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1 Introduction

The fundamental insight of asset pricing is that expected returns are driven by asset exposure to
systematic sources of risk. As a result, the last few decades have seen the development of two often
separate strands of literature on the estimation and testing of risk factors. On one hand, there are
powerful statistical approaches to recover risk factors from observed asset returns such as Principal
Component Analysis (PCA) and its v:auriations.ﬂ On the other hand, numerous papers propose
and test economically motivated factors, relying on both structural and reduced-form models.E
This paper bridges the gap between these two strands of literature and shows that incorporating
economically motivated targets that capture both structural and reduced-form economic insights
significantly improves the performance of statistical risk factors.

We propose a general approach to estimate statistical risk factors that aligns their construc-
tion and performance along different economic targets (restrictions). Our approach generalizes PCA
and accommodates different types of cross-sectional and time-series restrictions on the risk-factor
span, pricing ability, and loading pattern (shape). Imposing economic restrictions allows us to
nudge latent risk factors to better reflect the insights from theoretical and empirical asset pricing,
and thus, significantly improve their performance in terms of Sharpe ratios or pricing errors.

We start by incorporating cross-sectional economic targets on the recovery of statistical risk
factors, an approach we term cross-sectional target PCA (XS-target-PCA). While our approach
allows for a very general formulation of the cross-sectional targets, we focus on two particular
instances. First, inspired by the macroeconomic literature that studies the role of shape restrictions
in the identification of structural shocks (pioneered by the long-run restrictions of
() and the sign restrictions of ()), we show how to impose intuitive shape
restrictions on the risk-factor loadings. The overwhelming majority of portfolios sorted by a single
characteristic (decile sorts) exhibit a monotonic pattern in expected returns, which routinely leads
to the creation of long-short factors that reflect a significant spread in asset returns (see
tFrench| (|199j), tPatton and Timmermann| (|201d), t[—Iou, Xue, and Zhangj (|2018|), |Jensen, Kelly, and|
Eedersegl (M)) Driven by this observation, we impose monotonicity in the expected returns of

decile-sorted portfolios on the pricing span achieved by latent factors.

Second, since tradable factors are often thought to reflect systematic sources of risk origi-
nated by nontradable (and empirically poorly measured) state variables (macroeconomic innova-
tions or shocks to intermediary risk capacity), we can explicitly impose this restriction on factor

recovery. Intuitively, the pricing span of risk factors should include that of exogenously given

'See Chamberlain and Rothschild (11983). Connor and Korajcz (|198d), Connor and Korajczi_'ljl 98 im
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sources of risk, captured by their covariance with asset returns. As a result, this nudges latent
factors to directly reflect the asset-pricing implications of state variables that have been identified
by economic theory.

We also consider incorporating time-series economic targets on the recovery of statistical
risk factors to exploit information in asset risk premia, an approach we term time-series target
PCA (TS-Target-PCA). We again allow for a general formulation of the targets, and focus on two
particular cases. Risk factors should not only capture the source of systematic time-series variation
in asset returns, but, consistent with the strict version of the Arbitrage Pricing Theory (APT),
also carry risk premia that explain cross-sectional differences in expected returns. The risk-premia
PCA of Lettau and Pelger (2020b) is designed to achieve this property and has been shown to
significantly improve the performance of the resulting latent factors in pricing the cross-section of
asset returns. Our general framework nests the setup of Lettau and Pelger (2020h) as a particular
type of the time-series target that can be imposed on latent factors.

Because in general APT allows for bounded asset-pricing errors (Huberman (1982), Cham-
berlain and Rothschild (1983), Uppal, Zaffaroni, and Zviadadze (2021)), it might be useful to nudge
risk factors towards spanning the pricing errors relative to a benchmark (imperfect) asset-pricing
model. To do this, we formulate a time-series target that incorporates alphas from the regression
of asset returns on a popular risk factor model such as the five-factor model of Fama and French
(2015) (FF5), and encourage statistical risk factors to capture the part of expected returns that
the popular model fails to explain.

We evaluate the empirical performance of our approach on a large-scale dataset including
excess returns of 370 decile portfolios constructed from single sorts on 37 firm characteristics. Note
that our approach is not designed to deliver the single most efficient way of identifying factors that
explain the cross-section of expected returns. Instead, we present a general framework that allows
the researcher to incorporate her ex-ante beliefs about different patterns of returns into the recovery
of the latent risk factors and the underlying Stochastic Discount Factor (SDF). As a result, whether
or not our approach delivers superior cross-sectional performance compared to standard PCA or
other approaches, fully depends on the “quality” of the economic restrictions, and how informative
they are about the underlying risk factors.

Our empirical study reveals five key insights. First, we find that imposing cross-sectional
shape restrictions (consistent with the monotonic patterns in expected returns of decile-sorted
portfolios) significantly improves the empirical performance of latent asset-pricing factors, which
achieve higher out-of-sample Sharpe ratio and lower pricing errors compared to standard PCA
factors. Second, incorporating either of the time-series targets in factor estimation (mean returns
or alphas) also leads to a significant improvement in empirical performance. As expected, each
of the time-series targets imposes its own restriction on the risk factors: while the TS-mean-PCA
factors yield low pricing errors for characteristic-sorted portfolios, the T'S-alpha-PCA factors better

capture the average returns of portfolios that are notoriously challenging for the FF5 factor model



(e.g., reversal). Third, there are benefits to imposing both cross-sectional and time-series targets
on factor recovery. In particular, imposing both shape restrictions on the factor loading pattern
as well as the APT-driven time-series pricing restrictions, leads to risk factors that strongly reflect
the underlying long and short patterns of asset returns, while preserving high Sharpe ratios and
low pricing errors. Our fourth empirical observation is that nudging latent factors to span popular
macroeconomic state variables does not help to explain a large cross-section of portfolio returns.
This may be due to the fact that most of the pricing ability of macroeconomic risk factors is
likely to manifest over the long horizon, and hence, does not provide a sizable improvement to the
identification of risk factors within a relatively short investment horizon (see Dew-Becker and Giglio
(2016), Neuhierl and Varneskov| (2021)). Fifth, we find that the improvement in the cross-sectional
explanatory power of latent factors obtained using our cross-sectional and time-series targets does
not come at the expense of a reduced time-series explanatory power.

Our paper contributes to an emerging literature that uses new econometric techniques in
asset pricing for high-dimensional data, including machine-learning methods. Perhaps the closest
work to ours is that of Lettau and Pelger (2020h), who introduce an APT-driven requirement for
risk factors to span expected returns of the portfolios (in addition to their time-series variation).
Our general framework nests RP-PCA as a particular case of time-series target. In fact, RP-PCA
directly corresponds to imposing the time-series mean target on the estimation of latent factors,
which we consider as one of the empirical applications. Our approach is more general, because it not
only allows one to include different types of the time-series targets, but also impose additional cross-
sectional restrictions/nudges on the shape and structure of latent factors. Our XS-Target-PCA is
grounded in formal asymptotic theory, which is derived under general assumptions in Duan, Pelger,
and Xiong (2022). While Duan et al| (2022) study the general problem of estimating a latent factor
model with missing observations by optimally using the information from auxiliary panel data
sets, our focus is on including economic cross-sectional and times-series targets for estimating asset
pricing factors.

Approximate factor models have been a leading framework to explain a wide cross-section of
asset returns (see Ross (1976) and Chamberlain and Rothschild (1983)). While the conditions and
methods for strong factors are well established in the existing literature (Connor and Korajczyk
(1986), Stock and Watson (2002), Bai (2003)), inference on semi-strong and weak factors is a
challenge. Onatski (2012) studies PCA-based estimation within the context of weak factors, and
shows that unless a weak factor explains a sufficient amount of the time-series variation in the
data, it cannot be statistically detected. Our approach, based on cross-sectional and time-series
targets, provides a new source of information for identifying the impact of latent factors. Similar to
valid economic constraints, the targets can significantly reduce estimation uncertainty and improve
factor identification.

There is a large and actively growing literature that studies the high-dimensional nature

of asset returns and its underlying structure. Freyberger, Neuhierl, and Webey (2020) and Feng;



Giglio, and Xiu (2020a) employ factor selection using L!-norm penalties and assume sparsity in
the underlying SDF exposure. Similar to Kozak, Nagel, and Santosh (2020), our approach does not
assume that the SDF is sparse in any explicit economic signal. Instead, we rely on the cross-sectional
and time-series targets to encode information of economically important restrictions/priors, and
use the PCA framework to identify these factors.

Using latent factors in asset pricing, especially due to prevalent model misspecification,
recently became one of the most popular approaches to recovering the span of the SDF. Giglio
and Xiu (2021) use PCA to identify factors that price the cross-section of expected returns, and
estimate the price of risk in the presence of model misspecification. Dello Preite, Uppal, Zaffaroni,
and Zviadadze (2022) complement this approach by also considering asset-specific risk. Kelly
et al, (2019) propose the Instrumented-PCA (IPCA) approach, which is closely related to the
projected-PCA of Fan et all (2016). Assuming that individual stocks have factor loadings that
are linear in firm characteristics, they extract latent factors via a version of the PCA, applied to
characteristic-managed portfolios. Our framework can be used at the level of managed portfolios,
and since it allows to efficiently encode the researcher’s beliefs regarding cross-sectional and time-
series properties of the latent factors, nothing precludes using it as part of the IPCA procedure as
well. If the underlying economic restrictions are informative about the systematic sources of risk,
using them might lead to significant efficiency gains and better identification of risk factors. This
in turn, may lead to superior empirical performance at the level of both managed portfolios and
individual stocks. Since the main objective of our paper is to demonstrate how different economic
priors can be efficiently encoded in risk-factor estimation, we leave this empirical exercise for future
work.

More generally, our work is also related to recent applications of machine-learning techniques
in asset pricing. Freyberger, Neuhierl, and Weber (2016), Gu, Kelly, and Xiu (2018), Chen, Pelger;
and Zhu (2020), Bianchi, Buchner, and Tamonj (2022) demonstrate that using machine-learning
techniques leads to a substantial improvement in the prediction of stock and bond returns. Feng,
Polson, and Xu (2020b) use deep learning based on characteristics and macroeconomic predictors to
estimate latent factors and incorporate them into a model that already contains observed ones. Gu,
Kelly, and Xiu (2021) extend the IPCA by allowing the factor exposures to be a nonlinear function
of the covariates, and estimate these exposures using autoencoder neural networks. Bali, Goyal,
Huang, Jiang, and Wen (2022) demonstrate that bond return predictability with firm characteristics
drastically improves when one imposes a theoretically motivated model for asset returns (e.g.,
Merton model), compared to a simple yet flexible reduced-form approach. Similar to Kozak et al.
(2020) and Bryzgalova, Huang, and Julliard (2022), we impose economic restrictions to recover the
underlying SDF. Our restrictions (targets) are not limited to the use of macroeconomic variables

or imposing certain properties on the overall time-series features of the underlying latent factors.



Importantly, we provide a general framework to encode various economic restrictions, stemming

from stylized theoretical models or empirical intuition of researchers, into a latent factor model.
The rest of the paper is organized as follows. Section E describes the proposed cross-sectional

time-series PCA approach. Section E evaluates the performance of the proposed approach using a

high-dimensional dataset of 370 decile-sorted portfolios, and Section H concludes.

2 Factor models with economic targets

2.1 Factor model

Assume that excess returns follow a standard approximate factor model: Their dynamics are driven
by a systematic component, captured by K risk factors, and a nonsystematic (idiosyncratic) one
accounting for the asset-specific risk (which can be weakly dependent). We observe excess returns

of N assets over T' time periods:

Rn,t = Ft/Br—Lr + €En,t,

or, in matrix notation,

_ T
SN (1)
TxN TxKgxn TxXN

where the unknown factors F' and loadings (or betas) 8 have to be estimated. We allow for large
dimensional panels, that is both the cross-sectional dimension N and time-series dimension 7', can
be large. We denote by Y g and X the variance-covariance matrices of returns and factors, and by
Ye the covariance matrix of residuals. Assuming that factor returns and errors are uncorrelated,

the covariance matrix of asset returns can be decomposed into systematic and idiosyncratic parts:
Sk =pBSrB" + Ze. (2)

If factors are sufficiently strong, that is, they explain enough time-series variation in the
panel, we can estimate F' via the Principal Component Analysis (PCA). The core assumption is
that the eigenvalues of the systematic part are asymptotically much larger than the eigenvalues
from the residuals. This is the case if many assets in the panel have non-vanishing loadings on the
factors and the variance of the factors is sufficiently large. Formally, a conventional PCA estimator

minimizes the following objective function:

N T
PCA: FPCA,BPCA = al“%‘l’lIBlin — Z Z ((Rt,n - Rn) - (Ft - F) ﬁ;{)2



:ar%{?ianT H(R—R) — (F_F) 5TH1’

where R, and F denote the sample mean of the returns and factors, respectively, and | - |

is the Frobenius norm. Under the standard normalization that the loadings are orthonormal
%BPT’C ABPC A = Ik, the PCA estimator follows from a spectral decomposition of the sample co-
variance matrix of returns. The estimated loadings equal the N x K matrix of eigenvectors scaled

by VN of the K largest eigenvalues of S k. The factors then follow from a cross-sectional regression

. . . . -1
on the loadings as Fpca = RBpca (BFT,C ABprc A) . In other words, latent factors are linear combi-

nations (portfolios) of the original returns R, with the following portfolio weights wpca € RV*K:

Fpca = NR WpcA wpca = Bpca-

As long as factors are uncorrelated, the factor weights and conventional OLS loading estimators
are the same, but we will distinguish between them for our more general estimation approaches.
Following the seminal contribution of Baj (2003), formal properties of the PCA-based estimation
of latent factors and loadings have been established in various empirical settings.

Conventional PCA-based estimation of latent factors is known to suffer from significant
drawbacks in many asset pricing frameworks. Naturally, its objective is to find latent factors that
explain as much variation as possible for a given set of basis assets, R. However, to do so it
only leverages information in the second moment (variance-covariance matrix), and ignores all the
other information, e.g., other moments (including the mean), additional sources of information,
and potential economic restrictions. Furthermore, it puts the same weight on all basis assets. As
a result, economically important factors that explain the variation in risk premium, that is, the
mean of the asset returns, yet affect only a smaller subset of the cross-section and/or have a low
variance that might not be detectable with the PCA.

A popular solution, suggested in the literature, has been to include additional information
in the estimation, whenever the covariance signal is not sufficient to detect weak factors. This
additional information can be based on economic assumptions or priors. In particular, the Risk-
Premium-PCA (RP-PCA) of Lettau and Pelger (2020b) leverages the Arbitrage Pricing Theory
(APT) and the information included in the risk premium in order to boost the signal of weak
factors. Under APT, the mean of asset returns is approximately explained by the factor means and
their risk exposure, that is, E[R] = B[F]. As a result, RP-PCA adds a penalty to the conventional
PCA estimator to find factors that explain the most variation subject to the APT condition. This
additional information allows to detect factors that are weak in terms of the explained time-series

variation, yet important for the estimation of risk premia.



In this paper, we propose a general class of estimators that allow to leverage information
from both cross-section and time-series of returns and additional data (e.g., macroeconomic in-
novations) in recovery of the asset pricing factors, that includes Lettau and Pelger (2020b) as a
particular case. We show that imposing economically motivated restrictions can boost the signals
of weak factors that are quite challenging to identify with conventional reduced-form methods. In
particular, we focus on the information content of economic fundamentals (which impact should be
reflected by latent asset pricing factors), shape restrictions in the patterns of asset loadings on risk
factors, and cross-sectional pricing ability of the factors, driven by average returns or alphas relative
to the benchmark reduced-form models. While imposing these economically motivated restrictions,
we nudge the conventional factor estimation towards certain time-series (T'S) or cross-sectional

(XS) targets, yielding the new estimation framework, XS-TS-Target PCA.

