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Abstract

Implementing a state-of-the-art machine learning technique for causal identification

from text data, we document that women are under-cited relative to the quality

of their patents. For the equivalent patent with a lead female inventor, a patent

with a male lead inventor would have received 27% more citations. These effects

are magnified for corporate innovations. Male lead inventors in particular tend to

undercite patents with female lead inventors, while patent examiners of both genders

appear to be more even-handed. The under-recognition of female-authored patents

likely has implications for the allocation of talent in the economy.
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Female inventors appear to face significant obstacles when seeking patents. Women

face disparities in the approval of patents (Gavrilova and Juranek (2021); Jensen, Kovács,

and Sorenson (2018)), and they are underrepresented among inventors in patent applica-

tions more generally (Bell, Chetty, Jaravel, Petkova, and Van Reenen (2019); Subramani,

Aneja, and Reshef (2021)). A possible corollary of these findings is a selection effect:

assuming a patent is applied for and granted, patents with female inventors may be of

higher quality than average and, as a result, better cited. Surprisingly, however, standard

analysis of patent citation suggests that female-authored patents receive fewer citation

relative to male-authored patents. This difference in citation patterns would suggest

that either female inventors produce lower quality patents, or, more concernedly, their

patent quality is not fully recognized in the form of forward citations, a commonly used

measure.

Assessing whether a patent is undercited, relative to its actual quality is not a trivial

undertaking. Typically, citations serve as the de facto measure of a patent’s quality, even

though the measure is noisy. To determine whether female inventors face systematic

obstacles to citations of their work, versus simply producing lower quality patents, the

econometrician must disentangle actual quality from the citation outcome. In an ideal

setting, the econometrician would either randomize underlying quality across genders

or gender across patents. Natural experiments, however, that mimic this ideal or suitable

instrumental variables have been elusive.

We utilize a novel machine learning technique that allows measurement of the causal

contribution of gender to citation of patents of similar quality—causal bidirectional en-

coder representation from transformers or C-BERT (Veitch, Sridhar, and Blei (2020)).1

C-BERT estimates causal effects from observational text data, adjusting for confound-

ing features of the text, such as the subject or writing quality. It assumes that the text

content suffices for causal identification but is prohibitively complex for standard anal-

1This approach builds on leading approaches proposed in the computer science literature, including
recent papers by Khetan et al. (2022); Shao et al. (2021).
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ysis. C-BERT utilizes causally sufficient embeddings, (relatively) low-dimensional docu-

ment representations that preserve sufficient information for causal identification, thus

enabling efficient estimation of causal effects. The causal sufficiency reduces dimension-

ality yet preserves aspects of text that predict both the treatment and the outcome while

disposing of linguistically irrelevant information (which is also causally irrelevant). The

identification assumption is that the text contains all information necessary to measure

the desired effects (quality of the patent and forward citations, conditional on gender).

The intuition behind our use of C-BERT is straightforward. Our goal is to identify the

expected change in outcome if we apply treatment while holding fixed any mediating

variables affected by the treatment that also might affect the outcome. Assuming that

the text of a patent contains sufficient information to adjust for confounding (common)

causes between the treatment and outcome, we can use textual analysis to identify the

causal effect of treatment. Figure 1 illustrates the assumption of the C-BERT mediating

approach. The next step is to train the model. First, we use a pre-trained BERT model

provided by Google (TensorFlow) to transform the text of each patent into a numerical

representation. Next, given that the sample is dominated by male-authored patents, we

reduce the sample to an equal set of male- and female-authored patents using a propen-

sity score estimation network that matches on text across gender. Finally, we train two

neural networks—one per gender of the lead patent author—using the BERT numerical

representations as inputs and citations as outputs, representing a mapping from embed-

ding vectors to citation counts. The first mapping is trained using the subset of data

where females are the lead authors of the patents, while the second mapping is trained

using the data where males are the lead authors. Unlike the standard OLS approach,

the neural network approach captures the complex and often nonlinear relationships

between inputs and outputs, particularly when dealing with high-dimensional inputs.

Having obtained parameters for each gender’s citation-prediction model, we then take

the patent data for each gender and run it through the prediction model trained on the
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opposite gender’s inputs and outputs. This produces a set of counterfactual citation

counts for each patent, holding all else equal, and changing only the gender of the lead

author. The procedure is illustrated in Figure 2.

Our main sample covers all utility patents granted by the U.S. Patent Office (USPTO)

from 1976 through 2021. The extended follow-up period allows us to measure the impact

of a patent without concerns of forward citations being right-censored. We label each

patent by the inferred gender of the inventors following Desai (2019), textually matching

the first names of the lead inventor to data from the Social Security Administration and

the world intellectual patent organization.

Our analysis begins by documenting that, even when no adjustments are made, there

is a statistically significant difference in the number of forward citations for patents

authored by women versus men in our matched data. This pattern persists even when

we control for factors such as the identity of the patent examiner, the identity of the

correspondent for the patent submission (usually the law firm involved), the art unit

of the patent, and the patent issue year. The distributional plots of forward citations

confirm the statistical tests and suggest that citations of female-authored patents are

slightly skewed downward.

After we controlled for differences in the quality of patents based on the gender of

the lead author using C-BERT, we find that women received approximately 27% fewer

citations than men for equivalent patents in the same art unit and evaluated by the same

examiner. This equates to approximately 4.6 fewer citations per patent. The impact of

this bias is pronounced for the most highly cited patents, with female-authored patents

being roughly 20% less likely to reach the top decile of citations. These results suggest

that, while patents lead-authored by women would receive additional citations if they

were lead-authored by men, but the average treatment effect of being a female mask

these differences. This is consistent with the possibility that female-authored patents are

only approved if they are of higher quality than equivalent male-authored patents.
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Our results hold across NBER’s major categories and subcategories of patent technol-

ogy, with some heterogeneity in subcategories.2 The effects are ameliorated in emerging

technology fields, where patents with female lead inventors do not face under citation,

hinting at the possibility that females do not face established barriers in these newer

fields. The results are robust to a variety of alternative specifications and do not seem to

be attributable to sample selection, our definition of gender, or model overfitting.

We next examined the role of inventors and examiners in the undercitation of patents

with female lead inventors. Our analysis found that, compared to patents with female

lead inventors, patents with male lead inventors undercite past patents written by female

lead inventors more. In contrast, both male and female examiners appear to slightly

undercite female-led patents. These examiner effects are relatively small in terms of

their economic impact, compared to the overall undercitation effect. When controlling

for art units and other patent characteristics, these results suggest that the undercitation

of female patents is largely due to male lead inventors.

There are a few limitations to our analysis that should be noted. First, C-BERT relies

on the assumption that the text of the patent captures all the factors that influence the

number of forward citations. While it is not possible to test this assumption directly,

patents may be an ideal setting for this approach because the text of the patent is closely

related to the outcome of interest. We also included controls for potential confounding

factors that are not accounted for by our neural networks. Another potential concern

is the accuracy of our model in computing counterfactual outcomes. To address this,

we conducted a semi-synthetic dataset exercise to demonstrate the high accuracy of

our model. A third concern is the possibility of overfitting, which is a common issue

with machine-learning approaches. We mitigated this risk by reducing the number of

iterations of the entire training dataset (EPOCH) and found similar results.

Our results of course should be interpreted with care. Although our evidence sug-

2We also consider this test using the Cooperative Patent Classification (CPC).
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gests women receive fewer citations for patents of equal quality, we do not argue that

this represents discrimination, as we cannot observe the intent of examiners or inventors.

Further research will be necessary to establish why patents with female lead inventors

are undercited.

That said, our findings have potentially important implications. First, the literature

has highlighted that innovation is motivated by the expected profits derived from the

property rights granted to patentees, Moser (2005, 2013).3 If women are not equally rec-

ognized for equivalent patents, this may discourage them from entering the innovation

economy, potentially reducing contributions from half of the population. Too, this may

exacerbate the already substantial wedge between men and women in science, technol-

ogy, engineering and mathematics (STEM) fields (Beede, Julian, Langdon, McKittrick,

Khan, and Doms, 2011), leading to further inefficient allocation of labor.

A second implication concerns the validity of research that relies on forward citations

of patents as a measure of patent quality. To the extent that female-authored patents are

systematically undercited, relative to their actual quality, the use of forward citations as

a measure or control for quality may be contraindicated. Given the large literature in

economics, finance, and innovation that relies on forward citations to measure patent

quality, these findings suggest that a re-examination of prior findings may be warranted.

Our paper makes a number of additional contributions to the literature. First, our

findings contribute to an emerging literature studying obstacles that inventors face in the

U.S. patent system. Research has studied impediments that women and minorities face

in obtaining patents, with emphasis on the unequal application of laws (Cook (2014)),

unequal opportunities (Cook (2020); Cook and Kongcharoen (2010)), and discrimina-

tion by patent examiners (Desai (2019)). These obstacles all result in depressed levels

of applications and lower success rates for females in obtaining patents, Jensen, Kovács,

and Sorenson (2018). In contrast to this literature, which focuses on causally identify-

3In related research, the marginal investor values patents Aghion et al. (2013); Hall et al. (2005);
Hirschey and Richardson (2004); Hirshleifer et al. (2013).
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ing differences in patent applications and approvals, our findings focus on a relatively

unexplored question: whether women also face obstacles in citation of their patents.

Second, we contribute to the broad literature studying obstacles that women face

in various research fields. Recent work by Sherman and Tookes (2022) documents that

women face discrimination in financial economics publishing and job placement. Sar-

sons, Gërxhani, Reuben, and Schram (2021) and Sarsons (2017) show women receive

less credit attribution for co-authored work in economics, while Card, DellaVigna, Funk,

and Iriberri (2020) and Hengel and Moon (2020) show that, controlling for quality, fe-

male academics in economics receive fewer citations for their work. Koffi (2021) finds

that undercitation in economics is more likely to be of women-authored papers and that

male authors are more likely to cite male-authored papers. Chawla (2016) and Koffi

and Marx (2021) study broader academic fields. Our work suggests parallels in patent

citations as well.

Third, our paper makes an important methodological contribution. A large literature

across many fields has demonstrated that big data has the potential to revolutionize re-

search in general and finance and economics research in particular (Goldstein, Spatt, and

Ye (2021)). In economics, a small but rapidly growing branch of the big data literature

uses natural language processing to quantify text, allowing it to be used in empirical

applied microeconomics research (Gentzkow, Kelly, and Taddy (2019a)). A partial list

of papers in this vein includes the work of Athey and Imbens (2019); Bellstam, Bhagat,

and Cookson (2021); Cong, Liang, and Zhang (2019); Erel, Stern, Tan, and Weisbach

(2021); Gentzkow, Kelly, and Taddy (2019a); Gentzkow, Shapiro, and Taddy (2019b);

Hanley and Hoberg (2019); Hansen, McMahon, and Prat (2018); Li, Mai, Shen, and Yan

(2021); Loughran and McDonald (2016); Rouen, Sachdeva, and Yoon (2022); Routledge,

Sacchetto, and Smith (2017). Recent advances in computer science have produced new

methods that allow the use of text embedding to mediate and identify causal effects. Our

paper introduces these methods to finance and economics, proposing a new technique,
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C-BERT, that uses text as a mediator, allowing us to causally identify the effect of gender

on citations of patents. To the best of our knowledge, we are among the first researchers

to apply deep learning in economics and finance for causal inference using language.

