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Abstract

Realized illiquidity is the ratio between realized volatility and trading volume refining the
popular price impact measure proposed by Amihud (2002). We provide its theoretical foundation
in which both price volatility, 𝜎 (𝑡), and market liquidity, ℓ (𝑡), follow stochastic processes in con-
tinuous time. We prove that the realized illiquidity is a precise measurement of the inverse of
integrated liquidity, that is, the integral of ℓ (𝑡) over periods of unit length (e.g., a day). A compre-
hensive econometric analysis highlights the main distributional and dynamic properties of the
realized illiquidity, including jumps, clustering, and leverage effects, and demonstrate that they
help explain the time series of stock and currency returns.
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1 Introduction

In addition to being crucial to the quality of financial markets and resilience of the financial system,
market liquidity is important for capital market efficiency because “liquidity of investment markets
often facilitates, though it sometimes impedes, the course of new investment” (Keynes, 1936, p.102).
However, market liquidity is an elusive concept because it includes everything that determines “the
degree to which an order can be executed within a short time frame at a price close to the security’s
consensus value” (Foucault et al., 2013, p.2). Thus, liquidity manifests itself in at least two important
ways: the transaction cost and the impact of transaction volume on security prices, which, in turn,
depends on the market depth and price elasticity. The transaction cost is often gauged by the bid-ask
spread, while a popular measure for price impact is the Amihud illiquidity measure (Amihud, 2002),
which is the ratio between the daily absolute returns and trading volume.1
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Figure 1: Realized Amihud (black solid line) vs classic daily Amihud (blue dotted line, see Amihud, 2002) of
SPY. Realized Amihud is computed as the ratio between realized power variation and trading volume. Sample
period: January 3, 2006 – June 29, 2018. Both series are scaled by a factor of E+09.

In this paper, we study the theoretical and empirical properties of a refinement of the classic daily
Amihud, namely the realized illiquidity, which is defined as the ratio between a realized volatility
measure and the daily trading volume.2 We propose two measures of realized illiquidity that we
call realized Amihud and high-low Amihud. The former is computed as the ratio between realized
power variation (Barndorff-Nielsen and Shephard, 2003) using intraday data and daily trading volume.

1To date, the ILLIQ measure proposed by Amihud (2002) has been cited more than 11,000 times according to Google
Scholar. Many of these papers were published in top-tier academic journals in finance.

2Although the empirical analysis focuses on the realized illiquidity computed at daily frequency, our theory and
metrics can be applied to shorter (intraday) or longer (e.g., weekly or monthly) horizons.
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The latter is the ratio between the daily high-low range (Parkinson, 1980) and the daily volume.
Both numerators are measures of realized volatility but the former requires intraday data while the
latter relies on daily data often accessible for many financial securities. Figure 1 provides a simple
illustration of the precision of the realized Amihud (black solid line) in relation to the daily Amihud
(blue solid line) using the SPDR S&P 500 ETF (ticker SPY) as an indication of the U.S. stock market
behavior. Although both series follow similar dynamic patterns, the classic daily Amihud is much
noisier than the realized Amihud.

This paper contributes to the literature in three ways. Our first contribution is outlining a simple
theoretical framework based on the trading mechanism of Tauchen and Pitts (1983), which fits suit-
ably into the theory of realized volatility, specifically here in the context of liquidity measurement.
In developing the theory of realized illiquidity, we consider a setting where both spot volatility, 𝜎 (𝑡),
and the instantaneous liquidity parameter, ℓ (𝑡), are (possibly correlated) continuous-time stochastic
processes. We prove that the realized illiquidity provides a measurement of the integrated illiquidity,
which is defined as the reciprocal of

∫ 1
0 ℓ (𝑠)𝑑𝑠 over periods of unit length (e.g., a day, a week, or

a month). This allows us to establish how precisely the realized illiquidity measures the integrated
illiquidity vis-a-vis the classic daily Amihud, which is a special case of the realized Amihud when
only one observation per period (i.e. daily return) is available. Thanks to its intrinsic non-parametric
nature, the realized illiquidity represents a simple (inverse) measure of market resiliency, that is, the
elasticity of asset prices to trading volume, where the latter depends on the degree of disagreement
in the beliefs among traders.

A set of Monte Carlo simulations illustrates the finite sample accuracy of the realized illiquidity as
a nonparametric measurement of integrated illiquidity. In the Monte Carlo simulations, we explore
the finite-sample properties of the realized and high-low Amihud measures compared to the classic
Amihud proxy. The numerical analysis clearly shows two results: First, the realized Amihud provides
a very precise measurement of illiquidity even after considering microstructure frictions such as bid-
ask spread and price discreteness. Second, although less precise than the realized Amihud, the high-
low Amihud provides estimates of the underlying integrated illiquidity process that are several times
more precise than those obtained by the classic daily Amihud. For these reasons, the realized Amihud
can be considered the most efficient measure of realized illiquidity while the high-low Amihud is a
more efficient low-frequency measure than the classic daily Amihud proxy.

Our second contribution is to derive a simple theory for jumps in illiquidity, which are generated
by impactful news common to all traders such as earnings press releases for stocks or central bank an-
nouncements for currencies. The natural interpretation of such jumps is the consensual price change
induced by new fundamental information for which little or no transaction volume is needed. We
refer to them as information jumps. These events induce large volatility but little to no volume, thus
increasing the observed market illiquidity due to the predominant information component. Build-
ing on the results of Barndorff-Nielsen and Shephard (2003, 2004, 2006), we develop a formal way
to carry out nonparametric statistical inference on information jumps and disentangle the illiquidity
generated by information jumps from the baseline illiquidity associated with disagreement among
traders, which is the main driver of trading volume. In particular, we define a test statistic to detect
significant jumps, and we construct the jump-robust version of the realized illiquidity estimator.
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Our third contribution is to empirically study the properties of the realized illiquidity. To do so,
we consider a comprehensive set of econometric specifications with the goal of characterizing the
main dynamic and distributional properties of the realized Amihud. Inspired by the techniques usu-
ally adopted in the context of volatility modeling, we consider a multiplicative error model (MEM)
specification (Engle and Gallo, 2006) that allows for a direct prediction of illiquidity without resorting
to nonlinear transformations to preserve positivity. Furthermore, we investigate whether the slow
decaying rate of the autocorrelation function of the realized Amihud is well characterized by the
heterogeneous autoregressive specification (HAR) model of Corsi (2009) in both a linear and nonlin-
ear context. All this should bring to light the predictive factors of market liquidity and evidence to
support heterogeneity of trading activity of market participants operating with different investment
horizons, i.e. daily, weekly, or monthly. Another well-known feature of volatility is that volatility
follows asymmetric patterns with respect to positive and negative returns – that is – bad news (neg-
ative return shocks) increases volatility by more than good news (positive return shocks). We study
whether a similar asymmetric mechanism characterizes illiquidity to find whether liquidity system-
atically evaporates more when bad news hits, as predicted by theoretical models of binding capital
constraints leading to sudden liquidity dry-ups.3 Reminiscent of two key terms used in the volatility
literature, we call the first and second features heterogeneous illiquidity clustering and leverage effect,
respectively.

We consider two categories of financial securities in our empirical analysis: stocks and curren-
cies. Specifically, the time series analysis of the daily realized illiquidity of the main exchange traded
fund (ETF) tracking the S&P 500 index (SPY) reveals four main findings shedding new light on the
stochastic features of illiquidity. First, the empirical evidence strongly suggests that the latent illiq-
uidity process is a very persistent one that is characterized by long periods of high illiquidity followed
by long periods of low illiquidity (clustering). This persistence runs along heterogeneous horizons
in that today’s illiquidity is predicted not only by that of yesterday, but also by that of the previous
week and month with greater intensity (heterogeneous clustering). All this suggests that there are
distinct groups of traders with different behaviors, trading schedules, and time horizons, and this
heterogeneity impacts the illiquidity timing with important asset pricing implications (Amihud and
Mendelson, 1986).4 Second, we find strong evidence that liquidity tends to dry up more in market
downturns (leverage effect) and we demonstrate that ceteris paribus, a liquidity shock has more per-
sistent effects when combined with negative returns. Third, when regressing excess returns on the
realized Amihud, we find a significant negative coefficient. After breaking down illiquidity in its ex-
pected and unexpected components, we find that it is rather the unexpected part of illiquidity that
negatively predicts returns consistent with the idea that the persistent effect of an illiquidity shock
increases expected future illiquidity thus decreasing asset prices. Fourth, all these findings (i.e. het-
erogeneous clustering, leverage effect, and how illiquidity is associated with stock returns) are much
less evident when the noisy classic daily Amihud is employed, hence reiterating the importance of
using a more precise illiquidity measure.

3Hameed et al. (2010) provide empirical support and comprehensive discussion of this literature.
4In reference to this idea, previous literature has used the broad concept of Heterogeneous Market Hypothesis (Müller

et al., 1993).
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To conclude our empirical analysis, we examine the currency market by focusing on EUR/CHF and
USD/CHF exchange rates surrounding the cap removal of the Swiss franc by the Swiss National Bank
(SNB) on January 15, 2015. Despite its simplicity, our theory lends itself to several extensions that
succeed in explaining and measuring illiquidity in reaction to major events such as a currency regime
change. Through the lenses of our theory, the SNB announcement represents an ideal framework for
testing the empirical prediction that the observed illiquidity should increase after the cap removal
because the Swiss National Bank ceased to supply Swiss francs in unlimited quantities, thus reducing
the supply of extra trading volume to the market. By carrying out the break analysis of Bai and
Perron (1998), we find strong evidence that illiquidity significantly increased after January 15, 2015,
as a joint consequence of an increase in EUR/CHF volatility and a reduction in trading volume of the
same currency pair. Notably, we find an analogous pattern on the USD/CHF rate, suggesting that a
liquidity shock in one market (or FX rate) immediately spills over into another one.

Our paper adds to prior research on market microstructure and liquidity. The popular Amihud
(2002) measure is part of a large literature going back half a century that includes a wide range of
illiquidity measures based on price changes and volume (e.g. Silber, 1975, Dubofsky and Groth, 1984).
Ideally, to measure the volume price impact, one would need access to data on all orders submitted by
traders in a centralized market. However, many markets are decentralized and opaque, such as all the
over-the-counter (OTC) markets, including the FX market that we also study here. In this context, the
classic daily Amihud measure is extremely useful for approximating the order flow impact on security
prices because (a) it is an observable and non-parametric quantity and (b) it is based on daily price
and volume data, much more accessible than tick-by-tick orders and transactions.5 This is why the
Amihud measure is so widely used and it has been loosely associated with the Kyle (1985) model that
provides an insightful theoretical framework to explain how orders impact asset prices, as captured by
his lambda factor.6 Our theoretical contribution is to provide a general theory for realized illiquidity
of which the Amihud measure is a specific case. Our empirical contribution is to demonstrate the
superior accuracy of the realized Amihud measure, its characteristics, and explanatory power on
asset returns.

Ranaldo and Santucci de Magistris (2022) adopt the realized Amihud to empirically investigate
the price impact in the global FX market. We extend their work in three ways. First, we provide a
theoretical foundation to the Amihud measure, which includes the notions of integrated illiquidity
and jumps. Second, we study the appropriate econometric modeling that highlights the main empir-
ical features of the realized Amihud measures, including illiquidity jumps, heterogeneous clustering,
and leverage effects, and how they explain asset returns. Finally, we propose two methods, i.e. the
high-low Amihud and the realized one. Both metrics share the advantages of the Amihud measure –
that is – they are easy-to-compute and rely on the ratio between two observable quantities based on
transaction data, namely volume and (realized) volatility (measured either as high-low range or real-
ized power variation). In doing so, the high-low and realized measures extend the previous literature

5The accuracy of the classic Amihud measure has been documented for stocks (Hasbrouck, 2009) and currencies
(Ranaldo and Santucci de Magistris, 2022). Fong et al. (2018) analyze global and U.S. stocks applying various liquidity
proxies based on volatility over volume.

6Collin-Dufresne and Fos (2016) propose an elegant extension of Kyle’s model, with which our model shares the
stochastic nature of market liquidity.
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on low- and high-frequency measurement of market liquidity, which has been predominantly based
on the estimation of transaction costs rather than price impact.7

The manuscript is organized as follows. Section 2 outlines the theoretical setting. Section 3 reports
the results of several Monte Carlo simulations. Section 4 introduces the notion of information jumps
and of the jump-robust realized Amihud. Section 5 presents the empirical analysis, while Section 6
concludes the paper. Proof and additional empirical results are in the Appendix.

