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1 Introduction

Market fragility is often at the center of economic crises, featuring spirals of depressed

asset prices and illiquidity, with potentially devastating consequences for the economy. The

COVID-19 episode was a clear example, with bond markets entering severe turmoil in March

2020, prompting a large-scale intervention by the Federal Reserve (Haddad, Moreira, and

Muir, 2021a). An important driver of this turmoil was nonbank fragility and in particular

historical levels of outflows suffered by bond mutual funds (Falato, Goldstein, and Hortaçsu,

2021; Ma, Xiao, and Zeng, 2022b). Forced sales by shrinking funds significantly contributed

to the sharp increase in credit spreads. This episode, as well as prior ones, suggests that

asset prices and flows are jointly determined in equilibrium and that their interaction is a key

driver of market fluctuations (Gabaix and Koijen, 2021). Nevertheless, how to quantify these

equilibrium effects and what is the appropriate policy response is largely an open question.

This paper aims to fill this gap by developing a framework to analyze the fragility of the

corporate bond market. The model features a two-layer asset demand system: households

allocate wealth to institutions, which allocate funds to specific assets. Equilibrium asset

prices reflect the demand of both households and institutional investors. Fragility arises

when negative returns lead to investor redemptions, forcing managers to sell assets and

further depress bond prices. The model features dynamic feedback loops between investor

outflows and asset prices, as well as contagion across assets and institutions. We show

how the model can be estimated using micro-data on bond prices, institutional investors

holding, and fund flows. We use the estimated model to quantify the equilibrium effects of

unconventional monetary and liquidity policies on bond prices.

We first develop equilibrium conditions for the two-layer asset demand model. In the

first layer, households allocate wealth to institutional investors. Our key focus is on the flow-

performance relationship in the mutual fund sector which affects the size of funds’ Assets
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under Management (AUM): high returns leads to inflows into a fund, while poor returns lead

to outflows. In the second layer, institutional investors then allocate funds to specific assets.

Asset demand is driven by asset returns as well as the institutions’ investment mandates.

Equilibrium asset prices reflect the demand of both households and institutional investors:

AUM determine asset demand through mandates, while asset holdings affect fund returns

and drive changes in AUM going forward.

The model yields rich yet tractable equilibrium dynamics characterized by a difference-

equation system of fund flows and asset prices. First, the model displays feedback loop

between prices and flows. A negative shock to asset prices reduces fund returns, which leads

to outflows from institutions that have demandable liabilities, such as mutual funds. Out-

flows then lead to asset sales by these institutions, which further depresses asset prices. The

cumulative effect could be several times greater than the initial shock. Second, the model

displays contagion across assets. Shocks on fundamental value of one asset can spillover to

other assets through investor outflows. Because institutions are constrained by mandate,

they have to buy and sell assets that are not directly affected by the fundamental shock to

maintain certain portfolio weights. Third, the model displays contagion across institutions.

Institutions that do not issue demandable liabilities, such as insurance companies, are af-

fected by outflows from institutions that issue demandable liabilities such as mutual funds.

Because asset prices are depressed by the outflow-induced asset sales, the asset values of

insurance companies can decrease.

Although these amplifications and contagions have been documented in the prior lit-

erature, our framework has a unique advantage to characterize them as simple sufficient

statistics of parameters that can be estimated, such as institution demand elasticities, flow-

to-return sensitivities, and the distribution of assets across institutions. This tractability

makes the model highly-scalable in the presence of heterogeneity: our empirical implemen-

tation includes thousands of investor-specific parameters. The model guides us to construct
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an asset fragility measure, which measures how much aggregate asset prices would decline

for a given shock to the value of one asset, taking into account both the direct contribution

of the asset and the indirect spillovers through other assets or institutions. A similar fragility

measure can be constructed for each financial institution in an analogous manner. These

two measures can help policy makers evaluate the source of fragility in credit markets and

the systemic importance of financial institutions.

Importantly, we show how to estimate the model parameters using micro data. The

first layer uses flow-performance regressions to determine how much outflows an institution

would suffer if it experienced negative returns (Chevalier and Ellison, 1997; Sirri and Tufano,

1998). The second layer uses an instrumental variables technique to estimate the asset

demand system that exploit rigidities in institutions’ investment mandates (Koijen and Yogo,

2019; Bretscher et al., 2020). For the first layer, we construct a monthly panel of fixed-

income funds from January 1992 to December 2021 from the CRSP Mutual Fund Database

and complement it with daily fund flow and net asset value data for open-end funds from

Morningstar. For the second layer, we use a comprehensive dataset that merges holdings

data from eMAXX and CRSP, pricing data from WRDS Bond Returns, and bond details

from Merget FISD.

We use our estimates to study the effects of policy interventions aimed at stabilizing the

market. The Federal Reserve responded swiftly in Spring 2020 by lowering its interest rate

targeting and announcing corporate bond purchases for the first time ever. Other potential

interventions have been discussed, but quantifying their effects has largely been an open

question. We study four types of ex-post interventions: (i) conventional monetary policy,

(ii) asset purchases, (iii) direct lending to mutual funds, and (iv) restricting redemption on

mutual fund shares.1 In each counterfactual, we begin with a negative 10% shock to high

yield bond prices, consistent with the initial shock of COVID crisis in early March 2020, and

1Nevertheless, there are some important dimensions of policy that are outside the current scope of our
framework, such as promises (Haddad et al., 2021a) or signaling (Cieslak et al., 2019).

4



evaluate the impact of an intervention two or ten days after the shock. Moreover, we also

study how well targeted these interventions are in addressing fragility. In particular, our

framework allows us to compute the benchmark of a maximum-price-impact intervention.

We show that to maximize the price impact on the market subject to a resource constraint,

the policy-maker should target the assets with the highest fragility, as measured above, per

unit of resource.

First, we find that a rate cut of 25 basis points improves prices and restores some of the

loss in fund value. Investment grade bonds rebound more quickly because they are longer

duration, and HY bonds value remain significantly below their pre-shock level. There is

also a significant drop in institutional investors assets under management due to permanent

outflows, especially for mutual funds.

Second, we evaluate a policy where the central bank purchases 1% of outstanding in-

vestment grade bonds. While asset purchases typically target IG bonds, there is nevertheless

a small price benefit for high yield bonds because of the rebound in fund AUM as well as

fixed investment mandates increasing demand for high yield assets. Mutual fund values re-

bound relatively more than insurers due to the amplifying effect of inflows following good

performance.

Next, we study two types of intervention that were not implemented in 2020. We

consider the effects of lending directly to funds, using a fraction of their bond portfolio as

collateral of 1% of IG assets.2 As soon as this policy is implemented, the decline in prices

stops. Despite targeting mutual funds directly, insurers indirectly benefit as outflows reverse

and allow asset prices recover somewhat. Intervening early is particularly valuable in this

case: waiting an additional week would lead to as much as an additional 10% drop in asset

2On March 18, 2020, broadens program of support for the flow of credit to households and businesses by
establishing a Money Market Mutual Fund Liquidity Facility (MMLF). See “Money Market Mutual Fund
Liquidity Facility”, https://www.federalreserve.gov/monetarypolicy/mmlf.htm. However, this facility
does not cover bond mutual funds.
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values relative to pre-shock levels.

We then consider a policy of freezing mutual fund redemptions. Regulators did not

mandate this policy in Spring 2020, but a significant number of funds facing severe liquidity

issues suspended redemptions (Grill, Vivar, and Wedow, 2021). Unlike the other policies,

the implementation of a redemption restriction on mutual funds does not allow prices and

fund values to rebound at all. Moreover, it can only mitigate the drop in fund values and

prices when it occurs sufficiently quickly.

Finally, we compare these policies to the maximum-price-impact benchmark derived in

the theoretical framework. While no policy proposed reaches the theoretical benchmark,

comparing the efficacy of each policy is informative. An asset purchase policy has a higher

price impact multiplier than conventional monetary policy (risk-free rate cut). This is be-

cause asset purchases more directly affect prices on all IG bonds, while a rate cut has a

disproportionate impact on the least fragile asset class, long-term IG bonds. Moreover, as-

set purchases are also more effective than IG-collateralized lending, given they target prices

rather than flows. This result gives an empirical justification for the choice made by the

Federal Reserve to introduce corporate bond purchases in the early days of the 2020 cri-

sis. We also provide a counterfactual to gauge the effects of implementing swing pricing, a

preventive policy measure that requires funds to adjust their NAV to pass trading costs to

redeeming shareholders. We model this policy through a reduction in flow-to-performance

sensitivities (Jin et al., 2021), which inhibits significant outflows and further price declines,

thereby avoiding the onset of a negative feedback loop.

Our paper contributes to the debate on financial stability implications of non-bank

financial institutions. Our main contribution is to provide a framework to quantify the joint

dynamics of financial flows and asset values, with three objective: (i) linking transparently to

the economic forces that have been documented in prior theoretical and empirical work, (ii)

being estimable with micro-data, (iii) conducting counterfactual analysis of unconventional
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monetary and liquidity policies within a unified setting. We show how to combine a flow-

performance relationships for fund flows with a logit model of institutional asset demand to

generate tractable dynamics, amplification, and contagion. Moreover, key parameters can

be estimated with standard regression techniques, which allows for rich heterogeneity across

assets and institutions. To achieve this tractability, some dimensions are admittedly left

outside the scope of our modeling assumptions. Generalizing the framework further is an

important area for future research.

