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Abstract

This paper studies optimal executive pay when the CEO has fairness concerns: if his

wage falls below a perceived fair share of output, he suffers disutility that is increasing in the

discrepancy. Fairness concerns do not lead to fair wages always being paid; instead, the firm

threatens the CEO with unfair wages for low output to induce effort. The optimal contract

sometimes involves performance shares: the CEO is paid a constant share of output if it is

sufficiently high, but the wage drops discontinuously to zero if output falls below a threshold.

Even if the incentive constraint is slack, the optimal contract features pay-for-performance,

to address the CEO’s fairness concerns and ensure his participation. This rationalizes pay-

for-performance even if the CEO does not need effort incentives.
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Standard executive compensation models assume that CEOs care about pay only for the con-

sumption it enables. As a result, the marginal consumption utility of the bonus from improving

performance must weakly exceed the marginal cost of effort to do so. Such models have contributed

substantially to our understanding of executive compensation and inspired a stream of empirical

research.

However, it is not clear that consumption utility is the only, or even the most important, driver

of pay, given that CEOs are typically wealthy and most of their consumption needs are already

met. Edmans, Gosling, and Jenter (2023) survey directors and investors on how they set executive

contracts. Both sets of respondent highlight how pay is also driven by the need to ensure the CEO

feels fairly treated, consistent with experimental evidence that agents have fairness concerns (see

Fehr, Goette, and Zehnder (2009) for a survey). They also suggest that firm value is an important

determinant of what the CEO views as a fair level of pay. If firm value has increased due to

CEO effort, he expects to be rewarded. If firm value has increased (decreased) due to luck outside

his control, he should share in this good (bad) luck. These findings echo the widely-replicated

ultimatum game (e.g. Roth et al., 1991). If one party has been gifted an endowment, the other

believes he should be offered a sizable share.

This paper studies optimal contracts when the CEO is motivated by both consumption utility

and fairness concerns. We model the latter by specifying a perceived fair wage that is linear in the

firm’s output, i.e. the CEO believes that he deserves a certain percentage of output. If the CEO’s

wage falls below this fair wage, he suffers disutility that is linear in the discrepancy. If the wage is

above the fair wage, his utility is either linear or concave in the wage. The principal is risk-neutral

and both parties are protected by limited liability.

When the agent’s utility is linear above the fair wage, the optimal contract involves a threshold

below which the CEO is paid zero, and above which he receives the fair wage. This contradicts the

intuition that fairness concerns should lead to the CEO receiving a fair wage for all output levels;

instead, they mean that unfairness can be a powerful motivator. If output is sufficiently low that

it is unlikely that the CEO has worked, he receives the most unfair possible wage of zero. Only if

output exceeds a lower threshold is he paid the fair wage.

Innes (1990) showed that, with a risk-neutral agent, the optimal contract is “live-or-die” – zero

if output is below a threshold, and the entire output above it. Such a contract is inefficient under

fairness concerns. Even if the CEO works, output may fall below this threshold due to bad luck.

If the CEO is paid zero, he perceives significant unfairness, which erodes his incentives to work.

Thus, it is efficient to pay him a fair wage once output crosses a threshold. Such a contract –

zero below a threshold and linear above it – resembles performance shares, which are common

in reality. Standard models, such as Holmström (1979), do not predict discontinuous contracts.

Innes (1990) predicts a sharp discontinuity where pay jumps from zero to the entire output, but

such sharp discontinuities do not exist in reality. We predict a milder and thus more realistic

discontinuity – when performance crosses a threshold, the wage jumps from zero, but not to the

entire output. Intuitively, performance shares provide fair wages if performance is good and unfair
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wages if performance is bad, thus motivating good performance. If fairness concerns are sufficiently

low, there is an additional upper threshold above which the CEO receives the entire output.

When the agent’s utility is concave above the fair wage, the basic features of the linear model

remain robust – the payment is zero below a lower threshold, the fair wage above this threshold,

and the entire output above a higher threshold. However, there is an additional fourth region, in

between the regions in which the CEO receives the fair wage and the entire output. In this region,

his payment exceeds the fair wage, and is generally convex in output. Intuitively, if performance

is strong, the principal wishes to pay the CEO more than the fair wage. However, since the CEO

is risk-averse, it is inefficient to give him the entire output.

In both the linear and nonlinear models, pay is increasing in output even when the incentive

constraint is slack. Intuitively, satisfiying the participation constraint at least cost involves paying

the fair wage over a range of outputs, to avoid the disutility from unfair wages. Since the fair

wage is increasing in output, this generates a positive sensitivity of pay to performance. That

pay is increasing in output even without an incentive constraint means that the firm can induce

effort “for free”. In a standard moral hazard model, implementing higher effort is always costly to

the firm. In our model, since pay is increasing in output to secure participation, it automatically

induces effort. Critics of high incentives argue that they should not be necessary – the CEO should

be intrinsically motivated, and/or the board should monitor the CEO. Our model demonstrates

that incentives may be used not to induce effort, but to retain a CEO with fairness concerns.

This paper is related to the theoretical literature on executive compensation, surveyed by

Edmans and Gabaix (2016) and Edmans, Gabaix, and Jenter (2017). The vast majority of these

theories feature moral hazard and only consumption utility. More closely related are CEO pay

models that feature reference points. For example, De Meza and Webb (2007) and Dittmann,

Maug, and Spalt (2010) study optimal CEO compensation in the presence of loss aversion. In

our model, the fair wage is a reference point; the CEO is also loss-averse as his utility is steeper

below the fair wage than above it. Our key innovation is that the fair wage depends on output,

which leads to a very different optimal contract.1 Some other models feature the CEO’s utility

depending on variables other than pay, although not output. For example, DeMarzo and Kaniel

(2023) and Liu and Sun (2023) incorporate relative wealth concerns.2

An important literature, surveyed by Sobel (2005), studies the effect of fairness concerns on non-

CEO contracts. Fehr and Schmidt (1999) explore inequity aversion, where an agent dislikes another

agent receiving less than him, and dislikes even more another agent receiving more than him. In

these models (as well as most experiments in this literature), subjects are ex ante symmetric, and

so it makes sense for them to compare their consumption. They do not apply to a CEO setting,

where the firm’s objective function is shareholder value, which is orders of magnitude in excess

1In Akerlof and Yellen (1990), the agent’s effort is reduced if his wage is below the fair wage, which is not
contingent on output. In Hart and Moore (2008), the agent’s reference point is outcomes permitted by the contract,
rather than output. Neither model features loss aversion.

2We thus do not include peer firm pay as a potential reference point, as it will lead to similar results as a model
of relative wealth concerns.
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of CEO pay. An inequity aversion explanation for rewarding CEO for performance is that the

board feels sorry for the CEO as his pay is so low, which seems at odds with real-life perceptions.

(If the board represents individual shareholders rather than the firm, and the CEO always earns

more than individual shareholders, inequity aversion would have no bite as shareholders would

always want to lower pay as in a standard model). In our model, it is the CEO who has fairness

preferences, not the board or shareholders. Moreover, the CEO is only concerned for his own

utility, unlike in social preference models where agents are concerned with others’ utility.

1 The Model

We consider a standard principal-agent model with one added feature: the agent (manager,

“he”) has fairness concerns, specified below.

At time t = −1, the principal (firm, “she”) offers a contract to the agent. At t = 0, the agent

privately chooses an effort level e ∈ R+ at cost C(e), where C(·) is continuously differentiable

with C ′(e) > 0 and C ′′(e) > 0 for e > 0, C ′(0) = 0, and lime↗∞C ′(e) = ∞. At t = 1, output

q ∈ [0, q] is realized, where q may be finite or infinite, and the agent is paid a wage w (q). Output

is distributed according to a twice continuously differentiable density function ϕ(q|e) with full

support that satisfies the monotone likelihood ratio property (“MLRP”). Both the principal and

agent are protected by limited liability, so that 0 ≤ w(q) ≤ q ∀q.
Due to fairness concerns, the agent’s utility u (w, q) depends on both his wage w and output

q, and is increasing and continuously differentiable in the former. His reservation utility is U .

For each target level eT , the principal’s problem is to find the cheapest contract that induces

an effort of at least eT :

min
w(·),e∗

∫ q

0

w(q)ϕ(q|e∗)dq (1)

s.t. e∗ ∈ argmax
e

{∫ q

0

u(w(q), q)ϕ(q|e)dq − C(e)

}
≥ eT (2)∫ q

0

u(w(q), q)ϕ(q|e∗)dq − C(e∗) ≥ U (3)

0 ≤ w(q) ≤ q ∀q (4)

w(q) ≥ w(q′) ∀q > q′ (5)

where (2) is the incentive compatibility constraint (“IC”), (3) is the individual rationality constraint

(“IR”), (4) are the limited liability constraints, and (5) is the agent’s monotonicity constraint which

ensures that the wage is non-decreasing in output (otherwise he would “burn” it). If the IC is

slack, the effort chosen by the manager e∗ will exceed eT .

The above formulation is the standard moral hazard model in which the agent first exerts effort

and then receives pay, similar to Holmström (1979) and Innes (1990), with the only departure being
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the agent’s utility function. As a result, any deviation in the optimal contract can be attributed

to fairness concerns. Another formulation would be to have a single-period model in which the

agent first receives pay and then chooses effort, or a multi-period model where the agent responds

to first-period pay by choosing second-period effort. Then, if offered unfair pay, he may withhold

effort and reduce total surplus, as in the ultimatum game. However, such a formulation would be

more ad hoc, as we would need to hard-wire the link between perceived unfairness and next-period

effort, rather than fairness entering the utility function. It would also be less comparable with

standard models.

Define the likelihood ratio LR (q|e) as follows:

LR(q|e) ≡
∂ϕ
∂e
(q|e)

ϕ(q|e)
,

and let qe0 be the output for which the likelihood ratio is zero: LR(qe0|e) = 0. By MLRP and the

differentiability of ϕ, qe0 exists and is unique.

Lemma 1 below derives a sufficient condition for the validity of the first-order approach (“FOA”),

which allows us to replace the IC (2) by its first-order condition.3 Let K+
e (q) and K−

e (q) denote

the positive and negative parts of the second derivative of ϕ(q|e) with respect to effort:

K+
e (q) := max

{
∂2ϕ

∂e2
(q|e), 0

}
, (6)

K−
e (q) := min

{
∂2ϕ

∂e2
(q|e), 0

}
. (7)

Lemma 1 (First-Order Approach): The FOA is valid if∫ q

0

(
K−

e (q)u(0, q) +K+
e (q)u(q, q)

)
dq < C ′′(e) (8)

for all e ∈ R+.

We henceforth assume that condition (8) holds.

The perceived fair wage for output q, w∗ (q), is given by:

w∗(q) ≡ ρq, (9)

where ρ ∈ (0, 1] is the agent’s perceived fair share. One determinant of ρ is the importance of

agent effort for firm output. Edmans, Gosling, and Jenter (2023) find that “how much the CEO

can affect firm performance” is the most important driver of pay variability. Another potential

determinant is incentives in peer firms – the third most popular response is “the split between

fixed and variable pay in peer firms.”

3This is related to the condition for the FOA in a model with limited liability in Chaigneau, Edmans, and
Gottlieb (2022). The difference is that, in Lemma 1, the utility function also depends on output.
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Figure 1: Function u(w, q) as defined in equation (10) as a function of w for γ = 1, ρ = 1
2
, and

output q ∈ {0, 1, 2, 3, 4}. Top row: v(w) = w. Bottom row: v(w) = ln(w + 1).