2.2 Cross-sectional targets: XS-Target PCA

First, we show how to include cross-sectional targets in the latent factor estimation. XS-Target
PCA adds a penalty to estimate factors that align with an economically motivated cross-sectional
structure. In the general case, we model cross-sectional target as a matrix AXS € RV*F, such
that it highly correlates with the matrix of factor loadings 8. Formally, this requires a subspace
spanned by the loadings to be included in the space spanned by the target. If factor loadings should
reflect a certain pattern (e.g., shape restrictions like monotonicity, or capturing the price impact
of exogenously given risk factors, such as consumption or intermediary capital ratio), nudging g to
explain the structure in A could significantly improve factor recovery.

In order to provide some intuition behind the estimator, we assume that the scaled matrix
A*S is normalized to be orthonormal, that is +(AXS)TAXS = I;. This condition can easily be
relaxed, and does not impose any significant constraint on the general approach to estimation.
However, it simplifies the exposition, and, therefore, is used for illustrative purposes. The cross-

sectional target implies the following set of managed target portfolios:

RXS _ RAXS

1
~~~ N
TxL
Conceptually, we would like the factor model to explain both the basis assets R and the target

portfolios R*S. Hence, the estimator solves the following optimization problem

o N e | LT s 2
argmlnﬁZZ<Rt7n—Ftﬁn> + vxs ﬁZZ( — F(B; ))

o n=11=1 I=1 t=1

with (8%5)T = BTAXS and the penalty vxs. In the special case of yxg = 0, we recover a conventional

PCA estimator. Naturally, increasing yxg pushes latent factors to better explain target portfolios.



This estimator, of course, involves a projection problem. To address it, we relax the nor-

malization that AXS is orthonormal and define the cross-sectional projection matriz P/{(S € RVxN
-1
PXS = AXS ((AXS)TAXS> (AXS)T, (3)

which projects N dimensional vectors onto the column space of AXS. XS-Target-PCA solves the

following objective

5 A 1 T||? 1 XS T pxs|?
XS-Target-PCA:  Fxg, fxs = argmin —— ||R — Fj3 ‘ +vxs —= ||[RPy° — FB' Py . (4)
Fj8 NT F LT F
unexplained XS target: unexplained variation
variation of returns of Pp-projected returns

2
Note that ||[RP{S — FBTP/)\(SH? = Zle S (R;(IS — Fy( IXS)T) if we normalize AXS,

Hence, XS-Target-PCA nudges the estimator to fit certain target assets. If the target assets
have an informative economic structure, which is weak in the original panel R, then setting ~yxg
sufficiently large allows to detect these weak factors. Note that the dimensions of the panel of basis
assets and target assets can be very different, but can be accounted for by an appropriate choice
of yxs.

The following proposition shows that the latent-factor model that optimizes the XS-Target-
PCA objective in (@) can be obtained by applying PCA to a transformed second moment matrix.

Proposition 1 The factors that optimize the XS-Target-PCA objective are obtained by applying
PCA to the T x T matriz

1 N
- T 7PXS T.
ot (1 + s ) R 6

Specifically, the estimated factor returns, Fxs, are the first K eigenvectors of matriz (H), and the

estimated factor weights and loadings are wxs = BXS = RTFXS.

In our empirical analysis we consider two types of cross-sectional targets. The first target
is economically motivated shape restrictions in the structure of the loadings. Most asset pricing
characteristics are motivated by a univariate analysis that shows monotonic patterns in the risk
premia, aligned with certain firm characteristics (that is, single-sorted portfolios tend to produce a
spread in expected returns). Therefore, we expect the loadings of asset-pricing factors to also reflect
an underlying monotonic structure. We incorporate this economic prior by a linearly increasing
pattern within the deciles sorts of a large panel of portfolios with many characteristics. More
specifically, in our empirical analysis we consider N = 370 decile-sorted portfolios for 37 different

characteristics. Our target matrix, therefore, has the target dimension L = 37. Each column



targets a specific characteristic with a linear structure centered at zero for the ten deciles of a
specific characteristic and zero otherwise. This structure is illustrated in Figure m

The monotonic shape restriction has two effects: First, it includes the additional information
that characteristic sorts are expected to have a monotonic risk premium structure. Hence, it imposes
a structure that is related to mean returns. Intuitively, the target-managed portfolios related to
the shape target are univariate long-short factors. Thus, the XS-Target-PCA extracts factors
that do not only explain the panel of N = 370, but also specifically long-short univariate risk
premia. Second, penalizing the shape of the loadings also nudges the loadings and factor weights
to tilt towards this structure. Hence, as we show empirically, XS-Target-PCA factors with a shape
target are long-short factors within the characteristic deciles, while conventional PCA factors do
not possess this structure. This benefits the interpretability of the statistical factors. While our
analysis focuses on monotonic shapes, it is straightforward to include alternative shapes to capture
for example convexity effects.

The second target is based on economic fundamentals. More specifically, our factors are
nudged to be more correlated with fundamental macroeconomic innovations. This target is based on
the theoretical insight of the intertemporal CAPM of Merton (1973) that innovations to macroeco-
nomic variables that affect the marginal utility of consumption of a representative investor represent

systematic risks that should be priced. Motivated by this theoretical insight, we consider the target

matrix AXS of correlations of the basis assets with L = 7 important macroeconomic time series.

Given a panel of L. macroeconomic time series Y™#'° we obtain the macroeconomic target as

AXS _ pymacro <(Ymacr0)Tymacro>_1 (6)

Hence, the target mimicking portfolios RXS correspond to Fama-MacBeth type macroeconomic
mimicking factor portfolios. The XS penalty forces the extracted factors to explain both the basis
assets and these macroeconomic mimicking portfolios. An appropriate choice of the penalty allows
to take advantage of the weak correlation between returns and macroeconomic innovations. Hence,
if these innovations in economic fundamentals contain cross-sectional asset pricing information,

XS-Target-PCA will improve upon a conventional PCA estimator.

2.3 Time-series targets: TS-Target-PCA

The time-series targets take advantage of return moments in addition of the second moment. The
conventional PCA estimator only uses the second moment to extract latent factors. However, if
the cross-sectional structure in other time-series moments is informative for the cross-section, then
they should also be included. The most prominent case is the first moment. The arbitrage pricing
theory (APT) implies that factors that drive the systematic time-series variation of asset returns
should also explain the cross-section of expected returns. This additional moment allows to estimate

factors that have a too-weak covariance signal to be detected by conventional PCA.



Figure 1: Cross-sectional shape target

This figure illustrates the cross-sectional shape target AXS € R37°%37 for 37 different characteristics. Each row of the
figure corresponds to one column of AXS and thus targets one characteristic with a linear structure centered at zero
for its ten decile portfolios and zero otherwise. The vertical axis depicts the 37 characteristics, and the horizontal
axis depicts the 370 decile portfolios of the characteristics. Positive (negative) values in A*S are illustrated in green
(red). Zeros are illustrated in white.
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lLettau and Pelgex{ (|2020b|) use a time-series target that nudges factors to explain average
asset returns. In particular, their Risk-Premium PCA (RP-PCA) estimator augments the PCA

objective with a time-series target that penalizes cross-sectional pricing errors:

. R 1
RP-PCA: Fgp, Brp = argmin  —— ‘ R— —FBT
Fj3 NT

unexplained
time-series variation

‘R—FﬁTHi+7RP : (7)

o g

TS target: cross-sectional
pricing error

where yrp is risk-premium penalty parameter.

Our TS-Target-PCA generalizes RP-PCA to leverage the cross-sectional information in

general time-series moments. We allow for J general target moments that are of the form %RGTS

for the target TS matrix GT5 € RT*/. RP-PCA is the special case of setting GT5 = 17, where

17 is the T-dimensional vector of ones. The cross-sectional span of the loadings g is nudged to be
aligned with the cross-sectional span of the target moments %RGTS. For this purpose, we introduce
the time-series projection matriz PES = G™S((GT5)TGT8)~1(G™S)T, which projects T-dimensional

vectors onto the column space of GTS. TS-Target-PCA estimates latent factors using the following

objective
1 2 2
TS-Target-PCA: argmin —— HR— F TH + — HPTSR— PXSF TH 8
g gmin - B trms w7 || Fe a FB| (8)
unexplained TS target: moment error for
time-series variation Pgs—projected returns

where g is the penalty parameter for the time-series target.

10



The factors that optimize the TS-Target-PCA objective in (E) can be estimated by applying

a simple PCA to a transformed N x N matrix as shown in the following proposition.

Proposition 2 The latent factors that optimizes the TS-PCA objective can be estimated by applying
PCA to the N x N matrix

1
R (IT + *yTgPGTS) R 9)

Specifically, the estimated factor weights wrs are the first K eigenvectors of matrix (), and the

factor returns are Frg = Rrg.

As the factors are not necessarily orthogonal, the factor weights wrg are not identical to the OLS

loadings BTS~ However, the loadings BTS estimated by an OLS regression of Frg on R are consistent
estimators of the loadings Brg.

We consider two types of time-series targets. First, we include the important case of the
mean, that is, we use RP-PCA. [Lettau and Pelger (2020b) have shown that RP-PCA factors
substantially outperform PCA factors for asset pricing. Second, we introduce Alpha-PCA, that is,
we find factors that explain a cross-section of target alphas. The goal is to extract factors that
explain assets that are mispriced by a candidate asset pricing model. This target makes sense,
as the mean of the cross-section can be dominated by “easy” factors. Our penalty nudges the
estimator to explore hard-to-price assets and put more weight on the weak factors in the alpha
portfolios.

In more detail, we calculate cross-sectional pricing errors relative to a set of candidate
reference factors F'. In our empirical analysis, we consider the five factors of Fama and French

(2015). In this case, the projection matrix should be based on the following matrix:

aTs — (IT _ et ((ﬁvref)'l—ﬁvref>_1 (Fref)T> 17, (10)

where Ff and F™f are the predetermined reference factors and their demeaned counterparts,
respectively. Hence, applying GT3 to the asset returns R yields %RTGTS = o™ where a™f ¢ RV
is the vector of pricing errors (alphas) of the assets with respect to the reference factors. As a
result, TS-Target-PCA penalty nudges the latent factors to the carry risk premia not explained by

the reference factors Fref,

2.4 Combining cross-sectional and time-series targets: XS-TS-Target PCA

The cross-sectional and time-series targets can capture different economic information. Therefore,
we combine both objectives in our XS-TS-Target PCA. This joint estimator has two penalties

to target both the cross-sectional and the time-series structure simultaneously. For example, we

11



can combine the monotonic shape constraint of the loadings with the risk-premium penalty for
the factors. As we will show, these two additional information sets are non-redundant, and the
combined estimator outperforms using only one of the targets.

The XS-TS-Target PCA obtains factors by solving the following problem:

1 T pxs||?
argmm — ||R—FB" +’YXS RPy Fp' Py
LT F
unexplained XS target: unexplained variation
time-series variation of P/)\(S-projected returns
2
S TS T TS TS T pXS
+yes o | PSR~ PESFST|| s rs o [ PESRES - PESESTES . ()
NT LT F
TS target: moment error for XS-TS target: PZS-moment error

TS 3
Pg-projected returns of PXS-projected returns

The first term is the unexplained time variation, which is the usual PCA-type objective. The

second term is the cross-sectional penalty of XS-Target-PCA and captures the explained variation

in managed target portfolios RXS. The third term captures the errors in target moments of the
full panel and corresponds to the penalty of TS-Target-PCA. The last term combines the cross-

sectional and time-series targets. It penalizes the error in time-series moments of the managed

target portfolios RXS.
The general XS-TS-Target PCA objective can also be estimated by applying PCA to a

transformed matrix, as explained by the next proposition.

Proposition 3 The latent factors that optimize the XS-TS-PCA objective in (El) are estimated
by applying PCA to the N x N matriz

1 -
7 (I +3xsPES) R (Ir +y25PES) R (In +3xsP) (12)

where yxg = V’YXS% +1 — 1. Specifically, let Qx € RN*E be matriz whose columns contain

the first K eigenvectors of matriz (@), then the estimated factor are FXS_TS = ROTSXS with the

estimated factor weights

) ~
~TS-XS VxS
W == In + < > QK. 13
<7XS +1 Yxs+ 1 (13)

Given the estimated FXS_TS, we obtain consistent estimates of the loadings with an OLS regression
of the factors on the returns. Proposition @ in the Appendix collects the different estimators and
provides equivalent ways to estimate them. Similar to a conventional PCA, the singular values can
be either estimated from a transformed N x IV or transformed 7' xT" matrix. The resulting estimator

are numerically identical. The main text presents the results for the N x NV spectral decomposition
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as this is closer to conventional estimation of PCA. After appropriate transformations, the spectral
decomposition yields estimator of the latent factors and the loadings. If we include a TS moment
target, the loadings based on the spectral decomposition correspond to weighted regression of the
factors on the returns, instead of an OLS regression. In our empirical analysis we only extract
the latent factors with the modified PCA estimation, and obtain the loadings from a regular OLS
regression. These loadings are consistent estimators and empirically very close to the weighted
regression loadings.E We present the OLS loadings as they allow us to focus on the effect on the
factor estimation and correspond to the common practice in asset pricing.

In summary, the XS-TS-Target PCA, and hence also its special cases XS-Target PCA and
TS-Target PCA, consists of the following steps:

1. We specify the cross-sectional mapping A*S and the time-series mapping GT5. Then, we

obtain the corresponding projection matrices PI{(S and Pg S respectively.

2. For a given choice of the penalties yxg and g, we obtain the K latent factors FXS_TS by
applying PCA to matrix (@) as outlined in Proposition B The special cases XS-Target-PCA
and TS-Target-PCA use only one non-zero penalty.

3. We estimate the loadings BXS_TS with an OLS time-series regression

R; = a; + FxssfBi + e, (14)

which yields estimates for &, BXS-TS and é.

2.5 Properties of XS-TS-Target PCA

Including the additional information in the targets can improve the estimation of asset pricing
factors. In this section we provide an intuition why it is helpful to include useful targets in the
estimation. The formal econometric theory and statistical argument for the XS-Target-PCA is in
Duan et al| (2022) and for TS-Target-PCA in Lettau and Pelger (2020a).

A key element in the estimation of latent factors is the factor strength. Intuitively, the
strength of a factor in a given panel depends on how much variation is explained by this factor.
A factor that affects only a small portion of the assets and/or has little variation is a weak factor.
Formally, the strength of factors is the ratio of the systematic eigenvalues due to the factors relative
to the non-systematic eigenvalues of the noise. PCA estimation applied to a sample covariance
matrix can only consistently estimate latent factors that are sufficiently strong. Weak factors
cannot be detected by PCA, even if those factors might carry large risk premia and constitute an

important component of the pricing kernel.

3The results are available upon request.
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The important effect of both the XS and the TS target is that they can increase the strength
of weaker factors. While factors might be weak in terms of the variation that they explain in a
given panel, they can become stronger in the modified matrix that includes the target information.
Simply speaking, the eigenvalues of factors are boosted in the transformed matrix with the target
information. This can have different beneficial effects. Weak factors, that cannot be detected
from the covariance matrix alone, can now be estimated. Semi-weak factors, that affect small but
sufficiently larger portion of the panel, can be estimated with a higher convergence rate. In the
case of strong factors, which affect many assets and could be estimated consistently with PCA, the
target information can increase the efficiency of the estimation. This is because the XS-TS-Target-
PCA can be interpreted as method of moment estimator, and the penalty can be selected to assign
