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Abstract

We study aversion to model ambiguity and misspecification in dynamic portfolio
choice. Investors with relative risk aversion γ > 1 fear return persistence, while
risk-tolerant investors (0 < γ < 1) fear return mean reversion, to confront model
misspecification concerns when facing a model with IID returns. The intuition is
that risk-averse (risk-tolerant) investors who are keen to hedge (speculate) intertem-
porally worry about an endogenous worst-case misspecification where returns per-
sist (mean-revert) so that hedging (speculation) is impossible. A log investor is
myopic and unaffected by model misspecification, therefore only worrying about
model ambiguity among IID models. Rather than the multiplier approach of Hansen
and Sargent (2001) we utilize a constraint approach, preserving homotheticity and
tractability. Our model can explain evidence for the experience hypothesis, for non-
participation in equity markets, as well as for extrapolative return expectations. In
equilibrium, we show that model misspecification, unlike model ambiguity, can
generate excess volatility, even with IID fundamentals.
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The seminal work of Hansen and Sargent (2001) underscores the importance of model

uncertainty for economic agents. Indeed, when solving dynamic problems, they face complex

model selection and estimation challenges, not unlike econometricians fearing misspecification

of the models they estimate. It therefore seems plausible that households and investors seek

dynamic decisions that perform well not only when the models or probability laws used to derive

them are specified correctly, but also when there is some suspicion of misspecification. The

robust control literature initiated by Hansen and Sargent captures this preference for robustness

or aversion to model uncertainty by introducing a fictitious malevolent agent who, in the mind

of the decision-maker, distorts the model in an adverse way, namely in order to minimize the

resulting expected utility.1 In this approach, the agent seeking robustness entertains a family of

models constructed as a neighborhood around a benchmark model and optimizes against the

worst-case model within this family.

In recent work, Hansen and Sargent (2022) emphasize the difference between model ambigu-

ity and model misspecification. Robustness against model ambiguity involves guarding against a

worst-case alternative within a set of structured models. In contrast, decision-makers fearing

model misspecification consider a wider set of alternatives, including unstructured models. We

study aversion to model ambiguity and misspecification in dynamic portfolio choice problems.

The distinction between model ambiguity and model misspecification is particularly intuitive

in a two-period binomial tree model with IID returns, which we use to study the problem in its

simplest setting. An investor concerned with model ambiguity is uncertain about the probability

of the high return outcome, but does not doubt the IID specification. Model misspecification

concerns on the other hand also induce doubts about the IID nature of the return process and

make the investor consider non-IID return specifications.

We use a constraint approach, rather than the typical multiplier approach of Hansen and

Sargent (2001), extended in Hansen and Sargent (2022). The constraint approach preserves

homotheticity or scale-invariance, which is economically appealing for the portfolio choice and

finance applications that we are interested in. Crucially, the homotheticity or scale-invariance

of our approach brings tractability and allows us to obtain explicit and intuitive results. This is

the first contribution of the paper. In our constraint approach the difference between model

ambiguity and model misspecification in Hansen and Sargent (2022) concerns the way in which

entropy constraints are imposed to construct the uncertainty sets entertained by the investor.

Imposing only a single intertemporal entropy constraint leads to the widest uncertainty set,

namely the set of unstructured models, and deals with model misspecification. With this single

entropy constraint, a CRRA investor facing IID returns fears a worst-case model where returns

1See also Anderson et al. (2003) and Hansen et al. (2006), among many others, or Hansen and Sargent (2008) for a
textbook treatment.
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are not IID and expected returns are endogenously time-varying. In particular, an investor

who is more (less) risk-averse than log guards against a worst-case model with procyclical

(countercyclical) expected returns, resulting in negative hedging (speculative) demands. Despite

returns being IID and the investor having CRRA preferences, concerns of model misspecification

lead to optimal portfolios that are state-dependent, except for a log investor, who is myopic and

only fears model ambiguity. Model ambiguity involves a narrower uncertainty set (the set of

structured models) obtained when imposing two pathwise entropy constraints and results in

behavior that is identical to Chen and Epstein (2002)’s κ−ignorance.

As a second contribution, we show how these results carry over to a continuous-time setting

where we tackle model misspecification in the classical Merton portfolio problem by applying

an idea of Hansen et al. (2006) to use continuation entropy as a state variable. In addition to

preserving homotheticity, this approach spotlights the difference between model ambiguity

and model misspecification, because the latter is shown to nest the former as a special case.

As a consequence, our approach fleshes out the precise economic mechanism through which

model misspecification is addressed. Mirroring the intuition of the binomial tree example, model

misspecification is addressed by granting Nature the ability to endogenously allocate entropy

in a state-dependent fashion, permitted by the single intertemporal entropy constraint in the

binomial tree, and disallowed by the pathwise entropy constraints dictated by rectangularity.

In continuous time, robustness against model misspecification is achieved when Nature is

empowered to set the instantaneous volatility of the shadow price of the entropy state variable to

zero, which is accomplished by controlling the instantaneous volatility of continuation entropy.

We show that the worst-case model misspecification for a risk-averse investor (with relative risk

aversion γ> 1), who is keen to hedge intertemporally, is that returns persist so that intertemporal

hedging is not possible. Similarly, for a risk-tolerant investor (0 < γ< 1), who likes to speculate

intertemporally, the endogenous worst-case misspecification is that stock returns display mean

reversion, which precludes intertemporal speculation.

In terms of applications, our model can explain endogenous nonparticipation, also among

wealthy investors, as documented extensively in the empirical household finance literature

(see Campbell (2018) and Gomes et al. (2021) for a detailed discussion of the evidence). In

our model, risk-averse and sufficiently impatient investors who experience a string of negative

stock returns become increasingly concerned with model misspecification, to the point where

nonparticipation can become optimal due to the endogenous increase in pessimism. Our paper

can therefore be seen as providing a dynamic version of the uncertainty aversion explanation

for nonparticipation in Dow and Werlang (1992). While Cao et al. (2005), Campanale (2011) and

Peijnenburg (2018) also propose dynamic extensions of the uncertainty aversion explanation

in Dow and Werlang (1992), ours is the first where the non-participation results endogenously
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from model misspecification concerns. The dynamic beliefs generated by our analysis are

consistent with the experience hypothesis proposed and tested by Malmendier and Nagel (2011),

according to which individual risk-taking behavior is shaped by the macroeconomic history

(and corresponding historical returns) experienced by the individual. Unlike other work, where

the experience hypothesis is typically explained by learning-from-experience dynamics, the

mechanism in our paper does not rely on learning, but instead reflects the investor’s state-

dependent aversion to model uncertainty. Economic shocks directly affect the dynamics of the

continuation entropy state variable, and thereby optimal risk-taking and savings behavior, since

these are functions of the entropy state variable.

A related implication of our model is that the endogenous beliefs of risk-averse investors

concerned with model misspecification can be seen as extrapolative. As explained above, the

endogenous worst-case model misspecification for this investor is that returns persist so that

intertemporal hedging is not possible. As a result, expected returns increase following high

returns and decrease after low returns. A more subtle prediction of our model is that younger

investors with shorter life histories are on average more sensitive to recent returns than older

investors, in line also with the evidence in Malmendier and Nagel (2011).

On the methodological front, we explain why the log investor, commonly analyzed in the

influential Hansen-Sargent multiplier approach, does not in fact deal with model misspecifica-

tion, but only with model ambiguity, namely because the log investor is myopic and indifferent

between intertemporal hedging and intertemporal speculation. In the Merton-Lucas dynamic

portfolio model, mirroring the findings in the binomial tree example, CRRA preferences with

non-unit risk aversion are required to study model misspecification. Our constraint approach has

the advantage of preserving homotheticity and thereby tractability for general CRRA preferences,

including γ ̸= 1.

The constraint approach we use also naturally lends itself to a calibration of a ‘reasonable’

amount of initial entropy via detection-error probabilities. As an additional contribution, we

show that existing approaches based on homothetic robustness are nested and equivalent to

a homothetic approach to model ambiguity. We therefore provide an alternative and rigorous

justification for the homothetic scaling proposed by Maenhout (2004) and commonly used in

the literature2, as well as a recipe for extending that work to the more general case of model

misspecification.

As a final contribution, we solve a general equilibrium problem for an investor with Epstein-

Zin preferences who worries about model ambiguity and model misspecification. We show that

2See, e.g., Skiadas (2003), Uppal and Wang (2003), Hansen (2004), Trojani and Vanini (2004), Liu et al. (2005),
Maenhout (2006), Anderson et al. (2009), Liu (2010), Branger et al. (2013), Branger and Larsen (2013), Jin et al. (2019)
and Luo et al. (2022).
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the equilibrium equity premium is state-dependent and stochastic, even with IID fundamentals.

The equity premium consists of three components: the traditional price of risk, the price of

model ambiguity and the price of model misspecification. Model misspecification also plays a

key role in generating excess volatility in equilibrium.

Related Literature: Our paper builds on the robust control literature initiated by Hansen and

Sargent, using key results from a series of seminal papers, namely Hansen and Sargent (2001),

Anderson et al. (2003), Hansen et al. (2006), and Hansen and Sargent (2022), among many others.

Different from this literature, which uses the multiplier approach subsequently axiomatized by

Maccheroni et al. (2006) and Strzalecki (2011), we follow the constraint approach based on an

endogenous continuation entropy state variable as suggested in Hansen et al. (2006), in order to

analyze model ambiguity and model misspecification. This approach guarantees homotheticity,

and was also used by Drechsler (2013) and Aït-Sahalia and Matthys (2019), who both study

model ambiguity with jump-diffusions. Instead, we study model misspecification as well as

model ambiguity, focusing on diffusions without jumps. Our work nests and provides a rigorous

justification for the ‘homothetic scaling’ of Maenhout (2004), which we show only deals with

model ambiguity. Our results cast new light on several important findings in the robustness

literature, and especially on the impact and economic implications of different ways of modelling

entropy constraints and uncertainty sets in a dynamic setting.

Most closely related to our work are Bidder and Dew-Becker (2016) and Bidder and Smith

(2018) who use very different approaches, but also find that models with non-IID dynamics can

endogenously arise as worst-case models for pessimistic agents. They focus on macrofinance

equilibrium models without explicit portfolio choice, and where agents have distorted beliefs

about consumption rather than returns. In contrast, our approach allows a detailed study of

dynamic portfolio choice and belief distortions about returns. This enables us to connect directly

with recent empirical work in household finance about portfolio choice and biased beliefs, such

as limited stock market participation and the experience hypothesis. Another advantage of our

analysis is its recursive formulation and direct relationship to the literature on robustness, and in

particular the influential multiplier approach of Hansen and Sargent (2001), Hansen et al. (2006),

and Hansen and Sargent (2022), as explained in the previous paragraph.

A number of recent papers build on and extend the Hansen-Sargent robustness framework

in a variety of ways. Hansen and Miao (2018) construct novel continuous-time formulations of

smooth ambiguity preferences and investigate their asset pricing implications in Hansen and

Miao (2022). Christensen (2019) studies identification and estimation of dynamic models with

multiplier or constraint preferences, and presents results on the identification of the decision-

maker’s value function, worst-case belief distortion and continuation entropy. Bhandari et al.
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(2022) develop a theory of model-consistent notions of pessimism and optimism based on the

Hansen-Sargent robustness framework. Cerreia-Vioglio et al. (2022a) is the first paper to offer

an axiomatic treatment of model misspecification concerns. Ai et al. (2022) present a dynamic

model of endogenous information acquisition to explain the pre-FOMC announcement drift.

They provide a recursive utility interpretation of the homothetic scaling of Maenhout (2004) in

the context of the generalized risk sensitivity preferences of Ai and Bansal (2018). Bhamra and

Uppal (2019) develop a model with differences in familiarity across assets based on the modeling

approach of Uppal and Wang (2003) to study social welfare implications of familiarity biases.

Our paper is also related to different strands of the literature that study time-varying beliefs or

risk aversion using alternative mechanisms. For example, Ai (2010), Collin-Dufresne et al. (2016),

Dew-Becker and Nathanson (2019), and Kozlowski et al. (2020), among many others, generate

rich belief dynamics endogenously in asset pricing models with simple fundamentals when

agents are allowed to learn. Cogley and Sargent (2008) combine insights from the robust control

literature with Bayesian learning to study the impact of a pessimistically distorted prior on the

market price of risk. Asset pricing studies that feature time-varying risk aversion include the habit

models of Constantinides (1990), Detemple and Zapatero (1991), and Campbell and Cochrane

(1999) where time-varying risk aversion is tightly linked to the level of consumption relative to its

recent past history. While in these models time-varying risk aversion is exogenously imposed on

the utility function of the representative agent, in our setting, the state-dependence of effective

risk aversion arises endogenously due to the investor’s concern for model misspecification and

the dynamics of the continuation entropy state variable.

