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Abstract

We develop a methodology for estimating and testing the effect of anomalies in conditional
asset pricing models when premia are time-varying. The methodology also provides an infer-
ential procedure for characteristic-based portfolios. Our method, which builds on the two-pass
methodology, is developed for ordinary and weighted least-squares estimation, considering both
cases of correct specification and global misspecification of the candidate asset pricing model.
A cross-sectional R-squared test to dissect anomalies is proposed, establishing its limiting prop-
erties under the null hypothesis of no effect of anomalies and its alternative. Using a dataset of
20, 000 individual US stock returns, we find that although anomalies are statistically significant
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1 Introduction

CAN WE CITE MCLEAN AND PONITIEFF?

This paper provides a general methodology to formally estimate and test for the economic

significance of asset pricing anomalies, within conditional asset pricing models, when both risk

premia and risk exposures are allowed to be time-varying.

Asset pricing theory implies that the cross-sectional variation in expected returns should be

explained by the exposures to systematic risk factors (Sharpe (1964) and Lintner (1965)). However,

over decades, researchers have identified many “anomalies”, where some firm- or asset-specific

characteristics can predict the cross-section of expected returns, even after controlling for risk

factors and their risk exposures.1

Despite the very extensive literature on asset pricing anomalies, identifying and understanding

such seemingly anomalous predictability represents one of the biggest challenges in empirical asset

pricing, as it is essential for commanding what an investor considers to be risk. The availability of

rigorous methodological approaches to estimate and test for anomalies is therefore of paramount

importance, as highlighted by Fama and French (2008) and Hou, Chen, and Zhang (2020). Broadly

speaking, there are two main standard approaches to test for anomalies: (i) sorting average returns

on anomaly variables, and (ii) using anomaly variables as additional regressors in the Fama and

MacBeth (1973) two-pass regression. In this latter case, the conventional approach involves T cross-

sectional ordinary least squares regressions (CSR OLS hereafter) of asset returns on the anomaly

variables, one for each period, and then interpreting the average of the T slopes’ estimates as the

anomaly’s premia.

While sorting offers an immediate picture of how returns vary across the spectrum of the

anomaly variable(s), it becomes unreliable when the sort is made on more than three variables

at the time, as it can result in many empty sets, and, even more importantly, it does not allow

to make inference on the significance of the anomalies, although recent advances addressed this

issue (see Cattaneo, Crump, Farrell, and Schaumburg (2020)). On the other hand, the two-pass

1Examples of anomalies include momentum (Jegadeesh and Titman (1993)), the NASDAQ anomaly (Brennan,
Chordia, and Subrahmanyam (1998)), firm size and the book-to-market ratio (Fama and French (1993)), liquidity
(Acharya and Pedersen (2005) and Brennan, Chordia, Subrahmanyam, and Tong (2012)), carry (Koijen, Moskowitz,
Pedersen, and Vrugt (2018)), and idiosyncratic volatility (Ang, Hodrick, Xing, and Zhang (2006)), among many
others. Hou, Chen, and Zhang (2020) document 452 anomalies.
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regression provides direct estimates of the marginal effects of each anomaly (together with their

standard errors), offering a formal way to make inference on the potential existence of anomalies.

However, in this paper, we show that the conditions required for its validity are often hard to justify

in practice, hence invalidating many of the inferential results on the anomalies’ premia.

In particular, we show that the conventional approach - based on the large-T sampling scheme

- provides an accurate estimation of the average anomaly premium and, moreover, only if one is

willing to assume orthogonality between the factor betas and the anomalies. This condition appears

to be at odds with the empirical evidence here provided, where we very often find statistically

significant (non-zero) correlation between the estimated betas and the anomalies. More importantly,

we show that the conventional approach is ill-suited to estimate time-varying premia because time-

variation in the premia would be completely obscured by averaging the T estimates. Averaging the

premia estimates over very short rolling time windows would partially resolve this problem but at

the cost of invalidating the large-T asymptotic theory, which underlies all the inferential results of

the conventional approach. In particular, when T is asymptotically large, we show that the classical

t-ratio of the average anomaly premium is downward biased whenever one assumes that the (true)

anomaly premium varies over time. In other words, we could reject the null hypothesis of a zero

average premium more often than we should, unless the premium turns out to be constant across

time (and orthogonality between the factor betas and the anomalies holds).

Introducing a new methodology that resolves all these challenges is the objective of this paper.

First, given the overwhelming evidence of time-varying risk premia in the empirical asset pricing

literature, we design our methodology to capture time-variation in the anomalies’ premia, leav-

ing their dynamics unspecified (i.e., nonparametrically). This is accomplished by exploiting large

cross-sections of size N of asset returns while keeping their time series dimension (T ) fixed and

possibly very small. Given the large availability of individual securities, such a setting has gained

significant attention in recent years, thanks also to its flexibility to handle time variation of any

(non-parametric) form, hence mitigating the risk of model misspecification and potential structural

breaks in the data.2 Moreover, by allowing the use of short (i.e., small T ) unbalanced panels, our

small-T approach allows one to mitigate the issue of missing data, which is a frequent, yet often

2Large-T asymptotic results require fully-specified parametric assumptions to capture time-variation of loadings
and risk premia, such as eg., by assuming them to be linear functions of some observed state variables (see, e.g.,
Gagliardini, Ossola, and Scaillet (2016)).
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overlooked, feature of company fundamentals. This problem affects the time-series availability of

almost any characteristic and becomes extremely severe when one needs to analyze multiple charac-

teristics over the same time span (see, for example, the recent contributions of Bryzgalova, Lerner,

Lettau, and Pelger (2022) and Freyberger, Höppner, Neuhierl, and Weber (2021) for methodologies

that tackle missing financial data).

Our methodology builds on the classical Fama and MacBeth (1973) two-pass procedure and

maintains its computational ease and interpretability, despite not relying on its strict assumptions.

In particular, we derive novel OLS-type estimators of both risk and anomaly time-varying premia

and establish their asymptotic properties, showing how to derive closed-form standard errors to

conduct correct inference on model’s premia. The large-N and fixed-T setting allows us to work

under very mild assumptions, which can now accommodate the more realistic case of both cross-

and time-correlation between returns and anomalies, in contrast to existing methodologies.

We also extend our analysis in four main directions. The first extension introduces a new

weighted least square (WLS) version of the estimator. This idea is strongly motivated by the recent

literature that shows that microcaps can adversely affect the significance of anomalies. Indeed, as

reported by Hou, Chen, and Zhang (2020), microcaps represent only 3.2% of the aggregate NYSE-

Amex-NASDAQ market capitalization, but they account for more than 60% of the traded stocks

in the market.3 In this case, performing a simple CSR of returns on anomaly variables would

make the estimates very sensitive to microcap outliers (see Hou, Chen, and Zhang (2020), Green,

Hand, and Zhang (2017), and Fama and French (2008)). This impact could be mitigated by a WLS

estimation, which minimizes a weighted sum of squared errors. The derivation of a WLS estimator

is technically challenging, due to the potential presence of both time- and cross-sectional-correlation

between weights and asset returns. This is very likely especially if the weights are defined to be

equal (or proportional) to assets’ market capitalization. We address these challenges and establish

the limiting properties of our novel WLS estimator, providing its standard errors in closed-form.

The second extension of our analysis is about robustifying our inferential results to the case of

global model misspecification.4 Indeed, the significance of premia estimates can be dramatically

3In Hou, Chen, and Zhang (2020), microcaps identify all stocks with a market capitalization smaller than the 20th
percentile in the distribution of all the NYSE stock market equity.

4By global misspecification in the context of beta-pricing models, we refer to deviations, of unspecified form, from
exact pricing.
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affected by the degree of model misspecification, which could arise due to the omission of potentially

relevant risk factors from the model, or because one selects the wrong (or incomplete) set of anoma-

lies (see Jagannathan and Wang (1998)).5 To mitigate this risk, we provide asymptotically-valid

standard errors of the anomalies’ premia estimates, which are robust to global model misspecifica-

tion.

As a third extension, we propose a cross-sectional R-squared measure, that can be used to

quantify the joint effect of anomalies on the cross-section of expected returns. Indeed, although our

t-ratios can be correctly used to assess the significance of a premium estimate corresponding to the

single anomaly, a cross-sectional R-squared test permits quantifying the portion of the total asset

variability jointly explained by the anomalies. For example, one might be interested in the joint

effect of anomalies belonging to the category (say, e.g., all the momentum anomalies). Specifically,

we establish the limiting distribution of the proposed R-squared measure under both the null

hypothesis of zero anomalies’ premia and the alternative hypothesis of priced anomalies.

The fourth extension appears to be the most relevant one. The ability of our methodology to

estimate time-varying the slope coefficients to the anomalies, granted by by our large-N with fixed-

T sampling scheme, implies that the same methodology provides an important advancement in

the estimation of characteristic-based portfolios, given Fama (1976)’s insight that Fama-MacBeth

regression coefficients (to characteristics) are returns to tradeable portfolios. To understand this

by-product of our methodology, it sufficies to recognize that a conditional asset pricing anomalies

with constant risk exposures and time-varying anomalies spannng the pricing errors, i.e. the alphas,

can be (under suitable restrictions here formalized) equivalent to a model with constant pricing

errors and time-varying risk exposures in the same anomalies. Hence, the asymptotic analysis of

the OLS- and WLS-type estimators of the anomalies’s slopes readily provides a novel inferential

procedure for the cross-sectional characteristic-based portfolios, asymptotically-correct when N is

large, once one narrows, as anomalies, on the special case of firms’ characteristics. Moreover,

our time-varying estimators, and their associated limiting distribution theory, can be deployed for

accurate estimation of the risk premia associated with the characteristic-based portfolios. This is

relevant as our analysis of the conventional large-T approach shows that the latter leads to invalid

estimation of the risk premia to characteristics-based portolios when the former are time-varying.

5Jagannathan andWang (1998) analyze the implications of model misspecification using the two-pass methodology,
valid under the large-T set up.
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We construct locally-averaged estimator of these risk premia and show their validity, together with

a infential procedure.

We present an extensive empirical application using data provided by Chen and Zimmermann

(2019), from which we extract 170 anomalies at the monthly frequency (January 1986 - December

2020). We find patterns of time-variation according to which the importance of anomalies emerge

often during financial crises (about 70% of the times). Although statistically the contribution of

anomalies appear significant (at 5% level) for about half of cases, anomalies explain a very small

fraction of the cross-sectional variation of expected returns, with only 4% of them explaining above

20%, and more than half contributing to less than 1%. In contrast, the estimated betas do not show

the same pattern across time, although explain a similar fraction to anomalies of the cross-section

of asset returns. The large majority of the variation in the cross-section of asset returns remains

unexplained.

The paper is structured as follows. Section 2 describes the main literature, while Section 3

introduces our conditional asset pricing framework. In Section 4 we provide both analytical and

numerical evidence that highlights the pitfalls of the conventional large-T method used to detect

anomalies. Our methodology is formalized in Sections 5 and 7, where we present our OLS-type and

WLS-type estimators, respectively, with their corresponding statistical analysis. The implication of

our methodology for inference on characteristic-based portfolios is elaborated in Section 6. Section 8

shows how to robustify our methodology to global misspecification, while Section 9 describes our

cross-sectional R-square test. The empirical application is contained in Section 10. Section 11

concludes. The proofs of the theorems, together with some preliminary lemmas, are relegated to

the Online Appendix (Raponi and Zaffaroni (2023)), referred to as OA throughout the manuscript.

2 Literature Review

The literature on asset pricing anomalies is very extensive, with a list of more than 400 papers

proposing (or dissecting) anomalies thought to be relevant in explaining the cross-sectional variation

of stock returns (see Hou, Chen, and Zhang (2020) for a detailed list). These empirical findings

have spurred a growing literature that tries to summarize (or digest) this cross-sectional variation
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with new risk factors.6 However, it seems that there are still many asset-specific characteristics that

cannot be explained by any common risk factors, and that still represent the major determinants

of average equity returns (see Daniel and Titman (1997), Lewellen (2015), and Dong, Yan, Rapach,

and Zhou (2021), among others).

The apparent significance of such a wide range of anomalies can be in part attributed to a

lack of proper statistical methodologies. A recent example is Hou, Chen, and Zhang (2020), which

cast doubts on the empirical validity of 452 anomalies proposed in asset pricing and accounting

literature, showing that 65% of them fail to explain the cross-section of average stock returns, with

the biggest failure (96%) being observed in the trading frictions literature. This empirical finding

is even more severe if one allows for multiple testing approaches (see Harvey, Liu, and Zhu (2016)).

The two-pass methodology augmented with anomalies has been studied and extended by the lit-

erature in many directions. Important results, valid under large-T and the assumption of constant

premia, have been provided by Jagannathan and Wang (1998), who derived the limiting distri-

bution of the CSR OLS estimator under the null hypothesis of no effect of anomalies. Brennan,

Chordia, and Subrahmanyam (1998) propose to first net out average returns from the risk exposure

to common risk factors, and then to regress these risk-adjusted average returns on observed firms’

characteristics, to test for the potential effect of anomalies. Their approach has been further ex-

tended by Avramov and Chordia (2006), allowing for time variation in the factors’ loadings through

observed state variables. Chordia, Goyal, and Shanken (2015) examine the two-pass estimator in

situations when N is much larger than T , and where the anomaly variables are also allowed to vary

over time. However, in their work, a bootstrap procedure is proposed to derive the standard errors

of the premia estimator.

Going beyond the two-pass methodology, alternative approaches have been also proposed to

quantify the economic relevance of anomalies. Important examples are the semi-parametric esti-

mation of Connor and Linton (2007), the Projected Principal Component Analysis of Fan, Liao, and

Wang (2016), the Instrumented Principal Component analysis of Kelly, Pruitt, and Su (2019), and

the Bayesian approach of Kozak, Nagel, and Santosh (2020). Other studies have also quantified the

6Prominent examples are the Fama and French (1993) and Fama and French (2015) factors, Carhart (1997) and
Jegadeesh and Titman (1993) momentum factors, the liquidity factors of Pástor and Stambaugh (2003) and Acharya
and Pedersen (2005), the Ang, Hodrick, Xing, and Zhang (2006) idiosyncratic risk factor, the Hou, Chen, and Zhang
(2015) four q-factors, and the Stambaugh and Yuan (2017) lucky factors, among many others.
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impact of firms’ characteristics on investors’ portfolio choices (see, e.g., DeMiguel, Martin-Utrera,

Nogales, and Uppal (2020) and Kim, Korajczyk, and Neuhierl (2021)). Using non-parametric meth-

ods, Freyberger, Neuhierl, and Weber (2020) show that characteristics play a crucial role in terms

of model selection and return predictability.

Moreover, most of the empirical asset pricing literature that deals with anomalies uses portfolio

data constructed from a relatively small subset of asset-specific predictors. However, although

the use of portfolios reduces the sampling variability of estimated loadings, it sensibly reduces

returns’ heterogeneity (see Ang, Liu, and Schwarz (2020)) and makes it impossible to investigate

the joint effect of a high-dimensional set of anomalies. In addition, portfolio data could be highly

sensitive to data-snooping biases, especially when the same data set is repetitively examined (see

Lo and MacKinlay (1990), Brennan, Chordia, and Subrahmanyam (1998), Conrad, Cooper, and

Kaul (2003), Barras, Scaillet, and Wermers (2010), McLean and Pontiff (2016), and Chen (2021)).

These issues can be sensibly mitigated (if not entirely avoided) using our approach, which applies

to large cross-sections of individual assets, much less scrutinized than portfolio data sets.

Our methodology contributes also to the literature on the estimation of cross-sectional characteristic-

based portfolios, introduced by Fama (1976). Various methods have been employed to construct

characteristic-based factors, ranging from sorting approaches (see Fama and French (1993)), to

cross-sectional OLS regressions (see Back, Kapadia, and Ostdiek (2015) and Fama and French

(2020)), linear combinations in rank-transformed centred characteristics (see Kozak, Nagel, and

Santosh (2020)), and PCA-type methods (see Kelly, Pruitt, and Su (2019) and Kim, Korajczyk,

and Neuhierl (2021)).7 Daniel, Mota, Rottke, and Santos (2020) study how to clean up the

characteristic-based portfolios from unpriced sources of risk. Our methodology permits accurate

estimation of the OLS and WLS CSR characteristic-based portfolios with an asymptotically valid

inferential procedure (in N).

7Kelly, Pruitt, and Su (2019) and Kim, Korajczyk, and Neuhierl (2021) can be interepreted as methodogies for
either testing for anomalies (when these are posed to span the pricing errors) or estimating characteristic-based
portfolios (when the risk exposures to the latent risk factors are posed as functions of firms’ characteristics), or both.

7



3 Conditional Asset Pricing with Anomalies

Given our objective of estimating and testing for anomalies in a time-varying setting, the first step

of our analysis requires the introduction of a conditional asset pricing factor model that admits

the presence of anomalies. We assume that asset returns are governed by the following conditional

asset pricing factor model:

Rit = αi,t−1 + β′
i,t−1ft + ϵit, for i = 1, · · · , N, t = 1, . . . , T (1)

where Rit represents the gross return of stock i at time t, αi,t−1 is a potentially time-varying and

asset specific intercept, βi,t−1 = (βi1,t−1, . . . , βiKf ,t−1)
′ is the vector of time-varying loadings on

Kf observed risk factors ft = (f1,t, . . . , fKf ,t)
′, and ϵit is the asset-specific error component. Using

matrix notation, the asset pricing model in (1) can be re-written as

Rt = αt−1 +Bt−1ft + ϵt, (2)

where Rt denotes the N × 1 vector of asset returns at time t, αt−1 ≡ [α1,t−1, . . . , αN,t−1]
′, Bt−1 ≡

(β1,t−1, . . . ,βN,t−1)
′, and ϵt ≡ (ϵ1,t, . . . , ϵN,t)

′.

When conditional no-arbitrage and full diversification of the mean-variance frontier hold (see

Chamberlain and Rothschild (1983, Corollary 1) and Hansen and Richard (1987) for an extension

to a conditional asset pricing setup), exact pricing follows. That is:

E [Rit|It−1,Π] = γ0,t−1 + γ ′
f,t−1βi,t−1, (3)

where E[·] denotes the expectation operator, It represents the information set available up to time

t, and Π defines the complete set of parameters, known to the agent when evaluating expected

returns, with {γ0,γf ,B} ⊂ Π, where γ0 = (γ0,1, · · · , γ0,T−1)
′ denotes the zero-beta rate vector, and

γf = (γf,1, · · · ,γf,T−1)
′ denotes the risk premia matrix associated with the observed risk factors ft,

and B = (B1, · · · ,BT−1) is the loadings matrix.

However, we are specifically interested in situations where (3) might not hold and, in fact, we

replace it by

E [Rit|It−1,Π] = ai,t−1 + γ0,t−1 + γ ′
f,t−1βi,t−1, (4)

for some time-varying and asset-specific pricing errors a ⊂ Π, with a = (a1, · · · ,aT−1)
′, and where

at−1 = (a1,t−1, · · · , aN,t−1)
′.
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In this paper, we assume that the pricing errors ai,t−1 are governed by some observed character-

istics, represented by a Kz × 1 vector of asset-specific and possibly time-varying variables, zi,t−1,

which we refer to as anomalies. Formally, we assume that

ai,t−1 = γ ′
z,t−1zi,t−1, for i = 1, · · · , N, t = 1, . . . , T (5)

for some vector of coefficients γz ⊂ Π, where γz = (γz,1, · · · ,γz,T−1)
′ denotes the anomalies’ premia

matrix. Clearly, should all the elements of γz be zero, then exact pricing (3) holds, and no anomaly

affects the cross-section of expected returns.8

Using (5), the asset pricing relationship in (4) becomes

E [Rit|It−1,Π] = γ0,t−1 + γ ′
f,t−1βi,t−1 + γ ′

z,t−1zi,t−1. (6)

The expression in (6) represents our new asset pricing restriction.9 It is worth noticing that, while

allowing for anomalies, condition (6) does not necessarily represent a deviation from no-arbitrage,

but only from exact pricing (see Proposition OA.5 in Section OA.9 of the Online Appendix for

more details).