efficient weights on the moments.

We will first illustrate the effect of XS-Target-PCA with an example. The formal econo-
metric theory under general assumptions is discussed in Duan et al) (2022). Assume that our panel
is described by two factors R = F + ¢, where (after a possible rotation) the first N; assets are
only affected by factor one and the last No assets are only affected by factor two:

0
B
Nix1 Nyx1
ﬁ =
0 B2
~N—
Naox1 Nox1

Assume that the cross-sectional target selects the first Ny assets, that is, it is given by the N x Ny

matrix

In,
~—

_ | mxn
Axg = | XM

~—
N2 ><N1

The managed portfolios R*® = RAxg implied by Axg simply equal the first N; assets, which
are only affected by factor one. The key quantity in latent factor estimation are the systematic

eigenvalues from the factors given by

1
WFﬁT (IN + ’VXSAXSA>T<5> BFT

BB N B B1L N
1 [ F; BELAl D 0 1PN
=7\ . MY s | s | M (7 )
T\ F 0 QT;WZ 0 0
Bl B Ny

For Ni/N — 0, the panel of returns is not sufficient to identify the first factor F; as -~~~ 0

under the usual assumptions, and hence for yxg = 0 the second moment matrix of the loadings
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is not full rank. In other words, the first factor would not be identified. However, under suitable

assumptions selecting yxs = - N/Nj results in the combined second moment

T T

0 5;62&
No N

which has full rank, and allows to identify both factors. The formal arguments depend on the
interplay of the rates of N1, Ny and T and the dependency in the noise. The important message
is that under realistic assumptions we require a non-trivial weight for yxg to recover the full factor
model. The optimal weight for yxg depends on the strength of the factors, the dimensionality of
the data and the variance of the noise. Duan et al, (2022) provide the optimal values under general
assumptions.

Note that this illustrative example captures the empirically relevant case that the target

matrix is not sufficient to identify all factors. Hence, simply applying PCA on the managed target

portfolios R*S would not recover the full factor model. Hence, the optimal combination of the
information in the given panel and the target panel is key.
Even when both factors are strong, that is in our example N; and No would both be

proportional to NV, there can be a benefit of selecting a non-zero vxg. The noise in the projected
data R*S can be lower than in the given panel R. Hence, increasing the weight yxg can lead to more

efficient estimation. As R*S might not identify all factors, we cannot neglect R in the estimation.
Note that the use of cross-sectional targets also serves the purpose of alleviating the estimation
error by imposing a certain structure on the latent factors. This should be particularly useful in
the out-of-sample empirical applications that rely on rolling window estimation. Cross-sectional
targets may provide a certain degree of stability by imposing an economically motivated structure
on the composition of the factors, hence, improving their empirical stability.

While we used a simple structure for the illustration, the same arguments apply for shape
restrictions or targets based on correlations with macroeconomic fundamentals. If the target is
not informative, that is, it does not contain information about the factors, then it is optimal to
select yxg = 0. Hence, XS-Target-PCA also served as a disciplined approach to diagnose if target
information contains useful information in addition to a panel R.

The TS-Target-PCA exploits similar arguments. The formal theory for a mean target is
developed in [Lettau and Pelger (2020a) and similar arguments would apply to an alpha target.
While the intuition is similar to the XS-Target-PCA, the exact formal theory is derived for very
weak factors based on random matrix theory.

A crucial object in understanding the properties of T'S-Target-PCA is the signal matrix.
The signal corresponds essentially to the eigenvalues of the systematic component. Assume that,
without loss of generality, we normalize the loadings to be orthonormal, that is, the strength of the

factors is completely captured by the factor variance. Intuitively, in the case of a mean target the
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sample eigenvalues of the systematic component, given by

1 1
~AF! (IT + fyTsTMT) Fp',

should converge to the eigenvalues of the signal matrix
Sp 4 (1+7y18) prip (15)

As discussed in Lettau and Pelger (20204)), this signal matrix includes additional terms due to the
noise, but all conceptual arguments can be made with this simplified signal matrix. A factor can
be weak with a small variance. Hence, PCA might not be able to detect it or estimate it precisely.
However, if this factor has a large mean, then by choosing yrg appropriately, the eigenvalues of this
factor in the matrix (@) can be pushed up. Thus, the factor can be detected or estimated more
precisely.

Similar arguments apply to an « target. The signal matrix would be close (up to the

additional correction terms due to noise) to

Y+ ,LLF,LL; + (1 + 'VTS) Oérefa;l;ﬁ

where oyef is the pricing error of the factors F relative to the reference factors F*f. Hence, we can
push up the eigenvalues of weak factors with small variance, that can explain a large part of the
pricing errors relative to the reference factors.

The general argument underlying the properties of XS-TS-Target-PCA does not depend
on the specific asymptotic regime or rate conditions. In the end, any empirical data set is finite,
and the different asymptotic regimes are tools to best describe the finite sample behavior. The
fundamental insight is that the eigenvalues of factors can be pushed up by including additional
information. This can be theoretically described as the detection of very weak factors, an increase
in convergence rates for semi-weak factors or higher efficiency of strong factors. In all cases it results
in a better model. The key point is that the finite sample eigenvalues are larger after including
the penalty than before. XS-TS-Target-PCA offers a disciplined approach to include additional
economic information and to test if this target actually includes information that is not already

included in the second moments of the panel of test assets.

3 Empirical results

In this section, we discuss the empirical performance of the cross-sectional time-series target PCA
approach using a high-dimensional cross section containing the returns of the N = 370 decile
portfolios of 37 firm characteristics. To disentangle the value added by the cross-sectional and

time-series targets, we first study the performance of the models based on a single target and then
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the model based on a combination of the two types of targets. Section @ describes the data and the
methodology employed to evaluate out-of-sample performance. Section @ considers the approach
that exploits a cross-sectional shape target, Section @ the approach that exploits a time-series
alpha target, Section @ the approach that combines cross-sectional and time-series targets, and

Section @ the approach that exploits a cross-sectional macro target.

3.1 Data and evaluation methodology

We use the same test assets and sample period as Kozak et al| (2020) and Lettau and Pelger
(2020b). The dataset contains the monthly returns for the 370 value-weighted decile portfolios
obtained from the single sorts of 37 firm-specific characteristics, with decile breakpoints based on
NYSE stocks. The sample period spans from November 1963 to December 2017. Table @ in
Appendix E classifies the 37 characteristics into eight categories.

To construct the cross-sectional macro target, we also use monthly data for the 127 macroe-
conomic variables from FRED-MD. We construct the innovations to these macroeconomic variables
using the following procedure. First, we transform these variables following the method suggested
in the appendix of McCracken and Ng (2016) to render them stationary. Next, we standardize
the transformed macroeconomic variables such that each of them has zero mean and unit standard
deviation. We then apply PCA to these standardized variables and identify seven factors that drive
their systematic Vau"iation.H Lastly, we run a first-order vector autoregression on these PCA factors
and take the residuals as the seven innovations to the macroeconomic variables. The sample for
the macroeconomic innovations spans the same period as the returns of the decile portfolios, from
November 1963 to December 2017.

We consider three criteria to evaluate the performance of different latent-factor models.

First, the maximum Sharpe ratio that can be obtained with a linear combination of the latent

~

factors F':

SR =\/uls3 g, (16)

where pi and Y5 are the mean and covariance matrix of the latent factor retirms, respectively.

Second, the root-mean-squared pricing error across N test assets:

RMS, = /aTa/N, (17)

“We select seven factors using the criterion of Bai and Ng (2002). In particular, we find that seven PCAs of the
standardized macroeconomic variables explain 45.4% of their total variation.
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where & is the vector of OLS intercepts obtained by regressing the test-asset returns on the latent

factors. Third, the average unexplained variance across N test assets:

[\

N
1 oz
=2 _ - 2 : €

where é; is the residual obtained by regressing the returns of asset i on the latent factors, and Jgi
and 0'12{2, are the variance of the residual and return of asset i, respectively.

We evaluate the out-of-sample performance of different factor models using the following
rolling-window plrocedulre.E For each month ¢, we first estimate factors returns £ and factor loadings

ﬁ in a rolling window of 20 years (7" = 240 months) including up to month ¢. Using these estimated
parameters, we compute the out-of-sample factor returns and asset-pricing errors in month t4+1. We
also compute the mean-variance portfolio weights for the factor returns in the rolling window and
use them to compute the out-of-sample return of the maximum Sharpe-ratio portfolio for month
t + 1. The mean and variance of the out-of-sample pricing errors are used to calculate the average
pricing error and the average magnitude of unexplained idiosyncratic variation, respectively. The
Sharpe ratio of the out-of-sample returns of the maximum Sharpe-ratio portfolio is equal to the
maximum Sharpe ratio that can be obtained from a linear combination of the latent factors.

In the remainder of this section, we evaluate the empirical performance of our proposed
cross-sectional time-series PCA approach. To disentangle the effect of the cross-sectional and
time-series targets, we first evaluate the performance of the models based on a single target (cross-
sectional or time-series), and then we study the performance of models based on a combination of

the two types of targets.

3.2 Cross-sectional shape target

We first consider a cross-sectional shape target that exploits the empirical observation that risk
premia are monotonic on certain firm-specific characteristics. Therefore, we expect the loadings

on asset pricing factors to be monotonic on these characteristics. To incorporate this economic re-

striction, we consider a cross-sectional target matrix AXS € R370%37 whose Ith column contains the

weights of a long-short portfolio of the [th characteristic, as illustrated in Figure m Mathematically,

the element on the nth row and Ith column of AXS is

AXS —1+2(i—1) ifasset n is the ith decile portfolio of characteristic [,
nl =

(19)
0 otherwise.

5The Internet Appendix shows that our findings are robust to evaluating model performance using three-fold
cross-validation instead of a rolling-window procedure.
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This cross-sectional shape target nudges the latent factors to have weights that fit a mono-
tonic long-short pattern on the decile portfolios of each characteristic. To measure how factor

weights fit this monotonic pattern, we define the cross-sectional metric of the ith factor as

1P 5|2

XS-Metric(w;) = 100 x -
l[i ]2

, (20)

where @; is the estimated factor weight vector and P/}\(S is the cross-sectional projection matrix

associated with the target AXS. Therefore, the closer the cross-sectional metric of a latent factor is

to 100, the better it is spanned by the economically motivated factors.

3.2.1 Number of factors and penalty parameter

Figure E illustrates how the out-of-sample performance of the cross-sectional shape PCA (XS-shape-
PCA) model varies with the number of factors and the penalty. In particular, Panel A gives a line
plot depicting the Sharpe ratio of each model on the vertical axis as a function of the penalty, vxs,
on the horizontal axis. Panels B, C, and D give heatmaps for the Sharpe ratio, root-mean-squared
pricing error across 37 top-minus-bottom portfolios, and unexplained variance across the 370 decile
portfolios, respectively. For each heatmap, the vertical axis depicts the number of factors in the
model and the horizontal axis the penalty parameter, vxs. Herein, root-mean-squared pricing errors
are reported in basis points and unexplained variances in percentage.

Panels A and B in Figure E show that the shape target helps to substantially increase
the Sharpe ratio of high-dimensional models with five or more factors. For example, the Sharpe
ratio of the five-factor model increases from 0.18 to 0.28 when the penalty vyxs increases from zero
(conventional PCA) to one (XS-shape-PCA). This is a substantial 57.4% increase in the Sharpe
ratio, which suggests that the fifth factor identified by the cross-sectional target PCA model may
be a weak factor that is important for asset pricing, but missed by conventional PCA.

Panel C reports the heatmap for the root-mean-squared pricing error of the 37 top-minus-
bottom portfolios. Each of these 37 portfolios goes long the top decile and short the bottom decile of
a characteristic, and thus, they can be interpreted as the target-managed portfolios. The results in
Panel C are consistent with those for the Sharpe ratio in Panels A and B. In particular, the average
pricing error of a low-dimensional model with less than five factors does not vary substantially with
the penalty parameter yxg, while those of the high-dimensional five-, six-, and seven-factor models
decrease monotonically with vxg. For example, the root-mean-squared pricing error across the
top-minus-bottom portfolios is 39.05 for the five-factor PCA model, but it is only 33.32 (a 14.7%
reduction) for the XS-shape-PCA with vxg = 1.

Panel D in Figure E shows that PCA delivers the lowest average unexplained variance across
all 370 decile portfolios, which is not surprising because PCA is designed to explain the time-series
variation of the portfolio returns. More importantly, the average unexplained variance does not

increase substantially with the penalty parameter yxg. For example, the average unexplained
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Figure 2: Performance of cross-sectional shape PCA models

This figure illustrates the out-of-sample performance of cross-sectional shape PCA (XS-shape-PCA) models with up
to seven factors and for different values of the penalty parameter. Panel A gives a line plot depicting the Sharpe ratio
of each model on the vertical axis as a function of the penalty parameter, yxs, on the horizontal axis. Panels B, C,
and D give heatmaps for the Sharpe ratio, root-mean-squared pricing error across the 37 top-minus-bottom portfolios,
and average unexplained variance across the 370 decile portfolios, respectively. For each heatmap, the vertical axis
depicts the number of factors in the model and the horizontal axis the penalty parameter, yxs. Root-mean-squared
pricing errors are reported in basis points and average unexplained variances in percentage.
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variance is 12.71% for the five-factor PCA model; when ~xg increases to one, it only increases
by 1.3% to 12.87%. Therefore, even if the shape target nudges the PCA factors to span different
subspaces of asset returns, the XS-shape-PCA factors explain almost the same amount of time-series
variation as the PCA factors.

Overall, we find that the shape target generally helps to improve the performance of the

conventional PCA model. In particular, performance across all three criteria typically improves
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Table 1: Performance of cross-sectional shape PCA and other models

This table summarizes the performance of three- and five-factor models including the Fama-French, PCA, and XS-
shape-PCA models. The benchmark penalty parameter on the cross-sectional shape target is yxs = 1. Panels A and
B report the in-sample and out-of-sample results, respectively. For each model, the five columns report the acronym,
Sharpe ratio, root-mean-squared pricing error across the top-minus-bottom portfolios, unexplained variance across
all decile portfolios, and the cross-sectional metric of the stochastic discount factor, respectively. Root-mean-squared
pricing errors are reported in basis points and unexplained variances in percentage. Bold numbers indicate the
best-performing models.

(A) In-sample (B) Out-of-sample
} RMS, a2 for 3 RMS. a2 for
Model Sharpe ¢ TMB  all decile XS Model Sharpe ¢ TMB  all decile XS
ratio . . metric ratio . . metric
portfolios  portfolios portfolios  portfolios
Three-factor models Three-factor models