2 A Simple Theory of Illiquidity Measurement

Let us consider an asset traded on a market consisting of a finite number 𝐽 ≥ 2 of active participants.
Within a given trading period of a certain unit length (e.g., an hour, a day, a week), the market passes
through a sequence of 𝑖 = 1, . . . , 𝐼 equilibria. The evolution of the equilibrium price is motivated by
the arrival of new information to the market that changes the reservation prices of the traders. At
intra-period 𝑖 , the exchanged quantity by the 𝑗-th trader is given by

𝑞𝑖, 𝑗 = ℓ𝑖 (Δ𝑝∗𝑖, 𝑗 − Δ𝑝𝑖), ℓ𝑖 > 0, 𝑗 = 1, . . . , 𝐽 , (1)

where Δ𝑝∗𝑖, 𝑗 is the variation in the reservation log-price of the 𝑗-th trader occurring between period
𝑖 − 1 and period 𝑖 . Similarly, Δ𝑝𝑖 is the variation in the market log-price occurring in the same
interval. The term ℓ𝑖 is a positive coefficient capturing the market depth at time 𝑖: The larger the ℓ𝑖 ,
the larger quantities of the asset can be exchanged for a given difference Δ𝑝∗𝑖, 𝑗 −Δ𝑝𝑖 . The equilibrium
function in (1) is analogous to the one outlined in Tauchen and Pitts (1983), which provides a stylized
representation of the supply-demand mechanism on the market.8 The reservation price of each trader
might reflect some of the following aspects: individual preferences, liquidity issues, asymmetries in
information sets, and different expectations about the fundamental values of the asset. In general, the
reservation price can deviate from the market price because of idiosyncratic reasons, inducing the
𝑗-th trader to trade. The quantity exchanged for a unit change of Δ𝑝∗𝑖, 𝑗 −Δ𝑝𝑖 is given by the slope ℓ𝑖 . In
other words, ℓ𝑖 measures the capacity of the market to allow large quantities to be exchanged at the
intersection between demand and supply, thus recalling the concept of market depth and resilience
that reduces the price impact of trading. The baseline assumptions of the model (linearity of the
trading function and constant number of active traders) are inevitably stylized. As for the form of the
equilibrium function in (1), note that the trades take place on short intra-period intervals of length
𝛿 = 1/𝐼 and are generally associated with small price variations. Therefore, it is not restrictive to
assume the equilibrium function is linear on small price changes and for a fixed number of traders
during such a short period.

By market clearing, that is
∑

𝑗 𝑞𝑖, 𝑗 = 0, we have that the average of the variations in the reservation
prices clears the market, that is, Δ𝑝𝑖 = 1

𝐽

∑𝐽

𝑗=1 Δ𝑝
∗
𝑖, 𝑗 . As new information arrives, traders adjust their

reservation prices, Δ𝑝∗𝑖, 𝑗 , resulting in a change in the market price (Δ𝑝𝑖 ), which is given by the average

7Starting from the seminal work of Roll (1984), several papers propose other measures that estimate the bid-ask
spread, including Hasbrouck (2009), Corwin and Schultz (2012), and Abdi and Ranaldo (2017).

8See also Clark (1973), Epps and Epps (1976), the survey in Karpoff (1987) and the empirical analysis in Andersen
(1996).
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of the increments of the reservation prices.
The generated trading volume in each 𝑖-th sub-interval 𝜈𝑖 = 1

2
∑𝐽

𝑗=1 |𝑞𝑖, 𝑗 | is as follows

𝜈𝑖 =
ℓ𝑖

2

𝐽∑︁
𝑗=1

|Δ𝑝∗𝑖, 𝑗 − Δ𝑝𝑖 |, (2)

We assume that the reservation price of each trader evolves in continuous-time according to the
following process

𝑑𝑝∗𝑗 (𝑡) = 𝜇 𝑗 (𝑡)𝑑𝑡 + 𝜎 𝑗 (𝑡)𝑑𝑊𝑗 (𝑡), 𝑗 = 1, . . . , 𝐽 , 𝑡 > 0, (3)

where
{
𝑊𝑗 (𝑡), 𝑗 = 1, . . . 𝐽

}
is a collection of independent Wiener processes. The term 𝜇 𝑗 (𝑡) is a pre-

dictable process with finite variation that might represent the long-term expectation of the 𝑗-th trader
about the asset and could be a function of fundamental quantities, such as interest rates and macroe-
conomic variables. The term 𝜎 𝑗 (𝑡) is the stochastic (spot) volatility process of the 𝑗-th trader. By
letting 𝜎 𝑗 vary across traders, we introduce heterogeneity among them. This reconciles with many re-
alistic features, including the evidence of long-memory in volatility, as obtained by the superposition
of traders operating at different frequencies, which, for instance, can be seen with the heterogeneous
autoregressive models of Müller et al. (1997) and Corsi (2009). On the 𝑖-th discrete sub-interval of
length 𝛿 = 1

𝐼
, the reservation prices for the 𝑗-th trader is therefore

Δ𝑝∗𝑖, 𝑗 =

∫ 𝛿𝑖

𝛿 (𝑖−1)
𝜇 𝑗 (𝑠)𝑑𝑠 +

∫ 𝛿𝑖

𝛿 (𝑖−1)
𝜎 𝑗 (𝑠)𝑑𝑊𝑗 (𝑠). (4)

This setting is coherent with a representation of a frictionless market where each trader participates
through its reservation price to the determination of a new equilibrium. In particular, we assume that
𝜎 𝑗 (𝑡) > 0 is càdlàg with (almost surely) square integrable sample paths ∀𝑗 = 1, . . . , 𝐽 . Analogously,
ℓ (𝑡) evolves in continuous-time according to a process fulfilling very mild regularity conditions, i.e.
ℓ (𝑡) is assumed to be a strictly positive càdlàg stochastic process. For instance, examples of stochastic
differential equation (SDE) fulfilling these conditions are those common in the volatility literature,
such as the CIR model of Cox et al. (2005) and Heston (1993) (see Section 3), the Ornstein–Uhlenbeck
process of Vasicek (1977), or the long-memory process of Comte and Renault (1998).

We define the realized Amihud as follows

A := 𝑅𝑃𝑉

𝜈
, (5)

where the numerator is the realized power variation of order one (or realized absolute variation),
𝑅𝑃𝑉 =

∑𝐼
𝑖=1 |𝑟𝑖 |, where 𝑟𝑖 = Δ𝑝𝑖 is the log-return, see Barndorff-Nielsen and Shephard (2003). The

daily version by Amihud (2002) corresponds to the specific case with 𝐼 = 1, i.e. the numerator reduces
to the daily absolute return. Then, it should be evident that the classic daily Amihud is a special case
of a more general metrics based on a richer set of intra-period information. Specifically, the realized
Amihud gauges the price impact of trading, that is, the amount of volatility on a unit interval (as mea-
sured by 𝑅𝑃𝑉 ) associated with the trading “dollar” volume 𝜈 =

∑𝐼
𝑖=1 𝜈𝑖 generated in the same period.
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In other words, A measures the amount of volatility associated with a unit of trading volume.9 The
following proposition highlights the main determinants of realized Amihud as an illiquidity measure.

Proposition 1. Consider the illiquidity measure defined in (5), the equilibrium relation in (1), and
the diffusive process for reservation prices in (3). Assume that 𝜎 𝑗 (𝑡) and ℓ (𝑡) are strictly positive càdlàg
processes with (almost surely) square integrable sample paths ∀𝑗 = 1, . . . , 𝐽 . Assume 𝐽 = 2 active traders,
as representative of the two aggregated sides of the market. As 𝐼 → ∞ (i.e., 𝛿 → 0)

𝑝 lim
𝐼→∞

A =
1
L , (6)

where L =
∫ 1

0 ℓ (𝑠)𝑑𝑠 is the integrated liquidity. Furthermore, as 𝐼 → ∞

log(A) − log
(

1
L

)
√︃

2𝛿 (𝜋/2−1)𝑅𝑉
(𝜋𝛿/2)𝑅𝑃𝑉 2

𝑑→ 𝑁 (0, 1), (7)

where 𝑅𝑉 =
∑𝐼

𝑖=1 𝑟
2
𝑖 is the realized variance.

Proof. Proof in Appendix A.1. □

Proposition 1 shows that the realized Amihud is a measure of the inverse of the integrated liquidity
L, namely the integrated illiquidity, which represents the price impact of trading volume cumulated
over periods of unit length. The precision of the measurement increases with 𝐼 and the asymptotic
distribution in (7) can be used to construct a confidence interval for L. In the model of Clark (1973),
Epps and Epps (1976) and Tauchen and Pitts (1983), volatility and trading volume (often used as a
proxy for liquidity) are equilibrium outcomes of information impact and jointly depend upon the
unobservable information flow variable, which generates variations in the reservation prices. By
taking the ratio between volatility and volume, we decouple the information about market illiquidity
from that of the information flow. Hence, by computing A over disjoint periods of unit length (e.g.
on daily horizons), one can obtain a time-series of measurements of 1

L , and use them to explore the
evolution of illiquidity over time (see Section 5). In the next section, we run Monte Carlo simulations
to assess the finite sample performance of the realized Amihud in measuring illiquidity.

3 Monte Carlo Simulations

By resorting to the continuous-time framework outlined in Barndorff-Nielsen and Shephard (2002a,b),
we can precisely measure the variability of the asset price by computing 𝑅𝑃𝑉 over intervals of any
length (e.g., hours, days, weeks, and months). Furthermore, the equilibrium theory presented above
allows us to relate this variability to the aggregate level of disagreement among investors, in turn
leading to the observed trading volume. An assessment of the quality of the measurement of illiq-
uidity based on the realized Amihud is carried out by Monte Carlo simulations, in which the daily

9By analogy with the realized Amihud, one could employ the realized Amivest, which is defined as the reciprocal of
the realized Amihud (the ratio of volume over volatility) that gives the volume of trading associated with a one standard
deviation change in the price of a security.
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horizon is taken as the reference unit interval. The liquidity process, ℓ (𝑡), is generated according to
a CIR-type SDE

𝑑ℓ (𝑡) = 𝜅ℓ (ℓ (𝑡) − ℓ0)𝑑𝑡 + 𝜂ℓℓ (𝑡)1/2𝑑𝑊ℓ (𝑡),

where ℓ0 = 50, 200, 500 represents the long-term mean in the low-, medium-, and high-liquidity sce-
narios, respectively. The parameters 𝜅ℓ = 0.5 and 𝜂ℓ = 0.1 determine the speed of the mean-reversion
and the volatility of liquidity, respectively. Similarly, also the reservation prices (and, hence, equilib-
rium prices) are generated according to the diffusive process in (3), where the variance, 𝜎2

𝑗 (𝑡) with
𝑗 = 1, 2, evolves following the dynamics of the CIR process, that is, 𝑑𝜎2

𝑗 (𝑡) = 𝜅𝜎 (𝜎2(𝑡) − 𝜎2
0 )𝑑𝑡 +

𝜂𝜎𝜎 (𝑡)𝑑𝑊𝜎,𝑗 (𝑡) with the parameters 𝜅𝜎 = 0.2, 𝜎2
0 = 2, 𝜂𝜎 = 0.1.10 In the simulation of price and

volume trajectories, we consider 𝑀 = 1000 Monte Carlo replications for 𝑇 = 1, 000 transaction days
and 𝐼 ∗ = 5, 760 intra-daily intervals corresponding to a 15-second frequency over 24 hours. 𝑅𝑃𝑉 is
then computed aggregating at daily horizon the absolute returns sampled at different frequencies: 1
hour; 30, 15, 10, 5 minutes; and 30 and 15 seconds, that is 𝐼 = [24, 48, 96, 144, 288, 1440, 2880, 5760]
equally-spaced sub-intervals, respectively. Trading volume is obtained aggregating at daily horizon
the volume generated in each sub-period according to equation (2). Hence, for each Monte Carlo
simulation and for each sampling frequency, we obtain a time-series of realized Amihud {A𝑡 }𝑇𝑡=1 that
we compare with the simulated time-series of integrated illiquidity, { 1

L∗
𝑡
}𝑇𝑡=1, where L∗

𝑡 =
∑𝐼 ∗

𝑖=1 ℓ𝑖,𝑡 ,
𝑡 = 1, . . . ,𝑇 .

0 50 100 150 200
0.8

1

1.2

1.4

1.6

1.8
10-4 1 minute

0 50 100 150 200
0.8

1

1.2

1.4

1.6

1.8
10-4 5 minutes

0 50 100 150 200
0.8

1

1.2

1.4

1.6

1.8
10-4 15 minutes

0 50 100 150 200
0.8

1

1.2

1.4

1.6

1.8
10-4 30 minutes

Realized Amihud Theoretical illiquidity

0 20 40 60 80 100 120 140 160 180 200
-5

-4.9

-4.8

-4.7

-4.6

-4.5

-4.4

-4.3

-4.2

Realized Amihud 95% Confidence Interval Theoretical illiquidity

Figure 2: The realized Amihud at different frequencies and confidence intervals. The figure on the left reports
the true illiquidity limit 1

L (red solid line), and the realized Amihud (dots) obtained by sampling returns at
different frequencies of 1 minute, 5, 15 and 30 minutes for a subset of 200 days. The figure on the right reports
the true illiquidity signal (logL, red) and 95% confidence bands based on the realized Amihud computed with
1-minute returns.

10The configuration of these parameters generates a persistent volatility process with daily percentage returns typi-
cally ranging in the interval between -3% and +3%. In line with the empirical evidence displayed in Section 5, the simulated
liquidity process ℓ (𝑡) also displays a persistent behavior.
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As a graphical illustration of the ability of the realized Amihud to precisely measure the latent
illiquidity process, the left panel of Figure 2 reports the time-series of the daily true illiquidity signal
(in red) together with its estimates (blue dots) that are the realized Amihud obtained by sampling
at different frequencies (1 minute, 5, 15 and 30 minutes). As the sampling frequency increases, the
variability around the true illiquidity signal decreases, and it becomes negligible at the 1-minute
frequency. In other words, by taking the ratio between a increasingly refined (in 𝐼 ) measurement of
daily volatility and daily trading volume, we obtain a very precise measurement of the day-by-day
variations of the trade impact, which is a relevant dimension of illiquidity. The graph to the right of
Figure 2 exploits the asymptotic distribution result in Proposition 1 and reports the 95% confidence
bands around the true (log) illiquidity signal. The true illiquidity series lies within the confidence
bands, thus confirming the goodness of the asymptotic approximation in (7). As a further illustration
of asymptotic distribution of the realized Amihud, we construct quantile-quantile (QQ-) plots based
on equation (22). Figure 3 reports the QQ-plots based on the simulation experiment described above,
where 𝐼 = 24, 76, 288, 1440. As 𝐼 increases, the fit to the Gaussian distribution improves, being already
remarkable at 5-minute frequencies.
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Figure 3: QQ-plot. Figure reports the QQ-plots and illustrates the approximation to a standard Gaussian
random variable as in (7). We consider different sampling frequencies, namely 1 minute, 5 and 15 minutes, and
1 hour.