Related literature: We first relate to the literature studies the risks imposed by in-

vestor redemption for institutions that issue demandable liabilities, such as open-end mutual

funds (Chen, Goldstein, and Jiang, 2010; Goldstein, Jiang, and Ng, 2017; Zeng, 2017). An-

other strand of the literature focuses on the illiquidity of the bond market and the fire-sale

externality (Coval and Stafford, 2007; Frazzini and Lamont, 2008; Falato, Hortacsu, Li, and

Shin, 2021). We contribute to this literature by providing a two-layer asset demand model

that connects both strands of the literature, in which the equilibrium dynamics of fund flows

and asset returns are jointly characterized. This framework allows us to assess various policy

interventions that the policy-maker has adopted in serious stress events. Our structural ap-

proach complements the existing empirical studies of the stress events in the credit markets

(Falato, Goldstein, and Hortaçsu, 2021; Haddad, Moreira, and Muir, 2021b; Ma, Xiao, and

Zeng, 2022b).

Our paper is closely related to the literature that measure the systemic risks of the finan-

cial system (Adrian and Brunnermeier, 2016; Acharya, Pedersen, Philippon, and Richardson,

2017; Greenwood, Landier, and Thesmar, 2015; Duarte and Eisenbach, 2021). We contribute

to this literature in two dimensions. First, the existing literature often focuses on levered

financial intuitions such as traditional banks and shadow banks, where the key amplification

mechanism is through deleveraging and firesale. In contrast, we focus on unlevered nonbanks

such as open-end mutual funds, where the key amplification mechanism is through the feed-
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back through outflows and asset prices. Second, we bring in the new insights and methods

from the recent literature on demand system asset pricing, which allows us to more tightly

map the model to the data.

From a methodological standpoint, we contribute to the growing literature on applying

a demand system approach to asset pricing (Koijen and Yogo, 2019, 2020; Koijen et al., 2021;

Bretscher et al., 2020) by endogenizing institutional investors’ AUM, incorporating a second

layer into our model. In this way, we are also able to capture asset price dynamics that are

particularly important in crisis episodes. Our focus on fund outflows is also directly related

to work on the role of flows and inelastic markets in equity markets (Gabaix and Koijen,

2021).

This paper also contributes to our understanding of intermediary asset pricing (He and

Krishnamurthy, 2013; Brunnermeier and Sannikov, 2014; Haddad and Muir, 2021). This

literature has shown the importance of financial intermediaries for the dynamics of asset

prices during crises, with a focus on net worth and equity capital constraints. We argue that

this insight is more general and focus on unlevered non-bank intermediaries, whose fund

sizes fluctuate over time even absent a capital constraint. We also incorporate techniques

from the industrial organization literature to estimate the model using micro-data.3 Finally,

we connect to the extensive literature studying how central banks affect asset prices through

a variety of channels (Cieslak and Vissing-Jorgensen, 2021; Cieslak and Pang, 2021; Cieslak

et al., 2019; Caballero and Simsek, 2022b,a), although our specific focus is on non-bank

fragility.

3However, one limitation of our framework relative to this work is that, while it generates asset price
dynamics, it does not explicitly model institutions’ portfolio choice as a fully dynamic optimization problem.
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2 Data

For demand estimation, we construct a comprehensive dataset of corporate bonds using

bond issuance details from Mergent FISD, fund holdings from Thomson Reuters eMAXX

and CRSP Mutual Fund holdings, and trading information fromWRDS Bond Returns. From

Mergent FISD, we include all USD corporate bonds issued by non-financial, non-utility, non-

sovereign firms that are over $100 million at issuance.4 We exclude bonds that are issued

in exchange of an identical existing bond, or that do not report at least one credit rating,

tenor, credit spread or size at issuance. We further exclude convertible bonds, capital impact

bonds, community investment bonds, and PIK securities. We restrict the holdings sample to

all fund-quarters in which the fund holds at least 20 unique corporate bonds in our sample in

the year. Following Bretscher et al. (2020), we use the last recorded price and yield for each

quarter in the WRDS Bond Returns dataset. We back out the credit spread for each bond-

quarter using an interpolated U.S. Treasury yield curve as per Gürkaynak et al. (2007). We

include holdings from 2010-2021 to capture the post-2008 financial crisis period up through

the COVID crisis of 2020. The estimation sample includes 2,306 mutual funds, 987 insurers,

and 10,942 unique corporate bonds.5

For estimating flow-to-performance parameters, we use the CRSPMutual Fund Database

to create a monthly panel of fixed-income funds from January 1992 to December 2021, cov-

ering a total of 2,967 funds. We complement the CRSP dataset using the daily fund flows

and net asset value (NAV) of open-end fixed-income mutual funds from the Morningstar

database. The daily sample focuses on the COVID-19 crisis period from January 1, 2020, to

April 30, 2020, covering a total of 1,199 funds. The daily sample allows us to zoom in the

high frequency variations in the flow and returns in a distress period.

4Issuers with NAICS codes beginning with 52, 92, and 22 are excluded.
5Because we focus on two classes of investors in the model, insurers and mutual funds, we group fund

types as follows: money market, balanced, unit investment trusts, funds of funds, and variable annuity
funds are classified as mutual funds, and property and casualty insurance, life insurance, and reinsurance
companies are classified as insurers.
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3 Framework

This section presents a two-layer asset demand model of institutional investors size, portfolio

holdings, and asset prices. The first layer consists of household demand for institutions

(mutual funds flows), i.e. savings allocation, which determines the dynamics of fund size

(Assets Under Management, or AUM). The second layer consists of institutional portfolio

allocation across assets. The combination of AUM and portfolio allocation across institutions

determines asset prices through market clearing.

3.1 Household demand for institutions

In general, households invest in various financial institutions. Given our focus on nonbank

fragility in credit markets, we however emphasize flows in and out of the mutual fund sector

which played a central role in the 2020 turmoil (Falato et al., 2021; Haddad et al., 2021b;

Ma et al., 2022b). In particular, we model the well-know flow-to-performance relationship

linking fund size (AUM) to past fund returns (Chevalier and Ellison, 1997; Sirri and Tufano,

1998; Berk and Green, 2004).

We model fund flows into fund i between time t− 1 and t as the canonical relation:

fi,t = βri,t−1 + vi,t, (1)

where ri,t−1 is the fund return in the previous period and vi,t represents the residual flow

shocks. In that setting, the key coefficient is β: the sensitivity of flows to fund returns, which

we take as a fund-level summary statistic that captures various potential micro-foundations.6

Our specific focus is justified by how important this economic channel is for nonbank

6A number of non-exclusive forces have been suggested in prior work, including learning about fund
managers’ skill, first-mover advantage in redemptions, or portfolio re-balancing in the face of risk.
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fragility, both conceptually and practically. Nevertheless, in principle the first layer could be

modeled in a much richer way. To illustrate this point, we sketch a logit model of household

asset allocation and show it nests our simpler model. Each household unit is endowed

with a dollar that can be invested in a set of institutions including mutual funds, insurance

companies, and pension funds indexed by I = {0, 1, ..., I}, with option 0 representing the

outside option of managing the wealth by themselves. Each option is described a vector

of characteristics Ut(i) and each household chooses the best option to maximize its utility,

i.e. maxi∈I uh(i) = βUt(i) + ϵh(i). Coefficients β are sensitivities to the characteristics of

each option, while ϵh(i) captures horizontal differentiation across each investment option.

Under standard assumptions,7 the market share of each institutions takes a familiar logit

form st(i) =
exp(βUt(i))∑I
i=1 exp(βUt(i))

.8 Investors’ flows to each institutions at t is thus given by:

fi,t = ∆ ln (st(i)H) = β∆Ut(i)−∆ ln

(
I∑

i=1

exp (βUt(i))

)
. (2)

which is a generalized version of equation above. While this general model is conceptually

straightforward, the practical difficulty is accurately modeling demand shifts across a wide

array of institutions. A realistic model should (at the very least) account for demand for

insurance and savings over the cycle, which is outside the scope of our paper. Instead, we

make the simplifying assumption that in the short-term flows into the insurance and pension

sector are largely stable around crisis events (see Coppola (2021) for suggestive evidence).

3.2 Institution demand for assets

Financial institutions manage households’ assets and invest in a set of assets. We index

institution investors by i = 1, 2, ..., I, assets by n = 0, 1, ..., N , where n = 0 corresponds to

7Namely, that ϵh(i) follows a generalized extreme-value distribution with a cumulative distribution func-
tion given by F (ϵ) = exp (− exp (−ϵ)).

8The assets-under-management of institution i is then given by the market share multiplied by total
household assets, st(i)H, where H is total household wealth invested.
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the outside asset and, time by t. Each institution has wealth Wi,t to invest. Each bond has

its own expected return Πt(n).
9 Institutions have a mandate: the fraction invested in each

asset,
Pt(n)Qi,t(n)

Wi,t
is given by

θi,t(n) :=
Pi,t(n)Qi,t(n)

Wi,t

=
δi,t(n)

1 + Σmδi,t(m)
(3)

The variable δi,t(n) determines how much fund i “wants” to hold asset n at time t. We

normalize δi,t(0) = 1 for the outside asset, so that δi,t(n) can be interpreted as the ratio

of the fraction invested in asset n at time t relative to that invested in the outside asset

(θi,t(n)/θi,t(0)). We model the economic determinants of δi,t(n) as follows:

δi,t(n) = δ̄i(n) exp
(
κi(Πt(n)− Π̄(n))

)
Ei,t(n) (4)

This expression highlights the three drivers of asset holding: (i) a bond-institution-

specific “mandate parameter” δ̄i(n) which is time-invariant; (ii) the current deviation from

the asset expected return κi(Πt(n)− Π̄(n)); and (iii) a temporary institution demand shock

for an asset Ei,t(n). Note that if Πt(n) = Π̄(n) (no return shock) and Ei,t(n) = 1 (no demand

shock), realized portfolio shares are equal to “target” portfolio shares θ, i.e θi,t(n) = θi(n) :=

δ̄i(n)

1+Σmδ̄i(m)

A great advantage of this modeling is that asset demand follows a logit specification

(Koijen and Yogo, 2019; Bretscher et al., 2020), which can be estimated using instrumental

variables, as described in detail below.