Motivated by empirical and experimental evidence on belief formation, a vast literature in

behavioral economics and finance proposes models of deviations from rational expectations.

Prominent examples include diagnostic expectations as, e.g., in Bordalo et al. (2018), Bordalo

et al. (2019), and Bordalo et al. (2020), and extrapolative expectations, see, e.g., Hong and Stein

(1999), Barberis et al. (2015), Barberis (2018), Jin and Sui (2022), and Li and Liu (2019). Our

model endogenously generates similar belief dynamics, in the sense that a risk-averse investor

endogenously fears return persistence, as this is indeed the worst-case misspecification for a

long-term investor who desires Mertonian intertemporal hedging.

Outline of the paper: The paper is organized as follows. Section 1 studies a two-period binomial

tree to gain intuition and to show the main effects at work in the simplest possible setting.

Section 2 presents a general continuous-time set-up with Brownian information structures.

Section 3 explains the difference between model misspecification and model ambiguity in our

setting, connecting with the multiplier approach and highlighting the special case of log utility.

Section 4 presents the quantitative implications of our model in a dynamic Merton portfolio
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problem. Section 5 discusses results for equilibrium asset pricing. Finally, Section 6 concludes.

1 Entropy Constraints in a Two-Period Binomial Tree

To gain intuition about the different ways of modelling asset allocation in the face of both risk and

uncertainty, we follow Knox (2002) and consider a two-period binomial tree. Under a baseline

measureB, returns on the risky asset are identically and independently distributed (IID), with

possible outcomes H and L, which have probability p and 1− p, resp. Because the agent is

uncertain about the baseline measure she seeks a robust investment decision by considering

different probabilities according to a set of alternative measures. The uncertainty set is described

by a bound on some divergence measure of the probabilities under the alternative measureU

relative to the probabilities underB.

Unlike Knox (2002) who focuses on the multiplier (or penalty) formulation of robust control,

we find it useful to zoom in on the constraint formulation for reasons of tractability. This

approach guarantees homotheticity and has further advantages as discussed later. We otherwise

follow the robust control literature and use the relative entropy (or Kullback-Leibler) divergence

to index dissimilarity between probability measures. We discuss the connection to the multiplier

approach in detail in the continuous-time analysis in Section 3.1.

Let q denote the probability of an up-move under the alternative measure. Model misspecifi-

cation concerns induce the investor to explore alternative unstructured models that need not

follow the assumption of IID returns. We therefore introduce subscripts to allow for time- and

state-dependence: as shown in Figure 1, q0 denotes the probability of an up-move from t = 0

to t = 1, and qH (qL) denotes the probability of an up-move from t = 1 to t = 2, conditional on

being in the up-state (down-state) at t = 1. Model ambiguity restricts the investor’s attention to

the set of structured models, i.e., the investor is uncertain about the probability p, but does not

doubt the IID nature of the baseline measure.

Besides the risky asset with gross return H in the up-state and L in the down-state, the

risk-free asset has a riskless gross return of R f . No arbitrage requires that H > R f > L.

The investor maximizes CRRA expected utility from terminal wealth with coefficient of

relative risk aversion γ> 0,

U (W ) = W 1−γ

1−γ , γ ̸= 1 (1)

and U (W ) = log(W ) when γ = 1. As in Knox (2002) we first simplify by ignoring intermediate

consumption. The control variables for the investor are the portfolio weight invested in the risky

asset at the start of the tree π0, in the upper middle node πH and in the lower middle node πL .
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Baseline Model misspecification Model ambiguity

1−p
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1−p

p

p

1−qL

qL1−q0

1−qH

qH
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1−q

q1−q

1−q

q

q

Figure 1: Binomial Tree

The analysis crucially hinges on the way in which the uncertainty sets are constructed, i.e. on

the nature of the constraints imposed on the set of alternative measures.

1.1 A Single Entropy Constraint: Model Misspecification

Hansen and Sargent (2022) show that robustness against model misspecification can be obtained

by allowing for the largest uncertainty set, in the sense of imposing the least structure, and by

considering the worst-case alternative measure belonging to that uncertainty set.

For a given total amount K of relative entropy tolerated by the investor at t = 0, the largest

uncertainty set is obtained by enforcing just a single intertemporal relative entropy constraint:

q0 ln

(
q0

p

)
+ (1−q0) ln

(
1−q0

1−p

)
+q0qH ln

(
qH

p

)
+q0(1−qH ) ln

(
1−qH

1−p

)
+ (1−q0)qL ln

(
qL

p

)
+ (1−q0)(1−qL) ln

(
1−qL

1−p

)
≤ K , (2)

where the first line on the left represents the expected relative entropy in the first period between

U and B, i.e., EB
[dU

dB log
(dU

dB

)]
, and the second and third line represent expected relative entropy

in the second period.

In the language of Hansen and Sargent (2022), this uncertainty set includes unstructured

alternative models, in contrast to the smaller uncertainty set that will be considered in the

next subsection, which forms the set of structured alternative models. Intuitively, the wider

uncertainty set with unstructured models leads the investor to explore deviations from the IID

assumption, as seems natural when fearing model misspecification. On the other hand, when
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the investor fears model ambiguity, the set of structured models involves alternative models with

distorted probabilities, but maintains the IID assumption.

Optimizing subject to this single entropy constraint corresponds to the "nonsequential

constraint problem" (Hansen et al. (2006)). Nature is free to allocate entropy over time and

across states, subject only to a single constraint. Epstein and Schneider (2003) are critical of

this approach because it involves a nonrectangular set of priors or alternative measures. They

advocate rectangularity as essential to rendering preferences recursive and hence dynamically

consistent.3

The next subsection pursues a different formulation of the problem, with entropy constraints

that impose rectangularity. However, first we solve the constraint problem with single entropy

constraint (2) by introducing continuation entropy as a new state variable, as suggested by

Hansen et al. (2006). This leads to a recursive formulation, time-consistent by construction.

Intuitively, introducing the continuation entropy state variable avoids the potential for dynamic

inconsistency described in footnote 3, because now the problem in state S is fully described by

the state variables wealth W S
1 and continuation entropy KS . Put differently, the continuation

entropy state variable makes preferences conditional and de facto bakes in consequentialism.

Given our set-up and notation, the investor’s objective function at time 0 is

max
π0,πH ,πL

min
q0,qH ,qL∈[0,1]

1

1−γ
(
q0qH

{
W0

(
π0(H −R f )+R f

)(
πH (H −R f )+R f

)}1−γ

+q0(1−qH )
{
W0

(
π0(H −R f )+R f

)(
πH (L−R f )+R f

)}1−γ

+ (1−q0)qL
{
W0

(
π0(L−R f )+R f

)(
πL(H −R f )+R f

)}1−γ

+ (1−q0)(1−qL)
{
W0

(
π0(L−R f )+R f

)(
πL(L−R f )+R f

)}1−γ )
. (3)

For a recursive formulation we introduce the t = 1 value functions at each node S ∈ {H ,L}.

The value V of the objective function depends on the state variables W S
1 and KS . The minimizing

agent has an entropy budget available at each state and in each period, and decides how much

to use in the current period to distort the current probabilities and how much to carry over to

each of the possible states next period. As a result of this decision at time t = 0, the minimizing

agent arrives in state S at time t = 1 with continuation entropy KS .

3The potential for dynamic inconsistency can easily be understood at the upper middle node where the mini-
mizing agent may now deviate from the initially planned qL so as to reallocate entropy from the counterfactual L
state to state H in order to allow for a more extreme qH than would otherwise be possible if qL were fixed. Indeed, a
prima facie feature of the single entropy constraint in (2) seems to be that "In contrast with recursive multiple-priors,
according to the robust control model behavior at any time-event pair may depend on what might have happened in
unrealized parts of the tree." (Epstein and Schneider (2003), p. 19). This issue is closely related to the discussion in
Knox (2003) and Chamberlain (2020) of consequentialism, the property that counterfactuals are ignored.
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Consider state S ∈ {H ,L} at time t = 1. The value of the objective is

V1(W S
1 ,KS) = max

πS
min

qS∈[0,1]

1

1−γ
(
qS

{
W S

1

(
πS(H −R f )+R f

)}1−γ

+ (1−qS)
{
W S

1

(
πS(L−R f )+R f

)}1−γ )
, (4)

subject to

qS ln

(
qS

p

)
+ (1−qS) ln

(
1−qS

1−p

)
≤ KS . (5)

We now construct the t = 0 objective recursively, based on the t = 1 conditional value

functions.

V0(W0,K ) = max
π0

min
q0,KH ,KL

q0V1(W H
1 ,KH )+ (1−q0)V1(W L

1 ,KL) (6)

s.t. q0 ln

(
q0

p

)
+ (1−q0) ln

(
1−q0

1−p

)
+q0KH + (1−q0)KL ≤ K (7)

Constraint problems (4)-(5) and (6)-(7) are converted into unconstrained ones by introducing

Lagrange multipliers λ0 on constraint (7), λH and λL on constraints (5) for S = H and for S = L,

respectively.

Lemma 1. The constraint problems (4)-(5) and (6)-(7) are solved by the system of equations in

Appendix A.1. The solution has the following properties:

1. The Lagrange multipliers are equal λ0 =λH =λL and homogeneous of degree 1−γ in initial

wealth W0.

2. The optimal portfolio weightsπ0, πH andπL are independent of wealth, but state-dependent

and not equal to each other for γ ̸= 1.

3. The optimal distorted probabilities q0, qH and qL are independent of wealth, but state-

dependent and not equal to each other for γ ̸= 1.

The Lagrange multipliers are constant over time and across states as they put shadow prices

on the same entropy constraint. Optimality requires that entropy be allocated to different states

of the world such that shadow prices are equalized. Simultaneously, the Lagrange multipliers

scale endogenously with initial wealth W0, which safeguards homotheticity. Both findings are

novel and crucial for understanding multiplier preferences and the debate about the penalty

parameter in the robust control literature, as discussed in Section 3. A related result is that the

portfolio weights are independent of wealth, due to homotheticity, but generally state-dependent.

The reason for this is the state-dependent probability distortion, thereby deviating from the
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IID assumption of the baseline measure. A subtle, but important finding therefore is that the

state-dependence of the portfolio allocation reflects differences in probability distortions across

states, not differences in wealth. Put differently, state-dependence of the portfolio weights is not

to be confused with lack of homotheticity: the first-order conditions reveal that the problem is

fully homothetic, by virtue of the endogenous scaling of the Lagrange multipliers with initial

wealth.

In summary, the recursive solution to the single constraint entropy problem involves constant

Lagrange multipliers that scale endogenously with initial wealth, and homothetic but state-

dependent optimal portfolio weights. We now characterize the solution further in order to gain

additional insight into the economic effect of model misspecification concerns.

Proposition 1. Assume that H p +L(1−p) > R f . If γ > 1, the investor’s pessimistic worst-case

belief and the optimal portfolio weight in period 2 are both procyclical, i.e., qL < qH < p and

πL <πH . If 0 < γ< 1, the investor’s pessimistic worst-case belief and the optimal portfolio weight

in period 2 are both countercyclical, i.e., qH < qL < p and πH < πL. The log investor (γ= 1) has

state-independent beliefs (qH = qL = q0 < p) and invests myopically (πH =πL =π0).

Assuming a strictly positive equity premium under the baseline model, Proposition 1 shows

that the worst-case probability distortion is pessimistic, and depends on the investor’s risk

preferences, since these drive optimal investment behavior. While returns under the baseline

measure are IID, the worst-case measure induces serial correlation. The serial correlation is

positive for a risk-averse investor (γ > 1) and negative for a risk-tolerant investor (γ < 1). For

γ > 1, expected returns are less distorted downwards after a high return than following a low

return, i.e., expected returns are higher in the good state of nature than in the bad state, with

the opposite happening for the low risk-aversion investor (γ< 1). Put differently, the risk-averse

investor fears persistence in returns, the risk-tolerant investor fears mean reversion.