Now, under (6), the asset pricing model in (2) generalizes to

Rt = γ0,t−11N + Zt−1γz,t−1 +Bt−1δf,t−1 + ϵt, (7)

where 1N denotes a N×1 vector of ones, Zt−1 = (z1,t−1, · · · , zN,t−1)
′ represents the N×Kz matrix

of anomalies at time t− 1, and where we set

δf,t−1 ≡ γf,t−1 + ft − E [ft|It−1,Π] , (8)

which we denominate as the vector of ex-post risk premia.10 An important special case of (7) arises

8When imposing no-arbitrage, the APT (see Ross (1976) and Chamberlain and Rothschild (1983), among others)
imposes the following constraint on the pricing errors at−1 = (a1,t−1, · · · , aN,t−1)

′,

a′
t−1[Vart−1(ϵt)]

−1at−1 ≤ δt−1 < ∞,

for some (unknown) finite quantity δt−1. Our main analysis will abstract from any consideration associated with
no-arbitrage (see Section OA.9 of the Online Appendix for some details).

9Condition (6) implies that the agent has full information on the anomaly variables zi,t−1 for every stock. If one
suspects that the agent’s information is not complete (for example, because firm’s balance sheet data is released less
frequently or with delays), then the asset pricing restriction (6) generalizes to E [Ri,t|It−1,Π] = γ0,t−1+γ′

f,t−1βi,t−1+
γ′
z,t−1E [zi,t−1|It−1,Π], and all our arguments continue to be valid.
10The notion of ex-post risk premia was originally coined by Shanken (1992) to denote a noisy version of the ex-

ante risk premia γf,t−1 due to the unexpected factor outcomes ft − E [ft|It−1,Π], arising whenever one considers the
fixed-T case. Shanken (1992) considers the time-average of δf,t−1 with constant premia and expected value, yielding
δf ≡ γf + f̄ −E[ft], whereas here we consider the time-varying ex-post risk premia (8), with a slight abuse of notation
as δf,t−1 contains ft, justified by latency of δf,t−1.
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when the risk factors represent returns of traded portfolios, in which case one simply replaces γ0,t−1

with the gross risk-free rate (Rf,t−1), and sets γf,t−1 = E [ft|It−1,Π]− γ0,t−11Kf
.

Whenever the vector of anomalies’ premia γz,t−1 in (7) is non-zero, we say that the anomalies

affect (or, are priced in) the cross-section of expected returns through (6). The objective of this

paper is to provide a formal methodology to estimate the anomalies’ premia γz,t−1 and test for

their statistical significance, using the model specification in (7).

3.1 Risk Exposures: Time-Variation and Identification

To estimate the asset pricing model (7), it is essential to specify the form of time-variation of the

loadings βi,t−1. Two different approaches can be considered in this case.

First, one could postulate a parametric specification of the loadings, such as, for example:

βi,t−1 = β0i +B1igt−1 +B2zit−1, (9)

for some matrices of coefficients β0i (Kf × 1), B1i (Kf ×Kg), and B2 (Kf ×Kz).

When B2 = 0Kz×Kf
, it follows that only the Kg-dimensional vector of asset-invariant variables

gt−1 is driving the loadings. In this case, it is well-known that one can re-express the conditional

asset pricing model (7) as a model with constant loadings on (Kf + Kg) rescaled risk factors

(ft⊗gt−1), whit ⊗ denoting the Kronecker product (see Shanken (1990), Ferson and Harvey (1999),

and Lettau and Ludvigson (2001), among others). WhenB2 ̸= 0Kz×Kf
, asset-specific characteristics

also contribute to the time-variation of the loadings. This is discussed for example in Avramov and

Chordia (2006) and Gagliardini, Ossola, and Scaillet (2016), where heterogeneity of the coefficients

(with B2i replacing B2 in (9)) and interactive effects of gt−1 and Zt−1 are also considered.

An alternative method consists in leaving the time-varying βi,t−1 model-free, with their prac-

tical estimation obtained through (short) rolling samples of size T (see Brennan, Chordia, and

Subrahmanyam (1998), among others). Specifically, we formalize this approach by introducing the

following smoothing assumption on the loadings.

Assumption 1 (smoothness of the loadings). For every s = 1, · · · , T − 1, there exists a locally-

constant matrix B, depending on the interval {1, · · · , T}, such that

(Bs −B)′(Bs −B)

N
= o(N− 1

2 ). (10)
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When (10) holds, then model (7) can be replaced by a conditional asset pricing model with

locally-constant risk exposures

Rt = γ0,t−11N + Zt−1γz,t−1 +Bδf,t−1 + ϵt, (11)

without altering the statistical properties of both testing and model estimation.11 Notice that

the conditional asset pricing model (11) is still characterized by time-varying loadings, because in

practice B would (non-parametrically) rely on the specific time period being considered.12 We have

chosen not to explicitly write this just to facilitate both the notation and exposition. Section OA.10

of the Online Appendix reports some numerical illustrations of relevant examples of time-varying

betas that satisfy Assumption 1.

Since we consider T to be (almost) arbitrarily small in our analysis, Assumption 1 appears quite

mild in practice and offers a significant advantage by remaining robust against any form of model

misspecification. This stands in contrast to the parametric approach in (9), which could result in

invalid inference whenever an incorrect specification of βi,t−1 is assumed, for example because gt−1

and/or Zt−1 are either mis-measured or incomplete.

For these reasons, in the following sections, we will operate under the assumption that (11)

holds (by means of Assumption 1), thereby examining conditional asset pricing models with locally-

constant loadings. However, it is worth noting that our analysis can easily extend to the scenario

of model (7) with parametric time-varying loadings as in (9) if deemed more appropriate.

3.1.1 Identification Condition

When taking into account the locally-constant asset pricing model (11), an identification issue

may arise. Indeed, the specification in (11) can be observationally equivalent to a model in which

γz,t−1 = 0Kz (that is, exact pricing holds), but having time-varying risk exposures, with their time-

variation driven by the anomalies Zt−1. To see this, consider the following exact-pricing model

with time-varying betas Bt−1 = B+ Zt−1B
′
2:

11Formally, one obtains that (7) can be rewritten as Rt = γ0,t−11N +Zt−1γz,t−1+Bδf,t−1+ϵt+(Bt−1−B)δf,t−1.
Then, under Assumption 1, this model would have the same statistical properties (in terms of both testing and
estimation) of model (11). See Section OA.3 of the Online Appendix for details (Lemma OA.10).

12Formally, one can define a generic time window of length T as Tt = t− T + 1, . . . , t− 1. Then, given t, B
implicitly refers to Bt = B(Tt), which varies across different data windows but remains constant within the same
window.

11



Rt = γ0,t−11N +Bt−1δf,t−1 + ϵt

= γ0,t−11N + (B+ Zt−1B
′
2)δf,t−1 + ϵt. (12)

It is easy to see that (12) yields exactly (11), whenever γz,t−1 in (11) satisfies:

γz,t−1 = B′
2δf,t−1. (13)

The validity of the restriction in (13) can be empirically verified. Once model (7) is estimated, the

time series of the estimated γz,t−1 and δf,t−1 become available; one can then analyze the R-squared

of the regression of γz,t−1 on δf,t−1 or the canonical correlations between γz,t−1 and B′
2δf,t−1.

13

This evaluation will be incorporated into our empirical analysis in Section 10, to ensure the correct

identification of anomalies’ impact on pricing errors.

4 Two-Pass Methodology for Anomalies: Conventional Approach

The most common and intuitive approach to test for the presence of anomalies is based on the

estimation of model (11) by means of the two-pass Fama and MacBeth (1973) regression. It first

entails obtaining the estimated matrix of loadings B̂ from (2) through time-series OLS regressions

(one for each asset) of asset returns on observed risk factors ft, and then estimating the premia

parameters (γ0,t−1, δf,t−1, and γz,t−1) through CSR OLS (one for each period of time), using B̂ in

(11).

However, recognizing that inference would necessarily be affected by the error-in-variable (EIV)

problem due to the use of B̂ in (11) (see Shanken (1992)), Fama and French (2008) advocate

estimation of the anomalies’ premia by simple OLS cross-sectional regressions (one for each period

of time) of Rt on Zt−1 and an intercept, hence excluding the estimated B from (11), yielding the

time-varying anomaly premium estimator

γ̃z,t−1 ≡ (Z′
t−1M1NZt−1)

−1Z′
t−1M1NRt, (14)

13When (13) holds, the canonical correlations between γz,t−1 and B′
2δf,t−1 are all equal to one in population.

Note that when Kz > Kf (with full row-rank B2), one obtains that δf,t−1 = B∗
2γz,t−1 for B∗

2 = (B2B
′
2)

−1B2.
Therefore, one could also assess the validity of (13) using the R-squared of the multivariate regression of δf,t−1 on
the vector γz,t−1. Formal tests for canonical correlations exist (see Knapp (1978)), although their significance should
be considered only approximately valid as the premia parameters are estimated.
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where M1N ≡ IN − 1N1′N/N is used to de-mean the data, with IN denoting an identity ma-

trix of dimension N . This implies that M1NRt = Rt − 1N R̄t, with R̄t ≡
∑N

i=1Rit/N denoting

the cross-sectional sample average of returns. Similarly, M1NZt−1 = Zt−1 − 1N Z̄′
t−1, setting

Z̄t−1 ≡
∑N

i=1 zi,t−1/N . Fama and French (2008) justify the approach in (14) by recognizing that

γ̃z,t−1 is equivalent to the two-pass estimator applied to (11), whenever the loadings B and the

anomalies Zt−1 in (11) are orthogonal to each other, an assumption claimed to hold empirically.

This orthogonality condition is implied when the loadings are cross-sectionally invariant.

Inference is typically carried out in terms of the average premium, taking the time-series average

of the premia estimates γ̃z,t−1 in (14). This yields the conventional average premium estimator

¯̃γz ≡
1

T − 1

T∑
t=2

γ̃z,t−1 (15)

for which the corresponding t-ratios is evaluated. To illustrate, consider the case of univariate

regressions (i.e. Kz = 1). In this case, the t-ratio of the average premium associated to the z-th

anomaly is simply

tz ≡
¯̃γz√

Σ̃γz/(T − 1)
, (16)

where Σ̃γz is the sample variance of the CSR OLS estimates γ̃z,t−1, namely:

Σ̃γz =
1

T − 1

T∑
t=2

(γ̃z,t−1 − ¯̃γz)
2. (17)

The t-ratio in (16) is then compared with the critical values of the standard Normal distribu-

tion, conjecturing that the inference on ¯̃γz is valid as T → ∞. We denote this approach as the

conventional approach.

Given the extensive use of the conventional approach in empirical studies (see Fama and French

(2008) and Hou, Chen, and Zhang (2020), among others), it seems essential to understand the

inferential properties of both the time-varying estimator in (14) and the average estimator in (15),

as well as their ability to capture time-variation in the (true) premia, and the potential consequences

of omitting factors’ loadings from the estimation of model (11).

We now show that the statistical validity of the conventional approach is not always warranted,

unless extremely strict conditions are applied. In particular, we show below that the asymptotic
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properties of the conventional approach crucially depend on the sampling scheme under consider-

ation, namely the relative magnitude of N and T . Moreover, regardless of the adopted sampling

scheme, the conventional t-ratios are never appropriate whenever one faces a model with time-

varying premia parameters, making standard inference seriously problematic. To show our results,

throughout this section for simplicity we assume that Kz = 1 and consider three different sampling

schemes: (i) the large-T–fixed-N case, (ii) the large-N–fixed-T case, and (iii) the large-T–large-N

case. Formal derivations of the following results, including the generalization to the case of Kz > 1,

are reported in the Online Appendix OA.6.

Let us consider first the case (i) of T → ∞ with fixed N . This situation applies, for example,

when one uses a panel consisting of a small number of portfolios, for which a long time-series of data

is available. As N is kept fixed in this sampling scheme, it follows that no asymptotic properties can

be established for the time-varying estimator γ̃t−1,z in (14). One can only assert the unbiasedness

of the estimator (14), which can be established only under some regularity conditions that include,

among others, the finite-N orthogonality condition:

Z′
t−1M1NB = 0N×Kf

, (18)

namely the (in sample) cross-sectional orthogonality between factor betas and the anomaly variable

Zt−1, with 0N×Kf
representing the zero matrix of dimension N ×Kf .

Under the same sampling scheme, instead, the average premium estimator (15) satisfies:

¯̃γz →p γ̄
0
z ≡ lim

T→∞
γ̄z, with γ̄z ≡

1

T − 1

T∑
t=2

γz,t−1 (19)

It follows that ¯̃γz converges to a constant quantity, γ̄0z , which we refer to as the long-run anomaly

premium. Alternatively, (19) tells us that ¯̃γz consistently estimates the constant premium γz,

whenever γz,t−1 = γz, for every t = 1, .., T − 1. It is important to note that the results in (19)

are valid under some regularity conditions, including again the orthogonality condition in (18).

Moreover, under some further regularity conditions (See Theorem OA.4 of the Online Appendix

OA.6.1), as T → ∞ and N is fixed, ¯̃γz is also asympotically normally distributed, such that

√
T (¯̃γz − γ̄z) →d N (0, VN ) ,

with VN denoting the large-T asymptotic variance of the estimator, and where the subscript N is

used to remark its dependency on the N -dimension as well. To conduct inference, one needs to
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consistently estimate VN , which is typically done in the literature by using the the sample variance

Σ̃γz of the CSR OLS estimates, as defined in (17). However, we show that Σ̃γz can only work in

the case where the true anomaly premium is assumed to be time-invariant, i.e., when one assumes

that γz,t = γz for every t in (11). More formally, we show that

Σ̃γz →p σ
2
γz + VN , with σ2

γz ≡ lim
T→∞

1

(T − 1)

T∑
t=2

(γz,t−1 − γ̄z)
2. (20)

From (20), it is immediate to see that Σ̃γz will consistently estimate VN only when σ2
γz ≡ 0, which

happens if, and only if, γz,t−1 = γz for every t = 2, ..., T . Whenever this condition is violated, then

σ2
γz will be a positive quantity, implying that the t-ratio in (16) is downward biased. In other words,

whenever one assumes that the true premia in (11) are time-varying and uses the conventional t-

ratio in (16) to make inference on the average anomaly premium, then one tends to under-reject the

null hypothesis of zero (long-run) premium than prescribed by the chosen nominal size. Therefore, a

statistically significant t-ratio could provide a strong indication of a non-zero average premium, even

though it leaves inference undetermined when it is found to be not significant. This is an important

and crucial result, which could invalidate or raise doubts on many of the findings established in the

empirical literature on anomalies.

To demonstrate the potential implications of this result, we consider a simple simulation exercise,

where the true anomaly premium has been generated using a time-varying scheme. Specifically,

using N = 25 and T = 360, we simulate B=2,000 samples of asset returns, using the data generating

process Rt = γ0,t−11N + Zt−1γz,t−1ϵt, where Kz = 1 and ϵt ∼ N (0N , σ2
ϵ IN ), with σ2

ϵ = 0.1.

For simplicity, we set γ0,t−1 = γ0 = 0, while γz,t−1 has been generated using an AR(1) model

γz,t−1 = µz(1− ϕz) + ϕzγz,t−1 + uz, with uz ∼ N (0, σ2
u). This implies that the variance σ2

γz in (20)

is equivalent to σ2
u. The parameters µz and ϕz have been calibrated by fitting an AR(1) model

on the estimated time series of γ̃z,t, obtained by regressing observed monthly returns Rt on the

book leverage anomaly variable Zt−1, while for σ2
u we consider different increasing values, from

σ2
u = s, up to σ2

u = 10s, with s = 0.001. Then, for each simulated sample, and for each different

value of σ2
u, we estimate the anomaly average premium with (15) and construct the corresponding

t-ratio in (16), which we plot in Figure 1. The figure clearly shows the inferential consequences

of time-varying premia. When there is very little time variation, the classical approach works

quite well (see the light green dotted curve). As the time-variation (i.e., the variance) of γz,t−1
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increases, the distribution of the corresponding t-ratio departs substantially from the standard

normal distribution, pointing to a severe under-rejection.

Figure 1: Conventional t-ratios under a time-varying setting. The figure shows the dis-
tribution of the conventional t-ratios in (16), when the true anomaly premium γz,t−1 follows a
time-varying process. Specifically, using N = 25 and T = 360, we simulate B=2,000 samples of
asset returns, using the data generating process Rt = γ0,t−11N + Zt−1γz,t−1ϵt, where Kz = 1 and
ϵt ∼ N (0N , σ2

ϵ IN ), with σ2
ϵ = 0.1. For simplicity, we set γ0,t−1 = γ0 = 0, while γz,t−1 has been

generated using an AR(1) process γz,t−1 = µz(1 − ϕz) + ϕzγz,t−1 + uz, with uz ∼ N (0, σ2
u). This

implies that the variance σ2
γz in (20) is equivalent to σ2

u/(1 − ϕ2
z). The parameters σ2

u, µz and ϕz

have been calibrated by fitting an AR(1) process on the estimated time series of γ̃z,t, obtained by
regressing observed monthly returns Rt on the book leverage anomaly variable Zt−1. Then, for each
simulated sample, we estimate the anomaly average premium using the conventional estimator in
(15) and construct the corresponding t-ratio in (16). We then plot the distribution of the B=2,000
t-ratios and repeat the same exercise for increasing values of σ2

u. Monthly returns are from the
Center for Research in Security Prices (CRSP), while data on the anomaly variables are provided
by Chen and Zimmermann (2019).
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The results presented above have clearly strong inferential implications which, however, provide

only a partial view of the overall picture. In fact, the previous exercise assumes that the true model

contains only the anomaly variables, thus excluding the estimated B from the return generating

process. This would coincide with the two-pass estimator applied to (11), whenever the loadings

B and the anomalies Zt−1 in (11) are orthogonal to each other. Whenever this assumption is not

satisfied, the accuracy of the results could be even more compromised. The inferential consequences

of excluding B from the estimated model are presented in Figure 2. The figure depicts the outcomes

of a simulation exercise where now the true return generating process follows the model in (11),

but where γz,t−1 is still estimated using (14) - hence omitting the loadings B. Specifically, using

the same parameters of the above exercise with Kf = 1, we generate asset returns using the

process Rt = γ0,t−11N + Zt−1γz,t−1 + Bδf,t−1 + ϵt−1, where δf,t−1 and B have been calibrated

using data on the market factor and its loadings on observed monthly returns Rt, respectively. To

account for different degrees of correlation between B and Zt−1, we define the anomaly variable

Zt−1 = [θMB + (1 − θ)PB]Z̃t−1, where Z̃t−1 has been calibrated using firms’ book leverage data

and where we set PB = B(B′B)−1B, and MB = IN −PB. The parameter θ ranges between 0

and 1, where θ = 0 represents the case of perfect correlation between B and Zt−1, while θ = 1

indicates no correlation between the loadings and the anomaly variable. In our experiment, we

consider different degrees of correlation by setting θ = {1, 0.75, 0.25, 0}. As before, for each of the

B = 2, 000 simulated samples and for each different value of θ and σ2
u, we estimate the average

anomaly premium as in (15) and construct the corresponding t-ratios defined in (16), which we then

plot in Figure 2. Each panel in Figure 2 corresponds to a different value of the parameter θ, namely

θ = 1 (top-left panel), θ = 0.75 (top-right panel), θ = 0.25 (bottom-left panel), and θ = 0 (bottom-

right panel). As expected, when θ = 1, we re-obtain the same results of Figure 1, confirming

the fact that the estimator in (14) coincides with the conventional two-pass estimator applied to