The agent’s utility function is:

u(w, q) =

{
v(w) if w(q) ≥ w∗(q)

v(w∗(q)) + (1 + γ) (w − w∗(q)) if w(q) < w∗(q)
, (10)

where v′ > 0, v′′ ≤ 0, and γ ≥ 0 parametrizes fairness concerns. If the wage is fair (w ≥ w∗ (q)),

the agent’s utility is v(w). If the wage is unfair (w < w∗ (q)), the agent suffers disutility which is

increasing in both the discrepancy w−w∗(q) and his fairness concerns γ. We assume limw→0 v
′(w) <

1 + γ, so that the utility function is always steeper below the fair wage than above it. The kink

at the fair wage means that the agent is loss-averse: his sensitivity to losses exceeds his sensitivity

to gains. The unique feature of our fairness model is that the fair wage depends on output and

is thus endogenously determined ex post, in contrast to loss aversion models where the reference

point is independent of output and thus known ex ante.

A special case of (10) is where the agent is risk-neutral above the fair wage (v(w) = w), and

so:

u(w, q) = w − γmax {w∗(q)− w, 0} . (11)

This utility function is piecewise linear with a kink at the fair wage, a slope of 1 above and a slope

exceeding 1 below. This is the simplest and most transparent specification for fairness concerns,

and allows us to conduct comparative statics with respect to γ and ρ.

Figure 1 displays the agent’s utility as a function of w for various output realizations and two

different utility functions. The Online Appendix extends the analysis to a nonlinear fair wage and

a convex utility function below the fair wage, as in prospect theory; all results are qualitatively

unchanged.
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To simplify the analysis, we assume:

∫ qe
T

0

0

u(0, q)
∂ϕ

∂e
(q|eT )dq +

∫ q

qe
T

0

u(ρq, q)
∂ϕ

∂e
(q|eT )dq ≥ C ′(eT ) (12)∫ q

0

u(0, q)ϕ(q|0)dq − C(0) < U (13)∫ q

0

u(ρq, q)ϕ(q|e∗)dq − C(e∗) ≥ U, where e∗ satisfies (2) with w(q) = w∗(q) ∀q. (14)

These assumptions are not crucial for our results, but reduce the number of cases we need to

consider. Assumption (12) ensures that an incentive-compatible contract that elicits eT exists

even if the firm never pays more than the fair wage. Assumption (13) implies that, even if the

cost of effort were zero, a contract that always pays zero would violate the IR. Assumption (14)

implies that a contract that always pays the fair wage satisfies the IR.

2 Analysis

We first consider the problem of inducing the agent’s participation. As we show below, the

optimal contract may end up inducing effort even when the target effort level is zero.

Proposition 1 (Zero target effort level): Fix eT = 0. If U and γ are sufficiently high, the agent

exerts e∗ > 0 and the contract is characterized by w′(q) > 0 for some q. If U is sufficiently low,

the principal implements e∗ = 0 and the following contract is optimal:

w(q) =

{
w∗(q) for q < qc

ρqc for q ≥ qc
, (15)

where qc is set so that the IR in equation (3) binds.

Perhaps surprisingly, an agent with a high reservation utility (threshold defined in the Ap-

pendix) chooses a strictly positive effort level even though the principal does not request any

effort. Intuitively, the principal satisfies the IR by offering the fair wage for a range of outputs,

and thus a wage that is increasing in output. Note that a wage increasing in output does not au-

tomatically induce effort, because even though output increases the agent’s wage, it also increases

the fair wage. If U is low, the principal can satisfy the agent’s IR even if she only provides fair

wages for a small subset of outputs. To minimize effort incentives and the required compensation

for effort, she pays the fair wage for q < qc and a fixed wage (which does not rise with output and

is thus unfair) for q ≥ qc. This capped compensation structure means that, if q ≥ qc, the actual

wage ρqc is below the fair wage of ρq and so the agent suffers a disutility.

In contrast, if U is high, the principal needs to pay fair wages for a wider range of outputs

to ensure the agent’s participation. Since the fair wage is increasing in output, it induces effort
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as a by-product. The agent exerts e∗ > 0 even though the principal requested eT = 0; she gets

effort “for free”. This result is in stark contrast to the case without fairness concerns. In the

standard model of Holmström (1979), eliciting higher effort is always more costly to the principal

as it requires an output-contingent wage and thus inefficient risk-sharing. As a result, any effort

level in R+ can in principle be optimal, depending on model parameters.

This is not true with fairness concerns. Providing low effort incentives either requires paying

unfair wages for high outputs (which fails to satisfy the IR) or paying above the fair wage for

low outputs (which is costly). Without fairness concerns, it is costly to incentivize high effort

levels; with fairness concerns, it may be costly to incentivize low effort levels as doing so requires

offering unfair pay. A by-product of fair pay is that it incentivizes effort, even if such incentives

are unnecessary. This result may extend beyond the C-suite; for example, equity might be given

to rank-and-file employees, despite their limited incentive effect, if they believe it is fair to share

in the firm’s fortunes.4

We now move to the optimal contract when the IC binds. Define qmin
m as the highest value that

satisfies the following equation:∫ qmin
m

0

u(0, q)
∂ϕ

∂e
(q|eT )dq +

∫ q

qmin
m

u(vρq, q)
∂ϕ

∂e
(q|eT )dq = C ′(eT ). (16)

If there exists a contract that implements eT without paying the agent above the fair wage for any

output, qmin
m is the threshold below which the payment is zero and above which it is the fair wage.

We start with the case where the agent is risk-neutral above the fair wage (v′′ = 0).

Proposition 2 (Binding incentive constraint, v′′ = 0): Fix eT sufficiently high. The principal

implements e∗ = eT and offers the following contract:

w(q) =


0 for q < qm

w∗(q) for q ∈ [qm, qM)

q for q ≥ qM

. (17)

Moreover:

(a) If γ <
LR(q|eT )

LR(qmin
m |eT )

−1 and U is sufficiently low that the IR is slack, then LR
(
qm|eT

)
(1+γ) =

LR
(
qM |eT

)
and qm ≥ qe

T

0 .

(b) If U is sufficiently high that the IR binds, then LR(qm|eT ) (1 + γ) < LR(qM |eT ).
(c) If γ >

LR(q|eT )
LR(qmin

m |eT )
− 1 and

U ≤ −γρ

∫ qmin
m

0

qϕ(q|eT )dq + ρ

∫ q

qmin
m

qϕ(q|eT )dq − C(eT ),

4Oyer (2004) offers a different explanation for this practice – that equity-based pay ensures that wages constantly
match outside opportunities. A model of retention predicts that pay is not sensitive to performance on the downside
(when outside opportunities are irrelevant) but is sensitive to performance on the upside, similarly to the payoff of
an option (Chaigneau and Sahuguet, 2018).
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then qm = qmin
m and qM = q;

Without fairness concerns (γ = 0), the model is similar to Innes (1990). Due to MLRP, the

principal concentrates rewards on very high outputs only. Parts (a) and (b)5 show that, regardless

of whether the IR is binding, γ = 0 leads to qm = qM : the optimal contract is “live-or-die”. There

is a single threshold below which the agent is paid the minimum (zero) and above which he is paid

the maximum (the entire output).

With fairness concerns (γ > 0), parts (a) and (b) establish that, when γ is low or the IR binds,

the optimal contract has a third region: for intermediate outputs q ∈ [qm, qM), the agent is paid

the fair wage, and the size of the region is increasing in γ (since qm and qM are determined by

(1+γ)LR (qm|e∗) = LR (qM |e∗)). The reason for this third region is that the Innes (1990) contract

is suboptimal when γ > 0 on two grounds. First, it does not satisfy the IR efficiently, which is

a concern if it is binding (i.e. part (b) applies). The agent receives an unfair wage (zero) for

outputs below the threshold, which causes disutility. Second, it does not satisfy the IC efficiently.

The agent receives an unfair wage even for some output levels that are associated with positive

likelihood ratios and indicate that he has worked, reducing his incentives to do so. Since the

utility function is steeper below w∗ (q) rather than above it, it is efficient to increase the rewards

for moderately low outputs (that nevertheless have positive likelihood ratios) from 0 to w∗ (q), and

simultaneously to reduce the rewards for moderately high outputs from q to w∗ (q).

While the above explains the optimal contract by starting from a model of moral hazard and

adding fairness, another way to view the intuition is to start with a pure fairness model and

add moral hazard. One may think that fairness concerns would lead to the agent always being

paid the fair wage w∗(q), to secure his participation efficiently, but such a contract does not

provide incentives efficiently. Since the agent suffers disutility from an unfair wage, it is efficient

to “threaten” him with the most unfair possible wage of zero for low output: fairness concerns

can justify unfair wages because avoiding unfairness is a motivator. In addition, if output is

sufficiently high, the agent is paid the entire output rather than the fair wage, because efficient

incentive provision involves concentrating rewards in the highest likelihood ratio states.

For q ∈ [qm, qM), pay-performance sensitivity (“PPS”) ρ is determined by what the CEO

believes to be a fair reward for performance; as explained earlier, ρ might depend on how much

his effort affects output, or PPS in peer firms. In standard models with risk neutrality (e.g. Innes

(1990)), PPS is 1, which is not the case for any CEO (except for 100% owner-managers). In

standard models with risk aversion (e.g. Holmström (1979)), PPS is determined by a trade-off

between incentives and risk aversion. However, Edmans, Gosling, and Jenter (2023) finds that

CEO risk aversion is the least important out of seven determinants of PPS, and Becker (2006)

documents a weak relationship between risk aversion and PPS.

Part (c) shows that, when γ is sufficiently high and U is sufficiently low, qM increases all the

way to q. The highest region disappears, so the agent is never paid the entire output. The optimal

5Part (c) is inapplicable with γ = 0 due to MLRP and qmin
m ≤ q.
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contract thus only has two regions – zero for low outputs and the fair wage for high outputs.

Intuitively, the disutility γ from unfairness is sufficiently high that the gains from paying fair

wages outweigh the standard desire to pay only for very high outputs (Innes (1990)). Thus, qM

increases to the highest possible level of q. Since the agent is never paid above the fair wage,

incentive compatibility is achieved by setting qm = qmin
m as in equation (16). The condition on U

means that a contract as in equation (17) with qm = qmin
m and qM = q satisfies the IR.

This contract represents performance shares, where the agent is given shares worth ρq that

are forfeited if q < qm. In standard models where the likelihood ratio is a continuous function of

output, such as Holmström (1979), the optimal contract is also a continuous function of output

and so does not involve discontinuities. In our model, the likelihood ratio is also a continuous

function of output, yet discontinuities are optimal because the threat of the most unfair possible

wage incentivizes effort. In the Innes (1990) model without a monotonicity constraint, the optimal

contract is discontinuous but the agent receives either nothing or everything; we are unaware of

such a contract being offered in reality. To obtain more realistic contracts, Innes (1990) assumes

that the principal’s payoff cannot be decreasing in output, otherwise she would “burn” it or the

agent would secretly inject his own funds into the company to inflate it. Innes’ theory can be

interpreted as either a financing model where an entrepreneur (agent) raises funds from an outside

investor (principal), or a compensation model where a company (principal) offers a contract to

a CEO (agent). While the two justifications for the monotonicity constraint are realistic for the

financing application, they may be less relevant for the compensation application. Dispersed

shareholders cannot coordinate to burn output, and while the board acts on shareholders’ behalf,

burning output violates directors’ fiduciary duty to the company. Similarly, it would likely be illegal

for the CEO to inject his own funds into the company to manipulate the stock price. Our paper

obtains realistic contracts without the need for a monotonicity assumption on the principal.6 In

addition, in Innes (1990), the monotonicity constraint leads to a continuous contract; our contract

features a mild discontinuity as is common in reality.

