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Abstract

We model endogenous trading and liquidity provision at a decentralized exchange
(DEX) and demonstrate that increasing DEX trading fees can increase DEX trad-
ing volume. DEXs employ a mechanical pricing rule whereby price impacts decrease
with inventory which DEXs acquire only by offering fee revenues to investors. Con-
sequently, higher DEX fees can incentivize higher inventory, thereby reducing price
impacts. Moreover, the price impact reduction can offset the fee increase so that the
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1 Introduction

A decentralized exchange (DEX) is an innovation in decentralized finance that allows

agents to exchange various cryptoassets without relying on a trusted intermediary. These

types of exchanges are facilitated by smart contracts which are deployed on a blockchain

(e.g., Ethereum). The smart contracts allow investors to supply liquidity to the exchange in

the form of cryptoasset inventory from which agents can trade for a fee paid to the liquidity

providers. The DEX is decentralized in the sense that any agent can take part in liquidity

provision and trading, while the smart contract itself is immutable, guaranteeing that the

rules of the exchange cannot be changed after its creation. Consequently, the usage of smart

contracts provides some protection for users relative to a centralized exchange (CEX) in

that the DEX possesses no discretion beyond the smart contract code and therefore cannot

misappropriate user funds.

In this paper, we provide an economic model of a DEX with the aim of understanding the

role that DEX trading fees play in the adoption of the DEX as a trading platform. Our main

finding is that an increase in DEX trading fees can increase the equilibrium DEX trading

volume and therefore the use of the DEX. This result is particularly noteworthy for the

practical design of decentralized exchanges in aiming to maximize their use and adoption.

We derive our main finding, that increases in DEX trading fees can increase DEX trading

volume, by showing that an increase in DEX trading fees can reduce overall DEX trading

costs, thereby driving trading activity from competing exchanges to the DEX. In order to

understand why this result holds, first note that DEXs employ a mechanical pricing rule

which implies a mechanical price impact for any trade at the DEX. In turn, the cost of

trading with the DEX arises not only from the trading fee, but also from the price impact

of the trade. We show that due to the form of the mechanical pricing rule, the price impact

of DEX trading is strictly decreasing in the DEX inventory level which is the amount of

funds provided by outside investors that are used as liquidity to facilitate trades. Therefore,

whenever increases in the DEX fee level lead to an increase in the DEX inventory then the
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traders will always be guaranteed a lower price impact from trading at the DEX. Importantly,

DEXs acquire inventory by offering a pro-rata share of DEX trading fees to the investors

who provide such inventory. As a consequence, an increase in the DEX fee level can result

in an increase in the overall DEX fee revenue, increasing the investor return from financing

DEX inventory. Whenever this is the case, an increase in DEX fees will lead to a higher

level of equilibrium DEX inventory, lower price impacts, and, when the reduction in price

impact is sufficiently large, higher equilibrium DEX trading volume.

Formally, we model a one-period setting consisting of two types of agents, investors and

traders, and two types of trading exchanges, a DEX and a CEX.1 A unit measure of investors

arrive at the beginning of the period. Each investor possess a unit of capital which she de-

cides to invest either in the DEX (i.e., to provide inventory) or in an alternative investment

opportunity which generates an exogenous and known expected return. Subsequently, liq-

uidity traders with heterogeneous trading demand arrive according to a Poisson process and

trade at either the DEX or the CEX, selecting whichever exchange offers the lower trading

cost. Finally, at the end of the period, each investor who invested in the DEX receives a

pro-rata share of all DEX trading fees, whereas each investor who invested in her alternative

investment opportunity receives their known exogenous return.

Our model entails two sources of trading costs: trading fees and price impacts. Each

exchange charges an exogenous proportional fee on the size of the trade. The CEX always

offers execution at fair value, without price impact. In contrast, the DEX employs a standard

mechanical pricing rule (see John et al. 2023) such that the execution price at the DEX

approaches fair value for arbitrarily small trade sizes but diverges from fair value as the

trade size diverges from zero (i.e., non-zero price impact).

Our main result, Proposition 4.1, establishes that an increase in the DEX fee level gener-

ates an increase in the DEX trading volume so long as the initial DEX fee level is sufficiently

small. This result arises because the referenced increase in the DEX fee level reduces the

1We model the CEX as an outside option to the DEX and therefore this could equivalently represent a
dealer.
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price impact of DEX trading to such an extent that the overall DEX trading cost falls for

the marginal trader who would be indifferent between the DEX and the CEX in the absence

of a DEX fee level increase. In turn, since traders select between the DEX and the CEX on

the basis of whichever provides the lower trading cost, the referenced increase in the DEX

fee level drives traders to the DEX from the CEX, implying an increase in the equilibrium

DEX trading volume. We establish the described channel that generates our main result via

Propositions 4.2 and 4.3. More specifically, Proposition 4.2 establishes that an increase in

the DEX fee level reduces trading costs for marginal traders so long as the initial DEX fee

level is sufficiently small, whereas Proposition 4.3 establishes that an increase in the DEX

fee level reduces the price impact of DEX trading so long as the initial DEX fee level is

sufficiently small.

The result of Proposition 4.3, that an increase in the DEX fee level reduces the DEX price

impact when the DEX fee level is sufficiently small, arises because the DEX’s mechanical

pricing rule embeds a negative relationship between the DEX price impact and the DEX

inventory level, and the DEX inventory level is increasing in the DEX fee level when the

DEX fee level is sufficiently small. More explicitly, the DEX acquires inventory by offering

a pro-rata share of DEX trading fee revenues to investors in exchange for financing the

capital which is used as DEX inventory. Therefore, an increase in the DEX fee level can

increase overall DEX fee revenues and thus the return on investment from financing the

DEX inventory. Then, given that investors select the investment that generates the highest

expected return, the referenced increase in the DEX fee level endogenously increases DEX

investment which increases DEX inventory and, as mentioned above, reduces the price impact

of DEX trading. We formally establish the referenced relationships in Propositions 4.4 - 4.6.

In particular, we demonstrate that increases in the DEX investment level monotonically

reduce the price impact of DEX trading in Proposition 4.4, whereas we establish that, for a

sufficiently small initial DEX fee level, an increase in the DEX fee level increases the DEX

investment return and also the DEX investment level in Propositions 4.5 and 4.6.
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Finally, we consider two extensions of our main model and show that our main insight,

that DEX trading volume is increasing in DEX fees when the DEX fee is sufficiently small,

is robust to these extensions. In the first extension, we allow traders to optimally split their

trades between the DEX and the CEX. We derive the optimal trade splitting strategy in that

context and demonstrate that our main result continues to hold when traders trade under the

optimal splitting strategy. In our second extension, we allow the CEX to optimally respond

to changes in the DEX fee level. Formally, we assume that after the DEX fee level is set,

the CEX selects the CEX fee level (as a function of the DEX fee level) in order to maximize

CEX trade revenue. We then show that even when the CEX fee level is set strategically, our

main result continues to hold.

As a qualification, we emphasize that our results apply specifically to DEXs and do not

necessarily generalize to CEXs. In more detail, there are mixed results in the literature

regarding the effect of CEX fee levels upon CEX trading volume (see, e.g., Colliard and

Foucault 2012, Foucault et al. 2012 and Malinova and Park 2015), which our paper cannot

address given the exogenous nature of price impacts at the DEX. Explicitly, while we show

unambiguously that DEX trading volumes first increase and then decrease in DEX fees, the

effect of increasing CEX fees upon CEX trading volumes remains unclear, both in terms of

the academic literature and the perception of practitioners and regulators (see Securities and

Exchange Commission 2018).2

Our paper adds to the literature on the economics of blockchains.3 More specifically,

we add to a recent strand of that literature which examines Decentralized Finance (DeFi)

applications including DEXs. Prominent papers from the DeFi literature include Cong et al.

(2021), Cong et al. (2022), Kozhan and Viswanath-Natraj (2021) and Mayer (2022), whereas

2The ambiguity regarding the effect of CEX fees upon CEX trading costs and CEX trading fees was
seen as sufficiently pressing by the SEC that the SEC launched a pilot study. The SEC noted, “the mixed
results from the academic literature and the disagreement among commenters” led them to propose the
study. Further, one of the main inquiries that the pilot aimed to address was to “better understand the
cumulative effects of changes in transactions fees and rebates on spreads and trading costs.”

3John et al. (2023) and John et al. (2022) provide surveys of the literature. Notable early works from
that literature include Biais et al. (2019), Easley et al. (2019), Makarov and Schoar (2019), Huberman et al.
(2021), Saleh (2021) and Biais et al. (2022).
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prominent papers that focus on DEXs specifically include Park (2021), Barbon and Ranaldo

(2022), Lehar and Parlour (2022), Lehar et al. (2022) and Milionis et al. (2022). Our paper

relates most closely to Capponi and Jia (2021), which also theoretically examines a DEX

in the absence of asymmetric information. Our work differs particularly from Capponi

and Jia (2021) in that we allow traders to trade not only at a DEX but also at a CEX.