The economic mechanism behind these results can be understood from the insights of

Merton (1971) about intertemporal hedging. A risk-averse non-myopic investor holds more of

the risky asset when returns and expected returns are negative correlated, because the expected

improvement in investment opportunities following low returns makes the investment less risky

over a longer horizon and provides an intertemporal hedge. Kim and Omberg (1996) offers a

detailed analysis (see also Campbell and Viceira (2002) for additional insights and intuition). For

CRRA they show that the γ> 1 investor hedges intertemporally, holding more of the risky asset

than the mean-variance portfolio when returns and expected returns are negatively correlated

(and less otherwise). In contrast, the γ< 1 investor speculates intertemporally and holds more of

the risky asset than the mean-variance efficient allocation when returns and expected returns

are positively correlated (and less otherwise), because this investor values the fact that an asset

pays off highly precisely when investment opportunities improve.
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Proposition 1 shows that the worst-case model misspecification for a γ> 1 investor, who has

a preference for intertemporal hedging, is that intertemporal hedging is not possible because

returns and expected returns are positively correlated. Similarly, the worst-case misspecification

for a 0 < γ < 1 investor, who likes to speculate intertemporally, is that returns and expected

returns are negatively correlated, since this precludes intertemporal speculation.

The log investor is of course in between, and is indifferent between intertemporal hedging and

intertemporal speculation. The serial correlation of returns is of no importance to this investor’s

optimal strategy, since he behaves myopically and invests based only on current investment

opportunities, without any attempt at exploiting the dynamics of investment opportunities to

either hedge intertemporally or to get a higher expected return via intertemporal speculation.

Model misspecification is therefore irrelevant to the log investor, and we find that for γ = 1

the solution to the single-entropy constraint problem is the same as when there is no model

misspecification concern, and only model ambiguity is at work. His portfolio weight is reduced,

as with model ambiguity, but is state-independent.

This result is critical because virtually all papers applying robust control in finance and

macroeconomics using multiplier preferences rely on log utility to get tractability. The first result

in Lemma 1 gives one reason why log utility is highly tractable in the penalty approach: the

endogenous Lagrange multiplier does not scale with wealth in this case, which explains why log

multiplier preferences remain homothetic even when an exogenously fixed penalty parameter is

imposed in lieu of an endogenous Lagrange multiplier. The second reason for their tractability is

because log preferences lead to myopic behavior. Our findings clearly show that this feature of

log utility is not innocuous at all and in fact eradicates the concern for model misspecification,

reducing it to mere model ambiguity.

Figure 2 illustrates the findings of Proposition 1 for the relationship between the baseline

model probability p and the distorted probabilities qL and qH along with the numerical solution

for q0, for values of the coefficient of relative risk aversion γ between 0.5 and 4. We see that for

all values of γ, q0 is between qL and qH . To appreciate the quantitative impact of these distorted

probabilities, it is helpful to consider the corresponding optimal portfolio weights. For the return

parameters assumed in Figure 2, a γ= 2 investor optimally allocates roughly 95% of wealth to

the risky asset without robustness. When concerned about model misspecification the optimal

weight for this investor shrinks to approximately 70% when K = 0.01 (top panel) and to roughly

55% when K = 0.04 (middle panel).

Figure 3 shows how the optimal solution depends on the total amount of entropy K , for a

range of entropy from 0 to the maximum amount that is economically meaningful, namely such

that the Sharpe ratio on the risky asset becomes zero in all states, so that the investor only holds

the riskless asset. At the extremes of both zero and maximal entropy, the state-dependence
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Figure 2:

Notes: This figure plots the optimally distorted probabilities q0, qL , and qH , and the optimal portfolio weights π0,πL

and πH corresponding to the solution of the problem in Lemma 1. πB is the optimal portfolio weight corresponding to
the baseline measureB. The parameters are p = 0.7, H = 1.25, L = 0.8, R = 1.025. The problem is solved for coefficient
of relative risk aversion γ ∈ [0.5,4]. In the top panel K = 0.01 and in the middle panel K = 0.04. The bottom two panels
split the middle right panel to two plots with γ ∈ (0.5,1) and γ ∈ (1,4), respectively.

in distorted probabilities vanishes. This is intuitive: at zero entropy, the investor does not

consider model misspecification or model ambiguity, and trusts the IID benchmark model. At

the maximum amount of entropy, the Sharpe ratio is always zero, in which case there is no

state-dependence either. We will find the same patterns in the continuous-time version of the

model. We defer a discussion of how to interpret and calibrate the amount of entropy K to the

13



continuous-time analysis. Note that the effect of state-dependence is very small here due to the

very short investment horizon (only 2 periods). The continuous-time analysis will also address

this by considering an infinite horizon.
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Figure 3:

Notes: This figure plots the optimally distorted probabilities q0, qL , and qH , and the optimal portfolio weights πL and
πH corresponding to the solution of the problem in Lemma 1. The parameters are p = 0.7, H = 1.25, L = 0.8, R = 1.025,
and γ= 3. The problem is solved for a range of K , where the right end of both plots correspond to zero Sharpe ratio
scenario.

Finally, we note that the endogenous worst-case beliefs of the risk-averse investor (γ > 1)

can be viewed as extrapolative: despite returns being IID, the investor fears persistence when

there is none under B, and can be seen as extrapolating from recent experience when forming

expectations for the future. Indeed, after experiencing a high return, expected returns increase

and after the low return, expected returns shrink. Our findings are therefore similar to what

Bidder and Dew-Becker (2016) and Bidder and Smith (2018) report in a macrofinance model,

although they focus on expectations about consumption dynamics in an equilibrium setting

rather than return expectations in a portfolio problem.

1.2 Two Pathwise Entropy Constraints: Model Ambiguity

Having discussed a single constraint in (2) and the allocation of continuation entropy in (6),

we now present an alternative formulation where in the second period Nature can only spend

whatever is left from the entropy budget after the first period. This leads to the following two

pathwise entropy constraints:

qH ln

(
qH

p

)
+ (1−qH ) ln

(
1−qH

1−p

)
≤ K −q0 ln

(
q0

p

)
− (1−q0) ln

(
1−q0

1−p

)
, (8)

qL ln

(
qL

p

)
+ (1−qL) ln

(
1−qL

1−p

)
≤ K −q0 ln

(
q0

p

)
− (1−q0) ln

(
1−q0

1−p

)
. (9)
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Having two constraints rather than one obviously imposes more structure 4 and shrinks the

uncertainty set against which the agent seeks robustness considerably. First, the two pathwise

constraints (8) and (9) jointly imply (2). The resulting set of structured models considered by the

investor is a strict subset of the set of unstructured models considered in the previous subsection.

The pathwise constraints essentially impose that continuation entropy, which is the right-hand-

side of (8) and (9), be state-independent. In other words, using the notation of the recursive

formulation in the previous subsection, the constraints imply KH = KL = K1. The decision-maker

only needs to decide how to allocate entropy between today and tomorrow, but what is left over

is now constant across states. This imposes strict rectangularity in the sense of Epstein and

Schneider (2003). The pathwise entropy constraints can also be seen as putting a bound on the

increment or change in entropy that is due to the probability distortion in the second period,

i.e. the left-hand side of the constraints. Importantly, the bound in the pathwise constraint is

state-independent, which is crucial for understanding the difference between model ambiguity

and model misspecification in continuous time.

To solve the nonsequential formulation of the robust constraint problem, we introduce

Lagrange multipliers λH and λL on constraints (8) and (9), respectively. The following result

summarizes the solution to problem (3) subject to pathwise constraints (8) and (9).

Lemma 2. The solution of (3) subject to (8) and (9) is q0 = qH = qL and π0 = πH = πL. The

Lagrange multipliers λH and λL are homogeneous of degree 1− γ in initial wealth W0, and

K1 = K /2.

Lemma 2 shows that continuation entropy is not only state-independent but also con-

stant over time. Therefore, the pathwise entropy constraint formulation is equivalent to the

κ-ignorance specification in Chen and Epstein (2002). Pathwise entropy constraints greatly

simplify the solution and induce the investor as well as nature to act myopically, as evident

from the state-independent and constant portfolio weights and worst-case probabilities. To

preserve the homotheticity of the problem, the endogenous Lagrange multipliers scale with

initial wealth raised to the power 1−γ, which justifies the exact scaling proposed in Maenhout

(2004). These findings therefore nicely parallel the result in Knox (2002) that the homothetic

version in Maenhout (2004) of the penalty approach is structurally identical to κ-ignorance.

It is striking how much additional structure is imposed by merely using the pathwise con-

straints instead of the single constraint. As we show below, in a continuous-time model with

Brownian information, the pathwise constraints correspond to a constraint on the instanta-

neous expected change in entropy, which must be bounded and state-independent. We will

4In fact it imposes consequentialism (cf. footnote 3) by virtue of being pathwise, thus ignoring what happens in
the counterfactual state. As noted before, introducing continuation entropy as a state variable to obtain recursivity
in the previous subsection also de facto bakes in consequentialism.

15



show that the correspondence between model ambiguity and pathwise entropy constraints, i.e.,

rectangularity, also continues to hold in the continuous-time setting.

2 Entropy Constraints in a Continuous-Time Model

2.1 Continuation Entropy in Continuous Time

Let (Ω, (Ft )t∈[0,∞),B) be a standard probability space. The probability measure B is the agent’s

baseline model and BB is a 1-dimensional Brownian motion under B. The agent considers a

family of alternative modelsU, which is parameterized by a real-valued bounded belief distortion

process u. For each given bounded u and T > 0, U is defined as

dU

dB

∣∣∣
FT

= ZT , 5 where Zt = exp
(
−

∫ t

0

1
2 u2

s d s −
∫ t

0
usdBB

s

)
, t ∈ [0,T ]. (10)

For every random outcome ω ∈Ω, the density ZT (ω) describes the change of likelihood for this

outcome under U compared to B. Larger Z (ω) implies that ω is more likely to happen under the

alternative model U.

Let us first introduce an entropy discrepancy measure between the alternative model U and

the baseline model B. Following Hansen and Sargent (2022), introduce the finite horizon entropy

discrepancy measure

EB
[

ZT log ZT
]= 1

2E
B
[∫ T

0
Zsu2

s d s
]
= 1

2E
U
[∫ T

0
u2

s d s
]

.

Taking the long run average and using Abel integral averages, Hansen and Sargent (2022) show

lim
T→∞

1
T E

B
[

ZT log ZT
]= lim

T→∞
1

2T E
U
[∫ T

0
u2

s d s
]
= lim
δ→0

EU
[∫ ∞

0
δe−δs 1

2 u2
s d s

]
,

provided that these limits exists. In the previous equation, the scaling by δ makes the weights

δe−δs integrate to one and produces an exponential average. Choosing δ as the subjective

discount rate, we define a discrepancy measure between U and B as

EU
[∫ ∞

0
δe−δs 1

2 u2
s d s

]
.

The entropy allocation problem in (4)-(5) and (6)-(7) motivate us to introduce continuation

5Because u is bounded, EB[ZT ] = 1, for any T > 0, therefore U is a probability measure equivalent to B on FT for
any T > 0.
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entropy

Et = EUt
[∫ ∞

t
δe−δ(s−t ) 1

2 u2
s d s

]
, for t ≥ 0, 6 (11)

where EUt [·] stands for the conditional expectation EU[·|Ft ]. Intuitively, nature starts continuation

entropy E from an initial entropy budget E0, and allocates instantaneous distortions ut and

continuation entropy Et to future dates and states. It follows from the martingale representation

theorem that there exists a unique process g such that E follows the dynamics

dEt = δEt d t − δ
2 u2

t d t + g t dBU
t . (12)

Therefore, controlling continuation entropy E is equivalent to controlling the instantaneous

distortion u and the volatility g of continuation entropy.

The martingale term in (12) is crucial as it allows Nature to control the volatility of continua-

tion entropy and as such enables a state-dependent allocation of entropy. This was instrumental

in distinguishing between model ambiguity and model misspecification in the two-state exam-

ple, and the same holds true in continuous time. Put differently, without the martingale term in

(12), nature can only control the drift or the expected change of the continuation entropy, exactly

as with the pathwise entropy constraints defining the set of structured models in Section 1.2.

