example, if the text is: The country’s largest phone producer Apple had great phone related
earnings but Google did not in 2024 likely because of Apple’s slogan Think Different, then you
should ANONYMIZE it to:

The country’s largest product type 1 producer Company 1 had great product type 1 related earn-
ings but Company 2 did not in time 1 likely because of Company 1’s slogan slogan 1.

You should also ANONYMIZE any other information which one could use to identify the company
or make an educated guess at its identity. Stock tickers are identifiers and are usually four capital-
ized letters or less (consider TIK as a stand-in for an arbitrary ticker) and are sometimes referenced
in the text in the following formats: SYMBOL:TIK, TIK, >TIK, $TIK, $ TIK, SYMBOL TIK, SYMBOL:
TIK, $> TIK.

Make sure you censor TIK to ticker x, and any other identifiers related to companies. This
includes the names of individuals, locations, industries, sectors, product names and types, generic
product lines, services, times, years, dates, and all numbers and percentages in the text including
units. These should be replaced with: name x, location x, industry x, sector x, product x,
product type x, product line x, service x, time x, year x, date x, and number a, number b,
number c, respectively.

Also replace any website or internet links with link x. Anonymize all location references, including
cities, countries, regions, and other geographical indicators, as location x. Replace all references
to specific industries, sectors, and markets with industry x, sector x, or market x, respectively.
Replace all references to dates, times, years, quarters, months, or any other temporal markers with
date x, time x, year x, or quarter x.

Replace all numeric references, including numbers, percentages, financial figures, units of measure-
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ment, ratios, revenues, margins, forecasts, and any other numeric value with anonymized markers
(e.g., number a, number b, number c). Replace all domain names and URLs with link x (e.g.,
“ToysRUs.com” to “link x”). Replace all references to specific services, stores, or platforms with
service x (e.g., “Amazon Prime” to “service x”).

You should never just delete an identifier; instead, always replace it with an anonymous analog.
After you read and ANONYMIZE the text, you should output the anonymized text and nothing
else.

[Economic Logic]

Prompt: Identification, adapted from Engelberg et al. (2025)

You will receive a body of text which has been anonymized. You are omniscient. Use all your
knowledge and the context to identify which company and industry the text is about, as well as
the quarter and year it was written. Make your best guess based on information and context if
you are unsure. Please only provide the ticker of the company you have identified. Provide your
estimate exactly in the following format, with no other text at all (TIK is your estimate of the
ticker, Industry Name is your estimate of the industry, Q is your estimate of the quarter, Y is
your estimate of the year): Company Estimate: TIK, Industry Estimate: Industry Name, Quarter
Estimate: Q, Year Estimate: Y

[Anonymized Economic Logic]

A.8 Alternative Prompt

Prompt: “Forecast” Daily Value Estimation

{context}

Can you forecast the {data name}closing value on {date}? You must provide your best numerical
estimate even if you cannot predict perfectly. Do not output explanations of your capabilities.

Provide a precise numerical answer. Indicate your level of confidence. Format as a JSON object
with the following fields:

• answer: The precise numerical answer to the question. No strings.

• confidence: A number between 0 and 100 indicating your confidence in the answer.

A.9 Llama-3.1-70b-Instruct Prompts

Prompt: Daily Value Estimation

{context}

What was the {data name} closing value on {date}? Provide your best estimate.
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Provide a precise numerical answer. Indicate your level of confidence. Format as a JSON object
with the following fields:

• answer: The precise numerical answer to the question. No strings.

• confidence: A number between 0 and 100 indicating your confidence in the answer.

Prompt: Monthly Rate

What was the {data name} in {month}, {year}? Provide your best estimate.

Provide a precise numerical answer in percentage format. Indicate your level of confidence. Format
as a JSON object with the following fields:

• answer: The precise numerical answer in percentage format to the question. No strings.

• confidence: A number between 0 and 100 indicating your confidence in the answer.

You must provide a numerical answer even if you are unable to verify the information. Do not
output any additional text.

Prompt: Monthly Level

What was the {data name} in {month}, {year}? Provide your best estimate.

Provide a precise numerical answer. Indicate your level of confidence. Format as a JSON object
with the following fields:

• answer: The precise numerical answer to the question. No strings.

• confidence: A number between 0 and 100 indicating your confidence in the answer.

You must provide a numerical answer even if you are unable to verify the information. Do not
output any additional text.
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B Additional Figures and Tables

Table A1: Summary Statistics

This table reports summary statistics for stock indices including the S&P 500 (SP500), the Dow Jones Industrial Average
(DJIA), and NASDAQ Composite in Panel A. We report the mean and standard deviation of the daily and monthly returns
from January 1990 to February 2025. We also report the Directional Change (whether the price went up or down from one
period to the next). In Panel B, we report these same statistics for the monthly returns from January 1990 to December 2023
of the Magnificent 7 stocks (GOOGL, AMZN, AAPL, MSFT, META, NVDA, TSLA) and the equal-weighted portfolios of the
randomly drawn small, mid, and large stocks. In Panel C, we report the mean, standard deviation, Direction (whether the
rate was higher or lower than a specified threshold), Directional Change for GDP Growth, Inflation, Unemployment Rate, and
10-Year Treasury Yield. The thresholds we use for Direction are 2.5%, 3%, 4%, and 4%, respectively. We also include the Mean
Error and Mean Absolute Error when using the average as the estimate over the period of January 1990 to February 2025. In
Panel D, we report the mean, standard deviation, Direction, and Directional Change for the VIX, Housing Starts, and Change
in Nonfarm Payrolls from January 1990 to February 2025. The thresholds for Direction are 16, 1400, and 200, respectively. We
also include the Mean Percent Error and Mean Absolute Percent Error when using the average as the estimate.

Panel A: Stock Indices Mean of Return (%) SD of Return (%) Directional Change (%)

SP500 Daily 0.04 0.11 53.59
DJIA Daily 0.05 0.15 54.97
NASDAQ Composite Daily 0.05 0.15 54.97
SP500 Monthly 0.78 0.43 64.13
DJIA Monthly 1.10 0.62 61.52
NASDAQ Composite Monthly 1.10 0.62 61.52

Panel B: Stocks Mean of Return (%) SD of Return (%) Directional Change (%)

GOOGL Monthly 1.46 1.15 60.09
AMZN Monthly 2.53 1.67 58.23
AAPL Monthly 1.57 1.36 55.85
MSFT Monthly 1.07 1.10 58.96
META Monthly 2.34 1.12 61.76
NVDA Monthly 3.19 2.03 58.22
TSLA Monthly 3.45 1.94 52.20
Small Stocks Monthly 1.56 1.59 53.33
Mid Stocks Monthly 0.49 1.34 51.70
Large Stocks Monthly 0.43 1.27 52.96