The summary of the results of the Monte Carlo simulations are presented in Table 1. The realized
Amihud provides accurate measurements of the true integrated illiquidity process (i.e., 1

L ) in all sce-
narios (low-, medium-, and high-illiquidity levels) with a bias (relative to the illiquidity signal) below
0.5% in absolute value and a small RMSE, even for relatively moderate sampling frequencies (e.g.,
5-10 minutes). As expected from Theorem (1), the RMSE decreases as 𝐼 increases (i.e., 𝛿 decreases).
In general the RMSE of the realized Amihud is much smaller compared with the RMSE achieved by
the daily Amihud. This result confirms that the classic daily Amihud represents the limiting case of
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an illiquidity measurement obtained with only one observation per trading period, that is, 𝐼 = 𝛿 = 1.
In this case, the illiquidity measure in (5) reduces to A𝐷 =

|𝑟 |
𝜈

.
We consider an alternative low-frequency version of the daily Amihud, that is the high-low Ami-

hud. We obtain it by exploiting the high-low price range as a proxy of volatility, see Parkinson
(1980), among others. In particular, the high-low Amihud is defined as A𝐻𝐿 =

𝑟𝑎𝑛𝑔𝑒

𝜈
, where 𝑟𝑎𝑛𝑔𝑒 =√︃

1
4 log(2) (𝑝𝐻 − 𝑝𝐿)2 with 𝑝𝐻 and 𝑝𝐿 being the daily high and low log-prices on a given unit interval (a

day in this case). The Monte Carlo simulations show that the high-low Amihud displays remarkable
properties. It is characterized by a small negative bias (around 5%) and is approximately three times
more efficient than the traditional daily Amihud. This suggests that the high-low Amihud constitutes
a viable alternative to the daily Amihud when intra-day prices are not available.

Low Liquidity, ℓ0 = 50
Percentage Relative Bias Relative RMSE

Sampling frequency Realized Amihud High-Low Amihud Daily Amihud Realized Amihud High-Low Amihud Daily Amihud
1hour 1.6445 -5.5453 -2.5699 0.2330 0.2924 0.7450
30min 0.4541 -5.5453 -2.5699 0.1504 0.2924 0.7450
15min 0.5667 -5.5453 -2.5699 0.1097 0.2924 0.7450
10min -0.0095 -5.5453 -2.5699 0.0901 0.2924 0.7450
5min 0.2309 -5.5453 -2.5699 0.0614 0.2924 0.7450
1min 0.0923 -5.5453 -2.5699 0.0291 0.2924 0.7450
30sec 0.1065 -5.5453 -2.5699 0.0201 0.2924 0.7450
15sec 0.0630 -5.5453 -2.5699 0.0142 0.2924 0.7450

Medium Liquidity, ℓ0 = 200
Percentage Relative Bias Relative RMSE

Sampling frequency Realized Amihud High-Low Amihud Daily Amihud Realized Amihud High-Low Amihud Daily Amihud
1hour 3.6035 -3.9223 -2.4906 0.2326 0.2934 0.7547
30min 2.2201 -3.9223 -2.4906 0.1581 0.2934 0.7547
15min 0.5300 -3.9223 -2.4906 0.1084 0.2934 0.7547
10min 0.6963 -3.9223 -2.4906 0.0874 0.2934 0.7547
5min 0.2997 -3.9223 -2.4906 0.0615 0.2934 0.7547
1min 0.0216 -3.9223 -2.4906 0.0277 0.2934 0.7547
30sec -0.0456 -3.9223 -2.4906 0.0194 0.2934 0.7547
15sec 0.0045 -3.9223 -2.4906 0.0139 0.2934 0.7547

High Liquidity, ℓ0 = 500
Percentage Relative Bias Relative RMSE

Sampling frequency Realized Amihud High-Low Amihud Daily Amihud Realized Amihud High-Low Amihud Daily Amihud
1hour 3.1471 -6.4177 -4.7968 0.2330 0.2918 0.7575
30min 1.6101 -6.4177 -4.7968 0.1616 0.2918 0.7575
15min 0.8523 -6.4177 -4.7968 0.1096 0.2918 0.7575
10min 0.6709 -6.4177 -4.7968 0.0898 0.2918 0.7575
5min 0.2646 -6.4177 -4.7968 0.0634 0.2918 0.7575
1min 0.0035 -6.4177 -4.7968 0.0279 0.2918 0.7575
30sec 0.0655 -6.4177 -4.7968 0.0200 0.2918 0.7575
15sec 0.0598 -6.4177 -4.7968 0.0146 0.2918 0.7575

Table 1: Illiquidity measurement. The table reports Monte Carlo simulations for the assessment of the quality
of illiquidity through the realized Amihud. It also reports the Monte Carlo relative percentage bias and RMSE
(both relative to 1

L ) for the realized Amihud reported in (5). The smallest RMSE is in bold. As a reference, we
also consider the daily Amihud measure, that is, A𝐷 =

|𝑟 |
𝜈

, and the high-low Amihud, A𝐻𝐿 =
𝑟𝑎𝑛𝑔𝑒

𝜈
, where

𝑟𝑎𝑛𝑔𝑒 is scaled by
√︁
𝜋/2 to be comparable with the 𝑅𝑃𝑉 .

3.1 Microstructure Frictions

It should be stressed that the asymptotic results (in the limit for 𝐼 → ∞) behind Proposition 1 are
derived by abstracting from microstructure frictions (namely microstructure noise), like transaction
costs in the form of bid-ask spread, clearing fees, or price discreteness, which are intimately related
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and endogenous to the trading process. Although in the simplified context provided by the model
these microstructure features are not explicitly included, they pose a relevant issue to be addressed
in the empirical analysis. From a statistical point of view, the microstructure noise dominates the
volatility signal as 𝐼 → ∞, thus leading to distorted measurements of the variance. In the literature
on realized variance it is common practice to resort to moderate sampling frequencies, for example,
5-minute intervals, to reduce the impact of the microstructure noise contamination on the volatility
measurement, see Aı̈t-Sahalia and Jacod (2014) and Liu et al. (2015) for a discussion.11 This approach
can be carried over to the illiquidity measurement, and its effectiveness in reducing the impact of
microstructure noise contamination is confirmed by the evidence reported in Table 2. In particular,
we repeat the analysis of Table 1, but this time, we add the bid-ask spread to the equilibrium prices and
consider a rounding mechanism that generates price discreetness (rounding to cents or decimalization
effect) and zero returns; for more, see Bandi et al. (2020), among others.12

The results in Table 2 deliver two main messages. First, it suggests that, in this setting, we should
avoid computing the realized Amihud by sampling at the highest possible frequencies (e.g., from
15 to 30 seconds) because this leads to large estimation biases. Instead, sampling at moderate fre-
quencies (e.g., from 5 to 10 minutes) drastically reduces the bias while also leading to a low RMSE,
especially if compared with the daily Amihud, which is about 10 times larger (0.069 compared with
0.733 for the medium liquidity scenario). Second, the realized Amihud measure also performs well in
a low liquidity setting suggesting that its accuracy remains high for less frequently traded financial
securities.

In summary, the realized Amihud based on 5-minute returns provides accurate measurements of
the illiquidity associated with the price impact even in settings characterized by other dimensions of
illiquidity: the transaction costs such as the bid-ask spread, and additional frictions such as staleness
due to inherent price discreetness and absence of new information. In the empirical analysis below,
we work assuming that sampling asset returns at 5-minute intervals is sufficient to achieve a precise
measurement of the asset illiquidity.

4 Information Jumps

Now, we further explore the relationship between liquidity and volatility, focusing on the arrival
of large news common to all traders. Note that the increments of the reservation log-prices can be
disentangled as follows

Δ𝑝∗𝑖, 𝑗 = 𝜙𝑖 +𝜓𝑖, 𝑗 , with 𝑗 = 1, . . . , 𝐽 ,

11Alternative techniques designed to directly tackle the microstructural features in the measurement of volatility
based on intra-daily returns are: the two-scales estimator of Zhang et al. (2005) based on the idea of subsampling, the
optimal sampling frequency method of Bandi and Russell (2008), the realized kernel by Barndorff-Nielsen et al. (2008),
the pre-averaging estimator of Podolskij and Vetter (2009). In a large scale empirical analysis, Liu et al. (2015) find little
evidence that the realized variance estimator based on returns sampled at 5-minutes frequencies is outperformed by the
other measures.

12The bid-ask mechanism on the observed log-price is generated as 𝑝𝑖 = 𝑝𝑖 + 𝜁𝑖 · 𝐵𝐴𝑆/2, where 𝐵𝐴𝑆 is the bid-ask
spread and 𝜁𝑖 is an i.i.d. random variable (independent of 𝑝𝑖 ) taking value 1 or -1 with equal probability. The decimalization
mechanism is then imposed on 𝑝𝑖 by rounding 𝑃𝑖 = exp(𝑝𝑖 ) to the closest cent.
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Low Liquidity, ℓ0 = 50
Percentage Relative Bias Relative RMSE

Sampling frequency Realized Amihud High-Low Amihud Daily Amihud Realized Amihud High-Low Amihud Daily Amihud
1hour 1.8020 -4.8748 -0.7818 0.2176 0.3054 0.7711
30min 1.8298 -4.8748 -0.7818 0.1569 0.3054 0.7711
15min 1.6781 -4.8748 -0.7818 0.1151 0.3054 0.7711
10min 1.7789 -4.8748 -0.7818 0.0921 0.3054 0.7711
5min 2.9765 -4.8748 -0.7818 0.0725 0.3054 0.7711
1min 13.3029 -4.8748 -0.7818 0.1476 0.3054 0.7711
30sec 25.1862 -4.8748 -0.7818 0.2720 0.3054 0.7711
15sec 28.4629 -4.8748 -0.7818 0.3149 0.3054 0.7711

Medium Liquidity, ℓ0 = 200
Percentage Relative Bias Relative RMSE

Sampling frequency Realized Amihud High-Low Amihud Daily Amihud Realized Amihud High-Low Amihud Daily Amihud
1hour 2.9646 -4.8349 -1.9522 0.2258 0.2812 0.7334
30min 1.5911 -4.8349 -1.9522 0.1587 0.2812 0.7334
15min 1.5683 -4.8349 -1.9522 0.1110 0.2812 0.7334
10min 1.8408 -4.8349 -1.9522 0.0930 0.2812 0.7334
5min 2.6054 -4.8349 -1.9522 0.0690 0.2812 0.7334
1min 12.0901 -4.8349 -1.9522 0.1276 0.2812 0.7334
30sec 22.9034 -4.8349 -1.9522 0.2355 0.2812 0.7334
15sec 25.5046 -4.8349 -1.9522 0.2640 0.2812 0.7334

High Liquidity, ℓ0 = 500
Percentage Relative Bias Relative RMSE

Sampling frequency Realized Amihud High-Low Amihud Daily Amihud Realized Amihud High-Low Amihud Daily Amihud
1hour 1.8504 -5.9370 -1.3766 0.2463 0.2818 0.7248
30min 0.9157 -5.9370 -1.3766 0.1640 0.2818 0.7248
15min 0.9431 -5.9370 -1.3766 0.1097 0.2818 0.7248
10min 1.1633 -5.9370 -1.3766 0.0892 0.2818 0.7248
5min 2.2907 -5.9370 -1.3766 0.0676 0.2818 0.7248
1min 8.9761 -5.9370 -1.3766 0.0964 0.2818 0.7248
30sec 16.9324 -5.9370 -1.3766 0.1736 0.2818 0.7248
15sec 17.0739 -5.9370 -1.3766 0.1764 0.2818 0.7248

Table 2: Illiquidity measurement with microstructure noise. The table reports Monte Carlo simulations for
assessing the quality of illiquidity through the realized Amihud. The bid-ask spread is set at 0.15% relative to
the price level, which in line with the observed relative bis-ask spread of SPY (see Section 5). Table reports the
Monte Carlo relative percentage bias and RMSE (both relative to 1

L ) for the realized Amihud reported in (5).
The smallest RMSE is in bold. As a reference, we also consider the daily Amihud measure, that is, A𝐷 =

|𝑟 |
𝜈

,
and the high-low Amihud, A𝐻𝐿 =

𝑟𝑎𝑛𝑔𝑒

𝜈
, where 𝑟𝑎𝑛𝑔𝑒 is scaled by

√︁
𝜋/2 to be comparable with the 𝑅𝑃𝑉 .

where 𝜙𝑖 represents a fundamental information component common to all traders, stemming from
public information events, such as those associated with earnings press releases or central banks’ an-
nouncements. This could be related to events that trigger common directional beliefs among practi-
tioners. The term𝜓𝑖, 𝑗 is the change in the discretized diffusive process outlined in (2), which represents
the investor’s specific component of the reservation price variation. Furthermore, the assumption of
independence between 𝜙𝑖 and 𝜓𝑖, 𝑗 across time and traders does not allow for reversal or spillover
effects, such as those studied in Grossman and Miller (1988) to investigate the mechanics of liquidity
provision. The same type of sequential trading behavior has been recently proven to be responsible
for crash episodes, as shown in Christensen et al. (2022), and associated with changes in the level
of investors’ disagreement around important news announcements, see, e.g., Bollerslev et al., 2018.13

The detection of such informational events needs an accurate identification econometric technique
and granular (intra-daily) data.