2.2 An Infinite Horizon Optimal Consumption-Investment Problem

Consider a financial market with a risk-free asset and a risky asset. The risk-free rate is assumed

to be r > 0 and the price S of the risky asset follows

dSt

St
=µd t +σdBB

t ,

where the expected return µ and the volatility σ are constants. Consider an agent whose prefer-

ence over consumption is modelled by a CRRA utility U (c) = c1−γ
1−γ with γ> 0 (U (c) = log(c) when

γ= 1). This agent faces an infinite-horizon consumption-investment problem

sup
π,c

inf
u,g

EU
[∫ ∞

0
δe−δsU (cs)d s

]
, (13)

subject to the budget constraint

dWt = r Wt d t +πt Wt
(
(µ− r )d t +σdBB

t

)− ct d t , (14)

6Because u is assumed to be bounded, continuation entropy E is bounded as well. Therefore it satisfies the
transversatility condition limt→∞ e−δtEU[Et ] = 0.
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and the dynamics of continuation entropy E in (12).7

We take the agent’s wealth W and Nature’s continuation entropy E as natural state variables

for the problem (13) and define the value function V via

V (Wt ,Et ) = sup
π,c

inf
u,g
EUt

[∫ ∞

t
δe−δ(s−t )U (cs)d s

]
. (15)

It follows from dynamic programming that V satisfies the following HJB equation:

δV = sup
π,c̃

inf
u,g

{
δU (W c̃)+W ∂W V

[
r +π(µ− r −σu)− c̃

]+∂E V
(
δE − δ

2 |u|2
)

+ 1
2W 2π2σ2∂2

W W V + 1
2 g 2∂2

EE V +Wπσg∂2
EW V

}
,

(16)

where c̃ = c/W is the consumption-wealth ratio. Because of the homothetic property of U , the

value function V admits the following homothetic decomposition

V (E ,W ) = W 1−γ

1−γ V (E), (17)

for a positive function V depending on E only. The following results summarize the agent’s

optimal strategies and the worst-case belief.

Proposition 2. When γ> 1, V in (17) satisfies

δV = inf
π,c̃

sup
u,g

{
δc̃1−γ+ (1−γ)[r +π(µ− r −σu)− c̃]V + (

δE − δ
2 |u|2

)
∂EV

− 1
2γ(1−γ)π2σ2V + 1

2 g 2∂2
EEV + (1−γ)πσg∂EV

}
,

(18)

with the boundary conditions at E = 0 and E = E = (µ−r )2

2σ2 :

V (0) =δ
{

1
γ

[
δ− (1−γ)r − (1−γ) (µ−r )2

2γσ2

]}−γ
, (19)

V (E) =δ
{

1
γ

[
δ− (1−γ)r

]}−γ
. (20)

Suppose that ∂EV > 0 and ∂2
EEV < 0, the agent’s optimal investment fraction π∗ and the optimal

7Given a consumption process c , the utility process Ut = infu,g E
U
t

[∫ ∞
t δe−δ(s−t )U (cs )d s

]
can be formulated as an

optimization problem for a forward-backward stochastic differential equation: Ut = infu,g U u,g
t where the backward

component U u,g follows dU u,g
t = (

δU u,g
t −δU (ct )

)
d t +φu,g

t dBU
t and the forward component E follows (12). When

E is not a state variable, robust control problems with entropy penalties are typically formulated as optimization
problems for backward stochastic differential equations, see eg. Skiadas (2003).
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consumption-wealth ratio c̃∗ satisfy

π∗ = µ− r

γσ2 − (1−γ)σ2 V
δ∂E V

+ (1−γ)σ2 (∂E V )2

V ∂2
EE V

, (21)

c̃∗ = δ 1
γ V

− 1
γ . (22)

The optimal instantaneous distortion u∗ and the volatility of continuation entropy g∗ are

u∗ =− (1−γ)σ

δ

V

∂EV
π∗, (23)

g∗ =− (1−γ)σ
∂EV

∂2
EEV

π∗. (24)

When 0 < γ< 1, infπ,c̃ supu,g is replaced by supπ,c̃ infu,g in (18) and the optimality conditions

become ∂EV < 0 and ∂2
EEV > 0.

To understand the optimal strategies, let us start from the instantaneous distortion u. The

optimization of u in (16) is

inf
u

{
−W ∂W V πσu − δ

2 |u|2∂E V
}

. (25)

This is the familiar trade-off between the marginal entropy cost of a higher distortion and the

marginal benefit to the minimizing agent due to the marginal utility loss of the investor. Using

the decomposition (17), we obtain the form of u∗ in (23).

The optimization of g in (16) is

inf
g

{
1
2 g 2∂2

EE V +Wπσg∂2
EW V

}
, (26)

where the objective function measures the impact of g , which controls the variance or state-

dependence of the entropy state variable, on the variance of the value function. Intuitively, the

optimal state-dependence of entropy depends on second-order derivatives of the value function.

The optimality condition reflects the trade-off between the change in marginal entropy cost ∂2
EE V

and the change in marginal utility due to a change in entropy ∂2
EW V , reflecting the covariance

between the state variables. Using the decomposition (17), we obtain the form of g∗ in (24).

It follows from (24) and the conditions on ∂EV and ∂2
EEV that g∗ < 0 when γ > 1 and g∗ > 0

when 0 < γ< 1. This extends the results in Proposition 1 to a continuous-time setting, because

g∗ < 0 for γ > 1 means continuation entropy is countercyclical, i.e., increases after negative

return shocks. Therefore, the investor is more pessimistic and reduces the expected return

following negative return shocks. As in the binomial tree, we find that the risk-averse investor

endogenously fears return persistence, as this is indeed the worst-case model misspecification for

19



a risk-averse investor with γ> 1, because Mertonian intertemporal hedging becomes impossible

in this case. This investor can be interpreted as (endogenously) extrapolating from recent return

realizations, in line with empirical evidence obtained from survey data on expectations (see for

instance Hong and Stein (1999), Barberis et al. (2015), Barberis (2018), Jin and Sui (2022), and Li

and Liu (2019)).

Similarly, g∗ > 0 for 0 < γ < 1 implies procyclical continuation entropy, i.e., continuation

entropy decreases after negative return shocks. Therefore, this investor becomes less pessimistic

and raises the expected return following negative shocks. Exactly in line with the results in

the discrete-time model, the risk-tolerant investor (0 < γ< 1) fears mean-reversion in returns,

because it precludes intertemporal speculation. The endogenous beliefs of this investor can be

viewed as contrarian.

The optimal investment strategy in (21) can be reformulated as

π∗ = µ− r

σ2γeff(E)
,

where γeff is the effective risk aversion

γeff(E) = γ− (1−γ)
V

δ∂EV
+ (1−γ)

(∂EV )2

V ∂2
EEV

. (27)

On the right-hand side of (27), the first term is the usual relative risk aversion coefficient. We

obtain two additional terms, due to concerns for model ambiguity and model misspecification,

respectively. The second term in (27) is driven by the optimal distortion u∗ and is therefore

attributable to model ambiguity. The third term is proportional to g∗/u∗ hence reflecting the

relative concern of model misspecification versus model ambiguity. Due to the sign conditions

for optimality on ∂EV and ∂2
EEV , which are verified numerically in Section 4, both additional

terms on the right-hand side of (27) are strictly positive, indicating that model ambiguity aversion

as well as model misspecification fears unambiguously increase the investor’s effective risk

aversion. Therefore the optimal investment strategy π∗ in (21) is always more conservative than

Merton’s mean-variance ratio πM = µ−r
γσ2 , which is the optimal investment strategy for an agent

without model misspecification or model ambiguity concerns. Moreover, effective risk aversion

is state-dependent. It generates dynamic investment behavior depending on the value of the

continuation entropy state variable, as we discuss in more detail in our numerical analysis in

Section 4.

For the boundary conditions of V , when E = 0 there is no continuation entropy left, then

the future instantaneous belief distortion u must be zero. In this case, problem (13) is reduced

to a standard Merton problem without model ambiguity, whose value is given in (19). When
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E = E , the instantaneous belief distortion reaches its maximum value u = µ−r
σ

, in which case the

expected excess return of the risky asset becomes zero under the subjective belief U. In this case,

the agent does not invest in the risky asset anymore and non-participation becomes optimal.

Then E is the maximum continuation entropy value corresponding to this no-investment worst-

case scenario and (13) is reduced to an optimal consumption but no investment problem, with

value given in (20).

3 Model Misspecification versus Model Ambiguity

To gain a deeper understanding of the precise difference between model misspecification and

model ambiguity in our setting, it is useful to first also examine the broader question of the

relationship between the penalty or multiplier preferences of Hansen and Sargent (2001) and the

continuation entropy approach of this paper.

3.1 Connection to Hansen and Sargent Multiplier Preferences

We follow closely the logic of Hansen et al. (2006) based on duality theory, but obtain addi-

tional results that give crisp insights into the difference between model ambiguity and model

misspecification in dynamic portfolio and asset pricing problems.

For given fixed θ > 0, define

V̂ (W,θ) = inf
E≥0

{
V (W,E)+Eθ

}
, (28)

where V (W,E) is the value function for the problem in (15). We call V̂ the dual value function.

Plugging the optimal g∗ into (16) and using the duality relation (28), we derive the following

equation for V̂ (see Appendix A.5):

δV̂ = sup
π,c

inf
u

{
δU (W c̃)+W ∂W V̂

[
r +π(µ− r −σu)− c̃

]+ 1
2W 2π2σ2∂2

W W V̂ +δθ2 |u|2
}

. (29)

Standard dynamic programming arguments can be used to show that this equation satisfied by

the dual value function V̂ is the HJB for the following optimal consumption-investment problem

with multiplier preferences, as in for example Anderson et al. (2003):

V̂ (W,θ) = sup
π,c

inf
u
EU

[∫ ∞

0
e−δtδ

(
U (ct )+ θ

2 u2
t

)
d t

]
, (30)

subject to

dWt =Wt
[
r +πt (µ− r −σut )

]
d t +WtπtσdBU

t − ct d t .
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In this problem, θ is fixed and does not depend on W . Hence V̂ is not homothetic in W , except

for log utility (γ = 1), which we discuss in Section 3.4. As emphasized in Hansen et al. (2006),

multiplier preferences have the appeal of parsimony owing to the fixed penalty parameter θ,

which avoids carrying along the entropy state variable necessitated by our constraint approach.

At the same time, because the penalty parameter θ is fixed, the problem loses its homotheticity,

and as a result wealth now needs to be tracked explicitly as a state variable affecting optimal

consumption and portfolio decisions.

3.2 Model Misspecification

Coming back to the value function V , by virtue of the duality relationship between V and V̂ ,

V (W,E) = sup
θ≥0

{
V̂ (W,θ)−Eθ

}
. (31)

Therefore, ∂E V (W,E) =−θ∗. The decomposition of V in (17) then yields

θ∗ =−W 1−γ

1−γ ∂EV (E). (32)

This implies that θ∗ is homogeneous of degree 1−γ in W and also depends on the state E . Evi-

dently, compared to the fixed penalty parameter θ in the Hansen-Sargent multiplier preferences

of the previous subsection, the constraint approach seems substantially less parsimonious. We

now show that optimality combined with preservation of homotheticity nonetheless results in

parsimonious and tractable solutions for our approach.

To this end, we now evaluate θ∗ along the path of the state process (Wt ,Et ). Define

θ∗t = θ∗(Wt ,Et ) =−∂E V (Wt ,Et ), (33)

where Wt and Et follow the optimal strategies π∗,u∗, and g∗ of Proposition 2. It follows from

Itô’s formula that the volatility of θ∗t is

−g∗∂2
EE V −Wπ∗σ∂2

EW V , (34)

which is zero from the first-order condition in (26). Similarly, the drift of θ∗t can be obtained from

Itô’s lemma as

−(
δE − δ

2 |u∗|2)∂2
EE V −W

[
r +π∗(µ− r −σu∗)− c̃∗

]
∂2

EW V

−1
2W 2(π∗)2σ2∂3

EW W V − 1
2 (g∗)2∂3

EEE V −Wπ∗σg∗∂3
EEW V ,

(35)
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which can be shown to equal zero. To see this, it suffices to differentiate the HJB equation (16)

with respect to E , to use the envelope theorem, and to evaluate at the optimal choices to obtain

that

0 = (
δE − δ

2 |u∗|2)∂2
EE V +W

[
r +π∗(µ− r −σu∗)− c̃∗

]
∂2

EW V

+1
2W 2(π∗)2σ2∂3

EW W V + 1
2 (g∗)2∂3

EEE V +Wπ∗σg∗∂2
EEW V.

(36)

The following result summarizes the discussion above.

Proposition 3. θ∗t = θ∗(Wt ,Et ) is constant when the state processes Wt and Et follow the optimal

strategies π∗,u∗, and g∗ in Proposition 2.

As we showed in the binomial tree case, allowing Nature to optimally control the volatility or

state-dependence of continuation entropy is equivalent to equalizing the shadow price of contin-

uation entropy across states and over time. Proposition 3 extends to the continuous-time setting

the finding of Lemma 1 that the endogenous Lagrange multiplier on the entropy constraint

is constant conditional on the state variables Wt and Et . As is clear from (32), the Lagrange

multiplier scales with wealth, exactly as in Lemma 1, and this preserves the homotheticity of the

problem.

