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1 Introduction

A central question in the demand-based asset pricing literature (e.g., Koĳen and Yogo, 2019;

Koĳen, Koulischer, Nguyen, and Yogo, 2021) is how investors’ portfolio responds to changes in

prices and asset fundamentals. As emphasized in Brunnermeier, Farhi, Koĳen, Krishnamurthy,

Ludvigson, Lustig, Nagel, and Piazzesi (2021), “[i]dentifying demand elasticities is a central goal

in this literature.” In many frictionless asset pricing models, investor demand curves are virtually

flat, implying high demand elasticities. A key new fact in asset pricing is that demand curves (at

the individual stock and aggregate levels) are surprisingly inelastic compared to theories (Koĳen

and Yogo, 2019; Gabaix and Koĳen, 2021). Models featuring elastic demand fail to generate many

salient asset pricing facts such as price impact of fund flows and retail trades, excess volatility

puzzle, behavioral biases, etc.

In this paper, we show that inelastic demand estimates for individual stocks are not puzzling if

price movements are not entirely associated with short-term discount rate changes. We first define

the demand elasticity of an investor as the percent change in the number of shares they hold when

prices move by 1%. Since the number of shares held is the product of investor wealth and portfolio

weight divided by the asset price, if we assume the portfolio weight is a function of expected returns

and other residual variables (e.g., asset volatility), we can decompose demand elasticity into three

components: the mean (or expected return) component, the residual component, and the wealth

effects. The mean component is the impact of changes in the expected return on portfolio weights

as prices change, the residual component is the effect of the residual determinants of portfolio

weights (e.g., volatility) aside from the expected returns, and the wealth effect is the change in

investor wealth due to price changes.

We first show that in a standard portfolio choice framework, the expected return component

is the primary determinant of demand elasticity, and its contribution is much more significant
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than those from the residual component and wealth effects. We then further decompose the mean

component of elasticity into the product of two parts: first, the change in the (log) number of shares

held, 𝑆, in response to the changes in the discount rate, 𝜇, and second the change in expected returns

in response to movements in the (log) price, 𝑃:

𝜂 = − 𝜕 log 𝑆
𝜕 log 𝑃

=
𝜕 log 𝑆
𝜕�̃�

×
(
− 𝜕�̃�

𝜕 log 𝑃

)
(1)

We show demand curves are inelastic primarily due to slow reversals from the second component

in Equation (1).

In computing demand elasticity, it is crucial to consider the sources of price movement. From

the Campbell and Shiller decomposition, price changes are associated with changes in future

dividends, changes in future discount rates, or a combination of both. Moreover, price movements

due to changes in discount rates can be related to short-term or long-term expected returns or a

combination of the two. Given these facts, we then consider two definitions of demand elasticity

associated with different sources of price movements. In the first definition of elasticity, which

we label D1, we consider price changes only due to the next-period discount rate movements,

holding everything else constant. A price drop due only to the next-period discount rates implies

one-for-one reversals. Therefore, under D1, we essentially assume the second component in the

definition of elasticity in Equation (1) is equal to one.

Estimating D1 elasticity in the stock market is extremely challenging. This is because it requires

an instrument that identifies prices movements associated with one-for-one price reversals within

a single period (e.g., monthly, quarterly, etc.). Investors aware of this instrument could rationally

trade aggressively on the predictions this instrument delivers, weakening the predictive power of

the instrument itself. If the instrument predicts one-for-one price movements but investors do not
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have access to it in real time, then it is no surprise that investors do not aggressively trade against

these one-for-one price movements given that it is outside of their information set. Thus to estimate

D1 elasticity in the stock market requires an instrument that predicts one-for-one single-period

reversals, it is in the investor’s information set, but investors have not traded aggressively on this

instrument enough to eliminate its predictive power. This is a high bar indeed.

Moreover, as mentioned above, the assumption of full reversal next period, creates near arbi-

trage opportunities. Therefore, we arrive at our second definition of elasticity, D2, which considers

responses to price movements that are not entirely driven by the next-period discount rates. De-

pending on the sign and magnitude of the second term in Equation (1), definition D2 covers a broad

range of elasticity estimates: upward-sloping demand if it is negative, perfectly inelastic if it is

zero, and D1 if it is equal to one.

Our main contribution is to identify weak reversals as the source of the inelastic demand puzzle

in the stock market. As we show later, almost all empirical estimates measure D2 elasticity while

most theoretical models only study the response of portfolio weights to changes in the discount

rates, i.e., D1.1 We empirically estimate D1 in the bond market where it is arguably more plausible

to do so, and, consistent with theory, we find high demand elasticities.

Given weak reversals, it is important to understand whether reversals are weak enough to deliver

low estimated elasticity values comparable to estimates from the literature and whether the residual

component of demand is small. To answer both of these questions, we estimate the components

of a classic portfolio choice problem with Epstein-Zin preferences from Campbell, Chan, and

Viceira (2003). We decompose the residual components of elasticity into a covariance component,

a variance component, and a consumption-to-wealth ratio hedging component. We find that these

1A notable exception is the model in Gabaix and Koĳen (2021) where it considers price movements that do not
revert back next period. Consistent with these definitions, Petajisto (2009) measures very high D1 demand elasticity of
more than 6,000 in his calibration. This number is almost three orders of magnitude larger than the empirical estimates
that measure D2.
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components are relatively small, meaning that the entire residual component is relatively small.

We also find that weak reversals are enough to deliver relatively inelastic demand, comparable to

literature estimates, through the expected return component of elasticity.

While weak reversals are enough to deliver inelastic demand and large price impacts from flow,

a compelling theoretical reason for weak price reversals is still needed. Why are there weak price

reversals? We provide two different models that deliver weak price reversals: first, a model of

arbitrage coordination with “intuitive expectations” in the style of Fuster, Laibson, and Mendel

(2010), and an asymmetric information model.

The coordination model relies on the fundamental insight that trade against noise-induced price

movements is only profitable if other investors also trade against these price changes. Prices are

then corrected, earning trading profits for arbs. With rational expectations, arbitrageurs correctly

perceive that other investors will trade based on mispricing, and thus there is no coordination,

and demand is relatively elastic. However, when expectations of future willingness to trade

against mispricing are formed by simply taking the average of historical willingness to trade against

mispricing, i.e., intuitive expectations are used instead of rational expectations in the spirit of Fuster

et al. (2010), if demand is initially inelastic, then it continues to be so throughout time. This model

has the interesting property that the initial expectations of future elasticity values largely determine

the elasticity. Only mass coordination of traders is required to switch from one equilibrium to

another.

The asymmetric information model is reminiscent of the no-trade theorem of Milgrom and

Stokey (1982), where price movements are only driven by private information. This implies that

uninformed investors are rationally unwilling to trade when prices change because it means they are

trading against better-informed investors. In our model, price movements are partly driven by noise

trades. Thus uninformed investors are willing to trade when price changes are induced by noise
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but not against private information-induced price movements. Given the difficulty of disentangling

the sources of price movements, uninformed investors’ demand elasticity is determined by the mix

of noise and private-information price movements in equilibrium. Thus this model can deliver

extremely elastic or perfectly inelastic demand depending on the degree of private information and

noise.

Whether these two or other frameworks explain the primary source of weak reversals is unclear.

However, weak reversals appear to be a strong theoretical and empirical source of inelastic demand.

Related literature

Our paper is about stock market micro elasticity which examines the change in the relative

price of two stocks if one buys $1 of one and sells $1 of the other (e.g., Shleifer, 1986; Harris and

Gurel, 1986).2 There is a range methodologies to estimate demand elasticities at the individual

stock level: index exclusion (Chang, Hong, and Liskovich, 2015; Pavlova and Sikorskaya, 2020),

dividend payments (Schmickler, 2020), mutual fund flows (Lou, 2012), and trade-level price impacts

(Frazzini, Israel, and Moskowitz, 2018; Bouchaud, Bonart, Donier, and Gould, 2018). There are

also structural approaches using asset demand systems (Koĳen and Yogo, 2019; Haddad, Huebner,

and Loualiche, 2021). The estimates of micro price multipliers (inverse of micro elasticities) range

from 0.3 to 15, much higher than what existing models predict.3 So, demand curves are much more

inelastic compared to existing theories. In this paper, we provide a microfoundation for inelastic

2This is in contrast with the literature on macro elasticity that studies how the aggregate stock market’s value
changes if one buys $1 worth of stocks by selling $1 worth of bonds (e.g., Johnson, 2006; Deuskar and Johnson,
2011; Da, Larrain, Sialm, and Tessada, 2018; Gabaix and Koĳen, 2021; Li, Pearson, and Zhang, 2020; Hartzmark and
Solomon, 2022). A more recent literature studies factor-level multipliers which is the price impact if an investor buys a
fraction of the outstanding shares of a cross-sectional pricing factor such as size or value (e.g., Peng and Wang, 2021;
Li, 2021). The evidence in the literature suggests that the micro elasticity is much larger than the aggregate elasticity
given that different stocks are closer substitutes than the stock and bond market indices (Gabaix and Koĳen, 2021).

3See Table 1 and Figure 2 of Gabaix and Koĳen (2021) for more details.
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demand based on investor beliefs about discount rates and cash flows.

Our finding that most stock prices movements exhibit weak, if any, reversals is consistent with

extant findings in the cross-section of stock returns. Stock returns typically exhibit reversals within

a month (Jegadeesh, 1990), momentum over quarterly to annual frequency (Jegadeesh and Titman,

1993), and reversals over multiple years (De Bondt and Thaler, 1985). In our framework, weak

price reversals leads to low demand elasticity.

Finally, we relate to the large literature on the role of information in financial markets (e.g.,

Grossman and Stiglitz, 1980; Hellwig, 1980, Kyle, 1989; Van Nieuwerburgh and Veldkamp,

2010, and many others). In a noisy rational expectation equilibrium model with private and

public information, we show that uninformed traders are price inelastic, and more precise public

information leads to more elastic demand curves. Our model on coordination among arbitrageurs is

related to earlier work on risks associated with arbitrageur chains (Dow and Gorton, 1994), arbitrage

herding (Froot, Scharfstein, and Stein, 1992), and coordination risk in short-selling (Abreu and

Brunnermeier, 2002, 2003).

2 Calibration of Demand Elasticity

Petajisto (2009) considers a simple calibration with CARA utility where supply decreases 10%

for an asset, and the price increases only 16 basis points. This implies an elasticity of about 6,000

(≈ 10/0.0016).4

We consider two definitions of demand elasticity and corresponding calibrations. Suppose

there are 𝑁 assets indexed by 𝑖, each with excess returns 𝑟𝑖,𝑡 at time 𝑡. Consider an investor whose

demand in terms of shares of asset 𝑖 is written as 𝑆𝑖,𝑡 . We can write 𝑆𝑖,𝑡 = 𝐴𝑡𝑤𝑖,𝑡/𝑃𝑖,𝑡 , where 𝐴𝑡 is

4See Appendix A for details of the model in Petajisto (2009) and its calibration.
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the wealth or value of all assets of the investor, 𝑤𝑖,𝑡 are the portfolio weights, and 𝑃𝑖,𝑡 is the share

price of the asset. Let 𝐷𝑖,𝑡 be the dividend per share of the asset, and 𝑅 𝑓 ,𝑡 be the gross risk-free

rate. Let Ẽ𝑡 (·) denote the subjective conditional expectation of the investor and let �̃�𝑖,𝑡 ≡ Ẽ𝑡 [𝑟𝑖,𝑡+1]

denote the conditional expected excess return. We can express the portfolio weight in asset 𝑖 as a

function of expected return of the asset and other components:

𝑤𝑖,𝑡 = 𝑔𝑖,𝑡 ( �̃�𝑖,𝑡 , �̃�𝑖,𝑡) (2)

where 𝑔𝑖,𝑡 is a function and 𝜈𝑖,𝑡 consists of the residual determinants of portfolio weights aside from

subjective expected returns that are a potentially function of prices, namely risk.