Moreover, we model traders as heterogeneous in trading demand, and we thereby derive a

separating equilibrium in which each trader selects her optimal trading venue, DEX or CEX.

Importantly, our focus is on examining the equilibrium relationship between the DEX fee

level and the DEX trading volume, and our model generates endogenous trading volume for

both the DEX and the CEX, each as a function of the trading fees charged by the DEX and

CEX.

2 Model

In our setting, time is indexed by t P r0, 1s. There are two types of agents: investors

and traders. A unit measure of investors arrive at t “ 0. Each investor possesses a unit of

capital. Upon arrival, each decides whether to provide her capital to a decentralized exchange

(DEX) or to invest in an alternative investment instead. Thereafter, liquidity traders arrive

randomly over p0, 1q. Each arrival decides whether to trade at the DEX or to trade at a

centralized exchange (CEX). Within this interval, the framework is similar to that of the

sequential trade models (beginning with Glosten and Milgrom 1985 and Easley and O’Hara

1987). As in Easley et al. (1996) and others, arrivals follow a Poisson Process. At t “ 1, all

investor pay-offs are realized.

2.1 Exchanges

We model two exchanges, one CEX and one DEX, each of which offers trading of a single

cryptoasset against a USD-equivalent token. We will regularly reference Exchange i P tC,Du
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where Exchange i “ C refers to the CEX while Exchange i “ D refers to the DEX. Hereafter,

for exposition, we refer to the single cryptoasset as ETH and to the USD-equivalent token

as USD.4 We assume that at time t “ 0 (before investors provide liquidity) the dollar value

of ETH is known and equal to V ą 0 and that this value remains constant over the interval

r0, 1q. At time t “ 1 we assume that the dollar value of ETH jumps to V 1 “ V ¨ R where

R ě 0 is the gross return on ETH drawn at t “ 1 from a known distribution F with support

R`.

In general, trading ETH entails two costs: a cost arising from the price of the ETH and a

cost arising from fees charged on the trading of ETH. More explicitly, we denote by Pipδq ě 0

(defined precisely below) the per unit ETH price (in USD) for a trade of δ ETH at exchange

i so that a trade of δ P R ETH entails a direct cost of δ ˆPipδq USD at exchange i P tC,Du.

When δ ą 0 the trade corresponds to a buy of |δ| ETH; δ ă 0 corresponds to a sale of |δ|

ETH. Note that the sign of δ carries through in the direct cost (as an expense for a buyer

or reduced proceeds for a seller). In addition to the direct cost, trading with an exchange

also entails an indirect cost arising from the trading fee charged by the exchange which is

proportional to the size of the trade. More formally, recall that V ą 0 denotes the fair value

of ETH (in USD) and let fi ě 0 denote the proportional trading fee charged at exchange

i P tC,Du. Then, a trade of δ ETH entails a proportional fee of fi ˆ |δ| (denominated in

ETH) at exchange i so that the overall fee for a trade of δ ETH equals fi ˆ |δ| ˆ V in USD.

Formally, the overall cost of trading δ ETH at exchange i, which we denote by Ψipδq, is given

as follows:

Ψipδq
loomoon

Total Trading Cost

“ Pipδq ˆ δ
looomooon

Execution Price Cost

` fi ˆ |δ| ˆ V
looooomooooon

Trading Fees Cost

(1)

The key difference between a CEX and a DEX arises in the specification of the execution

4Formally, the reader should consider the trading as being ETH against a stablecoin pegged to USD.
Such pairs (e.g., ETH-USDC, ETH-USDT) are offered by both centralized and decentralized exchanges.
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price (i.e., Pipδq). The CEX always prices ETH at its known fair value V :

PCpδq “ V (2)

In contrast, ETH pricing at the DEX is mechanical and determined according to an

exogenous function known as an Automated Market Maker (AMM) function. The referenced

mechanical function determines a price as a function of not only the trade size, δ, but also

the DEX inventory levels for ETH and USD. We assume the DEX employs the most common

AMM function used in practice, the Constant Product Automated Market Maker (CPAMM)

function, which implies the following pricing function (see John et al. 2023):

PDpδq :“ ΞpIUSD, IETH , δq ”

$

’

’

&

’

’

%

IUSD

IETH´δ
if δ ă IETH

8 if δ ě IETH

(3)

where IUSD and IETH denote the USD and ETH inventory levels at the DEX respectively

and ΞpIUSD, IETH , δq is the functional form of the CPAMM pricing function. We follow the

specification of UniSwap V2 and require that investors who provide liquidity do so by adding

both ETH and USD to the inventory in a fixed proportion (see John et al. 2023 for details).

Moreover, we ensure the absence of arbitrage across the DEX and CEX by requiring that

this fixed proportion is such that the marginal ETH price at the DEX is initially aligned

with the ETH price at the CEX:

lim
δÑ0`

PDpδq “ V “ PCpδq (4)

2.2 Traders

We assume that there exist two types of traders: liquidity traders and opportunistic traders.

Liquidity traders randomly arrive over the interval. Each liquidity trader has an exoge-

nous trading demand to trade immediately and will trade either at the CEX or the DEX
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(whichever minimizes her trading cost). If a liquidity trader goes to the DEX, their execu-

tion pushes the DEX price away from fair value. Opportunistic traders immediately act to

restore the DEX price. Intuitively, they correspond to high-frequency value arbitrageurs in

that they continuously monitor the DEX market and trade whenever mispricing generates

opportunities. They are similar to the arbitrageurs in Foucault et al. (2017) and Aquilina

et al. (2021), but as there is no private information in this model, their activities are not (in

the sense of these papers) “toxic”. Since the fair value remains constant within the interval,

perturbations in the DEX price are a consequence of the arriving liquidity traders’ demands.

These perturbations are transient and there are no permanent price changes until t “ 1

when, as discussed earlier, there is a change in the ETH fair value.

In more detail, the DEX pricing function (see Equation 3) mechanically implies that the

ETH price at the DEX moves in the direction of a trade (i.e., a buy increases ETH prices,

whereas a sell decreases ETH prices) so that, even though DEX and CEX marginal prices

are initially aligned, a liquidity trade in one direction produces an opportunity to trade

in the opposite direction at a price which is favorable relative to fair value. We assume

that such opportunities are seized upon immediately so that any movement in the marginal

ETH price at the DEX away from fair value is subsequently traded away by traders who

wait opportunistically for such price movements before executing their trade to benefit from

lower trading costs. We refer to such traders that seize favorable trading opportunities as

opportunistic traders, and note that such traders can be interpreted as a type of liquidity

trader that is sufficiently time insensitive so that they can wait for the price to move in a

favorable direction before executing a trade without incurring a large opportunity cost.

Formally, we assume liquidity traders arrive randomly over time t P p0, 1q according to a

Poisson Process with unit intensity. We index the N liquidity traders who arrive over the

interval by j P t1, ..., Nu. Liquidity Trader j possesses trading demand δj „ U r´1, 1s where

δj ą 0 represents the need to buy |δj| ETH, while δj ă 0 represents the need to sell |δj| ETH.

Each Liquidity Trader decides whether to trade at the DEX or at the CEX by maximizing
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their payoff, Πipδjq, from trading δj at Exchange i P tC,Du given by

Πipδjq “ γ ¨ |δj| ` V ¨ δj ´ Ψipδjq

where γ ą 0 represents the per unit benefit of trading so that γ ¨ |δj| represents the total

benefit received from the trade (denominated in USD), and V ¨ δj ´ Ψipδjq is the net cost of

trading δj at Exchange i. Note that V ¨ δj ´ Ψipδjq is the net cost of trading because V ¨ δj

corresponds to the fair value of the ETH being bought or sold, whereas Ψipδjq corresponds to

the overall cost of the associated trade, defined in Equation (1). In addition, we endow each

trader with an outside option that yields her a payoff of zero and assume that each agent

trades at her preferred Exchange i P tC,Du over utilizing the outside option whenever she

is indifferent (i.e., whenever maxiPtC,Du Πipδjq “ 0). This outside option will not be relevant

whenever fC ă γ as in this case no trader will utilize the outside option. Importantly, while

we take fC as exogenously given in Sections 3 and 4, we consider the extension whereby fC

is optimally chosen as a function of fD in Section 5.2 and show that our results are robust to

allowing the CEX to strategically set fees. Furthermore, in this extension (where the outside

option becomes relevant) we show that it will never be optimal to set a CEX fee fC ą γ, even

when the CEX is a monopolist (e.g., when fD “ `8), and therefore we assume, without

loss of generality, that fC ď γ throughout.5

We note that choosing Exchange i to maximize the payoff Πipδjq is equivalent to selecting

the exchange that minimizes the total cost of trading for Liquidity Trader j as follows:

ipjq “ argmin
iPtC,Du

Ψipδjq (5)

In turn, we define D as the random set of liquidity traders who optimally trade at the

5In addition, we assume γ ď 25% and V ě 1
2 . These assumptions simplify our equilibrium solution but

are not necessary.
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DEX, stated explicitly as follows:

D “ tj : ipjq “ Du (6)

We note here that while we focus on the case whereby liquidity traders trade their entire

volume at either the DEX or CEX, we allow for optimal order splitting in Section 5.1 and

show that our results are robust to this extension.