We assume the changes in expected return premium is negatively related to the price

change:

πt(n) = ∆ lnΠt(n) = ρ(n) (det (n)− pt(n)) , (5)

9Appendix A.1 shows how to extend the model to include other bond characteristics x(n).
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where det = ∆Et [lnDt+1] and pt = ∆ lnPt. Dt is the cash flow from the asset. ρ = D
P

is

the yield of the asset. The intuition is the following: an increase in expected cash flow leads

to an increase in the expected return, while an increase in price implies that the expected

return going forward is likely to be low (the intuition is similar to dividend price ratio or

earning price ratio being a return predictor).10

3.3 Linking flows and asset demand

In this section, we show how flows map to demand and equilibrium prices. First, define Fi,t

as the cumulative inflow from time 0 to time t into investor i. The inflow in period t is then

∆Fi,t. The percent flow fi,t is then given by fi,t ≡ ∆Fi,t/Wi,t−1, where W is investor i Asset

Under Management (AUM). The dynamics of assets under management of the fund is given

by

wi,t ≡
∆Wi,t

Wi,t−1

=
ΣnQi,t−1(n)∆Pt(n)

Wi,t−1

+
∆Fi,t

Wi,t−1

= Σnθi,t−1(n)pt(n) + fi,t (6)

To solve for equilibrium, start by taking logs of the logit demand of a fund i’s for an

asset n:

qi,t(n) = wi,t − pt(n) + ∆ log δi,t(n)−∆ log(1 + Σmδi,t(m)) (7)

We linearize the last term using a first-order approximation for Πt(n) ≈ Π̄(n) and

Ei,t ≈ 1 : ln(1 + Σmδi,t(m)) ≈ κiΣmθi(m)
(
Πt(m)− Π̄

)
+ constant. Here, θi(m) is the target

portfolio share of bond m. This implies that ∆ log(1 + Σmδi,t(m)) = κiΣmθi(m)∆Πt(m).

The change in demand is thus given by:

qi,t(n) = wi,t − pt(n) + κi∆Πt(n) + ei,t(n)− κiΣmθi(m)∆Πt(m) (8)

10Formally, consider a perpetuity bond that pays an expected cash flow D (adjusting for inflation and
default). The discount rate is ρ. Using the perpetuity formula, the price of this asset is given by P = D

ρ , where

ρ is the expected return of this asset. Take the first difference, π = ∆ρ = ∆D
P = ∆D

P /
(
D
P

)
× D

P = (d−p)×ρ.
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where ei,t(n) := ∆ logEi,t(n). Using our expression for wi,t and ∆Πt(n) = ρ(n) (det (n)− pt(n)),

we obtain the following intuitive decomposition for what drives changes in fund i’s demand

for asset n:

qi,t(n) = −ζi,t(n, n)pt(n) + det (n)κiρ(n)[1− θi(n)]︸ ︷︷ ︸
Own-asset effects

+ fi,t + ei,t(n)︸ ︷︷ ︸
Flow and demand shocks

−

(∑
n′ ̸=n

ζi,t(n, n
′)pt(n

′) + det (n
′)κiρ(n

′)θi(n
′)

)
︸ ︷︷ ︸

Cross-asset effects

(9)

where own-price and cross-price elasticities are respectively given by:

ζi,t(n, n) = 1− θi,t−1(n) + κiρ(n)[1− θi(n)]

ζi,t(n, n
′) = −θi,t−1(n

′)− κiρ(n
′)θi(n

′)

(10)

which is an adaptation of the model of inelastic markets of Gabaix and Koijen (2021).

Importantly, all demand coefficients can be estimated using standard IV techniques. In

matrix notation, the elasticity of investor i can be written as ζi,t, which is of dimension

N ×N . The diagonal entries are ζi,t(n, n), and only depend on the row n. Similarly, the off

diagonal entries ζi,t(n, n
′) only depend on the column n′.11

Next, we aggregate demand elasticities for each asset using bond holding shares. To

represent aggregation as in matrix notation, define St as an N × I vector of each investor’

share of holding for each bond: the (n, i) element is thus equal to Si,t(n) = Qi,t(n)/ΣjQj,t(n).

One row of St thus reports every fund’s holdings of one asset normalized by the size of that

asset, and adds up to one. The aggregate elasticity for each asset market is diag(St × ζt),

where ζt is an I × N matrix with the (n, i) element representing the demand elasticity of

institution i for asset n. The aggregate elasticity for each asset market depends on the

holding shares of each investor. A bond mostly held by an inelastic investor has a lower

11This is a well-known property of logit demand.
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aggregate demand elasticity.

Similarly, we can write an expression for aggregate flows at the asset level as St × f t,

where f t is a I × 1 vector of the flow for each institution. Importantly, note that St × f t

represents how flows affect each bond, depending on how much the investor subject to this

flow was holding of the bond. Aggregate asset-level flows thus depend on the distribution of

bond holdings interacted with individual fund outflows.

We can now write down an expression for asset prices based on aggregated flows and

demand. Note first that assuming no fundamental or demand shock (de = e = 0), aggregate

demand is (using matrix notation): qt = St×f t−diag (St × ζt)×pt. Market clearing with

no net issuance implies that qt = 0, thus

pt = diag−1 (St × ζ)× St × f t, (11)

where pt is an N × 1 vector of the log price for each asset. Finally, we map fund flows to

asset prices. First, note that asset prices determine the returns of institution based on the

portfolio holdings:

rt = θt × pt, (12)

where θt is a I × N matrix of portfolio weights for each institution. One row of θt thus

represents one fund’s portfolio weights across all assets, and adds up to one. Combined with

the flow-to-performance equation (3.1), the next period fund flows are given by

f t+1 = diag (β)× rt = diag (β)× θt × pt, (13)

where β is I × 1 vector with the i’th element being βi, the flow-to-performance sensitivity

of institution i.
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3.4 Model dynamics

We summarize equilibrium dynamics of asset prices and fund flows with the following differ-

ence equation system:

f t = diag (β)× θt−1 × pt−1

pt = diag−1 (St × ζ)× St × f t

(14)

Previous period asset log prices pt−1 affect current period fund flows f t by a price-to-

flow multiplier Φ ≡ diag (β) × θ, which depends on fund flow to performance sensitivity

and the portfolio weights of each fund. Current period fund flows f t in turn affect current

period prices pt by a price impact matrix Ψ ≡ diag−1 (St × ζ)×St, which depends on fund

demand elasticities and fund shares.

What is the cumulative effect of a given price shock? We can use the equation sys-

tem to derive a closed form expression for how a primitive shock v to asset prices propa-

gates through the system. The first round impact on asset prices is v. The second round

impact is (ΨΦ)v. The n’th round impact is (ΨΦ)n−1v. The cumulative impact is thus

(I +ΨΦ+ (ΨΦ)2 + ...)v = (I −ΨΦ)−1v.

Figure 1 shows an example of the model dynamics. We consider an economy with two

sectors: mutual funds and insurance companies. For the sake of illustration, we provide an

example with parameters that are in line with the data, although we defer the details of

estimation to the next section. Mutual funds face an average flow-to-performance sensitivity

β of 1.1 while insurance companies face a sensitivity of 0 because insurance companies’

liabilities are not demandable as mutual funds. The demand elasticities ζ are 1.4 and 0.9 for

mutual funds and insurance companies, respectively. The assets under management W and

the portfolios θ for each sector are calibrated to the 2019Q4 level. We simulate the dynamics

following a 10% shock on the asset prices of high-yield bonds at time 1.
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The example shows three interesting dynamics in equilibrium. First, there is a feedback

loop between prices and flows. A negative shock reduces the high-yield bond price by 10%,

as shown by the intercept of the red solid line of Figure 1a. However, this 10% is not the full

impact. The price drop reduces fund returns, which leads to outflows. Outflows then lead

to asset sales by mutual funds, which further depresses asset prices. The cumulative effect

on the high yield bond prices is over 20% in this example, or two times the initial shock.

Second, the model displays contagion across assets. Although there is no fundamental

shock on investment-grade bonds, their prices also drop in the equilibrium because institu-

tions’ demand for these assets fall. The cause of the cross-asset contagion is due to institu-

tions’ investment mandates; funds need to maintain certain portfolio weights, so they will

sell investment-grade bonds to rebalance their portfolios.

Third, the model displays contagion across institutions. Although insurance companies

are not directly affected by the outflows, their asset values decrease subsequently due to the

falling asset prices. The magnitude of the reduction is smaller than mutual funds, which

suffer from outflows on top of decreasing asset prices.