Assuming differentiability and positive demand, we can write the demand elasticity as:

𝜂𝑖,𝑡 ≡ − 𝜕 log(𝑆𝑖,𝑡)
𝜕 log(𝑃𝑖,𝑡)

= 1 − 𝜕 log(𝑤𝑖,𝑡)
𝜕�̃�𝑖,𝑡

𝜕�̃�𝑖,𝑡

𝜕 log(𝑃𝑖,𝑡)︸                            ︷︷                            ︸
mean component

−𝜕 log(𝑤𝑖,𝑡)
𝜕�̃�𝑖,𝑡

𝜕�̃�𝑖,𝑡

𝜕 log(𝑃𝑖,𝑡)︸                        ︷︷                        ︸
residual component

− 𝜕 log(𝐴𝑡)
𝜕 log(𝑃𝑖,𝑡)︸         ︷︷         ︸
wealth effect

. (3)

Thus an elasticity is reduction in demand in percent terms when prices in crease by 1%.

Note that Koĳen and Yogo (2019) assume investor wealth 𝐴𝑡 is exogenous or not a function of

prices. In a macroeconomic setting, this is an unrealistic assumption. However, with a large 𝑁

(many assets in a diversified portfolio with relatively small weights), a 1% price movement changes

the value of the portfolio much less than 1%. Thus quantitatively, these effects should be small

in a microeconomic setting. We likewise consider exogenous wealth, thus effectively setting these

wealth effects to zero when considering elasticity values. In reality, 𝜕𝐴𝑡/𝜕 log(𝑃𝑖,𝑡) is typically

tiny, positive, and much less than 1. This makes the demand even more inelastic, and as we show,

we can explain empirically estimated inelastic demand without relying on these wealth effects.

In computing demand elasticity, it is critical to note that we cannot simply operate off Equa-
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tion (3), as there are many types of price changes. From Campbell and Shiller (1988), a price

change is either associated with future dividends, future discount rates, or some combination of

both. Furthermore, price movements due to changes in discount rates can be related to short-term

or long-term expected returns or a combination of the two. In other words, price changes associ-

ated with discount rate movements may affect various parts of the term structure of equities (van

Binsbergen and Koĳen, 2017). Given these facts, we consider different definitions of the price

elasticity of demand, associated with different types of price movements.

The first definition of the elasticity is from movements in demand associated only with short

term discount rates changes:

Definition 1 (D1). This is the elasticity 𝜂𝑖,𝑡 in Equation (3) ceteris paribus. In particular, we

consider a price movement such that

𝜕Ẽ𝑡 [𝑃𝑖,𝑡+1]
𝜕 log(𝑃𝑖,𝑡)

= 0,
𝜕Ẽ𝑡 [𝐷𝑖,𝑡+1]
𝜕 log(𝑃𝑖,𝑡)

= 0, and
𝜕�̃�𝑖,𝑡

𝜕 log(𝑃𝑖,𝑡)
= 0.

In this definition of elasticity, future expectations of payouts are fixed, and the risk is assumed

to be constant as well. Definition 1 corresponds to the calibration in Petajisto (2009) discussed

above, where future payments and the variance-covariance structures are assumed to be exogenous.

Fundamentally, in the definition of demand elasticity in D1, we consider a price change associated

with only a short-term (i.e., the next period) discount rate change.

We can write the investor’s subjective expected return as:

�̃�𝑖,𝑡 =
Ẽ𝑡 [𝑃𝑖,𝑡+1] + Ẽ𝑡 [𝐷𝑖,𝑡+1]

𝑃𝑖,𝑡
− 𝑅 𝑓 ,𝑡

=
(
Ẽ𝑡 [𝑃𝑖,𝑡+1] + Ẽ𝑡 [𝐷𝑖,𝑡+1]

)
× exp

(
− log(𝑃𝑖,𝑡)

)
− 𝑅 𝑓 ,𝑡 (4)
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Under Definition 1, we have:

𝜕�̃�𝑖,𝑡

𝜕 log(𝑃𝑖,𝑡)
= −

(
Ẽ𝑡 [𝑃𝑖,𝑡+1] + Ẽ𝑡 [𝐷𝑖,𝑡+1]

)
× exp

(
− log(𝑃𝑖,𝑡)

)
= − Ẽ𝑡 [𝑃𝑖,𝑡+1] + Ẽ𝑡 [𝐷𝑖,𝑡+1]

𝑃𝑖,𝑡

= −( �̃�𝑖,𝑡 + 𝑅 𝑓 ,𝑡). (5)

This means that the demand elasticity is:

𝜂𝑖,𝑡 = 1 +
(
�̃�𝑖,𝑡 + 𝑅 𝑓 ,𝑡

) 𝜕 log(𝑤𝑖,𝑡)
𝜕�̃�𝑖,𝑡

= 1 +
(
�̃�𝑖,𝑡 + 𝑅 𝑓 ,𝑡

) 1
𝑤𝑖,𝑡

𝜕𝑤𝑖,𝑡

𝜕�̃�𝑖,𝑡
(6)

From Equation 6, a calibration of the elasticity under D1 requires a value for 𝜕𝑤𝑖,𝑡/𝜕�̃�𝑖,𝑡 . To do

this, we consider a standard CARA utility model in which the investor maximizes:

Ẽ𝑡
[
− exp{−𝛾𝐴𝑡

(
𝑤′
𝑡𝑟𝑡+1 + 𝑅 𝑓 ,𝑡 (1 − 𝜄′𝑤𝑡)

)
}
]
, (7)

where 𝛾 is the absolute risk aversion parameter, 𝑤𝑡 is an 𝑁 dimensional vector of portfolio weights,

𝑟𝑡 is an 𝑁 dimensional vector of excess returns, and 𝜄 is an 𝑁 dimensional vector of ones. The FOC

is:

𝑤𝑡 =
1
𝛾𝐴𝑡

Σ̃−1
𝑡 �̃�𝑡 , (8)

where Σ̃𝑡 is the subjective beliefs about the covariance matrix. Thus we can write:

𝜕𝑤𝑖

𝜕�̃�𝑖
=
𝜏𝑖,𝑡

𝛾𝐴𝑡
, (9)

where 𝜏𝑖,𝑡 is the 𝑖𝑡ℎ term along the diagonal of the precision matrix Σ̃−1
𝑡 .
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To keep the calibration simple, we consider identical expected returns, standard deviations, and

correlations for all 𝑁 assets. We set this subjected expected excess return to 0.06, the average

subjective correlation to 0.3, and the subjective volatility to 0.3.5 We consider 𝑁 = 2,000 assets.

We set the CARA risk aversion coefficient times wealth, 𝛾𝐴𝑡 , to be 2.2, simply because this allows

portfolio weights to sum to one implying a zero-net supply (demand) of the risk-free asset. We

set the risk-free rate to zero, which is conservative because a larger risk-free rate yields a higher

elasticity. This yields 𝜏𝑖 ≈ 15.9. We plug in the average portfolio weight of 1/𝑁 to compute the

demand elasticity.6 Plugging these values into Equation (6) yields an elasticity of about 15,000.7

Of course this elasticity varies as the parameter values change and we consider assets with higher

and lower weights. Trying a range of parameter values seems to yield an average elasticity across

assets that is at least three orders of magnitude above unity. Notice that with more assets, the

average elasticity tends to be higher. This is because more assets create more substitutability, thus

naturally generating higher elasticity values.

In reality, a price drop associated with only next-period discount rates is a relatively high-return

low-risk proposition. In other words, this is a price movement with essentially one-for-one reversals

in expectation, which generates a compelling investment opportunity. In our next definition of price

elasticity, we consider a price elasticity for an average price movement.

D1 is difficult in the stock market to estimate, because it is difficult to obtain an instrument

that predicts price movements with one-for-one reversals that is in a standard investor’s information

set. We would expect investors to use such instruments to aggressively trade against such price

movements, potentially eroding the ability of the instrument to generate one-for-one price reversals

5Pollet and Wilson (2010) report average daily correlations to be 0.237, and longer-horizon correlations are higher
due to autocorrelations across days. Thus, we use 0.3 as a reasonable parameter value.

6This does not mean we consider only an equal-weighted portfolio. We consider the elasticity for an asset with
average weights.

7From Equations (6) and (9), the elasticity is 1 + 1.06 × 2000 × (15.9/2.2) ≈ 15000.

10



in the first place. Thus there are good economic reason to indicate that D1 may be difficult, if not

impossible, to estimate.

Definition 2 (D2). This is the elasticity 𝜂𝑖,𝑡 in Equation (3), where the variation in log(𝑃𝑖,𝑡)

corresponds to an average price movement, and not just a price movement associated with only the

next period discount rates.

Calibrating demand elasticity according to Definition 2 is more complicated and requires a

calibration of the subjective expectation of a price reversal, i.e., the size of 𝜕�̃�𝑖,𝑡/𝜕 log(𝑃𝑖,𝑡). It

similarly requires knowing how subjective expectations of the residual component of demand in

Equation (2), �̃�𝑖,𝑡 , vary with prices and how important this is for demand.

In what follows, we first show that in a standard portfolio choice framework, the mean component

in Equation (3) dominates the residual and wealth effect components of elasticity. We then measure

the size of price reversals in the stock market and show they weak reversals is the source of inelastic

demand.

3 Data

We use the standard CRSP-Compustat merged dataset for returns and asset characteristics.

We follow Koĳen and Yogo (2019) in calculating profitability, book-to-market ratios, investment,

dividend-to-book ratios, and beta. We download monthly and daily frequency data. To form returns

for the quarterly and annual frequencies, we cumulate returns from the monthly stock data. To form

weekly frequency stock data, we cumulate returns from the daily frequency.

We use the Treasury bill rates for the respective frequency from Ken French’s website as the

risk-free rate for both the monthly, weekly, and daily frequency. For the quarterly and annual

11



frequencies, we use the 3-month and 1-year treasury bill rates from the Federal Reserve Economic

Data (FRED). They have codes TB3MS and GS1, respectively.

We download daily, weekly, and monthly Fama and French (2015) 5 factor and momentum

returns from Ken French’s website. We cumulate these to obtain quarterly and annual factor

returns.

We download the log consumption to wealth deviations as in Lettau and Ludvigson (2001) from

Martin Lettau’s website. These data are quarterly. We also download quarterly 13F institutional

holdings data from Thomson Reuters when replicating the price instrument in Koĳen and Yogo

(2019).

4 Elasticity Decomposition

In this section, we address two important questions. First, do weak reversals translate into

inelastic demand in a standard portfolio choice framework? Second, how important is the residual

component of demand?

First, we consider the case of Epstein-Zin multivariate demand for 𝑁 available assets from

Campbell et al. (2003). They show, after loglineariztion, portfolio weights are given by:

𝑤𝑡 =
1
𝛾
Σ−1
𝑡

[
E𝑡 [𝑦𝑡+1] +

1
2
𝜎2
𝑡 −

𝜃

𝜓
𝜎𝑐−𝑤,𝑡

]
, (10)

where 𝑦𝑡 is an 𝑁 dimensional vector of log returns minus the log risk-free rate, Σ𝑡 is the 𝑁 × 𝑁

conditional covariance matrix of 𝑦𝑡+1, 𝜎2
𝑡 is the 𝑁 dimensional vector containing the diagonal

elements of Σ𝑡 , 𝜎𝑐−𝑤,𝑡 is the 𝑁 dimensional vector of conditional covariance of the log consumption

to wealth ratio and 𝑦𝑡+1, 𝛾 > 0 is the relative risk aversion coefficient, 𝜓 > 0 is the elasticity of
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intertemporal substitution, and 𝜃 ≡ (1 − 𝛾)/(1 − 𝜓−1).8

We consider only quarterly data in this section, since cay is available at the quarterly level and

not any higher frequencies. Thus all the results in this section are quarterly.