The recent advances in the literature on jump processes help in this analysis. Similarly to Boller-
slev et al. (2018), we rely on a simple setup for the common news component, to separately identify it

13Perraudin and Vitale (1996) also consider jump times as moments at which significant information becomes public
knowledge.
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from the component of price variation due to the disagreement among traders, which is responsible
for generating the trading volume.14 For this reason, we refer to the term 𝜙𝑖 as information jumps.
In other words, when a common large news hits the market, the reservation prices all change in the
same direction, thus leading to a new equilibrium price. This generates price volatility with little or
no associated trading volume, so the realized Amihud is expected to be subject to a large positive
shock. Ideally, we would like to disentangle this spike from the measurement of illiquidity related
with the disagreement among traders.

We rely upon the theory of multipower variation developed in Barndorff-Nielsen and Shephard
(2003, 2004, 2006) to carry out inference on information jumps in illiquidity. Following Barndorff-
Nielsen and Shephard (2006), we assume that 𝜙𝑖 is a compound Poisson process, namely 𝜙𝑖 =

∑N𝑖

𝑗=1 𝑐 𝑗 ,
where N𝑖 is a simple process (e.g., a Poisson) that counts the number of jump arrivals in the interval
[𝑖 − 1, 𝑖], and it is finite for all intervals 𝑖 . The terms 𝑐 𝑗 are nonzero random variables that determine
the size of the jumps. When N𝑖 = 0, then Δ𝑝∗𝑖, 𝑗 reduces to the stochastic volatility plus drift model,
whose dynamics are described in (3). To carry out inference on jumps, we consider the multipower
variation of order 1/2, namely

𝑀𝑃𝑉 =
𝐼

𝐼 − 1

𝐼∑︁
𝑖=2

|𝑟𝑖 |1/2 |𝑟𝑖−1 |1/2. (8)

Following Barndorff-Nielsen and Shephard (2004, 2006), 𝑀𝑃𝑉 converges to S, even when 𝜙𝑖 ≠ 0, that
is

𝑝 lim
𝐼→∞

𝛿1/2𝜇−2
1/2𝑀𝑃𝑉 = S, (9)

where 𝜇1/2 = 𝐸 [|𝑋 |]1/2 is a normalizing constant. Therefore, we can devise the jump test statistic, J ,
which is given by

J =

√︁
𝜋/2𝜇2

1/2𝑅𝑃𝑉 −𝑀𝑃𝑉

𝐵𝑃𝑉
, (10)

where𝐵𝑃𝑉 =

√︃
𝜉
∑𝐼

𝑖=2 |𝑟𝑖 | |𝑟𝑖−1 | and 𝜉 = 𝜃 (𝜇2
1+2𝜇2

1/2𝜇1−3𝜇4
1/2)/𝜇

2
1) is a scaling constant with𝜃 = 0.1032.

Under the null hypothesis that 𝜙𝑖 = 0, J 𝑑→ 𝑁 (0, 1), we can use this result for testing the presence of
a significant information jump in a given day. With the goal of wiping out the impact of information
jumps on A, we can construct the jump-robust realized Amihud as

AC =
𝑅𝑃𝑉𝐶

𝜈
, (11)

where 𝑅𝑃𝑉𝐶 is the jump-robust realized power variation, given by

𝑅𝑃𝑉𝐶 = I(J ≤ 𝑞1−𝛼 )𝑅𝑃𝑉 + I(J > 𝑞1−𝛼 )�𝑀𝑃𝑉, (12)

where I(·) is the indicator function, 𝑞1−𝛼 denotes the (1 − 𝛼)-th quantile of a standard Gaussian
distribution, 𝛼 is the significance level of the jump test, and �𝑀𝑃𝑉 =

√︁
2/𝜋𝜇−2

1/2𝑀𝑃𝑉 .

14Other studies associating large price jumps with news announcements can be found in Andersen et al. (2007),
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Low Liquidity Power Size
5% 1% 0.5% 5% 1% 0.5%

1h 79.83% 75.35% 73.80% 10.31% 4.69% 3.52%
30min 84.71% 80.85% 79.55% 8.48% 3.16% 2.18%
15min 86.97% 83.54% 82.56% 7.68% 2.51% 1.56%
10min 88.83% 85.83% 84.40% 6.65% 2.02% 1.29%
5min 90.55% 87.55% 86.48% 6.25% 1.77% 1.10%
1min 92.67% 90.19% 89.16% 5.63% 1.35% 0.77%
30sec 93.35% 90.71% 89.77% 5.72% 1.33% 0.69%
15sec 93.52% 91.45% 90.67% 5.44% 1.18% 0.63%

Medium Liquidity Power Size
5% 1% 0.5% 5% 1% 0.5%

1h 79.87% 75.46% 73.96% 10.70% 4.89% 3.69%
30min 85.06% 81.18% 79.60% 8.72% 3.42% 2.31%
15min 87.82% 84.48% 83.05% 7.07% 2.42% 1.54%
10min 89.16% 86.04% 84.94% 6.98% 2.29% 1.30%
5min 90.47% 87.56% 86.65% 6.53% 1.92% 1.05%
1min 92.86% 90.29% 89.55% 5.66% 1.24% 0.68%
30sec 93.13% 90.97% 90.05% 5.47% 1.38% 0.81%
15sec 93.59% 91.15% 90.48% 5.77% 1.35% 0.73%

High Liquidity Power Size
5% 1% 0.5% 5% 1% 0.5%

1h 80.24% 76.05% 74.22% 10.48% 5.10% 4.10%
30min 84.04% 80.22% 78.79% 8.53% 3.32% 2.31%
15min 87.96% 84.13% 82.89% 7.51% 2.54% 1.64%
10min 89.04% 85.32% 84.49% 6.86% 2.23% 1.43%
5min 90.59% 88.03% 86.67% 6.46% 1.87% 1.12%
1min 92.40% 90.14% 89.25% 5.67% 1.29% 0.67%
30sec 93.22% 91.00% 90.02% 5.45% 1.35% 0.71%
15sec 93.69% 91.52% 90.64% 5.35% 1.21% 0.69%

Table 3: Jump test: power and size. The table reports Monte Carlo simulations for the assessment of the power
and size of the jump test. The empirical size and power of the jump test are computed at the 5%, 1%, and 0.5%
theoretical size levels, respectively.

In the following, we study by Monte Carlo simulations the finite-sample size and power properties
of the J -test. In Table 3 we consider a frictionless setting and three levels of nominal size, namely
𝛼 = 5%, 1%, 0.5%. The best performance in terms of empirical size and power is achieved sampling at
the highest possible frequency of 15-seconds. Furthermore, considering a setting where 𝜙𝑖 ≠ 0 allows
us to study the power of the test, that is, the ability to identify a jump if it occurs. In particular,
we assume that 𝜙𝑖 follows a compound Poisson process with an intensity equal to 5% (one jump
every twenty days on average). Notably, the test correctly identifies jumps, that is, rejects the null
hypothesis of no jumps, in more than 90% of the cases when sampling at the highest frequencies.

The results are quite different when considering microstructure noise, in the form of bid-ask

Chaboud et al. (2008), Lee (2011), Jiang et al. (2011).
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spread and rounding effects (Table 4). In particular, rounding to the closest cent of the dollar gener-
ates a large number of zeros in the returns sampled at the highest frequencies, as shown by Bandi
et al. (2020). Kolokolov and Renò (2021) illustrate the detrimental effect of zeros on the quality of
the jump-robust volatility estimates, especially when power variation measures are adopted. In cir-
cumstances where zeros are the dominant feature of the high-frequency returns (like for very illiquid
stocks), the effect of the rounding on 𝑀𝑃𝑉 is detrimental. In this case, 𝑀𝑃𝑉 is associated with a large
negative bias, and the jump test rejects the null hypothesis very frequently. In this case, sampling at
10 to 15 minutes frequencies drastically reduces the bias in 𝑀𝑃𝑉 , thus leading to empirical sizes of
the jump test closer to the theoretical ones. At these frequencies, the power remains high and above
85% in all cases.

Low Liquidity Power Size
5% 1% 0.5% 5% 1% 0.5%

1h 80.99% 76.34% 74.43% 10.98% 5.08% 3.98%
30min 84.94% 81.39% 79.92% 10.78% 4.70% 3.32%
15min 88.59% 85.77% 84.44% 11.04% 4.64% 3.28%
10min 90.49% 87.41% 86.32% 12.26% 4.74% 3.16%
5min 93.07% 90.78% 89.83% 20.64% 8.82% 6.44%
1min 98.96% 98.22% 97.87% 97.62% 93.02% 90.92%
30sec 99.70% 99.45% 99.32% 100.00% 100.00% 100.00%
15sec 99.96% 99.96% 99.94% 100.00% 100.00% 100.00%

Medium Liquidity Power Size
5% 1% 0.5% 5% 1% 0.5%

1h 81.21% 76.91% 75.55% 10.72% 5.16% 3.90%
30min 86.53% 82.76% 81.48% 10.12% 4.48% 3.22%
15min 89.81% 86.61% 85.37% 12.22% 4.96% 3.48%
10min 90.74% 87.90% 86.92% 13.52% 5.52% 3.76%
5min 94.07% 91.53% 90.66% 24.08% 11.30% 8.14%
1min 99.74% 99.27% 99.13% 97.84% 94.36% 92.30%
30sec 100.00% 99.94% 99.92% 100.00% 100.00% 99.98%
15sec 99.98% 99.98% 99.98% 100.00% 100.00% 100.00%

High Liquidity Power Size
5% 1% 0.5% 5% 1% 0.5%

1h 80.04% 75.75% 73.89% 10.96% 5.00% 3.88%
30min 84.32% 80.17% 78.93% 8.94% 3.50% 2.44%
15min 88.67% 85.07% 83.44% 8.84% 3.06% 1.90%
10min 89.99% 86.88% 85.93% 8.54% 2.72% 1.64%
5min 93.05% 90.22% 89.17% 10.76% 4.00% 2.56%
1min 99.27% 98.59% 98.34% 56.15% 36.61% 30.07%
30sec 99.70% 99.62% 99.54% 97.88% 92.80% 89.72%
15sec 100.00% 99.92% 99.92% 100.00% 100.00% 100.00%

Table 4: Jump test: power and size with microstructure noise. The table reports Monte Carlo simulations for
the assessment of the power and size of the jump test. The bid-ask spread is set at 0.15% relative to the price
level. The empirical size and power of the jump test are computed at the 5%, 1%, and 0.5% theoretical size levels,
respectively.
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5 Empirical Analysis

We now illustrate how changes in the liquidity conditions of financial markets can be studied by
looking at the temporal evolution of the realized illiquidity measures.15 In particular, we consider
the time series of the realized Amihud of SPDR S&P 500 ETF (ticker SPY), which is the ETF tracking
the S&P 500 index, and of the EUR/CHF and USD/CHF foreign exchange (FX) rates. With a daily
volume of 82.45 million shares in the period 2016–2021, SPY is the ETF with the largest trading
volume in the world. For this reason, the realized Amihud of SPY can be considered a good proxy
for the overall liquidity condition on the equity market. As for the EUR/CHF and USD/CHF rates,
our intent is to consider another financial security with different characteristics, for example, the
OTC and dealership structure as well as a price setting for which it is not obvious to expect the
(illiquidity) leverage effect. The Swiss franc also provides us with an interesting laboratory, given the
peculiar behavior of both volume and volatility after the cap removal by the Swiss national bank in
January 2015. This circumstance makes it an interesting case study for assessing the evolution of price
impact measures around policy events that change the currency policy and trading environment.
The analysis of the stock market illiquidity is presented in Section 5.1, while Section 5.2 presents the
results of the analysis conducted on the currency market.

5.1 Stock Market Illiquidity

We consider the daily time series of the realized Amihud of SPY, which is computed as the ratio
between the daily 𝑅𝑃𝑉 obtained from intra-daily returns sampled at different frequencies (source
TAQ database) and the daily volume (expressed in dollars, source Bloomberg) on SPY for the period
January 3, 2006, to June 29, 2018.

5.1.1 Sample Statistics

Table 5 reports the sample statistics of RPV, volume, A (realized Amihud), AC (the jump-robust
version), and the jump-component of the realized Amihud, computed as AJ

𝑡 =
I(J>𝑞1−𝛼 ) (𝑅𝑃𝑉−�𝑀𝑃𝑉 )

𝜈
.

The table also contains the sample statistics for the classic daily Amihud (A𝐷 ) and of the high–low
Amihud (A𝐻𝐿).16 The series are computed using returns sampled at several frequencies (1, 5, 10, 15,
and 30 minutes). In the last row, the table reports the number of significant jumps identified with
the test in (10). As expected, the variability of the realized Amihud is much smaller than that of the
daily Amihud (by about 9 or 10 times), and this holds irrespective of the sampling frequency used to
compute the estimator. In turn, the variability of the A𝐻𝐿 is approximately three or four times lower
than that of A𝐷 , reiterating that the range-based illiquidity measure is more desirable than daily
Amihud when low-frequency illiquidity proxies are to be used. All series display positive skewness

15Another way to assess the accuracy of realized Amihud is to compare it with liquidity measures of price impact
originating from order flow as done in Ranaldo and Santucci de Magistris (2022) showing that the realized Amihud is an
accurate measure of FX volume price impact.