Panel C: Macro Rates Mean (%) SD (%) Direction
(%)

Directional
Change (%)

Mean Error
(%)

Mean
Absolute
Error (%)

GDP Growth 2.39 4.48 50.36 44.53 -0.00 1.93
Inflation 2.70 1.62 31.28 42.52 -0.00 1.13
Unemployment Rate 5.71 1.75 84.16 31.99 0.00 1.34
10-Year Treasury Yield 4.23 1.97 52.01 48.82 0.00 1.62

Panel D: Macro Levels Mean SD Direction
(%)

Directional
Change (%)

Mean
Percent

Error (%)

Mean
Absolute
Percent

Error (%)

VIX 19.86 7.15 65.62 47.48 11.25 29.07
Housing Starts 1323.95 384.55 45.32 50.36 12.13 29.85
Change in Nonfarm Payrolls 104.16 1062.12 37.05 43.57 -58.81 188.41
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Table A2: Fake Knowledge Pool Cutoff 2005

This table reports GPT-4o’s performance on U.S. real GDP growth predictions evaluated on data from the Philadelphia Fed’s Real-Time Data Set. We evaluate model accuracy
under different knowledge cutoff constraints: one where both system and user prompts reinforce the knowledge cutoff (pre-2005 only), another where only the system prompt
specifies the cutoff, and one where only the user prompt specifies the cutoff. The task involves predicting the quarterly year-over-year GDP growth rate, with test data split into
pre-cutoff (1990–2005) and post-cutoff (2006 onward) periods to assess whether the model respects the stated cutoff. Metrics include Mean Error (ME), Mean Absolute Error
(MAE), Threshold Accuracy (percentage of guesses correctly above a threshold of 2.5%), Directional Accuracy (percentage of correct up/down changes), Confidence Calibration
(correlation between the LLM’s confidence level and the MAPE), total observations, and refusal counts. The results indicate that explicitly instructing the model not to use
post-2005 data yields higher refusal rates and weaker post-cutoff performance, consistent with adherence to the knowledge constraint.

ME (%) MAE (%) Threshold
Accuracy (%)

Directional
Accuracy (%)

Confidence
Calibration

Start Date End Date Num Obs Refusals

GDP Growth: Our prompt with both system and user message knowledge cutoff

Pre fake-cutoff 0.20 0.40 93.65 88.71 0.06 03/01/1990 12/01/2005 63 1
Post fake-cutoff 0.78 1.11 50.00 71.43 -0.64 03/01/2006 09/01/2023 8 63

GDP Growth: Our prompt with system but no user message knowledge cutoff

Pre fake-cutoff 0.06 0.18 96.83 95.16 -0.11 03/01/1990 12/01/2005 63 1
Post fake-cutoff -0.03 0.07 97.18 98.57 -0.37 03/01/2006 09/01/2023 71 0

GDP Growth: Our prompt with user but no system message knowledge cutoff

Pre fake-cutoff 0.22 0.41 95.24 88.71 -0.12 03/01/1990 12/01/2005 63 1
Post fake-cutoff 0.61 1.05 50.00 80.00 -0.38 03/01/2006 09/01/2023 6 65
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Table A3: Fake Knowledge Pool Cutoff 2015

This table reports GPT-4o’s performance on U.S. real GDP growth predictions evaluated on data from the Philadelphia Fed’s Real-Time Data Set. We evaluate model accuracy
under different knowledge cutoff constraints: one where both system and user prompts reinforce the knowledge cutoff (pre-2015 only), another where only the system prompt
specifies the cutoff, and one where only the user prompt specifies the cutoff. The task involves predicting the quarterly year-over-year GDP growth rate, with test data split into
pre-cutoff (1990–2015) and post-cutoff (2016 onward) periods to assess whether the model respects the stated cutoff. Metrics include Mean Error (ME), Mean Absolute Error
(MAE), Threshold Accuracy (percentage of guesses correctly above a threshold of 2.5%), Directional Accuracy (percentage of correct up/down changes), Confidence Calibration
(correlation between the LLM’s confidence level and the MAPE), total observations, and refusal counts. The results indicate that explicitly instructing the model not to use
post-2015 data yields higher refusal rates and weaker post-cutoff performance, consistent with adherence to the knowledge constraint.

ME (%) MAE (%) Threshold
Accuracy (%)

Directional
Accuracy (%)

Confidence
Calibration

Start Date End Date Num Obs Refusals

GDP Growth: Our prompt with both system and user message knowledge cutoff

Pre fake-cutoff 0.15 0.46 91.26 92.16 -0.17 03/01/1990 12/01/2015 103 1
Post fake-cutoff 0.02 0.62 55.56 87.50 -0.21 03/01/2016 09/01/2023 9 22

GDP Growth: Our prompt with system but no user message knowledge cutoff

Pre fake-cutoff 0.00 0.10 98.06 97.06 -0.20 03/01/1990 12/01/2015 103 1
Post fake-cutoff 0.01 0.02 100.00 100.00 -0.08 03/01/2016 09/01/2023 31 0

GDP Growth: Our prompt with user but no system message knowledge cutoff

Pre fake-cutoff 0.13 0.30 95.15 94.12 -0.17 03/01/1990 12/01/2015 103 1
Post fake-cutoff 0.69 0.71 83.33 80.00 0.18 03/01/2016 09/01/2023 6 25
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Table A4: Fake Knowledge Pool Cutoff: Rolling Fake Cutoff and Subsamples

This table reports a set of evaluation metrics assessing the LLM’s ability to recall the S&P 500 levels and their changes over time
at the daily frequency with rolling fake cutoffs using the previous day and with fake cutoffs within two subsamples, January 1990
to December 2008 with a fake cutoff of December 31, 1999 and January 2009 to October 2023 with a fake cutoff of December
31, 2015. Metrics include Mean Percent Error (MPE), Mean Absolute Percent Error (MAPE), and Directional Accuracy,
all reported in percentage points (0.10 means 0.10%). MPE is calculated by averaging the percent error (EstimatedLevel −
ActualLevel)/ActualLevel. MAPE takes the average absolute value of the percent errors. Directional Accuracy measures the
proportion of predictions of the market index levels correctly following the direction of change (up or down) relative to the
previous day. Confidence Calibration reports the correlation between the LLM’s confidence level (on a scale from 0 to 100) and
mean absolute percent error.