Proposition 2 shows how whether the IR binds affects the optimal contract. When the IR does

not bind, as in parts (a) and (c), we have qm > 0, so that the contract has a discontinuity between

zero and positive payments. Paying zero for low outputs incentivizes effort, but may fail to ensure

the agent’s participation. Thus, when the IR binds, the contract may not have a discontinuity part

(b) allows for qm = 0). Overall, the IR binding is a necessary condition for pay to be a continuous

function of output. The increasing use of performance shares, which do contain discontinuities,

is consistent with the participation constraint no longer binding for many CEOs – that they are

willing to accept unfair pay for low output levels suggests that they are above their outside option.

Corollary 1 shows how the contract depends on the intensity of fairness concerns.

6Our model does feature a monotonicity constraint on the agent (expression (5)). Standard models do not
require this as monotonic contracts are automatic given the MLRP, but this need not be the case with fairness
concerns. A justification is that, if the agent’s payoff were decreasing in output, he would “burn” output. Innes
(1990) makes a similar justification for the principal, who has less control over output than the agent.
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Corollary 1 When v′′ = 0, U , γ, and eT are sufficiently high, then the threshold qm above which

the manager is paid a fair wage w∗(q) is decreasing in γ.

In the case considered in Corollary 1 (IR and IC bind, and qm ≤ qe
T

0 : the agent is only paid

zero for outputs which are bad news about effort), the threshold qm above which the manager is

paid a fair wage is decreasing in γ. Intuitively, the stronger fairness concerns are, the stronger the

disutility the agent suffers from receiving zero. This reinforces effort incentives, but also reduces

the agent’s expected utility from the contract. The principal will therefore change the thresholds

qm and qM to reduce effort incentives and to increase the agent’s expected utility. This is achieved

by decreasing qm, because this increases the range of outputs (qm, q
eT

0 ) over which the agent receives

the fair wage even though they are bad news about effort. The effect on qM is ambiguous.7

Proposition 3 gives the optimal contract for the case where the agent is risk-averse above the

fair wage (v′′ < 0).

Proposition 3 (Binding incentive constraint, v′′ < 0): Fix eT sufficiently high. The principal

implements e∗ = eT and offers the following contract:

w(q) =


0 for q ∈ [0, qm)

w∗(q) for q ∈ [qm, qM ]

v′−1 (1/ (λ1 + λ2LR(q|e∗))) for q ∈ [qM , qN ]

q for q ∈ [qN , q]

. (18)

The optimal contract is now given by four regions. As with v′′ = 0, there are three regions in

which the agent is paid zero, the fair wage, and the entire output. However, there is an additional

region, given by q ∈ [qM , qN ], where output is sufficiently high that the principal pays more than the

fair wage. It is inefficient to give the entire output, since the agent exhibits diminishing marginal

utility and so does not value this additional reward highly. Thus, unlike in the model with v′′ = 0,

the optimal contract is continuous at qM . As output rises above qM , the likelihood ratio increases

further and so the actual wage exceeds the fair wage by more. The contract will generally be convex

between qM and qN .
8 For q > qN , the likelihood ratio is so high that the principal pays the entire

output.

Example 1 illustrates how the optimal contract is affected by underlying parameters. When

the agent’s utility is concave above the fair wage, the optimal contract’s payoff structure is similar

to stock with conditional vesting provisions, which is widely used in practice (see Figure 2 in Bettis

et al. (2018)).

7If instead we had qm > qe
T

0 , the effect of increasing γ on effort incentives would be ambiguous: it would raise

the disutility of receiving zero payments, which would arise not only for all bad news outputs (q < qe
T

0 ) but also

for some good news outputs q ∈ (qe
T

0 , qm).
8However, the contract will be concave if the likelihood ratio is concave, so that very high output is only

slightly more indicative of effort, and if risk aversion is sufficiently important compared to prudence (see Chaigneau,
Sahuguet and Sinclair-Desgagné, 2017). The latter condition will typically not be satisfied for CEOs who have low
relative risk aversion due to their wealth.
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Example 1 The agent’s preferences are given by γ = 2, ρ = 1
2
, C(e) = c

10
× e10. First row:

v(w) = w, and output follows a truncated lognormal distribution on [0, 10] with parameters e∗ = 1,

and σ = 1. Optimal contract for (a): U = −0.5 and c = 1.8. (b) U = −0.6 and c = 2.25.

Second row: v(w) = ln(w + 1), and output follows a truncated normal distribution on [0, 10] with

parameters e∗ = 1 and σ = 1. Optimal contract for (c) U = −0.5 and c = 0.4. (d) U = −1 and

c = 0.45.

0 1 2 3 4 5 6
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5
w(q)

(a)

0 1 2 3 4 5 6
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2
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5
w(q)

(b)

0.5 1.0 1.5 2.0 2.5 3.0
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2.5
w(q)

(c)

0.5 1.0 1.5 2.0 2.5 3.0
q

0.5

1.0

1.5

2.0

2.5
w(q)

(d)

Figure 2: The contract w(q) as a function of q for parameter values described in Example 1.

3 Conclusion

This paper studied optimal contracting under fairness preferences, where the agent’s perceived

fair wage depends on output. We showed that fairness concerns do not lead to the agent being

paid fair wages for all output levels; in contrast, unfair wages can be effective to induce effort.

When the agent’s utility function is linear above the fair wage, the optimal contract involves

two thresholds for output. The agent receives zero below the lower threshold, the entire output

above the upper threshold, and the fair wage in between. When fairness concerns are sufficiently

strong, the upper region in which the agent receives the entire output disappears, and the contract

12



becomes performance shares. The model thus rationalizes the common usage of performance shares

in reality; most other contracting theories predict continuous contracts, or extreme discontinuities

where the agent’s pay switches from zero to the entire output.

When the agent’s utility is concave above the fair wage, the contract now involves an additional

fourth region, in-between the regions in which the CEO receives the fair wage and the entire output.

In this region, his payment exceeds the fair wage, and is generally convex in output.

In both models, we show that, even if the incentive constraint is slack, pay is increasing in

output – by paying the agent the fair wage over a greater range of outputs, this reduces perceived

unfairness and allows the participation constraint to be satisfied at least cost. As a result, the

firm can induce CEO effort “for free”, potentially rationalizing why incentives are given even to

intrinsically motivated agents.

This paper is a first step in modeling CEO pay under fairness preferences, using the standard

model to make transparent how fairness concerns affect the optimal contract. For future research,

it may be fruitful to explore the other potential determinants of the fair wage suggested by the

survey of Edmans, Gosling, and Jenter (2023), such as peer firm pay in a model of multiple firms,

employee pay in a model of multiple agents, or last year’s pay in a dynamic model.9

9The results of Edmans, Gosling, and Jenter (2023) also suggest that shareholders, not just the CEO, also have
fairness concerns. However, this may be a less promising research direction as the principal makes no decisions
beyond offering the contract, and so fairness concerns do not affect effort incentives. In addition, fairness concerns
for the principal are similar to a restriction on the space of contracts. Such constraints have been explored in prior
work, e.g. Innes (1990).
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A Proofs

Proof of Lemma 1:

For a given contract w(q), the effort choice problem of the agent can be written as

max
e

∫ q

0

u (w(q), q)ϕ(q|e)dq − C(e).

The second derivative of the agent’s objective function with respect to e is negative for any e if

and only if: ∫ q

0

u (w(q), q)
∂2ϕ

∂e2
(q|e)dq < C ′′(e) ∀e ∈ (0, ē). (19)

With principal limited liability (see equation (4)), since the utility function increasing in w, the

maximum value of u for a given q is u (q, q). In addition, with agent limited liability (see equation

(4)), the minimum payment is w(q) = 0; with a utility function increasing in w, this implies that

the minimum value of u for a given q is u (0, q). Therefore, for any given q:

u (w(q), q) ∈ [u (0, q) , u (q, q)] .

Using notations K+
e (q) and K−

e (q) defined in equations (6) and (7), the expression on the left-hand

side (“LHS”) of equation (19) can then be rewritten as:∫ q

0

u (w(q), q)min

{
∂2ϕ

∂e2
(q|e), 0

}
dq +

∫ q

0

u (w(q), q)max

{
∂2ϕ

∂e2
(q|e), 0

}
dq. (20)

As established above, we have u (w(q), q) ≥ u(0, q) for any q, and u (w(q), q) ≤ u(q, q) for any q.

Therefore, for any q such that ∂2ϕ
∂e2

(q|e) ≤ 0 we have u (w(q), q) ∂2ϕ
∂e2

(q|e) ≤ u(0, q)∂
2ϕ

∂e2
(q|e); and for

any q such that ∂2ϕ
∂e2

(q|e) ≥ 0 we have u (w(q), q) ∂2ϕ
∂e2

(q|e) ≤ u(q, q)∂
2ϕ

∂e2
(q|e). Integrating over q, this

implies that expression (20) is less than:∫ q

0

(
K−

e (q)u(0, q) +K+
e (q)u(q, q)

)
dq,

which completes the proof.

Proof of Proposition 1:

We describe the optimal contract when eT = 0, i.e. the IC does not bind for any contract. In

the optimization problem with a nonbinding IC, the IR for e∗ ≥ 0 must be binding. Suppose that

it is not. Then, the contract that solves the optimization problem in equations (1), (4), and (5) is

simply w(q) = 0 for any q, which gives utility u(0, q) at a given q, so that the IR is not satisfied

because of equation (13), a contradiction.
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The relaxed optimization problem with a nonbinding IC, a binding IR, and the FOA, is:

min
w(q),e∗

∫ q

0

w(q)ϕ(q|e∗)dq (21)

s.t.

∫ q

0

u(w(q), q)ϕ(q|e∗)dq − C(e∗) = U (22)∫ q

0

u(w(q), q)
∂ϕ

∂e
(q|e∗)dq = C ′(e∗) (23)

0 ≤ w(q) ≤ q (24)

w(q) ≥ w(q′) ∀q > q′ (25)

At first, we hold effort constant. We then consider the effects of the contract on the effort choice,

which matters because it affects the equilibrium effort e∗, and therefore the LHS of equation (22).

Lemma 2 If the optimal contract induces e∗ = 0, it is such that w(q) ≤ w∗(q) on any non-empty

subinterval of [0, q].

Proof. With e ≥ 0 and C ′(0) = 0, a contract w(q) that induces e∗ = 0 is such that:∫ q

0

u(w(q), q)
∂ϕ

∂e
(q|0)dq ≤ 0. (26)

By contradiction, suppose that the contract induces e∗ = 0 and is such that w(q) > w∗(q) on

a non-empty subinterval of [0, q]. Consider the following perturbation: on one of these subin-

tervals, denoted by Q+, decrease w(q) by an arbitrarily small ϵ. On another subinterval where

w(q) < w∗(q), denoted by Q−, increase w(q) by ε which is such that the agent’s expected utility

is unchanged:∫
Q+

v (w(q)− ϵ)ϕ(q|e∗)dq +
∫
Q−

(v(w∗(q)) + (1 + γ)(w(q) + ε− w∗(q)))ϕ(q|e∗)dq

=

∫
Q+

v(w(q))ϕ(q|e∗)dq +
∫
Q−

(v(w∗(q)) + (1 + γ)(w(q)− w∗(q)))ϕ(q|e∗)dq

⇔
∫
Q+

(v(w(q)− v (w(q)− ϵ)))ϕ(q|e∗)dq = (1 + γ)ε

∫
Q−

ϕ(q|e∗)dq

where

∫
Q+

(v(w(q)− v (w(q)− ϵ)))ϕ(q|e∗)dq ≤ v′(0)ϵ

∫
Q+

ϕ(q|e∗)dq < (1 + γ)ϵ

∫
Q+

ϕ(q|e∗)dq (27)

because of the assumption v′(0) < 1 + γ. The implied change in expected pay is:∫
Q+

(−ϵ)ϕ(q|e∗)dq +
∫
Q−

εϕ(q|e∗)dq,

which is strictly negative because of equation (27).
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When the IC is nonbinding, holding effort constant (at a given e = e∗), the optimization

program has an infinity of solutions: any monotonic contract such that w(q) ∈ [0, w∗(q)] ∀q and

equation (22) holds would solve the optimization problem. Indeed, this type of contract is such

that:

E[u(w(q), q)|e∗] = E [v(w∗(q)) + (1 + γ) (w(q)− w∗(q)) |e∗]
= (1 + γ)E [w(q)|e∗] + E [v(w∗(q))|e∗]− (1 + γ)E [w∗(q)|e∗] , (28)

i.e., holding effort constant, the agent’s expected utility only depends on E [w(q)|e∗]. Let the

threshold q∗c be such that:∫ q∗c

0

v(w∗(q))ϕ(q|0)dq +
∫ q

q∗c

u(ρq∗c , q)ϕ(q|0)dq = U + C(0) (29)

Note that this threshold exists and is unique because of the assumptions in equations (13) and

(14) and because the LHS of equation (29) is continuous and strictly increasing in q∗c .