16To interpret these measures as the amount of daily price volatility associated with one dollar of trading volume, in
the empirical application, we multiply A𝐷 by the constant

√︁
𝜋/2 and A by the constant 𝛿1/2√︁𝜋/2. This guarantees that

A, A𝐷 , and A𝐻𝐿 are on the same scale.
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Variance
1min 5min 10min 15min 30min Daily

RPV 0.311 0.312 0.314 0.317 0.335 0.547
Volume – – – – – 1.029

A 2.433 2.420 2.427 2.491 2.722 –
AC 2.262 2.419 2.456 2.553 2.804 –
AJ 0.053 0.030 0.042 0.063 0.149 –
A𝐷 – – – – – 9.541
A𝐻𝐿 – – – – – 3.755

Skewness
RPV 3.871 3.650 3.700 3.820 3.824 3.476

Volume – – – – – 1.984
A 1.306 1.294 1.200 1.152 1.038 1.245
AC 1.203 1.277 1.184 1.139 0.963 –
AJ 1.765 3.160 3.720 3.569 3.342 –
A𝐻𝐿 – – – – – 1.453

Kurtosis
RPV 28.728 24.426 25.352 26.867 26.072 22.381

Volume – – – – – 8.839
A 5.322 5.210 4.855 4.669 4.419 5.015
AC 4.942 5.210 4.889 4.696 4.115 –
AJ 7.741 13.490 18.639 18.161 16.162 –
A𝐻𝐿 – – – – – 6.497

# of significant jumps 1896 386 314 343 413 –

Correlation Matrix
RPV Volume A AC

𝑡 AJ A𝐷 A𝐻𝐿

RPV – 0.8860 0.2264 0.2377 -0.1005 0.1171 0.1991
Volume 0.8470 – -0.1498 -0.1356 -0.1272 0.0374 -0.0316

A 0.2200 -0.2788 – 0.9937 0.0575 0.2250 0.6328
AC 0.2375 -0.2582 0.9906 – -0.0544 0.2198 0.6215
AJ -0.1568 -0.1267 -0.0470 -0.1680 – 0.0472 0.1015
A𝐷 0.1109 0.0239 0.1510 0.1443 0.0328 – 0.6662
A𝐻𝐿 0.1830 -0.1340 0.5997 0.5892 0.0171 0.5917 –

Table 5: Descriptive statistics. The table reports the sample statistics for the 𝑅𝑃𝑉 , daily volume, the realized
Amihud (A), the Amihud’s jump-robust version (AC), the jump component (AJ ), the classic daily Amihud
(AD ), the high–low Amihud (A𝐻𝐿), as well as the number of significant jumps detected by the J test at the 1%
significance level. The variance is scaled by a factor of E+04, while for the volume is scaled by a factor of E-16.
In the bottom panel, the table reports the Pearson–Spearman (upper/lower triangular matrix) correlations.

and excess kurtosis compared with the reference value of the Gaussian distribution. Interestingly, the
kurtosis of 𝑅𝑃𝑉 is much larger than that of the realized Amihud. This suggests that 𝑅𝑃𝑉 and trading
volume tend to spike on the same days, so that dividing𝑅𝑃𝑉 by trading volume drastically reduces the
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observed kurtosis. Finally, volatility and volume are strongly correlated (around 85%); a somewhat
expected result. However, the correlations of A with 𝑅𝑃𝑉 and trading volume are smaller, about 22%
and -28% (Pearson), signaling that liquidity interrelates with volatility and trading volume, but still
differs from them. The realized Amihud (computed with returns sampled at the 5-minute frequency)
is positively correlated with both the daily and high–low Amihud. In particular, the correlation is
much stronger with the latter, suggesting that A𝐻𝐿 is a more precise (or less noisy) measure of the
illiquidity signal compared with A𝐷 .

Figure 4 displays the time series of the realized Amihud computed by employing returns sampled
at the 5-minute frequency (black solid line), the daily Amihud (blue dotted line), and the high–low
Amihud (yellow dashed line). Notably, the three series share very similar dynamic patterns, signaling
that they are all nonparametric measurements of the same underlying stochastic quantity, that is the
integrated illiquidity. However, the daily Amihud displays much more variability than the realized
Amihud. Interestingly, the high–low Amihud, although being based on low-frequency data available
at the daily horizon, displays a range of variability of an order close to that of the realized Amihud.

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
0

0.05

0.1

0.15

0.2

0.25

daily Amihud High-low Amihud realized Amihud

Figure 4: Illiquidity measurements. Realized Amihud (black solid line), daily Amihud (blue dotted line), and
high–low Amihud (yellow dashed line) of SPY. Sample period: January 3, 2006 – June 29, 2018. Both series are
scaled by a factor of E+09.

From a visual inspection of Figure 4 it also emerges that long periods with low illiquidity are
followed by protracted periods of high illiquidity. Within the volatility literature, this is a well-
established phenomenon known as volatility clustering. Because a similar pattern applies to the re-
alized Amihud, we refer to it as illiquidity clustering. Figure 5 reports the empirical autocorrelation
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function (ACF) of the daily and realized Amihud. The realized Amihud displays strong persistence,
as measured by the slow decay rate of the ACFs that remain very high even after 50 lags, whereas
the autocorrelation of the daily Amihud is much less persistent. Concerning the daily Amihud, this
is the typical behavior of persistent time series contaminated by additive noise, as indicated, for in-
stance, by Hurvich and Ray (2003) and Hurvich et al. (2005) in the context of stochastic volatility
estimation. Altogether, the evidence outlined in Figures 4 and 5 suggest two points: First, it justifies
the use of well-established volatility models for predicting illiquidity. Second, the strong persistence
of an illiquidity shock has important implications in asset pricing.
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(a) Daily Amihud

-0.2

0

0.2

0.4

0.6

0.8

1

S
a
m

p
le

 A
u
to

c
o
rr

e
la

ti
o
n

0 5 10 15 20 25 30 35 40 45 50

Lag

(b) Realized Amihud

Figure 5: Autocorrelation. Empirical autocorrelation function of the daily Amihud (left panel) and of the
realized Amihud (right panel).

Finally, Figure 6 reports prima-facie evidence on the relationship between negative returns and
illiquidity. In particular, Figure 6 displays the increase (in relative terms) in the realized Amihud
following a negative shock to returns for different time horizons, 𝑠 = 1, . . . , 20. Analogously, a positive
shock to returns improves liquidity (or reduces illiquidity) for many periods. The main stylized fact
emerging from Figure 6 is that past negative returns are associated with an increase in illiquidity in
the subsequent periods. Furthermore, this effect is rather persistent, remaining significant after 15
periods. In particular, a negative return generates on average an increase in the realized Amihud of
about 6% in the next day and a persistent increase of about 2% after two weeks.

5.1.2 Modeling Realized lliquidity

We consider both linear and nonlinear dynamic specifications for the realized Amihud to uncover
the distributional characteristics of illiquidity and ascertain its superiority compared to traditional
Amihud measure in capturing them. In particular, we consider a parametric model pertaining to
the class of multiplicative error models (MEM) – as introduced by Engle (2002) and Engle and Gallo
(2006). Inspired by the heterogenous autoregressive (HAR) model of Corsi (2009), we consider the
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Figure 6: Illiquidity and negative/positive return shock propagation. Figure reports the estimated propagation
of the effect of a negative (red bars) and positive (blue bars) shock on returns on the realized Amihud. Following
Catania (2020), these quantities are computed as the empirical counterpart of 𝑙+(𝑠) = 𝐸 [A𝑡+𝑠 |𝑟𝑡 > 0]−𝐸 [A𝑡+𝑠],
𝑙− (𝑠) = 𝐸 [A𝑡+𝑠 |𝑟𝑡 < 0] − 𝐸 [A𝑡+𝑠] for 𝑠 = 1, . . . , 20. The estimators 𝑙+(𝑠) and 𝑙− (𝑠) are reported relative to the
average illiquidity, i.e. 𝑙+(𝑠) = 𝑙+(𝑠)/𝐸 [A𝑡+𝑠] and 𝑙− (𝑠) = 𝑙− (𝑠)/𝐸 [A𝑡+𝑠]. The black-dashed horizontal lines
denote the 95% interval around 0.

MEM-AHAR model,17 as follows
A𝑡 = 𝜇𝑡𝜖𝑡 , (13)

where 𝜇𝑡 is the conditional mean of the process, and it follows asymmetric HAR dynamics as

𝜇𝑡 = 𝜔 + 𝛼𝑑A𝑡−1 + 𝛼𝑤Ā𝑤,𝑡−1 + 𝛼𝑚Ā𝑚,𝑡−1 + 𝛾𝐷𝑡−1A𝑡−1, (14)

where Ā𝑤,𝑡−1 = 1
5
∑5

𝑖=1 A𝑡−𝑖 , Ā𝑚,𝑡−1 = 1
22
∑22

𝑖=1 A𝑡−𝑖 , and 𝐷𝑡−1 is a dummy variable taking value of 1
if the return is negative and 0 otherwise; this accounts for an asymmetric response of illiquidity to
positive or negative returns. Although with a different interpretation, this setting is reminiscent of
the GJR-GARCH(1,1) model by Glosten et al. (1993) and it is supposed to capture the illiquidity lever-
age effect. The asymmetric mechanism would be consistent with the stronger illiquidity persistence
originated from negative returns (Figure 6), empirical evidence provided in Hameed et al. (2010), and
theoretical models of binding capital constraints of financial intermediaries (e.g. Brunnermeier and
Pedersen, 2009; Gromb and Vayanos, 2002) as well as limits-to-arbitrage models (e.g. Kyle and Xiong,
2001). The term 𝜀𝑡 denotes the innovation term, which is a non-negative random variable whose den-
sity is Gamma with a unit mean and variance equal to 1

𝜗
. A sufficient condition for positivity of the

conditional mean, 𝜇𝑡 , is that all coefficients in (14) are positive, while imposing 𝛼𝑑 +𝛼𝑤 +𝛼𝑚 +𝛾/2 < 1
ensures stationarity. Estimations are carried out using the maximum likelihood (ML), and we impose

17Appendix B reports a complete description of various alternative MEM and linear specifications, as well as their
estimates on the sample under investigation.
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stationarity and positivity conditions upon estimating the models on the data.

Panel a) Estimation results
Daily Amihud High-Low Amihud Jump-robust Amihud Realized Amihud

𝜔 0.0160𝑎 0.0052𝑎 0.0030𝑎 0.0029𝑎
(0.0022) (0.0011) (0.0007) (0.0007)

𝛼𝑑 0.0000 0.0000 0.1265𝑎 0.1358𝑎
(0.0234) (0.0227) (0.0225) (0.0225)

𝛼𝑤 0.0011 0.3146𝑎 0.3808𝑎 0.3865𝑎
(0.0494) (0.0476) (0.0401) (0.0396)

𝛼𝑚 0.6595𝑎 0.5549𝑎 0.4087𝑎 0.3983𝑎
(0.0661) (0.0466) (0.0381) (0.0373)

𝛾 0.0297 0.0546𝑎 0.0399𝑎 0.0371𝑎
(0.0235) (0.0103) (0.0071) (0.0069)

𝜗 1.4608𝑎 12.0371𝑎 24.7189𝑎 26.5139𝑎
(0.0361) (0.3188) (0.5895) (0.5591)

Panel b) Ljung-Box statistics (p–value)

LB(1) 0.0045 0.2788 0.6561 0.7265
LB(5) 0.0453 0.0213 0.1608 0.2813
LB(10) 0.0714 0.0980 0.0001 0.0000

Table 6: MEM-AHAR estimated coefficients with robust standard errors (in parenthesis). The bottom panel
reports the 𝑝-value of the Ljung-Box statistics. Superscript a, b and c denote the 1%, 5%, and 10% significance
levels, respectively. Sample period: January 3, 2006 – June 29, 2018.

Table 6 reports the estimation results of the MEM-AHAR model on the daily Amihud, high–low
Amihud, and on the realized Amihud based on 5-minute returns (including the jump-robust version).
Focusing on the last column of Panel a), the coefficients governing the dynamics of 𝜇𝑡 for the realized
Amihud are all positive and strongly significant at a 1% significance level, with a value of persistence
around 93.6%, as measured by 𝛼𝑑 + 𝛼𝑤 + 𝛼𝑚 + 𝛾/2. In the HAR framework, the coefficients 𝛼𝑑 , 𝛼𝑤
and 𝛼𝑚 summarize the trade impact at different timeframes, here induced by heterogeneity among
market participants on market illiquidity. The estimated coefficients indicate that today’s illiquidity
is predicted by that of yesterday, the previous week and month with a greater influence of the lat-
ter two. This heterogeneous persistence of illiquidity is a novel result that could have asset pricing
implications. The results do not change when adopting the jump-robust realized Amihud.

On the other hand, when noisier proxies of illiquidity are employed, such as in the daily Amihud
or the high–low Amihud, the parameter associated with daily past illiquidity, 𝛼𝑑 , is estimated on
the lower bound, while the parameter 𝛼𝑤 is significant only for the high–low Amihud. The only
significant parameter is𝛼𝑚 , indicating that a substantial smoothing is required on the daily Amihud to
disentangle the expected illiquidity signal from its noisy ex-post measurement. Analogous evidence
is found in the volatility literature when employing the realized GARCH model of Hansen et al. (2012)
instead of the classic GARCH model on squared returns. In other words, the model assigns a small

22



weight to the innovation term when the latter contains a substantial degree of measurement error.
Furthermore, the implied persistence obtained by the estimates of the MEM-AHAR coefficients on
the daily and high-low Amihud is 67.5% and 89.7%, respectively. These values are much lower than
those obtained on the realized Amihud, which is in line with the evidence of the ACFs reported in
Figure 5. Finally, the estimate of 𝜗 (which is reciprocal of the variance of 𝜀) for the daily Amihud is
found to be around 16 times smaller than that of the realized Amihud. This implies that the variability
of the innovation term is 16 times larger when employing the daily Amihud rather than the realized
Amihud. This proportion is drastically reduced (approximately to half) when employing the high–low
Amihud.