Finally, given the challenges of replicating results in empirical research, we intend

to make our code and data fully available via a GitHub repository for researchers as

a public good. This repository will allow future researchers to apply C-BERT to other

applications in finance and economics while also allowing for simple replication and

extensions to all results presented here.

1 Data

Our main analysis uses data on patent content, citations, and attributes. Our main

sample covers all utility patents granted by the U.S. Patent Office (USPTO) from 1976

through 2021. This allows for at least a 20-year follow-up history, extending through the

patent’s expiration.

1.1 Patent content

Our sample of patents comes from the USPTO’s Patent Examination Research Database

(PatEx) dataset. We study the quality of the patents through the lens of patent abstracts,

as they provide a clear and concise text-only summary of the core contribution of the

patent. Importantly, this is the key text input into the C-BERT model.

Using the abstract of patents presents several key advantages over using the full body.

First, use of abstracts alleviates concerns about differences in the quality of the figures

contained within the patents that could substitute for the quality of the writing. Second,

abstracts are a good proxy for the contents of a patent as well as what inventors and

examiners review. Third, from a practical standpoint, using the full text of the patents

is computationally prohibitive. Even with access to a high-powered computing cluster,
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using abstracts in our setting takes several days to complete. Expanding our analysis to

the full text would render the analysis intractable.

1.2 Patent Citations

Importantly, there is a key difference between patent citation counts and actual patent

quality. While historically forward citations have been used as a proxy for patent quality,

the key point of our analysis is to demonstrate that this measure is systematically biased

down for female-authored patents. We therefore distinguish between patent citations

(the outcome for a patent) and quality, which is mediated for by using the text of the

patent. Patent forward citation counts are obtained through use of data from the USPTO.

As an alternative to simple counts of forward citations, we also consider whether

a patent receives citations in the top decile of all patents. Patent forward citations are

highly skewed in their distribution, with only a few patents receiving a disproportion-

ately high number of citations.

1.3 Gender of Inventors and Examiners

Our main treatment variable is the gender of the lead inventor (first author). One data

limitation with this, however, is that inventors do not disclose their gender when apply-

ing for a patent. Because of this, we must infer them from third-party sources, (Graham,

Marco, and Miller, 2018). To disambiguate the gender of the inventor, we implement a

name disambiguation algorithm similar to that of Desai (2019). We use the first name

of the lead inventor to identify the gender of the inventor (Tzioumis, 2018). Starting

with the PatentView data, we obtain the first names of each inventor of each patent. For

patents with multiple inventors, we rely on the name of the first inventor due to that

person’s prominence. Next we classify the gender of patent inventors using state-level

data on the frequency of names obtained from the Social Security Administration (SSA)
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(Comenetz, 2016). We assign a gender when the percentage of names in the state belong-

ing to that gender is above 70%.4 If the first name does not match the SSA dataset, our

second step uses a similar process but utilizing a cross-country dataset from the World

Intellectual Property Organization (WIPO) (Martinez, Raffo, Saito, et al., 2016). We drop

patents when there is no distinct gender determination for the lead inventor.

One challenge is that our sample shows that women are underrepresented as inven-

tors on patents (Hunt et al., 2012). As a result, we need to balance our sample across

patents with lead inventors from each gender. To do this, we use all patents with a female

lead inventor and construct a subsample of patents with male lead inventors. We then

estimate a propensity model using a one layer logit-linear neural network, where the

objective function is the binary-cross-entropy between the predicted treatment indicator

and the true treatment indicator. The output of this neural network is the probability

that this patent is written by a female lead author.

Next we randomly select a subsample of male authored patents from the full dataset

(without replacement). We then drop (i) all patents in the male subsample whose es-

timated propensity of being female-authored is very low (less than 3%) and (ii) the all

patents in the female subsample whose estimated propensity of being female-written is

very high (greater than 97%). The intuition is that, if there is no matching sample in the

male data that is close in nature to a patent written by a female lead-author, the patent

is dropped, and, if there is no matching sample in the female data that is close in nature

to a patent written by a male lead-author, the patent is also dropped.

1.4 Examiner and Inventor Added Citations

Typically, patent applications include a list of related patents and supporting material.

Citations to patents may be added in two ways. First, the inventors cite precedent

4We take a conservative approach and apply a high confidence interval to reduce Type I errors when
identifying males and females. We discuss this further in the data and robustness section.
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patents in their applications. Second, examiners will identify additional citations that

are missing from the patent and request that these be included (Farre-Mensa, Liu, and

Nickerson (2022)). Starting in 2001, and more clearly since 2003, the USPTO started

to disclose whether the citation originated from the examiner or the inventor. For the

purposes of the analysis studying the source of a citation, we create additional samples

of patents from 1976 through 2021. Note, these samples only only record citations that

were explicitly added by examiners and inventors.

1.5 Other Patent Attributes

When an inventor files a patent application with the USPTO, the application is assigned

a USPC class and subclass based on its field of technology. The application is then

assigned to an art unit comprised of several examiners who specialize in that particular

technology class and subclass. We use the art unit to which the patent is assigned as

our proxy for technology type grouping. Our baseline sample contains 898 art units and

11,953 patent examiners.

As an alternative and intuitive patent technology grouping is provided by the NBER

patent category, which is also reported in the USPTO PatentView database. The NBER

classification includes six major categories (computer and communications, drugs and

medicine, electrical, mechanical, chemical, and other) and 37 sub-categories. We use

the six categories and 37 sub-categories to examine heterogeneity by patent technology

type, allowing us to present individual subcategory estimates in digestible manner. In

further robustness tests we also consider the Cooperative Patent Classification (CPC) of

the patents.

Patents are typically filed with the assistance of a patent attorney, who may file

many them on behalf of different inventors. The USPTO refers to these law firms (or

legal department of the patent assignee firm) as “customers,” and each such entity is

assigned a customer number. Approximately 60% of observations have a legitimate
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customer number. If the observation lacks a valid customer number, we assign it a

common value (“unassigned”). These identifiers are useful because they allow us to

account for possible commonalities in writing style across patent attorneys that may

influence the text of the final submission. Our baseline sample contains 9,516 unique

customers.

2 Empirical Strategy

Our analysis presents both methodological and computational challenges. First, we must

represent complex and often subtle differences in the text of the patents in a parsimo-

nious and computationally useful form. Second, we need to relate that text to ultimate

patent forward citations. Finally, we must compute the counterfactual of citations based

on the gender of the inventor.

Below, we outline our empirical strategy to address these challenges. First, we dis-

cuss how we create a high-dimensional representation of text that encapsulates the in-

formation necessary to distinguish patent quality. Second, using this representation, we

provide an overview of the C-BERT methodology and how we train our model. Finally,

we discuss the key identification assumptions implicit in our approach and their validity.

2.1 High-Dimensional Representation of Patent Text

There are a variety of possible approaches to transform text into numerical form. Here

we use a Bidirectional Encoder Representations from Transformers (BERT) approach to

transform the text of each patent into a high-dimensional numerical vector. Developed

by Google (Devlin, Chang, Lee, and Toutanova, 2018), BERT has become the leading ap-

proach in many commercial applications, including Google’s search platform. BERT con-

structs embedding vectors that are numerical representations of the text, which preserve
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both the meaning of individual words and the underlying context of each word.5 The

BERT encoder module (Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, and

Polosukhin (2017)) produces a high-dimensional representation with 768-dimensional

embeddings that each represent the text of a patent’s abstract.

The encoder architecture works as follows. Let W denote the original input sentence

in words. As shown in Figure 3, before entering the encoder, W is broken down into

three parts: a token embedding ET
W , which represents the content of the sentence; a

segmentation embedding ES
W , which labels tokens with the sentence they belong to; and

a positional embedding EP
W , which represents the relative distances between each pair of

tokens (a “token” is a word or a part of a word if the word is long). A linear combination

of these three embeddings then goes into the encoder.

The first step of the encoder is a multi-headed attention layer. Its mechanism can

described as follows. Let EW denote the input embedding of the encoder. For a given

token Wi in sentence W, the embedding is denoted EW
i . The attention layer calculates

the projection of EW
i onto all token embeddings, including itself, using a dot product.

The final output of the single-headed attention layer for each token embedding is a

weighted average of all token embeddings, where the weights are the cosine projection

coefficient of the current token embedding on to each token embedding. A multi-headed

attention layer is analogous to a forest of single-headed attention layers. To construct a k-

headed attention layer using a pk dimensional token embedding, we randomly split the

pk dimensional embedding of each tokens into k groups of p dimensional embeddings.

We then build a single-headed attention layer with one subset of the token embeddings.

Finally, we take a weighted average of all of the output of the k heads.

The output of this multi-headed attention layer is then passed through a normal-

ization layer with residual connection. Residual connection is achieved by passing the

input of the multi-headed attention layer directly to the normalization layer along with

5See Jha, Liu, and Manela (2022) for an excellent discussion of BERT.
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the output of the multi-headed attention layer. This residual connection allows gradients

to directly flow from the input of the multi-headed attention layer to the next layer while

not going through the multi-headed attention layer. After the normalization layer, the

output is passed through a feed forward layer, which converts the output of the normal-

ization layer to the same format as the input of the encoder module. This allows us to

stack multiple encoder modules together, where the previous encoder’s output can be

used as the input for the next encoder. The reason we stack encoders is that the first

encoder learns the contextual relationship between pairs of tokens, the second encoder

learns the relationship between pairs of pairs of tokens, and so forth. For the following

discussions in this paper, we use the word "embedding" to mean the output embedding

of the encoder at the text level.

The pre-trained BERT model uses the encoder architecture to train for two tasks:

masked language modeling (MLM) and next sentence prediction (NSP). To train the

MLM task, a random subset of tokens in the input sentence is masked with a trivial

embedding vector. Then, after this sentence goes through the encoder, the output goes

through a fully connected linear layer and a softmax layer to predict what the masked

tokens in the original sentence are. This loss is computed using cross-entropy. To train

for next sentence prediction, the encoder takes pairs of sentences as inputs and predicts

whether the second sentence should appear after the first sentence. This loss is computed

using binary-cross-entropy. The final trained BERT model can output embeddings of

sentences or entire texts that represents not only the meaning of the tokens but also the

contextual relationship between tokens and sentences.

2.2 Causal BERT (C-BERT)

Having created high-dimensional representations of patent text, the second challenge is

to establish the relationship between this data and patent citations. To do so, we use a

novel leading machine learning technique called Causal Bidirectional Encoder Represen-
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tations from Transformers (C-BERT) that allows us to casually estimate the contribution

of language on a binary treatment variable. C-BERT comes from recent advances in com-

puter science, including Khetan, Ramnani, Anand, Sengupta, and Fano (2022); Shao, Li,

Gu, Qian, and Zhou (2021), which has developed methods to use text embedding as a

mediator Veitch et al. (2020). In this paper, we apply this new technique to use the text

of patents as a mediator to causally identify the role of gender on patent citations. To the

best of our knowledge, ours is among the first papers to apply deep learning to causal

inference with language in the field of economics and finance.