The fact that the drift of the Lagrange multiplier associated with the entropy constraint is zero

can be seen as an application of the Inverse Euler Equation of dynamic principal-agent models

due to Rogerson (1985) and Spear and Srivastava (1987). The line of reasoning used to prove

this result above coincides with the proof of the version of the Inverse Euler Equation obtained

in DeMarzo and Sannikov (2017). Hansen et al. (2006) pointed out in footnote 12 of the 2001

working paper version that there is a deep connection between the recursivity of the constraint

formulation of robust control problems and dynamic contract theory. The continuation entropy

state variable effectively plays the role of the continuation utility state variable introduced to

satisfy the promise-keeping constraint, or of the agent’s continuation payoff state variable used to

impose the individual rationality constraint in DeMarzo and Sannikov (2017). While the Inverse

Euler Equation produces that the Lagrange multiplier is a martingale, the result in Proposition

3 goes a step further, as the Lagrange multiplier is in fact constant, conditional on the state

variables. It is precisely the first-order condition in (26), i.e. the optimal allocation of entropy

across states of nature that achieves this. We note that the optimal choice of the sensitivity g∗ of

the entropy state variable to fundamental shocks is the mechanism that handles model misspec-

ification in our analysis, in the exact same way that the sensitivity of the agent’s promised utility

to the fundamental shocks is the mechanism to handle moral hazard by providing incentives in

23



dynamic principal-agent problems (Williams (2015))8.

3.3 Model Ambiguity

We now zoom in on the difference between model misspecification and model ambiguity. Model

ambiguity concerns lead an investor to consider adverse alternatives in the set of structured

models. In the current set-up, this corresponds to the special case where Nature restricts the

choice of g to be zero, which we will show is not without loss of generality.

Consider the problem

Ṽ (W,E) = sup
π,c

inf
u
EU

[∫ ∞

0
e−δtδU (ct )d t

]
, (37)

subject to (14) and

dEt =
(
δEt − δ

2 u2
t

)
d t . (38)

In contrast to (12), Nature restricts g to be zero. We denote the optimal strategies of (37) as π̃∗, c̃∗,

and ũ∗. For a given initial entropy budget E , we first consider a stationary solution where the

optimal instantaneous distortion ũ∗ always satisfies

E = 1
2 (ũ∗)2. (39)

Then the drift of the continuation entropy in (38) is constantly zero and continuation entropy

remains at its initial value E . The notion of a stationary solution mirrors the finding in Lemma

2 that the optimal allocation of continuation entropy is constant over time in the two-period

case.9 At the end of this subsection we show that the stationary case is not only the natural one to

consider, but also the more interesting one, because the non-stationary solution converges to the

boundaries of either zero or maximal entropy, unless it happens to coincide with the stationary

case to begin with.

Let us also consider a constrained problem where the instantaneous distortion is restricted

as in Chen and Epstein (2002), in order to construct a rectangular set of priors. Consider the

problem

V̌ (W,κ) = sup
π,c

inf
u
EU

[∫ ∞

0
e−δtδU (ct )d t

]
, (40)

8As Williams (2015) shows, in the First Best, i.e., the full information benchmark without hidden action, the
principal is free to choose the sensitivity optimally, in the same way that Nature is able to freely choose g∗ in our
analysis, but this ceases to be the case with private information.

9The absence of discounting in the two-period case is an additional reason for the stationarity of its solution, as
can also be seen from (38) for δ= 0.
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subject to (14) and
1
2 u2 ≤ κ, (41)

for a given κ > 0. To rule out degenerate cases, we assume κ < 1
2

(µ−r
σ

)2. If this condition

is violated, u = µ−r
σ

is an interior worst-case distortion, in which case the investor’s optimal

investment weight is identically zero.

Introducing the Lagrange multiplier associated with constraint (41), the dual formulation of

the problem (40) is

V̌ (W,κ) = sup
λ≥0

sup
π,c

inf
u
EU

[∫ ∞

0
e−δt

(
δU (ct )+λδ(1

2 u2
t −κ

))
d t

]
, (42)

subject to (14). In (42), λδ is the Lagrange multiplier associated with constraint (41). We denote

the optimal strategies of (42) as π̌∗, č∗, ǔ∗, and the optimal Lagrange multiplier as λ∗.

The following result connects these two formulations.

Proposition 4. There is a one-to-one correspondence between the problem (37) and the problem

(40). In particular, for a given E, the stationary solution of (37) is

ũ∗ =µ− r

σ

θ(E)

γ+θ(E)
, (43)

π̃∗ =µ− r

σ2

1

γ+θ(E)
, (44)

c̃∗ =1

γ

[
δ− (1−γ)r − (1−γ)γ

2(γ+θ(E))2

(µ− r )2

σ2

]
, (45)

where θ(E) satisfies
µ− r

σ

θ(E)

γ+θ(E)
=
p

2E . (46)

For a given κ, the solution of (40) is given in (43), (44), and (45) with ũ∗, π̃∗, and c̃∗ on the

left-hand side replaced by ǔ∗, π̌∗, and č∗, respectively, and θ(E ) on the right-hand side replaced by

θ(κ) which satisfies
µ− r

σ

θ(κ)

γ+θ(κ)
=p

2κ. (47)

Moreover, Ṽ , V̌ , and λ∗ are all homogeneous of degree 1−γ in W .

For a given E or κ, the optimal instantaneous distortion ũ∗ and the optimal investment

weight π̃∗ also match those in Maenhout (2004) exactly. To illustrate the connection further,

problem (42) can be recast as

V̌ (W,κ) = sup
λ≥0

{
V (W,λ)−λδκ

}
, (48)
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where V is

V (W,λ) = sup
π,c

inf
u
EU

[∫ ∞

0
e−δt

(
δU (ct )+λδ2 u2

t

)
d t

]
. (49)

Maenhout (2004) introduces the homothetic scaling, i.e., λ∝W 1−γ
t , which is consistent with

the homothetic scaling of the optimal Lagrange multiplier λ∗ in (48). We therefore provide an

alternative justification and rigorous proof for the homothetic scaling. This is also consistent

with results in Knox (2002) that “homothetic robustness" of Maenhout (2004) is structurally

equivalent to κ−ignorance in Chen and Epstein (2002).

In conclusion, Proposition 4 highlights that the homothetic version of Anderson et al. (2003)

proposed in Maenhout (2004) and applications thereof mentioned in footnote 2 correspond to

Nature restricting g to be zero, hence they deal with model ambiguity, not model misspecification.

Importantly, this criticism does not apply to Anderson et al. (2003), as we showed in Section 3.1.

We briefly discuss the non-stationary solution. In this case, while the diffusion of entropy

is set to zero, its drift in general is not. We refer to Appendix A.7 for the details. In summary,

for the parameters we consider, we find that the non-stationary solution either converges to

the boundaries of E = 0 (expected-utility) or E = E (maximal entropy), or coincides with the

stationary solution, namely when the initial value of E is such that its drift equals zero.

3.4 Log Utility

We now explicitly cover the case of log utility, given its special role in the analysis and its impor-

tance in the literature on robustness. For log utility, the value function of problem (13) is additive

in wealth and entropy, i.e., (17) changes to

V (E ,W ) = logW +V (E). (50)

Clearly ∂2
W E V = 0 in this case, which has several fundamental implications. First, it is immediate

that the optimal g∗ in (16) is zero for log utility. The fact that the optimal g∗ is zero confirms

the finding in Proposition 1 that with log utility the distinction between model ambiguity and

model misspecification vanishes. In other words, in the special case of log utility, it is without

loss of generality to set g = 0, since g∗ = 0 anyway. But it does mean that this case does not speak

to model misspecification in the setting that we consider. The reason the log investor is not

affected by model misspecification concerns in the basic asset allocation problem underlying

macrofinance, is because the log investor behaves myopically. Since this investor is indifferent

between intertemporal speculation and intertemporal hedging, he makes no attempt to take the

dynamics of investment opportunities into account when investing, and only considers current

investment opportunities. The solution therefore coincides with the solution to a problem with
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model ambiguity only.

Second, we reconsider the dual problem formulated in (28). We have shown that V̂ is the value

function for the optimal consumption-investment problem with Hansen-Sargent multiplier

preferences in (30). Even though V̂ is not homothetic in W when γ ̸= 1, it is for log utility.

Therefore, the multiplier preferences with a fixed multiplier still maintain tractability when the

utility is log. This is related to the result in Cerreia-Vioglio et al. (2011) that "a preference is both

variational and homothetic if and only if is multiple priors". For log utility, Hansen-Sargent

multiplier preferences are indeed homothetic and equivalent to multiple prior preferences

in the Merton investment problem. This is also consistent with the result in Cerreia-Vioglio

et al. (2022b) that variational preferences (which multiplier preferences are) are wealth constant

relative ambiguity averse when logarithmic.

A third way to understand the economic significance of the assumption of log utility, builds

on the insights of Section 3.2, namely equation (34). The only case where the volatility of θ∗t
is zero for g∗ = 0 (model ambiguity concerns only) is when ∂2

W E V = 0, i.e., for log utility. Put

differently, unless ∂2
W E V = 0, as is true for log utility, the volatility of the multiplier does not

vanish when g = 0.

Finally, consider the duality relationship in (31). Combining (33) and (50), it follows that

the optimal Lagrange multiplier θ∗ is independent of wealth for log utility, consistent with the

general finding of homogeneity of degree 1−γ in W .

4 Quantitative Model Implications

In this section, we present quantitative results for optimal consumption-investment problems

with model ambiguity and model misspecification.

4.1 State-Dependent Optimal Strategies and Worst-Case Beliefs

We solve the ODE resulting from plugging the optimal controls into HJB (18) numerically with

boundary conditions (19) and (20). We use the following estimates for the equity premium,

risk-free rate and return volatility from the postwar US sample (1947Q2−2001Q2) reported in

Campbell (2018): µ− r = 7.39%, r = 0.72% and σ= 0.1598.

The numerical results are presented in Figure 4 for discount rate δ= 0.02 and risk aversion

coefficient γ = 3. We see that small amounts of entropy reduce the optimal portfolio very

significantly starting from the optimal Merton solution for the E = 0 boundary of the red dotted

line. The reduction in the portfolio weight reflects the combined effect of a reduction in the

average equity premium according to the worst-case belief distortion u∗ and the optimal negative
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intertemporal hedging demands due to adverse dynamics of investment opportunities. The

dynamics of the belief distortion and how the investor perceives investment opportunities are

driven by the optimal volatility g∗ of continuation entropy, which allows Nature to allocate

entropy in a state-dependent fashion. The fact that g∗ < 0 confirms the result in Propositions 1

and 2 that continuation entropy is countercyclical, so as to induce persistence in returns under

the worst-case measure and a positive correlation between returns and expected returns for

γ> 1. This is indeed a worst-case model misspecification for a risk-averse (γ= 3) investor, as it

precludes intertemporal hedging.
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Figure 4:

Notes: This figure plots the optimal investment strategy π∗, the optimal consumption wealth ratio c/W , the worst-case
belief distortion u∗, the entropy volatility g∗, the drift of entropy, and the detection-error probability with respect to
the continuation entropy. The parameters are δ= 0.02, γ= 3, µ− r = 0.0739, r = 0.0072, and σ= 0.1598.
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Because of the countercyclical dynamics of continuation entropy E , positive (negative) return

shocks reduce (increase) E , and as a result optimal investment π∗ and consumption wealth ratio

c/W increase (decrease), meanwhile the belief distortion u∗ decreases (increases), as the first

three panels of Figure 4 show.

Higher values of entropy, corresponding to a stronger preference for robustness, lead to a

lower consumption-wealth ratio and reflect a higher savings rate. This can be explained by two

economic forces. First, the concern for model misspecification reduces the endogenous return

on wealth for the agent. Since γ exceeds 1, the income effect dominates and the investor saves

more. Second, robustness strengthens the precautionary savings motive. The reduced demand

for the risky asset and the increased desire to save for precautionary reasons will of course help

to explain a high equity premium and a low risk-free rate.

Not only the volatility, but also the endogenous drift of continuation entropy are important

to understand the dynamics of the model. For the parameter values in Figure 4, the drift of

continuation entropy is positive, so that as time passes by we expect u∗ to drift up according to

the increase in E . However, for the parameter values in Figure 4, the magnitude of continuation

entropy volatility g∗ is much larger than the magnitude of its drift, resulting in considerable

randomness in the path of continuation entropy. Notice that both E = 0 and E = E are absorbing

barriers. In both cases, the volatility g∗ vanishes at the boundary. For E = 0, we have u∗ = 0 so

that the drift of E is zero as well. Similarly, the drift of E at E is E − 1
2 u2 = 0. Therefore, whenever

continuation entropy reaches either boundary, it stays there forever.