(11), whenever B and Zt−1 are orthogonal to each other. However, as the correlation between the

anomaly variable and the loadings increases, the estimation bias becomes more pronounced and

combines with the downward bias arising from time variation in the anomaly premium process.
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Figure 2: The figure shows the outcomes of a simulation exercise where the true return generating
process follows the model in (11), but where γz,t−1 is estimated using (14) - hence omitting the
loadings B. Specifically, using the same parameters of the exercise described in Figure 1 with
Kf = 1, asset returns have generated using the process Rt = γ0,t−11N+Zt−1γz,t−1+Bδf,t−1+ϵt−1,
where δf,t−1 and B have been calibrated using data on the market factor and its loadings on
observed monthly returns Rt, respectively. To account for different degrees of correlation between
B and Zt−1, the anomaly variable has been generate as Zt−1 = [θMB + (1 − θ)PB]Z̃t−1, where
Z̃t−1 has been calibrated using firms’ book leverage data and where we set PB = B(B′B)−1B,
and MB = IN − PB. The parameter θ ranges between 0 and 1, where θ = 0 represents the
case of perfect correlation between B and Zt−1, while θ = 1 indicates no correlation between the
loadings and the anomaly variable. The experiment considers different degrees of correlation, setting
θ = {1, 0.75, 0.25, 0}. Then, for each of the B = 2, 000 simulated samples and for each different
value of θ and σ2

u, the average anomaly premium is estimated using (15) and the corresponding
t-ratios defined in (16) have been plotted. Each panel of the figure corresponds to a different
value of the parameter θ, namely θ = 1 (top-left panel), θ = 0.75 (top-right panel), θ = 0.25
(bottom-left panel), and θ = 0 (bottom-right panel). Monthly returns are from the Center for
Research in Security Prices (CRSP), while data on the anomaly variables are provided by Chen
and Zimmermann (2019).
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Let us now consider the case of estimating (11) using the time-varying estimator in (14) and the

average estimator in (15), when now N → ∞ with fixed T . This situation commonly arises when

one uses data on the thousands of individual stock returns - rather than portfolios - over short time

windows. Under suitable regularity conditions, and assuming the large-N orthogonality condition

Z′
t−1M1NB

N
→p 0N×Kf

, (21)

then, the time-varying estimator in (14) and the average estimator in (15) satisfy:

γ̃z,t−1 →p γz,t−1 and ¯̃γz →p γ̄z. (22)

The results in (22) imply that the time-varying estimator (14) is now able to capture the true time-

varying anomaly premium, with the average estimator in (15) now converging to the local average

premium, defined over a fixed (and possibly small) time window of length T . Moreover, when the

condition in (21) is replaced by the stronger assumption in (18) - namely when the cross-sectional

orthogonality condition between the factor betas and the anomaly holds in sample - we get

√
N (γ̃z,t−1 − γz,t−1) →d N (0, Vt−1) , and

√
N (¯̃γz − γ̄z) →d N

(
0, V̄

)
, with V̄ =

1

(T − 1)2

T∑
t=2

Vt−1

where Vt−1 denotes the large-N asymptotic variance of the time-varying estimator, and where we

use the subscript t−1 to emphasize its time dependence. However, in this large-N–fixed-T setting,

inference based on conventional t-ratios becomes even more problematic than the previous large-T

case, for both the time-varying and the average estimators. Indeed, the finite-T sampling scheme

implies that

Σ̃γz →p
1

(T − 1)

T∑
t=2

(γz,t−1 − γ̄z)
2, (23)

which is now a positive constant that could be, in general, bigger or smaller than V̄ , making any

conclusion on the over- or under-rejection of the t-ratio in (16) impossible. Moreover, notice that the

conventional t-ratios would involve the incorrect
√
T -normalization, rather than

√
N , even though

this would be easy to rectify. Therefore, under the large-N–fixed-T sampling scheme, except for the

special circumstance when condition (21) holds, the two conventional estimators in (14) and (15)

could not be used to estimate the time-varying premia in (11) and its time-average, respectively.
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Moreover, a new inferential theory would be needed in this case, to equip the results with correct

standard errors and t-ratios. Filling this gap is one of the objective of this paper.

Finally, let us consider the case where bothN and T are allowed to diverge. Under this setting, it

is easy to show that the time-varying estimator γ̃z,t−1 in (14) maintains the same identical behavior

of the large-N–fixed-T case discussed above, so we omit the discussion to avoid repetition. Instead,

for the average estimator, we get

√
NT (¯̃γz − γ̄z) →d N

(
0, V̄

)
, (24)

where V̄ denotes the large-(N,T ) asymptotic variance of the average estimator, such that (T −

1)−1
∑T

t=2 Vt−1 →p V̄ . Notice that, in this case, the average estimator ¯̃γz converges at the fast rate

O(
√
NT ) to the long-run risk premium. As for the previous case, inference remains still problematic

if one uses conventional t-ratios based on Σ̃γz .
14

To summarize, our results show that the conventional approach is unable to capture and make

inference on time-varying premia, whenever T → ∞ and N is kept fixed. That is, in a model with

time-varying anomaly premia as in (11), one can only hope to consistently estimate the (long-run)

average anomaly premia γ̄z, but not the anomaly premia at each point in time γz,t. Inference is

even more complicated in this setting, with the conventional t-ratio of the average premium being

downward biased, hence making standard inferential results potentially invalid. Only in the special

case of time-constant anomaly premia, then the conventional approach works, even though it would

still require stringent assumptions.

Under the large-N–fixed-T setting, the conventional time-varying estimator in (14) could in

principle be used to consistently estimate time-varying anomaly premia, even though the validity

of this result requires that the stringent orthogonality condition (21) holds in the data. At any rate,

conventional t-ratios (of both the time-varying and the average premium estimators) are not valid,

rendering all the inferential results potentially highly misleading. The same conclusions hold if one

considers the double-asymptotic setting, where both N and T jointly diverge. In this respect, our

paper offers an important contribution to the literature to fill this gap.

Indeed, exploiting the large-N–fixed-T setting, we show below how it is possible to adjust the

14In this case, it is possible to show that inference could be carried out if one further assumes that B = 0N×K ,
that is if none of the risk factors in the model is correlated with the test assets’ returns. See Remark OA.24 in the
Online Appendix OA.6.3 for formal derivations.
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conventional time-varying estimators (14) and (15), and make them working under the presence of

estimated betas in model (11) - hence resolving the EIV problem - and relaxing any orthogonality

assumption between factor loadings and anomalies such as (21). Moreover, we provide the limiting

distribution of a new time-varying estimator, showing how to derive closed-form standard errors to

conduct valid inference when N becomes large. Essentially, our aim is to propose a time-varying

methodology which is simple and easy to implement, and which is based on the Fama and MacBeth

(1973) two-pass principle, uncovering the required adjustments to make it work.

To conclude this section, we would like to give a quick preview of some important implications

of our new time-varying methodology, by analysing the performance of six categories of anoma-

lies, namely, Momentum, Value versus Growth, Investment, Profitability, Intangibles and Trading

Frictions, as in Hou, Chen, and Zhang (2020). We report the main results in Table I. Specifically,

we use monthly firm-level characteristics data provided by Chen and Zimmermann (2019), from

January 1986 to December 2020 and perform monthly cross-sectional regressions of each anomaly

variable on monthly returns from the Center for Research in Security Prices (CRSP) using both

the conventional approach and our proposed approach (which we define as “RZ Approach” in Table

I), described in Section 5 below. In this latter case, and contrary to the conventional approach,

cross-sectional regressions also consider the market factor in the model specification. We then

group each anomaly in one of the above six categories using the classification adopted in Hou,

Chen, and Zhang (2020) and report the main results, averaged across categories.15 We repeat the

same exercise for different time lengths, from T = 12 up to T = 360 months, using monthly rolling

widows. Then, for each category, and for both the two approaches, in Table I we report: (i) the

average percentage of times that the category has been found to be significant (Panel A), (ii) the

average |t|-statistics to test the null hypothesis that the anomaly premium is equal to zero (Panel

B), and (iii) the average anomaly premium (Panel C).

The downward bias of the conventional approach clearly emerges from Table I, especially when

T is relatively small. Indeed, for all the categories, the percentage of significance obtained by using

the conventional approach is always subtantially lower than the one we found with our approach.

Noticeably, the result is stable across T for our RZ approach, suggesting its validity, whereas it

changes sharply for the conventional approach. This is also confirmed in Panel B, where we find

15A complete list of the anomaly variables in each category is provided in Appendix OA.11.
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that the RZ approach is almost always associated with a higher average |t|-ratio. Interestingly, for

all the categories and regardless of the time-series length, the two approaches also show different

average values of the anomaly premium (Panel C), suggesting that the correlation between the

estimated betas and anomalies could be actually different from zero, rendering the conventional

approach estimates biased.

Table I: Conventional Approach versus the RZ time-varying approach

% of significance - Conventional Approach % of significance - RZ Approach
Panel A T = 12 T = 36 T = 72 T = 120 T = 240 T = 360 T = 12 T = 36 T = 72 T = 120 T = 240 T = 360

Momentum 19.48 26.99 35.36 45.01 54.53 60.00 71.07 77.77 73.22 71.89 62.11 59.44
Value VS Growth 15.04 19.67 23.97 31.19 46.09 54.76 43.87 52.36 54.27 57.07 62.61 62.18
Investment 20.19 37.79 52.50 64.50 89.59 92.00 39.38 36.87 48.58 63.92 71.11 64.61
Profitability 12.98 15.11 19.81 25.92 33.07 37.00 36.21 44.16 43.76 42.20 38.44 45.58
Intangibles 11.63 17.33 25.06 31.71 40.32 56.00 28.08 33.72 37.26 41.18 37.36 33.54
Trade Frictions 11.31 15.91 19.88 25.45 36.55 51.70 37.76 35.09 39.08 44.10 47.80 46.48

average |t| - Conventional Approach average |t| - RZ Approach
Panel B T = 12 T = 36 T = 72 T = 120 T = 240 T = 360 T = 12 T = 36 T = 72 T = 120 T = 240 T = 360

Momentum 2.73 2.80 3.00 3.38 4.19 5.18 8.07 11.59 10.98 9.29 7.28 7.87
Value VS Growth 2.59 2.60 2.67 2.86 3.18 3.69 4.15 5.21 5.94 5.74 5.17 5.26
Investment 2.76 2.77 3.14 3.37 3.75 4.57 3.56 3.71 4.60 5.00 4.98 5.04
Profitability 2.60 2.48 2.45 2.39 2.94 3.32 4.24 4.70 4.97 4.83 3.76 3.19
Intangibles 2.69 2.64 2.79 2.82 2.98 3.38 3.67 4.40 4.90 4.89 4.61 5.76
Trade Frictions 2.93 3.03 3.37 3.19 3.05 3.43 4.64 4.52 4.53 4.10 3.81 3.82

average premia - Conventional Approach average premia- RZ Approach
Panel C T = 12 T = 36 T = 72 T = 120 T = 240 T = 360 T = 12 T = 36 T = 72 T = 120 T = 240 T = 360

Momentum 0.35 0.26 0.23 0.21 0.19 0.19 0.20 0.23 0.21 0.18 0.16 0.15
Value VS Growth 0.33 0.22 0.18 0.17 0.17 0.15 0.42 0.40 0.42 0.40 0.38 0.36
Investment 0.22 0.18 0.17 0.17 0.17 0.16 0.32 0.26 0.31 0.39 0.43 0.42
Profitability 0.30 0.19 0.15 0.13 0.12 0.12 0.58 0.52 0.50 0.45 0.44 0.38
Intangibles 0.31 0.21 0.18 0.17 0.15 0.14 0.45 0.53 0.56 0.61 0.66 0.73
Trade Frictions 0.36 0.24 0.21 0.19 0.17 0.16 0.72 0.47 0.38 0.35 0.34 0.24

5 Anomalies with Time-Varying Premia: OLS-Based Estimation

The results of the previous section show that the conventional approach is not valid whenever one

postulates time variation in the (true) anomalies’ premia and unless strict orthogonality conditions

are satisfied. We now introduce our new results, valid when N → ∞ and T remains fixed, and

show how all these challenges related to the conventional approach can be resolved, by means of a

new OLS bias-adjusted estimator of the time-varying premia δf,t−1 and γz,t−1. All the results are

established under several regularity conditions and mild assumptions that we report in Appendix

A.1.

Consider again the conditional asset pricing model (with locally-constant loadings) in (11), and
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rewrite it as

Rt = Zt−1γz,t−1 +XΓf,t−1 + ϵt (25)

where X = (1N ,B) and Γf,t−1 = (γ0,t−1, δ
′
f,t−1)

′, with δf,t−1 defined in (8). Since the matrix X

in (25) is unknown, one needs first to estimate the loadings B to make the estimation of (25)

feasible. The conventional two-pass approach typically advocates a simple OLS regression of Rt on

an intercept and the observed risk factors ft, that is:

B̂ ≡ R′
M1T−1F(F

′
M1T−1F)

−1 = R′P, (26)

where B̂ = (β̂1, . . . , β̂N )′, F = (f2, · · · fT )′, R = (R2, · · · ,RT )
′, and P ≡M1T−1F(F

′
M1T−1F)

−1,

where we assume that P′P = (F′
M1T−1F)

−1 > 0 for every T (see Assumption 3 in the Appendix

A.1). The matrix M1T−1 ≡ IT−1 − 1T−11
′
T−1/(T − 1) de-means the data, that is M1T−1R =

R− 1T−1R̄
′ andM1T−1F = F− 1T−1f̄

′, setting R̄ ≡
∑T

t=2Rt/(T − 1) and f̄ ≡
∑T

t=2 ft/(T − 1).

It is clear that the estimator in (26) excludes the potential effect of the anomalies Zt−1, as well

as the time variation of their premia. This could induce sources of bias in the estimates, further

exacerbated if ft and Zt−1 were potentially correlated across time, making B̂ clearly invalid. The

following smoothness Assumption 2 permits to overcome these challenges, by constraining the time

variation of the premia parameters, implying their (temporal) orthogonality with the risk factors

ft. As the time-series dimension T gets small (and as long as T > Kf +1), this assumption appears

extremely mild, especially in terms of anomalies’ premia, where the observed (time-varying) zi,t−1

could account for most of the time-variation of their overall contribution to expect returns.

Assumption 2 (smoothness of the premia parameters). The following hold:

P′γ0 = 0Kf
, P′δ̆f = 0Kf×Kf

, and P′∆z = 0Kf×N ,

setting the (T − 1) × Kf matrix δ̆f = (δ̆f,1, · · · , δ̆f,t−1)
′, with δ̆f,t−1 ≡ δf,t−1 − ft = γf,t−1 −

E(ft|It−1,Π), and the (T − 1)×N matrix

∆z ≡



γ ′
z,1 − γ ′

z 0′Kz
. . . 0′Kz

0′Kz
γ ′
z,2 − γ ′

z . . . 0′Kz

...
...

. . .
...

0′Kz
0′Kz

. . . γ ′
z,t−1 − γ ′

z





Z′
1

Z′
2

...

Z′
T−1

 ,

for some constant Kz × 1 vector γz satisfying N−1
∑N

i=1(Z
′
iZi)

−1Z′
iRi →p γz.
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When the risk factors are traded, δ̆f,t−1 = −γ01
′
Kf

for every t, and Assumption 2 only concerns

the zero-beta rate. Assumption 2 is extremely mild in most cases of interest: when the premia

parameters are locally constant, the test assets and the risk factors are expressed as excess returns,

and assuming that a risk-free asset is also traded, then Assumption 2 is always satisfied.16

The additional source of bias, arising from the presence of Zt−1 in the first-pass, is instead dealt

with by orthogonalizing the anomaly variables Zt−1 with respect to the observable factors ft, before

running the two-step procedure. Therefore, Zt−1 can be interpreted as representing the net portion

of the anomaly variables that affects expected returns, hence eliminating any indirect influence (or

confounding effect) coming from the risk factors.17

To better understand the implications of the orthogonalization on the model’s parameters and

their corresponding interpretations, consider the case where the researcher postulates a model that

involves a set of initial anomalies Z†
t−1 = (z†1,t−1, · · · , z

†
N,t−1)

′, such that:

Rt = α†
t−1 + Z†

t−1γz,t−1 +B†ft−1 + et (27)

where B† will be, in general, different from B. Then, starting from (27), one can construct the

orthogonal anomalies Zt−1 as the residuals from projecting Z†
t−1 onto the unit constant and ft,

implying a zero sample covariance between zi,t−1 and ft, and where we re-centre each zi,t−1 so that

their sample mean coincides with the sample mean of z†i,t−1, for every i = 1, ..., N . This leads to:

zi,t−1 ≡ z†i,t−1 − Σ̂
z†i f

Σ̂−1
f (ft − f̄), (28)

where Σ̂
z†i f

= Ĉov(z†i,t−1, f
′) = 1

T−1Z
†′
i F − Z̄†

i f̄
′, and Σ̂f = V̂ar(f) = 1

T−1F
′F − f̄ f̄ ′, where

Z†
i = (z†i,1, · · · , z

†
i,T−1)

′, Z̄†
i = Z†′

i
1T−1

T−1 , and where we use Ĉov(·) and V̂ar(·) to denote the sam-

ple covariance and sample variance estimators, respectively. Then, replacing (28) in (27), and

16One can avoid imposing the smoothness conditions of Assumption 2, and thus allowing for time-series dependence
between the time-varying premia and the risk factors, but at the cost of more complicate expressions. In particular,
(11) can be expressed as a panel data model with interactive-fixed effects:

Rt = α+ Zt−1γ̄z +Bft + ut,

where the error term satisfies ut = ξt +∆gt for an asset-specific error ξt and a vector of zero-mean latent factors gt

possibly correlated with the observed risk factors ft, with loadings ∆, and where γ̄z = T−1 ∑T
t=1 γt−1,z. Assumption 2

implies orthogonality between ft and ut, resurrecting the OLS estimator B̂. However, an alternative estimator for
B exists that avoids Assumption 2 but leads to a more involved analysis of the CSR in the second pass. Details are
available upon request.

17The orthogonalization between anomalies and risk factors implies that Zt−1 are no longer pre-determined. By
standard arguments, this leads to a bias of order Op(T

−1), which, however, turns out to be irrelevant in our large-
N–fixed-T sampling scheme, given the fast rate at which the bias vanishes.
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imposing the asset pricing restriction in (6), we get model (11), where, setting γ̄z ≡ Γ′
z
1T−1

T−1 with

Γz = (γz,1, · · · ,γz,T−1)
′,

βi ≡ β†
i + Σ̂−1

f Σ̂′
z†i f

γ̄z. (29)

From (29), it is easy to see that, after the orthogonalization of the anomaly variables, the (trans-

formed) B takes now into account not only the direct effect of the risk factors on the cross-section

of expected returns, but also the indirect effect of ft, trough its possible dependence with Z†
t−1.

This set-up is extremely convenient and allows us to estimate the matrix B by simply using

(26), without now incurring in any source of bias coming from the exclusion of anomalies from

the first-pass regression or due to the potential correlation between risk factors and anomalies.

Therefore, the feasible version of (11) becomes

Rt = X̂Γf,t−1 + Zt−1γz,t−1 + ηt, (30)

setting X̂ = (1N , B̂), with B̂ defined in (26), ηt ≡ ϵt−(X̂−X)Γf,t−1, and where Zt−1 satisfies (28),

hence being uncorrelated with the risk factors. Running a single cross-sectional OLS regression on

(30) yields the time-varying OLS estimator

[
Γ̂f,t−1

γ̂z,t−1

]
≡

[
X̂′X̂ X̂′Zt−1

Z′
t−1X̂ Z′

t−1Zt−1

]−1 [
X̂′Rt

Z′
t−1Rt

]
, (31)

where Γ̂f,t−1 ≡ (γ̂0,t−1, δ̂
′
f,t−1)

′.18 The estimator in (31) generalizes the conventional estimator

γ̃z,t−1 in (14) to the case of when both anomalies and (estimated) loadings are used as regressors

in the feasible model. The two estimators coincide when X̂′Zt−1 = 0N×Kz , a condition which is,

however, not warranted in general. When such orthogonality condition is violated, then γ̂z,t−1 in

(31) remains valid, but γ̃z,t−1 in (14) becomes biased.19

Although (31) resolves the bias coming from the potential lack of orthogonality between the risk

factors and the anomalies, unfortunately other sources of bias arise in our large-N–fixed-T set-up.