We need to model both the 1) conditional expectation of 𝑦𝑡 as a function of prices as well and

then 2) the conditional covariance of 𝑦𝑡 itself and the log-consumption to wealth ratio as a function

of prices as well. We do this by simply running predictive regressions for the relevant terms, as we

describe below.

4.1 Conditional expectation model

The first regression is simply log returns on lagged log price changes. Let Δ𝑝𝑖,𝑡 ≡ log(𝑃𝑖,𝑡) −

log(𝑃𝑖,𝑡−1). This is a simple panel regression:

𝑦𝑡+1 = 𝛽0 + 𝛽1Δ𝑝𝑖,𝑡 + 𝜖𝑖,𝑡+1. (11)

Thus with this information set, we have a simple partial effect:

𝜕�̃�𝑡 [𝑦𝑖,𝑡+1]
𝜕𝑝𝑖,𝑡

= 𝛽1. (12)

This regression corresponds to an information set consisting of only previous period price move-

ments. We refer to this as the simple model.

We consider an expanded information set, where we include the log book to price ratio, 𝑏𝑖,𝑡−𝑝𝑖,𝑡 .

We also consider the log of market capitalization, cross-sectionally normalized, (𝑝𝑖,𝑡 − �̄�𝑡)/�̄�𝑡 . We

include other regressors that are not functions of prices, including profitability, investment, dividend

8See equation (20) of Campbell et al. (2003). Note that in their equation, there are some additional terms because
they also consider 𝑦𝑡 to be log return of the asset minus a benchmark with potential covariance terms. We consider
just the risk-free rate, which eliminates some of these extra terms.
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to book ratio, and market beta, stacked into a column vector of controls 𝑋𝑐𝑡 . The regression is written

as:

log(𝑅𝑖,𝑡+1) = 𝛽0 + 𝛽1Δ𝑝𝑖,𝑡 + 𝛽2(𝑏𝑖,𝑡 − 𝑝𝑖,𝑡) + 𝛽3
𝑝𝑖,𝑡 − �̄�𝑡
�̄�𝑡

+ (𝑋𝑐𝑡 )′𝛽 + 𝜖𝑖,𝑡+1. (13)

where 𝛽 is a vector of regression parameters. Thus the average estimated price derivative is simply:

𝜕�̃�𝑡 [𝑦𝑡+1]
𝜕𝑝𝑡

≡ Mean
(
𝜕�̃�𝑡 [𝑦𝑖,𝑡+1]
𝜕𝑝𝑖,𝑡

)
= 𝛽1 − 𝛽2 + 𝛽3 × Mean (1/�̄�𝑡) (14)

We refer to this as the cross sectional model, because it uses a standard set of cross sectional

variables to predict variation in expected returns.

We consider a greatly expanded information set, where stock fixed effects are added to the

regression in (13). We refer to this as the fixed effects model. The regression equation is the same,

except 𝛽0 is now changed to 𝛽𝑖,0—a stock fixed effect. This specification corresponds to a greatly

expanded information set, where an investor has a stock-specific estimate of the valuation and return

of each asset instead of relying on cross-sectional relationships. In other words, the regression in

Equation (13) corresponds to an investor who forecasts with rational expectations using all returns

projected onto the space of asset characteristics. This means a high price predicts a low return

when other assets with similar characteristics have a similarly high price/low return relationship.

If one does not find this relationship in the cross-section, this supposed investor does not believe

there is a strong price/return relationship.

In a regression with stock fixed effects, the corresponding investor knows if the price of any

asset is high or low. The investor does not rely on the cross-section and has an estimate of whether

the price is high or low in the time series of the asset’s own returns. This corresponds to a relatively

expansive information set.

The marginal price effect is calculate for each stock in each period, and the average effect
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across stocks and periods is shown in the second column of Table 1. Note that with the simple

model, the marginal effect is identical across stocks and time. Standard errors are shown below the

estimates, which are double clustered by quarter and stock. Note that both the simple and cross

sectional models have positive average marginal effects, indicating potentially rational upward

sloping demand if the elasticity is determined solely by the mean effects. The fixed effects average

marginal effect is negative, but only −0.035, which means a 1% price increase decreases expected

returns by only 3.5 basis points (bps). This is far from a one-for-one reversal.

4.2 Conditional covariance terms model

We consider a standard factor structure for the covariance matrix:

Σ𝑡 = 𝛽𝑡Ω𝛽
′
𝑡 + 𝜁 𝐼, (15)

where Ω is the 𝐹 × 𝐹 matrix of factor returns, 𝛽𝑡 is a 𝑁 × 𝐹 vector corresponding to 𝐹 factors,

and 𝜁 > 0 is a scalar that dictates the size of the idiosyncratic variance. For the 𝐹 factors,

we use the Fama-French 5 factors along with momentum, i.e., 𝐹 = 6. We estimate Ω as the

estimated covariance matrix. If we estimate 𝛽𝑡 with rolling regressions of historical returns, then

the covariance matrix would, mechanically, not be a function of prices. If the 𝜎𝑐−𝑤,𝑡 component

is estimated similarly, then the residual component of demand would mechanically be zero. We

consider an alternative specification that allows the residual component of demand elasticity to be

non-zero. This involves simply running predictive regressions of the “realized" covariance terms

on (log) prices and other variables in order to determine how well price fluctuations predict these

covariance terms.
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We parameterize 𝛽𝑡 as

𝛽𝑡 =

[
𝜎1,𝑡 𝜎2,𝑡 . . . 𝜎𝐹,𝑡

]
Ω−1, (16)

where 𝜎𝑗 ,𝑡 is the 𝑁 dimensional column vector of conditional covariance terms of 𝑦𝑡+1 and factor

return 𝑓 𝑗 ,𝑡 . We parameterize 𝜎𝑗 ,𝑡 as linear in characteristics 𝑋𝑡 , i.e., 𝜎𝑗 ,𝑡 = 𝑋𝑡𝛽
𝑓

𝑗
, where 𝛽 𝑓

𝑗
is a

vector of regression parameters. We fit these coefficients by running the following regression:

( 𝑓 𝑗 ,𝑡+1 − 𝜇 𝑓𝑗 )𝜖𝑡+1 = 𝑋𝑡𝛽
𝑓

𝑗
+ 𝜈 𝑗 ,𝑡+1, (17)

where 𝜇 𝑓
𝑗

is the average return for the 𝑗 𝑡ℎ factor. Note that the left-hand side variable is essentially

the “realized covariance," meaning that the conditional expectation of this variable is the conditional

covariance as long as the model for the conditional mean is correct. Since we have three different

models of the mean above, we plug in three different regression residuals 𝜖𝑡+1 into the regression

above, and we obtain similar results in terms of the size of the residual elasticity term. We run this

regression separately for each factor 𝑓 = 1, . . . , 𝐹. If we define Γ =

(
𝛽
𝑓

1 , 𝛽
𝑓

2 , ..., 𝛽
𝑓

𝐹

)
, which is a

𝐾 × 𝐹 matrix, then we can write:

𝛽𝑡 = 𝑋𝑡ΓΩ
−1. (18)

Thus conditional betas are functions of characteristics, some of which include prices. This charac-

terization allows the covariance matrix Σ𝑡 to be a function of characteristics 𝑋𝑡 , potentially allowing

price to affect demand through channels outside just the expected return channel—i.e., the residual

elasticity channel in Equation (3) discussed above. Notice that this characterization follows both

Pástor and Stambaugh (2003) and Kelly, Pruitt, and Su (2019) by settings the beta of the assets equal

to a simple linear function of asset characteristics. This specification implies that the covariance
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matrix of individual asset log excess returns is:

Σ𝑡 = 𝛽𝑡Ω𝛽
′
𝑡 + 𝜁 𝐼 = 𝑋𝑡ΓΩ−1Γ′𝑋′

𝑡 + 𝜁 𝐼. (19)

We estimate 𝜁 as the variance (across assets and time) of 𝑦𝑡+1 − 𝛽𝑡 𝑓𝑡+1.

We follow a similar approach to obtain an estimate of 𝜎𝑐−𝑤,𝑡 . We fit the following regression:

cay𝑡+1 · 𝜖𝑡+1 = 𝑋𝑡𝛽𝑐−𝑤 + 𝜈𝑡+1, (20)

where cay𝑡+1 is the deviation of the log consumption to wealth ratio from the average from Lettau and

Ludvigson (2001), downloaded from Martin Lettau’s website. Note that the cay data is quarterly;

thus, we consider elasticity only at the quarterly horizon in this section.

4.3 Results

With these parameterizations, we can rewrite Equation (10) as:

𝑤𝑡 =
1
𝛾
(𝑋𝑡ΓΩ−1Γ′𝑋 ′

𝑡 + 𝜁 𝐼)−1
[
𝑋𝑡 𝛽 +

1
2

Diag
(
𝑋𝑡ΓΩ

−1Γ′𝑋 ′
𝑡 + 𝜁 𝐼

)
− 𝜃

𝜓
𝑋𝑡 𝛽𝑐−𝑤

]
=

1
𝛾𝜁

(
𝐼 − 𝑋𝑡Γ(𝜁Ω + Γ′𝑋 ′

𝑡 𝑋𝑡Γ)−1Γ′𝑋 ′
𝑡︸                               ︷︷                               ︸

covariance

) [
𝑋𝑡 𝛽︸︷︷︸
mean

+ 1
2

Diag(𝑋𝑡ΓΩ−1Γ′𝑋 ′
𝑡 + 𝜁 𝐼)︸                             ︷︷                             ︸

variance

− 𝜃

𝜓
𝑋𝑡 𝛽𝑐−𝑤︸      ︷︷      ︸

cay

]
, (21)

where Diag(·) is the function that has a square matrix as an argument and outputs a column vector

containing the diagonal of the matrix.

In Equation (21), we highlight four different components or channels through which price

changes can affect demand: (1) the mean component, (2) the covariance component, (3) the

variance component, and (4) the consumption to wealth component labeled cay. Note that with this
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demand specification, components (2), (3), and (4) together account for the residual component

discussed above in Equation (3).

The purpose of the exercise in this section is to determine if the overall optimal Epstein-Zin

demand yields inelastic demand and how important the four components of the residual elasticity

are for the overall demand elasticity. In order to do this, we show the decomposition of demand

elasticity into these five components. Let 𝐴𝑡 be an 𝑁 × 𝐽 matrix with elements 𝑌𝑖, 𝑗 ,𝑡 and let 𝑝𝑡 be

the 𝑁 × 1 vector of log prices. Assume that each element of 𝐴𝑖, 𝑗 ,𝑡 is a differentiable function of 𝑝𝑖,𝑡 .

Define the following:

∇𝑝𝑡 𝐴𝑡 =



𝜕𝐴1,1,𝑡
𝜕𝑝1,𝑡

𝜕𝐴1,2,𝑡
𝜕𝑝1,𝑡

. . .
𝜕𝐴1,𝐽 ,𝑡
𝜕𝑝1,𝑡

𝜕𝐴2,1,𝑡
𝜕𝑝2,𝑡

𝜕𝐴2,2,𝑡
𝜕𝑝2,𝑡

. . .
𝜕𝐴2,𝐽 ,𝑡
𝜕𝑝2,𝑡

...
...