As discussed, we assume that opportunistic traders arrive immediately after liquidity

traders to seize favorable trading opportunities until their trading realigns the marginal DEX

price with the CEX price which is equal to the ETH fair value. Due to the mechanical pricing

rule at a DEX, this re-alignment occurs only after the DEX has experienced trading of an

equal magnitude but opposite direction as the liquidity trade that generated the opportunity.

Whether such trading occurs across multiple opportunistic trades or a single opportunistic

trade is without loss of generality, so we assume that the re-alignment occurs through a

single trade for exposition; more formally, we assume that every liquidity trade of size δj

made at the DEX is immediately reversed by an opportunistic trade of size ´δj.

2.3 Investors

We assume that there exists a unit measure of investors indexed by k P r0, 1s. Each Investor k

possesses a unit of capital (denominated in USD) and at time t “ 0 chooses whether to invest

that capital in the DEX or in an alternative investment. Investing in the DEX generates a

return equal to the pro-rata share of fees generated by the DEX plus any profit/loss on the

DEX inventory. More explicitly, the total net return from investing at the DEX is given as

rP&L ` rD where rP&L denotes the net expected return due to the profit/loss on the initial

inventory investment, whereas rD denotes the endogenous net expected return accrued from

the pro-rata share of fee revenue received by each investor. More formally, rP&L is given
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explicitly as follows:6

rP&L “ Er
?
Rs ´ 1 (7)

whereas rD is given explicitly as follows:

rD “
Total Expected Fees

Total Invested Capital
“

2 ˆ Er
ř

j:jPD
fD ˆ |δj| ˆ V s

I
(8)

where I corresponds to the total DEX investment (in USD) and Er
ř

j:jPD
fD ˆ |δj| ˆ V s corre-

sponds to the expected fee revenue from liquidity traders. The multiplicative factor of 2 in

the numerator of Equation (8) reflects the fact that any fee paid by a liquidity trader at the

DEX is duplicated by fees from opportunistic trading; all of our results hold even without

this factor of 2.

We assume that each investor is risk neutral and therefore invests in the investment

opportunity that provides her with the highest expected return. In particular, denoting by

ρk the return from Investor k’s alternative investment opportunity, then Investor k invests in

the DEX if and only if rP&L ` rD ě ρk. Letting ρ̃k :“ ρk ´ rP&L further implies that Investor

k invests at the DEX if and only if rD ě ρ̃k which states that Investor k invests in the DEX if

and only if the net expected return from fees, rD, exceeds the expected return from utilizing

Investor k’s alternative investment opportunity minus the expected profit/loss on Investor

k’s initial DEX inventory investment. Of particular note, the net expected return on DEX

6To understand Equation (7), note that DEX inventory value is given by Π “ IUSD ` V ¨ IETH , whereas
prices being aligned across the DEX and CEX as per Equation (4) requires V “ IUSD

IETH
ô IUSD “ V ¨ IETH .

The aforementioned two equations then imply Π “ 2 ¨ V ¨ IETH so that the net expected return of investing

in DEX inventory is rP&L “ ErΠ
1

Π s´1 “ ErV
1

V ¨
I1
ETH

IETH
s´1. Further, the constant product nature of the AMM

function requires IUSD ¨ IETH “ I 1
USD ¨ I 1

ETH (see John et al. 2023) so that, applying IUSD “ V ¨ IETH from

Equation (4) yields V ¨ I2ETH “ V 1 ¨ pI 1
ETHq2 and thus

I1
ETH

IETH
“

b

V
V 1 . Applying this expression to rP&L then

yields Equation (7):

rP&L “ Er
V 1

V

I 1
ETH

IETH
s ´ 1 “ Er

c

V 1

V
s ´ 1 “ Er

?
Rs ´ 1

Note that the realized net return from investing in DEX inventory,
?
R´1, is always lower than the realized

net return of an ETH-USD value-weighted portfolio – i.e.,
?
R ´ 1 ď 1

2 pR ´ 1q for all R ě 0. This lower
realized return is commonly known as impermanent loss and arises because ETH value fluctuations render
DEX prices as stale so that opportunistic traders extract value from DEX investors by trading against the
DEX until the DEX price mechanically adjusts to the new fair value (see Capponi and Jia 2021).
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inventory, rP&L, is exogenous and does not vary across investors. In turn, we can subsume

rP&L into the alternative investment opportunity without loss of generality. More explicitly,

we specify ρ̃k “ ρk ´ rP&L „ Gr0, 1s where G is given explicitly by Gpxq “ x
1
θ with θ ą 1.

Then, the equilibrium DEX investment is given as follows:

I “ GprDq “ prDq
1
θ (9)

As a note regarding exposition, we hereafter refer to rD as the DEX investment return

despite there being an additional component, rP&L, within the total DEX investment return.

We employ such language because, as discussed, rP&L is exogenous and thus an increase (de-

crease) in rD always corresponds to an identical increase (decrease) in the DEX investment

return, irrespective of rP&L. It is thus convenient to omit reference to the exogenous com-

ponent of the DEX investment return, rP&L, and to refer to the endogenous component, rD,

as the DEX investment return directly.

3 Model Solution

Formally, an equilibrium is a DEX investment return r‹
D, a DEX investment level I‹, a

DEX USD inventory level I‹
USD, a DEX ETH inventory level I‹

ETH , a DEX pricing function

P ‹
Dpδq :“ ΞpI‹

USD, I
‹
ETH , δq, and a set of traders that trade at the DEX D‹ such that each

trader optimally selects the exchange at which she trades and each investor invests in the

DEX iff it is optimal. More explicitly, an equilibrium is defined by the requirement that

Equations (1) - (9) must all hold simultaneously with the equilibrium solutions replacing the

associated endogenous object in each equation. Finally we note that our main focus is on

examining the implications of the DEX fee level, fD, upon equilibrium objects. As such, we

explicitly state the dependence of all equilibrium objects on the DEX fee level. Moreover, we

omit discussion regarding the trivial case of fD ě fC and restrict ourselves to fD P r0, fCq;

note that fD ě fC is a trivial case because it implies that DEX trading costs exceed CEX
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trading costs for all traders so that no trading occurs at the DEX in equilibrium.

Turning to our equilibrium solution, we solve for a symmetric equilibrium in that we

require that all liquidity traders of the same size must trade at the same exchange. Explicitly,

we require that the set of liquidity traders trading at the DEX, D‹, is of the following form:

D‹
“ tj : δj P ∆‹

u (10)

where ∆‹ Ď r´1, 1s denotes the range of trade sizes such that a liquidity trader trades at

the DEX with r´1, 1s being the support for the distribution that generates trade sizes.

As an intermediate step to solving for an equilibrium, we begin with the following re-

sult that derives the optimal behaviour of the liquidity traders while taking as given the

investment level of the DEX, I‹pfDq:

Proposition 3.1. Optimal Trading Strategy

Denote by I‹pfDq the equilibrium DEX investment level. The optimal strategy for Liquidity

Trader j is:

i‹
pjq “

$

’

’

&

’

’

%

D if δj P ∆‹pfDq

C Otherwise

(11)

where ∆‹pfDq :“ rδ‹
´pfDq, δ‹

`pfDqs with the bounds δ‹
´pfDq ă 0 and δ‹

`pfDq ą 0 given explic-

itly as:

δ‹
˘pfDq “ ´

pfC ´ fDq

1 ˘ pfC ´ fDq
¨
I‹pfDq

2V
(12)

The endogenous quantities given by Equation (12), δ‹
˘pfDq and δ‹

´pfDq, determine the

equilibrium buy and sell cut-off sizes respectively in that traders with an ETH buy order (i.e.,

δ ą 0) trade at the DEX if and only if δ ď δ‹
`pfDq, whereas traders with an ETH sell order

(i.e., δ ă 0) trade at the DEX if and only if δ ě δ‹
´pfDq. This derived structure, characterized
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by cut-offs, implies that traders with larger trade sizes (in absolute magnitude) prefer trading

at the CEX relative to the DEX, which is a necessary feature of any symmetric equilibrium.