FF 0.21 57.33 14.27 - FF 0.16 52.05 16.63 -
PCA 0.17 55.78 12.57  66.55 PCA 0.13 47.10 14.51 72.45
XS-shape-PCA 0.23 45.95 13.27 98.02 XS-shape-PCA 0.15 46.71 15.09 96.57
Five-factor models Five-factor models
FF 0.32 49.45 13.27 - FF 0.31 36.92 15.64 -
PCA 0.25 42.89 10.80 80.99 PCA 0.18 39.05 12.71 77.97
XS-shape-PCA 0.33 38.35 10.91 97.87 XS-shape-PCA 0.28 33.32 12.87 96.69

when increasing the penalty parameter, compared to the conventional PCA case with yxg = O.
This suggests that the shape target is informative for cross-sectional expected returns.

Finally, Figure E shows that a five-factor model offers a good tradeoff between out-of-sample
performance and parsimony. For instance, Panel C shows that there is a great reduction in root-
mean-squared pricing error when increasing the number of factors from four to five, but there is no
reduction when increasing the number of factors to six. Figure E also shows that the performance
of the XS-shape-PCA models stabilizes when yxg reaches one. Therefore, in the next section we

use the case with five factors and yxg = 1 as a benchmark for comparison with other models.

3.2.2 Out-of-sample comparison

Table m compares the performance of the XS-shape-PCA models with that of the Fama-French
and conventional PCA models. Panels A and B contain the in-sample and out-of-sample results,
respectively. In each panel, the five columns report the model acronym, Sharpe ratio, root-mean-
squared pricing error across the top-minus-bottom portfolios, average unexplained variance across
all decile portfolios, and cross-sectional shape metric of each model, respectively.

Table m shows that the shape target helps to improve the pricing performance of PCA
models. In particular, the XS-shape-PCA model has higher Sharpe ratio and lower pricing error
than conventional PCA. This improvement is highly consistent, holding both in-sample and out-
of-sample as well as for three- and five-factor models. However, the improvement is particularly
pronounced for the case with five factors, which again suggests that the XS-shape-PCA identi-
fies a weak factor among the top five that while being important for asset pricing, is missed by

conventional PCA.
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Figure 3: Pricing errors for top-minus-bottom portfolios, five-factor PCA and XS-shape-PCA

This figure illustrates the out-of-sample pricing errors (in absolute value) for the 37 top-minus-bottom portfolios
of the five-factor PCA model and XS-shape-PCA model with yxs = 1. Panel A shows the pricing error of each
top-minus-bottom portfolio, and the horizontal axis depicts the 37 characteristics. Panel B shows the average pricing
error for portfolios in the same category, and the horizontal axis depicts the eight categories of characteristics. The
dark and light bars correspond to the PCA and XS-shape-PCA models, respectively, and the dark and the light
horizontal lines in Panel A show the average pricing errors for all portfolios in the corresponding categories of the
PCA and XS-shape-PCA models, respectively. Pricing errors are reported in basis points.
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Note also that the enhanced pricing performance of XS-shape-PCA models can be traced
back to their higher cross-sectional metrics. For example, the out-of-sample cross-sectional metric
of the five-factor XS-shape-PCA model is 96.69, which is higher than that of the conventional PCA
model, 77.97. This implies that the weights of the XS-shape-PCA factors have a stronger long-
short pattern in characteristics than those of the PCA factors. Therefore, it is not surprising that
the XS-shape-PCA models have similar Sharpe ratios as the Fama-French models, whose factors
are also constructed by exploiting various long-short restrictions. In particular, the out-of-sample
Sharpe ratio of the five-factor XS-shape-PCA model, 0.28, is very close to that of the FF5 model,
0.31.

Figure E compares the pricing errors (in absolute value) for all top-minus-bottom portfolios

of the five-factor PCA model and the XS-shape-PCA model with yxg = 1. Panel A shows the
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Figure 4: XS-shape-PCA factor weights on extreme-decile portfolios

This figure shows the in-sample weights of the first six XS-shape-PCA factors with yxs = 1 on the extreme-decile
portfolios, with the horizontal axis giving the characteristic categories. All factors are normalized to have positive
average returns. The weights on the top-decile (bottom-decile) portfolios are shown in red (blue). Each bar shows
the total weight of a category, and the black lines indicate the contribution of each portfolio in the category.
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pricing error for each portfolio and Panel B shows the average pricing error for portfolios in each
category. The dark and light bars correspond to the PCA and XS-shape-PCA models, respectively.
This figure shows that the XS-shape-PCA model delivers uniformly lower pricing errors for top-
minus-bottom portfolios in all categories except reversal. In particular, the shape target results in
over 40% lower average pricing error in three out of the eight characteristic categories.

Since the XS-shape-PCA models explain the average returns of the long-short portfolios of
characteristics, which are known in the literature to earn high risk premia, it is expected that the
XS-shape-PCA factors pick up these directional risk premia and deliver a high Sharpe ratio. More-
over, PCA failing to fully identify the directional risk premia implies that some of these premia are
carried by weak factors. The cross-sectional shape target explicitly increases the signal strength of
these factors, and thus they appear as the higher-order XS-shape-PCA factors. Therefore, the per-
formance of low-dimensional PCA and XS-shape-PCA models is similar, while the high-dimensional

XS-shape-PCA models have substantially higher Sharpe ratios than their PCA counterparts.
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3.2.3 Structure and composition of factors

We now study the composition of the XS-shape-PCA factors. Figure @ graphs the in-sample weights
on the extreme-decile portfolios of the first six XS-shape-PCA factors with yxg = 1. The vertical
axis depicts the weights and the horizontal axis gives the characteristic categories.E All factors are
normalized to have positive average returns. Weights on the top-decile (bottom-decile) portfolios
are shown in red (blue). Each bar shows the total weight of a category, and the black lines indicate
the contribution of each portfolio in the category.

Figure @ shows that the shape target nudges the factors to have weights that are monotonic
on the characteristics. In particular, the figure shows that the weights of every XS-shape-PCA
factor (except the first) display a strong long-short pattern on the decile portfolios of characteristics.

Indeed, the average cross-sectional metric of XS-shape-PCA factors two to six is 97.38, while that

of PCA factors two to six is 73.16, which is much lovver.H This demonstrates that XS-shape-PCA
successfully incorporates the economic prior behind the shape constraints into the construction of
latent factors.

The first XS-shape-PCA factor resembles an equally-weighted market portfolio. In fact,
both the first PCA and XS-shape-PCA factors have correlations with the market factor above
0.99. The second factor can be labeled as a value factor because its weights have a strong long-
short pattern on the value extreme portfolios. The third factor assigns large long-short weights
to portfolios in the momentum and value interaction categories. The weights on the top- and
bottom-decile portfolios of the fourth factor are slightly less symmetric, and for some categories,
such as others, the long-short pattern is weaker. The fifth factor has large long-short weights on
extreme portfolios in the profitability, trading friction, reversal, and value interaction categories,
and the sixth factor can be labeled as a reversal factor because it is almost exclusively composed
of long-short reversal portfolios.

We find that the second and third XS-shape-PCA factors resemble the third and fourth PCA
factors, whose cross-sectional metrics are 82.16 and 89.92, respectively. Since these PCA factors
have high cross-sectional metrics, and thus, approximately satisfy the restriction of the shape target,
they also appear as XS-shape-PCA factors, with their signals increased and the long-short pattern
strengthened so that they become lower-order XS-shape-PCA factors.

However, the XS-shape-PCA factors and PCA factors are different in general. For example,
Panels A and B in Figure E give heatmaps for the weights on all decile portfolios of the fifth PCA

and XS-shape-PCA factors, respectively.E This figure shows that the weights of the XS-shape-PCA
factor have a stronger monotonic pattern in the characteristics than the PCA factor. Moreover,

this pattern is economically significant because the monthly average return and Sharpe ratio of the

5For comparison, Panel A of Figure @ in Appendix E graphs the in-sample weights on the extreme portfolios of
the first six PCA factors. In addition, Panels A and B of Figure 7?7 in the Internet Appendix illustrate the in-sample
weights of PCA and XS-shape-PCA factors on the extreme-decile portfolios of each characteristic, respectively.

"Panel A of Figure @ in Appendix E shows the cross-sectional metrics of the PCA factors.

8For completeness, Panels A and B of Figure in Appendix [ give heatmaps for the weights on all decile
portfolios of the first six PCA and XS-shape-PCA factors, respectively.
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Figure 5: Weights on all decile portfolios of the fifth factor

Panels A and B give heatmaps for the in-sample weights on all decile portfolios of the fifth PCA factor and the fifth
XS-shape-PCA factor with yxs = 1, respectively. The horizontal axis depicts all characteristics and the vertical axis
the bottom- to top-decile portfolios. Positive (negative) weights are shown in green (red).
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fifth XS-shape-PCA factor, which are 0.27% and 0.22, respectively, are higher than those of the
fiftth PCA factor, which are 0.17% and 0.12, respectively.

To summarize this section, we find that the cross-sectional shape PCA models, especially
the high-dimensional ones, have superior cross-sectional pricing performance compared to their
PCA counterparts, while the two sets of models explain a similar amount of time-series variation of
the decile portfolios. Specifically, the high-dimensional five-, six-, and seven-factor XS-shape-PCA
models deliver higher Sharpe ratios and lower root-mean-squared pricing errors across the top-
minus-bottom portfolios than their PCA counterparts. Importantly, the XS-shape-PCA models
outperform the PCA models because the cross-sectional shape target nudges the latent factors
to explain the expected returns of the long-short portfolios of characteristics, which carry the

directional risk premia.

3.3 Time-series alpha target

We now consider a time-series alpha target, which nudges the latent factors to explain risk premia
that a candidate asset-pricing model fails to explain. We consider the five-factor Fama-French

model (FF5) as the candidate model in our empirical analysis. Thus, we define the target time-
series matrix G5 as in Equation (@) after replacing F™f with the returns of the five Fama-French

fauctors.E

Figure E graphs the in-sample alphas of all decile portfolios with respect to FF5. The
horizontal axis gives the characteristics in descending order of Sharpe ratio of top-minus-bottom
portfolios. The figure shows that the alphas with respect to FF5 of the decile portfolios, especially
those of characteristics with high Sharpe-ratio top-minus-bottom portfolios, display a strong mono-
tonic pattern, which suggests that the FF5 model cannot fully explain the cross-section of the 370

decile portfolios. Therefore, there is room for time-series alpha PCA to identify factors that can

9tLettau and Pelgel{ (t2020‘d) evaluate the RP-PCA models, obtained using the time-series mean target. For
completeness, we also report results for the RP-PCA models in the Internet Appendix.
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Figure 6: Alphas of decile portfolios with respect to FF5

This figure illustrates the in-sample alphas of the 370 decile portfolios with respect to FF5 in basis points. The
horizontal axis gives the characteristics in descending order of Sharpe ratio of top-minus-bottom portfolios. The
vertical axis depicts the bottom- to top-decile portfolios. Positive (negative) alphas are shown in green (red).
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explain the risk premia in the 370 decile portfolios that is unexplained by the five Fama-French
factors.
To evaluate whether the economic restriction of the time-series target is incorporated into

the latent factors, we define the time-series metric of the K latent factors as

| Pa PR F

TS-Metric = 100 x -2
|1 Pe R

(21)

where Pp = F (F TF )_1FT is the matrix that projects N-dimensional vectors onto the column

space of F. The time-series metric gauges how well the factors incorporate the information in
the time-series target. In particular, if the time-series metric of the latent factors is close to 100,
then the latent factors successfully capture risk premia information identified by the time-series

projection matrix Pg.

3.3.1 Number of factors and penalty parameter

Figure ﬁ illustrates how the out-of-sample performance of the time-series alpha PCA (TS-alpha-
PCA) model varies with the number of factors and the penalty parameter. Panel A gives the
heatmap for the out-of-sample Sharpe ratio and Panel B for the out-of-sample root-mean-squared
pricing error across the 370 decile portfolios. Note that the time-series alpha PCA is designed
to explain risk premia that are not explained by the five Fama-French factors. To measure how
successful the approach is in achieving this goal, Panel C gives the heatmap for the out-of-sample

pricing error for the FF5-alpha-weighted portfolio, which is a portfolio whose weight on each decile
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Figure 7: Performance of time-series alpha PCA models

This figure illustrates how the out-of-sample performance of the time-series alpha PCA model varies with the number
of factors and the penalty parameter. Panel A gives the heatmap for the Sharpe ratio and Panel B for the root-
mean-squared pricing error across the 370 decile portfolios. Panel C gives the heatmap for the pricing error for
the FF5-alpha-weighted portfolio, which is a portfolio whose weight on each decile is proportional to the decile’s
alpha with respect to FF5. Finally, Panel D gives the heatmap for the average unexplained variance across the
370 decile portfolios. In each panel, the vertical axis depicts the number of factors in the model and the horizontal
axis the penalty parameter, 'y%lg ha Pricing errors are reported in basis points and average unexplained variances in

percentage.
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is proportional to the decile’s alpha with respect to FF5.E Finally, Panel D gives the heatmap for

1075 construct the FF5-alpha-weighted portfolio, we first regress the returns of all decile portfolios on FF5 and
obtain their alphas. We then construct the FF5-alpha-weighted portfolio by going long decile portfolios with positive
alphas and going short those with negative alphas. The portfolio weights on the long and short legs are proportional
to the alphas and are standardized such that the total weight of each leg is one. The FF5-alpha-weighted portfolio
has an in-sample average return of 35.9 basis points and an out-of-sample average return of 19.5 basis points.

27



unexplained variance across the 370 decile portfolios. In each panel, the vertical axis depicts the

number of factors in the model and the horizontal axis the penalty parameter, ’yﬁ}lg ha.@

Panel A in Figure B shows that the time-series alpha target substantially increases the

Sharpe ratios of latent-factor models. For example, the Sharpe ratio of the five-factor model

more than doubles from 0.18 to 0.43 when we increase the penalty parameter y%lgha from zero

(conventional PCA) to 15.

Given that the time-series alpha target helps to increase the out-of-sample Sharpe ratio, one
may expect that it will also help to reduce the root-mean-squared pricing error. However, Panel B
in Figure H shows that the time-series alpha target does not substantially affect the root-mean-

squared pricing error for the 370 decile portfolios. For instance, for the five-factor model, when

Ipha - . .
s increases from zero to 15, the pricing error experiences only a minor increase, from 13.75 to

13.90. The explanation for this is that the objective of the time-series alpha PCA is not to explain
the expected returns of the decile portfolios, but rather to explain the alpha of the decile portfolios
with respect to the FF5 model.

Indeed, Panel C in Figure H shows that the time-series alpha target helps to substantially
decrease the pricing error for the FF5-alpha-weighted portfolio. Specifically, PCA models, even the
high-dimensional ones, fail to explain the expected return of the FF5-alpha-weighted portfolio. For
example, the pricing errors of the three- and five-factor PCA models are 22.86 and 20.45. However,

when v%lgha increases to 15, the pricing errors of the three- and five-factor models are just 11.36