Overall, the results presented in Table 6 remain valid, even when alternative model specifica-
tions are employed; for more, see Tables 9 and 10 in Appendix B. In particular, the distribution of
the innovation term seems to be well described by a Gamma distribution, while more sophisticated
distributional choices do not provide a remarkable improve in the fit.18 This is due to the fact that the
realized Amihud does not display extreme distributional features because the ratio between volatility
and volume drastically reduces the observed kurtosis (see Table 5). Finally, Panel b) of Table 6 reports
the 𝑝-value for the Ljung-Box statistics. All model specifications correctly capture the persistent fea-
tures of the series at hand because of the HAR-type specification for 𝜇𝑡 ; for instance, see Caporin
et al. (2016, 2017).

5.1.3 Illiquidity and Stock Market Excess Returns

The economic rationale for analyzing the relationship between returns and illiquidity is twofold. First,
higher expected market illiquidity leads to higher ex ante asset (excess) return. Second, as illustrate in
Figure 5 and captured by the clustering illiquidity effect, illiquidity shocks are very persistent. There-
fore, an illiquidity shock that happens now will raise expected illiquidity for the future, which in turn
causes ex ante asset returns to rise and asset prices to fall.19 Taken together, these mechanisms point
to two hypotheses to be tested: a positive coefficient relating expected illiquidity and asset return; a
negative one relating unexpected illiquidity and contemporaneous asset return. Following Amihud
(2002), we carry out an analysis on the impact of illiquidity on stock market excess returns but here
enhanced by more accurate estimates of realized illiquidity. The realized Amihud can be disentangled
into two components: the expected illiquidity, as measured by the estimated conditional mean of the
MEM-AHAR model, 𝜇𝑡 , and the unexpected illiquidity, as measured by the residual component 𝜀𝑡 .

Table 7 reports the results of a simple regression analysis of the stock market excess returns (as
measured by the difference between the returns of SPY and the risk free rate the U.S. 3-month treasury
bills in our case) on illiquidity, that is

𝑟𝑒𝑡 = 𝛽0 + 𝛽1A𝑡 + 𝑢𝑡 ,

18Figure 9 in the Appendix reports the probability-integral transform based on various MEM model specifications
(including the mixture MEM of Caporin et al., 2017 presented in Appendix B.1). Even the simple MEM specifications with
Gamma distributed innovations display a remarkable fit of the empirical distribution.

19Concerning stocks, this assumes that corporate cash flows are unaffected by market illiquidity.
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or on its components
𝑟𝑒𝑡 = 𝛽0 + 𝛽1𝜇𝑡 + 𝛽2𝜖𝑡 + 𝑢𝑡 .

Panel a) Total Illiquidity
Daily Amihud High–Low Amihud Realized Amihud

daily weekly monthly daily weekly monthly daily weekly monthly

Constant 0.0363 0.0644 0.1515𝑎 0.0853 0.1016𝑐 0.1411𝑏 0.1747𝑎 0.1055𝑏 0.1337𝑎
(0.0359) (0.0436) (0.0492) (0.0605) (0.0530) (0.0579) (0.0489) (0.0511) (0.0510)

Illiquidity -0.6747 -1.2443 −3.0133𝑎 -1.6627 −1.9886𝑐 −2.7879𝑏 −3.6736𝑎 −2.1905𝑐 −2.7951𝑏
(0.9147) (1.0050) (1.1137) (1.3896) (1.1566) (1.2980) (1.0687) (1.1414) (1.2282)

Diagnostic
𝑅2 0.0007 0.0044 0.0533 0.0011 0.0056 0.0341 0.0034 0.0056 0.0314
𝑅2 adj. 0.0004 0.0028 0.0464 0.0008 0.0040 0.0271 0.0031 0.0040 0.0243
F-test (p-value) 0.2628 0.1865 0.0106 0.1195 0.1169 0.0521 0.0020 0.1165 0.0657

Panel b) Illiquidity decomposition
Daily Amihud High–Low Amihud Realized Amihud

Constant -0.0334 0.061 -0.0184 -0.0373 0.0471 0.0285 -0.0731 -0.0529 −0.1612𝑐
(0.0877) (0.0653) (0.0720) (0.0726) (0.0550) (0.0577) (0.0710) (0.0598) (0.0917)

Expected Illiquidity 0.7428 -1.1749 0.4537 0.8171 -0.8852 -0.4951 1.66 1.241 3.6338𝑐
(1.8686) (1.3687) (1.5292) (1.5508) (1.1404) (1.2079) (1.6072) (1.2600) (1.8563)

Unexpected Illiquidity -0.786 -1.274 −7.9535𝑎 −3.1602𝑐 −4.6013𝑐 −17.0426𝑎 −10.2752𝑎 −14.0262𝑎 −37.7907𝑎
(0.9224) (1.1798) (2.5456) (1.7577) (2.5736) (6.0024) (1.8958) (5.0226) (13.5283)

Diagnostic
𝑅2 0.0010 0.0044 0.0821 0.0025 0.0084 0.0748 0.0107 0.0254 0.1619
𝑅2 adj. 0.0003 0.0012 0.0687 0.0019 0.0052 0.0613 0.0101 0.0223 0.1496
F-test (p-value) 0.6132 0.6884 0.0076 0.0536 0.2004 0.0132 0.0000 0.0010 0.0000

Table 7: Analysis regressing stock market excess returns on illiquidity measures (the top of the table) and on
illiquidity decomposed into exepcted and unexpected components (the bottom of the table). The coefficients
and Newey and West (1987) robust standard errors (in parenthesis) are multiplied by 100. Superscript a, b and
c denote the 1%, 5%, and 10% levels of significance, respectively.

In Panel a), when employing the realized Amihud as the explanatory variable, the estimate of 𝛽1

suggests that illiquidity is in a significantly negative relationship with the excess return. This holds
true when aggregating at weekly and monthly (nonoverlapping) horizons. Notably, the 𝑅2 turns out
to be particularly large at the monthly horizon, being above 16%. Contrary to this, the relationship
is less pronounced when employing the classic daily Amihud as the regressor. In particular, 𝛽1 is not
significant at the daily and weekly frequencies, but it is significant when the aggregation at monthly
level is considered (in this case, the 𝑅2 is around 5%). Again, this signals the fact that a less accu-
rate measurement of illiquidity obtained via the daily Amihud masks the fundamental relationship
between returns and illiquidity.

The results most closely related to testing the hypotheses discussed above are shown in Panel
b) of Table 7. The estimated coefficients support the two hypotheses. Although not statistically
significant, expected illiquidity is positively related to asset return. On the contrary, unexpected
illiquidity is negatively and significantly associated with asset return. More specifically, the expected
illiquidity weighs positively on returns but it is never significant at the daily and weekly frequencies
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(irrespective of the measure adopted), while the unexpected illiquidity (as measured by the residuals of
the MEM-AHAR model) is significantly and negatively related with the excess returns when both the
realized illiquidity measures (i.e. the realized and high–low Amihud metrics) are employed. Instead,
the unexpected liquidity for the classic daily Amihud is only significant at the monthly horizon. This
result squares well with the idea that the residual term of the MEM-AHAR model estimated on the
daily Amihud is made of two components: the prediction error and the measurement error, where
the latter seems to dominate at the daily and weekly frequencies.

5.2 Currency Market Illiquidity

Another way to assess the general validity of the realized illiquidity and its higher accuracy in mea-
suring high-frequency market liquidity is by considering another financial instrument and using a
meaningful episode, which is a sort of natural experiment. Through the lenses of the theory developed
in Section 2, the announcement of the cap removal of the Swiss franc by the Swiss National Bank
(SNB) on January 15, 2015, represents an ideal framework for conducting further testing. Starting
from September 6, 2011, the SNB set a minimum exchange rate of 1.20 francs to the euro (capping the
franc’s appreciation), stating that ”the value of the franc is a threat to the economy” and that it was
”prepared to buy foreign currency in unlimited quantities.” This means that the SNB had a declared
binding cap on the transaction price that was removed on January 15, 2015.

In terms of the trading model presented in Section 2, the SNB can be considered the special (𝐽 +1)-
th trader. The SNB intervention strategy of selling CHF for EUR in potentially unlimited quantities
would be implemented if the average of the reservation prices of the remaining 𝐽 traders ever fell
below the cap, that is if 1

𝐽

∑𝐽

𝑗=1 𝑝
∗
𝑖, 𝑗 < log(1.2).20 Indeed, despite the cap on the transaction price, the

reservation prices of individual traders might well be below the 1.20 threshold. For instance, a trader
with a reservation price of 1.12 (as the agents with the actual lowest forecast in Thomson Reuters
survey before the SNB cap removal) is inclined to sell EUR for CHF. In other words, the SNB buys
(sells) foreign (domestic) currency to guarantee that the transaction price is above the threshold, that
is

𝑝
𝐸𝑈𝑅 |𝐶𝐻𝐹

𝑖
=

1
𝐽 + 1

𝐽+1∑︁
𝑗=1

𝑝
𝐸𝑈𝑅 |𝐶𝐻𝐹,∗
𝑖, 𝑗

≥ log(1.2), (15)

where 𝑝𝐸𝑈𝑅 |𝐶𝐻𝐹,∗
𝑖,𝐽+1 =

(
log(1.2) − 1

𝐽

∑𝐽

𝑗=1 𝑝
𝐸𝑈𝑅 |𝐶𝐻𝐹,∗
𝑖, 𝑗

)
× I

(∑𝐽

𝑗=1 𝑝
𝐸𝑈𝑅 |𝐶𝐻𝐹,∗
𝑖, 𝑗

< log(1.2)
)
, and I(·) is the in-

dicator function. The enforcement of the capping regime by the SNB generates extra trading volume.
In particular, the trading volume is as follows

𝜈
𝐸𝑈𝑅 |𝐶𝐻𝐹

𝑖
=
ℓ𝑖

2

𝐽∑︁
𝑗=1

|Δ𝑝𝐸𝑈𝑅 |𝐶𝐻𝐹,∗
𝑖, 𝑗

− 1
𝐽

𝐽∑︁
𝑗=1

Δ𝑝𝐸𝑈𝑅 |𝐶𝐻𝐹,∗
𝑖, 𝑗

| + 𝑣𝑆𝑁𝐵
𝑖 , (16)

where 𝑣𝑆𝑁𝐵
𝑖 is the trading volume generated by the central bank to maintain the cap on the FX rate.

Hence, the model prescribes a low volatility of the observed returns because of the implicit constraint
20See Breedon et al. (2022) for a discussion of how the SNB surprised the market and how it actually implemented the

intervention strategy by setting a huge ask volume at 1.20. Furthermore, the Thomson Reuters survey indicates a wide
dispersion of the beliefs of professional market participants around 1.20 for most of the capping period.
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given by the capping and a larger volume because of the SNB interventions. This implies that the
realized illiquidity is lower (higher) before (after) the removal of the FX capping regime.

To empirically explore these model implications, we analyze at the daily time series of realized
Amihud of the EUR/CHF and the USD/CHF FX spot rates covering the period November 1, 2011,
to September 30, 2021. The time series are constructed from two distinct data sets. First, the CLS
Group — the largest payment system for the settlement of foreign exchange transactions — provides
us hourly data on the traded volume representative for the FX global activity on both the EUR/CHF
and USD/CHF rates.21 Second, 1-minute EUR/CHF and USD/CHF spot rates (bid, ask, high, low, and
mid-quotes) are obtained from Olsen Financial Technologies. Given that trading on FX rates is active
24 hours a day but concentrated during the so-called London hours (Ranaldo and Somogyi, 2021),
we consider the intra-daily returns and volume solely between 8 a.m. and 8 p.m. (GMT time), thus
limiting the influence of possible noisy observations associated with overnight hours in which there
is minimal trading activity. Our final data set consists of 1, 943, 760 intra-daily 1-minute returns and
32, 396 hourly trading volume for a total of 2, 492 trading days. Once again, we consider the returns
sampled at both 5-minute frequencies to compute 𝑅𝑃𝑉 and 𝑅𝑃𝑉𝐶 , while the daily volume is computed
simply by aggregating the hourly volume.
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Figure 7: Daily Amihud (blue dotted lines, see Amihud (2002)) vs. the realized Amihud (black solid lines) of
EUR/USD (Panel a) and USD/CHF (Panel b) exchange rates. Sample period: November 1, 2011 – September 30,
2021. Both series are scaled by a factor of E+11.

Figure 7 displays the time series of the realized Amihud (black solid lines) and daily Amihud (blue
dashed lines) of the EUR/USD (Panel a) and USD/CHF (Panel b) rates. As for SPY, the illiquidity
clustering phenomenon is evident. High illiquidity characterizes the years after the onset of the
sovereign debt crisis (in the period between 2010 and 2012). This period of stress greatly characterized
the Swiss franc being considered a safe haven currency and giving it strong appreciation pressures
(Jordan, 2020). On January 15, 2015, after the announcement by the SNB, we observe the highest peak

21See Ranaldo and Somogyi (2021) and Cespa et al. (2021) for a discussion and empirical evidence on the global repre-
sentativeness of CLS data.
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of illiquidity, which remains very high for several months after this event. For both rates, Figure 7
reconfirms that the classic daily Amihud is much noisier than the corresponding realized version.
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Figure 8: Break dates. The figures report the time series of RPV, volume, daily Amihud, and realized Amihud
for the EUR/CHF rate (black solid line). The red vertical line denotes the break date, which is estimated by
means of the Bai and Perron (1998) test for unknown break points. The test is performed with 15% trimming
at the beginning and the end of the sample period and between break dates.