Note that while this example assumes away most of investor heterogeneity for the sake

of illustration, the framework’s tractability makes it highly-scalable: our empirical imple-

mentation below includes thousands of investor-specific parameters.

3.5 Measures of fragility

Asset Fragility. Using the model dynamics derived in Section 3.4, we can construct two

measures of fragility in the model. The first measure is defined at the asset level. We ask:

what is the impact of the aggregate bond price index if asset n experiences an exogenous

shock to its price. For each asset, fragility depends on how prices affect flows and how flows
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then affect prices. As described in the previous section, these objects are functions of the

asset’s share of the overall market and the characteristics of the funds that hold the asset,

including portfolio weights, the flow to return sensitivity, demand elasticities, and other asset

holdings. Building on this intuition, the asset fragility measure is given by

Asset fragility ≡ α′(I −ΨΦ)−1./α, (15)

where α is an N × 1 vector of the market share of each bond and Ψ and Φ are the

price impact matrix of flows and the price-to-flow multiplier, respectively. We normalize

each asset’s effect on the market by the total market share of this asset αn so that the shock

is on a per dollar basis. The asset fragility measures the contribution an asset makes to the

aggregate fragility. It is not a measure of the risk of the asset itself. As we will see in the

empirical analysis, safe bonds can score larger on that fragility metric.

To understand the intuition behind this formula, it is useful to define a new variable

mn,k = (I −ΨΦ)−1
n,k as the cumulative spillover from asset n to asset k.12 This parameter

measures the cumulative price impact on asset k due to a shock on asset n through all the

flow-return linkages. The aggregate impact on the aggregate asset market index is then∑N
k=1 αkmn,k.

To see more clearly what contributes to an asset’s fragility, we consider a simple numer-

ical example with three funds of equal size that invest in two equally-valued assets, A and B.

One fund invests in equal weights in each asset, another is a specialist in asset A and holds

twice as much of asset A as asset B, and the third specializes in asset B and holds twice as

much of asset B as asset A. We fix the flow sensitivity of the equal-weighted fund to 0.1, and

the flow sensitivity of Specialist A to one. See Table 1 for a summary of the parameters in

12Recall from the example in the previous section that this formula for the cumulative impact comes from(
I +ΨΦ+ (ΨΦ)2 + ...

)
= (I −ΨΦ)−1, summing up indirect effects across all “rounds”.
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the numerical example.

We plot how fragility of the two assets varies with different parameter values in Figure

2. In the first panel of Figure 2, we hold all fund demand elasticities fixed at 1 (i.e., a 1%

drop in prices corresponds to a 1% increase in quantity) to mimic a value-weighted portfolio

target, and demonstrate how variation in the flow sensitivity of Specialist B impacts the

fragility of the assets in its portfolio. As the flow sensitivity for Specialist B increases, asset

B fragility increases as a convex function of the flow sensitivity. Asset A fragility increases

as well because all funds hold both assets, but not as much because Specialist B holds a

smaller share of Asset A.

In the second panel of Figure 2, we hold the flow sensitivity of Specialist B fixed at one,

and instead vary the demand elasticity of Specialist B over asset B. As Specialist B becomes

more price elastic over asset B, reducing the price impact of a given sale, the asset fragility

of asset B declines. The fragility of asset A also declines as a smaller price impact on sales of

asset B will also reduce asset A fragility. However, the effect is not as dramatic as adjusting

flow sensitivities.

Fund Fragility. We next define a fund-level fragility measure, which tells us the impact

of the aggregate bond price index if fund i experiences a shock to its return:

Fund fragility ≡ [α′(I −ΨΦ)−1Ψ]⊙ [β./αf ]′, (16)

We normalize each fund i’s effect on the market by its market share αf
i , so that the

overall impact to bond index is not mechanically driven by fund size.

To clarify what contributes to a fund’s fragility, we return to the numerical example

above and plot fund fragilities in Figure 3. In the first panel of Figure 3, we hold all

fund demand elasticities fixed at one, and demonstrate how variation in the flow sensitivity

19



of Specialist B impacts the fragility of all funds. As the flow sensitivity for Specialist B

increases, its fund fragility increases. Importantly, the fragility of the other funds increases

as well, given the increased fragility in the underlying assets. The equal-weighted fund is

more negatively affected by the increase in Specialist B’s flow sensitivity than Specialist A

is, given Specialist A holds a smaller share of asset B.

In the second panel of Figure 3, as the demand elasticity of Specialist B over asset

B increases, the price impact of a given shock declines and thus the fragility of the fund

declines. The decline in the price impact for Specialist B’s holding of asset B will also reduce

the fund fragility of the other funds that hold asset B. In both panels, the fund fragility of

the equal weighted fund is lower than the fund fragility of the other two funds, given its low

flow-to-performance sensitivity.

Intuitively, the fund fragility is driven by two categories of characteristics: (1) its own

characteristics as well as (2) the characteristics of its holdings. In the first category, the

fund’s elasticity, flow to performance, and its portfolio share in each asset affect its fragility.

Importantly, in the second category, we find fragility can also arise from the characteristics

of a fund’s holdings. If a fund holds more assets that are also held by funds with high

flow sensitivities or low demand elasticities and are thus more fragile, its fragility increases.

This fund fragility measure thus demonstrates the importance of considering the interaction

between fund- and asset-level holdings and characteristics.

It is worth noting that both fragility measures are macro-prudential in nature. They

measure the contribution of a specific asset or a specific financial institution to the aggre-

gate market fragility but do not measure the risk of the individual asset or institution by

itself. In other words, an asset or an institution that has a high fragility measure does not

necessarily do poorly in a crisis. Instead, the high fragility suggests that they contribute

more to the aggregate fragility through their position in the contagion network. In other

words, the fragility measures should be interpreted as “macro fragility” rather than “micro
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fragility”. This distinction will be more apparent in the following section when we discuss

policy targeting.

3.6 Policy intervention: maximum-price-impact benchmark

The model can help assess the effects of policy interventions in credit markets during crises.

Specifically, our framework can identify which specific assets or institutions to target in order

to maximize the price impact on the market, given a maximum amount of resources that

can be spent.13

We can define such a maximum-price-impact benchmark for policy targeting as follows.

The choice variable of the policy-maker is a vector g of price shocks for the different existing

assets. This is more general that it seems at first. Policy interventions can take many forms:

some intervention such as interest rate policy directly change the prices of bonds, but others

operate through quantities such as quantitative easing and asset purchases. However, note

that quantity-based and price-based policies can be mapped to each other using demand

elasticities. Therefore, modeling the intervention as a vector of price shocks encompasses a

wide range of interventions. In this section, we focus on a abstract intervention, but Section

5 shows how to apply this benchmark to different monetary and liquidity policies.

Formally, the maximum-price-impact intervention maximizes the cumulative impact on

the aggregate bond market index for a given resource constraint:

max
0≤g≤g

α′(I −ΨΦ)−1g,

subject to: γ ′g ≤ b,

(17)

13This is not to say that this problem characterizes the fully optimal intervention. In practice, there are
various other objective and constraints central banks take into account when deciding on policies, such as
limiting credit risk, signalling information to investors and consumers, or fostering their credibility. Nev-
ertheless, understanding the maximum-price-impact benchmark should be a useful input to optimal policy
design.
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g is an N×1 vector of the price shock due to the policy intervention: each asset is potentially

affected differentially. For tractability, we abstract away from the many potential reasons

why a resource constraint might exist, and simply model it as a linear constraint: γ is an

N × 1 vector of the cost to generate one percent of price change for each asset, b is a scalar

indicating the total resources that the policy-maker has.

For example, in the context of asset purchases, γ can be interpreted as the dollar value

of an asset to be purchased to move the price by 1% (normalized by the size of the total

asset market):

γ = α⊙ diag (S × ζ) , (18)

where α normalizes the quantity of purchases by the total market size of all the assets, ⊙

indicates element-wise product of two vectors. b can be interpreted as the total dollar value

of the asset purchase committed by the Federal Reserve normalized by the the total market

size. g is bounded by zero because the policy-maker would not short assets to relax the

budget constraint. g is also bounded from above by a vector g, the maximum price change

that policy-maker intervention can create for each asset (e.g., buying up the entire stock of

the asset). Section 5 considers types of intervention other than asset purchases.

The maximum-price-impact benchmark turns out to be a function of the asset fragility

measure constructed in section 3.5. Specifically, we sort assets in descending order by the

ratio of the asset fragility over the resources needed to move the asset price, weighted by the

respective asset’s market share:

Asset fragility1 × α1

γ1
≥ Asset fragility2 × α2

γ2
≥ ... ≥ Asset fragilityN × αN

γN
. (19)

Targeting follows a pecking-order: the policy-maker should first raise the price of the asset

with the highest asset fragility per unit of resource. After the maximum price change is

reached, the policy-maker then should move to the asset with the next highest asset fragility
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per unit of resource until the budget is exhausted.14

This result suggests that simply supporting the most beaten-up assets or assisting the

institutions that suffer the most outflows or value loss in a crisis might not have the highest

“bang-for-the-buck”. Instead, to maximize price impact from a macro-prudential perspective

it is best to target the assets or institutions that are central in the network that propagate

and amplify the shock.

We can also compare different policy interventions by constructing price impact multipliers,

defined as the average asset fragility per unit of resource of a given policy, g:

Price impact multiplier(g) =
Asset fragilityα′g

γ ′g
, (22)

where Asset fragility is a vector of asset fragility of each asset, as defined in equation (19).