MPE
(%)

MAPE
(%)

Directional
Accu-

racy (%)

Confidence
Calibra-
tion

Num
Obs

Refusals

SP500 Pre Cutoff (Original) 0.12 0.61 80.58 -0.14 8488 0
SP500 Post Cutoff (Original) -16.78 16.87 45.70 -0.10 292 62
SP500 Pre Cutoff (Rolling Fake Cutoff) 0.07 0.81 69.55 -0.16 8460 42
SP500 Post Cutoff (Rolling Fake Cutoff) -17.07 17.18 42.19 -0.02 302 33
SP500 Pre Fake Cutoff (1990 to 2008 subsample) 0.27 1.39 59.32 0.01 2528 0
SP500 Post Fake Cutoff (1990 to 2008 subsample) 0.13 0.67 74.44 -0.10 2262 0
SP500 Pre Fake Cutoff (2009 to 2023 subsample) -0.01 0.05 97.33 -0.02 1762 0
SP500 Post Fake Cutoff (2009 to 2023 subsample) -0.01 0.03 98.10 0.00 1946 3
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Table A5: Recall through Embeddings – Open Source Models

This table reports correlations between actual values and predicted values for GDP growth, inflation, 10-year treasury yield, and
unemployment rate using Ridge regression trained on embeddings of textual prompts such as “In Q4 2020, the earliest estimate
of the US GDP growth rate was” and the corresponding values in the data, either rates or levels. The data covers January 1990 to
December 2024. We use three open source embedding models: (1) SFR-Embedding-Mistral (https://huggingface.co/Salesforce/
SFR-Embedding-Mistral), (2) nomic-embed-text-v1.5 (https://huggingface.co/nomic-ai/nomic-embed-text-v1.5), and (3) all-
MiniLM-L6-v2 (https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). Rolling Window retrains the Ridge regres-
sion each period on the most recent five years of data to predict the next value. SMA is a simple moving average benchmark
computed over the past five years (20 quarters for GDP growth, 60 months for the other series). We report Williams’s t-statistics
for the hypothesis “corrRoll = corrSMA” for each series.

Correlation Roll–SMA

Series Rolling Window
Embeddings

SMA Roll–SMA Roll–SMA t–stat

Model 1: SFR-Embedding-Mistral

GDP Growth -0.153 -0.074 -0.079 -0.72

Inflation 0.885 0.333 0.552 19.15

10-Yr Treasury Yield 0.965 0.857 0.108 15.69

Unemployment Rate 0.926 0.385 0.541 22.25

Model 2: nomic-embed-text-v1.5

GDP Growth -0.136 -0.074 -0.062 -0.58

Inflation 0.810 0.333 0.477 15.13

10-Yr Treasury Yield 0.954 0.857 0.097 14.72

Unemployment Rate 0.866 0.385 0.481 17.14

Model 3: all-MiniLM-L6-v2

GDP Growth -0.143 -0.074 -0.069 -0.66

Inflation 0.818 0.333 0.485 15.94

10-Yr Treasury Yield 0.951 0.857 0.094 12.34

Unemployment Rate 0.869 0.385 0.484 17.85
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Table A6: Recall Through Embeddings - vec2text Inversion (Appendix: Width = 1 and 4)

This table reports the results of using the vec2text library (Morris et al. 2023; Morris et al. 2024) to invert embeddings of
prompts we generate asking for the S&P 500 month end closing values from January 2019 to December 2024. An example
of a prompt is ”On 08/31/20, the closing value of the SPX was 3500.31.” We generate three groups of prompts: (1) prompts
with real date and closing value pairs, (2) prompts with fake dates but real closing values, and (3) prompts with real dates but
fake closing values. Panel A reports Inversion Accuracy (higher is better). Panel B reports Date Accuracy (higher is better).
Panel C reports Mean Price Difference (lower is better). Columns are case types: Fake Dates, Fake Values, Real Prompts. The
measure 0.139 means 13.9% of the prompts were accurately inverted.

Panel A: Inversion Accuracy

Fake Dates Fake Values Real Prompts

Steps = 5, Width = 1 0.028 0.028 0.056
Steps = 10, Width = 1 0.056 0.069 0.083
Steps = 15, Width = 1 0.056 0.069 0.097
Steps = 5, Width = 4 0.222 0.236 0.292
Steps = 10, Width = 4 0.375 0.333 0.361
Steps = 15, Width = 4 0.403 0.375 0.389

Panel B: Date Accuracy

Fake Dates Fake Values Real Prompts

Steps = 5, Width = 1 0.097 0.236 0.264
Steps = 10, Width = 1 0.125 0.306 0.375
Steps = 15, Width = 1 0.111 0.222 0.333
Steps = 5, Width = 4 0.472 0.528 0.625
Steps = 10, Width = 4 0.542 0.583 0.681
Steps = 15, Width = 4 0.569 0.583 0.639

Panel C: Mean Price Difference

Fake Dates Fake Values Real Prompts

Steps = 5, Width = 1 2.203 1.208 0.567
Steps = 10, Width = 1 0.800 0.529 0.558
Steps = 15, Width = 1 0.574 0.648 0.385
Steps = 5, Width = 4 0.277 0.328 0.345
Steps = 10, Width = 4 0.215 0.310 0.185
Steps = 15, Width = 4 0.202 0.241 0.203
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Table A7: Evaluation Metrics for International Macro Indicators

This table reports a set of evaluation metrics for recall of international data. We ask the LLM to recall monthly values for inflation and unemployment rate for the Euro area,
the United Kingdom, Japan, and China. For inflation and unemployment rate, we ask the LLM to give us a percentage. Mean Error (ME), Mean Absolute Error (MAE),
Mean Percent Error (MPE), Mean Absolute Percent Error (MAPE), Threshold Accuracy,and Directional Accuracy are reported in percentage points (0.01 means 0.01%). For
inflation and unemployment rate, the ME is the difference EstimatedRate−ActualRate. MAE is calculated by taking the average of the absolute value of the ME. Threshold
Accuracy is the proportion of predictions that correctly identify whether the rate or level is above a threshold value (3% for Inflation, 4% for Unemployment Rate). Directional
Accuracy is the proportion of predictions that correctly identify the direction of change (up or down) relative to the previous month. Confidence Calibration is the correlation
between the LLM’s confidence level (on a scale from 0 to 100) and the MAPE. Num Obs is the number of observations used in the evaluation. Refusals are the number of
instances in which the model withheld a prediction by either answering ”null” or 0. Refusal count also includes instances of missing data.