and 4.49, which are 50.3% and 78.0% lower than their PCA counterparts, respectively.

Panel D in Figure H shows that the PCA model delivers the lowest average unexplained
variance for almost every number of factors. However, similar to the cross-sectional shape target,
the time-series alpha target also has a limited impact on the time-series explanatory power of

models. For example, the average unexplained variance is 12.71% for the five-factor PCA model;

when yﬁ?lg ha increases to 15, it only increases by 2.8% to 13.06%.

Overall, the time-series alpha target helps to substantially increase the out-of-sample Sharpe
ratio of latent-factor models and although it does not help to reduce the root-mean-squared pricing
error of the 370 decile portfolios, it does substantially reduce the pricing error of the FF5-alpha-
weighted portfolio, without reducing the time-series explanatory power of the models.

Finally, for parsimony we focus the rest of our discussion on the five-factor model. Also,

Figure H shows that the performance of the TS-alpha-PCA models stabilizes when v%lé) ha reaches
15. In addition, Figure @ in Appendix @ illustrates that the performance of the TS-mean-PCA

models also stabilizes when ~1¢*" reaches 15. Therefore, in the next section we use the case with

five factors and g = 15 as a benchmark for comparison with other models.

UFigure @ in Appendix E is the counterpart of Figure H to illustrate how the out-of-sample performance of the
time-series mean PCA model, which is equivalent to the RP-PCA model of Lettau and Pelgey (2020H), varies with
the number of factors and the penalty parameter.
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Table 2: Performance of time-series alpha PCA and other models

This table summarizes the performance of three- and five-factor models including the Fama-French, PCA, T'S-mean-
PCA, and TS-alpha-PCA models. The benchmark penalty parameter on the time-series target is yrs = 15. Panels
A and B report the in-sample and out-of-sample results, respectively. For each model, the six columns report the
acronym, Sharpe ratio, root-mean-squared pricing error across the 370 decile portfolios, pricing error for the FF5-
alpha-weighted portfolio, average unexplained variances across the 370 decile portfolios, and time-series alpha metric,
respectively. Pricing errors are reported in basis points and unexplained variances in percentage. Bold numbers
indicate the best-performing models.

RMS,, for Pricing error for Eg for
Models Sh:;gg all decile FF5-alpha-  all decile Tsigt)fii
portfolios  weight. portfolio  portfolios
Panel A: in-sample

Three-factor models

FF 0.21 17.84 43.00 14.27 -
PCA 0.17 16.94 42.28 12.57 38.71
TS-mean-PCA 0.26 16.73 46.19 12.68 14.92
TS-alpha-PCA 0.16 18.28 32.98 12.62 74.31
Five-factor models

FF 0.32 16.09 46.22 13.27 -
PCA 0.25 14.23 34.01 10.80 49.14
TS-mean-PCA 0.57 13.44 15.66 10.95 88.37
TS-alpha-PCA 0.66 12.40 4.42 11.07 99.35

Panel B: out-of-sample

Three-factor models

FF 0.16 17.23 20.86 16.63 -
PCA 0.13 15.56 22.86 14.51 39.60
TS-mean-PCA 0.20 14.13 17.92 14.56 65.14
TS-alpha-PCA 0.27 15.15 11.36 14.49 87.63
Five-factor models

FF 0.31 13.66 28.41 15.64 -
PCA 0.18 13.75 20.45 12.71 45.29
TS-mean-PCA 0.46 11.84 10.23 12.98 86.22
TS-alpha-PCA 0.43 13.90 4.49 13.06 99.37

3.3.2 Out-of-sample comparison

Table E compares the performance of the TS-alpha-PCA models with that of other three- and
five-factor models including the Fama-French, PCA, and time-series mean PCA (TS-mean-PCA)
models. Panels A and B give the in-sample and out-of-sample results, respectively. In each panel,
the six columns report the acronym, Sharpe ratio, root-mean-squared pricing error across the 370
decile portfolios, pricing error for the FF5-alpha-weighted portfolio, average unexplained variance
across the 370 decile portfolios, and time-series alpha metrics of each model, respectively.

Table E shows that each of the time-series targets helps to improve performance with respect
to the particular criterion they are designed to address. For instance, the time-series mean target
helps to reduce the root-mean-squared error of the 370 decile portfolios because the time-series
mean target is designed to explain the risk premia of these portfolios. However, the time-series
alpha target helps to reduce the pricing error for the FF5-alpha-weighted portfolio, which it is
designed to explain. Note also that the TS-alpha-PCA model has the highest TS-alpha-metric,
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Figure 8: TS-alpha-PCA factor loadings on extreme-decile portfolios

This figure shows the loadings of the first six T'S-alpha-PCA factors with 'yalpha = 15 on the extreme-decile portfolios,
with the horizontal axis depicting the categories of the characteristics. All factors are normalized to have positive
average returns. The loadings on the top-decile (bottom-decile) portfolios are shown in red (blue). Each bar shows
the total loading of a category, and the black lines indicate the contribution of each portfolio in the category.
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which measures how well a model incorporates risk premia that are not explained by the FF5
model. The two time-series targets (mean and alpha) help to explain different risk premia, but
both help the latent factors to achieve higher Sharpe ratios as they explicitly include risk premia
information. Therefore, it is not surprising that the two time-series target PCA models outperform

the Fama-French and PCA models, neither of which explicitly exploits any risk premia information.

3.3.3 Structure and composition of factors

We now study the composition of the T'S-alpha-PCA factors. Figure E graphs the in-sample weights
on the extreme-decile portfolios of the first six T'S-alpha-PCA factors with 'yalpha = 15. All factors
are normalized to have positive average returns.E Weights on the top-decile (bottom-decile) port-

folios are shown in red (blue). Each bar shows the total weight of a category, and the black lines

indicate the contribution of each portfolio in the category.

12T facilitate comparison, Panels A and B of Figure @ in Appendix E graph the in-sample weights on the
extreme-decile portfolios of the first six PCA and TS-alpha-PCA factors. In addition, Panel B of Figure @ in
Appendix E graphs the in-sample weights on the extreme-decile portfolios of the first six benchmark TS-mean-PCA
factors with vps®" = 15.
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Table 3: Regression results of pure-alpha portfolio on TS-alpha-PCA and PCA factors

This table reports the results of regressing the returns of the pure-alpha portfolio on the first five TS-alpha-PCA
factors and the first five PCA factors, respectively. The first and second columns report the model acronyms and
measures of interest, respectively. The following six columns report the parameters corresponding to the intercept and
the factors, and the last column reports the regression R-squared. For each model, the first row reports the regression
coefficients, the second row reports the expected return of the pure-alpha portfolio explained by each factor, and the
last row reports the R-squared when each factor is excluded from the regression. The intercept and expected return
explained by each factor are reported in basis points.

Factors

Model Measure Intercept R? (%)
1 2 3 4 5

Alpha-TS-PCA Coefficient 7.75 0.00 —-0.33 0.24 0.47 0.33 88.20
Return explained 0.09 —1.27 4.81 25.39 9.43
R? when excluded (%) 88.20  36.07 53.14 30.56 74.20

PCA Coefficient 38.54 —-0.00 -0.05 —0.09 0.28 0.10 56.91
Return explained —-0.11 —-1.52 —-0.50 8.07 1.75
R? when excluded (%) 56.90 54.00 49.79 1299 54.15

Comparing the composition of the TS-alpha-PCA factors to that of the conventional PCA
factors depicted in Panel A of Figure @ in Appendix E, we observe that the fourth and fifth TS-
alpha-PCA factors display a long-short pattern on the characteristics in the reversal category that
is missing in the conventional PCA factors. This is not surprising as the T'S-alpha-PCA factors are
designed to explain risk premia that are not explained by the FF5 model such as those associated
with the reversal characteristics.

Comparing the weights of the T'S-alpha-PCA factors to those of the TS-mean-PCA factors
depicted in Panel B of Figure @ in Appendix E, we find that the weights of the T'S-alpha-PCA
factors on decile portfolios in the value, investment, and profitability categories tend to be smaller
than those of the TS-mean-PCA factors. This is not surprising because the FF5 factor explains
well the decile portfolios in these categories and the TS-alpha-PCA factors are designed to explain
risk premia mot captured by the FF5 factor model. However, we find that the TS-alpha-PCA
factors have large long-short weights on decile portfolios in categories that are not explained by
the FF5 model. For instance, the weights of the fourth TS-alpha-PCA factor have a strong long-
short pattern in the decile portfolios in the reversal, value interaction, and momentum categories.

Similarly, the fifth TS-alpha-PCA factor almost only loads on reversal portfolios, which, again, are

missed by FF5.E

Finally, comparing the composition of the T'S-alpha-PCA factors to that of the XS-shape-
PCA factors depicted in Figure @, we observe that the weights on the extreme decile portfolios of
the TS-alpha-PCA factors are less monotonic in the characteristics than those of the XS-shape-
PCA factor, which are designed to capture precisely such monotonicity. For instance, the weights

of the third TS-alpha-PCA factor are not monotonic in the investment decile portfolios.

13Recall that the sixth XS-shape-PCA factor is also a reversal factor. Unlike the cross-sectional shape target, the
time-series alpha target explicitly increases the signal strength of factors with high risk premia, which justifies why
the reversal factor is a lower-order T'S-alpha-PCA factor.
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Given that the fourth and fifth TS-alpha-PCA factors load heavily on the characteristics in
the reversal category, we expect that they will capture risk premia missed by FF5. To verify this,
we first construct a pure-alpha portfolio, which only earns risk premia missed by FF5, by regressing
the returns of the FF5-alpha-weighted portfolio on FF5 and using the residuals of this regression
as the returns of the pure-alpha portfolio. The in-sample average monthly return of this portfolio
is 46.22 basis points. We then regress the returns of this portfolio on the first five T'S-alpha-PCA
factors. For comparison, we also regress the returns of the pure-alpha portfolio on the first five PCA
factors. Table E reports the results of these two regressions. For each model, the first row reports
the regression coeflicients, the second row reports the expected return of the pure-alpha portfolio
explained by each factor, and the last row reports the R-squared when each factor is excluded from
the regression. The intercept and expected return explained by each factor are reported in basis
points.

Consistent with the previous results, Table B demonstrates that compared to the PCA
model, the TS-alpha-PCA model better explains the expected return of the pure-alpha portfolio.
Specifically, the pricing error for the pure-alpha portfolio of the TS-alpha-PCA models is only
7.8 basis points, while that of the PCA model is 38.5 basis points. Most importantly, the fourth
and fifth TS-alpha-PCA factors explain 25.39 and 9.43 basis points, thus explaining over 75% of
the expected return of the pure-alpha portfolio. Therefore, the fourth and fifth TS-alpha-PCA

factors, which exploit long-short restrictions on characteristics not exploited by FF5, successfully

capture risk premia missed by FF5.@ In addition, we verify that the second TS-alpha-PCA factor
is a time-series factor and only explains the time-series variation of the pure-alpha portfolio. In
particular, the R-squared decreases substantially from 88.20% to 36.07% when excluding it from
the regression.

To summarize this section, we find that the time-series alpha PCA models have superior
cross-sectional pricing ability than their PCA counterparts, while they explain a similar amount
of time-series variation of the decile portfolios. Specifically, the Sharpe ratios of the TS-alpha-
PCA models are substantially higher than those of the PCA and Fama-French models, and they
deliver low pricing errors for the FF5-alpha-weighted portfolio, whose average return cannot be
fully explained by FF5 by construction. Importantly, the TS-alpha-PCA models outperform the
PCA models because the time-series alpha target nudges the latent factors to capture risk premia
information missed by FF5 and, in particular, to exploit long-short restrictions on characteristics
not exploited by FF5.

3.4 Combining cross-sectional and time-series targets

Having considered the models obtained by imposing the cross-sectional and time-series targets

independently, we now investigate whether there is a benefit from considering both types of targets

4In Appendix a, we report the composition of the pure-alpha portfolio based on the PCA and TS-alpha-PCA
models. The TS-alpha-PCA model identifies that the pure-alpha portfolio loads heavily on characteristics unexploited
by FF5, such as those in the reversal and momentum categories.
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Figure 9: Sharpe ratio for models that combine XS-shape and T'S-mean targets

This figure illustrates how the out-of-sample Sharpe ratio of the cross-sectional time-series PCA models that combine
both the shape and mean targets varies with the number of factors and the penalty parameters. Panel A illustrates
the Sharpe ratio of each model as a function of the penalty on the mean target when the penalty on the shape target
is 7xs = 1 and Panel B as a function of the penalty on the shape target when the penalty on the mean target is
yrs = 15.
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simultaneously. In particular, we now consider a model that combines the cross-sectional shape

and time-series mean targets.

3.4.1 Number of factors and penalty parameters

Figure E illustrates how the out-of-sample Sharpe ratio of the cross-sectional time-series PCA
models that combine both the shape and mean targets varies with the number of factors and the
penalty parameters. Panel A illustrates the Sharpe ratio of each model as a function of the penalty
on the mean target when the penalty on the shape target is yxg = 1, the benchmark penalty we
use in Section , and Panel B as a function of the penalty on the shape target when the penalty
on the mean target is ypg = 15, the benchmark penalty we use in Section .

Panel A of Figure E shows that, when we fix the penalty on the shape target to one, the
Sharpe ratio increases substantially with the penalty on the mean target for every model with two
or more factors. This is not surprising because the cross-sectional shape target is not explicitly
designed to increase the Sharpe ratio of the model. To see this, note that even if the long-short
characteristic portfolios capture risk premia information, the shape target does not help to identify
which specific characteristics are most informative for the cross-section of expected returns. Thus,
the time-series mean target complements the cross-sectional shape target by explicitly increasing
the signal of characteristic long-short portfolios that carry high risk premia. Panel B shows that

the cross-sectional shape target can also help to increase the Sharpe ratio of models with a time-
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Figure 10: Performance of five-factor XS-shape-TS-mean-PCA models

This figure illustrates how the out-of-sample performance of the five-factor model varies with the penalty parameters
on the cross-sectional shape and time-series mean targets. Panels A, B, C, and D give heatmaps for the Sharpe
ratio, root-mean-squared pricing error across the 370 decile portfolios, root-mean-squared pricing error across the 37
top-minus-bottom portfolios, and average unexplained variance across the 370 decile portfolios, respectively. In each
panel, the vertical axis depicts the penalty on the shape target and the horizontal axis the penalty on the mean target.
Root-mean-squared pricing errors are reported in basis points and average unexplained variances in percentage.
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series mean target, with the effect being more salient for low-dimensional models with at most five
factors.

Figure @ illustrates how the out-of-sample performance of the benchmark five-factor model
varies with the penalty parameters on both the cross-sectional shape and time-series mean targets.
Panels A, B, C, and D give heatmaps for the Sharpe ratio, root-mean-squared pricing error across

the 370 decile portfolios, root-mean-squared pricing error across the 37 top-minus-bottom portfolios,

and average unexplained variance across the 370 decile portfolios, 1respectively.E In each panel,

the vertical and horizontal axes depict the penalty parameters on the shape and mean targets,

BRigure @ in Appendix E illustrates how the out-of-sample performance varies with the penalty parameters on
both the cross-sectional shape and time-series mean targets for one- to six-factor models.
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respectively. Figure @ confirms the benefit of incorporating both types of targets. In particular,
when the penalty on the mean target is low, the shape target helps to substantially improve the