It is worth noting that this multiplier can be constructed for an intervention that does

not have an explicit resource constraint. For instance, an interest rate cut that raises bond

prices can be mapped to an equivalent hypothetical asset purchase that generates the same

price appreciation. The price impact multiplier of hypothetical asset purchase then can be

interpreted as the multiplier of the interest rate cut. Doing so allows us to study the distance

between conventional monetary policy and other more targeted asset purchase in terms of

the degree of amplifications that is achieved by different types of policies.

14Formally, we define the marginal asset N∗ such that

N∗∑
n=1

γngn ≤ b, (20)

N∗+1∑
n=1

γngn ≥ b. (21)

The maximum-price-impact benchmark is gn = gn when n < N∗, gn = b−
∑N∗

n=1 γngn when n = N∗, and
gn = 0 when n > N∗. The detailed derivation can be found in Appendix B.2.
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4 Estimation

In this section, we describe the estimation of key parameters of the model. Specifically, we

estimate for each fund-year: (1) asset-specific demand elasticities and (2) flow to performance

elasticities. This rich set of parameter estimates is important to realistically quantify the

contagion of shocks through financial markets. Our framework is tractable enough to handle

these multiple dimensions of heterogeneity.

4.1 Demand estimates

To estimate ζ, the demand elasticity of price, we implement a method similar to Bretscher

et al. (2020) and Koijen et al. (2021). Specifically, we take the investment universe of other

funds as exogenous to a given fund’s demand for a security, and use other fund investment

universes as an exogenous price shifter to pin down demand elasticities.15 Based on the

empirically tractable model derived in Koijen and Yogo (2019), we can write log demand

δi,t(n)
16 as a function of credit spreads and bond characteristics xt(n):

ln δi,t(n) ≡ αi,tst(n) + βi,txt(n) + ui,t(n). (23)

We include the following bond characteristics in xt(n) to capture potential risk sources

that could affect both credit spread and investor demand: duration-matched U.S. Treasury

yield, issuer credit rating, time to maturity, initial tenor, initial offering amount (logged),

and the bid ask spread.

15A growing literature explores other methodological advances, including incorporating the competitive
interaction among investor demand elasticities (Haddad et al. (2021)), and identifying off of fund flows
rather than holdings (van der Beck (2021)). While we adjust the instrument to reflect the idea that investors
have preferred habitats (Vayanos and Vila (2021)), the goal is not to deviate significantly from the existing
demand estimation literature.

16Note that δi,t(n) =
wi,t(n)
wi,t(n)

represents the portfolio weight fund i invests in asset n at time t relative to

the portfolio weight of the fund’s outside option
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To address endogeneity concerns discussed above, we instrument the credit spread by

ẑi,t(k) = ln

(∑
j ̸=i

Aj,t
1j,t(k)

1 +
∑N

m 1j,t(m)

)
, (24)

where k indexes the class of a bond, as defined by the credit rating-tenor-industry of issuer

and 1j,t(k) indicates that fund j includes class k in its investment universe in period t.

This definition of the instrument prevents a fund’s investment universe from being affected

by the frequent issuance and maturity of bonds.17 The intuition behind the instrument is

that it affects prices because the more funds (and the larger those funds) include class k

in their investment universe, the larger the exogenous component of demand, holding fixed

other bond characteristics. The instrument satisfies the exclusion restriction as long as other

funds’ investment universes are exogenous to one fund’s demand for individual bonds.

We construct the instrument by defining a security as part of a fund’s investment uni-

verse in a given quarter if the fund has held that class of security at least once in the prior 12

quarters. Bonds are categorized into 460 “classes” based on tenor-rating-industry.18 Tables

2 and 10 reports summary statistics of the classes and Table 11 reports summary statistics

on investor holdings data. We find the instrument is relevant: i.e., a higher ẑ(k) corresponds

to lower (higher) credit spreads (prices). Table 3 reports the results for the first stage, within

fund-asset. A higher value for the instrument corresponds to higher prices and thus lower

yields, and the relationship is statistically significant.

We run IV regressions for each investor, asset class, and year from 2010-2021 in which

the fund holds at least 20 unique bonds and at least 20% of its holdings in corporate bonds

in the period. On the left hand side we use the total market value of bonds relative to the

total value invested in the outside asset. We construct the right-hand-side variable as the

17See Table 13 of Siani (2021) for a summary of the persistence of fund class holdings.
18There are six tenor categories (up to and including 1, 3, 5, 7, 15, 100 years), five ratings categories (up

to and including CCC+, B+, BB+, BBB+, and AAA), and 16 industry categories (2-digit NAICS codes).
Not all tenor-rating-industry triplets have bonds in the category.
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last traded credit spread as of quarter end, scaled by the time to maturity remaining on the

bond in years so that we can map it easily to prices. We include quarter fixed effects to

absorb within-year variation in market conditions that may affect all funds.

Table 4 reports the distribution of estimated demand elasticites.19 While demand curves

are downward sloping (i.e., funds allocate towards lower-priced securities, all else equal),

funds are relatively inelastic, as documented in prior papers including Bretscher et al. (2020).

On average, holders of HY bonds are more elastic than holders of IG bonds. Across investors,

mutual funds are more price elastic than non-mutual funds (in this case, insurers), consistent

with findings in Bretscher et al. (2020). We estimate an average demand elasticity of 0.9

for insurers and 1.4 for mutual funds. Within mutual funds, ETFs are the most demand

elastic on average, followed by index funds. Over time, funds have become more price elastic

overall, with average elasticities increasing from 0.8 before the 2008 financial crisis to 2.3 in

the 2020-2022 period, likely driven by the increase in mutual fund share.

4.2 Flow to performance estimates

Another key input to our model is the flow to performance sensitivities. We first use the

CRSP data to construct a monthly panel of flows and returns. We define net flow as the net

growth in fund assets adjusted for price changes. Formally,

Flowi,t =
TNAi,t − TNAi,t−1 × (1 +Ri,t)

TNAi,t−1

, (25)

19We convert estimated coefficients to demand elasticities as per Koijen et al. (2021). where −∂qit(n)
∂pt(n)

=

1 + β
mt(n)

(1 − wit(n)), where mt(n) is the remaining maturity of the asset n. Because we estimate directly

the elasticity on credit spread times remaining maturity, our coefficients map to β
mt(n)

, and we approximate

the weight of the asset n to be zero, as the weight of each individual asset is negligible relative to the full
fund.
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where TNAi,t is fund i’s total net assets at time t, Ri,t is the fund’s return over the prior

month. We conduct the following regression at the fund-month panel and report the results

in Table 5:

Flowi,t+1 = βReturni,t + γXi,t + vi,t, (26)

where Xi,t is a vector of control variables including flows at time t, fund fixed effects, and

time fixed effects.

Columns 1–4 of Table 5 show that fund flows are highly responsive to past returns, a

relation well documented in prior literature (Chevalier and Ellison, 1997; Sirri and Tufano,

1998). In the monthly sample, one percentage point reduction in monthly fund return leads

to a net outflow in the magnitude of 0.26%–0.29% of the fund’s assets under management.

The magnitude are robust to the inclusion of fund and time fixed effects. Because we are

mostly interested in the pattern of fund outflows, in Column 5 we separate negative and

positive returns. We find the flows are more sensitive to negative returns, consistent with

Chen, Goldstein, and Jiang (2010).

We next consider the daily sample during the COVID-19 crisis. Using the daily sample

allows us to calibrate the model to daily frequency during a major distress event in the bond

market, which helps to study financial stability implications. We run similar regressions

as equation (26) and report the results in Table 6. In the daily sample, a one percentage

point reduction in daily fund return leads to a net outflow in the magnitude of 0.06%–0.14%

of the fund’s assets under management, as shown in Columns 1–4. We find the flows are

more sensitive to negative returns in the daily sample in Column 5. A one percentage point

reduction in daily fund return leads to a net outflow in the magnitude of 0.17% of the fund’s

assets under management.

We report further cross-sectional and time-series variation in flow to performance es-

timates in Table 7. These fund-specific elasticities will be used in simulating the model to
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run policy counterfactuals. Average flow to performance estimates in 2019 across all mutual

funds was 0.38, indicating a 1% decline in returns leads to a net outflow of 0.38% of the

fund’s assets under management.

4.3 Fragility estimates

We can use the fund-level flow sensitivity estimates, the fund-asset-level demand estimates,

and observed holdings shares and fund values to compute the fragility measures derived in

Section 3.5. First, Table 8 shows the asset fragility estimates for different asset classes,

splitting our sample of bonds into four categories based on IG vs. HY and long-term (5 or

more years remaining) vs. short-term.

Across asset classes, asset fragility is between 1 and 1.2. IG bonds are less fragile than

HY bonds. Within rating categories, short-term bonds are more fragile than long-term

bonds. In terms of economic magnitudes, an IG bonds’ fragility of 1.02-1.06 implies little

amplification, of the order of a few basis points. HY bonds are more fragile, especially

short-term HY bonds, with a fragility measure of 1.16. Our framework allows us to unpack

these differences. First, being held by investors facing a stronger flow sensitivity β increases

fragility. For instance, the third row of Table 8 show that more fragile assets tend to have

a larger mutual fund holding share. However, fragility cannot be reduced to flow sensitivity

alone: it is key to also consider the role of demand elasticity ζ. For example, short-term IG

bonds have a higher flow sensitivity than long-term HY bonds but are less fragile because

they have a larger demand elasticity to compensate. In a similar vein, long-term IG bonds

have very low flow sensitivity (low β) but are still fragile because they are held by very

inelastic investors (low ζ).