In particular, the DEX ETH price is increasing in trade size (i.e., dPDpδq

dδ
ą 0), whereas the

CEX ETH price is always equal to fair value (i.e., PCpδq “ V and thus dPCpδq

dδ
“ 0) so that

the DEX entails an increasing average cost of trading (i.e., ΨDpδq

|δ|
increases in |δ|) while the

CEX entails a constant average cost of trading (i.e., ΨCpδq

|δ|
is constant in |δ|). Hence, the

DEX necessarily will only be optimal for smaller trade sizes (i.e., ∆‹pfDq must be of the form

rδ‹
´pfDq, δ‹

`pfDqs). Our next result builds upon Proposition 3.1, deriving a unique non-trivial

equilibrium:7

Proposition 3.2. Unique Equilibrium

There exists a unique non-trivial symmetric equilibrium which is given as follows:

• Equilibrium Investment Return at the DEX

The equilibrium expected return from investing in the DEX is:

r‹
DpfDq “

ˆ

fDpfC ´ fDq2p1 ` pfC ´ fDq2q

8V pp1 ´ pfC ´ fDq2q2

˙
θ

θ´1

(13)

• Equilibrium Investment Level at the DEX

The equilibrium DEX investment level is:

I‹
pfDq “

ˆ

fDpfC ´ fDq2p1 ` pfC ´ fDq2q

8V pp1 ´ pfC ´ fDq2q2

˙
1

θ´1

(14)

• Equilibrium Inventory Levels at DEX

Equilibrium inventory of ETH and USD are functions of DEX investment as follows:

7A non-trivial equilibrium is defined as an equilibrium that features non-zero DEX trading volume. Note
that there always exists a trivial equilibrium with zero DEX trading volume. In particular, if the DEX were
to possess no investment, then trading costs would be infinite, no trading would occur at the DEX, and
therefore investment returns would be zero, supporting the optimality of zero investment and ensuring that
such a trivial equilibrium always exists. We omit discussion regarding this trivial equilibrium because its
properties are straight-forward and well-known in the more general context of settings with positive network
effects.
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I‹
USDpIq “

I

2
, I‹

ETHpIq “
I

2V
(15)

so that applying the equilibrium investment level from Equation (14) to Equation (15)

yields the explicit equilibrium inventory solutions:

I‹
ETHpfDq “

1

2V

ˆ

fDpfC ´ fDq2p1 ` pfC ´ fDq2q

8V pp1 ´ pfC ´ fDq2q2

˙
1

θ´1

(16)

and

I‹
USDpfDq “

1

2

ˆ

fDpfC ´ fDq2p1 ` pfC ´ fDq2q

8V pp1 ´ pfC ´ fDq2q2

˙
1

θ´1

(17)

• Equilibrium Pricing Function at the DEX

The equilibrium DEX pricing function depends upon DEX investment as follows:

PDpI, δq “ ΞpI‹
USDpIq, I‹

ETHpIq, δq (18)

where Ξp¨, ¨, ¨q, I‹
USDpIq and I‹

ETHpIq are given by Equations (3) and (15).

In turn, applying the equilibrium investment level from Equation (14) to Equation (18)

yields the equilibrium DEX pricing function:

P ‹
DpfD, δq :“ PDpI‹

pfDq, δq “ Ξp
1

2
I‹

pfDq,
1

2V
I‹

pfDq, δq (19)

Since our primary object of interest is the equilibrium trading volume, we provide the

following corollary which derives the equilibrium DEX trading volume, T ‹pfDq:

Corollary 3.3. Equilibrium DEX Trading Volume

The equilibrium expected DEX trading volume pdenominated in USDq, T ‹pfDq, is given as

follows:

15



T ‹
pfDq “

V

2
¨ pδ‹

`pfDq
2

` δ‹
´pfDq

2
q (20)

with δ‹
˘pfDq being given in Equation (12).

4 Results

We begin with our main result, Proposition 4.1, which establishes that increases in fees

charged to traders at the DEX can increase the equilibrium DEX trading volume:

Proposition 4.1. DEX Trading Volume Can Increase in DEX fees

The equilibrium expected trading volume, T ‹pfDq, first increases and then decreases in the

DEX fee level, fD. More formally, there exists f̃ P p0, fCq such that dT ‹

dfD
ą 0 for fD P p0, f̃q,

whereas dT ‹

dfD
ă 0 for fD P pf̃ , fCq.

Explicitly, Proposition 4.1 establishes that there exists a non-zero fee level, f̃ , such that

increases in the DEX fee level up to f̃ will always lead to an increase in the DEX trading

volume. Proposition 4.1 arises because an increase in the DEX fee level can decrease the

overall cost of trading at the DEX. In turn, since a trader optimally trades at the exchange

that charges her the lowest trading cost (see Equation 5), an increase in the DEX fee level

can generate increases in trading volume as per Proposition 4.1 specifically because such

DEX fee increases reduce DEX trading costs. We formalize this point with our next result:

Proposition 4.2. DEX Trading Costs Can Decrease in DEX Fees

Let Ψ‹
DpfD, δq denote the equilibrium DEX trading cost for a trader with trade size δ, given

explicitly as:

Ψ‹
DpfD, δq “ P ‹

DpfD, δq ˆ δ ` fD ˆ |δ| ˆ V (21)

where P ‹
DpfD, δq is given by Equation (19).

Then, the following results hold:
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1.q There exists f̂` P p0, fCq such that cost of trading with the DEX for the marginal

buy trader pi.e., the trader with size δ‹
`pfDq ą 0q is decreasing in fD when fD P p0, f̂`q

and increasing in fD when fD P pf̂`, fCq. In particular,
BΨ‹

D

BfD
|pfD,δq“pfD,δ‹

`pfDqq ă 0 when

fD P p0, f̂`q and
BΨ‹

D

BfD
|pfD,δq“pfD,δ‹

`pfDqq ą 0 when fD P pf̂`, fCq.

2.q There exists f̂´ P p0, fCq such that cost of trading with the DEX for the marginal

sell trader pi.e., the trader with size δ‹
´pfDq ă 0q is decreasing in fD when fD P p0, f̂´q

and increasing in fD when fD P pf̂´, fCq. In particular,
BΨ‹

D

BfD
|pfD,δq“pfD,δ‹

´pfDqq ă 0 when

fD P p0, f̂´q and
BΨ‹

D

BfD
|pfD,δq“pfD,δ‹

´pfDqq ą 0 when fD P pf̂´, fCq.

Proposition 4.2 establishes that an increase in the DEX fee level can reduce the overall

DEX trading cost for a trader who would have been indifferent between trading at the DEX

and trading at the CEX in the absence of such a DEX fee level increase. This result focuses

upon traders who would have been indifferent between the DEX and the CEX in the absence

of the DEX fee level change because changes in the trading costs of such marginal traders

directly imply changes in our primary equilibrium quantity of interest, the DEX trading

volume. More specifically, if the DEX trading cost falls for a trader who would have been

indifferent between the DEX and the CEX in the absence of the DEX fee level increase,

then that trader strictly prefers to trade at the DEX as opposed to the CEX after the DEX

fee level increases. When this is the case, the trade size of the marginal trader (in absolute

magnitude) must increase in response to an increase in DEX fees. In turn, an increase

in the DEX fee level can generate an increase in DEX trading volume as per Proposition

4.1 precisely because the increase in the DEX fee level decreases DEX trading costs as per

Proposition 4.2.

To understand Proposition 4.2, we reiterate that fees are not the only cost associated

with trading at a DEX. In particular, Equation (1) highlights that the overall trading cost

depends not only on the fee fD but also on the price at which the cryptoasset is being traded

P ‹
DpfD, δq. Therefore, if an increase in the DEX fee level leads to a lower price impact (i.e.,

if
BP ‹

D

Bδ
decreases in fD), then an increase in the DEX fee level will reduce the overall DEX
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trading cost provided that the cost of paying a higher fee can be offset by the decrease in

the trading cost due to trading at a price that is more favorable (i.e., a lower price impact).

Our next result formally establishes such a channel whereby an increase in the DEX fee level

reduces the DEX price impact so long as DEX fees are initially not too large:

Proposition 4.3. DEX Price Impacts Can Decrease in DEX fees

The equilibrium price impact at the DEX first decreases and then increases in the DEX fee

level. More formally, letting

λ‹
pfD, δq “

BP ‹
DpfD, δq

Bδ
(22)

denote the equilibrium price impact at the DEX. Then, there exists f̃ P p0, fCq such that

Bλ‹

BfD
ă 0 for fD P p0, f̃q and Bλ‹

BfD
ą 0 for fD P pf̃ , fCq. This f̃ applies uniformly for all

feasible trade sizes pi.e., for δ ă I‹
ETHq.

Proposition 4.3 defines equilibrium DEX price impact as the sensitivity of the DEX price

to trade size (see Equation 22), and then establishes that the DEX price impact is decreasing

in the DEX fee level whenever the initial DEX fee level is sufficiently small (i.e., Bλ‹

BfD
ă 0 for

f P p0, f̃q).

The relationship between DEX fee levels and price impact is important because it affects

the overall DEX trading cost which in turn affects DEX trading volume. In particular, DEX

trading prices mechanically move in the direction of a trade (see Equation 3) so that a larger

price impact (i.e., a larger λ‹) entails that a given buy order (i.e., δ ą 0) would involve a

higher price and also entails that a given sell order (i.e., δ ă 0) would involve a lower price.

As the trading cost is increasing in the price for a buy order but decreasing in the price

for a sell order (see Equation 1), a larger price impact entails a higher cost for all traders.

Thus, the result of Proposition 4.3, that price impacts decline for DEX fee levels up to a

point (i.e., Bλ‹

BfD
ă 0 for f P p0, f̃q), clarifies that increases in the DEX fee level can reduce

the execution price component of the DEX trading cost. This is precisely the mechanism

whereby increases in the DEX fee level can reduce overall DEX trading costs (Proposition
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4.2) and also increase DEX trading volume (Proposition 4.1).