performance of the model. For example, when g = 2, as yxg increases from zero to one, the Sharpe
ratio increases from 0.24 to 0.41, and the root-mean-squared pricing error for the top-minus-bottom
portfolios decreases from 35.98 to 29.42.

In addition, Panel D of Figure @ shows that simultaneously exploiting the two targets has
a limited impact on the time-series explanatory power of the five-factor model. For example, in
the extreme case in which (yxg,v1s) = (4,20), the average unexplained variance of the model is
13.08%, which is only slightly higher than that of the PCA model, 12.71%.

In summary, we find that one could benefit from exploiting both the shape and mean targets
to improve the cross-sectional pricing performance without reducing the time-series explanatory
power of the models. Consistent with the previous sections, in the next section we use yxg = 1 and
~yrs = 15 as the benchmark penalties for the XS-TS-PCA models.

3.4.2 Out-of-sample comparison

Table H compares the performance of the PCA and Fama-French models with that of five different
cross-sectional times-series PCA models that exploit the following targets: (i) shape target (XS-
shape-PCA), (ii) mean target (TS-mean-PCA), (iii) alpha target (TS-alpha-PCA), (iv) shape and
mean targets combined (XS-shape-TS-mean-PCA), and (v) shape and alpha targets combined (XS-
shape-TS-alpha-PCA). We consider models with three and five factors. Panels A and B contain the
in-sample and out-of-sample results, respectively. In each panel, the first six columns report the
acronym, Sharpe ratio, root-mean-squared pricing error across the 370 decile portfolios, root-mean-
squared pricing error across the 37 top-minus-bottom portfolios, pricing error for the FF5-alpha-
weighted portfolio, and average unexplained variance across the 370 decile portfolios, respectively.
The last two columns report the cross-sectional shape and time-series alpha metrics, respectively.

Table @ shows that each target helps to improve performance in terms of the particular
criterion they are designed to address. For instance, the PCA models explain most of the time-
series variation of the returns. Models with a shape target deliver low pricing errors for the top-
minus-bottom portfolios. Models with a mean target explain the 370 decile portfolios, and models
with an alpha target explain the FF5-alpha-weighted portfolio.

Panel B in Table H shows that five-factor models with the targets substantially outperform
three-factor models out of sample, which implies that the targets increase the signal of weak factors
important for the cross-section and identify them as higher-order factors. For instance, the out-
of-sample Sharpe ratio of the best-performing five-factor model (XS-shape-TS-mean-PCA) is 0.49,
which is much larger than that of the best-performing three-factor model (XS-shape-TS-alpha-
PCA), 0.28. Within five-factor models, we find that models that combine cross-sectional and time-
series targets (XS-shape-TS-mean-PCA and XS-shape-TS-alpha-PCA) outperform other models,

achieving higher Sharpe ratios and lower pricing errors across different test assets. Moreover,

35



Table 4: Performance of XS-shape-TS-mean-PCA and other models

This table compares the performance of the PCA and Fama-French models with that of five different cross-sectional
times-series PCA models that exploit the following targets: (i) shape target (XS-shape-PCA), (ii) mean target (T'S-
mean-PCA), (iii) alpha target (T'S-alpha-PCA), (iv) shape and mean targets combined (XS-shape-TS-mean-PCA),
and (v) shape and alpha targets combined (XS-shape-TS-alpha-PCA). We consider models with three and five factors.
The penalty parameter on the cross-sectional targets is yxs = 1 and that on the time-series targets yrs = 15. Panels
A and B contain the in-sample and out-of-sample results, respectively. In each panel, the first six columns report the
acronym, Sharpe ratio, root-mean-squared pricing error across the 370 decile portfolios, root-mean-squared pricing
error across the 37 top-minus-bottom portfolios, pricing error for the FF5-alpha-weighted portfolio, and average
unexplained variance across the 370 decile portfolios, respectively. The last two columns report the cross-sectional
shape and time-series alpha metrics, respectively. Pricing errors are reported in basis points and unexplained variances
in percentage. Bold numbers indicate the best-performing models.

Pricing error

RMS,, for RMS, a2 for

Models Sharpe 420 decile  for TMB for FFS- a0 decite  <o-Shape  TS-alpha

ratio . . alpha-weighted . metric metric

portfolios  portfolios . portfolio
portfolio
Panel A: in-sample
Three-factor models
FF 0.21 17.84 57.33 43.00 14.27 - -
PCA 0.17 16.94 55.78 42.28 12.57 66.55 38.71
XS-shape-PCA 0.23 14.77 45.95 35.79 13.27 98.02 34.57
TS-mean-PCA 0.26 16.73 50.87 46.19 12.68 80.47 14.92
TS-alpha-PCA 0.16 18.28 58.88 32.98 12.62 71.65 74.31
XS-shape-T'S-mean-PCA 0.33 15.50 43.16 32.93 13.31 98.42 53.75
XS-shape-TS-alpha-PCA 0.31 15.84 46.32 24.04 13.46 98.97 70.88
Five-factor models
FF 0.32 16.09 49.45 46.22 13.27 - -
PCA 0.25 14.23 42.89 34.01 10.80 80.99 49.14
XS-shape-PCA 0.33 13.38 38.35 32.52 10.91 97.87 46.80
TS-mean-PCA 0.57 13.44 31.88 15.66 10.95 86.02 88.37
TS-alpha-PCA 0.66 12.40 26.48 4.42 11.07 83.91 99.35
XS-shape-TS-mean-PCA 0.55 12.60 29.55 18.37 11.04 98.63 78.41
XS-shape-TS-alpha-PCA 0.62 11.44 27.26 8.07 11.14 98.40 89.12
Panel B: out-of-sample

Three-factor models
FF 0.16 17.23 52.05 20.86 16.63 - -
PCA 0.13 15.56 47.10 22.86 14.51 72.45 39.60
XS-shape-PCA 0.15 15.85 46.71 26.83 15.09 96.57 32.87
TS-mean-PCA 0.20 14.13 38.99 17.92 14.56 80.90 65.14
TS-alpha-PCA 0.27 15.15 44.16 11.36 14.49 76.81 87.63
XS-shape-T'S-mean-PCA 0.23 14.85 40.01 22.52 15.01 97.30 50.66
XS-shape-TS-alpha-PCA 0.28 15.38 41.40 14.25 14.98 97.23 71.95
Five-factor models
FF 0.31 13.66 36.92 28.41 15.64 - -
PCA 0.18 13.75 39.05 20.45 12.71 77.97 45.29
XS-shape-PCA 0.28 12.64 33.32 20.58 12.87 96.69 41.08
TS-mean-PCA 0.46 11.84 27.20 10.23 12.98 76.91 86.22
TS-alpha-PCA 0.43 13.90 38.69 4.49 13.06 71.72 99.37
XS-shape-TS-mean-PCA 0.49 11.89 27.87 9.34 13.02 97.35 72.98
XS-shape-TS-alpha-PCA 0.48 13.56 37.48 4.05 13.12 96.56 84.96

when comparing these models with models that only exploit a time-series target (TS-mean-PCA
and TS-alpha-PCA), we find that the models that exploit a cross-sectional target in addition to
the time-series target have higher cross-sectional shape metrics. This suggests that their factor
weights have a stronger long-short pattern on the characteristic decile portfolios. Therefore, the

shape target not only transforms the space of returns spanned by the factors and improves the
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Figure 11: Generalized correlations between macro mimicking portfolios and latent factors

Panels A and B graph the out-of-sample generalized correlations between the seven macro mimicking portfolios and
the latent factors obtained with the TS-mean-PCA and XS-macro-PCA models, respectively. Both panels illustrate
how the generalized correlations on the vertical axis vary with the penalty parameter on the horizontal axis.
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cross-sectional pricing performance, but also facilitates the economic interpretation by nudging the

factor weights to align with firm-specific characteristics.

3.5 Cross-sectional macro target

We now consider a cross-sectional macro target that exploits the economic insight of the intertem-
poral CAPM of Merton ([1973) that asset exposure to innovations to macro variables that affect
the marginal utility of consumption of a representative investor should be priced. Specifically, we
consider the cross-sectional target matrix AXS defined in (B), whose columns contain the covari-
ances between the returns of each asset and the seven innovations to macroeconomic variables.
Thus, the columns of AXS are Fama-MacBeth-type mimicking portfolios for the innovations to the
macroeconomic variables.

We construct the innovations to the macroeconomic variables based on the monthly data
for 127 macroeconomic variables from FRED-MD following the procedure described in Section @
In particular, we first transform these variables following the method suggested in the appendix
of McCracken and Ng (2016) to render them stationary. Next, we standardize the transformed
macroeconomic variables such that each of them has zero mean and unit standard deviation. We
then apply PCA to these standardized variables and identify seven factors that drive their system-
atic variation. Lastly, we run a first-order vector autoregression on these PCA factors and take the

residuals as the seven innovations to the macroeconomic variables.
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3.5.1 Models with only macro target

Following Pelger| (2020, I1.C), we use generalized correlations@ to study the time-series similarity

between the mimicking portfolios for the seven macroeconomic innovations and the latent factors
obtained with the TS-mean-PCA and XS-macro-PCA models. Recall that generalized correlations

are the maximum correlation coefficients of linear combinations of two panels of factors.@ Intu-
itively, the kth generalized correlation measures the time-series similarity between two factor models
by considering the k-dimensional subspaces of the two models with the highest time-series “overlap.”
Therefore, if two sets of factors capture the same time-series variation, the generalized correlations
between them are all equal to one. Panels A and B of Figure @ graph the out-of-sample generalized
correlations between the seven macro mimicking portfolios and the latent factors obtained with the
TS-mean-PCA and XS-macro-PCA models, respectively.

Panel A in Figure EI shows how the generalized correlations on the vertical axis vary with the
penalty parameter on the time-series mean target on the horizontal axis. This panel shows that the
PCA factors do not highly covary with the macro mimicking portfolios and the mean target does not
help to increase covariation. For instance, the sixth and seventh generalized correlations between
the macro mimicking portfolios and the latent factors are below 0.2 for PCA (yrg = 0) and also
for TS-mean-PCA (ypg = 15). Therefore, neither the PCA factors nor the time-series mean PCA
factors share the same time-series properties with the systematic risks related to macroeconomic
fundamentals.

Panel B illustrates how the generalized correlations vary with the penalty parameter on the
cross-sectional macro target. We find that the generalized correlations increase monotonically and
substantially with the penalty on the macro target. For example, when vyxg reaches 0.3, all seven
generalized correlations are above 0.8. Therefore, the macro target nudges the latent factors to
adopt the time-series properties of the macro mimicking portfolios.

Figure [L2 illustrates how the out-of-sample performance of the cross-sectional macro PCA
models varies with the number of factors and the penalty. In particular, Panel A gives a line plot
depicting the Sharpe ratio of each model on the vertical axis as a function of the penalty on the
horizontal axis. Panels B, C, and D give heatmaps for the Sharpe ratio, root-mean-squared pricing
error across the seven macroeconomic mimicking portfolios, and average unexplained variance across
the 370 decile portfolios, respectively. For each heatmap, the vertical axis depicts the number of
factors in the model and the horizontal axis the penalty parameter.

Panels A and B show that the macro target helps to increase the Sharpe ratio of low-
dimensional models with two, three, and four factors. For example, the Sharpe ratio of the four-

factor model increases from 0.12 to 0.16 when the penalty increases from zero (conventional PCA)

16Generalized correlation is also referred to as canonical correlation.

"Mathematically, to obtain the first generalized correlation between the m-dimensional random vector X
and the n-dimensional random vector Y, one seeks vectors a € R™ and b € R"™ to maximize the correlation
p = (Corr(aTX7 bTY). By projecting a' X out of X and b'Y out of ¥ and repeating the above procedure, one
obtains the second generalized correlation. This procedure can be repeated for min{m,n} times to obtain all gener-
alized correlations (p1, ..., Pmin{m,n}) between X and Y.
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Figure 12: Performance of cross-sectional macro PCA models

This figure illustrates the out-of-sample performance of cross-sectional macro PCA (XS-macro-PCA) models with
up to seven factors and for different values of the penalty parameter. Panel A gives a line plot depicting the
Sharpe ratio of each model on the vertical axis as a function of the penalty parameter, yxs, on the horizontal
axis. Panels B, C, and D give heatmaps for the Sharpe ratio, root-mean-squared pricing error across the seven
macroeconomic mimicking portfolios, and average unexplained variance across the 370 decile portfolios, respectively.
For each heatmap, the vertical axis depicts the number of factors in the model and the horizontal axis the penalty
parameter, yxs. Root-mean-squared pricing errors are reported in basis points and average unexplained variances in
percentage.
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to 1.5 (XS-macro-PCA). However, the macro target has a limited impact on the Sharpe ratio of
five- and six-factor models and decreases the Sharpe ratio of the seven-factor model. In particular,
the Sharpe ratio of the six-factor model decreases from 0.20 to 0.19 when the penalty increases from
zero to 0.5, a level for which the generalized correlation between the macro mimicking portfolios
and the XS-macro-PCA factors is high. Thus, unlike the shape, mean, and alpha targets, the macro
target does not help to identify assets with high risk premia.
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Figure 13: Pricing errors for macro mimicking portfolios of PCA and XS-macro-PCA

This figure illustrates the out-of-sample pricing errors (in absolute value) for the seven macro mimicking portfolios
of the five-factor PCA model (purple bars) and cross-sectional macro PCA model with yxs = 0.5 (red bars). Pricing
errors are reported in basis points.
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Panel C in Figure @ shows that the macro target helps to monotonically decrease the
root-mean-squared pricing error across the seven macro mimicking portfolios. For example, the
root-mean-squared pricing error for the five-factor model decreases by over 40% from 9.54 to 5.41
when the penalty increases from zero to 0.5. More specifically, Figure @ compares the pricing
errors (in absolute value) for the seven macro mimicking portfolios of the five-factor PCA model
and the XS-macro-PCA model with vxg = 0.5. We observe that the XS-macro-PCA model delivers
uniformly lower pricing errors for the seven target mimicking portfolios. Thus, although the macro
target does not help to identify assets with high risk premia, it does help to identify factors that
price the macroeconomic mimicking portfolios better. Finally, this enhanced pricing ability does not
come at the cost of lower time-series explanatory power. In particular, Panel D in Figure @ shows
that the average unexplained variance across all 370 decile portfolios does not vary substantially
with the penalty on the macro target.

We now compare the performance of the XS-macro PCA model with that of the Fama-
French and conventional PCA models. Panels A and B in Table E give the in-sample and out-
of-sample results, respectively. In each panel, the first three columns report the acronym, Sharpe
ratio, and root-mean-squared pricing error across the seven macroeconomic mimicking portfolios,

respectively. The last column reports each model’s cross-sectional macro metric, which is calculated
using Equation (@), where PI{(S is the cross-sectional projection matrix associated with the macro

target AXS in Equation (E) The benchmark penalty is yxs = 0.5, a level for which the XS-
macro-PCA factors and the macro mimicking portfolios have high generalized correlations and the
performance of the XS-macro-PCA model stabilizes.

Table E reveals a tradeoff between pricing the macro mimicking portfolios and pricing other
assets with high risk premia. Specifically, the XS-macro-PCA models have high cross-sectional
macro metrics (over 97 in all cases), and thus, their factors deliver low pricing errors for the macro

mimicking portfolios. However, they completely ignore assets that are orthogonal to macroeco-
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Table 5: Performance of cross-sectional macro PCA and other models

This table summarizes the performance of the Fama-French, PCA, and XS-macro-PCA models with three and five
factors. The penalty parameter on the cross-sectional macro target is yxs = 0.5. Panels A and B report the in-sample
and out-of-sample results, respectively. For each model, the four columns report the acronym, Sharpe ratio, root-
mean-squared pricing error for the mimicking portfolios of the seven macroeconomic innovations, and cross-sectional
macro metric, respectively. Root-mean-squared pricing errors are reported in basis points. Bold numbers indicate
the best-performing models.

(A) In-sample (B) Out-of-sample
Sharpe R.MSO‘ .for XS-macro Sharpe R.MSO‘ .for XS-macro
Models . mimicking . Models . mimicking .
ratio . metric ratio . metric
portfolios portfolios
Three-factor models Three-factor models