Next, Table 9 shows the fund fragility estimates and for different categories of funds.

For insurers and pension funds, to which we assign flow-to-performance sensitivities of zero,
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fund fragility is mechanically equal to zero. Mutual funds and ETF have fund fragility

ranging from 0.7 to 2.7. Passive mutual funds and index ETF have the highest fragility,

driven by high flow sensitivities β. The fragility of passive mutual funds is particularly large

in economic terms: a fund fragility of 2.7 implies significant amplification of any shock to

the returns of these funds.

5 Counterfactuals

We have developed and estimated a model of the corporate bond market, incorporating

household choice of funds and fund demand for bonds. The model simulates dynamics of

feedback effects between price changes and flows, as well as contagion effects across asset

classes and institutions. Equipped with this framework, we can run counterfactuals to eval-

uate different policies that attempt to mitigate a large negative shock to the corporate bond

market.

We consider an economy with two sectors: mutual funds and insurance companies.

Mutual funds face a fund-specific flow-to-performance sensitivity β as reported in Table 7,

while insurance companies, which we aggregate into one fund, face a sensitivity of 0.20 The

estimated demand elasticities ζ vary by fund-year-asset and are reported in Table 4.21 The

assets under management W and the portfolios θ for each sector are calibrated to the 2019Q4

levels. We simulate the dynamics following a 10% shock on the asset prices of high-yield

bonds at time 1, consistent with the magnitude of the initial shock of the COVID crisis

in early March, 2020.22 We evaluate the impact of responding to the negative shock to

corporate bond markets with conventional monetary policy, asset purchases, direct lending

20In fact, insurers may even experience net inflows when credit conditions worsen and prices drop; see
Figure 7 of Coppola (2021).

21To ensure our counterfactual results are not driven by outliers, we focus on the 95% (96%) of IG (HY)
elasticities that are between 0 and 5, the 89% of positive flow sensitivity funds with flow sensitivity below 5,
and the 83% of funds with $1 billion or less in AUM.

22See Figure 2 of Haddad et al. (2021b), Returns during the COVID-19 crisis across asset classes.
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to funds, and finally by restricting redemption on mutual funds.

For each policy, we simulate the impact on asset prices and fund values of intervention

immediately following the negative shock (at T = 2) and of intervention later on (at T = 10).

We consider the estimated demand elasticities and flow to performance coefficients for the

year 2019 to best simulate the economy entering the spring 2020 market crash.

Our framework is tractable enough to account for thousands of parameters capturing

the rich investor heterogeneity of the data. In the following counterfactuals, we include the

264 unique mutual funds for which we can estimate both ζ and β in 2019, and we aggregate

insurers into one fund, assigning it the average ζ computed across all insurers in 2019 and a

β = 0. We account for all fund holdings across 2 assets (IG and HY bonds) and show how

the price of each asset changes after the shock.23

While our model can simulate the effects of these policies on prices and fund value, we

note from the outset that any counterfactual analysis is subject to potential caveats. First,

we can only study interventions that can be clearly mapped to variables in our framework.

Certain dimensions of policy are thus outside the current scope of our analysis, such as

conditional policy promises (Haddad et al., 2021a) or signaling (Cieslak et al., 2019). Sec-

ond, the counterfactual exercise takes estimated parameters as invariant and re-calculates

equilibrium prices and flows across assets and institutions. Nevertheless, there is a concern

that policies might change the underlying parameters. This concern is especially salient for

fund-to-performance sensitivities β. For this reason, we deliberately include specific policies

that affect β directly, such as redemption restrictions or swing pricing, and allow β to vary

within the policy counterfactual.

23For simplicity, the counterfactual plots show prices of these two asset classes. In principle, the framework
allows us to account for many more assets. In section 5.5, we describe a policy price impact comparison that
simulates policy-specific counterfactual price dynamics across four assets.
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5.1 Conventional monetary policy

First, in Figure 4, we simulate a conventional policy rate cut of 25 basis points implemented

after the negative shock to bond markets. Specifically, we allow the price of each asset to

increase by 0.25% ×m(n) at implementation of the policy, where m(n) equals the average

remaining maturity for each asset. In 2019, the average remaining maturity was 6.76 for IG

bonds and 4.75 for high yield bonds.

As in the baseline example in Figure 1, asset prices continue dropping after the initial

shock due to the feedback loop of lower returns encouraging outflows and further depressing

prices. Immediately following the rate cut, the fall in asset prices is mitigated, although high

yield bond prices remain at below pre-shock value in the long run (see the left panel of Figure

4). The right panel of Figure 4 shows that the total value of insurers and mutual funds stops

dropping immediately after the intervention and recovers somewhat, but similarly remains

below pre-shock value.

We compare the effects of early and late policy intervention. In the upper panel, we

simulate policy intervention at T = 2 and compare the outcomes for asset prices and fund

values to the same intervention at t = 10 in the bottom panel. However, the early policy

intervention reduces the magnitude of the trough and allows prices and values to rebound

more quickly in contrast to intervening at T = 10.

5.2 Central bank asset purchases

Next, in Figure 5, we evaluate a policy where the central bank purchases 1% of outstanding

investment grade assets. In March 2020, in response to the market turmoil brought upon

by the COVID-19 pandemic, the Federal Reserve announced its intention to purchase up to

$750 billion in primarily investment grade corporate bonds. While the actual purchases were
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much smaller, the announcement effect was significant (Haddad et al., 2021a; Boyarchenko

et al., 2022) and the potential purchase size was over 7% of the corporate bond market.24

With our model, we can trace the effect of actual purchases on the different asset classes

and investor sectors. Even though the purchases are targeted towards investment grade, there

is also a small price benefit for high yield because (1) the rebound of fund wealth and (2) the

fixed investment mandate increase demand for high yield assets. Mutual fund values rebound

by more than insurers due to the amplifying effect of flows following positive performance.

Intervening quickly, as before, dampens the decline in both price and value, with in-

vestment grade bonds benefiting slightly more. Earlier intervention improves slightly the

post-intervention steady state fund values and prices, but the effect is small (less than 1%

of pre-fund value).

5.3 Direct lending

In Figure 6, we consider the effects of a policy that lends directly to mutual funds up to

1% of IG assets. Specifically, we allow the inflow of funds into mutual funds to increase by

1% of their IG. As soon as this policy is implemented, the decline in prices stops, however

unlike the previous two policy counterfactuals, there is no significant rebound in prices or

fund values post-intervention.

Early intervention makes a big difference in this policy counterfactual. By implementing

a lending facility immediately, the price drop for IG (HY) assets is limited to less than 1%

(12%) of pre-shock values, versus a price drop of 7% (17%) in the case of slow interven-

tion. Similarly, the drop in mutual fund and insurer values is significantly worse in slow

intervention compared to the case of immediate implementation.

24At year end 2019, there was over $9.5 trillion in outstanding corporate bonds across investment. Source:
SIFMA 2021 Capital Markets Factbook).
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5.4 Redemption restrictions

We next consider a policy of freezing mutual fund redemptions. At implementation of the

policy, we set the net flow for each fund to be bounded below by zero. Figure 7 displays

the effects, assuming that the intervention is implemented either two days after the shock

(T = 2) or ten days later (T = 10). Unlike the other policies, the implementation of a

redemption restriction on mutual funds does not allow prices and fund values to rebound

at all. Moreover, it can only mitigate the drop in fund values and prices when it occurs

sufficiently quickly. In the counterfactual with T = 10, a restriction on redemptions is

implemented too late to create significant improvements in steady-state prices or values

compared to the baseline in Figure 1.

5.5 Policy price impact: comparison

Finally, we compare these policies to the maximum-price-impact benchmark derived in the

theoretical framework. Figure 8 compares the different type of interventions, taking into

consideration the variation in prices across four assets classes (long IG, short IG, long HY,

and short HY).25 Conventional monetary policy (risk-free rate cut) is the least effective,

because it has the biggest price effect on less fragile long-term IG assets, which have a

median time to maturity of 13 years. Direct lending to mutual funds is marginally more

effective because assets held by mutual funds are more fragile than assets held primarily by

insurers, but because they target fund flows rather than prices directly, they are less effective

than asset purchases. Asset purchases are more effective because they target IG bonds more

broadly, but given IG bonds are not the most fragile, this is still not optimal. Redemption

restrictions are more effective because they target mutual funds overall. However, no policy

counterfactual reaches the maximum price efficacy because each still targets assets or funds

25Long assets are corporate bonds that are at least 5 years in remaining maturity; short assets have less
than 5 years in remaining maturity.
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that are not the most fragile.26

5.6 Preventative policies: swing pricing

We can also use our framework to evaluate preventative policies that could mitigate a neg-

ative feedback loop in the first place. For example, in November 2022, the SEC proposed

a policy to avoid selling pressure of open-ended mutual funds called swing pricing.27 This

policy would require funds to adjust their NAV to pass trading costs to shareholders who are

redeeming (or purchasing) shares in the fund. Jin et al. (2021) show that implementation of

this policy in the UK led to a significant reduction in flow-to-performance sensitivity.