. . .
...

𝜕𝐴𝑁,1,𝑡
𝜕𝑝𝑁,𝑡

𝜕𝐴𝑁,2,𝑡
𝜕𝑝𝑁,𝑡

. . .
𝜕𝐴𝑁,𝐽,𝑡

𝜕𝑝𝑁,𝑡


. (22)

Then as shown above, we can write:

∇𝑝𝑡 𝑋𝑡 =



0 1 −1 1/�̄�𝑡 0 . . . 0

0 1 −1 1/�̄�𝑡 0 . . . 0
...
...

...
...

...
. . .

...

0 1 −1 1/�̄�𝑡 0 . . . 0


, (23)

where elements in the first column are zero because of the intercept, elements in the second

column are one because this is the reversals column, elements in the third column are −1 because

this corresponds to the log book-to-market ratio, elements in the fourth column are 1/�̄�𝑡 because

this corresponds to the size column. The rest of columns are zero because their corresponding

characteristics are not functions of price (investment, profitability, dividend to book, and market

beta). Using this notation, we can define the elasticity, following Koĳen and Yogo (2019) for only
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assets with positive weights, as:

𝜂𝑡 = 𝜂
𝑚
𝑡 + 𝜂𝑐𝑡 + 𝜂𝑣𝑡 + 𝜂

cay
𝑡 , (24)

where 𝜂𝑚𝑡 , 𝜂𝑐𝑡 , 𝜂𝑣𝑡 , and 𝜂cay
𝑡 correspond to the elasticity components from mean, covariance, variance,

and cay in Equation (21), respectively. These components are defined as:

𝜂𝑚𝑡 = ®1 − 1
𝛾𝜁

diag(𝑤𝑡)−1((®1 − Diag(𝑋𝑡ΓΛ𝑡Γ′𝑋′
𝑡 )) ◦ ((∇𝑝𝑡 𝑋𝑡)𝛽)), (25)

𝜂𝑐𝑡 =
1
𝛾𝜁

diag(𝑤𝑡)−1((∇𝑝𝑡 𝑋𝑡)ΓΛ𝑡Γ′𝑋′
𝑡 𝜇𝑡

− 1
𝛾𝜁

diag(𝑤𝑡)−1(Diag(𝑋𝑡ΓΛ𝑡 ((∇𝑝𝑡 𝑋𝑡)Γ)′) ◦ (𝑋𝑡ΓΛ𝑡Γ′𝑋′
𝑡 𝜇𝑡))

− 1
𝛾𝜁

diag(𝑤𝑡)−1(Diag(𝑋𝑡ΓΛ𝑡Γ′𝑋′
𝑡 ) ◦ (((∇𝑝𝑡 𝑋𝑡)Γ)Λ𝑡Γ′𝑋′

𝑡 𝜇𝑡))

+ 1
𝛾𝜁

diag(𝑤𝑡)−1(Diag(𝑋𝑡ΓΛ𝑡 ((∇𝑝𝑡 𝑋𝑡)Γ)′) ◦ 𝜇𝑡), (26)

𝜂𝑣𝑡 = − 1
𝛾𝜁

diag(𝑤𝑡)−1((®1 − Diag(𝑋𝑡ΓΛ𝑡Γ′𝑋′
𝑡 )) ◦ (((𝑋𝑡ΓΩ−1Γ′) ◦ (∇𝑝𝑡 𝑋𝑡))®1)), (27)

𝜂
cay
𝑡 =

𝜃

𝜓

1
𝛾𝜁

diag(𝑤𝑡)−1((®1 − Diag(𝑋𝑡ΓΛ𝑡Γ′𝑋′
𝑡 )) ◦ ((∇𝑝𝑡 𝑋𝑡)𝛽𝑐−𝑤)), (28)

where Λ𝑡 = (𝜁Ω+Γ′𝑋′
𝑡 𝑋𝑡Γ)−1, 𝜇𝑡 = 𝑋𝑡𝛽+ 1

2Diag(𝑋𝑡ΓΩ−1Γ′𝑋′
𝑡 + 𝜁 𝐼) − 𝜃

𝜓
𝑋𝑡𝛽𝑐−𝑤, ◦ is the Hadamard

product (element-wise), and ®1 is a vector of ones.

In Table 1, we present the mean elasticity component, 𝜂𝑚, in column (1) for the three models

for the conditional expectation discussed above. We then decompose 𝜂𝑚 into two parts: first, the

change in expected returns in response to (log) price movements in column (2), and second, the

change in the (log) portfolio weight in response to the changes in the discount rate in column (3).

We find that for all three cases, the reversal component in column (2) is much smaller than the

impact of discount rates on the portfolio weight, leading to low demand elasticities. For the fixed

effects model in the third row, the reversal component in negative, i.e., there is momentum at the
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(1) (2) (3)

𝜂𝑚
𝜕E𝑡 [𝑟𝑡+1]
𝜕𝑝𝑡

𝜕 log(𝑤𝑡 )
𝜕E𝑡 [𝑟𝑡+1]

Simple Reversal Model 0.982∗∗∗ 0.046∗∗∗ 0.382∗∗∗
(0.001) (0.000) (0.011)

Cross Sectional Model 0.095∗∗∗ 0.031∗∗∗ 29.230∗∗∗
(0.012) (0.000) (0.381)

Fixed Effects Model 2.581∗∗∗ -0.035∗∗∗ 45.878∗∗∗
(0.021) (0.000) (0.627)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 1. Mean Elasticity Decomposition. In this table we decompose the mean component of demand elasticity, 𝜂𝑚,
in column (1) into the reversal component in column (2) and the response of portfolio weights to discount rate changes
in column (3). As shown above, 𝜂𝑚 = 1 − 𝜕E𝑡 [𝑟𝑡+1 ]

𝜕𝑝𝑡
× 𝜕 log(𝑤𝑡 )

𝜕E𝑡 [𝑟𝑡+1 ] .

quarterly horizon.

Note that because the weights have a 1/𝛾 term, then diag(𝑤𝑡)−1/𝑔𝑎𝑚𝑚𝑎 is only a function

of gamma due to the cay component. In other words, for the elasticity, 𝛾 only matters for the

component 𝜃/𝜓 term that multiplies the cay component, and does not enter the elasticity through

any other way. We need to pick reasonable Epstein-Zin values of 𝛾 and 𝜓 in order to estimate

the size of this cay component. To do this, we pick the largest possible value for |𝜃/𝜓 | with a

reasonable range for 𝛾 and 𝜓. We consider 𝛾 ≤ 10 and 𝜓 ∈ [1.5, 2]. These values of 𝛾 and

𝜓 imply preference for the early resolution of uncertainty and have been used extensively in the

asset pricing literature to address a number of asset pricing puzzles (e.g., Bansal and Yaron, 2004;

Hansen, Heaton, and Li, 2008). An EIS value greater than one implies a decline in asset prices

when the effective risk aversion in the economy increases. Given this range, the largest possible

|𝜃/𝜓 | is 18, with 𝛾 = 10 and 𝜓 = 1.5. Using a smaller value of |𝜃/𝜓 | of course simply shrinks the

already small cay elasticity term to zero even further.

In Table 2, we decompose the demand elasticity in column (1) into mean and residual compo-

nents in columns (2) and (3). From Equation (24), the residual component in column (3) is the
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(1) (2) (3) (4) (5) (6)
Elasticity Mean Residual Covariance Variance cay

Simple Reversal Model 1.304∗∗∗ 0.982∗∗∗ 0.322∗∗∗ 0.456∗∗∗ -0.132∗∗∗ -0.002∗∗∗
(0.023) (0.001) (0.023) (0.042) (0.021) (0.000)

Cross Sectional Model -0.058∗∗∗ 0.095∗∗∗ -0.153∗∗∗ < 10−5 < 10−5 -0.153∗∗∗
(0.014) (0.012) (0.002) (0.000) (0.000) (0.002)

Fixed Effects Model 2.434∗∗∗ 2.581∗∗∗ -0.147∗∗∗ < 10−5 < 10−5 -0.147∗∗∗
(0.019) (0.021) (0.002) (0.000) (0.000) (0.002)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 2. Elasticity Decomposition. In this table, we decompose demand elasticity into mean and residual components.
The elasticity in column (1) is the sum of the mean and residual components in columns (2) from Table 1 and (3).
From Equation (24), the residual component in column (3) is the sum of covariance, variance, and cay components in
columns (4), (5), and (6).

sum of covariance, variance, and cay components in columns (4), (5), and (6). We find that the

elasticity is primarily determined by the mean component.

These results justify using Equation (1) as an approximation for the demand elasticity in

Equation (3), where the elasticity is primarily set by the expected return due to a price change.

From hereon, we focus on this mean effect. Note that classic portfolio choice models take the

covariance structure as exogenous to prices; thus, we find this a reasonable approximation. Indeed,

after accounting for the mean effects, price changes predict the covariance terms only weakly,

consistent with the elasticity of demand being primarily determined by the mean component. If the

mean effects are relatively weak, then demand is inelastic.

While the model above is just one exercise in computing demand elasticity, one may wonder

whether other models estimated with reasonable reversals deliver much larger elasticity values.

Davis (2023) estimates the demand elasticity of twelve quantitative portfolio choice models and

shows that demand is either inelastic or even upward-sloping (corresponding to momentum trading).

Thus across a wide variety of models, weak reversals imply inelastic demand.
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5 Price Reversals

If elasticity is mostly determined by the mean effects, i.e. 𝜕�̃�𝑖,𝑡/𝜕 log(𝑃𝑖,𝑡), then it is important

to understand how large these mean effects are. In the previous section we showed that the average

marginal effect for prices on expected returns was much smaller than one-for-one and even positive

across some models. Under Definition 1, holding expectations of future payouts constant, we had

−𝜕�̃�𝑖,𝑡/𝜕 log(𝑃𝑖,𝑡) = �̃�𝑖,𝑡 + 𝑅 𝑓 ,𝑡 , which indicates a strong reversal by assumption. Fundamentally,

for Definition 2, to estimate the size of −𝜕�̃�𝑖,𝑡/𝜕 log(𝑃𝑖,𝑡), we need to make assumptions about both

how expectations are formed and the information set.

In this section, we estimate reversals,−𝜕�̃�𝑖,𝑡/𝜕 log(𝑃𝑖,𝑡), using a variety of methods. Section 5.1

estimates price reversals associated with average price movements. To speak to the demand

elasticities estimated in Koĳen and Yogo (2019), Section 5.2 estimates −𝜕�̃�𝑖,𝑡/𝜕 log(𝑃𝑖,𝑡) when

specializing to the price movements induced by their instrument. Citing and interpreting several

existing studies, Section 5.3 argues that when examining price movements that will surely revert in

the near term, results do indicate very high demand elasticities (D1).