The relationship that Proposition 4.3 establishes between the DEX fee level and the DEX

price impact arises due to two intermediate relationships. First, the mechanical pricing rule

of a DEX (i.e., Equation 3) implies that an increase in total DEX investment always reduces

DEX price impacts. Second, all DEX fee revenues are paid to investors which creates the

incentive for investors to provide DEX investment (see Equation 8) so that increases in

the DEX fee level can lead to increases in overall DEX investment. Then, putting the

two aforementioned relationships together, an increase in the DEX fee level can generate

increases in total DEX investment which, in turn, reduces DEX price impacts (Proposition

4.3) and therefore promotes higher DEX trading volume (Proposition 4.1). We proceed

by formalizing the referenced intermediate relationships with Proposition 4.4 demonstrating

the first relationship that increases in DEX investment decrease DEX price impacts, and

Propositions 4.5 - 4.6 establishing the second relationship that increases in the DEX fee level

can increase DEX investment.

Proposition 4.4. DEX Price Impacts Always Decrease in DEX Investment

The price impact is monotonically decreasing in the DEX investment level for all feasible

trade sizes. More explicitly, BλpI,δq

BI
ă 0 for all investment levels, I, and for all feasible

trade sizes, δ ă I‹
ETHpIq “ I

2V
, where λpI, δq denotes the price impact given an arbitrary

investment level, I ą 0:

λpI, δq “
BPDpI, δq

Bδ

with PDpI, δq being defined in Equation (18).

Proposition 4.4 establishes that an increase in the DEX investment level unambiguously

reduces the DEX price impact (i.e., Bλ
BI

ă 0). This result arises due to the mechanical pricing

function of the DEX (see Equation 3). To clarify this point, note that PDpI, δq, which is
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defined in Equation (18), can be derived explicitly from Equations (3) and (15) as follows:

PDpI, δq “ ΞpI‹
USDpIq, I‹

ETHpIq, δq “
I ¨ V

I ´ 2 ¨ V ¨ δ
(23)

In turn, the price impact, λpI, δq, as a function of DEX investment, I, and trade size, δ,

is given as follows:

λpI, δq “
BPDpI, δq

Bδ
“

2 ¨ I ¨ V 2

pI ´ 2 ¨ V ¨ δq2
(24)

so that direct verification reveals that the DEX price impact monotonically decreases in

investment (i.e., Bλ
BI

ă 0) whenever the trade size is feasible (i.e., when δ ă I‹
ETHpIq “ I

2V
)

as per Proposition 4.4. We ignore δ ą I‹
ETHpIq “ I

2V
and label such trade sizes as infeasible

because in such a case there is insufficient inventory for the trade size and the price is

consequently infinite (see Equation 3), which ensures that the DEX would not allow a trade

of such size.

Although the particulars are specific to the AMM in our model, the association between

capital (inventory) and liquidity arises in many models of traditional market-making, no-

tably Brunnermeier and Pedersen (2009). The association is also of significant practical

and regulatory importance, as low levels of market-making capital in the wake of the great

financial crisis are sometimes viewed as impairing liquidity (Bao et al. 2018, for example).

Having established that increases in DEX investment decrease DEX price impacts (Propo-

sition 4.4), we turn to demonstrating that increases in the DEX fee level can increase DEX

investment:

Proposition 4.5. DEX Investment Can Increase in DEX Fee Levels

The equilibrium DEX investment, I‹pfDq, first increases and then decreases in the DEX fee

level, fD. More formally, there exists f̃ P p0, fCq such that dI‹

dfD
ą 0 for fD P p0, f̃q, whereas

dI‹

dfD
ă 0 for fD P pf̃ , fCq with I‹pfDq being given in Equation (14).

Proposition 4.5 establishes that increases in the DEX fee level can increase DEX invest-

ment up to some fee level f̃ (i.e., dI‹

dfD
ą 0 for fD P p0, f̃q). This result arises because DEXs
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acquire investment by offering investors a pro-rata share of all trading fees from the DEX in

exchange for those investments (see Equation 8); in particular, for f ă f̃ , an increase in the

DEX fee level increases DEX investment by increasing the DEX investment return through

an increase in the overall trading fee revenue generated by the DEX. We formalize the point

that such increases in the DEX fee level generate an increase in the DEX investment return

with our final result:

Proposition 4.6. DEX Investment Returns Can Increase in DEX Fee Levels

The equilibrium DEX investment return, r‹
DpfDq, first increases and then decreases in the

DEX fee level. More formally, there exists f̃ P p0, fCq such that
dr‹

D

dfD
ą 0 for fD P p0, f̃q,

whereas
dr‹

D

dfD
ă 0 for fD P pf̃ , fCq.

Collectively, our results establish an important feature of a DEX. More precisely, we

demonstrate that an increase in fees at a DEX can increase trading volume at the DEX. Our

main result, Proposition 4.1, establishes this finding, whereas our remaining results clarify

the associated economic channel. In more detail, an increase in the DEX fee level can increase

DEX investment returns (Proposition 4.6) and thereby DEX investment (Proposition 4.5),

which generates a reduction in the DEX price impact (Propositions 4.3 and 4.4) and thereby

a reduction in DEX trading costs (Proposition 4.2). In turn, the reduction in DEX trading

costs drives trading activity from the CEX to the DEX, leading to an increase in equilibrium

DEX trading volume as per Proposition 4.1.

5 Extensions

In this section we demonstrate the robustness of our results to natural extensions of our

main model. Given that our main insight is that increasing DEX fees can lead to an increase

in trading volume, we focus on replicating that main result in this section. In particular,

in Section 5.1 we allow liquidity traders to split their trade between the DEX and CEX in

order to lower their cost of trading. We derive the optimal order splitting strategy and show
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that our main insight holds when liquidity traders trade under this strategy. In Section 5.2

we allow for the CEX to optimally set its fee in response to the DEX fee with the objective

of maximizing CEX trading revenue, and we demonstrate that our main insight continues

to hold in that context.

5.1 Order Splitting

If traders have seamless access to trading at both the CEX and the DEX then it will be

optimal for them to split their trade across the CEX and DEX in order to minimize the total

cost of trading. In particular, for any δ P r´1, 1s, denote by µ‹pδq the optimal fraction of the

trade demand, δ, traded at the DEX, with the remaining fraction 1 ´ µ‹pδq being traded at

the CEX. Then, µ‹pδq is determined as follows:

µ‹
pδq “ argmin

µPr0,1s

ΨDpµ ¨ δq ` ΨCpp1 ´ µq ¨ δq (25)

The next result formalizes the optimal order splitting strategy.

Proposition 5.1. Optimal Order Splitting Strategy and Trade Volume

The optimal order splitting strategy µ‹pδq is given by

µ‹
pδq “

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

I‹

2V δ

ˆ

1 ´

b

1
1´pfC´fDq

˙

δ P r´1, δ̃´s

1 δ P rδ̃´, 0s

1 δ P r0, δ̃`q

I‹

2V δ

ˆ

1 ´

b

1
1`pfC´fDq

˙

δ P rδ̃`, 1s

where

δ̃` “
I‹

2V

ˆ

1 ´

d

1

1 ` pfC ´ fDq

˙

and δ̃´ “
I‹

2V

ˆ

1 ´

d

1

1 ´ pfC ´ fDq

˙
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The equilibrium DEX trading volume under the optimal equilibrium trading strategy µ‹pδq is

given by

T̃ ‹
pfDq “

1

2

ˆ

δ̃` ¨ p1 ´
δ̃`

2
q ´ δ̃´ ¨ p1 `

δ̃´

2
q

˙

Having derived the optimal trading strategy, we can now examine the equilibrium trad-

ing volume. In particular, our next result generalizes our main result by establishing that

equilibrium DEX trading volume under the optimal trading strategy is increasing in DEX

fees provided that DEX fees are sufficiently small.

Proposition 5.2. DEX Volume Can Increase in DEX Fees With Optimal Order Splitting

When liquidity traders utilize the optimal order splitting strategy, µ‹pδq, then there exists

f̃ ą 0 such that the equilibrium DEX trade volume T̃ ‹pfDq is strictly increasing in DEX fees

whenever fD P r0, f̃q.

5.2 Optimal CEX Fees

Throughout the paper we have assumed that the CEX fee is exogenous. In practice though,

a CEX may optimally set its fee in response to the DEX fee. In this section, we will show

that our main insight is robust to this feature. In order to do so, we will allow that the CEX

optimally sets its fee fC as a function of fD in order to maximize expected CEX fee revenue.