Our numerical analysis also illustrates the contrast between model ambiguity and model

misspecification further. The difference in results is clear in Figure 4 where the red dotted lines

graph the optimal portfolio weightπ∗, the optimal consumption-wealth ratio c̃∗, and the optimal

belief distortion u∗ for g = 0. The parameters are otherwise identical to the ones used for the

optimal g∗ solution. Model ambiguity has a substantially smaller effect on the optimal portfolio

share and optimal consumption than model misspecification does. It is also remarkable that

a given value of E corresponds to a larger (more pessimistic) belief distortion u∗ for the model

ambiguity case, and yet has a smaller effect on portfolio choice and savings behavior. This

highlights the importance of the state-dependence in u∗ for the model misspecification case.

For the model ambiguity case (g = 0), where the volatility of continuation entropy is zero, the

drift vanishes as well, due to the stationary solution. Therefore, continuation entropy remains

constant and all optimal strategies and worst-case belief distortions are constant as well. In sharp

contrast, for the model misspecification (optimal g∗) case, continuation entropy is dynamic,

inducing dynamic behavior for optimal strategies and worst-case belief. Belief distortions that

are constant have less of an impact on behavior, even when the constant distortions are currently

bigger. The state-dependence in u∗ when entropy is allocated optimally makes it more potent
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in harming the agent, as Nature finds the state-contingent model perturbation that matters

the most to the decision-maker. Furthermore, entropy drifts upwards, so that the agent fearing

model misspecification anticipates larger distortions in the future, while the currently higher

distortions with g = 0 stay constant and do not grow over time.

The last panel of Figure 4 plots the detection-error probabilities (see Appendix A.8), using

a sample length T corresponding to the postwar data in Campbell (2018) of T = 65 years, for

a given value of E . The model misspecification case with optimal g∗ results in substantially

higher detection-error probabilities than the case of model ambiguity (g = 0). Given 65 years of

observations, detection-error probabilities can be used to find a reasonable initial value for the

continuation entropy at time zero, i.e., E0, so that it is challenging to distinguish between the

worst-case belief and the objective data generating process. For γ= 3 a conservative detection-

error probability of 20% allows E0 = 0.04 when worried about model misspecification, but only

E0 = 0.02 when concerned about model ambiguity. This implies that the optimal portfolio weight

at time 0 in the former case is less than half the optimal weight in the latter. The potential impact

of model misspecification is therefore substantial. The same result obtains for the optimal

consumption-wealth ratio.

We close this example by noting that the more direct mapping from entropy E0 to detection-

error probabilities is another advantage of the continuation entropy approach, as it avoids the

extra steps that are otherwise required to infer the entropy that corresponds to a given worst-case

distortion for a penalty parameter value θ.

Figure 5 plots the case where γ= 5 and δ= 0.02. Relative to γ= 3 in Figure 4, all effects are

more pronounced, due to the higher risk aversion. The state-dependence of entropy, driven by

the optimal loading g∗ on the Brownian motion is more significant and reflects the stronger

preference for intertemporal hedging, and therefore greater fear of return persistence of the

more risk-averse investor. Similarly, the stronger precautionary savings motive reduces the

consumption-wealth ratio more relative to the no robustness case (E = 0 values on the red dotted

lines).

Figure 6 shows the effect of a higher discount rate, namely δ= 0.05 rather than δ= 0.02 as

in Figure 5. Not surprisingly, the less patient agent saves less and consumes more. Another

consequence of the higher rate of time preference is the higher drift of the entropy state variable.

As is clear from (12), when the drift of entropy is positive, a higher value of δ increases the drift.

This effect will be important for understanding the simulated entropy dynamics in the next

subsection, and especially in generating endogenous nonparticipation for sufficiently impatient

and risk-averse investors.

Finally, Figure 7 presents the results for the risk-tolerant γ= 0.8 investor. Four findings stand

out. First, the optimal consumption-wealth ratio increases relative to the Merton solution (E = 0).
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Figure 5:

Notes: This figure plots the optimal investment strategy π∗, the optimal consumption wealth ratio c/W , the worst-case
belief distortion u∗, the entropy volatility g∗, the drift of entropy, and the detection-error probability with respect to
the continuation entropy. The parameters are δ= 0.02, γ= 5, µ− r = 0.0739, r = 0.0072 and σ= 0.1598.

The reason is twofold. The substitution effect dominates the income effect for the risk-tolerant

investor, so that he consumes more, not less, when the return on wealth is reduced. Moreover,

the precautionary savings motive is relatively small and insufficient to trump the intertemporal

substitution effect. A second important result in Figure 7 is that indeed g∗ > 0 in this case.

A positive diffusion coefficient for entropy results in mean reversion for stock returns under

the worst-case model, rather than persistence, which would be required for the intertemporal

speculation that is desired by a γ< 1 investor. The resulting negative speculative demands reduce

the total optimal investment strategy below the Merton solution, with the reduction increasing
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Figure 6:

Notes: This figure plots the optimal investment strategy π∗, the optimal consumption wealth ratio c/W , the worst-case
belief distortion u∗, the entropy volatility g∗, the drift of entropy, and the detection-error probability with respect to
the continuation entropy. The parameters are δ= 0.05, γ= 5, µ− r = 0.0739, r = 0.0072 and σ= 0.1598.

in entropy. The lower optimal investment strategy also reflects a reduced myopic asset demand,

due to the diminished equity premium according to the worst-case belief distortion u∗. A third

finding in Figure 7 is that now the drift of entropy turns negative for higher values of entropy.

Unlike in the previous figures for γ> 1, for γ= 0.8 the difference in optimal investment strategy

between the case of model misspecification and model ambiguity seems smaller. This is not

surprising given that γ= 0.8 is much closer to log than the other cases, where the distinction

between model ambiguity and model misspecification blurs, as shown in Subsection 3.4.

In summary, the continuous-time model confirms and extends all results of the binomial tree

32



0 0.02 0.04 0.06 0.08 0.1
0

1

2

3

4

g optimal

g=0

0 0.02 0.04 0.06 0.08 0.1
0

0.01

0.02

0.03

0.04

0 0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

0.3

0.4

0 0.02 0.04 0.06 0.08 0.1
0

0.5

1

10
-3

0 0.02 0.04 0.06 0.08 0.1

-1

0

1
10

-4

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

Figure 7:

Notes: This figure plots the optimal investment strategy π∗, the optimal consumption wealth ratio c/W , the worst-case
belief distortion u∗, the entropy volatility g∗, the drift of entropy, and the detection-error probability with respect to
the continuation entropy. The parameters are δ= 0.03, γ= 0.8, µ− r = 0.0739, r = 0.0072 and σ= 0.1598.

intuition. The demand for the risky asset is substantially reduced due to the concerns for model

misspecification, and reflects both a pessimistic distortion of current investment opportunities

and a dynamic perception of investment opportunities. While the first effect also occurs with

model ambiguity, the second effect is novel and unique to model misspecification. A risk-averse

investor fears return persistence, as this means she cannot hedge intertemporally. A risk-tolerant

investor on the other hand fears mean reversion in stock returns, since it rules out intertemporal

speculation.
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4.2 Simulated Entropy Dynamics

We now turn to the simulated dynamics of continuation entropy E implied by the model, for the

parameter values considered in the previous subsection. We present the histogram for E from 105

simulated paths over 10 years and over 50 years under the pessimistic measure U. The entropy

state variable is initialized at E0 = 1
2 E , which corresponds to a very reasonable detection-error

probability of roughly 20% according to Figure 4. For moderate risk aversion (γ= 3) and time

discounting (δ= 0.02), all paths in Figure 8 end up in the interior of the domain of E after 10 years,

with optimal beliefs and portfolio and consumption decisions that are in between the extremes of

no misspecification concerns (E = 0) and the upper boundary E = E where zero investment in the

risky asset is optimal. However, when simulating paths for 50 years, Figure 8 shows that for γ= 3

roughly 10% of the paths end up at the absorbing barrier of E = 0 (expected utility), where the

investor ceases to be concerned with model misspecification or model ambiguity and embraces

expected-utility behavior with beliefs according to the benchmark model B. This happens

as a result of the investor experiencing a series of positive returns, which reduce the entropy

state variable to zero and make the investor’s pessimism fade away eventually. The behavior

exhibited by this investor can be viewed as consistent with the evidence in Malmendier and

Nagel (2011) of what they call the experience hypothesis, where risk-taking behavior is affected

by the investor’s personal experience in terms of the series of returns encountered by the investor.

As an alternative to explanations in the finance literature based on constant-gain learning (see

for instance Nagel and Xu (2022)), our model offers an intuitive explanation driven by pessimistic

beliefs due to model misspecification concerns rather than by learning. There are no paths in

Figure 8 that lead to E = E after 50 years, i.e., the other extreme where nonparticipation becomes

optimal after experiencing a long series of negative returns. For different parameter values we

will see that our model can generate nonparticipation endogenously, but first we show in more

detail the extent to which the past experience of the investor affects her behavior, through the

endogenous dynamics of the entropy state variable.

A first way to illustrate the experience hypothesis is to show the effect of early belief scarring

for an investor who experiences 1 year of very negative returns. In particular, to mimic the

experience of the "depression babies" of Malmendier and Nagel (2011), we subject the investor

described so far to 1 year of negative return shocks, namely such that the average return experi-

enced that year is 2 standard deviations below the mean, i.e., roughly −24%. After this disastrous

year, the investor faces the same simulated dynamics as the ‘non-depression’ normal investor.

The effect of the belief scarring is quite dramatic and long-lasting, in accordance with the experi-

ence hypothesis. Many more paths end up near the right-hand side limit of the state space than

for the normal agent, and fewer end up at E = 0. Even after 50 years, the belief scarring has not

disappeared and continues to affect beliefs and behavior.
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Figure 8:

Notes: This figure plots the histogram for the continuation entropy state variable E corresponding to 105 paths over 10
years and over 50 years in Monte Carlo simulations for the return shocks. The parameters are the same as in Figure 4
(δ= 0.02 and γ= 3). The entropy state variable is initialized at E0 = 1

2 E, except in the middle panels, where E0 = 0.3E

(low initial E0), and E0 = 0.7E (high initial E0). The agent who experienced negative shocks had a return on the risky
asset that is 2 standard deviations below the mean in the first year of the simulation, but otherwise experienced the
same return shocks as the normal agent in the next 50 years.

Second, the initial value for E also matters a great deal. We consider both the normal investor,

as well as the ’depression baby’, for E0 = 0.3E , and for E0 = 0.7E . The first case can be viewed

as an investor who is less concerned with model misspecification and who starts off with less

pessimism, the second case being a very pessimistic investor. One could interpret this as the

effect of prior belief scarring. Compared to the standard initialization of E0 = 1
2 E in the top

panels, the behavior is again very significantly impacted, even though the histogram represents
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the state variable half a century after the initialization. Investor heterogeneity in initial model

misspecification concerns and in preference for robustness leads to rich dynamics and a wide

cross-section of investor behavior, even after 50 years.

In the bottom 2 panels we zoom in on individual sample paths to understand the dynamics

of entropy near the boundaries. We report 10 randomly selected sample paths for E that reach

a threshold of either E = 0.01 (near E = 0) or E = 0.09 (near E = E). Whenever this threshold

is reached, we report the path. Because the threshold is reached at different times, the paths

have different length. The bottom left panel shows that the dynamics do allow very low entropy

to escape the lower boundary of E = 0. Near the upper boundary on the other hand, where

entropy is very high and the investor extremely pessimistic, it seems very difficult to overcome

the pessimism, and the entropy state variable exhibits a lot of persistence. The beliefs of these

investors seem to be stuck in a state of extreme pessimism. The strong persistence of extreme

pessimism is also apparent from the middle right panel of Figure 8, which shows, by the Markov

property, that when the state variable E reaches a high level 0.7E , the majority of paths for

entropy still result in very high levels of entropy, even after 50 years.

Finally, it is noteworthy that our model is also consistent with the finding in Malmendier and

Nagel (2011) that young investors with shorter life histories are more sensitive to recent returns

than older investors. The mechanism behind this in our model is that we assume that young

investor with short investment histories start their entropy state variable close to the initial value

E0 = 1
2 E , while older investors are very spread out in terms of entropy state variable according to

the histograms in Figure 8. The sensitivity of investors to recent returns is driven by g∗, which in

Figure 4 clearly has larger magnitude in the middle of the state space (where young investors are

likely to be) than near the edges (where old investors are more likely to be).