5.1 Price reversals associated with average price movements

How should investors respond to an average price movement when they are not given any

additional information? To answer this, we estimate the simple reversal regression in Equa-

tion (11). Table 3 shows the estimated slope coefficient 𝛽1, which corresponds to an estimate

of 𝜕�̃�𝑖,𝑡/𝜕 log(𝑃𝑖,𝑡) under rational expectations with this limited information set. Standard errors

are double clustered at the asset and time period levels. Strikingly, this is positive at the annual,

quarterly, and monthly horizons. Thus instead of finding reversals or no effects, we find a mo-

mentum effect. Therefore, when not using information beyond recent prices, this can generate
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Dependent variable: 𝑟𝑡+1

(1) (2) (3) (4) (5)
Annual Quarterly Monthly Weekly Daily

Δ𝑝𝑡 0.103∗∗ 0.046∗∗ 0.011 -0.049∗∗∗ -0.136∗∗∗
(0.041) (0.019) (0.011) (0.005) (0.003)

Observations 186986 740624 2217863 9633930 46520654
𝑅2 0.007 0.001 0.000 0.002 0.014

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 3. Simple Reversal Regressions. This table presents estimated coefficients from the regression in Equation (11).
This regression corresponds to an information set consisting of only previous period price movements. The slope
coefficient corresponds to an estimate of 𝜕�̃�𝑖,𝑡/𝜕 log(𝑃𝑖,𝑡 ) under rational expectations with this limited information
set. Standard errors are double clustered at the asset and time period levels.

upward sloping demand curves at these horizons (see, e.g., Stein, 2009). The annual and quarterly

coefficients are statistically significant. The weekly and daily estimates correspond to reversals of

4.9 and 13.6 basis points (bps) for a 1% change in prices.

We show these regression results corresponding to the cross sectional model in Table 4. As

we see from the estimates of 𝜕�̃�𝑖,𝑡
𝜕 log(𝑃𝑖,𝑡 ) , with this expanded information set, price variations do not

predict future returns in a statistically significant way at the annual, quarterly, and monthly horizons.

At the weekly and daily horizons, a 1% price increase predicts a 5 and 13.6 bps drop in returns over

the next period, respectively. This drop is due almost solely to the reversals component (Δ𝑝𝑡), and

not to the book-to-market component (𝑏𝑡 − 𝑝𝑡) nor the size component (𝑝𝑖,𝑡 − �̄�𝑡)/�̄�𝑡 .

The regression results for the fixed effects model are shown in Table 5. In terms of point

estimates, 𝜕�̃�𝑖,𝑡
𝜕 log(𝑃𝑖,𝑡 ) is negative across all investment horizons. The annual, weekly, and daily

horizons have statistically significant estimates. A 1% price increase corresponds to anywhere

between a 2 to 14 bps decrease in the next period expected returns, depending on the horizon.9

Thus across annual, quarterly, monthly, weekly, and daily investment horizons, price predictabil-

9This range is a bit broader when confidence intervals are considered.
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Dependent variable: 𝑟𝑡+1

(1) (2) (3) (4) (5)
Annual Quarterly Monthly Weekly Daily

Δ𝑝𝑡 0.097∗∗ 0.038∗∗ 0.007 -0.050∗∗∗ -0.136∗∗∗
(0.040) (0.019) (0.011) (0.005) (0.003)

𝑏𝑡 − 𝑝𝑡 0.065∗∗∗ 0.013∗∗∗ 0.003∗∗∗ 0.001∗∗ 0.000∗∗∗
(0.011) (0.004) (0.001) (0.000) (0.000)

𝑝𝑡 − 𝜇𝑡
𝜎𝑡

0.043∗∗∗ 0.012∗∗∗ 0.004∗∗∗ 0.001∗∗∗ 0.000∗∗∗

(0.010) (0.003) (0.001) (0.000) (0.000)
profitability 0.219∗∗∗ 0.080∗∗∗ 0.030∗∗∗ 0.008∗∗∗ 0.002∗∗∗

(0.029) (0.009) (0.003) (0.001) (0.000)
investment -0.226∗∗∗ -0.063∗∗∗ -0.022∗∗∗ -0.005∗∗∗ -0.001∗∗∗

(0.036) (0.012) (0.004) (0.001) (0.000)
dividend to book 0.539 0.072 0.018 0.003 0.001

(0.399) (0.104) (0.029) (0.006) (0.001)
beta -4.288∗∗ -0.590 -0.152 -0.034 -0.007

(2.109) (0.557) (0.166) (0.033) (0.006)
𝜕E𝑡 [𝑟𝑡+1]/𝜕𝑝𝑡 0.053 0.031 0.006 -0.05 -0.136
𝜒2 Test Statistic 2.06 2.806 0.255 93.695 2030.941
Joint Test 𝑝-value 0.151 0.094 0.614 0 0
Observations 186986 740624 2217863 9633930 46520654
𝑅2 0.044 0.014 0.005 0.003 0.014

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 4. Main Reversal Regressions. This table presents estimated coefficients from the regression in Equation (13).
Relative to Equation (11), this specification corresponds to an expanded information set which includes the log book to
price ratio, 𝑏𝑖,𝑡 − 𝑝𝑖,𝑡 , as well as the log of market capitalization, cross-sectionally normalized, (𝑝𝑖,𝑡 − �̄�𝑡 )/�̄�𝑡 . We also
include other regressors that are not functions of prices: profitability, investment, dividend to book ratio, and market
beta, stacked into a column vector 𝑋𝑡 . Standard errors are double clustered at the asset and time period levels.

ity are much weaker than one-for-one reversals.

5.2 Price reversals associated with the Koĳen and Yogo (2019) instrument

Given the most frequently discussed demand elasticity estimate comes from Koĳen and Yogo

(2019), we examine the price reversals associated with their instrument. We estimate the following
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Dependent variable: 𝑟𝑡+1

(1) (2) (3) (4) (5)
Annual Quarterly Monthly Weekly Daily

Δ𝑝𝑡 0.042 0.007 -0.006 -0.053∗∗∗ -0.136∗∗∗
(0.037) (0.019) (0.011) (0.005) (0.003)

𝑏𝑡 − 𝑝𝑡 0.100∗∗∗ 0.025∗∗∗ 0.007∗∗∗ 0.001∗∗ 0.000∗∗∗
(0.020) (0.007) (0.002) (0.001) (0.000)

𝑝𝑡 − 𝜇𝑡
𝜎𝑡

-0.170∗∗∗ -0.034∗∗∗ -0.013∗∗∗ -0.004∗∗∗ -0.001∗∗∗

(0.042) (0.010) (0.003) (0.001) (0.000)
profitability 0.140∗∗∗ 0.060∗∗∗ 0.023∗∗∗ 0.006∗∗∗ 0.001∗∗∗

(0.026) (0.008) (0.002) (0.000) (0.000)
investment -0.144∗∗∗ -0.049∗∗∗ -0.016∗∗∗ -0.004∗∗∗ -0.001∗∗∗

(0.034) (0.012) (0.004) (0.001) (0.000)
dividend to book -0.114 -0.056 -0.031 -0.010 -0.001

(0.309) (0.091) (0.028) (0.006) (0.001)
beta -4.427 -0.288 -0.022 -0.005 -0.002

(3.019) (0.703) (0.221) (0.045) (0.008)
𝜕E𝑡 [𝑟𝑡+1]/𝜕𝑝𝑡 -0.141 -0.034 -0.02 -0.056 -0.137
𝜒2 Test Statistic 15.397 3.46 3.147 118.936 2070.72
Joint Test 𝑝-value 0 0.063 0.076 0 0
Observations 186986 740624 2217863 9633930 46520654
𝑅2 0.037 0.008 0.003 0.003 0.014

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 5. Reversal Regressions with Fixed Effects. This table presents estimated coefficients a greatly expanded
information set, where stock fixed effects are added to the regression in (13). The regression equation is the same,
except 𝛽0 is now changed to 𝛽𝑖,0—a stock fixed effect. This specification corresponds to a greatly expanded information
set, where an investor has a stock-specific estimate of the valuation and return of each asset instead of relying on cross-
sectional relationships. Standard errors are double clustered at the asset and time period levels.

panel regression for multiple horizons ℎ:

𝑟𝑖,𝑡+1→𝑡+ℎ = 𝛽0 + 𝛽1 log
(
𝑀𝑡

𝐵𝑡

)
+ (𝑋𝑐𝑡 )′𝛽 + 𝜖𝑖,𝑡+1, (29)

where the main independent variable log
(
𝑀𝑡

𝐵𝑡

)
, log market-to-book ratio, is instrumented using

log
(
𝑀𝑡

𝐵𝑡

)
, where 𝑀𝑡 is the holdings-based instrument in Koĳen and Yogo (2019). The coefficient
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estimate of −𝛽1 can be directly interpreted as the key theoretical quantity − 𝜕�̃�

𝜕 log(𝑃) . We also follow

Koĳen and Yogo to control for the same vector of stock characteristics 𝑋𝑐𝑡 . To focus on cross-

sectional results, we add time-fixed effects. We calculate Driscoll-Kraay standard errors (Driscoll

and Kraay, 1998) with 8 lags which control for both time-series and cross-sectional correlations.

The results are reported in Table 6. The first four columns report equal-weighted results for

forecasting returns for the subsequent one, two, four, and eight quarters, and we see reversal

coefficients of 0.131 and 0.352, respectively, at the quarterly and annual frequencies, which is

statistically significant but also much lower than the − 𝜕�̃�

𝜕 log(𝑃) = 1 benchmark in frictionless

models. More importantly, this predictability is significantly weaker in larger stocks. To obtain

more economically relevant results from the perspective of large institutions, columns (5) to (8)

estimate value-weighted regressions. In order to account for the fact that market size has grown

dramatically over time, we normalize the sum of weights in each period to one. The results are now

only statistically significant at the 5% level but not the 1% level, and the degrees of reversions are

much smaller, with − 𝜕�̃�

log(𝑃) only 0.018 and 0.062 at the quarterly and annual frequencies.

In conclusion, while there is evidence of price reversals associated with the Koĳen and Yogo

(2019) instrument, the reversals are quite weak, especially when considering large-cap stocks

that institutions more heavily hold. This finding is consistent with the low institutional demand

elasticities estimated in Koĳen and Yogo (2019).

5.3 High estimates of D1 in bond markets

As discussed earlier, it is very difficult to estimate D1 in the stock market, but there are existing

estimates that we would argue are close to estimating D1 in the bond market. Recall that estimating

D1 requires price shocks that are sure to revert in the short term. This is only satisfied by bonds

with high credit quality and near-term maturity. For instance, consider U.S. Treasury bills that will
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Dependent variable: 𝑟𝑡+1→𝑡+ℎ

Equal-weighted Value-weighted

(1) (2) (3) (4) (5) (6) (7) (8)
ℎ = 1 2 4 8 ℎ = 1 2 4 8

log(𝑀𝑡/𝐵𝑡) −0.131∗∗∗ −0.224∗∗∗ −0.352∗∗∗ −0.537∗∗∗ −0.018∗∗ −0.033∗∗ −0.062∗∗ −0.114∗∗
(0.010) (0.015) (0.027) (0.061) (0.008) (0.014) (0.025) (0.049)

beta 0.035∗∗∗ 0.059∗∗∗ 0.088∗∗∗ 0.127∗∗∗ 0.000 −0.001 −0.004 −0.013
(0.008) (0.015) (0.027) (0.047) (0.004) (0.007) (0.012) (0.021)

investment 0.000 0.001 0.004 0.017 −0.002 −0.003 −0.005 0.001
(0.002) (0.004) (0.007) (0.010) (0.003) (0.005) (0.007) (0.012)

profitability 0.077∗∗∗ 0.133∗∗∗ 0.218∗∗∗ 0.346∗∗∗ 0.024∗∗ 0.043∗∗∗ 0.076∗∗ 0.132∗∗
(0.007) (0.013) (0.024) (0.052) (0.009) (0.016) (0.031) (0.063)

div/book 0.007 0.009 0.003 −0.026 −0.013∗∗ −0.023∗∗ −0.032∗∗ −0.053∗
(0.005) (0.008) (0.014) (0.023) (0.005) (0.009) (0.016) (0.032)

Time FE Yes Yes Yes Yes Yes Yes Yes Yes
Observations 602,377 590,955 562,106 506,480 602,377 590,955 562,106 506,480
𝑅2 0.011 0.021 0.031 0.041 0.001 0.011 0.011 0.021
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 6. Predicting Reversals with the Koĳen and Yogo (2019) instrument. This table presents estimated
coefficients from the regression in Equation (29). The main independent variable log(𝑀𝑡/𝐵𝑡 ), is instrumented using
log(𝑀𝑡/𝐵𝑡 ) where 𝑀𝑡 is computed using the Koĳen and Yogo (2019) instrument. We follow Koĳen and Yogo (2019)
to control for a number of other characteristics that are cross-sectionally transformed to be uniformly distributed
between 0 and 1. All regressions control for time fixed effects, and we compute Driscoll-Kraay standard errors with 8
lags, which controls for both time-series and cross-sectional correlations. Columns (1) to (4) estimate equal-weighted
forecasting regressions. Columns (5) to (8) estimate value-weighted regressions where, to account for the fact that total
market size went up over time, we standardized the sum of weights in each period to unity.

mature within a year. Because U.S. Treasuries are considered risk-free, any price dislocations must

revert by the time of maturity.