More formally, the CEX optimally sets its fee as follows:

f ‹
CpfDq :“ argmax

fCě0
V ¨ fC ¨ T ‹

CpfC , fDq (26)

where

T ‹
CpfC , fDq “

1

2
p

1
ż

δ‹
`pfC ,fDq

xdx `

´1
ż

δ‹
´pfC ,fDq

xdxq “
1

2
¨ p1 ´

pδ‹
`pfC , fDqq2 ` pδ‹

´pfC , fDqq2

2
q

represents the expected trading volume at the CEX given that the CEX fee is fC ď γ and

the DEX fee is fD. Note that fC ą γ implies that T ‹
CpfC , fDq “ 0 because, in such a case,
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ΠCpδq ă 0 for all δ P r´1, 1s and therefore all traders prefer their outside option over trading

at the CEX whenever fC ą γ. This implies that setting fC “ γ generates a weakly larger

payoff for the CEX than setting fC ą γ for any DEX fee fD and therefore f ‹
CpfDq ď γ for

all fD which demonstrates that our restriction of fC ď γ in our main model is without loss

of generality.

Our final result formalizes that our main result is robust to the CEX setting its fee

strategically in response to the DEX fee:

Proposition 5.3. DEX Trade Volume Can Increase in DEX Fees under Optimal CEX Fees

Suppose that the CEX sets fees, f ‹
CpfDq, as a function of DEX fees, fD, in order to solve

(26). Then, there exists f̃ ą 0 such that equilibrium DEX trading volume T ‹ is increasing

in DEX fees when fD P r0, f̃q.

6 Conclusion

We provide an economic model of a DEX. Our model is specifically aimed at clarifying

the implications of varying DEX fee levels upon equilibrium quantities such as DEX trading

volume and DEX trading costs. Of particular note, we demonstrate that increases in DEX

fee levels can reduce DEX trading costs and thereby increase DEX trading volume. This

result arises due to the fact that an increase in DEX fees can induce an increase in the

return to DEX liquidity provision. Once this is the case, higher DEX fees lead to more DEX

inventory which lowers the cost of trading with the DEX due to the role of inventory in the

AMM pricing function. These insights generate important considerations for the design and

management of DEX fees in order to support the maximal trade volume and thus return

from investment at a DEX.
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Appendices

A Supplementary Results

Lemma A.1.

Let δ : p0, fCq ÞÑ R denote any non-zero continuously differentiable function that satisfies:

Ψ‹
DpfD, δpfDqq “ β ˆ δpfDq (A.1)

for all fD P p0, fCq and for any β P R where Ψ‹
D refers to Ψ‹

DpfD, δq which is given by

Equation (21). Then, the following result holds:

BΨ‹
D

BfD
“ ´δpfDq ˆ

BP ‹
DpfD, δq

Bδ
ˆ

dδ

dfD

for all fD P p0, fCq where Ψ‹
D and P ‹

D are each evaluated at pfD, δpfDqq.

Proof. We begin by taking the total derivative in Equation (A.1) with respect to fD which

yields:

BΨ‹
D

BfD
`

BΨ‹
D

Bδ
ˆ

dδ

dfD
“ β ˆ

dδ

dfD
(A.2)

and further implies:

BΨ‹
D

BfD
“

´

β ´
BΨ‹

D

Bδ

¯

ˆ
dδ

dfD
(A.3)

By explicit calculation, Equation (21) yields:

BΨ‹
D

Bδ
“

´

P ‹
DpfD, δpfDqq ` fD ˆ V

¯

` δpfDq ˆ
BP ‹

D

Bδ
(A.4)

whereas Equation (A.1) is equivalent to:

P ‹
DpfD, δpfDqq ` fD ˆ V “ β (A.5)
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so that applying Equation (A.5) to Equation (A.4) and then applying the result to Equation

(A.3) yields:

BΨ‹
D

BfD
“ ´δpfDq ˆ

BP ‹
D

Bδ
ˆ

dδ

dfD
(A.6)

thereby completing the proof.

B Proofs

B.1 Proof of Proposition 3.1

A liquidity trader with trade size δ P R trades with the DEX if and only if the cost of doing

so is less than the cost of trading with the CEX. This is the case if and only if

P ‹
Dpδq ¨ δ ` fD ¨ |δ| ¨ V ď V ¨ δ ` fC ¨ |δ| ¨ V

Therefore, δ‹
´pfDq ă 0 is the trade size of a liquidity trader that wishes to sell ETH and is

indifferent between trading at the DEX and CEX, given by:

IUSD

IETH ´ δ‹
´pfDq

¨ δ‹
´pfDq ´ fD ¨ δ‹

´pfDq ¨ V “ V ¨ δ‹
´pfDq ´ fC ¨ δ‹

´pfDq ¨ V

which after solving for δ‹
´pfDq using the fact that I‹

USD “ V ¨ I‹
ETH and I‹

ETH “
I‹pfDq

2¨V
yields

our expression for δ‹
´pfDq.

Similarly, δ‹
`pfDq ą 0 is the trade size of a liquidity trader that wishes to buy ETH and

is indifferent between trading at the DEX and CEX, given by:

IUSD

IETH ´ δ‹
`pfDq

¨ δ‹
`pfDq ` fD ¨ δ‹

`pfDq ¨ V “ V ¨ δ‹
`pfDq ` fC ¨ δ‹

`pfDq ¨ V

which again after substituting and rearranging and using the fact that I‹
USD “ V ¨ I‹

ETH and

I‹
ETH “

I‹pfDq

2¨V
yields our expression for δ‹

`pfDq.
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Finally, we note that given we have assumed fC ď γ, then all traders with trade size

δj R ∆‹pfDq optimally trade at the CEX, rather than utilizing their outside option, given

that this yields them a strictly positive payoff. Similarly, we note that if the cost of trading at

the DEX is weakly less than the cost of trading at the CEX for all traders with δj P ∆‹pfDq

and all traders that trade at the CEX receive a weakly positive payoff, then all traders that

trade at the DEX must also receive a weakly positive payoff and therefore prefer trading at

the DEX to utilizing their outside option.

B.2 Proof of Proposition 3.2

Proof. To solve for the equilibrium return r‹
DpfDq we start by rearranging (8) to obtain

rD “
2 ¨ V ¨ fD
GprDq

¨ Er
ÿ

jPD
|δj|s

Then, noting that D “ tj : δj P rδ̄´, δ̄`su and N „ Poissonp1q implies that the expected

number of trades are Prpδj P rδ‹
´, δ

‹
`sq and therefore

Er
ÿ

jPD
|δj|s “ Prpδj P rδ‹

´, δ
‹
`sq ¨ Er|δj| | δj P rδ‹

´, δ
‹
`ss “

pδ‹
`q2 ` pδ‹

´q2

4

Therefore, using the fact that

pδ‹
`q

2
` pδ‹

´q
2

“ p
pfC ´ fDq2

p1 ` pfC ´ fDqq2
`

pfC ´ fDq2

p1 ´ pfC ´ fDqq2
q ¨ p

I‹pfDq

2V
q
2

then implies

rD “
2 ¨ V ¨ fD
GprDq

¨
1

4
p

pfC ´ fDq2

p1 ` pfC ´ fDqq2
`

pfC ´ fDq2

p1 ´ pfC ´ fDqq2
q ¨ p

I‹pfDq

2V
q
2
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and using I‹pfDq “ Gpr‹
Dq “ pr‹

Dq
1
θ , then after rearranging we obtain

r‹
D “

ˆ

fDpfC ´ fDq2p1 ` pfC ´ fDq2q

8V pp1 ´ pfC ´ fDq2q2

˙
θ

θ´1

Finally, substituting r‹
D into I‹pfDq “ pr‹

Dq
1
θ yields

I‹
pfDq “

ˆ

fDpfC ´ fDq2p1 ` pfC ´ fDq2q

8V pp1 ´ pfC ´ fDq2q2

˙
1

θ´1

Finally, note that (4) implies that inventory must be deposited in the ratio of 1 USD

per 1
V
ETH and given that each investor is born with a unit of USD capital then they must

split that by providing 1
2
USD and 1

2V
ETH to the DEX. Therefore, I‹

USD “ 1
2
I‹pfDq and

I‹
ETH “ 1

2V
I‹pfDq.

B.3 Proof of Proposition 4.1

Proof. First note that

T ‹
pfDq “

Gpr‹
Dq

fD
¨ r‹

D “

ˆ

fα
DpfC ´ fDq2p1 ` pfC ´ fDq2q

8V pp1 ´ pfC ´ fDq2q2

˙
θ`1
θ´1

where α “ 2
θ`1

ă 1. Next, denote by gpfDq the following function

gpfDq :“
fα
DpfC ´ fDq2p1 ` pfC ´ fDq2q

pp1 ´ pfC ´ fDq2q2

Note that gpfDq ą 0 for fD P p0, fCq and gp0q “ gpfCq “ 0. Therefore, proving the result

only requires showing that gpfDq has a unique local maximum on r0, fCs. In order to do so,

we will show that logpgpfDqq has a unique local maximum on p0, fCq which implies that gpfDq

must have a unique local maximum on p0, fCq. In particular, we will do this by showing that

logpgpfDqq is strictly concave (i.e. B2

Bf2
D
logpgpfDqq ă 0). First, note that

logpgpfDqq “ αlogpfDq ` 2logpfC ´ fDq ` logp1 ` pfC ´ fDq
2
q ´ 2logp1 ´ pfC ´ fDq

2
q
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so that

B

BfD
logpgpfDqq “

α

fD
´

2

fC ´ fD
´

2pfC ´ fDq

1 ` pfC ´ fDq2
´

4pfC ´ fDq

1 ´ pfC ´ fDq2

and therefore

B2

Bf 2
D

logpgpfDqq “ ´
α

f 2
D

´
2

pfC ´ fDq2
`

2p1 ´ pfC ´ fDq2q

p1 ` pfC ´ fDq2q2
`

4p1 ` pfC ´ fDq2q

p1 ´ pfC ´ fDq2q2

Finally, note that ´ α
f2
D

ď 0 and pfC ´ fDq2 ď γ2, thereby implying:

B2

Bf 2
D

logpgpfDqq ď sup
z:zPr0,γ2s

´

´
2

z
`

2p1 ´ zq

p1 ` zq2
`

4p1 ` zq

p1 ´ zq2

¯

ă 0 (A.7)

where the last inequality follows from direct verification by using γ “ 25%.