On the other hand, when γ = 0.8, both histograms in Figure 9 indicate stationarity of the

distributions, without any case of either expected-utility behavior or nonparticipation. The

reason for this finding is the mean-reverting drift of entropy for this case: as revealed in Figure 7,

the drift of entropy is positive for low values of the entropy state variable and negative for high

values, which drives the mean-reversion that explains the stationary distribution in this case.

There is much less evidence of behavior consistent with the experience hypothesis in this case,

and the effect of belief scarring is now very subdued, and essentially gone after 50 years.

For γ= 5 and δ= 0.1 in Figure 10 we find that a concern for model misspecification has the

potential to endogenously explain nonparticipation, in a model with homotheticity and without

relying on frictions. While only a handful of paths lead to nonparticipation for the ‘normal

investor’, the investor having experienced a negative first year does in roughly 10% of the cases

exit the equity market after 50 years. As discussed in Campbell (2018) and Gomes et al. (2021),

one of the challenging stylized facts documented in recent work on household finance is limited
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Figure 9:

Notes: This figure plots the histogram for the continuation entropy state variable E corresponding to 105 paths over 10
years and over 50 years in Monte Carlo simulations for the return shocks. The parameters are the same as in Figure
7 (δ = 0.03 and γ = 0.8). The entropy state variable is initialized at E0 = 1

2 E, except in the bottom panels, where

E0 = 0.3E (low initial E0), and E0 = 0.7E (high initial E0). The agent who experienced negative shocks had a return
on the risky asset that is 2 standard deviations below the mean in the first year of the simulation, but otherwise
experienced the same return shocks as the normal agent in the next 50 years.

stock-market participation, which is particularly hard to rationalize among wealthy households.

Based on household survey data, Dimmock et al. (2016) find a significant negative relationship

between stock market nonparticipation and their measure of ambiguity aversion.10 In our model

a concern for model ambiguity is not sufficient to generate the type of dynamics displayed in

Figures 10, because the belief distortion, as well as corresponding optimal behavior, is constant

in our setting with IID returns, so that nonparticipation cannot be generated endogenously as the

result of a succession of negative stock returns. In contrast, the case of model misspecification

can be interpreted as an investor who becomes increasingly pessimistic when experiencing a

string of negative return shocks. As investor’s continuation entropy increases due to a string of

negative shocks, it may eventually reach the upper boundary E = E , where the investor’s beliefs

10The effect of risk aversion on nonparticipation in their data is insignificant, or at least not significant in a robust
way.
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Figure 10:

Notes: This figure plots the histogram for the continuation entropy state variable E corresponding to 105 paths over
10 years and over 50 years in Monte Carlo simulations for the return shocks. The parameters are δ= 0.1 and γ= 5).
The entropy state variable is initialized at E0 = 1

2 E, except in the bottom panels, where E0 = 0.3E (low initial E0),

and E0 = 0.7E (high initial E0). The agent who experienced negative shocks had a return on the risky asset that is 2
standard deviations below the mean in the first year of the simulation, but otherwise experienced the same return
shocks as the normal agent in the next 50 years.

are sufficiently pessimistic to justify nonparticipation. Once continuation entropy reaches E ,

it stays there forever. The mechanism can be viewed as a dynamic version of the model of

Dow and Werlang (1992). It is important to point out that this only happens for sufficiently

high risk aversion combined with sufficient impatience (δ= 0.1). For more reasonable values

of the rate of time preference δ the drift of entropy is not sufficiently large for high values of

entropy to be able to reach the upper boundary E . Economically speaking, it is not surprising

that extreme parameter values as well as very pessimistic beliefs are required to endogenously

generate nonparticipation.11 In the final panel, where the entropy state variable is initialized

at a high value of E0 = 0.7E , exit and nonparticipation is optimal for almost half the ‘normal’

investors and almost all ‘depression’ investors.

11For even higher risk aversion and impatience, nonparticipation can happen sooner. For example with γ= 8 and
δ= 0.15, 60 % of normal agents end up not participating after 30 years. The reason for this is that higher δ increases
the positive drift of E .
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5 General Equilibrium Asset Pricing

In this section, we examine the general equilibrium implications of model misspecification. We

consider a Lucas economy in which the representative agent with Epstein-Zin preferences is con-

cerned about model misspecification. We show that the equilibrium interest rate, expected stock

return, and equity volatility are state-dependent. Moreover, model misspecification concerns

can generate excess volatility.

5.1 Set-up of the Lucas Economy

Consider an economy with a single Lucas tree. We assume that its dividend follows the dynamics

dct

ct
=µc d t +σc dBB

t , (51)

where µc and σc are constants. The equilibrium price P L of this Lucas tree is assumed to follow

dP L
t + ct d t

P L
t

=µL
t d t +σL

t dBB
t , (52)

whose expected return µL and volatility σL, together with the risk-free interest rate r will be

determined in equilibrium.

Consider a representative agent whose preference over consumption streams is described

by a continuous-time stochastic differential utility of the Kreps-Porteus and Epstein-Zin type.

Given a discount rate δ, relative risk aversion 0 < γ ̸= 1, and EIS 0 < ψ ̸= 1, the Epstein-Zin

aggregator F is F (c, v) ≡ δ c
1− 1

ψ

1− 1
ψ

(
(1−γ)v

)1− 1
ν −δνv , with ν = 1−γ

1− 1
ψ

(see, e.g., Duffie and Epstein

(1992)). The representative agent is concerned about model misspecification. The robust

Epstein-Zin preference for a consumption stream c is

U c
t = inf

u,g
EUt

[∫ ∞

t
F (cs ,U c

s )d s
]

, (53)

where nature controls u and g subject to the continuation entropy dynamics in (12).

Given P L and r , the representative agent invests and consumes with the optimal investment

strategy π∗ and the optimal consumption strategy c∗.

Definition 5.1. (r,µL ,σL ,π∗,c∗) is an equilibrium if

1. The financial market clears, i.e., π∗ ≡ 1;

2. The aggregate resource constraint holds, i.e., c∗ ≡ c.

39



5.2 Equilibrium Results

The following result summarizes the equilibrium quantities.

Proposition 5. Let V be a solution of (144) with boundary conditions (146) in the appendix. Then

the equilibrium expected return, volatility, and risk-free interest rate are given by

µL − r =γeff(σL)2, (54)

σL =
[ V ∂2

EEV

V ∂2
EEV + (ψ−1)(∂EV )2

]
σc , (55)

r =δ+ µc

ψ
− 1+ψ

2ψ
γeff(σL)2

− 1

ν

∂EV

V

[δ
2

(u∗)2 − g∗(u∗+σL)
]
− 1

2ν

[(
1+ ψ

ν

) (∂EV )2

V 2
− ∂2

EEV

V

]
(g∗)2, (56)

where γeff is the effective risk aversion in (27). When either γ,ψ> 1 or 0 < γ,ψ< 1, there is excess

volatility, i.e., σL >σc .

The results indicate several important implications of model misspecification concerns in

equilibrium asset pricing. The equilibrium equity premium is stochastic and state-dependent,

reflecting the state-dependent effective risk aversion, which acts as a generalized price of risk.

Recalling the equation for γeff from (27), the equilibrium equity premium in (54) has the following

decomposition:

µL − r = γ(σL)2 +u∗σL + 1−γ
δ

g∗
u∗ (σL)2. (57)

This shows that the equilibrium equity premium is the sum of three components: the traditional

price of risk γ(σL)2, the price of model ambiguity u∗σL , and finally the price of model misspecifica-

tion 1−γ
δ

g∗
u∗ (σL)2, which is proportional to g∗/u∗ the relative concern of model misspecification

versus model ambiguity. Moreover, the second and third terms are positive, implying a unam-

biguously higher equity premium due to model ambiguity as well as model misspecification

concerns.

Furthermore, for γ> 1 we expect the equilibrium Sharpe ratio to be countercyclical, reflecting

g∗ < 0. The subtle point is that the investor fears persistence in returns, and therefore invests

cautiously. Equilibrium returns must adjust in order to entice the investor to hold the Lucas tree.

As a result, equilibrium returns in fact mean-revert.

Turning to equilibrium volatility, the relationship in (55) can be rewritten, using (23) and (24),

as

σL = 1

1+ ψ−1
δ

g∗
u∗
σc . (58)

40



As a result, g∗ ̸= 0, due to model misspecification, plays a key role in driving a wedge between

return volatility σL and dividend (or consumption) volatility σc . This stands in sharp contrast

to the case of model ambiguity, which yields g∗ = 0 hence σL =σc . To generate excess volatility

in our model, we need either γ,ψ > 1 or 0 < γ,ψ < 1. In the former case, ψ > 1 and g∗ < 0;

in the later case, ψ < 1 and g∗ > 0. In both cases, (ψ−1)g∗
u∗ < 0, producing a factor exceeding

unity in front of σc in (58), hence σL >σc . In addition to driving a wedge between return and

consumption volatility, model misspecification also produces stochastic volatility, as the wedge

is state-dependent and stochastic.

The equilibrium risk-free interest rate also reflects the additional and novel effects of model

misspecification. The first two terms in (56) represent the effect on interest rates of impatience

and of growth combined with intertemporal substitution, and are of course standard in any

intertemporal macro model. The third term generalizes the usual precautionary savings motive,

to reflect the higher effective risk aversion due to model ambiguity as well as model misspecifica-

tion concerns. The second line in (56) reveals several additional terms, which are only present

when g∗ ̸= 0 and therefore uniquely due to model misspecification worries.

Finally another insight from (57) is that the agent’s pessimistic belief about the equilibrium

Sharpe ratio can be characterized as follows:

µL − r

σL
−u∗ =

[
γ+ 1−γ

δ

g∗

u∗
]

(σL). (59)

The gap between the baseline (objective) belief and the pessimistic belief about the equilibrium

Sharpe ratio is u∗, i.e., the price of model ambiguity. A novel result is that the pessimistic

assessment of the Sharpe ratio reflects the concern for model misspecification. Because (1−
γ)g∗ > 0 and σL >σc , the pessimistic assessment of the Sharpe ratio is always higher than γσc ,

which is the assessment of the Sharpe ratio in the setting with model ambiguity only. Of crucial

importance for conditional asset pricing are the dynamics of u∗ and g∗. Based on the findings

throughout the paper we expect u∗ to be countercyclical for γ> 1, but the equilibrium dynamics
g∗
u∗ are also expected to play a key role.

6 Conclusion

We show that model misspecification has profound effects on optimal asset allocation, dynamic

savings behavior, and equilibrium asset pricing. We use a two-period binomial tree, the simplest

possible dynamic model, to develop the analysis before extending to a general continuous-

time Merton problem. For non-myopic investors, model misspecification concerns induce

major changes in the optimal demand for the risky asset and in the consumption-savings policy
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function. When fearing that a baseline model of IID returns is misspecified, the robust solution

to the Merton problem involves a substantially lower myopic demand, combined with negative

intertemporal hedging demands for a risk-averse investor who fears return persistence, and

negative speculative demands for a risk-tolerant investor who fears that stock returns might

exhibit mean reversion. Our approach guarantees homotheticity and nests existing work on

robust portfolio decisions, highlighting the difference between model misspecification and

model ambiguity. Modelling entropy directly as an endogenous state variable also facilitates the

calibration based on detection-error probabilities. For sufficiently impatient and risk-averse

investors, our model can generate endogenous nonparticipation resulting from an increase

in model uncertainty concerns and corresponding pessimism after experiencing a string of

negative stock returns. Our model also generates belief scarring patterns, where investors who

have experienced very negative returns early on in their investing life carry this experience with

them for a long time. We are therefore able to offer an alternative explanation for the empirical

evidence of the experience hypothesis (Malmendier and Nagel (2011)). For patient investors,

a series of positive stock returns can result in the investor gradually overcoming uncertainty

aversion and eventually embracing expected-utility behavior.

We further unpack the additional contribution of our analysis relative to existing work, by

juxtaposing the effect of model misspecification on equilibrium asset pricing with the effect of

model ambiguity.
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A Appendix

This appendix contains the proofs of the lemmas and propositions, as well as more detail on the

derivation of the detection-error probabilities.