The reason is that B̂ does not converge to B when T is fixed, making the OLS estimator in (31)

18To simplify the exposition we are slightly abusing the notation by indexing the OLS estimator (31) to time t− 1
instead to time t.

19To clarify, notice that the orthogonality condition that we impose between Zt−1 and ft represents a time-series
restriction, which does not imply the cross-sectional restriction X̂′Zt−1 = 0N×Kz .
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biased due the EIV effect.20

However, we show that such biases can be consistently estimated, leading to our new bias-

adjusted CSR OLS estimator:[
Γ̂∗
f,t−1

γ̂∗
z,t−1

]
≡

[
X̂′X̂−NΛ̂1 X̂′Zt−1

Z′
t−1X̂ Z′

t−1Zt−1

]−1 [
X̂′Rt −NΛ̂2,t−1

Z′
t−1Rt

]
, (32)

where Γ̂∗
f,t−1 ≡ (γ̂∗0,t−1, δ̂

∗′
f,t−1)

′, and where we set

Λ̂1 ≡

[
0 0′Kf

0Kf
σ̂2P′P

]
, Λ̂2,t−1 ≡ σ̂2

[
0

P′ıt−1,T−1

]
, (33)

where ıs,T−1 denotes the s-th row of the identity matrix IT−1, and where

σ̂2 ≡ tr(ϵ̂′ϵ̂)

N(T −K − 2)
, (34)

with tr(·) denoting the trace operator, K = Kf + Kz, and where ϵ̂ represents the OLS residuals,

defined as ϵ̂i ≡ MD̃i
Ri, withMD̃i

= IT−1−D̃i(D̃
′
iD̃i)

−1D̃
′
i, and D̃i ≡ (D, Z̃i), withD ≡ (1T−1,F),

and Z̃i ≡M1T−1Zi.
21

The following theorem establishes the limiting properties of our novel bias-adjusted estimator.

Let Z ≡ (z1, ..., zN )′ define the overall N × Kz(T − 1) matrix of anomalies, with zi being the

Kz(T − 1)× 1 vector zi ≡
(
z
(1)
i,1 , · · · , z

(1)
i,T−1, · · · , z

(Kz)
i,1 , · · · , z(Kz)

i,T−1

)′
, with z

(j)
i,T−1 denoting the value

of the jth anomaly for stock i at time t. Let 0a and 1a denote an a × 1 vector of zeros and ones,

respectively. The following Kz(T − 1)×Kz matrices of constants

J =
1

T − 1


1T−1 0T−1 . . . 0T−1

0T−1 1T−1 . . . 0T−1
...

...
. . .

...
0T−1 0T−1 . . . 1T−1

 =

(
IKz ⊗

1T−1

(T − 1)

)
=

1

T − 1

T−1∑
s=1

Js (35)

20Moreover, as the estimator (31) is evaluated at each point in time, a second source of bias arises (besides the
EIV) due to the fact that P′ıt−1,T−1 could be, in general, different from 0Kf . See Proposition OA.1 in the Online
Appendix for a formal proof. In remark OA.19 we also show that the OLS estimator in (31) remains biased even
when one assumes that T is large, but N is fixed. However, in this case, the bias would be a function of a random
component, making the bias term impossible to be consistently estimated, unlike our large-N case.

21Note that, while computation of the OLS estimator β̂i only requires the regressors D, the corresponding residuals
must be evaluated with respect to both Di and Z̃i, as it always happens in regressions with orthogonal independent
variables.

26



with

Js =


ιs,T−1 0T−1 . . . 0T−1

0T−1 ιs,T−1 . . . 0T−1
...

...
. . .

...
0T−1 0T−1 . . . ιs,T−1

 = (IKz ⊗ ιs,T−1) for 1 ≤ s ≤ T − 1, (36)

are needed to evaluate the sample means of the anomaly variables and to select the s-th observation

from the Z matrix, yielding ZJs = Zs and ZJ = (T − 1)
∑T−1

s=1 Zs. Finally, let ⊗, vec(·) and ⊙

denote the Kronecker product, the vec operator, and the Hadamard product, respectively, and let

→p,→d denote convergence in probability and distribution, respectively.

Theorem 1 (Large-N consistency and asymptotic normality of the time varying bias-adjusted

CSR OLS estimator). As N → ∞, under Assumptions 2–8 (listed in the Appendix A.1), then

(i)

Γ̂∗
f,t−1 − Γf,t−1 = Op

(
1√
N

)
and γ̂∗

z,t−1 − γz,t−1 = Op

(
1√
N

)
, (37)

(ii)

√
N

[
Γ̂∗
f,t−1 − Γf,t−1

γ̂∗
z,t−1 − γz,t−1

]
→d N

(
0K+1,L

−1
t−1Ot−1L

−1′
t−1

)
, (38)

for some Lt−1 > 0 and Ot−1 defined in (OA.35).22

Proof. See Appendix OA.4.

To conduct statistical inference, we need a consistent estimator of the asymptotic covariance

matrix in (38), which we present in the next theorem.

Theorem 2 (Standard errors of the time varying bias-adjusted CSR OLS estimator). As N → ∞,

under Assumptions 2–8, and the identification condition κ4 = 0,

L̂−1
t−1 Ôt−1 L̂

−1′

t−1 →p L−1
t−1Ot−1 L

−1′

t−1 (39)

22To ease the exposition, the definition of Lt−10 and Ot−1 has been relegated to the proof of the theorem (see
(OA.35)).
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where

L̂t−1 ≡
1

N

[
X̂′X̂−NΛ̂1 X̂′Zt−1

Z′
t−1X̂ Z′

t−1Zt−1

]
, and Ôt−1 ≡

[
Ût−1 σ̂2Ĝt−1Ĥ

′
t−1

σ̂2Ĥt−1Ĝ
′
t−1 Ĥt−1Σ̂UĤ

′
t−1,

]
(40)

with Ût−1 ≡ σ̂2Q̂′
t−1Q̂t−1

(
Σ̂X − Λ̂1

)
+

[
0 0′Kf

0Kf
V̂′

t−1ÛϵV̂t−1

]
, setting MD̃ ≡ N−1

∑N
i=1MD̃i

,

Σ̂X ≡ N−1X̂′X̂, Σ̂ZB ≡ N−1Z′B̂, µ̂z,T−1 ≡ N−1Z′1N , and Σ̂U ≡ (σ̂2IT−1 ⊗Z′Z/N), with Λ̂1 and

σ̂2 defined in (33) and (34), respectively, and we define the following matrices

Q̂t−1 ≡ ıt−1,T−1 −Pδ̂∗f,t−1, Ĥt−1 ≡ Q̂′
t−1 ⊗ J′t−1,

Ĝt−1 ≡
[
Q̂t−1 ⊗ µ̂z,T−1, Q̂t−1 ⊗ Σ̂ZB

]′
, and

V̂t−1 ≡ (Q̂t−1 ⊗P)−

(
vec(MD̃)

(T −K − 2)

)
Q̂′

t−1P,

where Ûϵ is obtained plugging κ4 = 0 and σ̂4 = N−1
∑N

i=1

∑T−1
t=1 ϵ̂4it/3 tr

(
M

(2)

D̃

)
, with M

(2)

D̃
≡

1
N

∑N
i=1

(
MD̃i

⊙MD̃i

)
, into Uϵ = Uϵ(κ4, σ

4) (see Remark 2 to Assumption 7).

Proof. See Appendix OA.4.

The square root of the diagonal elements of L̂−1
t−1Ôt−1L̂

−1
t−1 in (40), divided by

√
N , represent

the standard errors of the premia estimators Γ̂∗
f,t−1 and γ̂∗

z,t−1, which can be used to construct

asymptotically valid confidence intervals.

6 Implications for Characteristic-Based Portfolios

An increasing strand of cross-sectional asset pricing literature, pioneered by Fama (1976), inter-

prets (31) as characteristic-based portfolios. Therefore, a key and immediate implication of our

novel asymptotic analysis relies in its ability to provide inference - specifically, standard errors and

forecasting bands - for such portfolios, as we explain below.

Various methods have been employed to construct characteristic-based factors, ranging from

sorting approaches (see Fama and French (1993)) to cross-sectional OLS regressions (see Back,

Kapadia, and Ostdiek (2015) and Fama and French (2020)). Other techniques involve linear com-

binations derived from rank-transformed centered characteristics (as discussed in Kozak, Nagel,
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and Santosh (2020)), as well as PCA-type methods, as illustrated by Kelly, Pruitt, and Su (2019)

and Kim, Korajczyk, and Neuhierl (2021). Kozak and Nagel (2023) spell out the necessary con-

ditions for a generic (referred to as heuristic) estimator of characteristic-based portfolios to be

(approximately) correct, thereby circumventing the challenging task of inverting a large covariance

matrix central to the GLS approach, which they show is the only setting where characteristic-based

portfolios can attain mean-variance efficiency.23

The key connection to understand how our anomaly-dissecting testing procedure can be used

to accurately estimate characteristic-based portfolios hinges on the identification condition detailed

in Section 3.1.1. Specifically, this condition asserts that a factor model characterized by time-

varying risk exposures influenced by specific firms’ characteristics Zt−1 can be observationally

indistinguishable from a model featuring constant risk exposures and time-varying alphas driven

by the same Zt−1.
24

Indeed, consider again model (2) under exact pricing (3) and assume time varying risk exposures

Bt−1 = [Zt−1,B]. This implies that the K risk factors in ft are made by Kc latent factors f ct

(representing the characteristic-based portfolios) having observed time-varying risk exposures Zt−1,

and by Ko observed risk factors fot with locally constant risk exposures B (by Assumption 1).25

That is, denoting ft = [f c′t , f
o′
t ]′ and re-arranging, gives:

Rt = γ0,t−11N + Zt−1F
c
t +BFo

t + ϵt, (41)

where Fc
t and Fo

t represent re-centred versions of the risk factors around the corresponding risk

premia, that is

Fc
t ≡ γc,t−1 + f ct − E [f ct |It−1,Π] and Fo

t ≡ γo,t−1 + fot − E [fot |It−1,Π] , (42)

where γc,t−1 and γo,t−1 are the risk premia of the latent and observed risk factors f ct and fot ,

respectively.26

23Acknowledging that some of these heuristic methodologies can result in characteristics-based factors contaminated
by unpriced risk, Daniel, Mota, Rottke, and Santos (2020) propose a corrective approach to eliminate the influence
of these unpriced components rooted in the concept of hedging portfolios.

24A crucial difference, not explored here as we focus primarily on expected returns, arise between a model with
characteristic-based alphas and characteristic-based betas in terms of the covariance matrix of the test assets’ returns,
which must be a function of characteristics driving the risk exposures in the time-varying betas specification (see
Kozak and Nagel (2023)) but not necessarily in the time-varying alphas specification.

25Kelly, Pruitt, and Su (2019) and Kim, Korajczyk, and Neuhierl (2021) pioneered the interpretation of latent risk
factors estimators as characteristics-based portfolios - see also the discussion in Kozak and Nagel (2023), Section III.

26To clarify, using our earlier notation in (8), it is evident that Fc
t = δc,t−1 and Fo

t = δo,t−1. However, we prefer to
adopt this notation in this section to emphasize estimating cross-sectional portfolio returns instead of risk premia.
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The cross-sectional estimation of Fc
t , along with Fo

t and γ0,t−1, can be therefore obtained using

our two-step procedure. Firstly, B is estimated using (26), which entails regressing the returns on

an intercept and the observed risk factors fot only, a choice justified by the orthogonality assumption

between observed and latent factors. Secondly, a cross-sectional regression is performed for each

period t, wherein Rt is regressed onto an intercept, the observed characteristics Zt−1, and the

estimated B̂ from the fist-pass. The outcome of this regression yields the estimated cross-sectional

OLS factors, which can be interpreted as portfolio returns:γ̂0,t−1

F̂o
t

F̂c
t

 ≡Wols′
t−1Rt with weights Wols

t−1 ≡
[
X̂ Zt−1

] [ X̂′X̂ X̂′Zt−1

Z′
t−1X̂ Z′

t−1Zt−1

]−1

, (43)

where X̂ = [1N , B̂] and B̂ is defined in (26). Clearly,Wols′
t−1Rt = (Γ̂′

f,t−1, γ̂
′
z,t−1)

′, which coincides

with our estimator in (31). However, delving into the interpretation of cross-sectional risk factors,

one can also easily see that the portfolio weights satisfy:

W
ols′
t−1

[
X̂ Zt−1

]
=


W

0′
t−11N W

0′
t−1B̂ W

0′
t−1Zt−1

W
β′
t−11N W

β′
t−1B̂ W

β′
t−1Zt−1

W
Z′
t−11N W

Z′
t−1B̂ W

Z′
t−1Zt−1

 =


1 0 0

0 1 0

0 0 1

 . (44)

where we denote Wols
t−1 =

[
W

0
t−1 W

β
t−1 W

Z
t−1

]
, and where in (44) we set Kf = Kz = 1 for

simplicity. Back, Kapadia, and Ostdiek (2015) refer to the cross-sectional estimator of Fc
t as the

(characteristics) pure-play portfolios because their weights satisfy (44).27 Therefore, the intercept

portfolio γ̂0,t−1 with weights W0
t−1 represents a unit-long portfolio (W0′

t−11N = 1) with a zero

spread in both the characteristics and the factor’s risk exposures (sinceW0′
t−1Zt−1 =W

0′
t−1B̂ = 0).

The characteristic-based portfolio F̂c
t (i.e, the OLS factor) represents a zero-investment long-short

portfolio (W0′
t−11N = 0), which is factor-neutral (i.e, W0′

t−1B̂ = 0) but has a unit spread in the

Zt−1 characteristic (i.e,W
0′
t−1Zt−1 = 1). Specular properties holds for the beta portfolio F̂o

t , having

only a unit spread in the factor’s risk exposures.

Our asymptotic analysis derived in Theorems 1 and 2 serves as a rigorous foundation for es-

timating cross-sectional OLS portfolios accurately and drawing correct inference on them, such

27Specifically, every column ofWols
t−1, say the jth column with j = 1, · · · ,K+1, is the solution of the minimization

problem minw′w such that
[
X̂ Zt−1

]′
w = ιj , where ιj denotes the jth column (or row) of the identity matrix of

dimension (K + 1) × (K + 1), leading to the interpretation of the columns ofWols
t−1 as maximally diversified pure

plays.

30



as, for instance, the construction of accurate forecasting intervals. The use and the validity of our

methodology are further supported by the fact that our analysis is developed under the large-N set-

ting, which represents an ideal sampling scheme in evaluating cross-sectional regressions. Moreover,

keeping T fixed not only has enabled us to formulate our methodology within a context of condi-

tional asset pricing with time-varying premia, but also to interpret these results as time-varying

risk factors in characteristic-based portfolios construction. This is in contrast with existing PCA-

related estimators, which typically hinge on a double asymptotic framework, where both N and T

tend to infinity (see Kelly, Pruitt, and Su (2019) and Kim, Korajczyk, and Neuhierl (2021)). We

also differ from these contributions by assuming that the risk exposures are parameter-free. This

ensures that the estimates of latent risk factors, i.e., the cross-sectional OLS portfolios, remain

uncontaminated by any unknown rotation matrix.

Notice that to achieve accurate estimation of such characteristic-based portfolios requires the

bias adjustment in (32). This is because the risk exposures to observed factors are contaminated

by estimation noise (due to the fixed nature of T ), unless, of course, one opts to exclude fot from

the asset pricing model (41), as commonly practiced in this literature. As discussed in Section 4,

however, this latter method may be affected by significant biases and corrupted inference whenever

the observed factors are priced and cannot be effectively excluded. Alternatively, it becomes a

concern if their risk exposures lack orthogonality to the characteristics Zt−1.

6.1 Risk Premia Estimation of Characteristic-Based Portfolios

Whereas our OLS CRS inferential procedure of Section 5 can be readily used for estimation and

inference on the cross-sectional OLS factors, a suitable modification of our large-N methodology

allows to estimate accurately their risk premia even when the latter are time-varying, in contrast

to the conventional large-T approaches which give biased risk premia estimates, as explained in

Section 4.

Considering the asset pricing model (41), one obtains γc,t−1 = E [Fc
t |It−1,Π].28 Therefore, a

local average of the Fc
t provides a natural nonparametric estimator (specifically, with a rectangular

kernel) for its risk premia vector γc,t−1 as the latter is a conditional mean.29 This raises two

28NO EXTEND TO OBSERVED FACTORS IN TEXT The same arguments apply for γo,t−1 = E [Fo
t |It−1,Π] but

we focus here on estimation of the risk premia associated with the characteristic-based risk factor Fc
t .

29By standard arguments, the sample mean represents a valid nonparametric estimator of the conditional expecta-
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challenges, namely that Fc
t is not observed, and second that our asymptotic analysis works for

fixed T , which we now tackle. First, given that T remains fixed, one can identify a unbiased proxi

of the risk premia, that is one can estimate δ̄c ≡ T−1
∑T

t=1 F̄
c
t = γ̄c + f̄c − E[Fc] ≈ γ̄c, known as

the ex-post risk premia (see Shanken (1992), here extended to the case of time-varying moments

and risk premia).30 The ex-post risk premia, amid the noisiness related to the fixed T , remains

an extremely valuable quantity, both empirically and theoretically. For example, Zaffaroni (2022)

shows that the SDF built on the ex-post risk premia induces pricing errors of the order of O(T−1)

despite δ̄c differs from γ̄c by an order O(T− 1
2 ). Second, as (by Theorems 1 and 2) F̂c

t accurately

captures the latent risk factor vector Fc
t for every given point in time, one should be able to estimate

δ̄c accurately. We now formalize this conjecture, providing the corresponding inferential analysis.

Specifically, let Z̄ = 1
(T−1)

∑T−1
t=1 Zt be the N × Kz matrix of characteristics’ time-series av-

erages. Then, by averaging the second-pass relationship in (41) across time, and noticing that

(T − 1)−1
∑T−1

t=1 Zt−1F
c
t = Z̄δ̄c + Ĉov(Zt−1,F

c
t), with Ĉov(Zt−1,F

c
t) ≡ (T − 1)−1

∑T−1
t=1 (Zt−1 −

Z̄)(Fc
t − δ̄c), one obtains:

R̄ = γ̄01N + Z̄δ̄c +Bδ̄o + ϵ̄∗ = Z̄δ̄c +XΓ̄o + ϵ̄∗, (45)

where Γ̄o ≡
(
γ̄0, δ̄

′
o

)′
, and ϵ̄∗ ≡ ϵ̄+ Ĉov(Zt−1,F

c
t). Therefore, following the same steps adopted for

the time-varying estimator in (32), we can derive the OLS bias-adjusted estimator of the locally-

averaged risk premia as:  ˆ̄Γ∗
o

ˆ̄δ∗c

 ≡

[
X̂′X̂−NΛ̂1 X̂′Z̄

Z̄′X̂ Z̄′Z̄

]−1 [
X̂′R̄

Z̄′R̄

]
, (46)

where Λ̂1 is defined in (33), and where ˆ̄Γ∗
o ≡

(
ˆ̄γ∗0,

ˆ̄δ∗
′

o

)′
. Notice that now, compared with the

time-varying estimator in (32), the estimator in (46) is immune of the bias term related to Λ2. The

reason is that this bias vanishes when one constructs the locally-averaged estimators (46), because

(T −1)−1
∑T

t=2Pıt−1,T−1 = P′1T−1 = 0Ko by construction (see Theorem 3 in the Online Appendix

OA.5.2). The asymptotic properties of our risk premia estimators are given as follows, where we

estimate jointly the (average) zero-beta rate as well as the risk premia to the characteristic-based

risk factors and the observed risk factors.

tion when the true risk premia’s time-variation is sufficiently smooth and not too abrupt, where smoothness can be
reasonably assumed in our setting, as T can be chosen to be arbitrarily small, with the only requirement being that
T > (Kf + 2).