Lemma 3 The contract:

w(q) =

{
w∗(q) if q < q∗c
ρq∗c if q ≥ q∗c

, (30)

where q∗c is implicitly defined in equation (29), induces e∗ = 0 if and only if U ≤ U c. Moreover,

for U ≤ U c, this contract is optimal.

The threshold U c is the value of reservation utility U such that e∗ = 0 solves the FOC to the

agent’s effort choice problem with the contract in equation (30) with a binding IR. Formally, let

q̂c be implicitly defined by (uniqueness is established in the proof of Lemma 3):∫ q̂c

0

v(w∗(q))
∂ϕ

∂e
(q|0)dq +

∫ q

q̂c

(v(w∗(q)) + (1 + γ) (ρq̂c − w∗(q)))
∂ϕ

∂e
(q|0)dq = C ′(0).

Then, given q̂c as in the equation above, U c is implicitly defined by:∫ q̂c

0

v(w∗(q))ϕ(q|0)dq +
∫ q

q̂c

u(ρq̂c, q)ϕ(q|0)dq = U c + C(0).

Proof. Because of equation (28), with a contract such that w(q) ∈ [0, w∗(q)] ∀q and a given effort

e∗, the binding IR can be rewritten as:

(1 + γ)E [w(q)|e∗] + E [v(w∗(q))|e∗]− (1 + γ)E [w∗(q)|e∗]− C(e∗) = U, (31)
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so that an optimal contract is such that:

E [w(q)|e∗] = E [w∗(q)|e∗] + 1

1 + γ

(
U + C(e∗)− E [v(w∗(q))|e∗]

)
. (32)

With a contract of the type

w(q) =

{
w∗(q) if q < qc

ρqc if q ≥ qc
, (33)

there is only one qc such that the IR in equation (22) is satisfied. Indeed:

∂

∂qc

{∫ qc

0

v(w∗(q))ϕ(q|e∗)dq +
∫ q

qc

(v(w∗(q)) + (1 + γ) (ρqc − w∗(q)))ϕ(q|e∗)dq
}

= (1 + γ)ρ

∫ q

qc

ϕ(q|e∗)dq > 0. (34)

With a contract as in equation (33), an increase in qc leads to an increase in the LHS of the IC in

equation (23):

∂

∂qc

{∫ qc

0

v(w∗(q))
∂ϕ

∂e
(q|e∗)dq +

∫ q

qc

(v(w∗(q)) + (1 + γ) (ρqc − w∗(q)))
∂ϕ

∂e
(q|e∗)dq

}
= (1 + γ)ρ

∫ q

qc

∂ϕ

∂e
(q|e∗)dq > 0,

where the inequality follows from the definition of a density function and MLRP. For qc = 0, the

LHS of the IC is strictly negative. By a continuity argument, it follows that e∗ = 0 when qc is

sufficiently low. Moreover, the agent’s expected utility on the LHS of equation (22) is strictly

increasing in qc (see equation (34)); for equation (22) to be satisfied, the LHS of the equation must

be strictly increasing in qc. Therefore, with a contract as in equation (33), qc is strictly increasing

in U . Since an increase in qc leads to an increase in the LHS of the IC in equation (23) and equation

(26) must be satisfied for e∗ = 0 to be the effort level optimally chosen by the agent, it follows

that the contract in equation (33) induces e∗ = 0 if and only if U is sufficiently low: U ≤ U c.

Lemma 4 Effort e∗ = 0 can be induced by a feasible contract such that w(q) ≤ w∗(q) if and only

if it can be induced by a contract as in equation (30).

Proof. We will show that a contract as in equation (30) minimizes the LHS of IC conditional on

e∗ = 0 and the constraints on contracting. Given w(q) ≤ w∗(q) and equation (28), E[u(w(q))|e∗] =
U is equivalent to E[w(q)|e∗] = W for a given e∗ (here e∗ = 0) and some W , and u(w, q) is linear

19



in w. Thus, the effort minimizing contract solves:

min
w(q)

∫
w(q)

∂ϕ

∂e
(q|0)dq s.t. E[w(q)|e∗ = 0] = W

0 ≤ w(q) ≤ w∗(q)

ẇ(q) ≥ 0

Let x(q) ≡ ẇ(q). The Hamiltonian and Lagrangian are:

H = −w(q)
∂ϕ

∂e
(q|0) + θw(q)ϕ(q|0) + λ(q)x(q) (35)

L = H + µ(q)x(q) + ν(q)w(q) + ω(w∗(q)− w(q)) (36)

The optimality condition with respect to the control variable x is:

∂L
∂x

= 0 ⇔ λ(q) = −µ(q) (37)

By complementary slackness, µ(q) ≥ 0, and µ(q) = 0 if x(q) > 0. Thus, λ(q) ≤ 0, and λ(q) = 0 if

x(q) > 0. The equation of motion for the costate variable is:

λ̇(q) = −∂L
∂w

⇔ λ̇(q) =
∂ϕ

∂e
(q|0)− θϕ(q|0)− ν(q) + ω(q) (38)

The transversality condition is λ(q) = 0. By complementary slackness, if w(q) ∈ (0, w∗(q)) and

ẇ(q) > 0 then:

λ̇(q) =
∂ϕ

∂e
(q|0)− θϕ(q|0) (39)

Moreover, as already established, λ(q) = 0 if x(q) > 0 ⇔ ẇ(q) > 0, which implies λ̇(q) = 0.

Thus, with equation (39), λ̇(q) = 0 would imply that the likelihood ratio
∂ϕ
∂e

(q|0)
ϕ(q|0) is constant, which

is impossible by MLRP. In sum, we cannot have w(q) ∈ (0, w∗(q)) and ẇ(q) > 0 on any non-empty

subinterval. This implies that, on any non-empty subinterval, either w(q) = w∗(q) or ẇ(q) = 0

(the latter allows for w(q) = 0).

Finally, we have to show that w(q) = w∗(q) for q less than a threshold and ẇ(q) = 0 for q

higher than this threshold. By contradiction, suppose that the contract is such that ẇ(q) = 0

(and w(q) ≤ w∗(q)) for q ∈ Q1 and w(q′) = w∗(q′) for q′ ∈ Q2 where Q1 and Q2 are such that

q < q′. Note that the utility function is linear in w for w(q) ≤ w∗(q). Standard arguments show

that it is possible to perturb the contract by increasing payments on Q1 and decreasing payments

on Q2 to maintain the same expected payment
∫
w(q)ϕ(q|0)dq while reducing effort incentives∫

w(q)∂ϕ
∂e
(q|0)dq because of MLRP.

Lemma 5 If eT = 0 and U ≤ U c, then the principal implements e∗ = 0.
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Proof. First, in this case, an optimal contract cannot be such that w(q) > w∗(q) on a non-empty

subinterval. As already established, a contract as in equation (30) with qc such that IR binds

induces e∗ = 0 when U ≤ U c, i.e. in this case there exists a contract such that w(q) ≤ w∗(q)

for any q that induces e∗ = 0. Now consider a contract wA(q) such that wA(q) > w∗(q) on a

non-empty subinterval. There are two cases. If this contract induces e∗ = 0, then this contract is

dominated (see Lemma 2). If this contract wA(q) induces e∗ > 0, holding effort constant at e∗ = 0

for now, we have:

E[wA(q)|e∗ = 0] > E[w(q)|e∗ = 0], (40)

where the contract w(q) is as in equation (30), so that it induces e∗ = 0. The inequality in equation

(40) can be established as in the proof of Lemma 2. In addition, for any feasible contract wA(q)

(is which nondecreasing in q for all q given the constraint in equation (25)), we have:

E[wA(q)|e∗ > 0] ≥ E[wA(q)|e∗ = 0], (41)

which follows because MLRP implies FOSD. In sum, the contract wA(q) is dominated.

Second, consider a contract w(q) such that w(q) ≤ w∗(q) for all q that does not induce e∗ = 0,

and which is such that IR is satisfied as an equality as in equation (22) (we already showed that IR

must be binding). As established in equation (28), holding effort constant, the agent’s expected

utility for this type of contract only depends on the expected cost of the contract, E[w(q)|e∗],
which is as in equation (32). Moreover, for any feasible contract, a reduction in effort leads to a

lower expected cost since MLRP implies FOSD (see equation (41)). Therefore, a contract such

that w(q) ≤ w∗(q) that induces e∗ = 0 dominates a contract such that w(q) ≤ w∗(q) that induces

e∗ > 0. Finally, a contract as in equation (30) with qc such that IR binds induces e∗ = 0 when

U ≤ U c, and this contract is optimal for e∗ = 0 (see Lemma 3).

In sum, if U ≤ U c, then e∗ = 0 and an optimal contract is as in equation (30) (see Lemmas 3

and 4).

Conversely, if U > U c, Lemmas 3 and 4 imply that any contract that induces e∗ = 0 must be

such that w(q) > w∗(q) on non-empty subinterval(s). Moreover, some of these subintervals must

be in [0, q00]: if U > U c and w(q) ≤ w∗(q) for all q < q00, then e∗ > 0 because of Lemmas 3 and 4

and because the LHS of the IC conditional on e∗ = 0 writes as:∫ q

0

u(w(q), q)
∂ϕ

∂e
(q|0)dq, (42)

with ∂ϕ
∂e
(q|0) < 0 if and only if q < q00 by MLRP.

Still in the case U > U c, we compare two contracts. Contract A is the contract that induces

e∗ = 0 at the minimum cost. Contract B is the contract defined in Lemma 3, where qc is such that

IR is binding subject to incentive compatibility. As already established, this contract is such that
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e∗ > 0 when U > U c. Because of MLRP and the monotonicity constraint, contract A takes the

form:

w(q) =


ρqf if q < qf

w∗(q) if q ∈ [qf , qd]

ρqd if q ≥ qd

, (43)

where qd is such that IR binds for a given qf , and qf is the lowest value such that e∗ = 0 with this

contract. We have qf > 0 since with U > U c there does not exist a contract as in Lemma 3 that

induces e∗ = 0. As γ → ∞, with the full support assumption we have qd → q so that qf >> 0 for

incentive compatibility.

In the rest of the proof, we denote by ê the strictly positive effort level induced by contract B.