C-BERT is a neural-network-based architecture that estimates counterfactuals of a

binary treatment under the assumption that all of the information (covariate) needed

for causal identification is contained within a given text. As shown in Figure IA1, the

input data for training contains three types of information: the texts of patents, gender

indicators of the inventor(s), and the observed number of citations on the patents. There

are four neural networks that need to be trained: a BERT model for generating text

embeddings, a logit-linear model the maps embeddings to treatment propensities, and

two two-layer perceptrons that map from embeddings to male and female predicted

number of citations, respectively. The final loss function is a weighted average of the

losses of these four neural networks.

The C-BERT methodology in our context has two key steps. First, it uses a pre-trained

BERT embedding to transform the text of each patent into a high-dimensional numerical

vector. The embedding vectors are numerical representations of the text that preserve

both the meaning of individual words and the underlying context of each word. Second,

C-BERT computes the number of citations an inventor would have received if that person

were assigned the opposite gender. As mentioned above, this is accomplished by training

two neural networks, where each model represents a mapping from embedding vectors

to our outcome variable, forward citations, with the first mapping trained using the

subset of patents with a female lead inventor and the second mapping trained using the
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subset of patents with a male lead inventor. The two estimated mappings, combined

with the high predictive performance of neural networks, allow us to approximate the

true mappings.

Armed with our two mappings, we can then estimate the counterfactual of gender

on citation. That is, we can ask the following: how many citations would a patent

whose lead inventor is female have received if the lead inventor had instead been male,

and vice versa? We estimate this by passing the subset of patents with a male lead

inventor through the mapping trained on the embedding vector of female lead inven-

tor patents, and passing the subset of patents with female lead inventors through the

mapping trained on the embedding vector of male-lead-inventor patents. From this, our

mapping estimates the number of citations for the counterfactual number of citations by

gender.

The procedure is depicted in Figure 2. First, we run the trained C-BERT model

where the input data contains the texts of the patents and gender indicators of the

author(s). The texts are first passed through the trained BERT model to generate a

vector embedding for each patent. Then each embedding-gender pair is passed through

a decision step: if the author(s) are male, the embedding is passed to the female citations

network, and, if the author(s) are female, it is passed to the male citation network. The

counterfactual number of citations is then computed by these two networks. In parallel,

regardless of the gender indicators, each embedding is passed through the propensity

network to estimate the treatment propensity of this patent. Finally, the output of the

model is a set of counterfactual citation-treatment propensity pairs that each correspond

to one patent.

The framework can be expressed more formally in mathematical terms. We denote

the text in the abstract of the ith patent as Wi. We fine-tune the BERT model f to map Wi

to Zi where Zi is the embedding of the abstract. Then we use a logit-linear network g to

map Zi to a real number, which represents the treatment propensity of this patent. Here
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the treatment propensities are the probability that this patent has a female lead inventor.

g(Zi) = P(Ti = 1|Zi) = (g ◦ f ) (Wi)

In addition, we have two citation networks Q1 and Q0. Q1 maps an embedding

vector to the predicted number of citations if the patent has a female lead inventor, and

Q0 maps an embedding vector to the predicted number of citations if the patent has a

male lead inventor. Mathematically, we define a piecewise mapping Q that represents

the two networks:

Q(Ti, Zi) = E(Yi(Ti)|Zi) = E(Yi(Ti)| f (Wi))

where Yi(0) and Yi(1) denote the potential outcomes of the ith patent. In our case,

these potential outcomes are the number of forward citations. Given these mappings

represented by neural networks, we can then estimate the average treatment effect (ATE)

and the average treatment effect on the treated (ATT) using the following equations for

a set of N patents.

ATE =
N

∑
i=1

[E(Yi(1)|Zi)− E(Yi(0)|Zi)] =
N

∑
i=1

[Qi(1, Zi)− Qi(0, Zi)]

ATT =
1

∑N
i=1 Ti

N

∑
i=1

Ti [E(Yi(1)|Zi)− E(Yi(0)|Zi)] =
1

∑N
i=1 Ti

N

∑
i=1

Ti [Qi(1, Zi)− Qi(0, Zi)]

The resulting output of our C-BERT model is the actual outcome and a counterfactual

outcome. In our application, this is the number of citations and the estimated number

of citations the opposite gender would have received.

2.3 Assessing C-BERT’s Identification Assumptions

There are three assumptions that the econometrician must consider when applying C-

BERT. In this section, we explain our assumptions, assess their validity, and provide a
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checklist for future researchers when applying C-BERT.

2.3.1 Text Renders the Effect Identifiable

The first necessary condition is that the text of the documents must render the effect

identifiable. Said differently, the effect that the econometrician is measuring must be

measurable directly from the text. Similar to an an exclusion restriction within other

identification strategies, this cannot be formally tested. Instead this condition must be

inspected and potentially falsified by considering other channels. In the context of this

paper, the quality of the patent should be measurable by the content (text) of the patent

itself. Patent examiners read the text of the proposals to evaluate the novelty of patents

prior to granting a patent. As a result, this necessary condition is likely satisfied in our

context.

2.3.2 Embedding Method Extracts Semantically Meaningful Information

The second necessary condition is that the embedding method extracts semantically

meaningful text information relevant to the prediction of both treatment, T, and out-

come, Y. In our setting, this means that embedding, a lower-dimensional representation

of the text, is sufficient to capture the gender and quality of citations.

To assess the quality of our embedding representations, we consider synthetic tests to

measure the accuracy of our model. To do this, we first compute the synthetic outcomes

of all of the patents across the full dataset. In doing this, we used a random linear trans-

formation that takes a uniformly random 768 vector with values from 0 to 1. Then we

take the dot product of this random vector with each patent’s 768 dimensional embed-

ding. Finally, the resulting values are the synthetic outcome for females, and, for males,

we add a known scalar to the function. In this approach, we know the true treatment

effect and can evaluate the model. Studying the quality of our C-BERT model, we find

that it discovers the treatment effect with an accuracy of over 90%. This high level of
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accuracy suggests that the embedding method clearly extracts semantically meaningful

information.

2.3.3 Conditional Outcome and Propensity Score Models are Consistent

Our third and final necessary condition is that the conditional outcome and propen-

sity score models be consistent. That is, the treatment and control groups should have

common support. To address this, we follow the procedure of Veitch et al. (2020) and

drop the patents with either below 3% treatment propensity or above 97% treatment

propensity. In our study, the treatment is the female gender indicator of the lead inven-

tor. Therefore a treatment propensity of at most 3% implies that this patent, as defined

by the embedding of the text, almost certainly has a male lead inventor. On the other

hand, a treatment propensity of at least 97% implies this patent almost certainly has a

female lead inventor. This procedure preserves over 80% of our data after dropping the

propensity score outliers. Importantly, our results remain robust, suggesting that the

conditional outcome and propensity score models are consistent.

3 Do Citations to Patents Differ By Gender of Inventor?

Do forward citation counts for patents differ across the gender of the lead inventor?

To answer this, we first demonstrate that there appears on the surface to be a modest

difference in the citation counts for female- and male-authored patents when using a

standard data analysis approach. This simple analysis, however, masks the underlying

true causal effects of gender on patent citation. We next use C-BERT to mediate for the

quality of the patent, and show that women lead inventors receive fewer citations to

their patents than they would have received if they were male.
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3.1 Comparing Between Genders Without Model Adjustments

Plotting the unconditional differences in citations by gender, we can illustrate the simi-

larity in patent citations. The histogram for citations for male and female lead inventors,

plotted in Panel A of Figure 4, visually demonstrates female receive fewer citations than

males.6 Estimating the mean difference in citations between genders suggests that male

lead inventors receive statistically more citations than female lead inventors, on average

(18 citations for males, 15 for females, F-stat = 518, Table 1). Testing the difference in

distributions, we find a Kolmogorov-Smirnov statistic of D = 0.066426, with a p-value

of = 2.2 × 10−16, further suggesting that male and female forward citations come from

a different distribution.

We more formally consider the contribution of gender on patent citations by estimat-

ing the following OLS model.

Yi = β1 I (FemaleInventori) + δGrantYear + δArtUnit + δCustomer×Examiner + εi, (1)

where patent and year are represented by i and t, respectively. Yi is our outcome of

interest, forward citations. Our specification includes fixed effects for customer-examiner

pair (δcustomer×examiner), art unit (δArtUnit), and year of grant (δGrantYear), to control for

time-invariant heterogeneity across patent applications as well as time trends. All errors

in this paper, unless otherwise noted, are double-clustered by patent issue year and

customer. β1 is our coefficient of interest, where a positive value would indicate that

women receive more citations than males, and vice versa.

The estimates are presented in Table 2. The estimates from this table suggests that

female lead investors receive between 1.2 to 2.9 fewer citations. The fact that we find a

significant undercitation of female lead investors could be considered surprising, given

the obstacles female’s face when patent filing and granting, as documented elsewhere.

6To address skewness and show more clearly, we the natural logarithm of citations and present a
histogram in Panel A of Figure IA2
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That literature would also suggest a selection effect, whereby patents granted to female

inventors should be of higher quality and thus, using forward citations as the accepted

measure of patent quality, should receive more citations. This expectation is supported

by the literature. For example, in economics, Card, DellaVigna, Funk, and Iriberri (2020)

reports that female-authored papers on average receive 25% more citations than simi-

lar male-authored papers. Similarly, Hengel and Moon (2020) report that, within top

economic journals, articles by men are cited less than those by women. More recently,

Sherman and Tookes (2022) finds evidence consistent with these findings for papers pub-

lished in finance. In all three of these cases, because women face obstacles to publishing

in top economics and finance journals, female-authored papers that are eventually ac-

cepted for publication at those journals are ultimately of higher quality.

The estimates from the simplistic model thus seem suspicious. This result, however,

may stem from the fact that citations are a noisy measure of quality and may them-

selves be biased based on gender of the inventor. It is this that our machine learning

methodology next seeks to determine.

3.2 Adjusting for the Quality of Patents Using C-BERT

As a reminder, C-BERT first trains two mappings, one using only patents from male

inventors and a second for female inventors. Armed with our two mappings, we pass

the male patents through the female mapping, and vice versa. From this, we can estimate

the counterfactual number of citations a patent would have received had its lead author

been of the opposite gender.

With our two mappings, we were able to calculate the number of citations that

would have been received if the lead inventor had been of the opposite gender. We

used these calculations to generate the counterfactual number of citations for all patents,

̂ForwardCitationi, and plotted the updated histogram of citations in Panel B of Figure 4.7.

7To address skewness and show more clearly, we the natural logarithm of citations and present a
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When compared to Panel A, we can see that the C-BERT approach produces a histogram

with a similar distribution.

To further consider the relative bias in citations at the patent-level, we need to com-

pare the actual forward citation to the model-implied citations. Specifically, we calculate

the following:

Biasi = ForwardCitationi − ̂ForwardCitationi. (2)

where ForwardCitationi is the actual number of citations to a given patent authored

by a given gender and ̂ForwardCitationi is the number of citations implied if the lead in-

ventor had been of the opposite gender. A positive difference would imply that a patent

has received more citations than the quality-adjusted number suggested by opposite-

gender model.