B.4 Proof of Proposition 4.2

Proof. In order to prove this result, we will prove that both δ‹
`pfDq and ´δ‹

´pfDq each have a

unique local maximum. In order to do so, we will prove that logpδ‹
`pfDqq and logp´δ‹

´pfDqq

are concave and therefore each have a unique local maximum, implying that δ‹
`pfDq and

´δ‹
´pfDq each have a unique local maximum. In order to do so, first note that

logpδ‹
`pfDqq “ logp

fC ´ fD
1 ` fC ´ fD

q ` logpI‹
pfDqq ´ logp2V q

and

logp´δ‹
´pfDqq “ logp

fC ´ fD
1 ´ pfC ´ fDq

q ` logpI‹
pfDqq ´ logp2V q

Next, we note that

B

BfD
logp

fC ´ fD
1 ` fC ´ fD

q “
´1

fC ´ fD
`

1

1 ` fC ´ fD
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B2

Bf 2
D

logp
fC ´ fD

1 ` fC ´ fD
q “

´1

pfC ´ fDq2
`

1

p1 ` fC ´ fDq2
ă 0

B

BfD
logp

fC ´ fD
1 ´ pfC ´ fDq

q “
´1

fC ´ fD
´

1

1 ´ pfC ´ fDq

B2

Bf 2
D

logp
fC ´ fD

1 ´ pfC ´ fDq
q “

´1

pfC ´ fDq2
`

1

p1 ´ pfC ´ fDqq2
ă 0

where the last inequality holds whenever fC ´ fD ă .5 which is guaranteed to hold given

that we have assumed that fC ă γ ď .25.

Next, using (14) we can see that

B

BfD
logpI‹

pfDqq “ p
1

θ ´ 1
qp

1

fD
´

2

fC ´ fD
´

2pfC ´ fDq

1 ` pfC ´ fDq2
´

4pfC ´ fDq

1 ´ pfC ´ fDq2
q

and therefore

B2

Bf 2
D

logpI‹
pfDqq “ p

1

θ ´ 1
qp´

1

f 2
D

´
2

pfC ´ fDq2
`

2p1 ´ pfC ´ fDq2q

p1 ` pfC ´ fDq2q2
`

4p1 ` pfC ´ fDq2q

p1 ´ pfC ´ fDq2q2
q

Finally, note that ´ 1
f2
D

ď 0 and pfC ´ fDq2 ď γ2, thereby implying:

B2

Bf 2
D

logpI‹
pfDqq ď

1

θ ´ 1
sup

z:zPr0,γ2s

´

´
2

z
`

2p1 ´ zq

p1 ` zq2
`

4p1 ` zq

p1 ´ zq2

¯

ă 0

where the last inequality follows from direct verification by using γ “ 25%.

What we have shown is that there exists f̃` and f̃´ such that δ‹
`pfDq is increasing in

fD for fD P r0, f̃`q and decreasing in fD for fD P pf̃`, fCs while δ‹
´pfCq is decreasing for

fD P r0, f̃´q and increasing for fD P pf̃´, fCs.

In order to conclude the proof, we apply Lemma A.1 to δ‹
`pfq for β “ V ˆ p1 ` fCq and

apply Lemma A.1 to δ‹
´pfq for β “ V ˆ p1 ´ fCq which yields:

BΨ‹
D

BfD
“ ´δ‹

`pfDq
BP ‹

DpfD, δq

Bδ

dδ‹
`

dfD
,

BΨ‹
D

BfD
“ ´δ‹

´pfDq
BP ‹

DpfD, δq

Bδ

dδ‹
´

dfD
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Finally, we note that
BP ‹

DpfD,δq

Bδ
ą 0 coupled with δ‹

`pfDq ą 0 when combined with the

aforementioned result on the sign of
dδ‹

`

dfD
implies that

BΨ‹
D

BfD
|pfD,δq“pfD,δ‹

`pfDqq ă 0 for all fD P

p0, f̂`q and
BΨ‹

D

BfD
|pfD,δq“pfD,δ‹

`pfDqq ą 0 for all fD P pf̂`, fCq. Similarly,
BP ‹

DpfD,δq

Bδ
ą 0 coupled

with δ‹
´pfDq ă 0 when combined with the aforementioned result on the sign of

dδ‹
`

dfD
implies

that
BΨ‹

D

BfD
|pfD,δq“pfD,δ‹

´pfDqq ă 0 for all fD P p0, f̂´q and
BΨ‹

D

BfD
|pfD,δq“pfD,δ‹

´pfDqq ą 0 for all fD P

pf̂´, fCq.

B.5 Proof of Proposition 4.3

Proof. We first note that

P ‹
Dpδq “

V I‹pfq

I‹pfq ´ 2V δ

and therefore

λ‹
pf, δq “ 2V 2

¨
I‹pfq

pI‹pfq ´ 2V δq2

Next, note that

d

df
λ‹

pf, δq “ ´2V 2
¨

I‹pfq ` 2V δ

pI‹pfq ´ 2V δq3
¨

BI‹pfq

Bf

Finally, we note that I‹pfq`2V δ
pI‹pfq´2V δq3

ą 0 for all feasible trades as δ ă I‹
ETH implies 2V δ ă I‹pfDq.

Further, we have shown in the proof of Proposition 4.2 that

B2

Bf 2
logpI‹

pfqq ă 0

and therefore I‹pfq has a unique local maximum, which combined with the fact that I‹pfq ě

0 for all f P r0, fCs and I‹p0q “ I‹pfCq “ 0, implies that there exists f̃ P p0, fCq such that

BI‹pfq

Bf
ą 0 whenever f ă f̃ and BI‹pfq

Bf
ă 0 whenever f ą f̃ . Hence, d

df
λ‹pf, δq ă 0 for all

f P p0, f̃q and d
df
λ‹pf, δq ą 0 for all f P pf̃ , fCq.
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B.6 Proof of Proposition 4.4

Proof. First, we note that

λ‹
pI, δq “ 2V 2 I

I ´ 2V δ

thus,

dλ‹pI, δq

dI
“ ´2V 2 I ` 2V δ

pI ´ 2V δq3
ă 0

for all possible inventory levels I and feasible trades δ ă IETH “ 1
2V

I.

B.7 Proof of Proposition 4.5

Proof. We have shown in the proof of Proposition 4.2 that B2

Bf2 logpI‹pfqq ă 0 for all f P p0, fCq

and therefore there is a unique critical point of I‹pfq over the interval p0, fCq. Combining

this with the fact that I‹pfq ą 0 for all f P p0, fCq and I‹p0q “ I‹pfCq “ 0 then implies that

there must exists f̃ such that f P p0, f̃q implies BI‹

BfD
ą 0 for fD P p0, f̃q and BI‹

BfD
ă 0 for all

fD P pf̃ , fCq.

B.8 Proof of Proposition 4.6

Proof. In order to prove this result, we simply note that r‹
DpfDq “ I‹pfDqθ. Therefore,

dr‹
D

dfD
“ θpI‹pfDqqθ´1 dI‹

dfD
and we know from Proposition 4.5 that there exists f̃ P p0, fCq such

that dI‹

dfD
ą 0 when f P p0, f̃q while dI‹

dfD
ă 0 when f P pf̃ , fCq. Therefore, given that I‹pfq ą 0

for all f P p0, fCq it must be the case that
dr‹

D

dfD
ą 0 for all f P p0, f̃q and

dr‹
D

dfD
ă 0 for all

f P pf̃ , fCq.

B.9 Proof of Proposition 5.1

Proof. The first order condition for (25) is given by

pfD ´ fCq ¨ |δ| `
pI‹q2

pI‹ ´ 2V µδq2
δ ´ δ “ 0 (A.8)
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Solving (A.8) for µ and accounting for the fact that µ ď 1 yields

µ‹
pδq “

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

I‹

2V δ

ˆ

1 ´

b

1
1´pfC´fDq

˙

δ P r´1, δ̃´s

1 δ P rδ̃´, 0s

1 δ P r0, δ̃`q

I‹

2V δ

ˆ

1 ´

b

1
1`pfC´fDq

˙

δ P rδ̃`, 1s

where

δ̃` “
I‹

2V

ˆ

1 ´

d

1

1 ` pfC ´ fDq

˙

and δ̃´ “
I‹

2V

ˆ

1 ´

d

1

1 ´ pfC ´ fDq

˙

are the values of δ ą 0 such that µpδ̃`q “ 1 and δ ă 0 such that µpδ̃´q “ 1, respectively.