Similar logic can also apply, to a large extent, to very highly rated corporate bonds with short

maturity. Sufficiently highly rated bonds have a close-to-zero chance of defaulting within a few

months. For instance, S&P’s 2021 Annual Global Corporate Default And Rating Transition Study

shows that, while bonds rated at A- may default in the long run, the probability that they default

within a year is only 0.07%. Bonds rated higher have even lower default probabilities.10Since 1980,

no corporate bond rated AA+ or AAA has ever defaulted within a year. Therefore, it is reasonable to

10See Table 9 in 2021 Annual Global Corporate Default And Rating Transition Study, available here.
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think that investors would largely recognize price movements in these bonds as reflecting short-term

discount rate changes that are sure to revert quickly. The same, of course, is not true for lower-rated

bonds for which price movements may be associated with higher default probabilities.

The theory in Section 6 indicates that D1 elasticity is large. Taking the reciprocal of that, price

multipliers in these securities should be very small. Extant estimates are consistent with this and

we summarize them briefly below.

1. Short-term U.S. Treasury bonds. Lou, Yan, and Zhang (2013) document that yields of

two-, five-, and ten-year U.S. Treasury bonds rise temporarily around U.S. Treasury bond

auctions. The price impacts in their study imply demand elasticities in the range of 10 to 30.

However, they do not find measurable price impacts for shorter-term Treasuries, indicating

that demand elasticities in those securities are much higher than 30.

2. Short-term developed country government bonds. Koĳen and Yogo (2020) examine

cross-country demand for stocks and government bonds using a structural framework. For

short-term government bond debt, they estimate demand elasticities of 42.

3. Highly rated short-term corporate bonds. Using mutual fund flow-induced trading as

instruments, Li, Fu, and Chaudhary (2022) find close to zero price impact of trading in

short-term investment grade bonds, which is consistent with a very high D1.

Overall, existing results indicate that in settings closer to truly estimating D1, the results all

indicate significantly larger demand elasticities than that estimated in Koĳen and Yogo (2019). Of

course, this comparison needs to be heavily caveated as these estimates are not in the stock market.
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6 Theoretical Framework

While weak reversals imply rationally inelastic demand and large price impacts from flows, the

question remains: why are price reversals weak? We present two different theoretical frameworks

that both produce weak predictive power of prices on returns and inelastic demand. We acknowledge

that there are likely other explanations beyond these two.

We first present a model of arbitrage coordination, where it is only profitable for an arbitrageur

to trade on price fluctuations if others trade on price fluctuations. Otherwise, prices never correct,

and trading on these variations is not profitable. In this model, we consider expectations about

future arbitrage activity formed based on past arbitrage activity. Thus there is a continuum of

equilibria, and initially, inelastic demand results in demand that is inelastic from then onward.

We then present a noisy rational expectation equilibrium model in which informed agents have

heterogeneous signal qualities. In this simple framework, demand becomes more inelastic as the

signals become less precise. When there is no noise, uninformed traders are infinitely reluctant to

trade against price movements and have perfectly inelastic demand.

6.1 A model of arbitrage coordination

Asset. There is a single risky asset with zero net supply being traded at times 𝑡 = · · · ,−1, 0, 1, · · · .

The asset’s fundamental value is normalized to zero. The risk-free rate is also normalized to zero.

Thus, any price deviation from zero constitute a mispricing.

Trading. There are noise traders who submit market orders and have desired positions 𝑍𝑡 that

is perfectly observable when trading at time 𝑡. We assume 𝑍𝑡 is follows an AR(1) process with
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persistence parameter 𝜌 < 1:

𝑍𝑡 = 𝜌𝑍𝑡−1 + 𝑢𝑡 ,

where 𝑢𝑡 ∼ N(0, 𝜎2
𝑢 ) is i.i.d. over time.

There is an overlapping generation (OLG) of arbitrageurs (arbs) born in each period 𝑡, and

establish position 𝑥𝑡 at time 𝑡 and liquidate it at time 𝑡 + 1 at price 𝑃𝑡+1.11 We assume there is a

mass 𝑛 of arbs who have mean-variance preferences with unit risk aversion. The OLG structure is

important, because we want generation 𝑡’s behavior to depend on their anticipation of generation

𝑡 + 1.

Equilibrium. We restrict attention to “linear equilibria” in which each generation of arbs submits

demand curves of the form 𝐷𝑡 (𝑃𝑡) = −𝜂𝑡 · 𝑃𝑡 . Note that each generation can have a different 𝜂𝑡 .

From market-clearing, the equilibrium price at time 𝑡 is

𝑃𝑡 =
𝑍𝑡

𝑛𝜂𝑡
.

Note that when 𝑛 is large and the arbitrage capacity is high, the mispricing disappears.

Portfolio optimization. Consider generation 𝑡 of arbs. They take 𝜂𝑡+1 as given but do not observe

noise trades 𝑍𝑡 . The return (price change) from time 𝑡 to 𝑡 + 1 is

𝑅𝑡+1 = 𝑃𝑡+1 − 𝑃𝑡

=
𝑍𝑡+1
𝑛𝜂𝑡+1

− 𝑃𝑡 .

11The total market order submitted is exactly 𝑍𝑡 . Specifically, the liquidating arbs of generation 𝑡 − 1 submit an
order of size −𝑥𝑡−1 = 𝑍𝑡−1, while noise traders submit an order of 𝑍𝑡 − 𝑍𝑡−1, and these two sum to 𝑍𝑡 at time 𝑡.
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So, the expected return and volatility of the asset at time 𝑡 is

E𝑡 (𝑅𝑡+1) =
𝜌𝑍𝑡

𝑛𝜂𝑡+1
− 𝑃𝑡

= −
(
1 − 𝜌𝜂𝑡

𝜂𝑡+1

)
· 𝑃𝑡 ,

Var𝑡 (𝑅𝑡+1) =
𝜎2
𝑢

𝑛2𝜂2
𝑡+1
.

Thus, we verify the linear demand assumption:

𝐷𝑡 (𝑃𝑡) =
E𝑡 (𝑅𝑡+1)
Var𝑡 (𝑅𝑡+1)

= −
[
𝑛2𝜂2

𝑡+1

𝜎2
𝑢

·
(
1 − 𝜌𝜂𝑡

𝜂𝑡+1

)]
︸                      ︷︷                      ︸

≡𝜂𝑡

·𝑃𝑡 , (30)

where we used 𝜂𝑡 to denote the choice of a specific arbitrageur who takes the behavior of other

arbs. i.e., (𝜂𝑡 , 𝜂𝑡+1), as given.

If we consider a symmetric equilibrium, where 𝜂𝑡 = 𝜂𝑡 , then we have:

𝐷𝑡 (𝑃𝑡) = −
(

𝑛2𝜂2
𝑡+1

𝜎2
𝑢 + 𝜌𝑛2𝜂𝑡+1

)
· 𝑃𝑡 . (31)

Coordination with rational expectations. We see from Equation (30) that 𝜂𝑡 is decreasing in 𝜂𝑡 .

This is intuitive: the more other arbs trade on mispricing at time 𝑡, the lower the remaining profits,

and thus the less an arbitrageur should trade on the mispricing.

A more interesting coordination relationship exists. 𝜂𝑡 is increasing in 𝜂𝑡+1. This means the

more the next generation of arbs trades on mispricing, the more the current generation will profit,

so the more they should trade on it.
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If we focus on a symmetric stationary equilibrium, so that 𝜂 = 𝜂𝑡 = 𝜂𝑡 = 𝜂𝑡+1, we have:

𝜂 =
𝜎2
𝑢

(1 − 𝜌) · 𝑛2

If we examine the demand curve of all arbs which determines price multipliers, then we have:

𝑛𝜂 =
𝜎2
𝑢

(1 − 𝜌)𝑛 =
𝜎2
𝑍
(1 + 𝜌)
𝑛

, (32)

where 𝜎2
𝑍
= 𝜎2

𝑢 /(1 − 𝜌2) is the unconditional variance of noise trader’s demand.

We are interested in what makes 𝑛𝜂 small and price multipliers large (or demand elasticities

low). In the symmetric stationary equilibrium where all arbs coordinate, more extreme demand

from noise trades (higher 𝜎𝑍 and 𝜌) leads to more arbitrage opportunities for arbs leading to a

higher price impact. Why is this? Higher 𝜎𝑍 means large orders from noise traders and, therefore,

more mispricing to trade against. In the extreme case where 𝜎𝑍 = 0, there is no noise driving

prices, and thus no reason to trade against prices. In other words, demand is perfectly inelastic

in this case. We find something similar in the model below: eliminating noise creates perfectly

inelastic demand.

Also, demand elasticity is increasing in the persistence of demand from noise traders, i.e., when

𝜌 is high. A higher 𝜌 creates more predictable and potentially profitable trading opportunities

when arbs rely on the other arbs to trade against price movements. In the case below, where an

arbitrageur cannot necessarily rely on the arbitrage activity of other traders, demand elasticity is

decreasing in 𝜌. Thus the demand response to price changes increases with higher 𝜌 precisely

when arbs rely on each other to trade against future mispricing. Conditional on this coordinated

response, demand is more elastic with more persistent noise.
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Coordination with intuitive expectations. Note that in Equations (30) and (31), 𝜂𝑡 is a function

of 𝜂𝑡+1. We assumed above that at time 𝑡 arbs knew the future 𝜂𝑡+1. Consider the case in which

instead of 𝜂𝑡+1, its subjective expectation, Ẽ𝑡 [𝜂𝑡+1], is plugged into Equations (30) and (31). In

particular, we assume that arbs form intuitive expectations as in Fuster et al. (2010). In Fuster

et al. (2010), intuitive expectations correspond to setting expectations with simple historical linear

regressions. Our model is even simpler: expectations are set using the historical average of 𝜂𝑡 .

Given that prices are observed, equilibrium still means that 𝜂𝑡 is perfectly known.

Plugging in intuitive expectations into Equation (31), we have:

𝐷𝑡 (𝑃𝑡) = −
[

𝑛2Ẽ𝑡 [𝜂𝑡+1]2

𝜌𝑛2Ẽ𝑡 [𝜂𝑡+1] + 𝜎2
𝑢

]
· 𝑃𝑡 . (33)

Consider the extreme case where Ẽ0 [𝜂1] = 0, i.e., arbs expect perfectly inelastic demand

initially. In this case, next period demand is perfectly inelastic, and this continues for eternity. Thus

there is a continuum of equilibria, determined by the initial expectations of elasticity values.