Plotting the difference between actual and model implied citations, Figure 5 visually

suggests three important differences. First, and most importantly, we find that Biasi is

negative for female lead inventors (plotted in red). The difference between female cita-

tions minus implied-by-male-model has a mean and median of -2.69 and -0.25, respec-

tively. In contrast, for male lead inventor patents (plotted in blue), we see a difference

with a mean and median of 1.10 and 0.13, respectively. Second, we find that these dif-

ferences are skewed for both genders. Third, we find that the difference for any given

patent is not strictly positive for males or negative for females. That is, as we would

expect, some female lead inventors are over-cited, and some males are undercited.

We re-estimate the OLS in Equation 1, replacing the actual number of forward cita-

tions for a patent with Biasi. As a reminder, a negative estimate of our coefficient of

interest, β1, suggests that women-led patents are undercited relative to the equivalent

male-led patent.

The estimates in Table 3 present consistent evidence suggesting that patents with

female lead inventors are undercited, relative to what would be expected had the patent

histogram in Panel B of Figure IA2
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remained otherwise the same, save for the lead inventor instead being male. Interpreting

our point estimate, relative to the sample mean of the number of forward citations,

we find underciting of 27% for patents with female lead inventors. These results are

unchanged when including patent-year fixed effects, art-unit fixed effects, and various

customer and examiner fixed effects. The relative stability in estimates suggests that our

analysis does not suffer from a correlated omitted variable, Oster (2019).

Next we consider the difference in the propensity for female lead patents to be in

the top-decile of patents by forward citations. To study this we once again estimate

Equation 1 but replace the dependent variable with an indicator that takes the value of

one if the patent is in the top decile of citations based on the mapping for the opposite

gender but is not based on observed data.

Our estimates find consistent evidence suggesting that patents with female lead in-

ventors would have been more likely to be highly cited if their lead inventors had been

male. As reported in Table 4, the estimates suggest that representation in the top decile

of cited patents by female lead inventors would have increased by 1.4—2.4 percentage

points if the lead inventor had instead been male. These estimates are highly statistically

significant and economically meaningful, suggesting an increase of 14% to 24%, relative

to the sample mean, in the top decile (by construction, 10%).

These two results represent a first set of causal evidence suggesting that women

lead inventors are undercited, on average, relative to an equivalent patent granted to

their male counterpart. These differences in forward citations cannot be explained by

differences in art units, time trends, or differences in customers or examiners.
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4 Cross Sectional Heterogeneity of Bias

4.1 Patent Category

A reasonable question is whether the underciting of female lead inventor patents un-

covered in our main models holds across all technology categories or whether there is

variation across fields. We next explore this heterogeneity. Specifically, we estimate the

following model.

Yi = β1 I (FemaleInventori) + β2 I (FemaleInventori)× (Category) (3)

+δPatentCategory + δGrantYear + δArtUnit + δCustomer×Examiner + εi,

where the subscript and notation match the prior estimating equations. As in the main

analysis, standard errors are double clustered by year and customer. First, we interact

our female indicators with the six NBER categories to study differences by broad field

categories. Then we explore the 37 subcategories in a similar manner.

The estimates in Table 5 highlight important heterogeneity across patent categories.

Column (1) of Table 5 presents the estimates for the model using the major categories,

where the outcome variable is the actual number of forward citations received by the

patent. To interpret the overall effects, we need to add the coefficients of the indicator

for female lead inventor with the interaction term for each major category. Overall no

clear pattern emerges from the data.

These estimates, however, mask differences in quality across male and female lead-

inventor patents. Column (2) re-estimates the model using the difference between the

actual citations and the number implied by the C-BERT model for the opposite gender.

Using Bias as our dependent variable, column (2) of Table 5 shows that the uncondi-

tional forward citation data masks a significant disparity between female and male lead

inventors, to the detriment of female lead-inventor patents. The summed coefficients
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demonstrate a negative downward bias for female lead-inventor patents across all six

major categories. Put differently, if a female lead-inventor patent instead had a male

lead inventor, it would have received significantly more citations, regardless of technol-

ogy category, echoing our baseline results.

We can further break down technology category using the 37 NBER subcategories.

Specifically, we estimate the following.

Yi = β1 I (FemaleInventori) + β2 I (FemaleInventori)× (Subcategory) (4)

+δPatentSubcategory + δGrantYear + δCustomer×Examiner + εi,

To ease interpretation, Figure 6 presents the interaction coefficients (Female Lead

Inventor × Subcategory) graphically, with the estimates presented in Table IA4. Impor-

tantly, in all specifications, we include patent subcategory fixed effects to account for

the average level of citations in a given subcategory. As in the main analysis, standard

errors are double clustered by year and customer. Column 1 of Table IA4 shows the

estimates employing the raw citation counts, while column (2) presents the difference

implied by the C-BERT model. The finer category classification exhibits somewhat more

heterogeneity than the major classes.

Inspecting Figure 6, a number of clear patterns emerge from the estimates. First, once

again, estimates from the model using raw citation counts as an outcome variable do not

exhibit any clear differences between patents with male and female lead inventors. Once

again, however, these estimates from the raw citation data mask important differences

uncovered once we mediate for patent quality using the C-BERT model. For the vast

majority of the technology subcategories, the estimates suggest that patents with lead

female inventors are cited significantly less than they would be had they had a male

lead inventor instead, and these citation undercounts are often substantial in magnitude.

Overall the results are consistent with the baseline main results and suggest that (i)
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patents with female lead inventors are overall of higher quality; (ii) these patents are

undercited, relative to what they would have received had the lead inventor been male;

and, (iii) as a result, raw counts of citations to male and female lead inventor patents

look similar. These findings are also consistent with the selection effect predicted by the

large literature on the obstacles to obtaining patents for female inventors. The estimates

further underline the fact that using observed citations, without adjustments, may lead

to misleading inferences about the quality of a patent.

4.2 Established Versus Emerging Fields

An interesting question is whether the patterns we see relate in some way to whether

women are patenting in an established field versus in an emerging field of technology.

To test this, we denote if the art unit first appeared within five years of the patent being

granted. We then re-run our models, dropping the art-unit fixed effect and instead

adding an indicator for an emerging field as well as an interaction between that indicator

and the indicator for a female lead inventor.

The estimates are presented in Table 6. Our coefficient of interest is the interaction

between the indicator for female inventors and emerging fields. Table 6 presents the

models where the outcome variable is the difference in actual versus the predicted num-

ber of citations (for the opposite gender) from the C-BERT model. Estimates in this take

suggest that new fields appear to receive more forward citations overall.

Mediating for the underlying quality of the patent a number of patterns emerge.

First, our main effect is mirrored, with the indicator for female lead inventor loading

significantly and suggesting that unconditionally patents with female lead inventors re-

ceive roughly 4.4 to 4.6 fewer citations than they would be expected if the lead inventor

had been male. Second, patents in emerging fields appear to garner modestly more

forward citations than those in established fields, depending on the specification, with

approximately 0.06 to 0.9 more citations. Finally, and perhaps most interestingly, patents
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in emerging fields with female lead inventors do not receive significantly fewer cita-

tions than would be expected if their lead inventor had been male. These estimates are

insignificant for all specifications.

We hypothesize that that newer fields would not exhibit many barriers to entry for

female inventors and researchers, given the lack of an established history of research and

researchers. The results would be consistent with a lack of a selection effect, women do

not face as large larger obstacles to patenting in newer fields, thus leading to a situation

where patents with female inventors have the equal quality to those of male inventors.

We leave further exploration of this finding to future research.

4.3 Corporate Innovations

An interesting aspect to consider is whether the pattern of undercitation we observed

for female inventors also holds true for female authors of corporate innovations. Corpo-

rations generally have a strong interest in protecting their innovations and may therefore

be more likely to ensure that their patents receive citations. To examine this possibility,

we used data from Kogan, Papanikolaou, Seru, and Stoffman (2017) to identify patents

that were associated with a particular firm, which we defined as corporate innovations.8

We then interacted this indicator with a female lead indicator to investigate whether the

undercitation of female inventors is more pronounced for corporate innovations.

The results shown in Table 7 offer several important insights. When we used Equa-

tion 2 as our dependent variable, we again found that female inventors received fewer

citations than their male counterparts for equivalent patents. However, an interesting

finding was that corporate innovations tended to receive more citations overall, with es-

timates ranging from 0.29 to 0.94 additional citations. However, when we looked specif-

ically at corporate innovations with female lead inventors, we found that they received

8We use the expanded sample available from
https://github.com/KPSS2017/Technological-Innovation-Resource-Allocation-and-Growth-Extended-Data.
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fewer citations than their male counterparts. These results suggest that the undercitation

of female inventors may be even more pronounced for corporate innovations.

4.4 Time After the Patent is Granted

To gain a deeper understanding of the pattern of undercitation for female inventors,

we also considered the timing of the bias in citations. One possibility is that the bias

is present from the outset but diminishes over time as people become more familiar

with the patent. Alternatively, the bias may increase and become more pronounced over

time, potentially indicating a self-reinforcing effect that could be harder to overcome.

Examining the timing of the bias in citations can provide valuable insights into the

nature of the undercitation of female inventors and inform potential interventions to

address this issue.

To investigate the timing of the bias in citations, we created separate samples based

on the number of years that had passed since a patent was granted. Specifically, we

divided the sample into four periods: [0-1) years, [1-5) years, [5-10) years, and [10-20]

years. Using these subsamples, we re-ran our C-BERT methodology to estimate the

relative bias in citations after controlling for patent quality. This allowed us to examine

whether the bias in citations is present from the outset or if it changes over time.

Upon analyzing the citation patterns based on the number of years that have passed

since the patent was granted, we found that the bias against female inventors tends to

increase over time. The estimates in Table 8 show that the bias is statistically insignificant

in the first period ([0-1) years), but becomes more pronounced in the subsequent periods,

with estimates of -0.7, -1.3, and -2.7 for the [1-5) years, [5-10) years, and [10-20] years

periods, respectively. These findings suggest that the undercitation of female inventors

may be self-reinforcing and become more difficult to overcome as time goes on.

Our estimates, which are shown in Table 8, are consistent with our baseline speci-

fication. When we sum the point estimates across the four periods, we obtain results
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that are similar to those in the baseline specification. Furthermore, when we consider

the magnitude of the estimates relative to the sample means, we see that the bias in

citations increases monotonically over time, with values of 3%, -17%, -20%, and -24.25%

for the [0-1) years, [1-5) years, [5-10) years, and [10-20] years periods, respectively. These

findings suggest that biases in citations may be reinforced by prior biases, leading to a

situation in which overcited patents continue to be overcited and the bias becomes larger

over time.

5 Who Undercites Female Inventors?

So far, we have presented causal evidence that patents with female lead inventors receive

fewer citations than the equivalent patents with male lead inventors. Next we explore

the source of the under-citation, whether it is driven by inventors or examiners, and the

role of their gender.

To set the stage for this analysis, we first discuss how a citation is added to a patent.