We have:

E[u(wA(q))|e∗ = 0] = E [v(w∗(q)) + (1 + γ) (wA(q)− w∗(q)) |e∗ = 0]

+

∫ qf

0

(v(wA(q))− (v(w∗(q)) + (1 + γ)(wA(q)− w∗(q))))ϕ(q|0)dq

E[u(wB(q))|e∗ = ê] = E [v(w∗(q)) + (1 + γ) (wB(q)− w∗(q)) |e∗ = ê]

We also have E[u(wA(q))|e∗ = 0] = U and E[u(wB(q))|e∗ = ê] = U + C(ê). With γ sufficiently

high, we have q̂c → q so that ê → 0 and with C ′(0) = 0 we have C(ê) → 0. Thus:

E [wA(q)|e∗ = 0] = E [wB(q)|e∗ = ê] + E [w∗(q)|e∗ = 0]− E [w∗(q)|e∗ = ê]

+
1

1 + γ
(E [v(w∗(q))|e∗ = ê]− E [v(w∗(q))|e∗ = 0])

+

∫ qf

0

(v(w∗(q)) + (1 + γ)(wA(q)− w∗(q))− v(wA(q)))ϕ(q|0)dq (44)

We have E [w∗(q)|e∗ = 0] − E [w∗(q)|e∗ = ê] < 0 and this term is independent of γ. We also have

E [v(w∗(q))|e∗ = ê] − E [v(w∗(q))|e∗ = 0] > 0. Finally, with wA(q) = ρqf > w∗(q) for q < qf , we

have v(wA(q)) ≤ v(w∗(q))+ v′(w∗(q))(wA(q)−w∗(q)) ≤ v(w∗(q))+ (1+γ)(wA(q)−w∗(q)), so that

v(w∗(q)) + (1 + γ)(wA(q)− w∗(q))− v(wA(q)) > 0, for q such that wA(q) > w∗(q). In sum, when

γ is sufficiently high, we have E [wA(q)|e∗ = 0] > E [wB(q)|e∗ = ê] so that it is optimal to induce

e∗ > 0. Any contract that induces e∗ > 0 must be such that w′(q) > 0 for some q (a contract

such that w′(q) = 0 for all q results in the corner solution e∗ = 0 to the agent’s effort optimization

problem).

Proof of Propositions 2 and 3:

When the condition from Lemma 1 holds so that the FOA applies, a binding IC can be rewritten
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as: ∫ q

0

u(w(q), q)
∂ϕ

∂e
(q|e∗)dq = C ′(e∗), (45)

with e∗ = eT since the IC binds.

Lemma 6 The optimal contract is such that w(q) /∈ (0, w∗(q)) for any q.

Proof. This proof is by contradiction. Suppose that for some q we have w(q) ∈ (0, w∗(q)).

Consider any given initial incentive-compatible contract and the following perturbation for any

q > q′ in this subinterval, increase w(q) by ϵ/ϕ(q|e∗), and decrease w(q′) by ϵ/ϕ(q′|e∗), where ϵ

is positive and arbitrarily small. By construction, for a given effort this perturbation does not

change the principal’s or the agent’s objective function (note that the agent’s objective function is

linear in w for any w and q such that w > w∗(q)). Now consider the effect on the LHS of the IC in

equation (45). With w(q) ∈ (0, w∗(q)) and w(q′) ∈ (0, w∗(q′)), the change in the LHS of the IC is:

(1 + γ)ϵ (LR(q|e∗)− LR(q′|e∗)) ,

which is strictly positive by MLRP. Since the LHS of the IC increases and the IC is binding,

standard arguments show that it is then possible to construct a contract that leaves the LHS of

the IC and IR unchanged compared to the initial contract and reduces the cost of the contract

to the principal, which establishes that the initial contract was suboptimal. This rules out any

contract such that w(q) ∈ (0, w∗(q)) for any q.

Case 1 (Proposition 2): v′′ = 0.

In this case, we have v(w) = a+ bw for b > 0. We normalize v(w) = w (as in equation (11)).

The first step in this part of the proof establishes that a contract as described in equation (17)

is optimal. To this end, we rely on the agent’s monotonicity constraint in equation (5) and on

Lemma 7 below.

Lemma 7 Let the utility function be as in equation (11) and suppose that the IC is binding. The

optimal contract is such that w(q) /∈ (w∗(q), q) for any q.

Proof. This proof is by contradiction. Suppose that for some q we have w(q) ∈ (w∗(q), q).

Consider any given initial incentive-compatible contract and the following perturbation for any

q > q′ in this subinterval, increase w(q) by ϵ/ϕ(q|e∗), and decrease w(q′) by ϵ/ϕ(q′|e∗), where ϵ

is positive and arbitrarily small. By construction, for a given effort this perturbation does not

change the principal’s or the agent’s objective function (note that the agent’s objective function is

linear in w for any w and q such that w > w∗(q)). Now consider the effect on the LHS of the IC in

equation (45). With w(q) ∈ (w∗(q), q) and w(q′) ∈ (w∗(q′), q′), the change in the LHS of the IC is:

ϵ (LR(q|e∗)− LR(q′|e∗)) ,
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which is strictly positive by MLRP. Since the LHS of the IC increases and the IC is binding,

standard arguments show that it is then possible to construct a contract that leaves the LHS of

the IC and IR unchanged compared to the initial contract and reduces the cost of the contract

to the principal, which establishes that the initial contract was suboptimal. This rules out any

contract such that w(q) ∈ (w∗(q), q) for any q.

The second step of the proof establishes the values of qm and qM for a given effort e∗ to be

induced.

The relaxed optimization problem with qm ∈ [0, q] and qM ∈ [qm, q] is:

min
qm,qM

∫ q

0

w(q)ϕ(q|e∗)dq (46)

s.t.

∫ q

0

u(w(q), q)
∂ϕ

∂e
(q|e∗)dq = C ′(e∗) (47)∫ q

0

u(w(q), q)ϕ(q|e∗)dq − C(e∗) ≥ U (48)

w(q) =


0 for q < qm

w∗(q) for q ∈ [qm, qM ]

q for q > qM

(49)

With the utility function defined in equation (11), this can be rewritten as, for qm ∈ [0, q] and

qM ∈ [qm, q]:

min
qm,qM

∫ qM

qm

ρqϕ(q|e∗)dq +
∫ q

qM

qϕ(q|e∗)dq (50)

s.t.

∫ qm

0

(−γρq)
∂

∂e
ϕ(q|e∗)dq +

∫ qM

qm

ρq
∂ϕ

∂e
(q|e∗)dq +

∫ q

qM

q
∂ϕ

∂e
ϕ(q|e∗)dq = C ′(e∗) (51)∫ qm

0

(−γρq)ϕ(q|e∗)dq +
∫ qM

qm

ρqϕ(q|e∗)dq +
∫ q

qM

qϕ(q|e∗)dq − C(e∗) ≥ U (52)

Denote by ηIC and ηIR the Lagrange multipliers associated with the constraints in equations (51)

and (52), respectively. The FOC for an interior solution are:

−ρqmϕ(qm|e∗)− ηIC

(
−γρqm

∂ϕ

∂e
(qm|e∗)− ρqm

∂

∂e
ϕ(qm|e∗)

)
−ηIR (−γρqmϕ(qm|e∗)− ρqmϕ(qm|e∗)) = 0 (53)

ρqMϕ(qM |e∗)− qMϕ(qM |e∗)− ηIC

(
ρqM

∂ϕ

∂e
(qM |e∗)− qM

∂ϕ

∂e
(qM |e∗)

)
−ηIR (ρqMϕ(qM |e∗)− qMϕ(qM |e∗)) = 0 (54)
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which for qm ̸= 0 and qM ̸= 0 is equivalent to:

−1 + ηIC

∂ϕ
∂e
(qm|e∗)

ϕ(qm|e∗)
(1 + γ) + ηIR (1 + γ) = 0 (55)

−1 + ηIC

∂ϕ
∂e
(qM |e∗)

ϕ(qM |e∗)
+ ηIR = 0 (56)

The optimal value of qm is generically not described by a corner solution. We have qm = 0 in

a nongeneric case: when equation (14) is satisfied as an equality at e∗ = eT . Now suppose that

equation (14) is not satisfied as an equality at e∗ = eT , i.e. it is satisfied as a strict inequality. This

implies that the IR is nonbinding when qm = 0 (indeed, it is nonbinding for qm = 0 and qM = q,

and the LHS of the IR in equation (52) is decreasing in qM). Moreover, a contract with qm = 0

does not provide incentives at the minimum cost, since increasing qm would increase the LHS of

the IC in equation (51) while reducing the cost of the contract in equation (50). Finally, since the

IR is nonbinding at qm = 0 and its LHS is continuously differentiable in qm, the increase in qm can

be small enough that the new contract still satisfies IR. In sum, if equation (14) is not satisfied as

an equality at e∗ = eT , then we cannot have qm = 0 at the optimal contract.

Likewise, we cannot have qm = q, which would imply qM = q, at the optimal contract. Indeed,

this would violate the IC in equation (51) since the LHS would then be negative and the RHS

positive; this would also violate the IR in equation (52) according to equation (13).

Thus, the optimal value of qm is generically given by the first-order condition in equation (55),

which can be rearranged as:

LR(qm|e∗) =
1

ηIC

(
1

1 + γ
− ηIR

)
,

where ηIC ≥ 0 and ηIR ≥ 0.

There are two cases.

Nonbinding IR. In the optimization problem with a nonbinding IR, the IC for eT > 0 must

be binding. Suppose that it is not. Then, the contract that solves the optimization problem in

equations (1), (4), and (5) is simply w(q) = 0 for any q, so that u(0, q) = −γmax{ρq, 0} = −γρq

for any q ∈ [0, q], and:∫ q

0

u(0, q)
∂ϕ

∂e
(q|e)dq = −γρ

∫ q

0

q
∂ϕ

∂e
(q|e)dq < 0 < C ′(e),

for any e > 0, i.e. the IC is not satisfied, a contradiction.

If the optimal values of qm and qM are interior solutions, equations (55) and (56) with ηIR = 0

(nonbinding IR) and ηIC > 0 (binding IC) immediately give:

∂ϕ
∂e
(qm|e∗)

ϕ(qm|e∗)
(1 + γ) =

∂ϕ
∂e
(qM |e∗)

ϕ(qM |e∗)
. (57)
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With a nonbinding IR, we establish that qm ≥ qe
∗

0 , where e∗ = eT . Consider any given initial

compensation contract such that qm < qe
∗

0 and the following perturbation: increase qm by an

arbitrarily small amount. This perturbation increases the LHS of the IC and reduces the cost of

the contract to the principal. Standard arguments show that it is then possible to construct a

contract that leaves the LHS of the IC unchanged compared to the initial contract and reduces the

cost of the contract to the principal, which establishes that the initial contract was suboptimal.

Denote the subset of values of {qm, qM} that satisfy the IC by QIC , and denote the values of

{qm, qM} in this subset by {qICm , qICM }. Let qICM be a function of qICm . This is a continuous function by

the implicit function theorem since the LHS of the IC in equation (47) is continuously differentiable

in qm and qM , and the product of continuous functions is continuous.

Totally differentiating the LHS of the IC with respect to qICm and taking into account the effect

on qICM so that the LHS of the IC remains unchanged gives:

d

dqICm

∫ q

0

u(w(q), q)
∂ϕ

∂e
(q|e∗)dq =

(
u(0, qICm )− u(w∗(qICm ), qICm )

) ∂ϕ
∂e

(qICm |e∗)

+

((
u(w∗(qICM ), qICM )− u(qICM , qICM )

) ∂ϕ
∂e

(qICM |e∗)
)

dqICM
dqICm

= −(1 + γ)w∗(qICm )
∂ϕ

∂e
(qICm |e∗)− (qICM − w∗(qICM ))

∂

∂e
ϕ(qICM |e∗)dq

IC
M

dqICm
= 0

⇔ dqICM
dqICm

= −(1 + γ)w∗(qICm )

qICM − w∗(qICM )

∂
∂e
ϕ(qICm |e∗)

∂ϕ
∂e
(qICM |e∗)

, (58)

where both the numerator and the denominator of the second fraction on the RHS are positive

since qe
∗

0 ≤ qm ≤ qM .