Figure 8 reports the result of Bai and Perron (1998)’s testing procedure to identify the date of a
level break (if any) in a time series of RPV, volume, daily Amihud, and realized Amihud of EUR/CHF.
The test considers the possible presence of one or more structural changes occurring at unknown
dates: in particular, Bai and Perron (1998) propose a procedure designed to estimate the break dates,
while testing for the presence of structural changes at the same time. We apply the Bai and Perron
(1998) test with 15% trimming at the beginning and the end of the sample period and between the
break dates (see also Casini and Perron, 2019, for a review and up-to-date recommendations about
the procedure).22 The series are characterized by strong persistence, and the procedure of Bai and
Perron (1998) is robust to autocorrelation and heteroskedasticity. In all cases, the test identifies a

22We are grateful to Alessandro Casini for having shared with us the MATLAB codes for the break test.
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significant break date on January 14, 2015, thus suggesting that the level of the series changes before
and after this break date. The results for USD/CHF are reported in the Appendix and are analogous
to those reported for EUR/CHF. In addition to significantly impacting a single currency pair, this
result suggests that important events such as currency regime changes can affect commonality in the
liquidity of financial securities.

Estimation Results
EUR/CHF USD/CHF

Realized Amihud RPV Volume Daily Amihud Realized Amihud RPV Volume Daily Amihud

𝑀𝑒𝑎𝑛1 0.0109𝑎 0.0016𝑎 1.0159𝑎 0.0129𝑎 0.0279𝑎 0.0039𝑎 1.4617𝑎 0.0300𝑎
(0.0015) (0.0002) (0.0390) (0.0008) (0.0013) (0.0002) (0.0384) (0.0010)

𝑀𝑒𝑎𝑛2 0.0248𝑎 0.0027𝑎 0.6205𝑎 0.0422𝑎 0.0345𝑎 0.0038𝑎 1.1315𝑎 0.0352𝑎
(0.0008) (0.0001) (0.0120) (0.0010) (0.0008) (0.0001) (0.0153) (0.0007)

Diagnostic

𝑅2 0.3127 0.1009 0.2168 0.1638 0.0714 0.0004 0.1112 0.0076
D-W statistics 0.6384 0.6558 1.0136 1.7513 0.7912 0.9394 1.2655 1.8778

Table 8: Level estimation (robust standard errors in parenthesis) before and after the date January 14, 2015, for
the EUR/CHF and USD/CHF FX rates. Superscripts a, b, and c denote the 1%, 5%, and 10% levels of significance,
respectively. To account for heteroskedasticity and autocorrelation, the standard errors are computed based
on the HAC estimator by following the automatic method in Andrews (1991) for the selection of the number
of lagged autocovariances. Sample period: November 1, 2011 – September 30, 2021.

Table 8 reports the estimates of the mean of the series under investigation before and after the
break date, which has been found on January 14, 2015. The results reported in the table strongly
support the prescriptions of the theory. More specifically, the level of volatility (volume) significantly
increases (decreases), thus leading to an increase of illiquidity (as measured by both daily and realized
Amihud) on EUR/CHF. In a similar way, this shock also affects the other currency pair USD/CHF,
which was not directly exposed to the capping on the EUR/CHF rate.

6 Conclusion

Liquidity is crucial to the well-functioning of financial markets and depends on how trading volume
impacts asset prices. Building on the simple trading mechanism introduced by Tauchen and Pitts
(1983), we develop the theory of realized volatility in the context of measuring market liquidity. Sim-
ilar to the spot volatility, the instantaneous liquidity, ℓ (𝑡), is assumed to vary over time based on a
dynamic process in continuous time; that is, liquidity is stochastic. We propose two realized illiquid-
ity measures that we call realized Amihud and high-low Amihud. The former is defined as the ratio
between the realized power variation computed using intraday data and trading volume while the
latter is the ratio between the high-low range based on daily data and volume. We demonstrate theo-
retically and numerically that the realized Amihud is a very accurate measure and that both realized
illiquidity metrics refine the widely used measure of volume price impact proposed in Amihud (2002).
Furthermore, by employing the theory of multipower variation in Barndorff-Nielsen and Shephard
(2003, 2004, 2006) we develop a simple theory for jumps that capture the information component of
market illiquidity.
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Five main results stand out from our econometric analysis based on more than a decade of repre-
sentative data for the stock and currency markets. First, the realized Amihud provides a very precise
measurement of the inverse of integrated liquidity, namely the integral L =

∫ 1
0 ℓ (𝑠)𝑑𝑠 , over periods

of fixed length (e.g., a day, a week, or a month). If intraday data are not accessible, then the high-low
Amihud ensures a more precise illiquidity measurement than the classic daily Amihud proxy. Second,
the proposed test statistic is effective in detecting significant information jumps – that is – illiquid-
ity reaction to impactful news common to all traders. Based on this, we also propose a jump-robust
version of the realized illiquidity estimator. Third, using heterogeneous autoregressive specifications
(HAR) and multiplicative error models (MEM) we show that illiquidity is highly and heterogeneously
persistence in the sense that an illiquidity shock triggers prolonged effects and today’s illiquidity is
predicted by that of yesterday, of one week and one month ago. Fourth, illiquidity undergoes leverage
effects in the sense that it increases more in market downturns and illiquidity shocks materialize and
are more persistent when associated with negative returns. Finally, we find that it is rather the unex-
pected part of illiquidity that negatively predicts returns consistent with the idea that the persistent
effect of an illiquidity shock increases expected future illiquidity thus decreasing asset prices.

Prior research used the traditional Amihud measure in asset pricing (among the most recent pa-
pers, see, e.g., Lou and Shu, 2017 and Amihud and Noh, 2021). In this paper, we have proposed more
accurate measures of realized illiquidity and we have highlighted their characteristics such as (illiq-
uidity) jumps, heterogeneous clustering, and leverage effects. We have demonstrated that all this
helps explain the temporal variation in asset returns. Future research should highlight whether and
how these features predict the cross-section of asset prices and can apply what we have proposed on
many other aspects of financial economics.

References

Abdi, F. and Ranaldo, A. (2017). A simple estimation of bid-ask spreads from daily close, high, and
low prices. The Review of Financial Studies, 30(12):4437–4480.

Aı̈t-Sahalia, Y. and Jacod, J. (2014). High-frequency financial econometrics. In High-Frequency Finan-
cial Econometrics. Princeton University Press.

Amihud, Y. (2002). Illiquidity and stock returns: Cross-section and time-series effects. Journal of
Financial Markets, 5:31–56.

Amihud, Y. and Mendelson, H. (1986). Asset pricing and the bid-ask spread. Journal of Financial
Economics, 17:223–249.

Amihud, Y. and Noh, J. (2021). Illiquidity and stock returns II: Cross-section and time-series effects.
The Review of Financial Studies, 34(4):2101–2123.

Andersen, T. G. (1996). Return volatility and trading volume: An information flow interpretation of
stochastic volatility. The Journal of Finance, 51(1):169–204.

29



Andersen, T. G. and Bollerslev, T. (1998). Answering the skeptics: Yes, standard volatility models do
provide accurate forecasts. International Economic Review, 39(4):885–905.

Andersen, T. G., Bollerslev, T., Diebold, F. X., and Vega, C. (2007). Real-time price discovery in global
stock, bond and foreign exchange markets. Journal of International Economics, 73(2):251–277.

Andrews, D. W. (1991). Heteroskedasticity and autocorrelation consistent covariance matrix estima-
tion. Econometrica: Journal of the Econometric Society, 59:817–858.

Bai, J. and Perron, P. (1998). Estimating and testing linear models with multiple structural changes.
Econometrica: Journal of the Econometric Society, 66:47–78.
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A Proofs

A.1 Proof of Proposition 1

The proof of Proposition 1 proceeds as follows. By the properties of the super-position of independent
processes, the limit for 𝛿 → 0 (or 𝐼 → ∞) of 𝑅𝑃𝑉 is as follows:

𝑝 lim
𝐼→∞

𝛿1/2𝑅𝑃𝑉 =

√︂
2
𝜋
S, (17)

where S =
∫ 1

0 𝜎 (𝑠)𝑑𝑠 is the integrated average standard deviation and where the latter is defined as

𝜎 (𝑡) = 1
𝐽

√︃∑𝐽

𝑗=1 𝜎
2
𝑗
(𝑡). Indeed, similar to Barndorff-Nielsen and Shephard (2002b), Δ𝑝𝑖 = 1

𝐽

∑𝐽

𝑗=1 Δ𝑝
∗
𝑖, 𝑗

is equivalent in law to
∫ 𝛿𝑖

𝛿 (𝑖−1) 𝜎 (𝑡)𝑑𝑊
∗(𝑡), where 𝜎 (𝑡) = 1

𝐽

√︃∑𝐽

𝑗=1 𝜎
2
𝑗
(𝑡). The aggregated volume on a

unit (daily) interval is 𝜈 =
∑𝐼

𝑖=1 𝜈𝑖 , and letting 𝐼 → ∞, we get

𝑝 lim
𝐼→∞

𝛿1/2𝜈 =
L
2

√︂
2
𝜋
S, (18)

with S = 1
𝐽

∑𝐽

𝑗=1
∫ 1

0 𝜍 𝑗 (𝑠)𝑑𝑠 , where 𝜍 𝑗 (𝑡) =

√︃
(𝐽 − 1)2𝜎2

𝑗
(𝑡) +∑

𝑠≠ 𝑗 𝜎
2
𝑠 (𝑡) and L =

∫ 1
0 ℓ (𝑠)𝑑𝑠 denotes

the integrated liquidity. Hence, we get

𝑝 lim
𝐼→∞

A =
2S
LS

, (19)

which reflects the ratio of the total average standard deviation carried by each trader. If 𝐽 = 2, then
S = 2S, so that equation (6) in Proposition 1 follows directly, that is, 𝑝 lim𝐼→∞ A = 1

L .
Furthermore, by straightforward application of Barndorff-Nielsen and Shephard (2003, p.260), we

get
log

(√︁
𝜋𝛿/2 · 𝑣

)
− log (SL)√︃

𝛿 (𝜋/2−1)𝑅𝑉
(𝜋𝛿/2)𝑅𝑃𝑉 2

𝑑→ 𝑁 (0, 1), (20)

where 𝑅𝑉 is the realized variance and is defined as 𝑅𝑉 =
∑𝐼

𝑖=1 (𝑟𝑖)2; for more, see, among others,
Andersen and Bollerslev (1998). Following Barndorff-Nielsen and Shephard (2002a,b) and taking the
limit for 𝛿 → 0 (i.e., 𝐼 → ∞), we get 𝑝 lim𝐼→∞ 𝑅𝑉 = 1

𝐽 2V , where V =
∑𝐽

𝑗=1 V𝑗 is the variation of the
asset price on the unit interval generated by the aggregated individual components of 𝑟 . The term
V𝑗 =

∫ 1
0 𝜎 𝑗 (𝑠)2𝑑𝑠 is the integrated variance associated with the 𝑗-th trader’s specific component. By

noticing that log(A) = log
(√︁

𝜋𝛿/2 · 𝑅𝑃𝑉
)
− log

(√︁
𝜋𝛿/2 · 𝑣

)
, the result in (7) follows. ■

A.2 Traders homogeneity

Analogous results are obtained if 𝐽 ≥ 2 assuming homogeneity of traders, that is, 𝜎 𝑗 = 𝜎 ∀𝑗 =

1, 2, . . . , 𝐽 . In particular, the following proposition highlights the main determinants of the realized
Amihud as an illiquidity measure under homogeneity of traders when 𝐽 ≥ 2.
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Proposition 2. Consider the illiquidity measure defined in (5), the equilibrium relation in (1), and the
diffusive process for reservation prices in (3). Assume that 𝜎 𝑗 and ℓ (𝑡) are strictly positive càdlàg processes
with (almost surely) square integrable sample paths with 𝜎 𝑗 (𝑡) = 𝜎 (𝑡) ∀𝑗 = 1, . . . , 𝐽 . As 𝐼 → ∞ (i.e.,
𝛿 → 0)

𝑝 lim
𝐼→∞

A =
2

𝐽
√
𝐽 − 1L

, (21)

Furthermore, as 𝐼 → ∞
log(A) − log

(
2

L 𝐽
√

(𝐽−1)

)
√︃

𝐽𝛿 (𝜋/2−1)𝑅𝑉
(𝐽−1) (𝜋𝛿/2)𝑅𝑃𝑉 2

𝑑→ 𝑁 (0, 1), (22)

where 𝑅𝑉 =
∑𝐼

𝑖=1 (𝑟𝑖)2 is the realized variance.