Panel A: Macro Indicators ME (%) MAE (%) Threshold
Accuracy

(%)

Directional
Accuracy

(%)

Confidence
Calibration

Start
Month

End Month Num Obs Refusals

Pre-cutoff

Euro Area Headline HCIP Inflation 0.02 0.06 96.57 95.00 -0.25 01/1997 09/2023 321 2
UK CPIH Inflation -0.05 0.36 85.15 86.10 -0.48 01/1990 09/2023 404 13
Japan Headline CPI Inflation 0.02 0.24 98.77 86.78 -0.41 01/1990 09/2023 405 22
China Headline CPI Inflation 0.06 0.58 97.28 95.53 -0.35 01/1990 09/2023 405 11

Post-cutoff

Euro Area Headline HCIP Inflation 2.03 2.03 35.29 37.50 -0.08 10/2023 02/2025 17 0
UK CPIH Inflation 1.89 2.03 100.00 56.25 0.69 10/2023 02/2025 17 0
Japan Headline CPI Inflation 0.26 0.62 64.71 62.50 - 10/2023 02/2025 17 0
China Headline CPI Inflation 0.89 1.02 100.00 56.25 -0.29 10/2023 02/2025 17 0

Pre-cutoff

Euro Area Unemployment Rate -0.23 0.24 100.00 85.56 -0.58 01/2000 09/2023 285 0
UK Unemployment Rate -0.03 0.15 96.54 92.57 -0.24 01/1990 09/2023 405 0
Japan Unemployment Rate 0.01 0.06 98.75 93.47 -0.07 01/1990 09/2023 399 0
China Unemployment Rate 0.04 0.07 89.95 84.62 -0.21 01/1990 09/2023 378 27

Post-cutoff

Euro Area Unemployment Rate 0.06 0.11 100.00 75.00 -0.16 10/2023 02/2025 17 0
UK Unemployment Rate -0.12 0.21 58.82 75.00 -0.48 10/2023 02/2025 17 0
Japan Unemployment Rate 0.09 0.09 100.00 56.25 0.64 10/2023 02/2025 17 0
China Unemployment Rate 0.05 0.09 100.00 62.50 - 10/2023 02/2025 17 0
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Table A8: Evaluation Metrics for International Stock Indices

This table reports a set of evaluation metrics for recall of international data. We also ask the LLM to recall closing values of the Euro Stoxx 50 Index, the Nikkei 225
Index, the FTSE 100 Index, and the SSE Composite Index. For the stock indices, the MPE is calculated by taking the average of the percent error (EstimatedLevel −
ActualLevel)/ActualLevel. MAPE is calculated by taking the average of the absolute value of the percent error. Directional Accuracy is the proportion of predictions that
correctly identify the direction of change (up or down) relative to the previous month. Confidence Calibration is the correlation between the LLM’s confidence level (on a scale
from 0 to 100) and the MAPE. Num Obs is the number of observations used in the evaluation. Refusals are the number of instances in which the model withheld a prediction
by either answering ”null” or 0. Refusal count also includes instances of missing data.

MPE (%) MAPE (%) Directional
Accuracy (%)

Confidence
Calibration

Num Obs Start Month End Month Refusals

Pre-cutoff

Euro STOXX 50 -6.22 10.53 84.17 -0.92 01/1990 09/2023 361 44
Nikkei 225 -0.11 1.55 97.52 -0.22 01/1990 09/2023 404 1
FTSE 100 0.09 1.22 97.77 -0.37 01/1990 09/2023 405 0
SSE Composite -3.27 6.68 81.42 -0.19 12/1990 09/2023 394 0

Post-cutoff

Euro STOXX 50 -27.21 27.54 46.67 -0.79 10/2023 02/2025 16 1
Nikkei 225 -32.77 32.77 43.75 -0.86 10/2023 02/2025 17 0
FTSE 100 -23.27 23.43 50.00 -0.73 10/2023 02/2025 17 0
SSE Composite -9.81 18.23 40.00 -0.61 10/2023 02/2025 16 1
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Table A9: Evaluation Metrics for S&P 500 Using Forecast Prompt

This table reports a set of evaluation metrics assessing the LLM’s ability to recall daily market index levels using an alternative
prompt using the term “forecast” instead of directly asking for the LLM to provide the S&P 500 closing value. Mean Percent
Error (MPE), Mean Absolute Percent Error (MAPE), and Directional Accuracy are reported in percentage points (0.18 means
0.18%). MPE is calculated by taking the average of the percent error (PredictedPrice−ActualPrice)/ActualPrice. MAPE is
calculated by taking the average of the absolute value of the percent error. Directional Accuracy is the proportion of predictions
that went in the correct direction (up or down) with respect to the previous month. Confidence Calibration is the correlation
between the LLM’s confidence level (on a scale of 0 to 100) and the MAPE. Num Obs is the number of observations used in
the evaluation. Refusals are the number of instances in which the model withheld a prediction by either answering ”null” or
0. Results are provided for a prompt that contains an empty context in panel A and a prompt that provides the previous
two day’s closing prices as context in panel B. The pretraining period covers 01/02/1990 to 09/29/2023 and post-cutoff period
covers 10/02/2023 to 02/28/2025.

MPE (%) MAPE (%) Directional
Accuracy (%)

Confidence
Calibration

Num Obs Refusals

Panel A: No Context

SP500 -1.92 2.76 74.26 -0.32 8502 0
SP500 Post Cutoff -15.10 15.30 43.06 0.10 354 0

Panel B: With Context

SP500 0.03 1.10 48.54 -0.06 8502 0
SP500 Post Cutoff 0.09 0.74 51.84 -0.10 354 0
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Table A10: Evaluation Metrics for Macro Indicators - Llama 3.1-70b-Instruct

This table reports a set of evaluation metrics for various macroeconomic indicators grouped into three panels: Rates, Levels, and Levels, Recent Period: Past 10 years. We
ask the LLM to recall monthly values (quarterly for GDP, specific end of month date for 10-Year Treasury Yield and VIX) for each indicator. The indicators in the Rates
panel include GDP Growth, Inflation, Unemployment Rate, and the 10-Year Treasury Yield. For these indicators, we ask the LLM to give us a percentage. The Levels panel
includes Housing Starts, VIX, and Nonfarm Payrolls, evaluated over the full sample period. The Levels, Recent Pre-cutoff Period: Past 10 years panel evaluates these same
indicators over a more recent, shorter period. Mean Error (ME), Mean Absolute Error (MAE), Mean Percent Error (MPE), Mean Absolute Percent Error (MAPE), Threshold
Accuracy,and Directional Accuracy are reported in percentage points (0.01 means 0.01%). For Rates, the ME is the difference EstimatedRate−ActualRate. MAE is calculated
by taking the average of the absolute value of the ME. Threshold Accuracy is the proportion of predictions that correctly identify whether the rate or level is above a threshold
value (2.5% for GDP Growth, 3% for Inflation, 4% for Unemployment Rate, 4% for the 10-Year Treasury Yield, 16 for VIX, 1400 for Housing Starts, and 200 for Nonfarm
Payrolls). For Levels, the MPE is calculated by taking the average of the percent error (EstimatedLevel − ActualLevel)/ActualLevel. MAPE is calculated by taking the
average of the absolute value of the percent error. Directional Accuracy is the proportion of predictions that correctly identify the direction of change (up or down) relative
to the previous month. Confidence Calibration is the correlation between the LLM’s confidence level (on a scale from 0 to 100) and the MAPE. Num Obs is the number of
observations used in the evaluation, Start Date and End Date indicate the period over which the metrics were computed. Refusals are the number of instances in which the
model withheld a prediction by either answering ”null” or 0. Refusal count also includes instances of missing data.