This is an oddly circular model. If demand is inelastic initially, then demand continues to be

inelastic indefinitely. If demand is initially elastic, then demand continues to be elastic forever.

Thus this explanation still does not explain why it was inelastic initially. This model has another

odd property: coordination en mass can change the equilibrium. If investors coordinate to change

their expectations, then expectations shift the elasticity of demand.

6.2 A noisy rational expectation model

The model in this section is quite different from the one in Section 6.1. This model is fully

rational, and does not depend on initially inelastic demand to deliver inelastic demand. The

model below delivers inelastic demand with private information. This model is based on Hellwig
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(1980). This setting is slightly different from Grossman and Stiglitz (1980) in that each agent

observes a different signal and tries to back out the signals of other agents from the price. Let

𝑑 ∼ N(𝜇, 𝑣𝑑) denote public information that all investors observe. Suppose an asset has a payoff

𝛿 that, conditional on the public information, is normally distributed with mean 𝑑 and variance 𝑣𝛿:

𝛿 | 𝑑 ∼ N (𝑑, 𝑣𝛿). Thus, it must be the case that the unconditional distribution of 𝛿 can be written

as 𝛿 ∼ N(𝜇, 𝑣𝑑 + 𝑣𝛿).

Assume each agent 𝑖 observes 𝛿 + 𝜖𝑖, where 𝜖’s are iid normal with mean zero and variance

𝑣𝜖 , and 𝜖𝑖 | 𝑑 ∼ N(0, 𝑣𝜖 ). There are 𝑁 informed agents each having CARA utility with risk

aversion parameter 𝛾. The noisy supply is denoted by 𝑍 , with normally-distributed per capita

supply 𝑧 ≡ 𝑍/𝑁: 𝑧 | 𝑑 ∼ N (𝜇𝑧, 𝑣𝑧).

Each agent’s demand is:

𝑋𝑖 =
E (𝛿 | 𝛿 + 𝜖𝑖, 𝑃, 𝑑) − 𝑃
𝛾Var (𝛿 | 𝛿 + 𝜖𝑖, 𝑃, 𝑑)

.

The conditional expectation in the numerator can be written as:

E (𝛿 | 𝛿 + 𝜖𝑖, 𝑃, 𝑑) = 𝑎0 + 𝑎𝛿 (𝛿 + 𝜖𝑖) + 𝑎𝑃𝑃.

Denote the conditional variance in the denominator, Var (𝛿 | 𝛿 + 𝜖𝑖, 𝑃, 𝑑), as 𝑣. Conjecture that the

price 𝑃 can be written as:

𝑃 = 𝑘0 + 𝑘𝛿
∑
𝑖 (𝛿 + 𝜖𝑖)
𝑁

+ 𝑘𝑧
(
𝑍

𝑁

)
.

We can write the market clearing condition as:

∑︁
𝑖

𝑎0 + 𝑎𝛿 (𝛿 + 𝜖𝑖) + 𝑎𝑃𝑃 − 𝑃
𝛾𝑣

= 𝑍.
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Solving for price we get:

𝑃 =
𝑎0

1 − 𝑎𝑃
+ 𝑎𝛿

1 − 𝑎𝑃

(
𝛿 + 1

𝑁

∑︁
𝑖

𝜖𝑖

)
− 𝛾𝑣

1 − 𝑎𝑃
𝑍

𝑁
,

which implies

𝑘0 =
𝑎0

1 − 𝑎𝑃
, 𝑘𝛿 =

𝑎𝛿

1 − 𝑎𝑃
, and 𝑘𝑧 = − 𝛾𝑣

1 − 𝑎𝑃
. (34)

Since 𝜖𝑖’s are iid and have zero mean, by the law of large numbers in a large market (as 𝑁 → ∞),

we have:12
1
𝑁

∑︁
𝑖

𝜖𝑖 = 0. (35)

Explicitly calculating the conditional expectation to get 𝑎0, 𝑎𝛿, and 𝑎𝑃 and substituting in (34),

we have

𝑘0 =
𝛾𝑣𝜖 (𝑑𝛾𝑣𝑧𝑣𝜖 + 𝑣𝛿𝜇𝑧)

𝛾2𝑣𝑧𝑣
2
𝜖 + 𝑣𝛿

(
1 + 𝛾2𝑣𝑧𝑣𝜖

) ,
𝑘𝛿 =

𝑣𝛿
(
1 + 𝛾2𝑣𝑧𝑣𝜖

)
𝛾2𝑣𝑧𝑣

2
𝜖 + 𝑣𝛿

(
1 + 𝛾2𝑣𝑧𝑣𝜖

) ,
𝑘𝑧 = −

𝛾𝑣𝛿𝑣𝜖
(
1 + 𝛾2𝑣𝑧𝑣𝜖

)
𝛾2𝑣𝑧𝑣

2
𝜖 + 𝑣𝛿

(
1 + 𝛾2𝑣𝑧𝑣𝜖

) . (36)

where we can then calculate 𝑎0, 𝑎𝛿, and 𝑎𝑃 by substituting in Equation (34).

The price is 𝑃 = 𝑘0 + 𝑘𝛿𝛿 + 𝑘𝑧𝑧 which completes the solutions of the equilibrium. The 𝑋𝑖’s can

be backed out given 𝑎0, 𝑎𝛿, and 𝑎𝑃, 𝑣, and 𝑃.

12Alternatively, one can assume instead that there is a unit mass of investors and replace 1
𝑁

∑
𝑖 𝜖𝑖 ≈ 0 with

∫
𝑖
𝜖𝑖 = 0

(e.g., Van Nieuwerburgh and Veldkamp, 2010).
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Demand elasticity

To derive the demand elasticity, we take the derivative of the demand with respect to the

equilibrium price:
𝜕𝑋𝑖

𝜕𝑃
= −1 − 𝑎𝑃

𝛾𝑣
=

1
𝑘𝑧
.

From Equation (36),
𝜕𝑋𝑖

𝜕𝑃
= − 1

𝛾𝑣𝜖
− 𝛾𝑣𝑧𝑣𝜖

𝑣𝛿 + 𝛾2𝑣𝑧𝑣𝛿𝑣𝜖
.

If we assume the variance of per capita noisy supply, 𝑣𝑧, is small, we get

𝜕𝑋𝑖

𝜕𝑃
≈ − 1

𝛾𝑣𝜖
. (37)

Thus the demand in this case is more inelastic when the variance of signals is high.

How would this case compare to a model without private or public information? In that case,

agent 𝑖 demand would be:

𝑋𝑖 =
E[𝛿] − 𝑃
𝛾Var(𝛿) =

𝜇 − 𝑃
𝛾𝑣𝛿

.

So the elasticity can be written as:13
𝜕𝑋𝑖

𝜕𝑃
= − 1

𝛾𝑣𝛿
.

Therefore, aggregate demand is more inelastic (approximately) if 𝑣𝜖 > 𝑣𝛿 .

The partial derivative in the elasticity term, 𝜕𝑋𝑖/𝜕𝑃, captures the change in demand holding all

other terms fixed, in particular, public information. However, empirically, we might be interested

in how a change in prices predicts changes in demand unconditionally. In other words, we might

13The elasticity is defined as: − 𝜕 log(𝑋𝑖 )
𝜕 log(𝑃) = − 𝑃

𝑋𝑖

𝜕𝑋𝑖

𝜕𝑃
, but we ignore the 𝑃/𝑋𝑖 term to simplify the exposition in this

section. Clearly, if 𝜕𝑋𝑖

𝜕𝑃
≈ 0, then 𝜕 log(𝑋𝑖 )

𝜕 log(𝑃) ≈ 0.
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consider:

𝜂 ≡ −Cov(𝑋𝑖, 𝑃)
Var(𝑃) , (38)

which has the interpretation of a regression slope coefficient. The difference between −𝜕𝑋𝑖/𝜕𝑃

and 𝜂 is that the former describes how much a unit change in price affects demand holding all other

terms fixed, while 𝜂 describes how much a unit change in price affects demand without holding

other terms fixed.

To calculate 𝜂, note that after plugging in the equilibrium price, demand is:

𝑋𝑖 =
𝜖𝑖

𝛾𝑣𝜖
+ 𝑍

𝑁
. (39)

The variance of price in the denominator of (38) is:

Var(𝑃) = 𝑣𝑑 +
𝑣2
𝛿

(
1 + 𝛾2𝑣𝑧𝑣𝜖

) 2 (
𝑣𝛿 + 𝛾2𝑣𝑧𝑣

2
𝜖

)(
𝛾2𝑣𝑧𝑣

2
𝜖 + 𝑣𝛿

(
1 + 𝛾2𝑣𝑧𝑣𝜖

) ) 2︸                                   ︷︷                                   ︸
≡𝑉

= 𝑣𝑑 +𝑉.

Thus from (38), we have:14

𝜂 = − 𝑘𝑧𝑣𝑧

𝑣𝑑 +𝑉
. (40)

Importantly, if the variance of public information is large (i.e., as 𝑣𝑑 → ∞), we can show that 𝜂

approaches zero, indicating inelastic demand. This means that economically, if public information

is very volatile but not controlled for appropriately in an elasticity regression estimation, demand

will appear quite inelastic.

We emphasize that although prices change with public information 𝑑, from Equation (39),

investors do not adjust their demand as public information arrives. Thus when prices move in

14In Appendix B, we write out the general expression for 𝜂 and calculate the two limits discussed below.
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response to public information, demand will appear very inelastic. As shown in Figure 1, consistent

with the model, demand becomes more elastic as the public information becomes more precise,

moving from the solid to the dashed line.

Again consider the case where 𝑣𝑧 is small. In this case, we can show that

lim
𝑣𝑧→ 0

𝜂 = 0, (41)

that is, if per capita noisy supply term is small, then total variation in prices does not predict

changes in demand at all. In other words, this naive approach to elasticity estimation would

uncover a perfectly inelastic demand.

This section, with only one type of informed agent, nicely illustrates how private information

can generate inelastic demand in aggregate. However, the heterogeneity in demand elasticities is

partly driven by varying degrees of asymmetric information among agents. In the next section,

we show that a model of heterogeneous signal quality can generate a dispersion of elasticity terms

across investors.

In Figure 1, we show the impact of private and public information on demand elasticity. As

mentioned above, demand becomes more elastic as the public signal becomes more precise, moving

from the solid to the dashed line. Moreover, given the precision of the public signal (on the solid

or dashed lines) demand becomes less elastic as investors become less privately informed, which

we show in the next section.

7 Conclusion

In this paper, we identify weak reversals as the source of the inelastic demand puzzle in the

stock market. We first decompose demand elasticity into three parts: the mean, residual, and
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Figure 1. Information and demand elasticity. This figure qualitatively shows that demand becomes more elastic
as the public signal becomes more precise. Moreover, given the precision of the public signal, demand becomes less
elastic as investors become less informed.

wealth effect components. In a standard portfolio choice model, we then show the mean component

primarily determines demand elasticity.

We further decompose the mean component of elasticity into the product of two parts: the change

in portfolio weights in response to the change in expected returns and the change in expected returns

due to price movements, i.e., reversals. Given the Campbell and Shiller decomposition, we then

consider two definitions of demand elasticity associated with different sources of price movements.