Now consider the subsetQc of values of {qm, qM}, denoted by {qcm, qcM}, that leaves the expected
cost of the contract in equation (46) unchanged for the principal. By construction:

d

dqcm

∫ q

0

w(q)ϕ(q|e∗)dq = −w∗(qcm)ϕ(q
c
m|e∗)− (qcM − w∗(qcM))ϕ(qcM |e∗)dq

c
M

dqcm
= 0

⇔ dqcM
dqcm

= − w∗(qcm)

qcM − w∗(qcM)

ϕ(qcm|e∗)
ϕ(qcM |e∗)

. (59)

Because of MLRP, for qe
∗

0 ≤ qm ≤ qM , we have:

∂ϕ
∂e
(qm|e∗)

ϕ(qm|e∗)
≤

∂ϕ
∂e
(qM |e∗)

ϕ(qM |e∗)
⇔

∂
∂e
ϕ(qm|e∗)

∂ϕ
∂e
(qM |e∗)

≤ ϕ(qm|e∗)
ϕ(qM |e∗)

, (60)

with strict inequalities for qM > qm.

For any given element in QIC , there are two possible cases:

1) For values of qICm and qICM such that (1 + γ)
∂ϕ
∂e

(qICm |e∗)
ϕ(qICm |e∗) <

∂ϕ
∂e

(qICM |e∗)
ϕ(qICM |e∗) and qm ≥ qe

∗
0 , a marginal

increase in qm and associated decrease in qM (since
dqICM
dqICm

< 0) that satisfies incentive compat-
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ibility as in equation (58) results in a lower cost to the principal because of equations (59)

and (60).

2) For values of qICm and qICM such that (1 + γ)
∂ϕ
∂e

(qICm |e∗)
ϕ(qICm |e∗) >

∂ϕ
∂e

(qICM |e∗)
ϕ(qICM |e∗) and qm ≥ qe

∗
0 , a marginal

increase in qm and associated decrease in qM (since
dqICM
dqICm

< 0) that satisfies incentive compat-

ibility as in equation (58) results in a higher cost to the principal because of equations (59)

and (60).

Consider the smallest value for qICm and corresponding highest value for qICM in the subset QIC ,

and denote them by qmin
m and qmax

M . We can show by construction that qmax
M = q: according

to equations (12), an incentive-compatible contract such that qm ≥ qe
∗

0 and qM = q exists; by

definition of QIC and qmax
M , this means that qmax

M = q. Since IR is nonbinding and the cost of a

contract is decreasing in qm, all else equal, q
min
m is implicitly defined by incentive compatibility with

qmax
M = q in equation (16). From equations (12) and (16), we have qmin

m ≥ qe
∗

0 . There are two cases.

First, if (1 + γ)
∂ϕ
∂e

(qmin
m |e∗)

ϕ(qmin
m |e∗) >

∂ϕ
∂e

(q|e∗)
ϕ(q|e∗) , then due to MLRP and

dqICM
dqICm

< 0, for any element of QIC ,

we have (1 + γ)
∂ϕ
∂e

(qICm |e∗)
ϕ(qICm |e∗) >

∂ϕ
∂e

(qICM |e∗)
ϕ(qICM |e∗) , so that case 2) described above is relevant for any element

of QIC . Therefore, the optimal values of qm and qM are respectively qmin
m and q. That is:

w(q) =

{
0 for q ∈ [0, qmin

m )

w∗(q) for q ∈ [qmin
m , q]

, (61)

where qmin
m is defined in equation (16).

Second, if (1 + γ)
∂ϕ
∂e

(qmin
m |e∗)

ϕ(qmin
m |e∗) <

∂ϕ
∂e

(q|e∗)
ϕ(q|e∗) , then for elements in the subset QIC , for low enough

values of qICm and high enough values of qICM , case 1) described above is relevant. Moreover, since

γ > 0 and the likelihood ratio LR(q|e) is continuous in q by assumption, for elements in the subset

QIC , for high enough values of qICm and low enough values of qICM (since
dqICM
dqICm

< 0), case 2) described

above is relevant. In sum, the optimal values of qm and qM belong to the subset QIC and satisfy

the following equation:

(1 + γ)
∂ϕ
∂e
(qm|e∗)

ϕ(qm|e∗)
=

∂ϕ
∂e
(qM |e∗)

ϕ(qM |e∗)
. (62)

Binding IR. When both the IC and IR are binding, qm and qM must satisfy:

−γρ

∫ qm

0

q
∂ϕ

∂e
(q|e∗)dq + ρ

∫ qM

qm

q
∂ϕ

∂e
(q|e∗)dq +

∫ q

qM

q
∂ϕ

∂e
(q|e∗)dq = C ′(e∗) (63)

−γρ

∫ qm

0

qϕ(q|e∗)dq + ρ

∫ qM

qm

qϕ(q|e∗)dq +
∫ q

qM

qϕ(q|e∗)dq − C(e∗) = U (64)

We also know that the optimal value of qm is generically an interior solution, so we have three

cases.
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1. First, if the optimal values of qm and qM are interior solutions, equations (55) and (56) with

ηIR > 0 and ηIC > 0 immediately give:

∂ϕ
∂e
(qm|e∗)

ϕ(qm|e∗)
(1 + γ) +

ηIR
ηIC

γ =
∂ϕ
∂e
(qM |e∗)

ϕ(qM |e∗)
(65)

Because of MLRP, the LHS of equation (65) is strictly increasing in qm, and the RHS is

strictly increasing in qM . Thus, for any pair {qm, qM} that satisfy this equation, qM is

strictly increasing in qm.

2. If qM = qm, then qm must satisfy:

−γρ

∫ qm

0

q
∂ϕ

∂e
(q|e∗)dq +

∫ q

qm

q
∂ϕ

∂e
(q|e∗)dq = C ′(e∗) (66)

−γρ

∫ qm

0

qϕ(q|e∗)dq +
∫ q

qm

qϕ(q|e∗)dq − C(e∗) = U (67)

The LHS of the IR in equation (67) is strictly decreasing in qm. Thus, there exists at most

one value of qm such that equation (67) holds, and this value is strictly decreasing in U . The

derivative of the LHS of IC in equation (66) with respect to qm is qm
∂ϕ
∂e
(qm|e∗) (−γρ− 1),

which by MLRP and definition of qe
∗

0 is positive if and only if qm < qe
∗

0 . Thus, there exists

at most two values of qm such that equation (67) holds, and these values are independent of

U . In sum, generically we cannot have IC and IR binding with qM = qm.

3. If qM = q, then qm must satisfy:

−γρ

∫ qm

0

q
∂ϕ

∂e
(q|e∗)dq + ρ

∫ q

qm

q
∂ϕ

∂e
(q|e∗)dq = C ′(e∗) (68)

−γρ

∫ qm

0

qϕ(q|e∗)dq + ρ

∫ q

qm

qϕ(q|e∗)dq − C(e∗) = U (69)

The LHS of the IR in equation (69) is strictly decreasing in qm. Thus, there exists at most

one value of qm such that equation (69) holds, and this value is strictly decreasing in U . The

derivative of the LHS of IC in equation (68) with respect to qm is qm
∂ϕ
∂e
(qm|e∗) (−γρ− ρ),

which by MLRP and definition of qe
∗

0 is positive if and only if qm < qe
∗

0 . Thus, there exists

at most two values of qm such that equation (69) holds, and these values are independent of

U . In sum, generically we cannot have IC and IR binding with qM = q.

Case 2 (Proposition 3): v′′ < 0.

We describe the optimal contract when the IC binds. By Lemma 1, when the IC in equation

(2) is binding, it can be replaced by the FOC:∫ q

0

u(w(q), q)
∂ϕ

∂e
(q|e∗)dq = C ′(e∗). (70)
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For now, ignore the monotonicity constraint. We will verify below that the optimal contract thus

derived is monotonic.

Combining the agent’s monotonicity constraint (w(q) is nondecreasing in q) in equation (5)

and Lemma 6, for some qm ∈ [0, q] we have: w(q) = 0 for q ∈ [0, qm), and w(q) ∈ [w∗(q), q] for

q ≥ qm because of principal limited liability. This implies that u(w, q) = v(w) for q ≥ qm. That is,

for a given qm, the relaxed optimization problem that gives the optimal contract to induce effort

e∗ = eT can be rewritten as:

min
w(q)

∫ q

qm

w(q)ϕ(q|e∗)dq (71)

s.t.

∫ qm

0

u(0, q)
∂ϕ

∂e
(q|e∗)dq +

∫ q

qm

v(w(q))
∂ϕ

∂e
(q|e∗)dq = C ′(e∗) (72)∫ qm

0

u(0, q)ϕ(q|e∗)dq +
∫ q

qm

v(w(q))ϕ(q|e∗)dq ≥ U (73)

w(q) ∈ [w∗(q), q] ∀q (74)

We henceforth consider the subset of values of qm such that the optimization problem in equations

(71)-(74) has a solution (the optimization problem has a solution for some qm because of the

assumptions in equations (12) and (14)). Using the notation in Jewitt, Kadan, and Swinkels

(2008), we have m(q) = w∗(q) and m(q) = q. We can apply Proposition 1 in their paper to derive

the optimal contract on [qm, q] given that the payment w(q) is 0 on [0, qm) (note that the first

terms on the LHS of equations (72) and (73) are independent of w(q) and can therefore be treated

as constants in the optimization problem in equations (71)-(74)). In sum, for some qm, the optimal

contract is defined implicitly by:

1

u′
w(w(q), q)

=


1

u′
w(0,q)

for q ≤ qm
1

v′(w∗(q))
for q > qm and λIR + λICLR(q|e∗) < 1

v′(w∗(q))

λIR + λICLR(q|e∗) for q > qm and 1
v′(w∗(q))

< λIR + λICLR(q|e∗) < 1
v′(q)

1
v′(q)

for q > qm and 1
v′(q)

< λIR + λICLR(q|e∗)

with λIR ≥ 0 and λIC > 0, which are the Lagrange multipliers associated respectively with the

constraints (73) and (72), and which therefore depend on qm (in general, these are not the Lagrange

multipliers associated with the IR and IC of the original optimization problem). Equivalently:

w(q) =


0 for q ≤ qm

w∗(q) for q > qm and λIR + λICLR(q|e∗) < 1
v′(w∗(q))

v′−1 (1/ (λIR + λICLR(q|e∗))) for q > qm and 1
v′(w∗(q))

< λIR + λICLR(q|e∗) < 1
v′(q)

q for q > qm and 1
v′(q)

< λIR + λICLR(q|e∗)

.

Proof of Corollary 1:

29



When U is sufficiently high, IR is binding. When eT is sufficiently high, IC is binding. When

IR and IC are binding, the contract is given by case (b) in Proposition 2. Moreover, for U and γ

sufficiently high, we have qm ≤ qe
T

0 . The IC can be written as:∫ qm

0

u(0, q)
∂ϕ

∂e
(q|e∗)dq +

∫ q

qm

v(w(q))
∂ϕ

∂e
(q|e∗)dq = C ′(e∗) (75)

In this equation, only the first term on the LHS depends on γ: u(0, q) = v(w∗(q))− (1 + γ)w∗(q).

Furthermore, with qm ≤ qe
T

0 and a binding IC which implies e∗ = eT , we have ∂ϕ
∂e
(q|e∗) < 0 for any

q < qm.

With a contract as in Proposition 2, the first derivatives of the LHS of the IC and IR with

respect to γ are respectively:

−ρ

∫ qm

0

q
∂ϕ

∂e
(q|e∗)dq > 0 and − ρ

∫ qm

0

qϕ(q|e∗)dq < 0.

Thus, following a marginal change in γ, the contract must change in a way that decreases the LHS

of the IC and increases the LHS of the IR.