30ALREADY DEFINED?By Ā we generically denote the sample mean of the quantities A1, · · · , AT .
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Theorem 3 (large-N–fixed-T - consistency and asymptotic normality of the risk premia CSR OLS

estimator). Under Assumptions 2—8 and Ĉov(Zt−1,Fc,t) = op(N
−1/2), as N → ∞,

(i)

ˆ̄Γ∗
o − Γ̄o = Op

(
1√
N

)
and ˆ̄δ∗c − δ̄c = Op

(
1√
N

)
, (47)

(ii)

√
N

 ˆ̄Γ∗
o − Γ̄o

ˆ̄δ∗c − δ̄c

→d N
(
0K+1,L

−1OL−1′
)
, (48)

where

L ≡

[
ΣX Σ′

ZX

ΣZX J
′ΣZJ

]
> 0, and O ≡

[
U σ2GH′

σ2HG′ HΣUH
′,

]
(49)

with U ≡ σ2

T−1

[
1 + (T − 1)δ̄o

′P′Pδ̄o
]
ΣX+

[
0 0′Ko

0Ko V′UϵV

]
, Uϵ, ΣZB, ΣZX, ΣU and µz,T−1

defined in Assumptions 4 and 8, and in Lemma 2, and where

Q ≡ 1T−1

(T − 1)
−Pδ̄o,

V ≡ (Q⊗P)−
vec(MD̃)

T −K − 2
Q′P,

G ≡
[
Q⊗ µz,T−1, Q⊗ΣZB

]′
,

H ≡ Q′ ⊗ J′.

Proof. See the Online Appendix OA.5.2

The following theorem shows how to construct asymptotically valid standard errors.

Theorem 4 (standard errors of the locally-averaged bias-adjusted CSR OLS estimator). Under

Assumptions 2—8, Ĉov(Zt−1,Fc,t−1) = op(N
−1/2), and the identification condition κ4 = 0, as

N → ∞,

L̂−1 Ô L̂−1′ →p L−1OL−1′ (50)

where

L̂ ≡ 1

N

[
X̂′X̂−NΛ̂1 X̂′Z

Z′X̂ Z′Z

]
, and Ô ≡

[
Û σ̂2ĜĤ′

σ̂2ĤĜ′ ĤΣ̂UĤ
′

]
, (51)
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with Û ≡ σ̂2

T−1

[
1 + (T − 1)ˆ̄δ∗

′
o P′Pˆ̄δ∗o

]
(Σ̂X − Λ̂1) +

[
0 0′Kf

0Ko V̂′ÛϵV̂

]
and where Ûϵ = Uϵ(κ4 =

0, σ̂4) is a consistent plug-in estimator of Uϵ = Uϵ(κ4, σ
4) obtained by replacing σ4 with

σ̂4 =
1
N

∑N
i=1

∑T−1
t=1 ϵ̂4it

3 tr
(
M

(2)

D̃

) , with M
(2)

D̃
≡ 1

N

N∑
i=1

(
MD̃i

⊙MD̃i

)
, (52)

recalling MD̃ = N−1
∑N

i=1MD̃i
, with MD̃i

= IT−1 − D̃i(D̃
′
iD̃i)

−1D̃
′
i, D̃i = (D, Z̃i), with D =

(1T−1,F), Σ̂X = N−1X̂′X̂, Σ̂ZB = N−1Z′B̂, µ̂z,T−1 = N−1Z′1N , and Σ̂U ≡ σ̂2IT−1 ⊗ Z′Z/N ,

with σ̂2 defined in (34), and defining

Ĥ ≡ Q̂′ ⊗ J′, Q̂ ≡ 1T−1

(T − 1)
−Pˆ̄δ∗o ,

V̂ ≡ (Q̂⊗P)−
vec(MD̃)

T −K − 2
Q̂′P,

Ĝ ≡
[
Q̂⊗ µ̂z,T−1, Q̂⊗ Σ̂ZB

]′
.

Proof. See the Online Appendix OA.5.2

Notice that the precision of our risk premia estimators improves when T increases, although

the larger is T the more pronounced the smoothness of the risk premia must be for accurate

estimation. On the other hand, our average premia estimator remains meaningful even under

large-T asymptotics, because it generalizes the conventional two-pass estimator in (14), without

requiring any stringent orthogonality assumption. In this case, however, ( ˆ̄Γ∗′
o ,

ˆ̄δ∗
′

c )′ will accurately

estimate the long-run average of the time-varying premia, which clearly would not unveil any

variation over time in the premia coefficients.31

7 Anomalies with Time-Varying Premia: WLS-Based Estimation

Fama and French (2008) and Hou, Chen, and Zhang (2020), among others, recognize that most of

the empirical results on asset pricing anomalies can be seriously affected by the presence of micro-

cap stocks. Small-cap equities typically show higher returns than large-cap stocks, but they also

31For example, following Ang and Kristensen (2012), one could assume that
(
Γ′

o,t, δ
′
c,t

)′
=

(
Γ′

o(
t
T
), δ′

c(
t
T
)
)′
, for

some smooth functions Γo(·) and δc(·). Then, as T goes to infinity, ( ˆ̄Γ∗′
o , ˆ̄δ∗′

c )′ accurately estimate the long-run risk

premia

∫
1

0

[
Γo(s)
δc(s)

]
ds, which, although of interest (and assuming that such quantity exists finite), would completely

mask any form of time-variation in the risk premia parameters.
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tend to have the largest cross-sectional dispersions both in terms of returns and anomaly variables.

To mitigate this effect, Hou, Chen, and Zhang (2020) consider a Weighted Least Square (WLS)

estimator of the premia parameters, with the weights being proportional to the corresponding

stock’s market capitalization.

Formally, let
(
Γ̂
(w)′

f,t−1, γ̂
(w)′

z,t−1

)′
denote the WLS estimator of the (K + 1)-vector of premia co-

efficients, where Γ̂
(w)
f,t−1 ≡

(
γ̂
(w)′

0,t−1, δ̂
(w)′

f,t−1

)′
denotes the premia estimator of the zero-beta rate

and the Kf risk factors, while γ̂
(w)
z,t−1 refers to the premia of the Kz anomaly variables. Let

Wt−1 be an N × N diagonal matrix containing the asset-specific weights at time t − 1, i.e.

Wt−1 ≡ diag (w1,t−1, ...,wN,t−1), where we assume wi,t > 0 for every asset i and period t without

great loss of generality. Then, following Hou, Chen, and Zhang (2020), we have:

Γ̂(w)
f,t−1

γ̂
(w)
z,t−1

 ≡

[
X̂′Wt−1X̂ X̂′Wt−1Zt−1

Z′
t−1Wt−1X̂ Z′

t−1Wt−1Zt−1

]−1
 X̂′Wt−1Rt

Z′
t−1Wt−1Rt

 (53)

where, for each stock i, the weight wi,t−1 in Wt−1 is given by the corresponding stock market

capitalization at time t− 1. 32

Similarly to the conventional time-varying OLS estimator defined in (31), we can show that

analogous conclusions apply to the WLS estimator in (53). Indeed, whenever one wants to estimate

time-varying premia under the traditional large-T–fixed-N setting, we show that the estimator in

(53) would be invalid, because it is affected by a random (hence, unpredictable) bias.33 In the

large-N–fixed-T set-up, instead, the WLS estimator in (53) is still contaminated by several sources

of bias which, however, can be consistently estimated, yielding our novel bias-adjusted CSR WLS

estimator:34

Γ̂∗(w)
f,t−1

γ̂
∗(w)
z,t−1

 ≡

X̂′Wt−1X̂−NΛ̂
(w)
1,t−1 X̂′Wt−1Zt−1

Z′
t−1Wt−1X̂ Z′

t−1Wt−1Zt−1

−1 X̂′Wt−1Rt −NΛ̂
(w)
2,t−1

Z′
t−1Wt−1Rt

 , (54)

32Our WLS estimator of the anomalies premia can also be used as an estimator of cross-sectional WLS portfolios,
along the lines outlined in Section 6.

33We show this result in the Online Appendix OA.5.1 - see Remark OA.19.
34See the Online Appendix OA.5.1 - Proposition OA.2.
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where Γ̂
∗(w)
t−1 ≡

(
γ̂
∗(w)
0,t−1, δ̂

∗(w)′

f,t−1

)′
, and where we set

Λ̂
(w)
1,t−1 ≡

 0 0′Kf

0Kf
σ̂
2(w)
t−1 P′P

 , Λ̂
(w)
2,t−1 ≡ σ̂

2(w)
t−1

[
0

P′ıt−1,T−1

]
(55)

with

σ̂
2(w)
t−1 ≡ tr(ϵ̂Wt−1ϵ̂

′)

N(T −K − 2)
(56)

Before establishing the asymptotic properties of the WLS estimator in (54), it is important

to highlight some necessary remarks. The choice of using stock’s market capitalization in the

Wt−1 matrix makes the weighting scheme parameter-free. On one hand, this simplifies the WLS

analysis, where the weights are instead typically defined as functions of unknown parameters (to be

estimated) or set to be inversely proportional to the regression-error variance. On the other hand,

however, market capitalization could be very likely correlated - both cross-sectionally and over time

- with returns and other anomalies, making the asymptotic analysis of the estimator non-trivial.

For this reason, we need to impose some conditions on the sample moments of anomalies, weights

and asset-specific errors. Specifically, we assume that each asset-specific error is uncorrelated with

past values of both anomaly variables and weights, but could be potentially correlated with their

contemporary and future values (see Assumption 12 in Appendix A.1.1).

Moreover, the behavior of the weights plays a crucial role in determining the statistical properties

of the WLS estimator, especially when N → ∞. In particular, a condition that the weights should

satisfy is the so-called granuarity assumption, which guarantees that the weights dissipate to zero

sufficiently fast for every asset, as N → ∞. When the granularity assumption fails, then the WLS

estimator exhibits a random limit, making both estimation and inference invalid.Therefore, in the

following theorems, we establish the limiting properties of the WLS estimator in (54) under the

assumption that granularity holds (see Assumption 9 in Appendix A.1.1).

Theorem 5. As N → ∞, and under Assumptions 2–12,

(i)

Γ̂
∗(w)
f,t−1 − Γf,t−1 = Op

(
1√
N

)
, γ̂

∗(w)
z,t−1 − γz,t−1 = Op

(
1√
N

)
. (57)
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(ii)

√
N

Γ̂∗(w)
f,t−1 − Γf,t−1

γ̂
∗(w)
z,t−1 − γz,t−1

→d N
(
0K+1,L

−1
t−1O

(w)
t−1L

−1
t−1

)
, (58)

where Lt−1 is the same as in Theorem 1, and for for some O
(w)
t−1 defined in (OA.45).35

Proof. See Appendix OA.4.

The next theorem shows how to construct asymptotically-valid standard errors for the WLS esti-

mator.36

Theorem 6. As N → ∞, under Assumptions 2–12, and the identification condition κ4 = 0,

L̂
(w)−1
t−1 Ô

(w)
t−1 L̂

(w)−1′

t−1 →p L−1
t−1O

(w)
t−1 L

−1′
t−1 (59)

where

L̂
(w)
t−1 ≡

1

N

X̂′X̂−NΛ̂
(w)
1,t−1 X̂′Wt−1Zt−1

Z′
t−1Wt−1X̂ Z′

t−1Wt−1Zt−1

 , and Ô
(w)
t−1 ≡ λ̂t−1

[
µ̂xµ̂

′
x µ̂xµ̂

′
z

µ̂zµ̂
′
x µ̂zµ̂

′
z

]
+ M̂

(w)
t−1 (60)

with

M̂
(w)
t−1 ≡


0 0′Kf

0′Kz

0Kf
µ̂2
w,t−1 V̂

(w)′

t−1 ÛϵV̂
(w)
t−1 0Kf×Kz

0Kz 0Kz×Kf
Ĥ

(w)
t−1Σ̂

(w)
U Ĥ

(w)′

t−1 + Ŝ
(w)
t−1 + Ŝ

(w)
t−1

 (61)

setting µ̂x ≡ (1, µ̂′
β)

′, µ̂β ≡ N−1B̂1N , µ̂z ≡ N−1
J
′Z′1N , µ̂2

w,t−1 ≡ N−11′NW2
t−11N , Σ̂

(w)
U ≡

(σ̂
2(w)
t−1 IT−1 ⊗N−1Z′Z), Σ̂ZW ≡ N−1Z′W, and Σ̂V ≡

(
σ̂
2(w)
t−1 IT−1 ⊗N−1

∑N
i=1wiw

′
i

)
, where wi ≡

(wi,1, ...,wi,T−1)
′, with Λ̂

(w)
1,t−1 and σ̂

2(w)
t−1 defined in (55) and (56), respectively, and we define the

following matrices

Q̂
(w)
t−1 ≡ ıt−1,T−1 −Pδ̂

∗(w)
f,t−1, Ĥ

(w)
t−1 ≡ Q̂

(w)′

t−1 ⊗ J′t−1,

Ŷt−1 ≡ Q̂
(w)
t−1 ⊗ ıt−1,T−1, λ̂t−1 ≡ Ŷ′

t−1Σ̂VŶt−1,

Ŝt−1 ≡ µ̂zŶ
′
t−1(σ̂

2(w)
t−1 IT−1 ⊗ Σ̂′

ZW)Ĥ
(w)′

t−1 ,

V̂
(w)
t−1 ≡ (Q̂

(w)
t−1 ⊗P)−

(
vec(MD̃)

T −K − 2

)
Q̂

(w)′

t−1P,

where Ûϵ is defined in Theorem 2.

35To ease the exposition, the precise definition of O
(w)
t−1 has been relegated to the proof of the theorem (see (OA.45)).

36We report the results without the proof, as if follows closely the proof of Theorem 2.
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8 Anomalies with Time-Varying Premia: Global Misspecification

All the results so far established assume that the asset pricing model (11) is correctly specified,

meaning that the true model does not omit any relevant variable (either a risk factor or an anomaly

variable) or, alternatively, it does not include any irrelevant one.37 When this assumption is

violated - a very likely scenario - then the issue of global misspecification arises which, if ignored,

could seriously compromise our inferential results.38 Indeed, misspecification affects the standard

errors obtained in the previous sections, with the risk of making an anomaly appear significant

when instead its premium is null or, alternatively, making it statistically irrelevant when instead

its effect is non-zero. Therefore, the objective of this section is to extend our methodology and

robustify our inferential results to the case of a generic deviation from exact pricing of unknown

form, i.e., global misspecification.

Consider the asset pricing restriction in (6) and assume now that, beyond the presence of

anomalies, there is a further deviation from exact pricing, due to potential global misspecification.

That is, assume that:

E[Ri,t|It−1,Π] = γ̃0,t−1 + δ̃′f,t−1βi + γ̃ ′
z,t−1zi,t−1 +mi,t−1, (62)

where mi,t−1 represents an additional pricing error, accounting for the fact the postulated model

could potentially specify the wrong set of variables. In other words, one could think that the overall

deviation from exact pricing in (3) has now a semiparametric structure, with the parametric part

being linear in the zi,t−1, and a non-parametric component coming from the misspecification error

mi,t−1, which is completely unspecified. Our objective is to test for the statistical relevance of the

anomalies zi,t−1, regardless of whether they represent or not the full set of variables describing the

37A different form of misspecification, not explored in this paper, occurs when one (or more) vector of betas is a
linear combination of the other ones, implying that X is not full-column rank. This happens, for example, when one
or more of the candidate risk factors has zero (or almost zero) betas, a situation which is often referred to as the
issue of spurious or useless factors. See, e.g., Jagannathan and Wang (1998), Kan and Zhang (1999b,a), Kleibergen
(2009), Gospodinov, Kan, and Robotti (2014), Bryzgalova (2014), Burnside (2016), Ahn, Horenstein, and Wang
(2018), Kleibergen and Zhan (2014, 2020), and Anatolyev and Mikusheva (2020), among others. The less restrictive
cases of semi-strong, when B′B/N = o(1) (see Connor and Korajczyk (2022)), and weak factors, when B′B = O(1)
(see Lettau and Pelger (2020) and Giglio, Xiu, and Zhang (2021)), are also ruled out by our assumptions. Kim,
Raponi, and Zaffaroni (2020) develop an inferential procedure to test for spurious and weak factors, valid when N is
large and T is fixed.

38Global misspecification has been studied widely in the large-T sampling scheme; see Jagannathan and Wang
(1998), Shanken and Zhou (2007), Hou and Kimmel (2006), and Kan, Robotti, and Shanken (2013), among others.
Gagliardini, Ossola, and Scaillet (2016) and Raponi, Robotti, and Zaffaroni (2020) show how to robustify their risk
premia estimator to global misspecification in the large-N–large-T and in the large-N–fixed-T settings, respectively.
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true asset pricing model, that is regardless of whether mi,t−1 is zero or not.

Although we do not impose any parameterization on mi,t−1, simple considerations suggest that

mi,t−1 might be cross-sectionally correlated with ϵi,s, for every s ≤ t. As an illustrative example,

consider the case where one omits some relevant risk factors and anomaly variables from the true

model (11), and no other sources of misspecification are present. In this circumstance, the asset-

pricing model can be written as

Rt = Zt−1γ̃z,t−1 +XΓ̃t−1 + ϵt, with

ϵt = ϵ̆t + Z̆t−1γ̆z,t−1 + B̆δ̆f,t−1, (63)

where Γ̃f,t−1 = (γ̃0,t−1, δ̃
′
f,t−1)

′, Z̆t−1 represents the N × K̆z set of omitted anomalies with corre-

sponding premia γ̆z,t−1, and where B̆ is theN×K̆f matrix of loadings associated with the K̆f omitted

risk factors f̆t, having ex-post risk premia δ̆f,t−1.
39 Finally, ϵ̆t represents the genuine asset-specific

component of asset returns, coinciding with ϵt in the case of correct model specification. Then,

combining (62) with (63), we get

mt−1 = (m1,t−1, · · · ,mN,t−1)
′ = Z̆t−1γ̆z,t−1 + B̆δ̆f,t−1,

implying that mt and ϵs are cross-sectionally correlated, through either Z̆t or B̆, whenever s ≤ t,

unless ’of course the premia γ̆z,t−1 and δ̆f,t−1 are null, that is when model (11) is correctly specified.

The relationship in (62) implies that the parameters Γ̃f,t−1, and γ̃z,t−1, represent the so-called

pseudo-true values of the premia coefficients. Formally, let cz and cf denote two arbitrary vectors

of dimension Kz and Kf + 1, respectively. Then, by generalizing Shanken and Zhou (2007) and

Raponi, Robotti, and Zaffaroni (2020), we define the pseudo-true premia parameters

(Γ̃′
f,t−1, γ̃

′
z,t−1)

′ = argmin
cz,cf

1

N

(
E[Rt|It−1,Π]−Zt−1cz−Xcf

)′(
E[Rt|It−1,Π]−Zt−1cz+Xcf

)
, (64)

When the model is correctly specified, then Γ̃f,t−1 = Γf,t−1 and γ̃z,t−1 = γt−1,z, that is we recover

the vector of risk and anomalies’ premia of Section 5.