In the first definition of elasticity, D1, we consider price changes only due to the next-period

discount rate movements, holding everything else constant, i.e., when we assume one-for-one

reversals. Given that estimating D1 in the stock market is highly challenging and creates near

arbitrage opportunities, we introduce the second definition, D2, which considers price movements

not entirely driven by next-period discount rates.
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We highlight that almost all empirical estimates measure D2 elasticity while most theoretical

models only study D1. We empirically estimate D1 for investment-grade bonds where it is arguably

more plausible to do so, and, consistent with theory, we find high demand elasticities. As discussed

above and consistent with prior literature, we find low D2 elasticity at different horizons driven by

weak reversals.

Finally, we present two theoretical frameworks that are consistent with inelastic demand due to

weak reversals, one based on coordinated arbitrage and the other based on asymmetric information.

Although other models can potentially deliver our empirical findings, we show that weak reversals

are a strong source of inelastic demand, both empirically and theoretically.
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Appendix

A Demand Elasticity in a Standard Asset Pricing Model

To fix ideas, consider a simple static partial equilibrium model.1 Suppose there are 𝑁 assets,
indexed by 𝑛, each with supply 𝑢𝑛. Assume the risk-free rate is constant, normalized to 0. Dividends
for stock 𝑛 is assumed to have the following form:

𝐷𝑛 = 𝑎𝑛 + 𝑏𝑛𝐹 + 𝑒𝑛,

where 𝐹 ∼ N
(
0, 𝜎2

𝑚

)
is the common factor and 𝑒𝑛 ∼ N

(
0, 𝜎2

𝑒

)
represents the idiosyncratic risk.

There is a representative investor with constant absolute risk aversion (CARA) preferences, with
wealth 𝑊 and risk aversion 𝛾 who chooses portfolio weights for stocks 𝑛 = 1, . . . , 𝑁 to maximize
her utility subject to the budget constraint:

max
𝛼1,...,𝛼𝑁

E [− exp(−𝛾𝑊)] ,

subject to 𝑊 = 𝑊0 +
𝑁∑︁
𝑛=1

𝛼𝑛 (𝐷𝑛 − 𝑃𝑛) ,

where 𝑃𝑛 is the price of stock 𝑛. From the first-order condition for stock 𝑛 and market-clearing, we
have:

𝑃𝑛 = 𝑎𝑛 − 𝛾
[
𝜎2
𝑚

(∑︁
𝑚≠𝑛

𝑢𝑚𝑏𝑚

)
𝑏𝑛 +

(
𝜎2
𝑚𝑏

2
𝑛 + 𝜎2

𝑒

)
𝑢𝑛

]
Consider the following calibration. Suppose there are 𝑁 = 1000 stocks, each with unit supply

𝑢𝑛 = 1. Also let 𝑎𝑛 = 105, 𝑏𝑛 = 100, 𝜎2
𝑚 = 0.04, 𝜎2

𝑒 = 900, and 𝛾 = 1.25×10−5. These parameters
imply a market risk premium of 5%, all stocks having a price of 100, a market beta of 1, and a
standard deviation of idiosyncratic return of 30%.

Consider a supply shock of −10% (𝑢𝑛 = 0.9) for one stock. This leads to a price increase of
only 0.1621 bps. Part of this increase is due to the reduction in the aggregate market risk premium
(there is less aggregate risk and all stocks increase by 0.05 bps.) So the differential impact is only

1This simple model and its standard calibration is from Section II.A. of Petajisto (2009). It was also discussed
during the Workshop on Demand System Asset Pricing organized by Ralph Koĳen and Motohiro Yogo in May, 2022.
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0.11 bps, meaning the demand curve is virtually flat. In this setting, the micro price elasticity of
demand is very large:2

−Δ𝑄/𝑄
Δ𝑃/𝑃 =

0.10
1.621𝑒 − 5

≈ 6168,

implying a negligible micro multiplier (the inverse of micro demand elasticity). Thus, in standard
asset pricing models demand curves are virtually flat.

Macro multipliers implied from frictionless asset pricing models are usually quite small as
well.3 As discussed in Gabaix and Koĳen (2021), “in traditional, elastic asset pricing models the
macro elasticity is around 10 to 20.”4

Empirically, demand curves are surprisingly inelastic compared to standard models both at the
micro (Koĳen and Yogo, 2019) and macro (Gabaix and Koĳen, 2021) levels.5 As mentioned above,
estimates of micro and macro demand elasticities, around 1 and 0.2 respectively, are much lower
than what standard frictionless theories suggest.

B Homogeneous Signal Quality Model with Public Information

To reiterate the main text, there is a signal 𝑠𝑖 = 𝛿 + 𝜖𝑖. The agent knows his signal quality 𝜆𝑖,
but 𝜖𝑖 ∼ N(0, 𝑣𝜖 ) are iid across investors.

We conjecture that price is linear in fundamental and per-capita noisy supply:

𝑃 = 𝑘0 + 𝑘𝛿𝛿 + 𝑘𝑧
𝑍

𝑁
.

Define 
𝛿

𝑠𝑖

𝑃

 ∼ N
©­­«


𝑑

𝑑

𝑘0 + 𝑘𝛿𝑑 + 𝑘𝑧𝜇𝑧

 ,

𝑣𝛿 𝑣𝛿 𝑘𝛿𝑣𝛿

𝑣𝛿 𝑣𝛿 + 𝑣𝜖 𝑘𝛿𝑣𝛿

𝑘𝛿𝑣𝛿 𝑘𝛿𝑣𝛿 𝑘2
𝛿
𝑣𝛿 + 𝑘2

𝑧𝑣𝑧


ª®®¬

2In a general equilibrium setting, Johnson (2006) perturbs the risky asset supply and finds finite macro elasticity
even in the frictionless Lucas economy.

3One notable exception is the general equilibrium model in Johnson (2006). He studies the equilibrium price
change in response to a perturbation in the risky asset supply, allowing for the interest rate to vary when stock prices
change.

4Appendix F.4 in Gabaix and Koĳen (2021) provides a detailed discussion.
5Li and Lin (2022) show that prices are more inelastic when demand is less diversifiable.
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Thus

E[𝛿 | 𝑠𝑖, 𝑃] = 𝑑 +
[
𝑣𝛿 𝑘𝛿𝑣𝛿

] [
𝑣𝛿 + 𝑣𝜖 𝑘𝛿𝑣𝛿

𝑘𝛿𝑣𝛿 𝑘2
𝛿
𝑣𝛿 + 𝑘2

𝑧𝑣𝑧

]−1 [
𝛿 + 𝜖𝑖 − 𝑑

𝑃 − 𝑘0 − 𝑘𝛿𝑑 − 𝑘𝑧𝜇𝑧

]
=

(𝑝 − 𝑘0) 𝑘𝛿𝑣𝛿𝑣𝜖 + 𝑘2
𝑧𝑣𝑧 ((𝛿 + 𝜖𝑖)𝑣𝛿 + 𝑑𝑣𝜖 ) − 𝑘𝑧𝑘𝛿𝑣𝛿𝑣𝜖𝜇𝑧

𝑘2
𝛿
𝑣𝛿𝑣𝜖 + 𝑘2

𝑧𝑣𝑧 (𝑣𝛿 + 𝑣𝜖 )

Var(𝛿 | 𝑠𝑖, 𝑃) = 𝑣𝛿 −
[
𝑣𝛿 𝑘𝛿𝑣𝛿

] [
𝑣𝛿 + 𝑣𝜖 𝑘𝛿𝑣𝛿

𝑘𝛿𝑣𝛿 𝑘2
𝛿
𝑣𝛿 + 𝑘2

𝑧𝑣𝑧

]−1 [
𝑣𝛿

𝑘𝛿𝑣𝛿

]
=

𝑘2
𝑧𝑣𝑧𝑣𝛿𝑣𝜖

𝑘2
𝛿
𝑣𝛿𝑣𝜖 + 𝑘2

𝑧𝑣𝑧 (𝑣𝛿 + 𝑣𝜖 )

So
𝛿 | 𝑠𝑖, 𝑃 ∼ N (E [𝛿 | 𝑠𝑖, 𝑃] ,Var(𝛿 | 𝑠𝑖, 𝑃))

The CARA demand is:

𝑋𝑖 =
E[𝛿 | 𝑠𝑖, 𝑃] − 𝑃
𝛾Var(𝛿 | 𝑠𝑖, 𝑃)

=

𝑃

(
− (−1+𝑘 𝛿)𝑘 𝛿

𝑘2
𝑧𝑣𝑧

− 1
𝑣 𝛿

− 1
𝑣 𝜖

)
𝛾

+ 𝛿

𝛾𝑣𝜖
+ 𝜖𝑖

𝛾𝑣𝜖
+
− 𝑘0𝑘 𝛿
𝑘2
𝑧𝑣𝑧

+ 𝑑
𝑣 𝛿

− 𝑘 𝛿𝜇𝑧
𝑘𝑧𝑣𝑧

𝛾
.

We can write average demand as

1
𝑁

∑︁
𝑖

𝑋𝑖 = 𝑏0 + 𝑏𝑝𝑝 + 𝑏𝛿𝛿
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where

𝑏0 =

− 𝑘0𝑘 𝛿
𝑘2
𝑧𝑣𝑧

+ 𝑑
𝑣 𝛿

− 𝑘 𝛿𝜇𝑧
𝑘𝑧𝑣𝑧

𝛾

𝑏𝑝 =

(
− (−1+𝑘 𝛿)𝑘 𝛿

𝑘2
𝑧𝑣𝑧

− 1
𝑣 𝛿

− 1
𝑣 𝜖

)
𝛾

𝑏𝛿 =
1
𝛾𝑣𝜖

To solve the model completely, we must solve the following equations:

𝑘0 = − 𝑏0
𝑏𝑝

𝑘𝛿 = − 𝑏𝛿
𝑏𝑝

𝑘𝑧 =
1
𝑏𝑝

Solving this system of equations yields

𝑘0 =
𝛾𝑣𝜖 (𝑑𝛾𝑣𝑧𝑣𝜖 + 𝑣𝛿𝜇𝑧)

𝛾2𝑣𝑧𝑣
2
𝜖 + 𝑣𝛿

(
1 + 𝛾2𝑣𝑧𝑣𝜖

) ,
𝑘𝛿 =

𝑣𝛿
(
1 + 𝛾2𝑣𝑧𝑣𝜖

)
𝛾2𝑣𝑧𝑣

2
𝜖 + 𝑣𝛿

(
1 + 𝛾2𝑣𝑧𝑣𝜖

) ,
𝑘𝑧 = −

𝛾𝑣𝛿𝑣𝜖
(
1 + 𝛾2𝑣𝑧𝑣𝜖

)
𝛾2𝑣𝑧𝑣

2
𝜖 + 𝑣𝛿

(
1 + 𝛾2𝑣𝑧𝑣𝜖

) . (B.1)

We can calculate 𝜂 as shown in the text. If we calculate it out fully, we have, once we plug in
all the constants:

𝜂 =
𝛾𝑣𝑧𝑣𝛿𝑣𝜖

(
1 + 𝛾2𝑣𝑧𝑣𝜖

) (
𝛾2𝑣𝑧𝑣

2
𝜖 + 𝑣𝛿

(
1 + 𝛾2𝑣𝑧𝑣𝜖

) )
𝑣2
𝛿

(
1 + 𝛾2𝑣𝑧𝑣𝜖

) 2 (
𝑣𝛿 + 𝛾2𝑣𝑧𝑣

2
𝜖

)
+ 𝑣𝑑

(
𝛾2𝑣𝑧𝑣

2
𝜖 + 𝑣𝛿

(
1 + 𝛾2𝑣𝑧𝑣𝜖

) ) 2
(B.2)
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thus it’s clear that
lim
𝑣𝑑→∞

𝜂 = 0 and lim
𝑣𝑧→0

𝜂 = 0. (B.3)
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