With v′′ = 0, qN = qM , so that the contract is fully described by qm and qM . With a contract

as in Proposition 2, the first derivatives of the LHS of the IC with respect to qm and qM when

qN = qM are respectively:

−(1 + γ)ρqm
∂ϕ

∂e
(qm|e∗) > 0 and (v(ρqM)− v(qM))

∂ϕ

∂e
(qM |e∗) < 0.

With a contract as in Proposition 2, the first derivatives of the LHS of the IR in equation (64)

with respect to qm and qM are respectively:

−(1 + γ)ρqmϕ(qm|e∗) < 0 and (v(ρqM)− v(qM))ϕ(qM |e∗) < 0.

In sum, following a marginal increase in γ, an increase in both qm and qM would strictly decrease

the LHS of the IR, while an increase in qm and a decrease in qM would strictly increase the LHS

of the IC. Therefore, the only changes in qm and qM that leave the LHS of both the IC and IR

unchanged overall following an increase in γ involve a decrease in qm.
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B Nonlinear Model

The agent’s utility function is now:

u(w, q) ≡ min {v(w), ν(w, q)} (76)

where v(w) is utility over money alone, which is increasing and concave (v′ > 0, v′′ ≤ 0), with

v(0) = 0.10 The term ν(w, q) is the agent’s utility when his payment is below the fair wage, which

in turn depends on output. We assume that ν(0, q) ≤ 0, νq(w, q) < 0 (higher output raises the

fair wage and thus lowers utility), νw(w, q) > 0, limw↘0 νw(w, q) > limw↘0 v
′(w) ∀ q (the utility

function is always steeper below the fair wage than above it), νww(w, q) ≥ 0, νwq = 0, and νqq = 0.

For any given q, the functions v(w) and ν(w, q) intersect on (0,∞) at most once.11 Let this

point, if it exists, be denoted by w∗(q), i.e. v(w∗(q)) ≡ ν(w∗(q), q). At this point, v′(w) < νw(w, q),

yielding a kink in u(w, q) as a function of w at w = w∗(q). Thus, w∗ (q) captures the agent’s

perceived fair wage, but it need no longer be linear in output. The utility function (76) exhibits

not only loss aversion, but also concavity above the fair wage w∗(q) and convexity below it, as in

prospect theory.12

We also assume the following:

U + C(e∗) > 0. (77)∫ q

0

v(w∗(q))ϕ(q|e∗)dq − C(e∗) ≥ U, where e∗ satisfies (2) with w(q) = w∗(q) ∀q, (78)

Assumption (77) implies that a contract that always pays zero would violate the IR. Assumption

(78) implies that a contract that always pays the fair wage satisfies the IR.

Propositions 4 and (5) study the case without moral hazard and the case with a binding IC,

respectively.

Proposition 4 (Zero target effort level, nonlinear model): Fix eT = 0. If U is large enough, the

principal implements e∗ > 0. If U is small enough, the principal implements e∗ = 0. In any case,

the optimal contract is such that w′(q) ≥ 0 with a strict inequality on a non-empty subinterval,

and w(q) ≤ w∗(q) for any q.

10This specification for the function v(w) includes CRRA utility with relative risk aversion less than 1, and
v(w) = ln(w + 1).

11Indeed, for w = 0 and any q, we have v(0) ≥ ν(0, q). In addition, for any q, v(w) is weakly concave in w whereas
ν(w, q) is weakly convex in w.

12However, the model does not exhibit probability weighting as in prospect theory.
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Figure 3: Top row: the function u(w) defined in equation (76) as a function of w for v(w) = ln(w+1)
and ν(w, q) = (w + 1)1.2 − 1 − 1

5
q with q = 0.5 on the left, q = 1 in the middle, and q = 2 on

the right. Bottom row: the blue line is the fair wage w∗(q) defined by v(w∗(q)) ≡ ν(w∗(q), q) as a
function of q for v(w) = ln(w+1) and ν(w, q) = (w+1)1.2− 1− 1

5
q on the left, v(w) =

√
w + 1− 1

and ν(w, q) = w − 1
2
q on the right. The orange line is principal LL.

Proposition 5 (Binding incentive constraint, nonlinear model) For the program (1)-(5) with a

binding IC, the optimal contract is such that:

w(q) =


0 for q ∈ [0, qm)

w∗(q) for q ∈ [qm, qM ]

v′−1 (1/ (λ1 + λ2LR(q|e∗))) for q ∈ [qM , qN ]

q for q ∈ [qN , q]

.

The optimal contract is given by four regions. As in the linear model, there are three regions in

which the agent is paid zero, the fair wage, and the entire output. However, there is an additional

region, given by q ∈ [qM , qN ], where output is sufficiently high that the principal pays more than

the fair wage. It is inefficient to give the entire output, since the agent exhibits diminishing

marginal utility and so does not value this additional reward highly. Thus, unlike in linear model,

the optimal contract is continuous at qM . As output rises above qM , the likelihood ratio increases

further and so the actual wage exceeds the fair wage by more. The contract will generally be convex

between qM and qN .
13 For q > qN , the likelihood ratio is so high that the principal pays the entire

output.

If eT = 0, i.e., the IC is slack, then the principal chooses the cheapest contract that satisfies the

13However, the contract will be concave if the likelihood ratio is concave, so that very high output is only
slightly more indicative of effort, and if risk aversion is sufficiently important compared to prudence (see Chaigneau,
Sahuguet and Sinclair-Desgagné, 2017). The latter condition will typically not be satisfied for CEOs who have low
relative risk aversion due to their wealth.
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IR; Proposition 5 shows that this involves a positive sensitivity of pay to performance, all the more

that the agent’s reservation utility U is high. Intuitively, the agent is never paid more than the fair

wage, but he is paid at the fair wage for more outputs when U is higher. Thus, U is sufficiently

high, the wage is increasing in output and fair for most outputs, so that it induces effort and the

principal obtains effort “for free”, as in Proposition 1.

This result is in stark contrast to the case without fairness concerns. In the standard model

of Holmström (1979) with a risk-neutral principal and a risk-averse agent, eliciting higher effort is

always more costly to the principal as it requires an output-contingent wage and thus inefficient

risk-sharing.14 As a result, any effort level in R+ can in principle be optimal, depending on model

parameters. This is not true with fairness concerns. Providing low effort incentives either requires

paying unfair wages for high outputs (which reduces expected utility and fails to satisfy the IR)

or paying above the fair wage for low outputs (which is costly). Without fairness concerns, it is

costly to incentivize high effort levels; with fairness concerns, it may be costly to incentivize low

effort levels as doing so requires offering unfair pay. A by-product of fair pay is that it incentivizes

effort, even if such incentives are unnecessary. This result may extend beyond the C-suite; for

example, equity might be given to rank-and-file employees, despite their limited incentive effect, if

they believe it is fair to share in the firm’s fortunes.15

While paying the fair wage for a range of outputs helps satisfy the IR, doing so for all outputs

would give the agent rents. The question then becomes: at which outputs does the firm pay below

the fair wage, and how much below does it pay? With νww > 0, the agent’s utility is non-concave

below the fair wage. Thus, if the firm pays below the fair wage, it is efficient to pay him zero. Since

the fair wage is increasing in output, the disutility from zero wages is also increasing in output,

and so he should be paid zero for low output levels.

Example 2 illustrates how the outside option and the cost of effort affect the contract.

Example 2 Consider v(w) = ln(w + 1),16 and an output that follows a truncated normal distri-

bution on (0,∞) with e∗ and σ = 1, LR(q|e∗) ∝ q + constant, and v′−1 (1/ (λ1 + λ2LR(q|e∗))) is

linear in q. The contract is illustrated in Figure 4.

In panel (a) of Figure 4, the IC is nonbinding (i.e. e∗ > eT ), but the IR is binding, and so

the principal pays the fair wage for low outputs. In panel (b), a lower U leads to a nonbinding IR

and a binding IC (i.e. e∗ = eT ). The contract is now driven by incentive considerations and so

the fair wage is no longer paid for outputs with a negative likelihood ratio.17 In panel (c), the cost

of effort is higher than in panel (b), requiring the principal to increase incentives. She does so by

paying the fair wage rather than zero for a larger subset of outputs with a positive likelihood ratio,

14If the agent is risk-neutral and protected by limited liability, implementing higher effort requires the firm to
offer him a higher payment upon success and thus a higher expected wage.

15Oyer (2004) offers a different explanation for this practice – that equity-based pay ensures that wages constantly
match outside opportunities.

16This yields v′
−1

(w) = 1
w − 1, so that v′

−1
(1/λLR(q|e∗)) = λLR(q|e∗)− 1.

17When the IC is binding so that e∗ = eT , the likelihood ratio is positive for LR(q|eT ) > qe
T

0 ≈ 5. The
approximation is due to the use of the truncated normal distribution with e = 5 and σ = 1.
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Figure 4: The contract w(q) as a function of q. The agent’s preferences are as in Example 2 with

ν(w, q) = (w+1)1.2− 1− 1
5
q, C(e) = c

10

(
e
eT

)10
, and eT = 5. (a): U = 0 and c = 0.02. (b): U = −2

and c = 0.02. (c): U = −2 and c = 0.05.

and above the fair wage for very high outputs.

Proof of Proposition 4:

In the optimization problem with a nonbinding IC, the IR for e∗ ≥ 0 must be binding. Suppose

that it is not. Then, the contract that solves the optimization problem in equations (1), (4), and

(5) is simply w(q) = 0 for any q, so that, using equation (77) at any effort e∗ with ν(0, q) ≤ 0 by

assumption: ∫ q

0

u(0, q)ϕ(q|e∗)dq =
∫ q

0

ν(0, q)ϕ(q|e∗)dq ≤ 0

i.e. IR is not satisfied because of equation (77), a contradiction.

The relaxed optimization problem with a nonbinding IC, a binding IR, and the FOA, is:

min
w(q)

∫ q

0

w(q)ϕ(q|e∗)dq (79)

s.t.

∫ q

0

u(w(q), q)ϕ(q|e∗)dq − C(e∗) = U (80)∫ q

0

u(w(q), q)
∂ϕ

∂e
(q|e∗)dq = C ′(e∗) (81)

0 ≤ w(q) ≤ q (82)

w(q) ≥ w(q′) ∀q > q′ (83)

Lemma 8 If the optimal contract induces e∗ = 0, it is such that w(q) ≤ w∗(q) on any non-empty

subinterval of [0, q].

Proof. We will show that a contract such that w(q) > w∗(q) for some q is dominated. Since the

contract must involve w(q) > 0 for some q as shown above and w∗(0) = 0, this also implies that

the optimal contract is such that w′(q) > 0 for some q because of equation (83).

Denote by wA(q) a contract that satisfies the constraints on contracting and the participation

constraint. A contract such that w(q) ≥ w∗(q) for all q with a strict inequality for some nonempty
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subinterval(s) is dominated. Indeed, with the assumption in equation (78), there exists a cheaper

contract which still satisfies the constraints on contracting and the participation constraint. Now

consider a contract wA(q) such that wA(q) > w∗(q) on a nonempty subinterval of [0, q] denoted by

Qa, w
A(q) < w∗(q) on a nonempty subinterval of [0, q] denoted by Qb, and wA(q) = w∗(q) on a

possibly empty subinterval of [0, q] denoted by Qc.