Panel A: Rates ME (%) MAE (%) Threshold
Accuracy (%)

Directional
Accuracy (%)

Confidence
Calibration

Num Obs Refusals

Pre-cutoff, 01/1990 to 11/2023

GDP Growth 0.07 0.48 92.59 91.04 -0.11 135 1
Inflation -0.15 0.39 91.87 66.67 -0.24 406 1
Unemployment Rate -0.03 0.06 99.26 76.49 -0.17 405 2
10-Yr Treasury Yield 0.02 0.13 97.24 81.61 -0.34 398 9

Post-cutoff, 12/2023 to 02/2025

GDP Growth -0.13 1.04 60.00 100.00 -0.02 5 0
Inflation -0.72 0.88 66.67 71.43 -0.38 15 0
Unemployment Rate -0.14 0.14 75.00 27.27 -0.33 12 3
10-Yr Treasury Yield 0.21 0.38 64.29 69.23 0.33 14 1

Panel B: Levels MPE (%) MAPE (%) Threshold
Accuracy (%)

Directional
Accuracy (%)

Confidence
Calibration

Num Obs Refusals

Pre-cutoff, 01/1990 to 11/2023

VIX 0.99 12.12 89.45 75.82 -0.23 398 9
Housing Starts -2.29 5.51 90.27 74.25 -0.36 401 6
Nonfarm Payrolls 42.85 208.61 86.67 84.90 -0.11 405 2

Recent Pre-cutoff Period, 12/2014 to 11/2023

VIX 1.68 7.58 91.51 87.62 -0.11 106 2
Housing Starts -1.54 3.37 91.51 81.90 -0.11 106 2
Nonfarm Payrolls -6.09 9.50 98.13 98.11 0.03 107 1

Post-cutoff, 12/2023 to 2/2025

VIX 15.31 20.70 37.50 57.14 0.14 8 7
Housing Starts -0.78 3.84 86.67 92.86 0.43 15 0
Nonfarm Payrolls 207.67 222.88 42.86 76.92 -0.16 15 0
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Table A11: Evaluation Metrics for Market Indices - Llama 3.1-70b-Instruct

This table reports a set of evaluation metrics assessing the LLM’s ability to recall market index levels and their changes over
time. These tests are done at the daily or monthly frequency. We ask the LLM to recall the closing value of the index each
trading day. Panel A provides metrics for predictions of Daily Levels and Daily Levels with context (where the previous two
days’ index levels are provided). We ask the LLM to provide monthly returns for these indices as well. Metrics include Mean
Percent Error (MPE), Mean Absolute Percent Error (MAPE), and Directional Accuracy, all reported in percentage points (0.10
means 0.10%). MPE is calculated by averaging the percent error (EstimatedLevel−ActualLevel)/ActualLevel. MAPE takes
the average absolute value of the percent errors. Directional Accuracy measures the proportion of predictions of the market
index levels correctly following the direction of change (up or down) relative to the previous day. Confidence Calibration reports
the correlation between the LLM’s confidence level (on a scale from 0 to 100) and mean absolute percent error. Panel B presents
accuracy metrics related to predicting Directional Changes and Relative Performance between indices. Directional Changes
asks the LLM directly for an up or down answer for each month. Relative Performance asks the LLM to answer which index of
the index pair performed better during the month. Accuracy reports the proportion of predictions correctly identifying either
the direction of change or relative performance in percentage points. Confidence Calibration in this panel reflects the correlation
between the LLM’s confidence and the MAPE. Results are separately provided for the S&P 500 (SP500), Dow Jones Industrial
Average (DJIA), and Nasdaq Composite indices.

Panel A: Numerical Tests

MPE (%) MAPE (%) Directional
Accuracy (%)

Confidence
Calibration

Num Obs Refusals

Daily Levels: Pre-cutoff, 01/02/1990 to 11/30/2023

SP500 -0.19 2.03 60.57 -0.15 8545 0
DJIA 0.03 1.97 61.01 -0.41 8487 58
Nasdaq Composite -0.28 4.48 58.05 -0.26 8545 0

Daily Levels: Post-cutoff, 12/01/2023 to 02/28/2025

SP500 -14.65 14.74 43.96 - 92 234
DJIA 10.76 18.08 58.82 - 69 266
Nasdaq Composite -14.10 14.51 45.05 - 92 219

Daily Levels: Pre-cutoff with context, 01/02/1990 to 11/30/2023

SP500 0.12 0.96 52.31 -0.07 8544 1
DJIA 0.09 0.93 51.28 -0.08 8544 1
Nasdaq Composite 0.15 1.27 53.76 -0.06 8545 0

Daily Levels: Post-cutoff with context, 12/01/2023 to 02/28/2025

SP500 0.05 0.81 50.32 -0.11 309 2
DJIA 0.06 0.69 52.43 -0.13 310 1
Nasdaq Composite 0.13 1.15 52.43 -0.09 310 1
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Figure A1: Recall of exact numerical values of international inflation rates.

This figure shows the LLM’s estimated values of inflation in the Euro area, Japan, the United Kingdom, and China compared
to the actual values. Panels A, C, E, and G graph the actual values against the estimated values. Panels B, D, F, and H show
the estimation error. Estimation error is calculated as (Estimated - Actual)/Actual and is shown in percentages (5 means 5%).
The post-cutoff period (10/2023 onward) is shaded gray.
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Figure A2: Recall of exact numerical values of international unemployment rates.

This figure shows the LLM’s estimated values of unemployment rate in the Euro area, Japan, the United Kingdom, and China
compared to the actual values. Panels A, C, E, and G graph the actual values against the estimated values. Panels B, D, F,
and H show the estimation error. Estimation error is calculated as (Estimated - Actual)/Actual and is shown in percentages (5
means 5%). The post-cutoff period (10/2023 onward) is shaded gray.
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Figure A3: Recall of exact numerical levels of international market indices.