39For convenience, assume that (D,Zi)
′(F̆, Z̆i) = 0K+1×K̆ , with K̆ = K̆f + K̆z and that (X,Zt−1)

′(B̆, Z̆t−1) =
0K+1×K̆ . This is with only a small loss of generality because, as discussed above, the estimated time-series regression

of Rt on ft and Zt−1 can be always re-arranged so that (D,Zi) and (F̆, Z̆i) are made orthogonal to each other for
every i. The same applies for the estimated cross-sectional regression of Ri on βi and Zi, leading to orthogonality
between X,Zt−1 and B̆, Z̆t−1.
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The cross-sectional correlation between mt and ϵs, arising as a result of global misspecification,

induces further biases to the CSR OLS estimator, which nevertheless can be consistently estimated,

leading to our novel misspecification-robust premia estimators Γ̂
∗(m)
f,t−1 ≡ (γ̂

∗(m)
0,t−1, δ̂

∗(m)′
f,t−1 )

′ and γ̂
∗(m)
z,t−1,

defined as follows.40

Γ̂∗(m)
f,t−1

γ̂
∗(m)
z,t−1

 ≡

X̂′X̂−N(Λ̂1 + Λ̂
(m)
1,t−1) X̂′Zt−1 −NΛ̂

(m)
3,t−1

Z′
t−1X̂ Z′

t−1Zt−1

−1 X̂′Rt −N(Λ̂2,t−1 + Λ̂
(m)
2,t−1)

Z′
t−1Rt

 ,

(65)

setting Λ̂1 and Λ̂2,t−1 are defined in (33), and where we define the additional bias-correction terms

Λ̂
(m)
1,t−1 ≡

1

N

[
0′Kf+1

P′Ψ̂DX̂

]
, Λ̂

(m)
2,t−1 ≡

1

N

[
0

P′Ψ̂DR − σ̂2P′Ψ̂DD̃

]
, and Λ̂

(m)
3,t−1 ≡

1

N

[
0′Kz

P′Ψ̂DZ

]
,

(66)

with Ψ̂DX̂ ≡

[
M

(−1)
D,t−1ϵ̂X̂

0(T−t+1)×(Kf+1)

]
, Ψ̂DZ ≡

[
M

(−1)
D,t−1ϵ̂Zt−1

0(T−t+1)×Kz

]
, Ψ̂DR ≡

[
M

(−1)
D,t−1ϵ̂Rt

0T−t+1

]
, and

Ψ̂DD̃ ≡

[
M

(−1)
D,t−1MDıt−1,T−1

0T−t+1

]
, setting the (t−2)×(T−1) matrixM

(−1)
D,t−1 ≡M

−1
11 [It−2,0(t−2)×(T−t+1)],

whereM11 denotes the (t− 2)× (t− 2) top-left block ofMD = IT−1 −D(D′D)−1D′.41

The following theorem derives the asymptotic properties of our robust estimator, extending the

results of Theorem 1.

Theorem 7. As N → ∞, under Assumptions 2–8 and 13

(i)

Γ̂
∗(m)
f,t−1 − Γ̃f,t−1 = Op

(
1√
N

)
, γ̂

∗(m)
z,t−1 − γ̃z,t−1 = Op

(
1√
N

)
. (67)

(ii)

√
N

Γ̂∗(m)
f,t−1 − Γ̃f,t−1

γ̂
∗(m)
z,t−1 − γ̃z,t−1

→d N
(
0K+1,L

−1
t−1O

(m)
t−1 Lt−1

)
(68)

40See Section OA.5.3 for details of the derivation of (65).

41We use the partitionMD =

[
M11 M12

M21 M22

]
.
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for some Ω
(m)
t−1 defined in (OA.47), and O

(m)
t−1 ≡ Ot−1 +Ω

(m)
t−1 with Lt−1 > 0 and Ot−1 being

the same as in Theorem 1.42

Proof. See Appendix OA.4.

In Theorem OA.3 of the Online Appendix we establish L̂
(m)
t−1 →p Lt−1 and Ω̂

(m)
t−1 →p Ω

(m)
t−1, as

N → ∞, under the same assumptions of Theorem 7 and κ4 = 0, for estimators L̂
(m)
t−1 and Ω̂

(m)
t−1.

9 Measuring Anomalies’ Contribution: Cross-Sectional R2 Test

Despite the considerable literature on asset pricing anomalies, how much of the cross-sectional

variation in expected returns is accounted for by betas and how much by anomalies is still unclear

and it still represents a challenging question.

Offering a simple criterion that can answer this question and allow to conduct formal inference

on (joint) anomalies’ contribution is the objective of this section. Following Chordia, Goyal, and

Shanken (2015), one could consider the ratios of the (cross-sectional) variance of the beta component

and of the characteristics component, with respect to the overall (cross-sectional) variance of average

returns, to measure their relative contribution. Specifically, suppose one has estimated the model

(30) using our bias-adjusted CSR OLS estimator, hence obtaining:

Rt = X̂Γ̂∗
f,t−1 + Zt−1γ̂

∗
z,t−1 + η̂t, (69)

where η̂t indicates the N×1 vector of residuals. Then, the fraction of the overall variance explained

by the anomaly variables Zt−1 (at any point in time) would simply be

R̂
2(bench)
z,t−1 ≡

γ̂∗′
z,t−1Z

′
t−1M1NZt−1γ̂

∗
z,t−1

R′
tM1NRt

. (70)

However, despite being a very simple and intuitive measure, the R-squared in (70) could lead to

several problems. First, since beta and anomaly components are not necessarily orthogonal cross-

sectionally, this can lead to a fraction of the cross-sectional variance explained by the betas and by

the anomaly variables - expressed by the sum of the corresponding R2 - that is jointly greater than

100%. In addition, while orthogonality between CSR residuals and the regressors (both X̂ and

42To ease the exposition, the definition of Ω
(m)
t−1 has been relegated to the proof of the theorem (see (OA.47)).
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Zt−1) is, by construction, warranted by the conventional CSR OLS estimator in (31), this does not

hold when considering our bias-adjusted estimator
(
Γ̂∗′
f,t−1, γ̂

∗′
z,t−1

)′
of (32), implying that R̂

2(bench)
t−1

is even wrongly centred.43

To overcome such (lack of) orthogonality issues, let us rearrange the estimated asset pricing

model (69) as follows:

Rt = X̂Γ̂∗
f,t−1 + Zt−1γ̂

∗
z,t−1 +P[X̂,Zt−1]

η̂t +M[X̂,Zt−1]
η̂t

= PX̂

(
X̂Γ̂∗

f,t−1 + Zt−1γ̂
∗
z,t−1 +P[X̂,Zt−1]

η̂t

)
+MX̂

(
Zt−1γ̂

∗
z,t−1 +P[X̂,Zt−1]

η̂t

)
+M[X̂,Zt−1]

η̂t.

(71)

where we use the notation MA ≡ Ia −A(A′A)−1A′ ≡ Ia −PA, with PA ≡ A(A′A)−1A′, for a

generic matrix A of dimension a× b and rank b < a. Notice that, by construction, the three terms

on the right-hand side of (71) are now mutually orthogonal, the second term reflecting the joint

contribution of Zt−1. This yields our proposed R-squared test statistic:

R̂2
z,t−1 ≡

(
γ̂∗′
z,t−1Z

′
t−1 + η̂′

tP[X̂,Zt−1]

)
MX̂

(
Zt−1γ̂

∗
z,t−1 +P[X̂,Zt−1]

η̂t

)
R′

tM1NRt
, (72)

which satisfies 0 ≤ R̂2
z,t−1 ≤ 1. Notice that (72) represents a meaningful quantity, which allows us

to disentangle the contribution of that portion of anomalies that is unexplained by - i.e., orthogonal

to - the loadings (through the term MX̂Zt−1), as well as the contribution that might arise from

the term P[X̂,Zt−1]
η̂t, which is now not guaranteed to be null in general.

Armed with R̂2
z,t−1, one could test for the null hypothesis of zero anomalies’ contribution and,

in case of rejection, construct an asymptotically valid confidence interval for it. This would require

establishing the limiting statistical properties of R̂2
z,t−1, in particular its non-standard limiting

distribution, occurring when γz,t−1 = 0Kz . Therefore, in the following, we derive the asymptotic

distribution of R̂2
z,t−1 distinguishing between the two complementary cases of zero and non-zero

anomalies’ premia.

Theorem 8 (R2 test of anomalies’ contribution). Set the R2 test statistic equal to

T 2
z,t−1 ≡ N

(
R̂2

z,t−1 −
η̂′
tP[X̂,Zt−1]

MX̂P[X̂,Zt−1]
η̂t + 2 η̂′

tP[X̂,Zt−1]
MX̂Zt−1γ̂

∗
z,t−1

R′
tM1NRt

)
. (73)

43Finally, notice that when the (true) anomalies’ premia γz,t−1 are zero, then R̂
2(bench)
z,t−1 will converge to zero in

probability. This implies that we face a boundary problem - as necessarily R̂
2(bench)
t−1 ≥ 0 - which could lead to a

non-standard limiting distribution of the test statistic, under the null hypothesis of zero anomalies’ premia.
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Under Assumptions 2–8, as N → ∞, then:

(i) When γz,t−1 = 0Kz,

Tz,t−1 →d

Kz∑
j=1

dj,t−1χ
2
1,j ,

where (χ2
1,1, · · · , χ2

1,Kz
) are i.i.d χ2

1-distributed random variables , and (d1,t−1, · · · , dKz,t−1)

are the Kz eigenvalues of the matrix(
L−1
z,t−1Ot−1L

−1′

z,t−1

) 1
2
ΣZX̂Z,t−1

σR̃,t

(
L−1
z,t−1Ot−1L

−1′

z,t−1

) 1
2
,

where Lz,t−1 ≡
[
0Kz×(Kf+1), IKz

]
Lt−1, with Lt−1 and Ot−1 defined in (OA.35), and where

N−1R′
tM1NRt →p σR̃,t > 0, while N−1Z′

t−1MX̂Zt−1 →p ΣZX̂Z,t−1.

(ii) When γt−1,z ̸= 0Kz ,

Tz,t−1 →p ∞.

Moreover, under the additional Assumption 14, together with κ4 = 0, for any 0 < α < 1,

Pr

(
R̂2

z,t−1 − zα/2

(
ω̂z,t−1

N

) 1
2

≤ R2
z,t−1 ≤ R̂2

z,t−1 + zα/2

(
ω̂z,t−1

N

) 1
2

)
→ (1− α).

where ω̂z,t−1 is defined in (OA.53) and represents a consistent estimator of the asymptotic

covariance matrix of R̂2
z,t−1, zα/2 denotes the α/2-th quantile of the standard normal distri-

bution, and R2
t−1,z denotes the limit (in probability) of R̂2

t−1,z.

Proof. See Appendix OA.4.

The result of Theorem 8 resembles the limiting behavior of the Hansen and Jagannathan (2007)

(HJ) distance, which is typically used to test the null hypothesis of a correctly specified stochastic

discount factor (SDF), against the alternative of misspecified models. Indeed, under the null

hypotheses of correct model specification and no anomalies, respectively, both the HJ and the

R̂2
z,t−1 statistics show a non-standard limiting distribution, consisting of a linear combination of

i.i.d chi-squares, each of them having one degree of freedom. In contrast, the conventional Normal

distribution is restored for both test statistics when considering their alternative hypotheses of either

model misspecification (for the HJ statistic) or priced anomalies (in the case of R̂2
z,t−1 statistics).
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Practically, Theorem 8 suggests the following empirical testing procedure to assess and quantify

the effect of anomalies. At first, one would test whether the contribution of the considered anomaly

variables is null or not, using the limiting results of part (i), and eliminate such variables from the

asset pricing model whenever they would not provide any statistically significant contribution to

the cross-section of expected returns. Alternatively, if the test results to be statically significant -

that is the candidate anomalies play a significant role in explaining the cross-section of expected

returns - then one could construct a valid confidence interval for R̂2
z,t−1 using the results of part

(ii).

Finally, we can show that analogous properties hold in the case of a cross-sectional R-squared

test that uses the local average premia estimator (46), theWLS estimator in (54) and the misspecification-

robust estimator defined in (65).44

10 Empirical Application

10.1 Data

For our empirical exercise, we use data provided by Chen and Zimmermann (2019)45, which con-

tains 202 predictive firm-level characteristics at the monthly frequency. The reference period is

January 1986 - December 2020. For the anomalies which are not available for the entire time pe-

riod, we consider the last available month. Since our theory is derived for large N, in our analysis

we consider only predictors for which we have enough test assets (i.e. at least 20 observations) in

any given time interval. This leaves us with 170 variables, which we group following the ex ante

categorization of Hou et al. (2020) in six economic categories, namely Momentum (15 variables),

Value versus Growth (29 variables), Investment (30 variables), Profitability (20 variables), Intan-

gibles (49 variables), and Trading Frictions (27 variables). A detailed list of the variables is shown

in Table A.1. Following Hou et al. (2020), when performing monthly cross-sectional regressions,

we winsorize the regressors at the 1% - 99% levels each month to mitigate the impact of outliers.

We then standardize each regressor by subtracting its cross-sectional mean and dividing by its

cross-sectional standard deviation. Monthly returns are from the Center for Research in Security

44Details are available upon request.
45https://www.openassetpricing.com/data/. Details on the construction of return predictors can be found in their

Online Appendix https://drive.google.com/file/d/1vXRzjxYucXZV-tgLxM26fvRZ5zKvlBXH/view
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Prices (CRSP), while the monthly Fama-French factors are downloaded from the Kenneth French

website.

10.2 Preliminary Empirical Analysis: Model Identification

Before presenting our main empirical results, we first empirically evaluate the restriction in (13)

to ensure the accurate identification of the anomalies’ effect. To this end, we initially estimate the

parameters γz,t−1 and δf,t−1 from the regression

Rt = X̂Γf,t−1 + Zt−1γz,t−1 + ηt, t = 2, .., T − 1

using our time-varying estimator in (32). In each regression, we consider one anomaly at the

time (i.e., Kz = 1), while the estimated betas in X̂ are obtained using (26), in which the matrix

F contains the Fama-French five-factors (i.e., Kf = 5). Then, for each anomaly, we regress the

estimated time-series of γ̂z against the series of δ̂f , and report the corresponding R-squared, together

with its confidence interval. The results are displayed in Figure 3. If the identification restriction is

satisfied, we should expect a near-perfect correlation in the regression of γ̂z on δ̂f , resulting in an R-

squared value close to 1. From Figure 3, the distribution of the R-squared across anomalies reveals

an average value of 0.41 (purple dotted line), with the 5th and 95th percentiles ranging between

0.07 and 0.77, respectively (blue dotted lines). Moreover, the confidence intervals reliably exclude

the value of 1, suggesting that our model specification should not suffer from any identification

issue.

FIGURE 3 HERE

This establishes the foundation for our empirical analysis, which we will conduct in the following

sections.

10.3 Preliminary Empirical Analysis: Time-Variation and Cross-Correlations

In this Section, we would like to provide some empirical insights on the shortcomings of the con-

ventional approach in estimating time-varying anomaly premia. As explained in Section 4, the

conventional methodology requires orthogonality between the factor betas and the anomalies, as

well as a constant nature of premia over time. However, in the following we present some compelling

evidence that suggests these two conditions frequently contradict the reality.
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In the first exercise, we use our data to calculate and test for the linear correlation between

each anomaly and the betas estimated from a given asset pricing factor model. Specifically, to get

a (statistically) good estimate of the betas, we first estimate a first-pass regression with T = 120

months, using the CAPM specification. Then, at each point in time, we measure the correlation

between the estimated matrix B and each Zt, using the R-squared of the regression of Zt on B.

This would produce a time-series of correlation coefficients (one for each anomaly), for which we can

compute the corresponding time-series of t-statistic, under the null hypothesis of zero relationship

between the two variables. We then repeat the same exercise using the Fama-French 3-factor model

(FF3) and the Fama-French 5-factor model (FF5) as alternative model specifications, and save the

R-squared of the regression of each Zt on the estimated matrix B at every point in time. We

finally take the average of the time-series results and aggregate them at the category level. The

main results are summarized in Table II below. The first column of the table shows the average

R-squared (i.e., the square of the correlation coefficient), together with its minimum and maximum

value (in parenthesis), for each of the six categories and for each of the three model specifications

(CAPM in Panel A, FF3 in Panel B and FF5 in panel C). In the second column we report, instead,

the average percentage of times in which the correlation coefficient has been found to be statistically

different from zero.46 From the table, a clear fact emerges: while the correlation between betas and

anomalies may often be very small in magnitude, in most of the cases it appears to be statistically

significant. Therefore, caution is needed before applying standard methodology, since ignoring this

correlation could considerably distort the inferential results of the conventional two-pass estimator,

as we have shown in Section4 (See Figure 2).

TABLE II HERE

In the next part of the section, our objective is to evaluate whether there is any supporting (or

contradicting) evidence regarding the time-varying nature of premia parameters. To achieve this,

we employ multiple exercises. In the first exercise, we use our data to derive the time series of

the γz,t−1 estimates in (14), considering one anomaly at the time in the regression of Rt on Zt−1.

Subsequently, on each time-series, we fit an ARMA(p,q) model, where p and q range from 0 to 6.

46To assess whether the correlation coefficient is statistically different from zero, we use the standard Pearson
correlation test in the CAPM specification, while we use the p-value of the F -test for the FF3 and FF5 models. We
report the results using a 5% confidence level.
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The objective is to evaluate the performance of a purely random white noise process (i.e., when

both p and q are set equal to zero) over different time-varying processes. We determine the best

fitting model by evaluating the AIC (Akaike Information Criterion) value. The main results are

summarized in Table III (see Column 1), where we present the percentage of anomalies (within

each category) for which we find a statistically superior fitting ability of a time-varying model over

a white noise process. In Colums 2–4, we repeat the same exercise, where now the time series of

γz,t−1 is obtained by regressing the asset returns Rt on each of the anomaly Zt−1 at the time, but

including also the betas estimated from the CAPM (Column 2), the FF3 (Column 3) and FF5

(Column 4) in the regression specification. The table clearly shows a significant time-variation in

the dynamics of the premia parameters in each of the six categories and regardless of the chosen

model, with percentages that are greater than 80% in all the cases.

TABLE III HERE

To further investigate our findings, we use the premia estimates obtained in the above exercise to test

for the presence of potential structural changes in their time series. Specifically, for each anomaly,

we define ∆γ̂z,t = δ1 + δ2γ̂z,t + ut and test for structural changes by analyzing the cumulative

sums of OLS-residuals (CUSUM) from the estimated linear model (see Ploberger, Krämer, and

Kontrus (1989)).47 Under the null hypothesis of no structural changes, we then report in Table

IV the percentage of anomalies within each category for which the test rejects the null hypothesis.

Overall, in each category, we find a non-ignorable set of variables that show a significant break in the

parameter estimates, with the highest percentage in the Investment and Momentum categories.48

TABLE IV HERE

As a final exercise, we use again the time series of the premia estimates to test whether there

is any statistically significant shift in the mean between any two sub-samples of periods. In the

case of no time-variation, one should not find any significant mean difference when using the

paired t-test on the differences between two sub-samples. Therefore, using our γz,t estimates (one

for each anomaly at the time), we consider all the possible pairs of sub-samples (not necessarily

47As a further robustness check, instead of using cumulative sums of the same residuals, we also consider the
moving sums (MOSUM) of residuals (Chu, Hornik, and Kaun (1995)) and the moving estimates (ME) process Chu,
Hornik, and Kuan (1995). The results lead to approximately the same conclusion as the COSUM case. Details are
available upon request. See also Zeileis, Leisch, Hornik, and Kleiber (2002) for the implementation.

48A more detailed analysis specific for each anomaly is reported in the Online Appendix.
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consecutive) of length equal to either three years or five years, and calculate the difference in the

estimates between the corresponding values in each pair. We then calculate the mean difference

between each pair of sub-samples and derive the corresponding t-statistic under the null hypothesis

that there is no shift in the mean of the two sub-periods (i.e., the mean difference is equal to zero).