Motivated by this policy proposal, we test how swing pricing would affect the propaga-

tion of the negative shock via a reduction in flow-to-performance sensitivities. To implement

this, we refer to Jin et al. (2021) Table 3, Panel B, which reports the reduction in flow

sensitivity estimates due to swing pricing across different magnitudes of fund outflows. We

adjust each fund’s flow-to-performance sensitivity according to their estimates and see how

prices and fund valuations respond to the same 10% negative shock in HY asset prices. See

Figure 9 for the results. The implementation of swing pricing inhibits significant outflows

and further price declines, thereby avoiding the onset of a negative feedback loop.

This exercise comes with important caveats. Implementation of swing pricing would

likely have equilibrium effects on fund investment decisions, as documented by Jin et al.

(2021) and Ma et al. (2022a). In this counterfactual, we hold fund holding characteristics

fixed. Estimating a counterfactual that endogenizes holding characteristics would be useful

but outside the scope of this paper.

26Note that the policy impact comparison is based on an initial negative price shock. Optimal policy may
be different if the initial shock arises from exogenous fund outflows.

27See, for example, “SEC proposes mutual fund-pricing rule to protect long-term investors”, Financial
Times, November 2, 2022.
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6 Conclusion

This paper develops a two-layer asset pricing framework to theoretically and empirically

analyze the fragility of the corporate bond market. Equilibrium asset prices reflect the

demand of both households and institutional investors. The model features dynamic feedback

loops between investor outflows and asset prices, as well as contagion across assets and

institutions. Importantly, we show how the key model parameters can be estimated using

micro-data on bond prices, institutional investors holdings, and fund flows. We use our

estimated model to evaluate the equilibrium impact on asset prices of policies designed to

mitigate market fragility, including unconventional monetary and liquidity policies.

Our framework’ underlying economics are general enough and its estimation method-

ology flexible enough to be applied to other settings. While we focus on corporate bond

markets, similar equilibrium dynamics are at play in equity, government bonds, or currency

markets. Moreover, the heterogeneity in institutions could be enriched, accounting for in-

stance for differences between active and passive mutual funds or between different types of

insurers and pensions. Finally, the model could be extended to incorporate a third layer of

debt issuance and firm investment. This would allow for quantifying the effects of financial

markets disruptions and policy interventions on real activity using an integrated framework

and structural estimation.
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Figure 1: Model dynamics: example
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Note: This graph shows simulated paths of AUM and asset prices for a two-sector-two-asset model.

Parameters values described in Section 3.4.
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Figure 2: Asset fragility: numerical example

0 0.5 1 1.5
0

2

4

6

8
Asset A
Asset B

(a) Flow sensitivity of Specialist B

0.5 1 1.5 2
2

2.5

3

3.5

4

4.5

5
Asset A
Asset B

(b) Demand elasticity over B: Specialist B

Note: Reports on the y-axis the asset fragility of two assets in an illustrative numerical example. The left

panel holds fixed the demand elasticities of all funds and varies only the flow sensitivity (beta) of Specialist

B. The right panel holds fixed the flow sensitivities of all funds and varies only the demand elasticity of

Specialist B for asset B.

Figure 3: Fund fragility: numerical example
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Note: Reports on the y-axis the fund fragility of three funds in an illustrative numerical example. The left

panel holds fixed the demand elasticities of all funds and varies only the flow sensitivity (beta) of Specialist

B. The right panel holds fixed the flow sensitivities of all funds and varies only the demand elasticity of

Specialist B for asset B.
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Figure 4: Counterfactual simulation: rate cut
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2 4 6 8 10 12 14 16 18 20
0.8

0.85

0.9

0.95

1

1.05
Insurance company
Mutual fund

(d) AUM with T = 10

Note: This graph shows the counterfactual AUM and asset prices following a 10% shock on

investment-grade and high-yield bond prices at time 1. The central bank cut the policy rate by 25 basis

points at time 2 and time 10 for the upper and lower panels, respectively.
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Figure 5: Counterfactual simulation: asset purchases
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Note: This graph shows the counterfactual AUM and asset prices following a 10% shock on

investment-grade and high-yield bond prices at time 1. The central bank conducts asset purchases of 1% of

the investment-grade bond market at time 2 and time 10 for the upper and lower panels, respectively.
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Figure 6: Counterfactual simulation: central bank lending to mutual funds
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Note: This graph shows the counterfactual AUM and asset prices following a 10% shock on

investment-grade and high-yield bond prices at time 1. The central bank allows all mutual funds to borrow

up to 5% of their IG holdings and 1% of their high-yield holdings at time 2 and time 10 for the upper and

lower panels, respectively.
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Figure 7: Counterfactual simulation: limits to redemptions for mutual funds

2 4 6 8 10 12 14 16 18 20
0.8

0.85

0.9

0.95

1

1.05
IG
HY

(a) Prices with T = 2

2 4 6 8 10 12 14 16 18 20
0.8

0.85

0.9

0.95

1

1.05
Insurance company
Mutual fund

(b) AUM with T = 2

2 4 6 8 10 12 14 16 18 20
0.8

0.85

0.9

0.95

1

1.05
IG
HY

(c) Prices with T = 10

2 4 6 8 10 12 14 16 18 20
0.8

0.85

0.9

0.95

1

1.05
Insurance company
Mutual fund

(d) AUM with T = 10

Note: This graph shows the counterfactual AUM and asset prices following a 10% shock on

investment-grade and high-yield bond prices at time 1. Mutual funds restrict suspend redemptions at time

2 and time 10 for the upper and lower panels, respectively.
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Figure 8: Price impact multipliers of various interventions
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Note: This graph shows the policy targeting multipliers of various interventions at T = 10, as described in

Section 5. “MP” stands for conventional monetary policy. “AP” stands for asset purchases. “DL” stands

for direct lending. “RR” stands for redemption restrictions. “MAX” stands for the maximum-price-impact.

The price impact multiplier is defined in equation (22).
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Figure 9: Counterfactual simulation: swing pricing for mutual funds
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Note: This graph shows the counterfactual AUM and asset prices following a 10% shock on

investment-grade and high-yield bond prices at time 1. Mutual fund flow sensitivity to performance is

adjusted according to Jin et al. (2021) Table 3 in period 1.
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Table 1: Numerical example: parameters

Equal weighted fund Specialist A Specialist B

Asset A share 0.50 0.66 0.33
Asset B share 0.50 0.33 0.66
Total wealth 1.00 1.00 1.00
Flow sensitivity 0.10 1.00 X1
Demand elasticity over Asset A 1.00 1.00 1.00
Demand elasticity over Asset B 1.00 1.00 X2

Note: This table summarizes parameters in the numerical example illustrating asset and fund fragility

metrics. The X1 and X2 values take on various values in Figures 2 and 3 to demonstrate how fragility

metrics respond to variation in flow sensitivities and demand elasticities.

Table 2: Summary of classes

count mean std min 25% 50% 75% max

Funds per class-quarter 26055 7.9 11.6 1 2.0 3.0 9.0 125
Holdings per class-quarter 26055 29207.0 87878.5 0 1148.5 5900.0 22984.5 3657773
Unique bonds per class-quarter 26055 11.1 20.5 1 2.0 4.0 11.0 233
TS avg num funds per class 460 5.8 8.2 1 1.3 2.8 6.5 60
TS avg holdings per class 460 21841.3 47502.0 0 2780.8 6844.5 17619.4 437881
TS avg num bonds per class 460 8.0 14.2 1 1.4 3.0 8.0 105
Avg classes per quarter 88 296.1 66.6 59 274.8 308.0 342.2 375

Note: This table summarizes the distribution of statistics aggregated to the class-quarter and class level. A

bond class is defined as a 2-digit NAIC industry category, a tenor at issuance, and the credit rating of the

bond.

47



Table 3: First stage test for instrument

(1) (2) (3)
All funds Insurers Mutual funds

Z icq -0.00512∗∗∗ -0.00622∗∗∗ -0.00455∗∗

(0.00142) (0.00154) (0.00150)

U.S. Treasury -3.807∗∗ -4.224∗∗∗ -2.959∗

(1.339) (1.304) (1.523)

Bidask 6.183∗∗∗ 5.953∗∗∗ 6.891∗∗∗

(1.550) (1.545) (1.552)

Original tenor (log) 0.0457∗∗∗ 0.0538∗∗∗ 0.0356∗∗∗

(0.00619) (0.00713) (0.00669)

Years remaining 0.0163∗∗∗ 0.0158∗∗∗ 0.0163∗∗∗

(0.00112) (0.00110) (0.00126)

Amount issued (log) -0.00401∗ -0.00347 -0.00196
(0.00193) (0.00210) (0.00190)

Issuer rating -0.245∗∗∗ -0.261∗∗∗ -0.236∗∗∗

(0.0181) (0.0185) (0.0232)

Constant 0.683∗∗∗ 0.729∗∗∗ 0.647∗∗∗

(0.0540) (0.0543) (0.0614)

Fund x IG x Quarter FE ✓ ✓ ✓

Observations 1809233 1059467 709888
R-squared 0.697 0.696 0.703

Note: This table shows the first stage estimates of the instrument on term-adjusted credit spreads within
fund-asset-quarter. The instrument is constructed from equation equation (24) as described in subsection
4.1. The outcome variable in the first stage regressions is credit spread multiplied by the number of years
remaining on the asset. Credit spreads are from the WRDS Bond Returns month-end transactions data,
reported at the bond-quarter level. Controls include duration-matched US Treasury yield, the bid–ask
spread as reported by WRDS, the tenor at issuance (logged), number of years remaining,the initial amount
issued (logged), the issuer credit rating. The sample period is 2010 to 2019 with quarterly observations.
The first column reports the first stage results for all funds; the second column reports results for insurers,
and the last column reports results for mutual funds. Includes fund–IG dummy–quarter fixed effects.
Standard errors are clustered at the fund and quarter level.
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Table 4: Summary of demand elasticity estimates