When applying for a patent, applicants cite supporting patents whose inventions the cur-

rent patent is building on top of. If, however, the patent examiner deems that there are

additional relevant citations that have not been included by the inventor, the examiner

will also add these to the patent application. As a result, the documented undercita-

tion of patents with female lead inventors may stem from the original inventor-added

citations, additional examiner-added citations, or a combination of both.

To explore the source of the under-citation, we first need to know which citations

in a patent are attributable to the inventor versus the examiner. Starting in 2001, and

more comprehensively starting in 2003, asterisks were added to the USPTO citation

data to identify examiner-added patents in the data. Using this detail, we construct a

new subsample starting from 2003 aggregating forward-citations into four categories: (i)

forward citations added (in a future patent) by male lead inventors, (ii) forward citations
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added by female lead inventors, (iii) forward citations added by male-lead examiners,

and (iv) forward citations added by female-lead examiners. Using these groups, we can

then decompose the sources of under-citation of female lead-inventor patents.

We begin our analysis by studying examiner-added citations. For a given patent, we

take all forward citations that occur due to being added to a future patent application

by an examiner. We then break these into forward citations added by female examiners

and forward citations added by male examiners. Following similar logic to our main

tests, we then apply the C-BERT model, estimating a neural net for male-lead inventor

patents and a neural net for female-lead inventor patents to predict forward citation

counts by examiners of each gender based on the gender of the lead inventor on the

patent of interest. We then run female lead inventor patents through the male neural net

model, and vice-versa, to calculate the C-BERT adjustment to mediate for the quality of

the patent.

Table 9 presents the results of estimation of regression models using the C-BERT

adjustment as the dependent variable. Panel A presents estimates for female examiner

added forward citations, and Panel B presents the estimates for male examiner added

citations. The estimates in Panel A suggest that female examiners contribute minimally

to the under-citation of female lead inventor patents. The coefficient estimates range

from -0.002 citations to -0.017 citations, with only one specification statistically significant

at conventional levels. Panel B similarly shows no real evidence of undercitation of

female lead inventor patents by male examiners. The coefficient estimates range from

-0.012 citations to -0.051, with again only one specification being statistically significant.

Taken together, the estimates suggest that the undercitation bias we observe for female

lead inventor patents is not driven primarily by examiner patents.

Having established this fact, we then turn to forward citations added by future in-

ventors to their patent applications. We conduct a similar analysis to that which we

conduct above with examiners. The estimates from the C-BERT adjustment regressions
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are presented in Table 10. Panel A presents the results for female inventor added forward

citations, and Panel B presents the estimates for male inventor added forward citations.

The estimates suggest a clear pattern. First, as can be seen in Panel A, female lead in-

ventors contribute only modestly to the undercitation of female lead inventor patents.

The estimates from the regression models in columns (1) through (4) suggest that fe-

male inventors undercite female lead inventor patents by approximately 0.5 citations. In

contrast, the contribution of male inventors to the undercitation of female lead inventor

patents is more considerable. The estimates in Panel B suggest undercitation of female

lead inventor patents by male inventors by more than 1.2 citations. This is large, both

economically and statistically, especially in comparison with our main effect.

Taken together, these results suggest that the undercitation of female lead patents is

primarily driven by male lead inventors. Note, however, that we do not argue that this

is necessarily discrimination on the part of male examiners and inventors. For example,

these results may stem from men having more and stronger connections to or familiarity

with other male inventors and, as a result, being more familiar with patents filed by

other male lead inventors. These familiarity networks could be boosted by the presence

of a female lead inventor on the current patent. Future research may be necessary to

fully distinguish the reason for the underciting.

6 Robustness Tests

6.1 Definition of Patent Gender

One potential explanation for our findings is that the way in which we assigned gender

to patents may have influenced the results. In our baseline method, we used the name

of the first inventor to determine the gender of patents with multiple inventors. This is a

common practice in the literature, but it is worth noting that it is possible that examiners

and inventors may consider all inventors and not just the first author when assigning
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gender. Therefore, it is possible that our results are partially driven by this method of

gender assignment.

To address the potential issue of our method of gender assignment influencing our

results, we tried two different approaches. The first approach involved limiting our

sample to patents with only one author and re-running our C-BERT model. This allows

us to eliminate any concerns that the gender of additional authors, other than the lead

author, may be driving the baseline results.

Although we altered our sample selection by including only patents with a single

author, we found that the results were similar to those obtained in the baseline approach.

When we re-ran our baseline specification, Equation 1, using the single-author sample,

we still found a statistically significant bias against female inventors. The estimates

shown in Panel B of Table IA3 were consistent with those in Table 3. These findings

suggest that the gender of the lead inventor alone is sufficient to capture the gender of

the patent, at least in part.

In order to examine the role of gender while controlling for the potential impact of

single-author patents, we constructed a new sample that included patents with inventors

of the same gender, both single authors and teams.9 When we re-ran our C-BERT model

using this expanded sample, we found that female inventors were still undercited. The

estimates shown in Panel C of Table IA3 indicate that the bias increased from 2.2 to 3.7,

which suggests that the undercitation of female inventors may be even more pronounced

when considering patents with multiple authors.

6.2 Patents with Zero Citations

Our analysis to this point has focused on patents that received at least one citation.

While this allows us to examine the extent of discrimination in the number of citations
9Note, this only grows our sample by 2% because teams of all female inventors that can be confidently

identified in the sample are rare.
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received, it is possible that female inventors may not only receive fewer citations, but also

be completely overlooked and receive zero citations. If this is the case, our analysis may

underestimate the true level of bias that female inventors face, since it only considers

patents that received a positive number of citations. To fully understand the extent of

discrimination against female inventors, it may be necessary to also consider patents that

received no citations, regardless of their quality.

To address the potential issue of missing information on patents that received no cita-

tions, we modified our sample to include all patents, including those that did not receive

any citations. Using this expanded sample, we re-ran our C-BERT methodology. This

allowed us to incorporate information on patents that received no citations in our coun-

terfactual analysis, providing a more comprehensive understanding of discrimination

against female inventors.

Re-estimating our baseline specification using the expanded sample that includes

patents with zero citations, we find evidence that female inventors also face biases in

their chances of receiving any citations at all. The estimates in Panel A of Table IA3

indicate that the bias against female inventors is even more pronounced when consider-

ing patents that received no citations. These findings suggest that female inventors may

face obstacles in obtaining citations not just in comparison to male inventors, but also in

absolute terms.

6.3 Overfitting Model

A standard concern with these types of models is overfitting to the training data. In

our setting, we train two different models by completing multiple passes of our training

dataset through our algorithm, an epoch. While numerous passes of the data help im-

prove the predictive probability of the neural networks, we could have overfit our model

to the data. If so, this would result in relatively poor out-of-sample performance. In the

context of our paper, this would result in incorrect or biased out-of-sample predictions
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of the number of citations.

We address this concern by studying the loss function, as presented in Figure IA3, to

ensure a reasonable number of training iterations. Plotting the mean square error (MSE)

per batch against the number of passes of the training dataset, we find two key pieces

of evidence that suggest we have not overfit the model. First, as we increase the number

of epochs, the MSE tends to decrease. Second, we find diminishing improvements to

the error rate as we approach 20 epochs. Taken together, these findings suggest that our

model is unlikely to be overfitted and, as a result, that the model is appropriate and that

reasonable counterfactual citations are predicted from our neural networks.

7 Economic Value of Patent and Citation Bias

It is worth considering the relationship between the economic importance of a patent,

as evaluated by public markets, and the bias in patent citations. As we have previously

discussed, the biases in citations tend to persist over time and become more pronounced

as the years go on. In contrast, the economic value of a patent, as assessed by public

markets, is forward-looking and can be determined at the time of issuance. This suggests

that the economic value of a patent may not be closely tied to the biases in citations that

are observed over time.

To investigate the relationship between private economic value and citations, we used

the patent-level measure of private economic value proposed in Kogan et al. (2017). This

measure is based on data on patent issues for U.S. firms, which is combined with the

stock market’s response to news about patents. By using this measure, we were able

to examine the relationship between private economic value and citations at the patent

level. Specifically, we use the log value of innovation, deflated to 1982 (million) dollars

using the CPI.

The results shown in Panel A of Table 11 suggest that there is a negative relation-
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ship between the economic value of a patent and the bias in citations. Specifically, the

estimates in this table, which are based on the bias in citations defined by Equation 2,

indicate that patents that are undercited tend to have a higher economic value, while

patents that are overcited tend to have a lower economic value. This suggests that mar-

kets may be able to rationally attribute value to patents and take the biases in citations

into account when evaluating their economic importance.

To examine the relative importance of our C-BERT measure of citation bias versus for-

ward citations for patents, we decomposed our bias measure into both ForwardCitationi

and ̂ForwardCitationi and compared the two. The results shown in Panel B of Table 11

indicate that the relationship between ̂ForwardCitationi and the economic value of a

patent is stronger. This finding suggests that observed forward citations may be noisy

and may need to be adjusted to account for possible biases in citing patterns. It also

highlights the value of our C-BERT measure as a tool for identifying and correcting such

biases.

8 Discussion and Conclusion

We provide causal evidence that patents with female lead inventors are undercited, rela-

tive to what they would have happened if their patent had a male lead inventor. Impor-

tantly, this effect is masked in raw citation count data, where true patent quality cannot

be mediated. Our approach uses new tools in machine learning to disentangle qual-

ity from forward citations, allowing us to show that the most commonly used measure

for patent quality in fact under-recognizes the quality of female-led patents, relative to

equivalent male-led patents.

There are important economic implications to our findings. First, if female inventors

are undercited, relative to male peers with equivalent patents, and their compensation

for their innovative labor is accordingly harmed, this may discourage women from en-
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tering the innovation economy.10 Such effects may further exacerbate the gender gap in

STEM fields (Beede et al., 2011), leading to inefficient allocations of labor.

A second important implication of our findings concerns the validity of research that

relies on forward citations as a measure of patent quality. The existence of systematic

gender-related biases in citations may lead to incorrect or misleading conclusions for

research that relies on forward citations as a measure of patent quality. Given the large

literature in economics, finance, and innovation that relies on forward citations as a

proxy for quality, these findings suggest that a re-examination of prior findings may be

warranted.

Our paper also makes an important methodological contribution to the finance and

economic literatures by introducing the C-BERT methodology for causal inference. Fi-

nance is steeped in the tradition of borrowing methodological innovations from adjacent

fields. Big data, machine learning, and AI are new approaches that are poised to revolu-

tionize empirical research in this field, Goldstein, Spatt, and Ye (2021). Causal inference

using text can help researchers in answering key open economic questions. Our pa-

per provides an initial roadmap for scholars to apply similar approaches in their own

spheres.