Table V reports the average percentage of paired sub-periods (aggregated at the category level) for

which we find a statistically significant (at 10% confidence level) mean difference. Panel A of the

table refers to the case of sub-periods of length three years, while Panel B refers to sub-periods of

five years. Column 1 refers to the time series of γz,t−1 which is obtained by regressing the asset

returns Rt on each of the anomaly Zt−1 at the time. Colums 2–4 use instead the time series of

γz,t−1 obtained by regressing the asset returns Rt on each of the anomaly Zt−1 at the time, but

including also the betas estimated from the CAPM (Column 2), the FF3 (Column 3) and FF5

(Column 4) in the regression specification. Once again, in many cases and in all the six categories,

we find evidence of a significant shift in the mean of the parameters’ distribution.

TABLE V HERE

In conclusion, all these results raise some doubts about the reliability of the main assumptions

required by the traditional approach and provide the ground for our novel methodology.
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10.4 Dissecting Time-Varying Anomalies

In this section we apply our theoretical results derived in Section 5 to our data. Our primary

objective is to investigate the potential time-varying effect of asset-specific characteristics over

time and to assess their contribution in explaining the cross-section of stock returns.

In the following analysis, we use balanced panels over fixed-time windows of two years (i.e.,

T = 24). Specifically, at each point in time t, we first obtain the matrix B̂ of factor betas using

(26), employing the past two years of data, up to time t. We then run a cross-sectional regression,

using the feasible representation in (30), in which all the anomalies in Zt−1 have been previously

orthogonalized to the model risk factors, using (28). Finally, we obtain the time-varying premia

estimates using our new estimator in (32), together with their corresponding standard errors derived

in Theorem 2. We then shift the time window month by month over the 1986-2020 period, and

obtain the rolling time series of the premia estimates and their corresponding t-statistics.

We first start the analysis by considering univariate regressions of asset returns on market beta and

one anomaly at the time (Section 10.4.1). We then consider the case of multivariare regressions in

Section 10.4.2, where we use more than one anomaly in each regression. Other robustness checks

will be presented in the Online Appendix.

10.4.1 Univariate Analysis

To gain a preliminary insight into the impact of the anomalies, in this section we consider simple

univariate regressions, focusing on a single anomaly at a time and using the market factor betas es-

timated through the CAPM specification.49 The t-statistics associated with each anomaly premium

at each month in the sample is reported in the heatmap in Figure 4. The figure shows the heatmap

of the t-statistics distribution obtained for each univariate regression (vertical axis) and for each

month (horizontal axis). Each cell in the map represents the degree of statistical significance of the

t-statistics with a different color, from gray (non-significant t-stat), to yellow (significance at only

10% level), orange (significance at 5% level), and red (significance at 1% level).

FIGURE 4 HERE

49A similar exercise has been also conducted using the betas estimated through the FF3 and FF5 factor models.
Results are provided in the online Appendix.
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While no clear pattern emerges within the six categories, a distinct structure becomes apparent

when examining the distribution of t-statistics over time. Notably, the majority of the red data

points in Figure 4 cluster within specific time intervals. What is even more interesting is that

these periods of high-significance concentration appear to coincide with major financial crises. For

example, they align with significant events such as the early 1990-91 recession, the dot-com bubble

from 1999 to 2000, the financial crisis of 2007-2009, and the recent stock market crash in early 2020

caused by the outbreak of the COVID-19 pandemic.

This result is further corroborated by Figure 5, in which we depict the percentage of anomalies

found to be statistically significant at the 5% confidence level, across the various points in time.

The light gray bands on the graph correspond to NBER recession dates as well as different economic

and financial crises. Notably, the figure illustrates that higher percentages of statistically significant

anomalies frequently coincide with periods of heightened market uncertainty, with a peak exceeding

70% during the 2007-2009 financial crisis. To statistically reinforce this finding, we also conducted

an OLS regression of the percentage of statistically significant anomalies against a time dummy

variable, which is set to one if the period t aligns with a crisis period and zero otherwise. Our

analysis revealed a substantial and positive slope coefficient of 4.29, with a corresponding t-statistic

of 2.75.

FIGURE 5 HERE

In summary, this simple analysis offers evidence of substantial time-variation in regression esti-

mates. However, such time-varying signal would be overlooked if we solely concentrated on average

estimators, as is conventionally practiced in the literature.

All the results presented above have been derived from simple univariate regressions. However,

given that univariate regressions are seldom employed in empirical applications, in the next section,

we apply our time-varying methodology through multiple regressions. This will involve a careful

selection of a dynamic set of representative anomalies at each time point, as we explain in the next

section.
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10.4.2 Multivariate Analysis

In this section, we apply our time-varying methodology using multiple cross-sectional regressions.

Dealing with hundreds of firm characteristics can lead to several technical issues. First, using

all the characteristics simultaneously will dramatically reduce the number of assets, as it is quite

challenging to find a balanced panel in which all assets have all the characteristics available for

each time interval. Second, many of the characteristics are likely to be highly correlated with each

other, especially those within the same category, which can lead to multicollinearity problems in

the regression models. To circumvent these issues and to identify the “best” representative set of

variables, we select, at each point in time, the six anomalies (one from each category) that have

produced the highest R2
z values in the univariate regressions from the previous section. The time-

varying set of anomalies is graphically depicted in Figure 6, where each red point represents the

variable selected in each category (vertical axis) for each month t (horizontal axis).50

FIGURE 6 HERE

To assess the predictive ability of the selected models, we present the time series of the R2
z

statistics in Figure 7a, alongside the total variance decomposition depicted in Figure 7b, obtained

from each multivariate regression. As observed in Figure 7a, the portion of total cross-sectional

variation in asset returns jointly explained by these anomalies exhibits substantial temporal vari-

ability, spanning from a minimum of 0.7% to a maximum of 46%. In line with the results of the

previous section, higher R2
z values tend to coincide with periods of economic or financial crises,

denoted by the gray regions in the figure. This result reaffirms the concept that anomalies exert a

more pronounced influence during times of heightened uncertainty.

FIGURE 7 HERE

The market beta also appears to hold significance (as indicated by the green bars in Figure 7b),

contributing on average to almost 8% of the total variance, with occasional peaks reaching up to

40%. Unlike anomalies, the highest contribution of the market beta does not appear to be linked

50In some cases, while extracting the balanced panel of asset returns along with the chosen six anomalies, there
might be instances where only a very limited number of observations remains available for analysis. To mitigate this
concern, in such scenarios, we explore alternative combinations of regressors for which we have a sufficiently large
sample size (N ¿ 100) and opt for the combination that yields the highest (in-sample) R2

z.
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to periods of crises. On average, we find that when considering anomalies and betas together, they

can explain over 20% of the total cross-sectional variation in asset returns. Of this average 20%,

anomalies contribute 60%, while betas account for the remaining 40%.

Finally, we evaluate whether the joint contribution of anomalies to the overall R-squared of each

model is statistically significant or not. Our null hypothesis is defined as H0 : γz = 0Kz , against

the alternative that at least one anomaly is different from zero, i.e., H1 : γz ̸= 0Kz , with Kz = 6.

To test this hypothesis, we make use of the limiting results of Theorem 8, part (i), wherein we

tabulate the asymptotic distribution of the statistics Tz under H0 using 10,000 random draws from

six i.i.d. χ2
1, weighted with the estimated values (ĉ1, ..., ĉ6) obtained in each model. The resulting

time series of p-values associated with the Tz statistics for each model at every point in time is

presented in Figure 8. The yellow bands in the figure correspond to p-values representing periods

in which there is no compelling evidence to reject the null hypothesis (p > 0.05). On the other

hand, the blue regions indicate p-values ≤ 0.05, identifying periods where we can confidently reject

the null hypothesis, implying a non-zero contribution from anomalies to the total variability of the

model. Our findings indicate that the joint contribution of anomalies to the total R-squared of the

model is statistically distinguishable from zero in approximately 40% of the cases. Even though

this percentage might seem quite low, it is noteworthy that in 71% of these instances, a significant

contribution of anomalies aligns again with periods of financial downturns.

We would like to conclude this section by acknowledging that, although our analysis allows

for a very general form of time-variation, it comes with certain inherent limitations. In fact, it

could suffer from high levels of idiosyncratic risk, which, in turn, can influence the time-varying R-

squared of our regressions. Naturally, averaging data over a more extended time period would yield

significantly higher R-squared values, albeit at the expense of obscuring most of the time-varying

patterns.

11 Conclusion

We extend the two-pass methodology for estimating and testing the effect of anomalies in asset

pricing models with time-varying premia. Our methodology is designed for when large cross-sections

of N assets are available but the number of time-series observations T is fixed and possibly very
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small, but applies also when N and T are both very large. We develop the method for ordinary

and weighted least-squares estimation, and consider both cases of correct specification and global

misspecification of the candidate asset pricing model. Inference relies on asymptotically valid

standard errors for the premia estimators, derived in closed-form. A cross-sectional R-squared test

to dissect anomalies is proposed, establishing its limiting properties under the null hypothesis of no

effect of anomalies and its alternative. Using a dataset of 20, 000 individual US stock returns, we find

that although anomalies are statistically significant in about half the cases (out of 170 anomalies),

they explain a small fraction (less than 10%) of the cross-sectional variation of expected returns.

Anomalies tend to be more important during economic and financial crises.
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Pástor, L., and R. F. Stambaugh (2003): “Liquidity risk and expected stock returns,” Journal

of Political Economy, 111, 642–685.
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Appendix

A.1 Assumptions

In this section, we present the main assumptions required for the validity of our large-N asymptotic

theory, without further comments (see Section OA.2 for detailed comments). All the moments below

are assumed to hold conditionally on the factors F, even if not written explicitly, and all the limits

below hold as N → ∞.

It is useful to recall the N ×Kz(T − 1) matrix of anomalies Z ≡ (z1, ..., zN )′, where zi defines

the Kz(T − 1) × 1 vector zi ≡
(
z
(1)
i,1 , · · · , z

(1)
i,T−1, · · · , z

(Kz)
i,1 , · · · , z(Kz)

i,T−1

)′
. The N × Kz matrix of

anomalies at time t− 1 is defined as Zt−1 = (z1,t−1, · · · , zN,t−1)
′, while the (T − 1)×Kz matrix of

anomalies specific for the i-th asset is Zi = (zi,1, · · · , zi,T−1)
′, setting zi,t−1 =

(
z
(1)
i,t−1, · · · , z

(Kz)
i,t−1

)′
.

Assumption 3 (risk factors and anomalies). Set Z̃i ≡M1T−1Zi, and D ≡ (1T−1,F). Then, for

every T , the (T − 1)× (K + 1) matrix D̃i = (D, Z̃i) satisfies

D̃′
iD̃i > 0 for every i = 1, ..., N.

Assumption 4 (loadings).

1

N

N∑
i=1

βi → µβ and
1

N

N∑
i=1

βiβ
′
i → Σβ,

such that the matrix

ΣX ≡
[

1 µ′
β

µβ Σβ

]
> 0.

Remark 1. Assumption 4 states that the limiting cross-sectional averages of the betas, and of the

squared betas, exist. The second part of Assumption 4 rules out the possibility of spurious, weak,

and semi-strong factors, which are known to be problematic, in terms of asymptotic behaviour, for

the two-pass estimator (see Anatolyev and Mikusheva (2020) for the large N,T case, and Kim,

Raponi, and Zaffaroni (2023) for the large N case, akin to the sampling scheme considered in this

paper).

and situations in which at least one of the elements of βi is cross-sectionally constant. It implies

that X = (1N ,B) has full (column) rank for N sufficiently large. To simplify the exposition, we
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assume that the βi are non-random.51

Assumption 5 (asset-specific components). The N × 1 vector of error terms ϵt is independently

and identically distributed (i.i.d.) over time with

E[ϵt] = 0N (A.1)

and with the N ×N variance-covariance matrix satisfying

Var [ϵt] =


σ2
1 σ12 · · · σ1N

σ21 σ2
2 · · · σ2N

...
... · · ·

...
σN1 σN2 · · · σ2

N

 ≡ Σ > 0, (A.2)

where σij denotes the (i, j)-th element of Σ, for every i, j = 1, . . . , N , and with σ2
i ≡ σii.

Assumption 6 (cross-sectional moments of asset-specific components). (i)

1

N

N∑
i=1

(
σ2
i − σ2

)
= o

(
1√
N

)
, (A.3)

for some 0 < σ2 < ∞.

(ii)
N∑

i,j=1

| σij | 1{i ̸=j} = o (N) . (A.4)

(iii)

1

N

N∑
i=1

µ4i → µ4, (A.5)

for some 0 < µ4 < ∞, where µ4i ≡ E[ϵ4i,t].

(iv)

1

N

N∑
i=1

σ4
i → σ4, (A.6)

for some 0 < σ4 < ∞.

(v)

sup
i

µ4i ≤ C < ∞, (A.7)

for a generic constant C.

51See Gagliardini, Ossola, and Scaillet (2016) and Raponi, Robotti, and Zaffaroni (2020) for the analysis of asset
pricing models with random betas.
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(vi)

E[ϵ3i,t] = 0. (A.8)

(vii)

1

N

N∑
i=1

κ4,iiii → κ4, (A.9)

for some 0 ≤ |κ4| < ∞, where κ4,iiii ≡ κ4[ϵit, ϵit, ϵit, ϵit] denotes the fourth-order cumulant of

the asset-specific component {ϵi,t, ϵi,t, ϵi,t, ϵi,t}.

(viii) For every 3 ≤ h ≤ 8, all the following mixed cumulants of order h satisfy

sup
i1

N∑
i2,...,ih=1

|κh,i1i2...ih | = o (N) , (A.10)

for at least one ij (2 ≤ j ≤ h) different from i1, where κh,i1,i2...ih is the mixed cumulant in

the {ϵi1,s, ϵi2,s, · · · , ϵih,s} of order h.

Assumption 7 (CLT of asset-specific component). (i)

1√
N

N∑
i=1

ϵi→d N
(
0T−1, σ

2IT−1

)
. (A.11)

(ii)

1√
N

N∑
i=1

vec
(
ϵiϵ

′
i − σ2

i IT−1

)
→d N

(
0(T−1)2 ,Uϵ

)
, (A.12)

where Uϵ ≡ lim 1
N

∑N
i,j=1E

[
vec(ϵiϵ

′
i − σ2

i IT−1)vec(ϵjϵ
′
j − σ2

j IT−1)
′
]
.

(iii) For any T × 1 vector c,

1√
N

N∑
i=1

(
c′ ⊗

(
1
βi

))
ϵi→d N

(
0Kf+1, (c

′c)σ2ΣX

)
. (A.13)

Remark 2. The expression for Uϵ in (A.12) can be derived in closed form. In particular, Raponi,
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Robotti, and Zaffaroni (2020) established that the T 2 × T 2 matrix Uϵ has the following form

Uϵ =



U11 · · · U1t · · · U1T

...
. . .

...
...

...

Ut1 · · · Utt · · · UtT

...
...

...
. . .

...

UT1 · · · UTt · · · UTT


.

Each block of Uϵ is a T × T matrix. The blocks along the main diagonal, denoted by Utt, t =

1, 2, . . . , T , are themselves diagonal matrixes with (κ4 + 2σ4) in the (t, t)-th position and σ4 in

the (s, s) position for every s ̸= t. The blocks outside the main diagonal, denoted by Uts, s, t =

1, 2, . . . , T with s ̸= t, are all made of zeros except for the (s, t)-th position that contains σ4; that

is,

↓
t-th column

↓
t-th column

Utt =→
t-th
row



σ4 · · · 0 · · · · · · · · · 0
...

. . .
...

...
...

...
...

0 · · · σ4 0 · · · · · · 0
0 · · · 0 (κ4 + 2σ4) 0 · · · 0
0 · · · · · · 0 σ4 · · · 0
...

...
...

...
...

. . .
...

0 · · · · · · · · · · · · 0 σ4


, Uts = →

s-th
row



0 · · · 0 · · · · · · · · · 0
...

. . .
...

...
...

...
...

0 · · · 0 0 · · · · · · 0
0 · · · 0 σ4 0 · · · 0
0 · · · · · · 0 0 · · · 0
...

...
...

...
...

. . .
...

0 · · · · · · · · · · · · 0 0


.

Assumption 8 (moments and CLT of anomalies). Define the Kz(T − 1)2 × 1 vector ui ≡ ϵi ⊗ zi.

(i)

Z′1N
N

→p (µz ⊗ 1T−1) ≡ µz,T−1

for a finite Kz×1 vector µz =
(
µ
(1)
z , . . . , µ

(Kz)
z

)′
≡ limN→∞

1
N

∑N
i=1µzi , setting µzi ≡ E[zi,s].

(ii)

Z′Z

N
→p ΣZ,
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for a finite Kz(T−1)×Kz(T−1) matrix ΣZ, such that J′ΣZJ > 0 and J′t−1ΣZJt−1 > 0,

for every 2 ≤ t ≤ T .

(iii)

Z′B

N
→p ΣZB,

for a finite Kz(T − 1)×Kf matrix ΣZB.

(iv) Setting µui ≡ E[ui],

1

N

N∑
i=1

µui = o

(
1√
N

)
.

(v) Setting Σu,ij ≡ Cov[ui,uj ], for i, j = 1, ..., N ,

1

N

N∑
i=1

Σu,ii → ΣU ≡ (σ2IT−1 ⊗ΣZ) and
N∑

i,j=1

Σu,ij1i ̸=j = o(N).

(vi) For any i, j = 1, ..., N ,

Cov
[
zi,t, ϵ

′
j ⊗ ϵ′j

]
= 0Kz×(T−1)2 , Cov

[
ϵi, ϵ

′
j ⊗ (uj − E[uj ])

′ ] = 0T−1×Kz(T−1)3 .

(vii)

1√
N

N∑
i=1

(ui − µui) →d N
(
0Kz(T−1)2 ,ΣU

)
.

(viii) Setting Σuϵ,ij ≡ Cov
[
ϵi ⊗ ϵi,u

′
j

]
,

1

N

N∑
i=1

Σuϵ,ii → Σuϵ = 0(T−1)2×Kz(T−1)2 and
1

N

N∑
i,j=1

Σuϵ,ij → 0(T−1)2×Kz(T−1)2 .

(ix)

1

N2

N∑
i,j=1

Cov
[
ui ⊗ ui,u

′
j ⊗ u′

j

]
→ 0K2

z (T−1)4×K2
z (T−1)4 .

(x) Let PZ̃i
= Z̃i(Z̃

′
iZ̃i)

−1Z̃′
i, with its generic (t, s) element denoted by pi,ts, for t, s = 1, ..., T −1,

where Z̃i =M1T−1Zi. Then, for every 1 ≤ t+ 1, s+ 1, va, ua ≤ (T − 1), with a = 1, ..., 4, the
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following hold:

(x.1)
1

N

N∑
i=1

PZ̃i
→p PZ̃ , for a finite matrix PZ̃ ,

(x.2)
1

N

N∑
i=1

(PZ̃i
⊙PZ̃i

) →p P
(2)

Z̃
, for a finite matrix P

(2)

Z̃
,

(x.3)
1

N

N∑
i=1

PZ̃i
(ϵiϵ

′
i − σ2

i IT−1) = PZ̃

1

N

N∑
i=1

(ϵiϵ
′
i − σ2

i IT−1) + op

(
1√
N

)
,

(x.4)
1

N2

N∑
i,j=1

κ4

[
4∏

a=1

pi,t−1ua ,
4∏

a=1

pj,s−1va ,
4∏

a=1

ϵi,ua+1,
4∏

a=1

ϵj,va+1

]
= o(1),

(x.5)
1

N2

N∑
i,j=1

κ3

[
4∏

a=1

pi,t−1ua ,

4∏
a=1

pj,s−1va ,

4∏
a=1

ϵi,ua+1

]
= o(1),

(x.6)
1

N2

N∑
i,j=1

κ3

[
4∏

a=1

pi,t−1ua ,
4∏

a=1

ϵi,ua+1,
4∏

a=1

ϵj,va+1

]
= o(1),

(x.7)
1

N2

N∑
i,j=1

Cov

[
4∏

a=1

pi,t−1ua ,

4∏
a=1

ϵj,va+1

]
= o(1),

(x.8)
1

N2

N∑
i,j=1

Cov [pj,su1pi,tv1 , ϵi,t+1ϵj,s+1ϵiu1+1ϵjv1+1] = o(1),

(x.9)
1

N

N∑
i=1

Cov

[
4∏

a=1

pi,t−1ua ,

4∏
a=1

ϵi,va+1

]
= o(1).

where κ3[·, ·, ·] and κ4[·, ·, ·, ·] denote the mixed cumulants of order 3 and 4, respectively.