For q ∈ Qa, since v′′ < 0:

v(wA(q))− v(w∗(q)) < v′(w∗(q))
(
wA(q)− w∗(q)

)
< v′(0)

(
wA(q)− w∗(q)

)
(84)

For q ∈ Qb, since ν ′′ ≥ 0 and because of the assumption limw↘0 νw(w, q) > limw↘0 v
′(w) ∀ q:

ν(w∗(q), q)− ν(wA(q), q) ≥ ν ′
w(w

∗(q), q)
(
w∗(q)− wA(q)

)
> v′(0)

(
w∗(q)− wA(q)

)
(85)

Since the contract wA(q) satisfies the participation constraint:∫
Qa

v(wA(q))f(q|e∗)dq +
∫
Qb

ν(wA(q), q)f(q|e∗)dq +
∫
Qc

v(w∗(q))f(q|e∗)dq − C(e∗) = U0, (86)

where U0 ≥ U . Denote by Qb1 and Qb2 two subintervals of Qb such that Qb1 ∪ Qb2 = Qb and

q2 < q1 for any q2 ∈ Qb2 and q1 ∈ Qb1. Because of the assumption in equation (78), there exists

a contract with payment w∗(q) for any q except on the subinterval Qb2, where payment is wA(q)

such that wA(q) < w∗(q), that induces effort ê, such that:∫
Qa

v(w∗(q))f(q|e∗)dq +
∫
Qb1

ν(w∗(q), q)f(q|e∗)dq +
∫
Qb2

ν(wA(q), q)f(q|e∗)dq

+

∫
Qc

v(w∗(q))f(q|e∗)dq − C(e∗) = U0 (87)∫
Qa

v(w∗(q))f(q|ê)dq +
∫
Qb1

ν(w∗(q), q)f(q|ê)dq +
∫
Qb2

ν(wA(q), q)f(q|ê)dq

+

∫
Qc

v(w∗(q))f(q|ê)dq − C(ê) ≥ U0 (88)

Equation (88) is satisfied as an equality under effort ê = e∗. Since by construction the new contract

provides the agent with the same expected utility net of effort cost U0 under effort e∗ associated

with the initial contract, if the agent is better off exerting a different effort level ê, then equation

(88) is satisfied as an inequality. By construction, we have:∫
Qa

(
v(wA(q))− v(w∗(q))

)
f(q|e∗)dq +

∫
Qb1

(
ν(wA(q), q)− ν(w∗(q), q)

)
f(q|e∗)dq

+

∫
Qb2

(
ν(wA(q), q)− ν(wA(q), q)

)
f(q|e∗)dq +

∫
Qc

(v(w∗(q))− v(w∗(q))) f(q|e∗)dq = 0 (89)
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Applying equations (84) and (85) to subintervals Qa and Qb1, respectively:∫
Qa

v(wA(q))f(q|e∗)dq −
∫
Qa

v(w∗(q))f(q|ê)dq +
∫
Qb1

ν(wA(q), q)f(q|e∗)dq −
∫
Qb1

ν(w∗(q), q)f(q|ê)dq

+

∫
Qb2

ν(wA(q), q)f(q|e∗)dq −
∫
Qb2

ν(wA(q), q)f(q|ê)dq +
∫
Qc

v(w∗(q))f(q|e∗)dq −
∫
Qc

v(w∗(q))f(q|ê)dq

<

∫
Qa

(
v(w∗(q)) + v′(0)

(
wA(q)− w∗(q)

))
f(q|e∗)dq −

∫
Qa

v(w∗(q))f(q|ê)dq

+

∫
Qb1

(
v(w∗(q)) + v′(0)

(
wA(q)− w∗(q)

))
f(q|e∗)dq −

∫
Qb1

ν(w∗(q), q)f(q|ê)dq

+

∫
Qb2

ν(wA(q), q)f(q|e∗)dq −
∫
Qb2

ν(wA(q), q)f(q|ê)dq +
∫
Qc

v(w∗(q))f(q|e∗)dq −
∫
Qc

v(w∗(q))f(q|ê)dq

≤
∫
Qa

v′(0)
(
wA(q)− w∗(q)

)
f(q|e∗)dq +

∫
Qb1

v′(0)
(
wA(q)− w∗(q)

)
f(q|e∗)dq

= v′(0)

∫
Qa∪Qb1

(
wA(q)− w∗(q)

)
f(q|e∗)dq

= v′(0)

∫ q

0

(
wA(q)− w∗(q)

)
f(q|e∗)dq (90)

where we used equations (87) and (88) to get the second inequality, and the fact that both contracts

have the same payment on subintervals Qb2 and Qc to get the final equality. Using equation (89)

and v′ > 0, the last line of equation (90) is greater than zero, which means that the expected cost

of the new contract is higher under effort e∗.

There are two cases. In any case, we will establish that a contract such that w(q) > w∗(q) for

some q is dominated.

First, suppose that the effort induced by the new contract described above is lower than (or

equal to) the level of effort e∗ associated with the initial contract wA(q). Since compensation is

increasing in q, this weakly reduces the expected cost of the contract, which shows that the initial

contract is dominated.

Second, suppose that the level of effort induced by the new contract described above is strictly

higher than the level of effort e∗ associated with the initial contract wA(q). Denote by qa the

highest level of q such that, under the new contract, w(q) = w∗(q). By construction of this new

contract, we have w(q) = w∗(q) for q ≤ qa, and w(q) ∈ [w(qa), w
∗(q)) for q ≥ qa. Now suppose the

payment under this new contract is set to w(qb) for any q ≥ qb, where qb is set so that the expected

utility of the contract is equal to U . The threshold qb is strictly increasing in U :∫ qb

0

v(w∗(q))ϕ(q|e∗)dq +
∫ q

qb

ν(w(qb), q)ϕ(q|e∗)dq = U (91)

Thus, when U is sufficiently low, qb ≤ qa, and the expected cost of the contract is reduced by the

aforementioned perturbation. Moreover, when U is sufficiently low, the resulting contract induces
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e∗ = 0 since: ∫ qb

0

v(w∗(q))
∂ϕ

∂e
(q|0)dq +

∫ q

qb

ν(w(qb), q)
∂ϕ

∂e
(q|0)dq < 0. (92)

This also establishes that the initial contract is dominated.

Now consider the case when U is sufficiently large: it is equal to the LHS of equation (78).

Then the optimal contract pays w∗(q) on any non-empty subinterval by the arguments above and

equation (78). In this case, effort is strictly positive (e∗ > 0) since for any e∗:∫ q

0

v(w∗(q))
∂ϕ

∂e
(q|e∗)dq > 0. (93)

Proof of Proposition 5:

We describe the optimal contract when the IC binds. By Lemma 1, when the IC in equation

(2) is binding, it can be replaced by the FOC:∫ q

0

u(w(q), q)
∂ϕ

∂e
(q|e∗)dq = C ′(e∗). (94)

For now, ignore the monotonicity constraint in equation (83). We will verify below that the optimal

contract thus derived satisfies monotonicity. This part of the proof has two steps.

Lemma 9 On any non-empty subinterval of [0, q], we have w(q) /∈ (0, w∗(q)).

Proof. Let ǔ(q) := u(w(q), q), and let u−1
w (·) be such that u−1

w (ǔ(q)) = w(q) ⇔ u−1
w (u(w(q), q)) =

w(q). The Lagrangian for the optimization problem in equations (79)-(82) is:

L =

∫ q

0

u−1
w (ǔ(q))ϕ(q|e∗)dq − λ

(∫ q

0

ǔ(q)ϕ(q|e∗)dq − C(e∗)− U

)
−µ

(∫ q

0

ǔ(q)
∂ϕ

∂e
(q|e∗)dq − C ′(e∗)

)
− λLLA(q)u

−1
w (ǔ(q))− λLLP(q)

(
q − u−1

w (ǔ(q))
)

Note that the constraints are linear in ǔ(q). The first-order necessary condition (FONC) with

respect to ǔ(q) at any given output q is:

u−1
w

′
(ǔ(q))ϕ(q|e∗)− λϕ(q|e∗)− µ

∂ϕ

∂e
(q|e∗)− λLLA(q)u

−1
w

′
(ǔ(q)) + λLLP(q)u

−1
w

′
(ǔ(q)) = 0

⇔ u−1
w

′
(ǔ(q)) = λ+ µ

∂ϕ
∂e
(q|e∗)

ϕ(q|e∗)
+

λLLA(q)

ϕ(q|e∗)
u−1
w

′
(ǔ(q))− λLLP(q)

ϕ(q|e∗)
u−1
w

′
(ǔ(q)) (95)

where λLLA(q) = 0 for w(q) > 0 ⇔ uq > u(0, q), and λLLP(q) = 0 for w(q) < q ⇔ uq < u(q, q).

The proof is by contradiction. For a given q, suppose that w(q) ∈ (0, w∗(q)) ⇔ uq ∈
(u(0, q), u(w∗(q), q)), which implies λLLA(q) = 0 and λLLP(q) = 0 by definition of these Lagrange
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multipliers, and also implies u(w(q), q) = ν(w(q), q) by definition of the utility function. The

function ν(w, q) is increasing and convex in w. This implies that u−1
w is increasing and con-

cave. Thus, the FONC does not describe an optimum to the minimization problem, and further-

more the optimal w(q) is not in the interval (0, w∗(q)) ⇔ the optimal uq is not in the interval

(u(0, q), u(w∗(q), q)).

Combining the agent’s monotonicity constraint (w(q) is nondecreasing in q) in equation (5)

and Lemma 9, for some qm ∈ [0, q] we have: w(q) = 0 for q ∈ [0, qm), and w(q) ∈ [w∗(q), q] for

q ≥ qm because of principal limited liability. This implies that u(w, q) = v(w) for q ≥ qm. That is,

for a given qm, the relaxed optimization problem that gives the optimal contract to induce effort

e∗ = eT can be rewritten as:

min
w(q)

∫ q

qm

w(q)ϕ(q|e∗)dq (96)

s.t.

∫ qm

0

u(0, q)
∂ϕ

∂e
(q|e∗)dq +

∫ q

qm

v(w(q))
∂ϕ

∂e
(q|e∗)dq = C ′(e∗) (97)∫ qm

0

u(0, q)ϕ(q|e∗)dq +
∫ q

qm

v(w(q))ϕ(q|e∗)dq ≥ U (98)

w(q) ∈ [w∗(q), q] ∀q (99)

We henceforth consider the subset of values of qm such that the optimization problem in equations

(96)-(99) has a solution (the optimization problem has a solution for some qm because of equations

(12) and (78)). Using the notation in Jewitt, Kadan, and Swinkels (2008), we have m(q) = w∗(q)

and m(q) = q. We can apply Proposition 1 in their paper to derive the optimal contract on [qm, q]

given that the payment w(q) is 0 on [0, qm) (note that the first terms on the LHS of equations (97)

and (98) are independent of w(q) and can therefore be treated as constants in the optimization

problem in equations (96)-(99)). In sum, the optimal contract is defined implicitly by:

1

u′
w(w(q), q)

=


1

u′
w(0,q)

for q ≤ qm
1

v′(w∗(q))
for q > qm and λIR + λICLR(q|e∗) < 1

v′(w∗(q))

λIR + λICLR(q|e∗) for q > qm and 1
v′(w∗(q))

< λIR + λICLR(q|e∗) < 1
v′(q)

1
v′(q)

for q > qm and 1
v′(q)

< λIR + λICLR(q|e∗)

with λIR ≥ 0 and λIC > 0, which are the Lagrange multipliers associated respectively with the

constraints (98) and (97), and which therefore depend on qm (in general, these are not the Lagrange

multipliers associated with the IR and IC of the original optimization problem). Equivalently:

w(q) =


0 for q ≤ qm

w∗(q) for q > qm and λIR + λICLR(q|e∗) < 1
v′(w∗(q))

v′−1 (1/ (λIR + λICLR(q|e∗))) for q > qm and 1
v′(w∗(q))

< λIR + λICLR(q|e∗) < 1
v′(q)

q for q > qm and 1
v′(q)

< λIR + λICLR(q|e∗)

.
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