FF 0.21 25.55 - FF 0.16 18.57 -
PCA 0.17 26.23 83.82 PCA 0.13 13.34 78.37
XS-PCA 0.17 26.91 99.45 XS-PCA 0.15 11.46 99.29
Five-factor models Five-factor models
FF 0.32 20.95 - FF 0.31 12.60 -
PCA 0.25 9.74 58.91 PCA 0.18 9.54 65.41
XS-PCA 0.24 6.63 97.74 XS-PCA 0.18 5.41 98.10

nomic shocks but carry high risk premia, and thus, they achieve lower Sharpe ratios compared to
the Fama-French models. Overall, although the macro target nudges the latent factors to reflect
macroeconomic fundamental risks and explain the macroeconomic innovations, it does not help to

price better a large cross-section of characteristic portfolios.

3.5.2 Combining macro and mean targets

We now consider models that combine the information of the cross-sectional macro and time-series
mean tawgets.E Figure @ illustrates how the out-of-sample Sharpe ratio of the models that combine
the macro and mean targets varies with the number of factors and the penalty parameters. Panel A
illustrates the Sharpe ratio of each model as a function of the penalty on the mean target when
the penalty on the macro target is yxg = 0.5, the benchmark penalty we use in Section , and
Panel B as a function of the penalty on the macro target when the penalty on the mean target is
~yrs = 15, the benchmark penalty we use in Section .

Panel A shows that, when we fix the penalty on the macro target to 0.5, the Sharpe ratio
increases monotonically with the penalty on the mean target for models with two or more factors.
This is expected because the time-series mean target explicitly increases the signal of factors with
high risk premia. Panel B, on the other hand, shows that there is a tradeoff between pricing
the macro mimicking portfolios and a broad cross section of characteristic decile portfolios. In
particular, the Sharpe ratio of each model decreases substantially with the penalty on the macro
target. For example, the Sharpe ratio of the five-factor model decreases by 55.2% from 0.46 to 0.21

when vxg increases from zero to two.

18We consider models with the cross-sectional macro and time-series alpha targets in the Internet Appendix.
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Figure 14: Sharpe ratios for models with fixed yxg or g

This figure illustrates how the out-of-sample Sharpe ratio of cross-sectional time-series PCA models that combine
both the macroeconomic and mean targets varies with the number of factors and the penalty parameters. Panel A
illustrates the Sharpe ratio of each model as a function of the penalty on the time-series mean target when the penalty
on the cross-sectional macro target is yxs = 0.5, and Panel B as a function of the penalty on the cross-sectional
macro target when the penalty on the time-series mean target is yrs = 15.
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Figure @ illustrates how the out-of-sample performance of the five-factor model varies with
the penalty parameters on both the cross-sectional macro and time-series mean targets. Panels A, B,
C, and D give heatmaps for the Sharpe ratio, root-mean-squared pricing error across the 370 decile
portfolios, root-mean-squared pricing error across the seven macroeconomic mimicking portfolios,
and average unexplained variance across the 370 decile portfolios, respectively. In each panel,
the vertical and horizontal axes depict the penalty parameters on the macro and mean targets,
respectively.

Figure @ confirms that there is a strong tradeoff between pricing a large cross-section of
characteristic decile portfolios and pricing the macro mimicking portfolios. In particular, for a given
penalty on the mean target, increasing the penalty on the macro target decreases the Sharpe ratio
and increases the root-mean-squared pricing error across the 370 decile portfolios, but it decreases
the pricing error for the seven macro mimicking portfolios. This suggests that the covariances
between asset returns and macroeconomic innovations do not help to identify factors that explain
the risk premia of the large cross-section of characteristic decile portfolios. In a nutshell, the
information in macro variables does not help to explain a broad cross section of characteristic
portfolios.

On the other hand, Figure @ also shows that, for a given penalty on the macro target,
increasing the penalty on the mean target increases the Sharpe ratio and decreases the root-mean-
squared pricing error across all 370 decile portfolios, but it increases the root-mean-squared pricing

error across the seven macro mimicking portfolios. In summary, while the mean target helps to
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Figure 15: Performance of five-factor XS-macro-TS-mean-PCA models

This figure illustrates how the out-of-sample performance of the five-factor model varies with the penalty parameters
on the cross-sectional macro and time-series mean targets. Panels A, B, C, and D give heatmaps for the Sharpe ratio,
root-mean-squared pricing error across the 370 decile portfolios, root-mean-squared pricing error across the seven
macroeconomic mimicking portfolios, and average unexplained variance across the 370 decile portfolios, respectively.
In each panel, the vertical vertical axis depicts the penalty on the macro target and the horizontal axis the penalty on
the mean target. Root-mean-squared pricing errors are reported in basis points and average unexplained variances
in percentage.
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price a broad cross section of characteristic portfolios, it does not help to price the seven macro
mimicking portfolios.

Table E compares the performance of the PCA model with that of three different cross-
sectional time-series PCA models that exploit the following targets: (1) macro target (XS-macro-
PCA), (ii) macro and mean targets combined (XS-macro-TS-mean-PCA), and (iii) macro and
alpha targets combined (XS-macro-TS-alpha-PCA). We consider models with three and five factors.
Panels A and B contain the in-sample and out-of-sample results, respectively. In each panel, the

first six columns report the acronym, Sharpe ratio, root-mean-squared pricing error across the
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Table 6: Performance of XS-macro-TS-mean-PCA and other models

This table summarizes the performance of three- and five-factor models including the PCA, XS-macro-PCA, XS-
macro-TS-mean-PCA, and XS-macro-TS-alpha-PCA models. The benchmark penalty parameter on the cross-
sectional target is yxs = 0.5 and that on the time-series target yrs = 15. Panels A and B contain the in-sample
and out-of-sample results, respectively. For each model, the first six columns report the acronym, Sharpe ratio,
root-mean-squared pricing error across the 370 decile portfolios, root-mean-squared pricing error across the seven
macroeconomic mimicking portfolios, pricing error for the FF5-alpha-weighted portfolio, and average unexplained
variance across the 370 decile portfolios, respectively, and the last two columns report the cross-sectional macro
and time-series alpha metrics, respectively. Pricing errors are reported in basis points and unexplained variances in
percentage. Bold numbers indicate the best-performing models.

Pricing error

RMS,, for RMS,, for @2 for

Models Sharpe 570 jecile  mimicking for FES- o0 decile  omacro  TS-alpha

ratio . . alpha-weighted . metric metric

portfolios  portfolios . portfolio
portfolio
Panel A: in-sample
Three-factor models
PCA 0.17 16.94 26.23 42.28 12.57 83.82 38.71
XS-macro-PCA 0.17 16.98 26.91 40.66 12.65 99.45 32.06
XS-macro-TS-mean-PCA 0.18 16.73 25.97 41.63 12.66 99.26 26.96
XS-macro-TS-alpha-PCA 0.16 17.08 27.82 39.19 12.66 99.47 37.70
Five-factor models
PCA 0.25 14.23 9.74 34.01 10.80 58.91 49.14
XS-macro-PCA 0.24 14.38 6.63 33.91 11.01 97.74 39.12
XS-macro-TS-mean-PCA 0.28 14.24 9.31 32.19 11.02 96.77 43.46
XS-macro-TS-alpha-PCA 0.26 14.38 8.14 31.33 11.03 97.45 47.30
Panel B: out-of-sample

Three-factor models
PCA 0.13 15.56 13.34 22.86 14.51 78.37 39.60
XS-macro-PCA 0.15 15.39 11.46 22.88 14.47 99.29 35.62
XS-macro-TS-mean-PCA 0.17 14.86 10.53 22.32 14.47 98.73 39.29
XS-macro-TS-alpha-PCA 0.17 15.11 9.45 20.13 14.39 99.05 44.92
Five-factor models
PCA 0.18 13.75 9.54 20.45 12.71 65.41 45.29
XS-macro-PCA 0.18 14.33 5.41 20.03 13.09 98.10 41.54
XS-macro-TS-mean-PCA 0.22 14.04 6.07 19.24 13.10 96.82 45.98
XS-macro-TS-alpha-PCA 0.21 14.40 4.26 17.62 13.10 97.57 54.51

370 decile portfolios, root-mean-squared pricing error across the seven macroeconomic mimicking
portfolios, pricing error for the FF5-alpha-weighted portfolio, and average unexplained variance
across the 370 decile portfolios, respectively. The last two columns report the cross-sectional macro
and time-series alpha metrics, respectively.

Table B shows that each target helps to improve performance in terms of the particular
criterion they are designed to address. For example, models with a time-series alpha target deliver
the lowest pricing errors for the FF5-alpha-weighted portfolio. Different targets incorporate differ-
ent economic information for the factor model to carry, and thus provide different objectives for
the model to achieve. In some cases, the objectives of the cross-sectional and time-series targets
can be achieved simultaneously, and thus assigning both targets with positive penalties helps to
better achieve the common objective. For example, the XS-macro-TS-alpha-PCA models deliver
the lowest out-of-sample root-mean-squared pricing errors for the seven macro mimicking portfo-

lios, which implies that FF5 fails to fully capture the macroeconomic fundamental risk premia, and
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the macro mimicking portfolios have relatively high FF5 alphas. By assigning both the macro and
alpha targets with positive penalties, the output model delivers low pricing errors for the macro
mimicking portfolios.

However, in other cases, the objectives of the cross-sectional and time-series targets cannot
be achieved simultaneously, and thus assigning both targets with positive penalties yields a tradeoff
between the two different objectives. In particular, one could not find a model that simultaneously
explains well the risk premia of the entire cross-section of characteristic decile portfolios and per-
fectly prices the low-premia macro mimicking portfolios. Therefore, the penalties on the macro and

mean targets determine the relative weight of in achieving each of the objectives of the two targets.

4 Conclusion

This paper presents a general framework to encode researcher’s beliefs about different properties
of the risk factors, into their direct recovery from the cross-section of asset returns. Intuitively,
imposing useful economic restrictions boosts the signal of weak factors and allows for a more efficient
recovery of the underlying SDF. Our approach allows for a general type of both time-series and
cross-sectional restrictions. In a large-dimensional empirical application we focus on investigating

the role of four types of restrictions:

a) shape restrictions, related to the patterns of asset loading on the corresponding risk factors

(empirically, we focus on the monotonicity of expected returns in decile-sorted portfolios);

b) spanning restriction, implying that recovered latent risk factors should (at least) reflect the

pricing ability of the candidate exogenous state variables, e.g., macroeconomic innovations;

c) an APT-implied restriction that systematic risk factors should span the vector of expected

returns (not just the sources of time-series variation);

d) explicit nudge of asset pricing factors towards spanning not just the main sources of time-
series variation (which often coincides with a few popular reduced-form factors), but also the

pricing errors generated by the latter, again with the intention to better span the underlying

SDF and cross-section of asset returns.

We find that imposing informative economic restrictions and their combination can indeed
be helpful in the recovery of systematic sources of risk, crucial for spanning a wide cross-section of
asset returns. Empirically, this delivers risk factors that span a higher out-of-sample Sharpe ratio
and yield lower pricing errors compared to the traditional approach. In doing so, we contribute to a
large and growing literature that shows the importance of adapting statistical and machine-learning
techniques by encoding suitable economic restrictions directly into the estimation procedure.

Our framework can be used to study a broad class of various asset pricing restrictions related

to different spanning properties of the risk factors as well as shape restrictions on their loadings.
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Importantly, we do not aim to provide a single most efficient way to recover the underlying SDF by
choosing “optimal” priors. Instead, we allow the researcher to specify different types of restrictions
consistent with both structural and reduced-form insights about the cross-section of asset returns
and risk factors that drive it. In doing so, our framework can also be used in conjunction with
other existing tools for estimating large-dimensional factor models, e.g., IPCA of Kelly et al. (2019).
We leave the study of conditional factor models for individual stock returns, as well as further

investigation of other economic restrictions, for future research.
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A Methodology

A.1 General Statement

Proposition A.1 The XS-TS-Target-PCA factors can be obtained from PCA applied in the time-

or cross-sectional dimension.

1. The latent-factor model that optimizes the XS-TS-Target-PCA objective in (@) can be equiv-
alently obtained by:

(a) Applying PCA to the matriz

1 - -
7 (I +3xsPES) R (Ir +y25PES) R (In +3xsPY) (A1)
where Yxg = \/vxsN/L + 1 — 1. Specifically, let Qi € RN*K be matriz whose columns

contain the first K eigenvectors of matriz (@), then the estimated factor loadings and

factor returns are

Bxs.rs = [(:YXS +1) Iy — :YXSP/{(S} Qxk, and (A2)
- 1 YXS XS .

Fxs.ts =R <~ In+ = P Qr, respectively. A3
o Yxs+ 1 Fxs+ 1" (A3)

(b) Applying PCA to the matriz

1 - N -
s (-4 3ese) m (14 2R ) T (1 +30sP) . (a0

where Apg = /yrs+ 1 — 1. Specifically, let Ux € RT*K be matriz whose columns
contain the first K eigenvectors of matriz (@), then the estimated factor returns and

factor loadings are

Fxs.rg = [(:YTS +1) Iy - 'NYTSPgS] Uk, and (A5)
3 1 1S TS .

Bxs.rs=R' <~ + P ) Uk, respectively. A6
T Jrs 1" Arg+1° ¢ (A6)

2. In the special case of XS-Target-PCA, the latent-factor model that optimizes the XS-Target-
PCA objective in (@) can be equivalently obtained by:

(a) Applying PCA to the matriz

1
7 (In + 3xsPE) RTR (I + 3xsPiS) € RV, (A7)
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where xs = /YxsN/L +1 — 1. Specifically, let Qr € RN*E be the matriz whose
columns contain the first K eigenvectors of matrizc (@), then the estimated factor

loadings and factor returns are

Bxs = {(?Xs +1) Iy — ﬁXSP/{(S} Qrx, and (A8)
A 1 VXS XS> :

Fxs=R| = In + = P , respectively. A9
XS (7xs+1 N 1lA Qr P Y (A9)

(b) Applying PCA to the matrix

1 YxsN Sxs\ »T TXT
— I P R . Al

Specifically, the estimated factor returns, Fxg, are the first K eigenvectors of ma-

triz (), and the estimated factor loadings are Bxs = R Fxg.

3. In the special case of TS-Target-PCA, The latent-factor model that optimizes the TS-PCA

objective in (E) can be equivalently obtained by:

(a) Applying PCA to the matriz

1
R (IT + ’yTSPGTS> R e RNXN, (A11)

Specifically, the estimated factor loadings BTS are the first K eigenvectors of matrix (),
and the factor returns are FTS = RBTS.
(b) Applying PCA to the matrix

1 - TS T - TS TXT
-7 ([T + Fpg Pl ) RR (IT 4 ApsPl ) e RT¥T (A12)

where 31s = /y1s + 1 — 1. Specifically, let Ux € RT*E be the matriz whose columns
contain the first K eigenvectors of matriz (), then the estimated factor returns and

factor loadings are

Fpg = [(%5 Y1) Ip — ﬁTSPGTS} Uk, and (A13)

A 1 ﬁTS TS .

Brs=R" <~ It + - P, Uk, respectively. Al4
g Yrs+1 Ars+1° ¢ (A14)
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A.2 Proof of all results

This section contains the proof of the second part of Proposition @ Proofs for the other two
parts are similar and thus are omitted to avoid repetition.

Part 1:

The first-order condition of problem (H) with respect to F' is

T 2yxs8 Tpxs\ pXSa
_W<R_ FET) 8= B8 (RPYS - F8TPYS) PXS5 = 0
-1
= F=R<1N+7XSN )ﬁ[ﬁT< 7XSNP >,6} . (A15)
Let
B= E—— (In +xsPh) B, (A16)

where 9xs = \/7xsN/L + 1 — 1. Note that problem (@) is equivalent to

N,
min  trace KIN + VXE ) (RTR “R'FBT —BF R+ 5FTF5>]

)

& max trace [(IN + VXEN PXS> (RTFBT +BFTR — ﬁFTm)] . (A17)

)

Plugging equations () and () into (), we obtain that problem (@) becomes

max trace [(BTB)I BT (In +7xsPr) RTR(In + AxsPa) B} - (A18)

Let Qx € RV*K be the matrix whose columns contain the first K eigenvectors of matrix (@)

If we normalize 313 = I, then 3 that solves problem (A18) is Q. Plugging B = Qg into

equations () and (), we obtain

Bxs = [(:YXS +1) Iy — :}’XSPJ)\(S] Qxk, and (A19)
Fxs=R <~ 1 I+ = xS Py > Qgk, respectively. (A20)
¥xs + 1 Yxs + 1

Part 2:
The first-order condition of problem (H) with respect to 3 is

2
- ﬁ (RT BFT) F- %P (PfSRT - P}fsﬁFT) F=0
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-1
=~ B=R'F (FTF> . (A21)
Plugging equation () into (), we obtain that problem (@) becomes
-1
max trace [(FTF> F'R <IN + VXENPF> RTF} . (A22)

Let U € RT*K be the matrix that contain the first K eigenvectors of matrix () If we normalize
FTF = Ik, then F that solves problem () is Fixg = Ug. Plugging Fxs into equation (), we