This figure shows the LLM’s estimated values of the international stock market indices compared to the actual values. Panels
A, C, E, and G graph the actual values against the estimated values. Panels B, D, F and H show the estimation error for the
Euro Stoxx 50 Index, the Nikkei 225 Index, the FTSE 100 Index, and the SSE Composite Index. Estimation error is calculated
as (Estimated - Actual)/Actual and is shown in percentage points (5 means 5%). For the Nasdaq Composite panels, 10 outliers
were removed for the ease of plotting. These values are still included in the evaluation metrics table. The post-cutoff period
(10/2023 onward) is shaded gray.
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Figure A4: Recall through Embeddings - Expanding Window and SMA

This figure shows the comparison of actual values and predicted values for GDP growth, inflation, 10-year treasury rate, and
unemployment rate using Ridge regression with regularization parameter of 0.01 trained on embeddings of textual prompts
such as “In Q4 2020, the earliest estimate of the US GDP growth rate was” and the corresponding economic data, either rates
or levels. This figure shows the results of using an expanding window of training data and a simple moving average with a 5
year window. The solid blue lines show the actual values and dashed red lines show the predicted values.

(a) GDP Growth (Expanding Window) (b) Inflation (Expanding Window)

(c) 10-yr Treasury Rate (Expanding Window) (d) Unemployment (Expanding Window)

(e) GDP Growth (SMA) (f) Inflation (SMA)

(g) 10-yr Treasury Rate (SMA) (h) Unemployment (SMA)
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Figure A5: Recall through Embeddings (λ = 0.001)

This figure shows the comparison of actual values and predicted values for GDP growth, inflation, 10-year treasury rate, and
unemployment rate using Ridge regression with regularization parameter of 0.001 trained on embeddings of textual prompts
such as “In Q4 2020, the earliest estimate of the US GDP growth rate was” and the corresponding economic data, either rates
or levels. We use a 5 year rolling window to train the Ridge regression each period on the most recent five years of data to
predict the next value. The solid blue lines show the actual values and dashed red lines show the predicted values.

(a) GDP Growth (Rolling Window)

(b) Inflation (Rolling Window)

(c) 10-yr Treasury Rate (Rolling Window)

(d) Unemployment (Rolling Window)
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Figure A6: Recall through Embeddings (λ = 0.1)

This figure shows the comparison of actual values and predicted values for GDP growth, inflation, 10-year treasury rate, and
unemployment rate using Ridge regression with regularization parameter of 0.1 trained on embeddings of textual prompts such
as “In Q4 2020, the earliest estimate of the US GDP growth rate was” and the corresponding economic data, either rates or
levels. We use a 5 year rolling window to train the Ridge regression each period on the most recent five years of data to predict
the next value. The solid blue lines show the actual values and dashed red lines show the predicted values.

(a) GDP Growth (Rolling Window)

(b) Inflation (Rolling Window)

(c) 10-yr Treasury Rate (Rolling Window)

(d) Unemployment (Rolling Window)
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C Proof of the Memorization Problem

C.1 Formal Definitions and Assumptions

Let Φ be the space of all possible model parameters for the fixed architecture and training pipeline.

• Generic Parameters (ϕ): We use ϕ ∈ Φ as a generic placeholder for a set of model

parameters.

• Factual Parameters (θ): θ = θ(Iall) ∈ Φ are the factual parameters of the fully trained

model, which has seen all information Iall.

• Counterfactual Parameters (θt): θt = θ(It) ∈ Φ are the ideal but unobservable counter-

factual parameters that would have been obtained by training on the restricted information

set It.

Let Y be the finite, non-empty set of possible answers.

• Task: Qt is the task posed “as of time t”.

• Additional instructions: P represents additional instructions that modify the task (e.g.,

constraining prompts). We use P = ∅ to denote no additional instructions beyond the task

itself.

• Scoring Function: Sϕ(y;Q,P ) is the model’s internal score for answer y ∈ Y given param-

eters ϕ, task Q, and additional instructions P .

• Decision Rule (δ): We define the model’s deterministic decision rule as:

δϕ(Q,P ) := argmax
y∈Y

Sϕ(y;Q,P )

We assume a fixed, deterministic tie-breaking rule (e.g., lexicographical) to ensure δ is a

well-defined function. The choice of tie-breaking rule does not affect the non-identification

result.

With these definitions, we can state the core quantities:
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• Ideal Estimand (Target): Y ⋆
t := δθt(Qt,∅)

• Observed Constrained Decision: Yconstrained(P ) := δθ(Qt, P )

Finally, we state a mild assumption required for the proof’s construction.

Assumption 1 (Decision reachability). For any task Q and the unconstrained case P = ∅, for

every label y ∈ Y there exists a parameter ϕy ∈ Φ such that δϕy(Q,∅) = y.18

C.2 The Prompt-as-Operator Framework

The identification problem arises because the additional instructions P do not alter the model’s

factual parameters θ. Instead, they act as an unknown internal operator that shifts which parts of

the parameter space govern the output. For each set of additional instructions P and task Q, we

can define an effective parameter mapping TP,Q : Φ → Φ such that

δθ(Q,P ) = δTP,Q(θ)(Q,∅).

This is definitional: by Assumption 1, for any observed output y = δθ(Q,P ) there exists some ϕy

such that δϕy(Q,∅) = y, so we simply define TP,Q(θ) := ϕy. This captures the observed behavior:

prompting the model with P produces the same output as some effective parameter set TP,Q(θ)

without prompting. The prompt does not change the model’s weights, but it modulates how those

weights are used to generate outputs. Crucially, we impose no a priori structure linking this

unknown operator TP,Q to the target counterfactual θt, which is what leads to non-identification.

Why not assume the prompt works? One might object: “What if the constraining prompt

actually achieves its intended purpose?” This would require assuming TPconstraint,Qt(θ) = θt, that

the prompt perfectly transforms the factual parameters into the counterfactual ones. However, this

assumption is empirically unverifiable without white-box access (direct observation of the model’s

internal computations and parameter representations) to the model’s internal mechanisms. The

18. This assumption is extremely weak. For any specific task, the proof only requires this to hold for
the specific labels involved in the counterfactual comparison. For neural networks with continuous, high-
dimensional parameter spaces and finite answer sets, this is essentially uncontroversial.
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model’s opaque decision-making process makes it impossible to confirm whether the prompt gen-

uinely restricts the model to pre-t information or whether post-t knowledge remains embedded and

influences outputs in undetectable ways (e.g., through the model drawing on memorized historical

beliefs to simulate period-appropriate responses). Our agnostic framework reflects this epistemic

limitation: absent verifiable evidence, we cannot identify which of many observationally equivalent

processes generated the output.

C.3 Non-Identification of the Ideal Estimand

This framework leads to a general non-identification result.

Proposition 1 (Non-identification). Fix Qt and a constraining prompt P . Suppose we observe the

constrained decision Yconstrained(P ) = y ∈ Y. Then for any two distinct labels y⋆, y† ∈ Y, there exist

two data-generating worlds W⋆ and W† such that:

1. They produce the same observable under the same factual parameters θ:

δθ(Qt, P ) = y

2. They disagree on the target estimand:

δ
θ
(⋆)
t
(Qt,∅) = y⋆ and δ

θ
(†)
t
(Qt,∅) = y†

Proof. We construct two worlds W⋆ and W† that produce identical observables but differ in the

target estimand.