(xi) For every 3 ≤ h ≤ 8, all the following mixed cumulants of order h satisfy

sup
i1

N∑
i2,...,ih=1

|κph,i1i2...ih | = o (N) , (A.14)

for at least one ij (2 ≤ j ≤ h) different from i1, where κ
p

h,i1,i2...ih
is the mixed cumulant in the

{pi1,t1−1u1 ,pi2,t−21u2 , · · · ,pih,th−1uh
, } of order h, for every 2 ≤ t1, · · · , th, u1, · · · , uh ≤ T .

A.1.1 Additional assumptions required for the WLS estimation

In this Section, we introduce additional assumptions that are required for the validity of the WLS

estimation described in Section 7. Before stating the main assumptions, it is useful to introduce

some preliminary notation. In the following, we denote by wi. ≡ (wi,1, · · · ,wi,T−1)
′ the (T − 1)× 1

65



vector of weights specific for the i-th asset, and by w.t−1 ≡ (w1,t−1, · · · ,wN,t−1)
′ the N × 1 vector

of weights at time (t − 1), for every 2 ≤ t ≤ T , with the N × T matrix W = (w.1, · · · ,w.T−1) =

(w1., · · · ,w′
N.).

Assumption 9. (CSR WLS weights)

(i)
1′NWt−11N

N
→p 1.

(ii) For any real number h > 1 then,

1′NWh
t−11N

N
→p µ

h
w,t−1

(iii)

1

N

N∑
i=1

wi.w
′
i. →p ΣW.

Assumption 10. (Weighted loadings) Let Wt−1 satisfy Assumption 9 and let the loadings βi be

a non-random sequence. As N → ∞, then

1

N
B′Wt−11N →p µβ and

1

N
B′Wt−1B →p Σβ, (A.15)

such that

ΣX ≡

[
1 µ′

β

µβ Σβ

]
> 0. (A.16)

Assumption 11. (Weighted cross-sectional moments of returns’ innovations) As N → ∞,

(i) Let 0 < σ2 < ∞.Then, for every 2 ≤ t ≤ T :

1

N

N∑
i=1

wi,t−1

(
σ2
i − σ2

)
= op

(
1√
N

)
, (A.17)

(ii)
N∑

i,j=1

wi,t−1 | σij | 1{i ̸=j} = op (N) . (A.18)
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(iii) Let 0 < µ4 < ∞, and let µ4i = E[ϵ4it]. Then, for every 2 ≤ t ≤ T :

1

N

N∑
i=1

wi,t−1µ4i →p µ4, (A.19)

(iv) Let 0 < σ4 < ∞. Then, for every 2 ≤ t ≤ T :

1

N

N∑
i=1

wi,t−1σ
4
i →p σ4, (A.20)

(v) Let κ3(a, b, c) denote the third-order cumulant of the random variables a, b, and c. Then,

κ3[ϵi,t, ϵj,s,wj,h] = 0, and κ3[ϵi,t, ϵj,s, zj,h] = 0Kz . (A.21)

(vi) Let κ4,iiii = κ4[ϵi,t, ϵi,t, ϵi,t, ϵi,t] denote the fourth-order cumulant of the asset-specific error

{ϵi,t, ϵi,t, ϵi,t, ϵi,t}. Then, for some 0 ≤ |κ4| < ∞ and for every 2 ≤ t ≤ T :

1

N

N∑
i=1

wi,t−1κ4,iiii →p κ4. (A.22)

(vii) For every 3 ≤ h ≤ 8, all the following mixed cumulants of order h satisfy

sup
i1

N∑
i2,...,ih=1

|κh,wi1,t−1i2...ih | = o (N) , (A.23)

and

sup
i1

N∑
i2,...,ih=1

|κhwi1,t−1,zi2,r,i3...ih
| = o (N) , (A.24)

for at least one ij (2 ≤ j ≤ h) different from i1, where κh,wi1,t−1i2...ih is the mixed cumulant in

the {wi1,t−1, ϵi2,s, · · · , ϵih,s} of order h, and κh,wi1,t−1,zi2,r,i3...ih
is the mixed cumulant in the

{wi1,t−1, zi2,r, ϵi3,s, · · · , ϵih,s} of order h.

Assumption 12. (Weighted moments and CLT of anomalies) We define the (T − 1)2 × 1 vector

vi ≡ (ϵi ⊗wi) and the corresponding N × (T − 1)2 matrix V ≡ (v1, · · · ,vN )′, such that E[vi] ≡

µvi < ∞, and Σv,ij ≡ Cov [vi,vj ].

(i)

ϵ (Wt−1 − E[Wt−1]) ϵ
′

N
→p 0(T−1)×(T−1).
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(ii)

Z′
t−1Wt−11N

N
→p µz,t−1 and

Z′
t−1Wt−1Zt−1

N
→p ΣZ,t−1.

(iii) Let ΣZW be a finite Kz(T − 1)× (T − 1) matrix. Then,

Z′W

N
→p ΣZW.

(iv)

1

N
(Zt−1 − E[Zt−1])

′ (Wt−1 − E[Wt−1]) ϵ
′ →p 0Kz×(T−1).

(v)

1

N
(Zt−1 − E[Zt−1])

′Wt−1ϵ
′ − 1

N
(Zt−1 − E[Zt−1])

′ ϵ′ = op

(
N− 1

2

)
.

(vi)

X′
M1NV

N
= op

(
N− 1

2

)
, and

Z′
M1NV

N
= op

(
N− 1

2

)
.

(vii)

1

N

N∑
i=1

Σv,ii → ΣV ≡ σ2IT−1 ⊗ΣW, and
N∑
i=1

Σv,ij1i ̸=j = o(N)

(viii)

1√
N

N∑
i=1

(vi − µvi) →d N
(
0(T−1)2 ,ΣV

)
and

1

N

N∑
i=1

µvi = o
(
N− 1

2

)
.

(ix)

1√
N

N∑
i=1

(zi − µzi) →d N(0Kz(T−1),ΣZZ) and
1

N

N∑
i=1

(µzi − µz) = o(N− 1
2 ).

A.1.2 Additional assumptions required for estimation under model misspecification

Assumption 13. (mixed-moments of pricing errors)
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(i)
1

N
ϵmt−1 →p

[
θt−1,m

0T−t+1

]
,

with θt−1,m ≡ (θt−3,m, θt−4,m, . . . , θ0,m)′, defined as, for every 2 ≤ s, t ≤ T ,

1

N

N∑
i=1

ϵi,smi,t−1 →p θt−1−s,m, such that θu,m = 0 for u < 0.

(ii)
1

N
m′

t−1mt−1 →p σt−1mm.

(iii)

1

N

N∑
i=1

PD̃i
ϵimi,t−1 →p 0T−1.

A.1.3 Additional assumptions required for the cross-sectional R-squared test

In this Section we introduce additional assumptions that are required to derive the R-squared test

described in Section 9.

Assumption 14. (i)

1

N

N∑
i=1

βi − µβ = o
(
N− 1

2

)
and

1

N

N∑
i=1

βiβ
′
i −Σβ = o

(
N− 1

2

)
.

(ii)

1√
N

N∑
i=1

((zi ⊗ zi)− vec(ΣZ)) →d N(0K2
z
,UZ), with

1

N

N∑
i=1

E [(zi ⊗ zi)− vec(ΣZ)] = o
(
N− 1

2

)
,

1

N

N∑
i=1

E [(zi ⊗ zi)− vec(ΣZ)] [(zi ⊗ zi)− vec(ΣZ)]
′ → UZ,

N∑
i,j=1
i̸=j

E [(zi ⊗ zi)− vec(ΣZ)] [(zj ⊗ zj)− vec(ΣZ)]
′ = o(N), and

1

N

N∑
i,j=1

Cov
[
(zi ⊗ zi), z

′
j

]
→ Σz⊗z.

(iii)
√
N

(
Z′1N
N

− µz,T−1

)
→d N

(
0Kz(T−1),ΣZ − µz,T−1µ

′
z,T−1

)
.
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(iv)

1

N

N∑
i,j=1

Cov
(
(zi ⊗ zi), (ϵ

′
j ⊗ ϵ′j)

)
→ ΣZ⊗ϵ = 0((T−1)Kz)

2×(T−1)2 .

(v)

1

N

N∑
i,j=1

Cov
(
(zi ⊗ zi),u

′
j

)
→ ΣZU = 0((T−1)Kz)

2×(T−1)2Kz
.
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A.2 Empirics: Tables and Plots
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Table II: The table provides evidence on the correlation between each anomaly and the betas
estimated from a given asset pricing factor model. The betas are estimated using a first-pass
regression with T = 120 months, using the CAPM, the FF3 and FF5 and specifications. The first
column of the table shows the average R-squared (i.e., the square of the correlation coefficient),
together with its minimum and maximum value (in parenthesis), for each of the six categories and
for each of the three model specifications (CAPM in Panel A, FF3 in Panel B and FF5 in panel C).
In the second column we report, instead, the average percentage of times in which the correlation
coefficient has been found to be statistically different from zero. To assess whether the correlation
coefficient is statistically different from zero, we use the standard Pearson correlation test in the
CAPM specification, while we use the p-value of the F -test for the FF3 and FF5 models. We report
the results using a 5% confidence level.

Panel A: Average correlation between B and Zt in the CAPM

R-squared (min, max) % of significance

Momentum 0.041 (0.003, 0.104) 60.83%
Value VS Growth 0.032 (0.001, 0.279) 60.06%
Investment 0.008 (0.001, 0.027) 36.35%
Profitability 0.008 (0.001, 0.017) 40.08%
Intangibles 0.029 (0.001, 0.255) 56.03%
Trading Frictions 0.087 (0.001, 0.461) 79.21%

Panel B: Average correlation between B and Zt in FF3

R-squared (min, max) % of significance

Momentum 0.073 (0.081, 0.177) 71.55%
Value vs Growth 0.076 (0.003, 0.343) 80.93%
Investment 0.019 (0.005, 0.050) 58.12%
Profitability 0.032 (0.005, 0.109) 61.78%
Intangibles 0.065 (0.002, 0.296) 68.36%
Trading Frictions 0.178 (0.009, 0.590) 91.47%

Panel C: Average correlation between B and Zt in FF5

R-squared (min, max) % of significance

Momentum 0.093 (0.012, 0.208) 76.43%
Value vs Growth 0.098 (0.005, 0.458) 81.65%
Investment 0.027 (0.008, 0.074) 63.16%
Profitability 0.048 (0.009, 0.130) 66.86%
Intangibles 0.083 (0.006, 0.357) 70.86%
Trading Frictions 0.195 (0.012, 0.645) 91.61%
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Table III: The table reports the percentage of anomalies (within each category) for which we find
a statistically superior fitting ability of a time-varying model (among ARMA(p,q) models, with p
and q ranging from 1 to 6 ) over a white noise (i.e., an ARMA(0,0)). Column 1 of the table refers to
the case in which we obtain the time series of the γz,t estimates in (??), considering one anomaly at
the time in the regression of Rt on Zt. Colums 2–4 use instead the time series of the γz,t obtained
by regressing the asset returns Rt on each of the anomaly Zt at the time, and including also the
betas estimated from the CAPM (Column 2), the FF3 (Column 3) and FF5 (Column 4) in the
regression specification, using T=120 months.

Category Zt Zt+CAPM Zt+FF3 Zt+FF5

Momentum 80.0 93.3 86.7 86.7
Value vs Growth 100.0 100.0 96.6 96.6
Investment 84.2 89.5 84.2 94.7
Profitability 93.3 96.7 93.3 86.7
Intangibles 89.8 95.9 89.8 91.8
Trading Frictions 92.6 100.0 100.0 96.3

Table IV: The table reports the average percent of anomalies (within each category) for which
we reject the null hypotesis of no structural breaks in the time series of the premia estimates.
Specifically, for each anomaly, we define the process ∆γz,t = δ1 + δ2γz,t + ut and test for structural
changes by analyzing the cumulative sums of OLS-residuals (CUSUM) from the estimated linear
model (see Ploberger, Krämer, and Kontrus (1989) and Zeileis, Leisch, Hornik, and Kleiber (2002)).
in the first column of the table, the time series of the γz,t is obtained by regressing the asset returns
Rt on each of the anomaly Zt at the time. Colums 2–4 use instead the time series of the γz,t
obtained by regressing the asset returns Rt on each of the anomaly Zt at the time, but including
also the betas estimated from the CAPM (Column 2), the FF3 (Column 3) and FF5 (Column 4)
in the regression specification, using T=120 months.

Category Zt Zt+CAPM Zt+FF3 Zt+FF5

Momentum 40.0 40.0 40.0 33.3
Value vs Growth 13.8 17.2 20.7 20.7
Investment 70.0 63.3 66.7 60.0
Profitability 15.8 26.3 21.1 15.8
Intangibles 20.4 24.5 28.6 28.6
Trading Frictions 22.2 22.2 44.4 48.2
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Table V: The table reports the average percentage of paired sub-periods (aggregated at the category
level) for which we find a statistically significant mean difference. Specifically, using the time series
of estimated γz,t (one for each anomaly at the time), we consider all the possible pairs of sub-samples
(not necessarily consecutive) of length equal to either three years (Panel A) or five years (Panel B),
and calculate the difference in the estimates between the corresponding values in each pair. We
then calculate the mean difference between each pair of sub-samples and derive the corresponding
t-statistic under the null hypothesis that there is no shift in the mean of the two sub-periods (i.e.,
the mean difference is equal to zero). Column 1 of the table refers to the time series of γz,t which is
obtained by regressing the asset returns Rt on each of the anomaly Zt at the time. Colums 2–4 use
instead the time series of γz,t obtained by regressing the asset returns Rt on each of the anomaly Zt

at the time, but including also the betas estimated from the CAPM (Column 2), the FF3 (Column
3) and FF5 (Column 4) in the regression specification.

Category Zt Zt+CAPM Zt+FF3 Zt+FF5

Panel A: Paired sub-period of length T = 36 (3 years)

Momentum 15.3 21.1 21.6 23.8
Value vs Growth 21.3 28.8 32.7 35.4
Investment 29.6 34.1 31.2 31.3
Profitability 12.2 21.4 22.9 26.1
Intangibles 14.1 22.4 26.0 28.4
Trading Frictions 10.6 27.3 35.4 34.0

Panel B: Paired sub-period of length T = 60 (5 years)

Momentum 28.0 29.3 22.7 20.9
Value vs Growth 27.1 34.3 30.6 32.9
Investment 43.3 37.6 29.9 31.8
Profitability 29.1 31.6 28.0 31.1
Intangibles 20.0 26.3 25.8 28.2
Trading Frictions 18.6 44.5 43.0 43.6
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Figure 3: The R-squared distribution across anomalies in the regression of γz against
δf . The figure shows the distribution, across anomalies, of the R-squared values in the time-
series regression of each γz against δf . The time series of both γz and δf are obtained from the
(cross-sectional) regression Rt = X̂Γf,t−1 + Zt−1γz,t−1 + ηt, t = 2, .., T − 1, using our time-varying
estimator in (32). In each regression, we consider one anomaly at the time (i.e., Kz = 1), while the
estimated betas in X̂ are obtained using (26), in which the matrix F contains the Fama-French five-
factors (i.e., Kf = 5). The purple dotted line represents the average R-squared value, while the two
blue dotted lines denote the 5th and 95th percentile values, respectively. The vertical gray bands
depict the 95% confidence interval associated to each R-squared value. The confidence intervals
(CI) have been calculated using the Cohen et al. (2003) formula, that is CI = R2 ± 2SER2 ,
where SER2 =

√
(4R2(1−R2)2(n− k − 1)2)/((n2 − 1)(n+ 3)), with n denoting the number of

observations and k being the number of independent variables in the regression of γz against δf .
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Figure 4: Heatmap of the t-statistics distribution - time varying case. The figure shows
the heatmap of the t-statistics distribution obtained in each of the 170 univariate model (vertical
axis) and for each month (horizontal axis). Each cell in the map represents the degree of statistical
significance of the t-statistics with a different color, from gray (non-significant t-stat), to yellow
(significance at only 10% level), orange (significance at 5% level), and red (significance at 1%
level). The results are obtained by performing univariate regressions of asset returns on the market
factor and each of the 170 anomalies, using the theoretical results of Section 5. of time-varying
premia and anomalies. The analysis uses balanced panels at each month, with a reference period
ranging from January 1986 to December 2020. At each month t, the market beta is obtained by
running a first-pass regression using a rolling window on the past two years of data (T = 24).
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Figure 5: Anomalies and financial crises - time varying case. The figure shows the percentage
of anomalies found to be significant at 5% (or lower) confidence level at each point in time. The
light gray bands correspond to NBER recession dates and to various economic and financial crises.
The results are obtained by performing univariate regressions of asset returns on the market factor
and each of the 170 anomalies, using the theoretical results of Section 5. of time-varying premia
and anomalies. The analysis uses balanced panels for each month, with a reference period ranging
from January 1986 to December 2020. At each month t, the market beta is obtained by running a
first-pass regression using a rolling window on the past two years of data (T = 24).
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Figure 6: “Best” representative sets of anomalies in multivariate regressions. The figure
shows the time-varying sets of anomalies that have been used to run multivariate regressions at
each month. Each red point denotes the anomaly that has been picked in each category (vertical
axis) and in each month (horizontal axis), using the empirical procedure described in Section 10.4.2.
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Figure 7: Anomalies’ contribution using time-varying multivariate regressions. The
figure shows the time series of the R2

z statistics (a), together with the total variance decomposition
(b) obtained in each multivariate regression. The results are obtained by performing multivariate
regressions of asset returns on the market factor and a set of six anomalies, selected using the
empirical procedure described in Section 10.4.2. The analysis is based on the theoretical results of
Sections 5 and 9 for time-varying premia and anomalies. The application uses balanced panels at
each month, with a reference period ranging from January 1986 to December 2020. At each month
t, the market beta is obtained by running a first-pass regression using a rolling window on the past
two years of data (T = 24).

(a) Time series of R2
z (b) Total variance decomposition
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Figure 8: Testing the joint contribution of anomalies: time series of p-values. The figure
shows the time series of p-values associated with the Tz statistics for each multivariate model at
each point in time. The null hypothesis is that H0 : γz = 0Kz , against the alternative that at
least one anomaly is different from zero, i.e., H1 : γz ̸= 0Kz , with Kz = 6. The yellow bands
represent the p-values > 0.05 , for which we cannot find evidence to reject the null hypothesis.
The blue lines refer to the p-values ≤ 0.05, i.e. all the periods in which we can reject the null
hypothesis at the 5% confidence level. The analysis is based on the theoretical results of Theorem
8 (i), where the asymptotic distribution of the statistic Tz under H0 has been tabulated using
10,000 random draws from six i.i.d. χ2

1, weighted with the estimated values (ĉ1, ..., ĉ6) obtained in
each multivariate model. The results are obtained by performing multivariate regressions of asset
returns on the market factor and a set of six anomalies, selected using the empirical procedure
described in Section 10.4.2. The application uses balanced panels at each month, with a reference
period ranging from January 1986 to December 2020. At each month t, the market beta is obtained
by running a first-pass regression using a rolling window on the past two years of data (T = 24).
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