obtain BXS = RTFXS
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B Firm-specific characteristics

Table @ classifies the 37 firm-specific characteristics in our dataset into eight categories. The
first column reports the name of each category, the second column the acronyms of characteristics
in each category, and the third (fourth) column the average return (in percentage) of the bottom-
decile (top-decile) portfolios in each category. The last column reports the average Sharpe ratio
of the top-minus-bottom portfolios, which are constructed by going long the top-decile and short
the bottom-decile portfolios, of each category. Table EI shows that top-minus-bottom portfolios

in the reversal and value interaction categories earn the highest Sharpe ratios.

Table B.1: Categories of characteristics

This table classifies the 37 characteristics into eight categories. The first column reports the name of each category,
the second column reports the acronyms of the characteristics in each category, the third (fourth) column reports
the average return (in percentage) of the bottom-decile (top-decile) portfolios in each category, and the last column
reports the average Sharpe ratio of the top-minus-bottom portfolios for characteristics in each category.

Category Characteristics Mean Mean SR
bottom-decile top-decile top-minus-bottom
reversal lrrev, strev, indmomrev, indrrev, indrreviv 0.18 1.02 0.23
value interaction  valmom, valmomprof, valprof 0.34 1.03 0.16
investment inw, invcap, igrowth, growth, noa 0.39 0.72 0.10
momentum mom, moml2, indmom, momrev 0.30 0.93 0.10
value value, valuem, divp, ep, cfp, sp 0.44 0.87 0.09
other size, price, accruals, ciss, gmargins, lev 0.42 0.69 0.07
season, sgrowth
trading frictions  wol, shvol, aturnover 0.26 0.57 0.06
profitability prof, roaa, Toea 0.42 0.64 0.06
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C Weights of pure-alpha portfolio

Panels A and B in Figure @ illustrate the weights of the pure-alpha portfolio on the extreme-
decile portfolios based on the five-factor TS-alpha-PCA model with fy%lg ha — 15 and the five-factor

PCA model, respectively. In particular, we use the regression coefficients in Table E to obtain these
weights. Specifically, for the TS-alpha-PCA model, the weights are

0.00 x TS-alpha; — 0.33 x TS-alpha, + 0.24 x TS-alphag + 0.47 x TS-alpha, + 0.33 x T'S-alphas,

where TS-alpha; is the weights on the extreme-decile portfolios of the ith TS-alpha-PCA factor.
For the PCA model, the weights are

—0.00 x PCA; — 0.05 x PCA3 — 0.09 x PCA3 + 0.28 x PCA4 + 0.10 x PCAs5,

where PCA,; is the weights on the extreme-decile portfolios of the ith PCA factor.

Panel A shows that based on the TS-alpha-PCA model, the pure-alpha portfolio assigns
high weights on long-short portfolios of characteristics in the reversal, value interaction, momen-
tum, and other categories, none of which is exploited by FF5. For characteristics exploited by
FF5, the pure-alpha portfolio has negligible weights on extreme-decile portfolios of the value and
investment characteristics, and only has positive weights on the high-return top-decile portfolios in
the profitability category.

Note that the TS-alpha-PCA factors well explain the expected return of the pure-alpha
portfolio. Therefore, the TS-alpha-PCA factors identify that the risk premia FF5 fails to capture are
carried by the long-short portfolios of characteristics in the reversal, value interaction, momentum,
and other categories.

Panel B shows that based on the PCA model, the pure-alpha portfolio does not load heavily
on the extreme-decile portfolios. In particular, it does not load on the reversal portfolios, which
have the highest Sharpe ratios. Therefore, the reason why PCA factors fail to explain the expected
return of pure-alpha portfolio is that they do not capture risk premia of long-short portfolios of

characteristics unexploited by FF5, which the pure-alpha portfolio carry.
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Figure C.1: Weights of pure-alpha portfolio on extreme-decile portfolios based on PCA and TS-
alpha-PCA factors

Panels A and B illustrate the weights of the pure-alpha portfolio on the extreme-decile portfolios based on the
five-factor T'S-alpha-PCA model with 'yfrlé’ b2 — 15 and the five-factor PCA model, respectively. In each panel, the
horizontal axis depicts the characteristic categories. Table H reports the regression coefficients to obtain the weights
of the pure-alpha portfolio. Specifically, for the TS-alpha-PCA model, the weights are

0.00 x TS-alpha; — 0.33 x TS-alpha, + 0.24 x TS-alphag + 0.47 x TS-alpha, + 0.33 x TS-alpha,,

where T'S-alpha; is the weights on the extreme-decile portfolios of the ith TS-alpha-PCA factor. For the PCA model,
the weights are

—0.00 x PCA; — 0.05 x PCA2 — 0.09 x PCA3 + 0.28 x PCA4 + 0.10 x PCA3,

where PCA; is the weights on the extreme-decile portfolios of ith PCA factor. The weights on the top-decile (bottom-
decile) portfolios are shown in red (blue). Each bar shows the total weight of a category, and the black lines indicate
the contribution of each portfolio in the category.
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D Additional figures

This section contains additional figures to illustrate the in-sample factor weights and out-of-sample
performance of different models. Section @ includes figures that illustrate the in-sample factor
weights on the decile portfolios of models that exploit different cross-sectional and time-series tar-
gets. Section @ includes figures that report the out-of-sample performance of models that exploit
the following targets: (i) time-series mean target (T'S-mean-PCA, equivalent to risk-premium PCA
of Lettau and Pelger, 2020h) and (ii) cross-sectional shape and time-series mean targets combined

(XS-shape-TS-mean-PCA).

D.1 Factor weights

This section includes figures that illustrate the in-sample factor weights on the decile portfolios of
different models.

For factors that only exploit the cross-sectional shape target (XS-shape-PCA factors), Pan-
els A and B of Figure @ show the weights on the extreme-decile portfolios of the first six PCA
factors and XS-shape-PCA factors with the penalty on the shape target being yxs = 1, respectively.
The horizontal axis in each panel gives the characteristic categories. All factors are normalized to
have positive returns. The weights on the top-decile (bottom-decile) portfolios are shown in red
(blue). Each bar shows the total weight of a category, and the black lines indicate the contribution
of each portfolio in the category.

In addition, Panels A and B of Figure @ give heatmaps for the weights on all decile
portfolios of the first six PCA factor and XS-shape-PCA factors with yxg = 1. The horizontal
axis depicts the characteristics and the vertical axis the bottom- to top-decile portfolios. Positive
(negative) weights are shown in green (red).

Figures and @ show the weights of factors that only exploit the time-series mean target
(TS-mean-PCA factors) and alpha target (TS-alpha-PCA factors), respectively. In particular,
Panels A and B of Figure @ show the weights on the extreme-decile portfolios of the first six

PCA factors and TS-alpha-PCA factors with the penalty on the alpha target being *yiarlé)ha = 15,

respectively. Panels A and B of Figure @ show the weights on the extreme-decile portfolios of
the first six PCA factors and TS-mean-PCA factors with the penalty on the mean target being
Y = 15, respectively.

For factors that exploit both the cross-sectional shape and time-series mean targets (XS-
shape-TS-mean-PCA factors), Panels A and B of Figure @ show the weights on the extreme-decile
portfolios of the first six XS-shape-PCA factors with vxg = 1 and XS-shape-TS-mean-PCA factors
with (yxs, 7E™) = (1,15), respectively.

For factors that exploit both the cross-sectional macro and time-series mean targets (XS-

macro-TS-mean-PCA factors), Panels A and B of Figure @ show the weights on the extreme-decile
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portfolios of the first six XS-macro-PCA factors with yxg = 1 and XS-macro-TS-mean-PCA factors
with (yxs, 7E™) = (0.5,15), respectively.

D.2 Performance

This section includes figures that illustrate the out-of-sample performance of the TS-mean-PCA
and XS-shape-T'S-mean models.

Similar to Figure B in the main body of the manuscript, Figure @ illustrates how the
out-of-sample performance of the TS-mean-PCA model varies with the number of factors and the
penalty parameter. Panels A, B, C, and D give heatmaps for the out-of-sample Sharpe ratio,
root-mean-squared pricing error across the 370 decile portfolios, pricing error for the FF5-alpha-
weighted portfolio, and average unexplained variance across the 370 decile portfolios, respectively.
In each panel, the vertical axis depicts the number of factors in the model and the horizontal axis

the penalty parameter, y3$*". Pricing errors are reported in basis points and average unexplained

variances in percentage.

To complement Figure @ in the main body of the manuscript, which illustrates the out-of-
sample performance of the five-factor XS-macro-TS-mean-PCA models, Figure @ illustrates how
the out-of-sample performance of the one- to six-factor models varies with the penalty parameters
on the cross-sectional shape and time-series mean targets. Panels A, B, C, and D give heatmaps
for the Sharpe ratio, root-mean-squared pricing error across the 370 decile portfolios, root-mean-
squared pricing error across the 37 top-minus-bottom portfolios, and average unexplained variance
across the 370 decile portfolios, respectively. Each panel includes six sub-figures that correspond to
models with different numbers of factors. In each sub-figure, the vertical axis depicts the penalty
on the shape target and the horizontal axis the penalty on the mean target. Root-mean-squared

pricing errors are reported in basis points and unexplained variances in percentage.
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Figure D.1: PCA and XS-shape-PCA factor weights on extreme-decile portfolios

Panels A and B of this figure show the in-sample weights on the extreme-decile portfolios of the first six PCA factors
and XS-shape-PCA factors with vxs = 1, respectively, with the horizontal axis giving the characteristic categories.
All factors are normalized to have positive returns. The weights on the top-decile (bottom-decile) portfolios are
shown in red (blue). Each bar shows the total weight of a category, and the black lines indicate the contribution of
each portfolio in the category.
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PCA and XS-shape-PCA weights on all decile portfol

Figure D.2
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Figure D.3: PCA and TS-alpha-PCA factor weights on extreme-decile portfolios

Panels A and B show the in-sample weights on the extreme-decile portfolios of the first six PCA factors and TS-
alpha-PCA factors with 'yalpha = 15, respectively, with the horizontal axis giving the characteristic categories. All
factors are normalized to have positive returns. The weights on the top-decile (bottom-decile) portfolios are shown
in red (blue). Each bar shows the total weight of a category, and the black lines indicate the contribution of each
portfolio in the category.
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Figure D.4: PCA and TS-mean-PCA factor weights on extreme-decile portfolios

Panels A and B show the in-sample weights on the extreme-decile portfolios of the first six PCA factors and TS-
mean-PCA factors with ™ = 15, respectively, with the horizontal axis giving the characteristic categories. All
factors are normalized to have positive returns. The weights on the top-decile (bottom-decile) portfolios are shown
in red (blue). Each bar shows the total weight of a category, and the black lines indicate the contribution of each
portfolio in the category.
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Figure D.5: PCA and XS-shape-PCA factor weights on extreme-decile portfolios

Panels A and B of this figure show the in-sample weights on the extreme-decile portfolios of the first six PCA factors
and XS-shape-PCA factors with vxs = 1, respectively, with the horizontal axis giving the characteristic categories.
All factors are normalized to have positive returns. The weights on the top-decile (bottom-decile) portfolios are
shown in red (blue). Each bar shows the total weight of a category, and the black lines indicate the contribution of
each portfolio in the category.
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Figure D.6: XS-shape-PCA and XS-shape-TS-mean-PCA factor weights on extreme portfolios

Panels A and B show the in-sample weights on the extreme-decile portfolios of the first six XS-shape-PCA factors
with yxs = 1 and XS-shape-T'S-mean-PCA factors with (vxs, v7§™") = (1, 15), respectively, with the horizontal axis
giving the characteristic categories. All factors are normalized to have positive returns. The weights on the top-decile

(bottom-decile) portfolios are shown in red (blue). Each bar shows the total weight of a category, and the black lines

indicate the contribution of each portfolio in the category.

(A) XS-shape-PCA with yxs =1

(B) (vxs, vRs™) =

(1,15)

Factor 1 Factor 1
0.10, 0.10
Shape metric: 8.23 Shape metric: 20.89
0.08 N Top decile 0.08 W Top decile
0.06 B Bottom decile 0.06 B Bottom decile
0.04 0.04
. . . L . L L
0.0 D o o W S ¢ e o 000 o & A\ N = o o
ey RSN <« o RNy NS 0 < E S e & S &
W o o & % ' N < = o o
& R & o < &
02 Factor 2 02 Factor 2
Shape metric: 98.34 Shape metric: 97.40
0.1 0.1
N —N N EwmE— ..I ..—-
—0.1 —0.1
—0.2 —0.2
D © o o N o> e & & . ©
e o SRS NS an\‘\‘\ & \&\\“\\ P \\\c\\““\ RN g%\\‘\o\ & . @\“\\“ &\\c&\"\\
o S N ol o S & .
p a° » W 5 % o w» o v N\\\\%
02 Factor 3 02 Factor 3
Shape metric: 98.15
0.1 0.1
o — E=Es— = ‘”‘--I.---'
—0.1 —0.1
—0.2 0.2
0.2 D O o W o b i 02 N AN o N W o
‘C«:C" N \\@\\‘ < A0 o RO N o o S o X _— = X0
\\Q\\\‘ W o© b W Q‘o\\ e
W O A
o
Factor 4 Factor 4
0.2 0.2
Shape metric: 93.04 Shape metric: 93.16
0.1 0.1
=N N N == N E—=E—N N N B
—0.1 —0.1
—02 D > & W & = ™ o —02 D & Y W o = A o
@ S A & & “\?‘\“\\ ' @ o N e & & Q\m\“\\ » e
© R > W o0 Q\IL\'\\\% W RN o W o0 ?\L\\\\\‘c
N hes 3
0o Factor 5 0o Factor 5
Shape metric: 97.74 Shape metric: 98.17
0.1 0.1
U.U.-_—_— 00 ---_-.-
—0.1 —0.1
0.2 N N . . . « —02 N . . N .
\Cxxc‘\H = \\c\\'\‘\\ RS o R &\v‘\’\\\ A & S . L,;\\‘\O A Q\‘?‘\‘\\\ 0
W W W o .2\&\\“’ W *° o ae
RN
02 Factor 6 02 Factor 6
Shape metric: 99.13 Shape metric: 97.56
0.1 0.1
_— e — == = == -—-—-.
—0.1 —0.1
02 D o o \W® N . =~ 02 & N & =~ o
‘c‘zc“ * \\r\‘\“ Rl . :&\‘\C oM \;S“\\ ) (X o g 52 o A @\“\Q o -x?v\’\\ ’ \C‘\Q
o » W oo o = o o o
& N 20 d N o

64



Figure D.7: XS-macro-PCA and XS-macro-TS-mean-PCA factor weights on extreme portfolios

Panels A and B show the in-sample weights on the extreme-decile portfolios of the first six XS-macro-PCA factors
with vxs = 0.5 and XS-macro-TS-mean-PCA factors with (yxs, ¥£s™") = (0.5, 15), respectively, with the horizontal
axis giving the characteristic categories. All factors are normalized to have positive returns. The weights on the

top-decile (bottom-decile) portfolios are shown in red (blue). Each bar shows the total weight of a category, and the

black lines indicate the contribution of each portfolio in the category.
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(B) (yxs,vEs™™) = (0.5,15)




Figure D.8: Performance of time-series mean PCA models

This figure illustrates how the out-of-sample performance of the time-series mean PCA model varies with the number
of factors and the penalty parameter. Panel A gives the heatmap for the out-of-sample Sharpe ratio and Panel B
for the out-of-sample root-mean-squared pricing error across the 370 decile portfolios. Panel C gives the heatmap
for the out-of-sample pricing error for the FF5-alpha-weighted portfolio, which is a portfolio whose weight on each
decile is proportional to the decile’s alpha with respect to FF5. Panel D gives the heatmap for unexplained variance
across the 370 decile portfolios. In each panel, the vertical axis depicts the number of factors in the model and the
horizontal axis the penalty parameter, 47 §*". Pricing errors are reported in basis points and average unexplained

variances in percentage.
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Figure D.9: Performance of XS-shape-TS-mean-PCA models

This figure illustrates how the out-of-sample performance of models varies with the penalty parameters on the cross-
sectional shape and time-series mean targets. Panels A, B, C, and D give heatmaps for the Sharpe ratio, root-mean-
squared pricing error across the 370 decile portfolios, root-mean-squared pricing error across the 37 top-minus-bottom
portfolios, and average unexplained variance across the 370 decile portfolios, respectively. Each panel includes six
sub-figures that correspond to models with different numbers of factors. In each sub-figure, the vertical axis depicts
the penalty on the shape target and the horizontal axis the penalty on the mean target. Root-mean-squared pricing
errors are reported in basis points and unexplained variances in percentage.
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Figure @ continued
(B) RMS,: all decile portfolios
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Figure @ continued

(C) RMS,: top-minus-bottom portfolios
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(D) @2: all decile portfolios
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