The proof of Proposition 2 follows the same steps as the proof of Proposition 1 in Section A.1. In
this case, S = 𝐽

√
𝐽 − 1S, so that

𝑝 lim
𝐼→∞

A =
2

𝐽
√
𝐽 − 1L

. (23)

In this case, it follows that in the limit for 𝐼 → ∞, the realized Amihud is inversely proportional to the
integrated illiquidity and to the number of active traders in the market. By relaxing the assumption
of homogeneity, A would converge in probability to the integrated illiquidity times the ratio of two
measures of integrated volatility, namely 2S

S
, that is, a weighted average of the price variability carried

by each trader. Furthermore,

log
(√︁

𝜋𝛿/2 · 𝑣
)
− log

(
S 𝐽

√
𝐽 − 1L

)√︃
𝛿 (𝜋/2−1)𝑅𝑉

((𝐽−1)𝜋𝛿/2)𝑅𝑃𝑉 2

𝑑→ 𝑁 (0, 1), (24)

so that
log(A) − log

(
2

L 𝐽
√

(𝐽−1)

)
√︃

𝐽𝛿 (𝜋/2−1)𝑅𝑉
(𝐽−1) (𝜋𝛿/2)𝑅𝑃𝑉 2

𝑑→ 𝑁 (0, 1). (25)

■
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B Modeling Realized Amihud

In this section, we propose an econometric specification to characterize the dynamic evolution and
distributional features of the realized Amihud. First, we consider parametric models belonging to the
class of multiplicative error models (MEM), as introduced by Engle (2002) and Engle and Gallo (2006).

B.1 A mixture MEMmodel

Following the same approach adopted by Caporin et al. (2017), it is possible to construct a MEM
model featuring a component responsible for generating large and unexpected moves in illiquidity.
In particular, following Caporin et al. (2017), we model A according to an AMEM with a mixture
specification, namely AMEM-Mix. In the AMEM-Mix, A𝑡 is given by the product of three elements:

A𝑡 = 𝜇𝑡𝑍𝑡𝜖𝑡 , (26)

where 𝜇𝑡 is the conditional mean, and it follows asymmetric MEM (AMEM) dynamics:

𝜇𝑡 = 𝜔 + 𝛼A𝑡−1 + 𝛽𝜇𝑡−1 + 𝛾𝐷𝑡−1A𝑡−1, (27)

where 𝐷𝑡−1 is a dummy variable taking a value of 1 if the return is negative and 0 otherwise; it
accounts for an asymmetric response of illiquidity to good or bad news. The term 𝜖𝑡 denotes the
innovation term, whose density (conditional on the information set F𝑡−1) is

𝑓 (𝜖𝑡 |F𝑡−1) =
1

Γ(𝜗)𝜗
𝜗𝜖𝜗−1

𝑡 𝑒−𝜗𝜖𝑡 , 𝜖𝑡 > 0, 𝜗 > 0. (28)

This means that 𝜖𝑡 |F𝑡−1 is a gamma-distributed random variable with unit mean and variance equal
to 1

𝜗
. Finally, the mixing term, 𝑍𝑡 , is assumed to be independent of 𝜖𝑡 and distributed as a compound

Poisson random variable

𝑍𝑡 =


𝑑𝜅 𝑁𝑡 = 0,∑𝑁𝑡

𝑗=1𝑌𝑗,𝑡 𝑁𝑡 > 0,
(29)

where the expected number of arrivals at time 𝑡 (𝑁𝑡 ) is governed by a Poisson random variable
with a time-varying intensity, 𝜅𝑡 , and 𝑑𝜅 is a positive function of 𝜅𝑡 such that 𝐸 [𝑍𝑡𝜖𝑡 |F𝑡−1] = 1 and
𝐸 (A|F𝑡−1) = 𝜇𝑡 . Furthermore, 𝑌𝑗,𝑡 |F𝑡−1 ∼ Γ(𝑑𝜅, 𝜁 ). By the Poisson distribution, the probability of
observing a 𝑗 ≥ 0, conditioning F𝑡−1, is

𝑃𝑟 (𝑁𝑡 = 𝑗 |F𝑡−1) =
𝑒−𝜅𝑡𝜅 𝑗

𝑡

𝑗 ! , 𝑗 = 0, 1, 2, . . . . (30)

Similar to Chan and Maheu (2002), we specify the dynamics of 𝜅𝑡 as

𝜅𝑡 = 𝜙1 + 𝜙2(𝜅𝑡−1 − 𝜙1) + 𝜙3𝜉𝑡−1, (31)
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where the innovations, 𝜉𝑡 , are defined as the error in predicting 𝑁𝑡 as new information becomes
available in F𝑡 . In other words, 𝜉𝑡 = 𝐸 (𝑁𝑡 |F𝑡 ) − 𝐸 (𝑁𝑡 |F𝑡−1), and in terms of model parameters

𝜉𝑡 =

∞∑︁
𝑗=0

𝑗𝑃𝑟 (𝑁𝑡 = 𝑗 |F𝑡 ) − 𝜅𝑡 . (32)

The conditions 𝜙1 > 0 and 1 > 𝜙2 > 𝜙3 > 0 are sufficient to ensure positiveness and stationarity of
𝜅𝑡 , see Chan and Maheu (2002). A similar dynamics for the intensity has been adopted by Maheu and
McCurdy (2004) and Maheu et al. (2013) for stock returns and by Caporin et al. (2016) for the realized
variance. Finally, the filtered probability needed to compute 𝐸 (𝑁𝑡 |F𝑡 ) is obtained via Bayes’ rule, as
follows:

𝑃𝑟 (𝑁𝑡 = 𝑗 |F𝑡 ) =
𝑓 (A𝑡 |𝑁𝑡 = 𝑗, F𝑡−1)𝑃𝑟 (𝑁𝑡 = 𝑗 |F𝑡−1)

𝑓 (A𝑡 |F𝑡−1)
, (33)

where the density of A𝑡 conditional on 𝑁𝑡 = 𝑗 and F𝑡−1 is

𝑓 (A𝑡 |𝑁𝑡 = 𝑗, F𝑡−1) =


1
A𝑡

(
𝜗A𝑡

𝑑𝜅𝜇𝑡

)𝜗
𝑒

(
−𝜗A𝑡
𝑑𝜅𝜇𝑡

)
Γ(𝜗) , 𝑁𝑡 = 0

2
A𝑡

(
A𝑡

𝜇𝑡

𝜗𝜁

𝑑𝜅

) (
𝑗𝜁+𝜗

2

)
1

Γ( 𝑗𝜁 )Γ(𝜗)K 𝑗𝜁−𝜗

(
2
√︃

A𝑡

𝜇𝑡

𝜗𝜁

𝑑𝜅

)
, 𝑁𝑡 = 𝑗 > 0,

(34)
where K(·) is the modified Bessel function of a second kind, while the denominator in (33) is given
by the following:

𝑓 (A𝑡 |F𝑡−1) = 𝑒−𝜅𝑡𝑔A𝑡
+

∞∑︁
𝑗=1

𝑒−𝜅𝑡𝜅 𝑗
𝑡

𝑗 ! 𝑤A𝑡
, (35)

where 𝑔A𝑡
and 𝑤A𝑡

are 𝑓 (A𝑡 |𝑁𝑡 = 𝑗, F𝑡−1, 𝛼, 𝛽,𝛾) for 𝑗 = 0 and 𝑗 > 0, respectively. Therefore, the
conditional density of A𝑡 is a mixture of gamma and kappa distributions, whose weights are governed
by the Poisson probabilities and by 𝜅𝑡 . The density is available in closed form, thus allowing us to
estimate the model parameters by maximum likelihood. In the following analysis, we distinguish
between the AMEM-Mix model with time-varying Poisson intensity (i.e., AMEM-Mix𝜅𝑡 ) and with
constant intensity (i.e., AMEM-Mix𝜅 ), that is, 𝜅𝑡 = 𝜙1.

B.2 Estimation results

Table 9 reports the parameter estimates (and goodness of fit tests) for several AMEM and AMEM-
Mix specifications estimated on daily and realized Amihud series of SPY, where the realized Amihud
series is computed using returns sampled at 5- and 10-minute frequencies. Panel a) of Table 6 shows
the coefficients from the specifications under consideration, which are all estimated using maximum
likelihood. As suggested by Engle and Gallo (2006), we allow 𝜇𝑡 to follow asymmetric GARCH-
type or asymmetric HAR-type process with asymmetric response to negative returns. Panel b) of
Table 6 displays the results of a number of diagnostics tests on the residuals and Poisson intensity
innovations, that is, the 𝑝-values of the Ljung-Box test (at 1, 5, and 10, lags). Table 10 reports the
parameter estimates of the linear and log-linear models. Looking at the estimates of the AMEM
models in Table 9, we notice that the parameter 𝛼 in the volatility literature is generally found in the
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range between 0.02 and 0.1 (Bauwens et al., 2012, ch. 1), while we find values in the range between
0.175 and 0.217 for the realized Amihud, signaling that illiquidity is more responsive to news than
volatility. Instead, when the AMEM model is estimated on the daily Amihud, the estimates of 𝛼 are
significantly reduced because the daily Amihud is a more noisy proxy of the signal compared with
the realized Amihud, so the model assigns a smaller weight to the parameter governing the news.
Analogous evidence is found in the volatility literature when employing the realized GARCH model
of Hansen et al. (2012) rather than a classic GARCH model on squared returns.

As for the parameter 𝛾 , it enters the model with the expected positive sign and is significant
across all models, pointing at a more pronounced reaction of illiquidity against negative returns rather
than against positive returns. Altogether, by adopting the general view that uncertainty arises when
new information reaches the market, we can state that illiquidity is strongly related to uncertainty
among investors (as measured by volatility) and that this is responsible for the illiquidity persistence.
Conversely, the estimates of the parameter 𝛽 is around 0.78 across models. This is in the lower bound
of the interval of estimates of 𝛽 typically found for volatility (according to Bauwens et al., 2012, ch. 1,
it is usually close to the upper limit of the interval 0.75–0.98). Finally, it is important to emphasize the
behavior of the coefficient 𝜗 in the various AMEM and AMEM-Mix specifications, whose reciprocal
is an estimate of the residuals variance. Notably, 𝜗 increases when moving from the simplest AMEM
specifications to the sophisticated AMEM-Mix. Indeed, in the models with the mixtures, a significant
part of the variability of the illiquidity is explained by mixture component𝑍𝑡 . This finding testifies the
need for a model that can assign the correct probability to large realizations of the illiquidity measure.
As expected, the value of the log-likelihood function is larger for the AMEM-Mix specifications when
compared with then simpler AMEM.

As for the Poisson intensity, the process 𝜅𝑡 is very persistent (𝜙2 is around 0.998), signaling that
the number of arrivals strongly depend on its past realizations.
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B.3 Linear specifications

We also consider linear specifications based on the HAR model of Corsi (2009). In particular, the
linear asymmetric HAR (linear AHAR) model is given by

A𝑡 = 𝜔 + 𝛼𝑑A𝑡−1 + 𝛼𝑤Ā𝑤,𝑡−1 + 𝛼𝑚Ā𝑚,𝑡−1 + 𝛾𝐷𝑡−1A𝑡−1 + 𝜀𝑡 , (36)

and the log-linear AHAR (log-linear AHAR) specification given by

logA𝑡 = 𝜔 + 𝛼𝑑 logA𝑡−1 + 𝛼𝑤 log Ā𝑤,𝑡−1 + 𝛼𝑚 log Ā𝑚,𝑡−1 + 𝛾𝐷𝑡−1 logA𝑡−1 + 𝜀𝑡 , (37)

Panel a) Estimation results
Daily Amihud High–Low Amihud Realized Amihud

Loglinear AHAR Linear AHAR Loglinear AHAR Linear AHAR Loglinear AHAR Linear AHAR

𝜔 −1.6182𝑎 0.0148𝑎 −0.3237𝑎 0.0057𝑎 −0.2024𝑎 0.0027𝑎
(0.2231) (0.0025) (0.0663) (0.0015) (0.0439) (0.0006)

𝛼𝑑 -0.0275 −0.0838𝑎 0.0304 -0.0152 0.1448𝑎 0.1171𝑎
(0.0227) (0.0283) (0.0207) (0.0223) (0.0259) (0.0261)

𝛼𝑤 0.0406 0.0556 0.3313𝑎 0.3534𝑎 0.3711𝑎 0.4208𝑎$
(0.0542) (0.0575) (0.0526) (0.0576) (0.0568) (0.0730)

𝛼𝑚 0.5244𝑎 0.7017𝑎 0.5428𝑎 0.5190𝑎 0.4253𝑎 0.3872𝑎
(0.0845) (0.0832) (0.0496) (0.0570) (0.0513) (0.0633)

𝛾 −0.0259𝑎 0.0561𝑏 −0.0210𝑎 0.0565𝑎 −0.0135𝑎 0.0366𝑎
(0.0100) (0.0214) (0.0032) (0.0107) (0.0024) (0.0067)

Panel b) Ljung-Box statistics (p–value)

LB(1) 0.9764 0.9260 0.5730 0.5507 0.5923 0.7050
LB(5) 0.8462 0.6273 0.2495 0.7036 0.0827 0.1768
LB(10) 0.4676 0.3781 0.0970 0.2749 0.0000 0.0000

Table 10: AHAR estimated coefficients with robust standard errors (White, 1980) and 𝑝-value of the Ljung-Box
statistics. Superscript a, b and c denote the 1%, 5%, and 10% significance levels, respectively. Sample period:
January 3, 2006 – June 29, 2018.
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B.3.1 PITs
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Figure 9: Probability integral transform (PIT) from MEM-HAR, AMEM(2,1) and mixture–AMEM . Sample
period: January 3, 2006 – June 29, 2018.
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B.4 The USD/CHF analysis
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Figure 10: Break dates. The figures report the time series of RPV, volume, daily Amihud, and realized Amihud
for the USD/CHF rate (black solid line). The red vertical line denotes the break date, which is estimated by
means of the Bai and Perron (1998) test for unknown break points. The test is performed with 15% trimming
at the beginning and the end of the sample period and between break dates.
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