10The literature has highlighted that innovative activity is motivated by expected profits derived from
the property rights granted to the patentee, Moser (2005, 2013).In related research, the marginal investor
values patents Aghion et al. (2013); Hall et al. (2005); Hirschey and Richardson (2004); Hirshleifer et al.
(2013).
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FIGURE 1: C-BERT

Y is the outcome of interest, T is the treatment, and W are the sequence of words. Panel A depicts the
average treatment effect (ATT), with the assumption that W carries sufficient information to adjust for
confounding (common cause) between outcome and treatment. Panel B depicts the natural direct effect
(NDE), where the text is a mediator of the treatment on outcome.
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Inputs:
● Patent text
● Gender Indicator

patent is written by a female

Male Citation 
Network

Female Citation 
Network

BERT

Embedding

Propensity Network

True False

Output

Counterfactual 
number of citations

Treatment 
propensity

FIGURE 2: C-BERT ESTIMATION PROCEDURE

The figure illustrates the estimation procedure of C-BERT once the neural networks are trained. The light
blue block at the very top describes the input used for estimation. The green blocks are the four neural
networks trained using the patent data. The blue block describes the decision rule used for counterfactual
estimation. Finally, the red block is the output that combines the outputs of the citation estimation net-
works and the propensity score estimation network.
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Feed Forward Layer

Output

FIGURE 3: ENCODER MODULE

This figure illustrates the structure of the encoder module. The light blue block at the bottom describes
the input. The yellow blocks are the layers within the encoder, and the red block is the output.
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(a) Panel A: Observed Forward Citations
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(b) Panel B: Model Implied Forward

FIGURE 4: DISTRIBUTION OF FORWARD CITATIONS

This figure illustrates the distribution of forward citations. Panel A uses forward citations observed in the
data, while Panel B uses the expected number of forward citations as implied by the model. The horizontal
axis counts the number of citations while the vertical axis measures the percent of the distribution. Red
bars correspond to females, blue bars correspond to males, and purple bars correspond to the overlapping
region. The distribution is truncated at 100 for ease of interpretation. The natural logarithm transformation
of these distributions is presented in Figure IA2. 43
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FIGURE 5: UNDERCITATION OF FEMALE LEAD PATENTS

This figure illustrates the difference between forward citations and expected forward citations, as defined by Equation 2. The horizontal axis counts
the additional number of citations that a patent should have received after adjusting. Red bars correspond to females, blue bars correspond to
males, and purple bars correspond to the overlapping region. The distribution is truncated between -30 to 30.
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FIGURE 6: BIAS IN CITATIONS BY PATENT SUB CATEGORIES

This figure illustrates the coefficients of Equation 5. For ease of interpretation, each point corresponds to
the linear combination of the baseline result for females and the interaction terms, presented in Table IA4.
Whiskers correspond to a 95% confidence internal. Coefficients are sorted by by patent category and then
by the magnitude of the estimate. Colors corresponds to the patent category as defined by the NBER,
where pink observations correspond the mechanical (Mech), purple corresponds to electrical (Elec), blue
observations correspond to drugs and medical (Drgs&Med), light green observations correspond to com-
puters and communication (Cmp&Comm), dark green observations correspond to chemical (Chemical),
yellow observations correspond to other (Other) categories. The red dotted line is plotted at the zero
intercept, representing a no effect.
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TABLE 1: SUMMARY STATISTICS

This table provides summary statistics on patents and citations. The sample covers patents issued from
1976-01-01 through 2021-12-31. Panel A presents a two-way table of forward citations by gender. Panel
B presents a two-way table of patents in the top decile by gender. Panel C presents a two-way table of
patents by their cooperative patent classification (CPC). ***, **, * denote significance at the 1%, 5%, and
10% level, respectively. Data Source: USPTO.

Gender of Lead Inventor Male Female
N Mean SD N Mean SD Test

Panel A: Difference in Forward Citations

Forward Citation 290786 18.09 51.66 236562 15 45.34 F= 518.967∗∗∗

Panel B: Difference By Top Decile Innovations

Top Decile 290786 236562 X2= 572.671∗∗∗

→ No 260016 89% 216170 91%
→ Yes 30770 11% 20392 9%

Panel C: Difference by Cooperative Patent Classification

CPC Section 290733 236533 χ2 = 4871.596∗∗∗

→ Chemistry 30780 11% 32379 14%
→ Electricity 67174 23% 59396 25%
→ Fixed Constructions 8551 3% 4474 2%
→ Human Necessities 35268 12% 31598 13%
→ Mechanical Engineering 24745 9% 13263 6%
→ Performing Operations 46932 16% 29477 12%
→ Physics 74182 26% 63730 27%
→ Textiles 3101 1% 2216 1%
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TABLE 2: FORWARD CITATION, BY GENDER

This table reports estimates of Equation 1 and studies the number of forward citations by the gender of
the lead inventor. The estimate uses the observed level of forward citations as its dependent variable. The
sample covers patents issued from 1976-01-01 through 2021-12-31. Standard errors are clustered at the
patent customer and patent issue year level. ***, **, * denote significance at the 1%, 5%, and 10% level,
respectively. Data source: USPTO.

Forward Citations
(1) (2) (3) (4)

Lead Female Inventor −2.918∗∗∗ −2.113∗∗∗ −1.532∗∗∗ −1.167∗∗∗

(0.668) (0.358) (0.189) (0.123)

Intercept 20.939∗∗∗

(1.581)

Customer FE No No Yes No
Examiner FE No No Yes No
Examiner x Customer FE No No No Yes
Art Unit FE No Yes Yes Yes
Patent Issue Year FE No Yes Yes Yes

Observations 408,707 408,707 408,707 408,707
Adjusted R2 0.001 0.086 0.171 0.270
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TABLE 3: ACTUAL MINUS EXPECTED FORWARD CITATIONS

This table estimates Equation 1 and studies the difference in the number of citations by the gender of the
lead inventor. The dependent variable is the difference in the observed number and the expected number
of citations for a patent, as defined by Equation 2. The sample covers patents issued from 1976-01-01
through 2021-12-31. Standard errors are clustered at the patent customer and patent issue year level. ***,
**, * denote significance at the 1%, 5%, and 10% level, respectively. Data source: USPTO.

Bias in Forward Citations
(1) (2) (3) (4)

Lead Female Inventor −4.600∗∗∗ −4.649∗∗∗ −4.611∗∗∗ −4.651∗∗∗

(0.428) (0.418) (0.385) (0.229)

Intercept 1.316∗∗∗

(0.125)

Customer FE No No Yes No
Examiner FE No No Yes No
Examiner x Customer FE No No No Yes
Art Unit FE No Yes Yes Yes
Patent Issue Year FE No Yes Yes Yes

Observations 408,707 408,707 408,707 408,707
Adjusted R2 0.007 0.012 0.057 0.252
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TABLE 4: CITATIONS IN TOP DECILE

This table studies patents that receive forward citations in the top decile. Panel A documents the rela-
tionship between a patent’s lead inventor’s gender and the propensity to receive citations placing them
in the top decile. Panel B documents the relationship between a patent’s lead inventor’s gender and the
model’s prediction a patent would be in the top decile of citations. The sample covers patents issued from
1976-01-01 through 2021-12-31. Standard errors are clustered at the patent customer and patent issue year
level. ***, **, * denote significance at the 1%, 5%, and 10% level, respectively. Data source: USPTO.

Panel A: Observed Patent Citations

Top Decile Patent
(1) (2) (3) (4)

Lead Inventor Female −0.018∗∗∗ −0.013∗∗∗ −0.011∗∗∗ −0.008∗∗∗

(0.005) (0.002) (0.001) (0.001)

Intercept 0.127∗∗∗

(0.012)

Customer FE No No Yes No
Examiner FE No No Yes No
Examiner x Customer FE No No No Yes
Art Unit FE No Yes Yes Yes
Patent Issue Year FE No Yes Yes Yes

Observations 408,707 408,707 408,707 408,707
Adjusted R2 0.001 0.094 0.128 0.051

Panel B: Model Adjustment

Model Expected Forward Citation in Top Decile
(1) (2) (3) (4)

Lead Inventor Female 0.014∗ 0.019∗∗∗ 0.021∗∗∗ 0.024∗∗∗

(0.007) (0.005) (0.004) (0.001)

Intercept 0.116∗∗∗

(0.011)

Customer FE No No Yes No
Examiner FE No No Yes No
Examiner x Customer FE No No No Yes
Art Unit FE No Yes Yes Yes
Patent Issue Year FE No Yes Yes Yes

Observations 408,707 408,707 408,707 408,707
Adjusted R2 0.0005 0.092 0.126 −0.062
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TABLE 5: CITATION BY NBER CATEOGRY

This table estimates the difference in citations by NBER Cateogry. Column (1) uses the number of forward
citations as its dependent variable, while Column (2) uses the difference in forward citations, as defined
by Equation 2. Estimates include interactions for the patent category based on NBER Categories. All
specifications include NBER Cateogry, Examiner × Customer, and Patent Issue Year fixed effects. The sample
covers patents issued from 1976-01-01 through 2021-12-31. Standard errors are clustered at the patent
customer and patent issue year level. ***, **, * denote significance at the 1%, 5%, and 10% level, respectively.
Data source: USPTO.

Dependent variable:
Forward Citations Bias in Forward Citations

(1) (2)

Female Lead Inventor −0.151 −3.430∗∗∗

(0.358) (0.107)

Chemical × Female Lead Inventor −0.721∗∗ −0.488∗∗

(0.306) (0.221)

Computers and Communication × Female Lead Inventor −1.271∗∗∗ −3.150∗∗∗

(0.261) (0.921)

Drugs and Medical × Female Lead Inventor −5.817∗∗∗ −7.517∗∗∗

(0.392) (0.444)

Electrical × Female Lead Inventor −0.765∗∗ 0.048
(0.368) (0.211)

Mechanical × Female Lead Inventor −0.031 0.659∗∗∗

(0.265) (0.141)

NBER Category FE Yes Yes
Examiner x Customer FE Yes Yes
Examiner Art Unit FE Yes Yes
Patent Issue Year FE Yes Yes

Observations 408,706 408,706
Adjusted R2 0.271 0.253
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TABLE 6: FORWARD CITATIONS, EMERGING FIELDS

This table studies the citations to new fields of innovation. New Field takes the value of one if the art unit
first appeared within five years of the patent being granted. The dependent variable is the difference in
the observed number and the expected number of citations for a patent, as defined by Equation 2. The
sample covers patents issued from 1976-01-01 through 2021-12-31. Standard errors are clustered at the
patent customer and patent issue year level. ***, **, * denote significance at the 1%, 5%, and 10% level,
respectively. Data source: USPTO.

Bias in Forward Citations
(1) (2) (3) (4)

New Field 0.058 0.147 0.400 0.896∗∗

(0.172) (0.419) (0.355) (0.368)

Lead Female Inventor −4.429∗∗∗ −4.502∗∗∗ −4.493∗∗∗ −4.587∗∗∗

(0.486) (0.473) (0.438) (0.231)

New Field × Lead Female Inventor −0.580 −0.513 −0.421 −0.335
(0.539) (0.525) (0.495) (0.225)

Intercept 1.301∗∗∗

(0.136)

Patent Issue Year FE No Yes Yes Yes
Customer FE No No Yes No
Examiner FE No No Yes No
Examiner x Customer FE No No No Yes

Observations 408,707 408,707 408,707 408,707
Adjusted R2 0.007 0.012 0.057 0.252
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TABLE 7: DIFFERENCE IN FORWARD CITATIONS, CORPORATE INNOVATION

This table studies the citation patterns of corporate innovations. Corporate Innovation takes the value of one
if the patent is associated with a company in CRSP. The dependent variable is the difference in forward
citations. The sample covers patents issued from 1976-01-01 through 2021-12-31. Standard errors are
clustered at the patent customer and patent issue year level. ***, **, * denote significance at the 1%, 5%,
and 10% level, respectively. Data source: USPTO.