Therefore, the equilibrium DEX trade volume is given by

T̃ ‹
pfDq “

δ̃
ż̀

0

x

2
dx´

0
ż

δ̃´

x

2
dx`

1
ż

δ̃`

I‹

4V

ˆ

1´

d

1

1 ` pfC ´ fDq

˙

dx´

δ̃
ż́

´1

I‹

4V

ˆ

1´

d

1

1 ´ pfC ´ fDq

˙

dx

“
1

4
pδ̃2` ` δ̃2´q ` p

1 ´ δ̃`

2
qδ̃` ´ p

1 ` δ̃´

2
qδ̃´ “

1

2
pδ̃` ¨ p1 ´

δ̃`

2
q ´ δ̃´ ¨ p1 `

δ̃´

2
qq

B.10 Proof of Proposition 5.2

Proof. Denote by

α` :“

ˆ

1 ´

d

1

1 ` pfC ´ fDq

˙

and α´ “:

ˆ

1 ´

d

1

1 ´ pfC ´ fDq

˙

Then, δ̃` “ I‹

2V
¨ α` and δ̃´ “ I‹

2V
¨ α´. Next, using the fact that I‹ “ Gpr‹

Dq “ pr‹
Dq

1
θ and

r‹
D “

fD¨2V
I‹ ¨ T ‹pfDq we can see, after substituting and simplifying, that r‹

DpfDq is implicitly
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defined by the equation

ϕprD, fDq :“ rD ´ fDp
1

2
pα` ´ α´q ´

1

8V
r

1
θ
Dpα2

` ` α2
´qq “ 0

Next, invoking the implicit function theorem, we know that

B

BfD
r‹
DpfDq “ ´p

BϕprD, fDq

Br
q

´1
¨

BϕprD, fDq

Bf
“

1

Apr‹
DpfDq, fDq

ˆ

1

2
pα`´α´q´

1

8V
r‹
DpfDq

1
θ pα2

``α2
´qq`fD¨

`1

2
p

B

BfD
rα`´α´s´

1

8V
r‹
DpfDq

1
θ p

B

BfD
rα2

``α2
´sqq

˘

˙

where AprD, fDq :“ 1 ` fD ¨ 1
θ

¨ r
1
θ

´1

D pα2
` ` α2

´q ą 0. Then, using the fact that r‹
Dp0q “ 0, we

note that

B

BfD
r‹
Dp0q “

1

2
pα` ´ α´q ą 0

Therefore, r‹
DpfDq is increasing in fD when fD “ 0 which implies by continuity that there

exists f̂ such that B

BfD
r‹
DpfDq ą 0 whenever fD ă f̂ . Thus, I‹pfDq “ pr‹

DpfDqq
1
θ implies that

B

BfD
I‹pfDq ą 0 whenever fD ă f̂ .

Next, we note that

B

BfD
T̃ ‹

pfDq “
1

2
pp1 ´ δ̃`pfDqq ¨

B

BfD
δ̃`pfDq ´ p1 ` δ̃´pfDqq ¨

B

BfD
δ̃´pfDqq

While

B

BfD
δ̃`pfDq “

α`pfDq

2V

B

BfD
I‹

pfDq `
I‹pfDq

2V

B

BfD
α`pfDq

and

B

BfD
δ̃´pfDq “

α´pfDq

2V

B

BfD
I‹

pfDq `
I‹pfDq

2V

B

BfD
α´pfDq

Finally, using the fact that I‹p0q “ pr‹
Dp0qq

1
θ “ 0, limfÑ0`

B

BfD
α`pfDq ă `8, limfÑ0`

B

BfD
α´pfDq ă
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`8, and whenever fD ă fC then α`pfDq ą 0 while α´pfDq ă 0 implies that

B

BfD
δ̃`pfDq

∣∣∣∣
fD“0

“
α`pfDq

2V

B

BfD
I‹

pfDq

∣∣∣∣
fD“0

ą 0

and

B

BfD
δ̃´pfDq

∣∣∣∣
fD“0

“
α´pfDq

2V

B

BfD
I‹

pfDq

∣∣∣∣
fD“0

ă 0

and therefore by continuity there must exist f̌ such that B

BfD
δ̃`pfDq ą 0 and B

BfD
δ̃´pfDq ă 0

whenever fD ă f̌ . Finally, p1´ δ̃`pfDqq ą 0 and p1` δ̃´pfDqq ą 0 whenever fD ă fC implies

that B

BfD
T̃ ‹pfDq ą 0 whenever fD ă f̌ and we have proven the result.

B.11 Proof of Proposition 5.3

Proof. The FOC for f ‹
CpfDq implies that for any fD we have

p1 ´
pδ‹

`pfC , fDqq2 ` pδ‹
´pfC , fDqq2

2
q ´

fC
2

¨ p
B

BfC
rpδ‹

`pfC , fDqq
2

` pδ‹
´pfC , fDqq

2
sq “ 0 (A.9)

We will first show that f ‹
Cp0q “ γ. In order to do so, note that

1

2
¨

B

BfC
rpδ‹

`pfC , fDqq
2
`pδ‹

´pfC , fDqq
2
s “ δ‹

`pfC , fDq
B

BfC
rδ‹

`pfC , fDqs`δ‹
´pfC , fDq

B

BfC
rδ‹

´pfC , fDqs

B

BfC
δ‹

`pfC , fDq “
1

p1 ` pfC ´ fDqq2

I‹pfC , fDq

2V
`

fC ´ fD
1 ` pfC ´ fDq

1

2V

B

BfC
rI‹

pfC , fDqs

while

B

BfC
δ‹

´pfC , fDq “ ´

ˆ

1

p1 ´ pfC ´ fDqq2

I‹pfC , fDq

2V
`

fC ´ fD
1 ´ pfC ´ fDq

1

2V

B

BfC
rI‹

pfC , fDqs

˙

Further, noting that

B

BfC
I‹

pfC , fDq “
1

θ ´ 1
¨ pgpfC , fDqq

1
θ´1

´1
¨

B

BfC
gpfC , fDq
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where

gpfC , fDq “
fDpfC ´ fDq2p1 ` pfC ´ fDq2q

8V pp1 ´ pfC ´ fDq2q2

and therefore after rearranging

B

BfC
gpfC , fDq “

fDpfC ´ fDqp1 ` 3pfC ´ fDq2q

4V p1 ´ pfC ´ fDq2q3

Thus, again after rearranging we obtain

B

BfC
I‹

pfC , fDq “

1

θ ´ 1
f

1
θ´1

D

ˆ

pfC ´ fDq2p1 ` pfC ´ fDq2q

8V pp1 ´ pfC ´ fDq2q2

˙
2´θ
θ´1

ˆ

pfC ´ fDqppp1 ` pfC ´ fDq2q2 ` pfC ´ fDqp1 ´ pfC ´ fDq2qq

4V p1 ´ pfC ´ fDq2q3

˙

Therefore, it can be seen that B

BfC
I‹pfC , fDq|fD“0 “ 0 and I‹pfC , 0q “ 0. Hence, B

BfC
δ‹

`pfC , fDq|fD“0 “

0 “ B

BfC
δ‹

´pfC , fDq|fD“0. In this case, the left hand side of the FOC evaluated at fD “ 0 is

equal to 1 and therefore, the only solution to (26) is the corner solution f ‹
Cp0q “ γ.

In order to prove the main result, we note that f ‹
Cp0q “ γ implies that there exists f̌ such

that f ‹
CpfDq “ γ for all fD ă f̌ . Namely, by the continuity of the functions δ‹

`pfC , fDq and

δ‹
´pfC , fDq and their derivatives and the fact that

p1´
pδ‹

`pfC , fDqq2 ` pδ‹
´pfC , fDqq2

2
q´

fC
2

¨p
B

BfC
rpδ‹

`pfC , fDqq
2
`pδ‹

´pfC , fDqq
2
sq

ˇ

ˇ

ˇ

ˇ

pfC ,fDq“pγ,0q

“ 1 ą 0

implies that there must exist f̌ ą 0 such that for any f 1
D ă f̌ we have

p1´
pδ‹

`pfC , fDqq2 ` pδ‹
´pfC , fDqq2

2
qq´

fC
2

¨p
B

BfC
rpδ‹

`pfC , fDqq
2
`pδ‹

´pfC , fDqq
2
sq

ˇ

ˇ

ˇ

ˇ

pfC ,fDq“pγ,f 1
Dq

ą 0

and therefore f ‹
Cpf 1

Dq “ γ. Hence, given that f ‹
CpfDq is constant on the interval r0, f̌q then it

must be the case that equilibrium DEX trading volume T ‹pf ‹
CpfDq, fDq is increasing whenever

fD P r0,mintf̌ , f̃uq where f̃ is the threshold from Proposition 4.1.
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