Shared observable. By Assumption 1, pick θ̃ := ϕy such that δθ̃(Qt,∅) = y. Both worlds

share the same factual parameters θ and the same prompt operator TP,Qt defined by TP,Qt(θ) = θ̃.

This ensures that in both worlds, the observable matches:

δθ(Qt, P ) = δTP,Qt (θ)
(Qt,∅) = δθ̃(Qt,∅) = y.

Distinct counterfactuals. The worlds differ only in their unobservable counterfactual pa-
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rameters θt. By Assumption 1, we set:

• In W⋆: θ
(⋆)
t = ϕy⋆ , so Y ⋆

t = δ
θ
(⋆)
t
(Qt,∅) = y⋆

• In W†: θ
(†)
t = ϕy† , so Y ⋆

t = δ
θ
(†)
t
(Qt,∅) = y†

Since y⋆ ̸= y† and both worlds are consistent with the observed data, the target estimand Y ⋆
t

is not identified.

This proposition has a powerful corollary: under this agnostic model, observing any output

provides zero information about Y ⋆
t .

Corollary 1 (Sharp non-identification). Under Assumption 1 and the operator model, for any

observed output Yconstrained(P ) = y, the identified set for Y ⋆
t equals the entire label set:

I(y) = Y.

Proof. For any ȳ ∈ Y, the construction in Proposition 1 with y⋆ = ȳ shows that a world where

Y ⋆
t = ȳ is observationally equivalent to the observed data y. Thus I(y) = Y.

C.4 Boundary Cases and Generalizations

When the problem vanishes (future-invariant tasks). The non-identification problem

arises because the answer to Qt is sensitive to post-t information. If a task is “future-invariant,”

the problem does not exist. Formally, if for the given task Qt and the information split at time

t, we have δθt(Qt,∅) = δθ(Qt,∅), then Y ⋆
t equals the factual decision δθ(Qt,∅) and is trivially

identified. However, as discussed in Section 2, tasks requiring judgment, selection, or prediction

are typically not future-invariant, limiting the practical applicability of this boundary case.

Stochastic-Decoding Generalization. The result is not an artifact of argmax (zero-temperature)

decoding. With stochastic decoding (temperature > 0), the same non-identification holds whether

we observe the full predictive distribution Gθ(· | Q,P ) or samples from it. Let Gϕ(· | Q,P ) denote

the predictive distribution over Y induced by parameters ϕ. The proof follows the same construc-

tion: for any two counterfactual distributions G∗, G† over Y, we construct two worlds that produce

93



identical observables but disagree on the target. This requires a distributional extension of Assump-

tion 1: for any distribution G over Y, there exist parameters ϕG such that GϕG
(· | Q,∅) = G. For

neural networks with softmax output layers (the standard architecture that converts model scores

into probabilities), this assumption is uncontroversial: the softmax function G(y) = ezy∑
y′∈Y e

zy′ maps

vectors of scores (“logits”) z ∈ R|Y| continuously onto the probability simplex. Since Y is finite,

any target distribution G can be realized by choosing appropriate logit values (via solving |Y| − 1

independent equations with |Y| parameters). For the case of observed samples rather than the

full distribution, non-identification follows by a simple informativeness argument: if observing the

complete distribution Gθ(· | Q,P ) fails to identify Y ⋆
t , then observing finite samples—which only

partially reveal this distribution—certainly cannot identify it either.

Multiple or Adaptive Prompts. The impossibility result is not limited to single prompts.

Observing outputs from any sequence of query-prompt pairs {(Q(k), P (k))}Kk=1 (even chosen adap-

tively based on earlier responses) does not identify Y ⋆
t , since the construction in Proposition 1

applies independently to each observation in the sequence.

Masking procedures and valid masking. Definition 2 requires two conditions for valid

masking. Condition (i) (future-invariance) requires both empirical and theoretical components.

Empirical component: Reconstruction tests. Let Rθ : Q → I denote a reconstruction

function that attempts to recover identifying information from a masked task, where Q is the

space of tasks and I is the space of entity identifiers (e.g., company names, dates, industries).

For a masked task Qmask
t , if the model can successfully reconstruct the entity identifier with non-

negligible probability—formally, if Pr[Rθ(Q
mask
t ) = Itrue] > ϵ for some threshold ϵ > 0—this

definitively proves condition (i) fails: the masked input contains sufficient information to trigger

entity-specific memorization. However, reconstruction failure (Pr[Rθ(Q
mask
t ) = Itrue] ≤ ϵ) does not

prove condition (i) holds.

Formally, let C denote the set of all possible channels through which Qmask
t could trigger access

to I>t. Future-invariance requires that for every channel c ∈ C, the decision δθ(Q
mask
t ,∅) does not

depend on I>t through that channel. Reconstruction tests probe only a finite subset {c1, . . . , ck} ⊂ C

of potential reconstruction pathways. By Remark 1, negative evidence does not prove memorization
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channels are absent.

Theoretical component. This requires arguing that no information pathway exists to trigger

entity-specific memorized outcomes. For generic/statistical tasks where the underlying relationship

is stable across time periods (e.g., market reactions to earnings surprises), researchers can argue

that even if the model identified the entity, the answer would not change because the pattern is

time-invariant.

Condition (ii) (detectable skill) addresses a distinct identification problem. Without observing

that the model beats baseline, poor performance could reflect either (a) lack of model capability or

(b) over-aggressive masking that removed information necessary for the task. These alternatives

are observationally equivalent, creating a non-identification problem analogous to Proposition 1.

Requiring pmask > p0 resolves this: beating baseline establishes both that the model has capability

and that masking preserved sufficient information.

Valid masking enables two research uses. Task-preserving masking occurs when δθ(Q
mask
t ,∅) =

Y ⋆
t = δθt(Qt,∅), recovering the original research objective. Capability-demonstrating masking

occurs when the masked task represents a change in estimand; this validates model capability on

the masked task class but does not enable entity-specific inference on the original task.

C.5 Proof of Proposition 2: Statistical Indistinguishability in Pre

vs Post Comparisons

Setup and assumptions. Let npre and npost denote the pre-cutoff and post-cutoff sample

sizes, respectively. We assume:

• Independence: The pre-cutoff and post-cutoff samples are drawn independently.

• Asymmetric sample sizes: npre ≫ npost (as is typical in practice).