Bias in Forward Citations
(1) (2) (3) (4)

Corporate Innovation 0.290 0.609∗ 0.605∗∗ 0.938∗∗∗

(0.334) (0.325) (0.297) (0.230)

Lead Female Inventor −4.048∗∗∗ −4.117∗∗∗ −4.076∗∗∗ −3.823∗∗∗

(0.389) (0.389) (0.340) (0.150)

Corporate Innovation × Lead Female Inventor −1.368∗∗ −1.336∗∗ −1.336∗∗ −2.165∗∗∗

(0.583) (0.588) (0.570) (0.434)

Intercept 1.204∗∗∗

(0.227)

Customer FE No No Yes No
Examiner FE No No Yes No
Examiner x Customer FE No No No Yes
Art Unit FE No Yes Yes Yes
Patent Issue Year FE No Yes Yes Yes

Observations 408,707 408,707 408,707 408,707
Adjusted R2 0.007 0.012 0.057 0.252
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TABLE 8: YEARS AFTER PATENT IS GRANTED

This table estimates Equation 1 and studies the difference in forward citations by the number of years after
the patent was granted. Column (1) – (4), study the difference in forward citations 0-1, 2-5, 5-10, and 10-20
years after they are granted, respectively. All specifications use Art Unit, Examiner × Customer, and Patent
Grant Year fixed effects. The sample covers patents issued from 1976-01-01 through 2021-12-31. Standard
errors are clustered at the patent customer and patent issue year level. ***, **, * denote significance at the
1%, 5%, and 10% level, respectively. Data source: USPTO.

Bias in Forward Citations
0-1 Years 2-5 Years 5-10 Years 10-20 Years

(1) (2) (3) (4)

Lead Inventor Female 0.048 −0.706∗∗∗ −1.294∗∗∗ −2.683∗∗∗

(0.029) (0.023) (0.072) (0.138)

Examiner x Customer FE Yes Yes Yes Yes
Art Unit FE Yes Yes Yes Yes
Patent Issue Year FE Yes Yes Yes Yes

Observations 8,449 185,654 236,652 210,698
Adjusted R2 0.622 0.370 0.455 0.446
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TABLE 9: EXAMINER-ADDED CITATIONS

This table studies the source of examiner-added citations for male inventors. The dependent variable is
the difference in forward citations. Panel A uses the difference in forward citations that were added by
female lead examiners as its dependent variable. Panel B uses the difference in forward citations that
were added by male lead examiners as its dependent variable. The sample covers patents issued from
1976-01-01 through 2021-12-31. Note, the source of citations is only available following the start of 2001.
The sample covers patents issued from 1976-01-01 through 2021-12-31. Standard errors are clustered at
the patent customer and patent issue year level. ***, **, * denote significance at the 1%, 5%, and 10% level,
respectively. Data source: USPTO.

Panel A: Citation Added by Female Lead Examiner

Bias in Forward Citations
(1) (2) (3) (4)

Lead Female Inventor −0.017∗∗ −0.012 −0.002 −0.009
(0.008) (0.009) (0.008) (0.010)

Intercept 0.162∗∗∗

(0.026)

Customer FE No No Yes No
Examiner FE No No Yes No
Examiner x Customer FE No No No Yes
Art Unit FE No Yes Yes Yes
Patent Issue Year FE No Yes Yes Yes

Observations 57,556 57,556 57,556 57,556
Adjusted R2 0.00001 0.013 0.042 −0.008

Panel B: Citation Added by Male Lead Examiners

Bias in Forward Citations
(1) (2) (3) (4)

Lead Female Inventor −0.018 −0.012 −0.022 −0.051∗∗∗

(0.035) (0.037) (0.032) (0.014)

Intercept 0.118∗∗∗

(0.040)

Customer FE No No Yes No
Examiner FE No No Yes No
Examiner x Customer FE No No No Yes
Art Unit FE No Yes Yes Yes
Patent Issue Year FE No Yes Yes Yes

Observations 146,101 146,101 146,101 146,101
Adjusted R2 0.00000 0.008 0.027 0.085
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TABLE 10: INVENTOR-ADDED CITATIONS

This table studies the source of inventor-added citations. The dependent variable is the difference in for-
ward citations. Panel A uses the difference in forward citations that were added by female lead inventors
as its dependent variable. Panel B uses the difference in forward citations that were added by male lead
inventors as its dependent variable. The sample covers patents issued from 1976-01-01 through 2021-12-31.
Note, the source of citations is only available following the start of 2001. Standard errors are clustered at
the patent customer and patent issue year level. ***, **, * denote significance at the 1%, 5%, and 10% level,
respectively. Data source: USPTO.

Panel A: Citation Added by Female Lead Inventors

Bias in Forward Citations
(1) (2) (3) (4)

Lead Female Inventor −0.483∗∗∗ −0.463∗∗∗ −0.481∗∗∗ −0.483∗∗∗

(0.061) (0.063) (0.042) (0.065)

Intercept 0.667∗∗∗

(0.034)

Customer FE No No Yes No
Examiner FE No No Yes No
Examiner x Customer FE No No No Yes
Art Unit FE No Yes Yes Yes
Patent Issue Year FE No Yes Yes Yes

Observations 25,016 25,016 25,016 25,016
Adjusted R2 0.003 0.014 −0.001 −0.029

Panel B: Citation Added by Male Lead Inventors

Bias in Forward Citations
(1) (2) (3) (4)

Lead Female Inventor −1.528∗∗∗ −1.530∗∗∗ −1.485∗∗∗ −1.207∗∗∗

(0.164) (0.155) (0.141) (0.089)

Intercept 1.264∗∗∗

(0.137)

Customer FE No No Yes No
Examiner FE No No Yes No
Examiner x Customer FE No No No Yes
Art Unit FE No Yes Yes Yes
Patent Issue Year FE No Yes Yes Yes

Observations 231,082 231,082 231,082 231,082
Adjusted R2 0.002 0.010 0.093 0.139
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TABLE 11: FORWARD CITATIONS AND VALUE OF PATENT

This table studies the relationship between the measures of citations and the market-implied value of
patents. The dependent variable for both panels use the log value of innovation, deflated to 1982 (million)
dollars using the CPI, as calculated in Kogan et al. (2017). Panel A uses the difference in forward citations,
as defined in Equation 2, as its main independent variable. Panel B uses the observed forward citation and
expected forward citations as its independent variables. The sample covers patents issued from 1976-01-01
through 2021-12-31. Standard errors are clustered at the patent customer and patent issue year level. ***,
**, * denote significance at the 1%, 5%, and 10% level, respectively. Data source: USPTO.

Panel A: Difference in Forward Citations

log(dollar)
(1) (2) (3) (4)

Bias in Forward Citations −0.0004 −0.0004∗∗ −0.0005∗∗∗ −0.001∗∗

(0.0003) (0.0002) (0.0001) (0.0002)

Constant 0.682∗∗∗

(0.135)

Customer FE No No Yes No
Examiner FE No No Yes No
Examiner x Customer FE No No No Yes
Art Unit FE No Yes Yes Yes
Patent Issue Year FE No Yes Yes Yes

Observations 159,138 159,138 159,138 159,138
Adjusted R2 0.00002 0.120 0.510 0.381

Panel B: Decomposition of Citation Measures

log(dollar)
(1) (2) (3) (4)

Forward Citation −0.0001 −0.0002 0.0001 −0.00003
(0.0003) (0.0003) (0.0002) (0.0002)

̂Forward Citation 0.005∗∗∗ 0.004∗∗∗ 0.002∗∗∗ 0.003∗∗∗

(0.0004) (0.0003) (0.001) (0.001)

Female Lead Inventor 0.097∗∗∗ 0.018 0.015∗ 0.003
(0.029) (0.024) (0.008) (0.006)

Intercept 0.607∗∗∗

(0.142)

Customer FE No No Yes No
Examiner FE No No Yes No
Examiner x Customer FE No No No Yes
Art Unit FE No Yes Yes Yes
Patent Issue Year FE No Yes Yes Yes

Observations 161,737 161,737 161,737 161,737
Adjusted R2 0.011 0.140 0.519 0.398
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Explanation of Causal BERT (C-BERT)

C-BERT is a neural network based architecture that estimates counterfactuals of a bi-
nary treatment where all of the covariates needed for causal identification are contained
within a given text. To use C-BERT to identify the effect of gender on the impact of
patents, we first need to train the model. As shown in Figure IA1, the input data for
training contains three types of information: the texts of patents, gender indicators of
the author(s), and the observed number of citations on the patents. There are four neu-
ral networks that need to be trained: a BERT model for generating text embeddings,
a logit-linear model the maps embeddings to treatment propensities, and two 2-layer
perceptrons that map from embeddings to male and female predicted number of cita-
tions, respectively. The final loss function is a weighted average of the losses of these
four neural networks. After the model is trained, we can use it to estimate the coun-
terfactual number of citations of male written patents if they were written by females
and vice versa. As shown in Figure 2, to estimate these counterfactuals, we run the
trained C-BERT model where the input data contains the texts of the patents and gender
indicators of the author(s). The texts are first passed through the trained BERT model
to generate a vector embedding for each patent. Then each embedding-gender pair is
passed through a decision step: if the author(s) are male, the embedding is passed to
the female citations network and if it is written by female(s), the embedding is passed
to the male citation network. The counterfactual number of citations are then computed
by these two networks. In parallel, regardless of the gender indicators, each embed-
ding is passed through the propensity network to estimate the treatment propensity of
this patent. Finally, the output of the model is a set of counterfactual citation-treatment
propensity pairs that each corresponds to one patent.
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Inputs:
● Patent texts
● Gender Indicators
● Citations

BERT fine-tuning Propensity Network Female Citation 
Network

Male Citation 
Network

texts texts and
gender

texts and
citations

Loss

Parameter Optimization

FIGURE IA1: C-BERT TRAINING PROCEDURE

The figure illustrates the training procedure of C-BERT once the neural networks are trained. The light
blue block at the top describes the input used for estimation. The green blocks are the four neural networks
that are trained using the patent data. The purple block denotes the loss function of the model which is a
weighted average of the loss of all four networks. Finally, the red block denotes the optimization algorithm
that allows the model to get a step toward fitting the training data.
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FIGURE IA2: DISTRIBUTION OF FORWARD CITATIONS

This figure illustrates the transformation from forward citations to expected forward citations. Panel
A uses the natural logarithm of forward citations while Panel B uses the natural logarithm of forward
citations expected from our model. The vertical axis in both panels measures the percent of the distribu-
tion. Red bars correspond to females, blue bars correspond to males, and purple bars correspond to the
overlapping region.
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FIGURE IA3: LOSS FUNCTION

This figure illustrates the loss function of the C-BERT model. The horizontal axis corresponds to the
number of complete passes of the training dataset through the algorithm or epoch. The vertical axis
corresponds to the loss function and is the mean square error per batch.
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TABLE IA1: DIFFERENCE IN WRITING STYLES

This table reports the difference in the writing style between males and females. The sample covers patents
issued from 1976-01-01 through 2021-12-31 and has at least 120 words. ***, **, * denote significance at the
1%, 5%, and 10% level, respectively. Data source: USPTO, Google Patents.