10% mean 90%
2010-2019 estimates

All fund-bonds 0.782 0.988 1.203
IG holdings 0.765 0.916 1.234
HY holdings 0.798 1.059 1.181
Non-mutual funds 0.807 0.884 1.179
Mutual funds 0.639 1.445 1.349
ETFs 0.823 1.615 1.215
Index funds 0.814 1.515 1.230
Other MF 0.542 1.363 1.424

10% mean 90%
Time periods

Pre-2008 0.543 0.805 0.983
2008 financial crisis 0.865 1.148 1.343
2010-2019 0.542 1.363 1.424
2020-2022 0.421 2.312 1.500

Note: This table summarizes the distribution of demand elasticities. The top panel summarizes estimates

for different asset and fund categories in 2010-2019. The bottom panel summarizes estimates for mutual

funds in different time periods, excluding ETFs and index funds.
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Table 5: Flow to return sensitivity: monthly

(1) (2) (3) (4) (5)
F.Flow F.Flow F.Flow F.Flow F.Flow

Return 0.288∗∗∗ 0.294∗∗∗ 0.274∗∗∗ 0.259∗∗∗

[0.021] [0.021] [0.029] [0.029]

Flow 0.193∗∗∗ 0.165∗∗∗ 0.185∗∗∗ 0.140∗∗∗ 0.140∗∗∗

[0.004] [0.004] [0.004] [0.004] [0.004]

Positive return 0.209∗∗∗

[0.051]

Negative return 0.309∗∗∗

[0.046]
Fund F.E. No Yes No Yes Yes
Time F.E. No No Yes Yes Yes
Observations 242,046 242,033 242,033 242,020 242,020
Adj. R-squared 0.043 0.058 0.051 0.080 0.080

Note: This table shows the relationship between fund flows and returns. The sample period is from 1992 to

2021 with monthly observations. “Return” is the net monthly return of the fund in percentage points.

“Flow” is measured by the percentage change in the asset under managements from the previous month.

The dependent variable is one-month forward fund flow. Data source: CRSP Mutual Fund Database.
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Table 6: Flow to return sensitivity: daily

(1) (2) (3) (4) (5)
F.Flow F.Flow F.Flow F.Flow F.Flow

Return 0.137∗∗∗ 0.058 0.171∗∗∗ 0.067∗

[0.038] [0.036] [0.063] [0.037]

Flow 0.292∗ 0.292∗ -0.010 -0.011 -0.011
[0.163] [0.163] [0.037] [0.037] [0.037]

Positive return -0.120
[0.175]

Negative return 0.167
[0.137]

Time fixed effects No Yes No Yes Yes
Fund fixed effects No No Yes Yes Yes
Observations 45,614 45,614 45,613 45,613 45,613
Adj. R-squared 0.084 0.084 0.288 0.288 0.288

Note: This table shows the relationship between fund flows and returns. The sample period is 2020Q1 with

daily observations. “Return” is the net daily return of the fund in percentage points. “Flow” is measured

by the percentage change in the asset under managements from the previous day. The dependent variable

is one-day forward fund flow. Data source: Morningstar Mutual Fund Database.
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Table 7: Summary of flow to performance estimates

10% mean 90%
2010-2019 estimates

All fund-bonds -3.078 0.584 4.677
ETFs -2.729 0.788 4.870
Index funds -2.437 0.926 4.810
Other MF -3.125 0.482 4.514

10% mean 90%
Time periods

Pre-2008 -2.392 0.120 2.632
2008 financial crisis -0.699 0.104 1.453
2010-2019 -3.125 0.482 4.514
2020-2022 -1.107 0.186 1.601

Note: This table summarizes the distribution of flow to performance elasticities. The top panel summarizes

estimates for different asset and fund categories in 2010-2019. The bottom panel summarizes estimates for

mutual funds in different time periods, excluding ETFs and index funds.

Table 8: Asset fragility measure

IG HY
Long Short Long Short

Asset fragility 2019 1.022 1.055 1.085 1.161
Market share of asset 0.507 0.237 0.165 0.091
Mutual fund holding share of asset 0.347 0.506 0.766 0.783
Holdings-weighted average beta 0.040 0.160 0.125 0.249
Holdings-weighted average zeta 1.049 1.683 1.138 1.239

Note: This table summarizes the asset fragilities and key inputs for year-end 2019. “IG” indicates bonds

with credit rating of BBB- and above; “HY” indicates bonds with credit rating below BBB-. “Long” assets

are those with five or more years remaining and “short” assets have fewer than 5 years remaining.

Reported flow sensitivities (beta) and demand elasticities (zeta) are holdings weighted averages across

funds for each asset.
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Table 9: Fund fragility estimates by subsample: 2019

IG Elasticity HY Elasticity Flow-to-performance IG share Fund fragility
2019

Life Insurers 0.915 0.960 0.000 0.876 0.000
Pension Funds 1.086 1.006 0.000 0.923 0.000
Active MF 1.089 1.002 0.885 0.700 0.834
Passive MF 1.300 1.008 2.852 0.955 2.659
ETF 5.285 1.063 0.742 0.655 0.698
Index ETF 1.130 0.947 1.324 0.683 1.248

Note: This table summarizes the fund value weighted average elasticities, flow-to-performance sensitivities,

and fund fragilities estimated across different subsamples of funds. Reports the distribution for 2019.
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Appendix: derivations and proofs

A.1 Adding bond characteristics

Adding K time-invariant bond characteristics {Xk} is straightforward. They only enter the

definition of the target portfolio share θi(n) := δ̄i(n)

1+Σmδ̄i(m)
, with δ̄i(n) = exp

(
Σkβ

k
i X

k(n)
)
,

instead of being just an asset-specific fixed effect. Nothing else changes.

Time-varying characteristics enter the model like the cash-flow shock det (n). Denote by

xk
t (n) = ∆Xk

t (n) the change in characteristic k for asset n. The change in demand is now

(including the cash-flow shock in characteristics Xk to consolidate notation):

qi,t(n) = −ζi,t(n, n)pt(n) + [1− θi(n)]Σkβ
k
i x

k
t (n)︸ ︷︷ ︸

Own-asset effects

+ fi,t + ei,t(n)︸ ︷︷ ︸
Flow and demand shocks

−

(∑
n′ ̸=n

ζi,t(n, n
′)pt(n

′) + θi(n
′)Σkβ

k
i x

k
t (n

′)

)
︸ ︷︷ ︸

Cross-asset effects

(27)

where own-price and cross-price elasticities are the same as before.

B.2 Derivations of maximum-price-impact benchmark

The policy-maker’s problem is

max
0≤g≤g

α′(I −ΨΦ)−1g,

subject to: γ ′g ≤ b,

(28)
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The Lagrangian function is

L(g, λ) = α′(I −ΨΦ)−1g + λ(b− γ ′g) + µ′(g − g) + µ′g, (29)

We have

∂L
∂gn

= α′(I −ΨΦ)−1en − γn − µn + µ
n
, (30)

∂L
∂λ

= b− γ ′g, (31)

∂L
∂µn

= gn − gn, (32)

∂L
∂µ

n

= gn, (33)

Sorting the N assets by α′(I −ΨΦ)−1en/γn in descending order, define the marginal

asset N∗ such that
N∗∑
n=1

γngn ≤ b, (34)

N∗+1∑
n=1

γngn ≥ b. (35)

The optimal solution is gn = gn when n < N∗, gn = b−
∑N∗

n=1 γngn when n = N∗, and

gn = 0 when n > N∗.
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Appendix: Additional Tables and Figures

Table 10: Top classes

Classifier TS avg num funds TS avg holdings TS avg num bonds

33-15.0-Aaa 57.6 297,430.8 104.5
33-15.0-Baa1 53.7 232,133.4 102.2
32-15.0-Baa1 60.4 254,196.1 101.2
53-15.0-Baa1 49.0 251,800.6 90.5
48-15.0-Baa1 45.9 196,145.1 80.3
32-15.0-Aaa 43.0 184,862.9 77.4
21-15.0-Baa1 41.7 149,029.1 67.7
51-15.0-Baa1 39.2 159,900.0 67.0
33-100.0-Aaa 27.9 332,493.3 65.1
48-100.0-Baa1 29.4 173,449.4 56.1

Note: This table summarizes the top 10 classes by the number of bonds within the class. A classifier is

defined as a 2-digit NAIC industry category, a tenor at issuance, and the credit rating of the bond. The TS

avg num funds reports the average number of funds that hold this class of bond each quarter. The TS

average holdings is the average quarterly volume of each class that is reported. The TS avg num bonds is

the number of bonds, on average, that is considered within each classifier.

Table 11: Summary of investor holdings

2002 mean 2002 median 2010 mean 2010 median 2019 mean 2019 median

Avg AUM 804,708 95,095 1,016,236 100,204 1,386,188 118,482
Num classes per fund-qtr 12 7 23 15 35 24
Num bonds per fund-qtr 17 8 49 21 98 36
Avg holding 1,965 700 1,542 513 2,614 441
Std holding 1,335 388 1,221 319 1,925 324

Note: This table summarizes the distribution of fund characteristics statistics aggregated to the

fund-quarter level.
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