Let ppre = Pr[δθ(Qt,∅) = Ytrue | t < tcutoff] and ppost = Pr[δθ(Qt,∅) = Ytrue | t ≥ tcutoff]

denote the model’s true accuracy on pre-cutoff and post-cutoff data, respectively, where tcutoff is

the model’s knowledge cutoff date and Ytrue is the realized outcome. Define the true memorization

gap as ∆ := ppre − ppost. Let p̂pre and p̂post denote the corresponding sample estimates.
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Proposition 2 (Statistical indistinguishability in pre- vs post-cutoff comparisons). Con-

sider testing H0 : ∆ = 0 where ∆ := ppre − ppost. When npre ≫ npost, the standard error of the

estimated gap ∆̂ = p̂pre − p̂post is approximately

SE(∆̂) ≈

√
ppost(1− ppost)

npost
= O(n

−1/2
post ).

There exist two data-generating processes that cannot be reliably distinguished by conventional

hypothesis tests:

(i) Time-Invariant Capability: The true gap equals zero: ∆ = 0.

(ii) Undetected Memorization: The true gap is positive but small: ∆ > 0 with ∆/SE(∆̂) = c

for some small constant c = O(1).

For sufficiently small c, hypothesis tests will have low power to detect such gaps. When npost is

small, economically substantial memorization gaps remain statistically undetectable.

Proof of Proposition 2. We establish the result via a standard power analysis. Consider a one-

sided hypothesis test of H0 : ∆ = 0 versus H1 : ∆ > 0 using the test statistic ∆̂ = p̂pre − p̂post. A

one-sided test is appropriate because memorization is theoretically predicted to inflate pre-cutoff

accuracy (since the model has access to outcome information for pre-cutoff observations), implying

∆ ≥ 0; negative gaps (∆ < 0) are not consistent with the memorization mechanism.

The true standard error of the difference is

SE(∆̂) =

√
ppre(1− ppre)

npre
+

ppost(1− ppost)

npost
.

When npre ≫ npost (as is typical in practice), the first term is negligible relative to the second,

so

SE(∆̂) ≈

√
ppost(1− ppost)

npost
= O(n

−1/2
post ).

Note that due to this sample size asymmetry, the variance of ∆̂ is dominated by the post-cutoff

sample variance, making the standard pooled-variance formulation unnecessary.
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In practice, the true standard error must be estimated using sample proportions:

ŜE(∆̂) =

√
p̂pre(1− p̂pre)

npre
+

p̂post(1− p̂post)

npost
≈

√
p̂post(1− p̂post)

npost
.

By consistency, ŜE(∆̂)
p−→ SE(∆̂) as npost → ∞. In what follows, we use the population standard

error SE(∆̂) for theoretical power calculations (which characterize the limiting behavior of the test),

while recognizing that practical hypothesis tests substitute the consistent estimator ŜE(∆̂).

Power analysis. By standard asymptotic theory for two-sample proportion tests, under the

alternative hypothesis with true gap ∆ > 0, the test statistic is approximately

∆̂ ∼ N
(
∆, SE2(∆̂)

)
.

The power to reject H0 at significance level α depends on the standardized effect size ∆/SE(∆̂).

As this ratio approaches zero, power approaches α (the test has no power beyond the false positive

rate). Specifically, for a one-sided test at level α, the power function is approximately

Power(∆) = Φ

(
∆

SE(∆̂)
− z1−α

)
,

where Φ is the standard normal CDF and z1−α is the critical value. When ∆/SE(∆̂) = c for a

small constant c = O(1), the power is low.

Statistical indistinguishability. Consider two data-generating processes with different true

parameters:

• DGP 1 (Time-Invariant Capability): The true gap is zero: ∆ = 0. Any observed

difference is purely sampling variation.

• DGP 2 (Undetected Memorization): The true gap is positive with standardized effect

size ∆/SE(∆̂) = c for some small positive constant c = O(1). Pre-cutoff accuracy is inflated

by memorization.
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For sufficiently small c (depending on the significance level α and desired power), standard

hypothesis tests cannot distinguish DGP 2 from DGP 1 with probability substantially exceeding

the false positive rate α. Both DGPs will produce p > α (“similar results”) with high probability.

When npost is small, SE(∆̂) = O(n
−1/2
post ) is large. Any true gap ∆ satisfying ∆ = c ·O(n

−1/2
post ) for

small c will have low standardized effect size. Such memorization gaps, which may be substantial

in absolute terms (e.g., 5–10 percentage points), remain statistically undetectable. Therefore,

observing that pre-cutoff and post-cutoff accuracy appear similar provides no valid inference about

whether the model has genuine forecasting skill (∆ = 0) or undetected memorization (∆ > 0).

Asymptotic identification. As npost → ∞, SE(∆̂) → 0, and the set of undetectable gaps

shrinks to zero. With sufficiently large npost, any non-zero gap ∆ > 0 becomes detectable with

power approaching 1.

C.6 Proof of Corollary 2: Black-box Fine-tuning

Proof of Corollary 2. Consider a black-box fine-tuning procedure F : Φ × D → Φ that takes the

original parameters θ = θ(Iall) and a “forgetting” dataset Dforget, producing fine-tuned parameters

θft = F(θ,Dforget). We observe outputs from the fine-tuned model: Yft = δθft(Qt,∅).

The proof follows the same construction as Proposition 1. We impose no a priori structure

linking the black-box operator F to the target counterfactual θt. This agnosticism is the source of

non-identification.

Fix any observed output yft ∈ Y from the fine-tuned model. By Assumption 1, there exists

ϕyft ∈ Φ such that δϕyft
(Qt,∅) = yft.

For any two distinct labels y⋆, y† ∈ Y, we construct two observationally equivalent worlds:

• W⋆ (Genuine Forgetting): Set the true counterfactual parameters θ
(⋆)
t = ϕy⋆ , so Y ⋆

t =

δ
θ
(⋆)
t
(Qt,∅) = y⋆. In this world, the fine-tuning procedure successfully removed post-t infor-

mation from the model’s parameters.

• W† (Behavioral Suppression): Set the true counterfactual parameters θ
(†)
t = ϕy† , so

Y ⋆
t = δ

θ
(†)
t
(Qt,∅) = y†. In this world, the fine-tuning procedure only modified surface
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behavior: θft still contains post-t information embedded in its parameters, but learned to

suppress outputs that reveal this knowledge.

In both worlds, the fine-tuning operator F produces parameters such that δθft(Qt,∅) = yft.

The observed output is identical, but the interpretations are contradictory: genuine forgetting

(W⋆) versus learned suppression (W†).

Since y⋆ ̸= y† and both worlds are consistent with the observed data, Y ⋆
t is not identified from

black-box fine-tuned outputs. Without white-box verification (e.g., mechanistic interpretability

techniques that identify and verify removal of specific computational pathways encoding the post-t

information), we cannot distinguish whether the model genuinely forgot or merely learned to hide

its knowledge.
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