Gender Male Female
N Mean SD N Mean SD Test

Number of Words 1981500 159.64 43.26 136152 155.22 38.51 F= 1346.691∗∗∗

Sentiment Score 1981500 0.04 0.13 136152 0.05 0.13 F= 35.241∗∗∗

Sentiment 1981500 0.36 0.9 136152 0.37 0.9 F= 6.967∗∗∗

Flesch-Kincaid 197487 23.33 15.01 14278 23.87 15.12 F= 17.13∗∗∗

Flesh 197487 9.78 41.76 14278 7.04 42.2 F= 57.028∗∗∗

Gunning-Fog 197487 27.26 15.91 14278 27.66 16.04 F= 8.487∗∗∗

Coleman-Liau 197487 13.4 2.44 14278 13.63 2.61 F= 119.976∗∗∗

Dale-Chall 197487 11.88 2.42 14278 12.17 2.42 F= 194.12∗∗∗

Ari 197487 26.64 19.66 14278 27.17 19.81 F= 9.695∗∗∗

Linsear-Write 197487 34.08 28.03 14278 34.78 28.54 F= 8.082∗∗∗

Spache 197487 11.57 5.58 14278 11.75 5.62 F= 14.111∗∗∗
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TABLE IA2: CITATION BY CPC SECTION

This table estimates the difference in citations by CPC Section. Column (1) uses the number of forward
citations as its dependent variable, while Column (2) uses the difference in forward citations, as defined by
Equation 2. Estimates include interactions for the patent category based on CPC Section. All specifications
include CPC Section, Examiner × Customer, and Patent Issue Year fixed effects. The sample covers patents
issued from 1976-01-01 through 2021-12-31. Standard errors are clustered at the patent customer and
patent issue year level. ***, **, * denote significance at the 1%, 5%, and 10% level, respectively. Data
source: USPTO.

Dependent variable:
Forward Citations Difference in Forward Citations

(1) (2)

Lead Female Inventor −1.833∗∗∗ −4.324∗∗∗

(0.183) (0.192)

Electricity × Lead Female Inventor 0.485 −0.393∗

(0.288) (0.205)

Fixed Constructions × Lead Female Inventor 0.744∗∗ 1.771∗∗∗

(0.366) (0.181)

Human Necessities × Lead Female Inventor −1.446∗∗ −4.736∗∗∗

(0.539) (0.199)

Mechanical Engineering × Lead Female Inventor 2.084∗∗∗ 3.143∗∗∗

(0.209) (0.290)

Performing Operations × Lead Female Inventor 1.226∗∗∗ 0.979∗∗∗

(0.096) (0.138)

Physics × Lead Female Inventor 0.889∗∗∗ −0.494
(0.200) (0.445)

Textiles × Lead Female Inventor 3.376∗∗∗ 1.271∗∗

(0.542) (0.492)

CPC Section FE Yes Yes
Examiner x Customer FE Yes Yes
Examiner Art Unit FE Yes Yes
Patent Issue Year FE Yes Yes

Observations 408,679 408,679
Adjusted R2 0.272 0.253
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TABLE IA3: ROBUSTNESS TO SAMPLE SELECTION

This table establishes robustness of our baseline specification in Table 3. Panel A expands our sample to
include patents that have never been cited. Panel B uses a single author patent. Panel C uses both single-
author patents and patents where all inventors share the same gender. The sample covers patents issued
from 1976-01-01 through 2008-12-31. Standard errors are clustered at the patent customer and patent issue
year level. ***, **, * denote significance at the 1%, 5%, and 10% level, respectively. Data source: USPTO.

Panel A: All Patents

Difference in Forward Citations
(1) (2) (3) (4)

Lead Female Inventor −6.018∗∗∗ −6.146∗∗∗ −6.152∗∗∗ −6.698∗∗∗

(0.804) (0.742) (0.714) (0.386)

Intercept 0.342∗∗∗

(0.068)

Customer FE No No Yes No
Examiner FE No No Yes No
Examiner x Customer FE No No No Yes
Art Unit FE No Yes Yes Yes
Patent Issue Year FE No Yes Yes Yes

Observations 574,621 574,621 574,621 574,621
Adjusted R2 0.011 0.019 0.042 0.130

Panel B: Single Author

Difference in Forward Citations
(1) (2) (3) (4)

Lead Female Inventor −2.526∗∗∗ −2.576∗∗∗ −2.438∗∗∗ −2.229∗∗∗

(0.283) (0.268) (0.205) (0.105)

Intercept 0.113
(0.241)

Customer FE No No Yes No
Examiner FE No No Yes No
Examiner x Customer FE No No No Yes
Art Unit FE No Yes Yes Yes
Patent Issue Year FE No Yes Yes Yes

Observations 100,130 100,130 100,130 100,130
Adjusted R2 0.002 0.014 0.116 0.343

Panel C: Inventors Same Gender

Difference in Forward Citations
(1) (2) (3) (4)

Lead Female Inventor −4.042∗∗∗ −3.984∗∗∗ −3.931∗∗∗ −3.769∗∗∗

(0.338) (0.323) (0.296) (0.163)

Intercept 1.725∗∗∗

(0.239)

Customer FE No No Yes No
Examiner FE No No Yes No
Examiner x Customer FE No No No Yes
Art Unit FE No Yes Yes Yes
Patent Issue Year FE No Yes Yes Yes

Observations 102,864 102,864 102,864 102,864
Adjusted R2 0.003 0.016 0.192 0.37864
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TABLE IA4: CITATION BY PATENT NBER SUB CATEGORY

This table estimates the difference in citations by NBER subcategories. Column (1) uses the actual number
of citations as its dependent variable, while Column (2) uses the Bias in citations, as defined by Equation 2.
Estimates include interactions for the patent subcategory based on NBER classifications. All specifications
include Patent Subcategory, Examiner × Customer, and Patent Issue Year fixed effects. The sample covers
patents issued from 1985-01-01 through 1995-12-31. Standard errors are clustered at the patent customer
and patent issue year level. ***, **, * denote significance at the 1%, 5%, and 10% level, respectively. Data
source: USPTO.

Dependent variable:
Forward Citations Bias in Forward Citations

(1) (2)

Female Lead Inventor 0.606 −1.877∗∗∗

(0.464) (0.465)

Agriculture,Husbandry,Food× Female Lead Inventor 0.051 −2.563∗∗∗

(0.624) (0.654)

Amusement Devices× Female Lead Inventor 1.467 −3.913∗∗∗

(2.895) (0.776)

Apparel & Textile× Female Lead Inventor 2.463∗∗∗ −1.160∗∗∗

(0.660) (0.383)

Coating× Female Lead Inventor −1.570 −3.221∗∗∗

(1.137) (0.933)

Communications× Female Lead Inventor −2.293∗∗∗ −5.837∗∗∗

(0.596) (1.379)

Computer Hardware & Software× Female Lead Inventor −1.953∗∗ −5.409∗∗∗

(0.893) (1.394)

Computer Peripherials× Female Lead Inventor 0.343 −3.229∗∗∗

(0.973) (0.901)

Drugs× Female Lead Inventor −5.078∗∗∗ −4.256∗∗∗

(0.734) (0.666)

Earth Working & Wells× Female Lead Inventor −2.054∗∗∗ −2.738∗∗∗

(0.723) (0.384)

Electrical Devices× Female Lead Inventor −1.339∗∗∗ −1.699∗∗

(0.493) (0.644)

Electrical Lighting× Female Lead Inventor −2.472∗∗ −0.431
(1.034) (0.411)

Electronic business methods and software× Female Lead Inventor −10.009∗∗∗ −10.557∗∗

(3.557) (4.598)

Furniture, House Fixtures× Female Lead Inventor −0.564 0.082
(0.561) (0.448)

Gas× Female Lead Inventor −0.750 −2.548∗∗∗

(0.849) (0.864)

Genetics× Female Lead Inventor −9.398∗ −8.704
(5.058) (6.441)

Heating× Female Lead Inventor −1.962∗∗∗ 1.108∗

(0.716) (0.571)

Information Storage× Female Lead Inventor −2.417∗∗∗ −1.147
(0.873) (0.778)

continued on next page...
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TABLE IA4: CITATION BY PATENT NBER SUB CATEGORY (CONTINUED)

Dependent variable:
Forward Citations Bias in Forward Citations

(1) (2)

Mat. Proc & Handling× Female Lead Inventor 0.247 −0.402
(0.699) (0.432)

Measuring & Testing× Female Lead Inventor −0.764 −0.947
(0.541) (0.597)

Metal Working× Female Lead Inventor 0.301 −0.419
(0.997) (0.507)

Miscellaneous (Chemical)× Female Lead Inventor −1.369∗∗∗ −1.826∗∗∗

(0.435) (0.626)

Miscellaneous (Drgs&Med)× Female Lead Inventor −6.502∗∗ −10.911∗∗∗

(2.982) (1.739)

Miscellaneous (Elec)× Female Lead Inventor −0.740 −1.293
(0.627) (0.913)

Miscellaneous (Mech)× Female Lead Inventor −2.460∗ −2.929∗∗∗

(1.252) (0.720)

Miscellaneous (Others)× Female Lead Inventor −0.730 −1.619∗∗

(0.904) (0.607)

Motors & Engines + Parts× Female Lead Inventor −0.112 0.409
(0.694) (0.359)

Nuclear & X-rays× Female Lead Inventor −3.266∗∗∗ −0.758
(0.870) (0.473)

Optics× Female Lead Inventor −2.843∗ −2.636∗∗

(1.640) (1.105)

Organic Compounds× Female Lead Inventor −2.419∗∗ −0.618
(1.092) (0.517)

Pipes & Joints× Female Lead Inventor −5.196∗∗∗ −0.641
(0.920) (0.759)

Power Systems× Female Lead Inventor −1.033∗ −0.525
(0.557) (0.651)

Receptacles× Female Lead Inventor −2.757∗∗∗ −2.026∗∗∗

(0.781) (0.515)

Resins× Female Lead Inventor −1.996∗∗ −3.020∗∗∗

(0.835) (0.844)

Semiconductor Devices× Female Lead Inventor −2.342∗∗ −3.665∗∗∗

(0.878) (1.009)

Surgery & Med Inst.× Female Lead Inventor −7.304∗∗∗ −17.487∗∗∗

(1.349) (1.247)

Transportation× Female Lead Inventor −0.859 0.251
(0.541) (0.514)

Patent Subcategory (NBER) FE Yes Yes
Examiner x Customer FE Yes Yes
Examiner Art Unit FE Yes Yes
Patent Issue Year FE Yes Yes

Observations 408,706 408,706
Adjusted R2 0.275 0.255
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