A.1 Proof of Lemma 1

The Lagrangian of the problem (4) is

L S = 1

1−γ
(
qS

{
W S

1

(
πS(H −R f )+R f

)}1−γ

+ (1−qS)
{
W S

1

(
πS(L−R f )+R f

)}1−γ )
+λS

(
qS ln

(
qS

p

)
+ (1−qS) ln

(
1−qS

1−p

)
−KS

)
, S ∈ {H ,L}. (60)

Conditioning on the up node at t = 1, the FOCs with respect to πH , qH , and λH are

∂L H

∂πH
=qH

{
W H

1

(
πH (H −R f )+R f

)}−γ
W H

1 (H −R f )

+ (1−qH )
{
W H

1

(
πH (L−R f )+R f

)}−γ
W H

1 (L−R f ) = 0, (61)

∂L H

∂qH
= 1

1−γ
({

W H
1

(
πH (H −R f )+R f

)}1−γ

−{
W H

1

(
πH (L−R f )+R f

)}1−γ )
+λH

(
1+ ln

(
qH

p

)
−1− ln

(
1−qH

1−p

))
= 0, (62)

∂L H

∂λH
=qH ln

(
qH

p

)
+ (1−qH ) ln

(
1−qH

1−p

)
−KH = 0. (63)
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Conditioning on the down node at t = 1, the FOCs with respect to πL , qL , and λL are

∂L L

∂πL
=qL

{
W L

1

(
πL(H −R f )+R f

)}−γ
W L

1 (H −R f )

+ (1−qL)
{
W L

1

(
πL(L−R f )+R f

)}−γ
W L

1 (L−R f ) = 0, (64)

∂L L

∂qL
= 1

1−γ
({

W L
1

(
πL(H −R f )+R f

)}1−γ

−{
W L

1

(
πL(L−R f )+R f

)}1−γ )
+λL

(
ln

(
qL

p

)
− ln

(
1−qL

1−p

))
= 0, (65)

∂L L

∂λL
=qL ln

(
qL

p

)
+ (1−qL) ln

(
1−qL

1−p

)
−KL = 0. (66)

The Lagrangian of the problem (6) is

L 0 =q0V1(W H
1 ,KH )+ (1−q0)V1(W L

1 ,KL)

+λ0

(
q0 ln

(
q0

p

)
+ (1−q0) ln

(
1−q0

1−p

)
+q0KH + (1−q0)KL −K

)
, (67)

where W H
1 =W0

(
π0(H −R f )+R f

)
and W L

1 =W0
(
π0(L−R f )+R f

)
.

The FOCs with respect to q0, KH , and KL are

∂L 0

∂q0
=V1(W H

1 ,KH )−V1(W L
1 ,KL)+λ0

(
ln

(
q0

p

)
− ln

(
1−q0

1−p

)
+KH −KL

)
= 0, (68)

∂L 0

∂KH
= q0

∂V1(W H
1 ,KH )

∂KH
+q0λ0 = 0, (69)

∂L 0

∂KL
= (1−q0)

∂V1(W L
1 ,KL)

∂KL
+ (1−q0)λ0 = 0. (70)

In (69), note that
∂V1(W H

1 ,KH )

∂KH
= ∂L H

∂KH
=−λH ,

at the optimum. Therefore, (69) implies that λH =λ0. Similarly, (70) implies λL =λ0. Therefore

λ0 =λL =λH .

The FOC with respect to π0 is

∂L 0

∂π0
= q0

∂V1(W H
1 ,KH )

∂π0
+ (1−q0)

∂V1(W L
1 ,KL)

∂π0
, (71)
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where

∂V1(W H
1 ,KH )

∂π0
=qH

{
W0

(
π0(H −R f )+R f

)(
πH (H −R f )+R f

)}−γW0(H −R f )
(
πH (H −R f )+R f

)
+ (1−qH )

{
W0

(
π0(H −R f )+R f

)(
πH (L−R f )+R f

)}−γW0(H −R f )
(
πH (L−R f )+R f

)
,

(72)

∂V1(W L
1 ,KL)

∂π0
=qL

{
W0

(
π0(L−R f )+R f

)(
πL(H −R f )+R f

)}−γW0(L−R f )
(
πL(H −R f )+R f

)
+ (1−qL)

{
W0

(
π0(L−R f )+R f

)(
πL(L−R f )+R f

)}−γW0(L−R f )
(
πL(L−R f )+R f

)
.

(73)

The FOC with respect to λ0 is

∂L 0

∂λ0
= ln

(q0

p

)
− ln

(1−q0

1−p

)
+KH −KL −K = 0. (74)

To determine qH ,KH ,πH , qL ,KL ,πL , q0,π0, we observe that

(61) ⇒qH
{(
πH (H −R f )+R f

)}−γ (H −R f )

+ (1−qH )
{(
πH (L−R f )+R f

)}−γ (L−R f ) = 0, (75)

(64) ⇒qL
{(
πL(H −R f )+R f

)}−γ (H −R f )

+ (1−qL)
{(
πL(L−R f )+R f

)}−γ (L−R f ) = 0, (76)

(68) ⇒ 1

1−γ
(
qH

{
W H

1

(
πH (H −R f )+R f

)}1−γ+ (1−qH )
{
W H

1

(
πH (L−R f )+R f

)}1−γ )
− 1

1−γ
(
qL

{
W L

1

(
πL(H −R f )+R f

)}1−γ+ (1−qL)
{
W L

1

(
πL(L−R f )+R f

)}1−γ )
+λ0

(
ln

(
q0

p

)
− ln

(
1−q0

1−p

)
+KH −KL

)
= 0, (77)

(71), (72), (73) ⇒q0

(
qH

{
W0

(
π0(H −R f )+R f

)(
πH (H −R f )+R f

)}−γW0(H −R f )
(
πH (H −R f )+R f

)
+ (1−qH )

{
W0

(
π0(H −R f )+R f

)(
πH (L−R f )+R f

)}−γW0(H −R f )
(
πH (L−R f )+R f

))
+ (1−q0)

(
qL

{
W0

(
π0(L−R f )+R f

)(
πL(H −R f )+R f

)}−γW0(L−R f )
(
πL(H −R f )+R f

)
,

+ (1−qL)
{
W0

(
π0(L−R f )+R f

)(
πL(L−R f )+R f

)}−γW0(L−R f )
(
πL(L−R f )+R f

))
= 0. (78)

Combining the previous 4 equations with (62), (63), (65), (66), and (74), we have 9 unknowns

and 9 equations.
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From (63) and (66), we can solve KH and KL . From (75) and (76), we obtain

πH = R f
(1−qH )−

1
γ (R f −L)−

1
γ −q

− 1
γ

H (H −R f )−
1
γ

(1−qH )−
1
γ (R f −L)1− 1

γ +q
− 1
γ

H (H −R f )1− 1
γ

, (79)

πL = R f
(1−qL)−

1
γ (R f −L)−

1
γ −q

− 1
γ

L (H −R f )−
1
γ

(1−qL)−
1
γ (R f −L)1− 1

γ +q
− 1
γ

L (H −R f )1− 1
γ

. (80)

Therefore, we have 5 unknowns qH , qL , q0,π0,λ0 and 5 equations.

Dividing (78) by W 1−γ
0 , we can rewrite it to

q0

(
qH

{(
π0(H −R f )+R f

)(
πH (H −R f )+R f

)}−γ (H −R f )
(
πH (H −R f )+R f

)
+ (1−qH )

{(
π0(H −R f )+R f

)(
πH (L−R f )+R f

)}−γ (H −R f )
(
πH (L−R f )+R f

))
+ (1−q0)

(
qL

{(
π0(L−R f )+R f

)(
πL(H −R f )+R f

)}−γ (L−R f )
(
πL(H −R f )+R f

)
+ (1−qL)

{(
π0(L−R f )+R f

)(
πL(L−R f )+R f

)}−γ (L−R f )
(
πL(L−R f )+R f

))= 0 (81)

The only W0 that remains is in the W1 terms in (62), (65), and (77). Therefore λ0 = λL = λH

is proportional in W 1−γ
0 . After factoring W 1−γ

0 from (62), (65), and (77), the 5 equations for

qH , qL , q0,π0, and λ0 are independent of W0, but still state dependent. In summary, these 5

equations are

1

1−γ
({

W H
1

(
πH (H −R f )+R f

)}1−γ−{
W H

1

(
πH (L−R f )+R f

)}1−γ )
+λ0

(
ln

(
qH

p

)
− ln

(
1−qH

1−p

))
= 0, (82)

1

1−γ
({

W L
1

(
πL(H −R f )+R f

)}1−γ−{
W L

1

(
πL(L−R f )+R f

)}1−γ )
+λ0

(
ln

(
qL

p

)
− ln

(
1−qL

1−p

))
= 0, (83)
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1

1−γ
(
qH

{
W H

1

(
πH (H −R f )+R f

)}1−γ+ (1−qH )
{
W H

1

(
πH (L−R f )+R f

)}1−γ )
− 1

1−γ
(
qL

{
W L

1

(
πL(H −R f )+R f

)}1−γ+ (1−qL)
{
W L

1

(
πL(L−R f )+R f

)}1−γ )
+λ0

(
ln

(
q0

p

)
− ln

(
1−q0

1−p

)
+qH ln

(
qH

p

)
+ (1−qH ) ln

(
1−qH

1−p

)
−qL ln

(
qL

p

)
− (1−qL) ln

(
1−qL

1−p

))
= 0,

(84)

q0

(
qH

{(
π0(H −R f )+R f

)(
πH (H −R f )+R f

)}−γ (H −R f )
(
πH (H −R f )+R f

)
+ (1−qH )

{(
π0(H −R f )+R f

)(
πH (L−R f )+R f

)}−γ (H −R f )
(
πH (L−R f )+R f

))
+ (1−q0)

(
qL

{(
π0(L−R f )+R f

)(
πL(H −R f )+R f

)}−γ (L−R f )
(
πL(H −R f )+R f

)
+ (1−qL)

{(
π0(L−R f )+R f

)(
πL(L−R f )+R f

)}−γ (L−R f )
(
πL(L−R f )+R f

))= 0, (85)

q0 ln

(
q0

p

)
+ (1−q0) ln

(
1−q0

1−p

)
+q0

(
qH ln

(
qH

p

)
+ (1−qH ) ln

(
1−qH

1−p

))
+ (1−q0)

(
qL ln

(
qL

p

)
+ (1−qL) ln

(
1−qL

1−p

))
= K , (86)

where W H
1 = W0(π0(H −R f )+R f ), W L

1 = W0(π0(L −R f )+R f ), and πH ,πL are given in (79) and

(80).

A.2 Proof of Proposition 1

First, we observe that

πH >πL ⇐⇒ qH > qL . (87)

If we replace both ‘ >′ in (87) by ′ ≥′, the previous equivalence also holds. To see this why (87)

holds, observe that qH > qL is equivalent to(
πH (H −R f )+R f

πH (L−R f )+R f

)−γ
= R f −L

H −R f

1−qH

qH
< R f −L

H −R f

1−qL

qL
=

(
πL(H −R f )+R f

πL(L−R f )+R f

)−γ
,

where the left and right equalities follow from equations (61) and (64). Then the previous

inequality is equivalent to

πH (H −R f )+R f

πH (L−R f )+R f
> πL(H −R f )+R f

πL(L−R f )+R f
,

which is further equivalent to πH >πL .
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To prove the statement of the proposition, we first show qH , qL < p. Suppose that qH ≥ p.

Then λH
(

ln qH
p − ln 1−qH

1−p

) ≥ 0. When γ > 1, the previous inequality and equation (62) imply

(πH (H −R f )+R f )1−γ ≥ (πH (L −R f )+R f )1−γ, which implies
R f −L
H−R f

1−qH
qH

≥ 1 thanks to equation

(61). However, the previous inequality implies H qH +L(1−qH ) ≤ R f , then R f ≥ L+ (H −L)qH ≥
L+ (H −L)p = H p +L(1−p), where the second inequality follows from the assumption qH ≥ p.

However, the previous inequality contradicts with the assumption H p +L(1−p) > R f . Hence we

conclude qH < p. When 0 < γ< 1, the inequality λ0
(

ln qH
p − ln 1−qH

1−p

)≥ 0 implies (πH (H −R f )+
R f )1−γ ≤ (πH (L−R f )+R f )1−γ thanks to equation (62) and 0 < γ< 1. The previous inequality also

implies
R f −L
H−R f

1−qH
qH

≥ 1 from equation (61). Then the remaining proof is the same as the γ > 1

case. In both cases, we have shown that qH < p. The proof of qL < p is similar.

Next, we prove πH ,πL > 0. Because qH < p, equation (62) implies πH (H −R f )+R f >πH (L−
R f )+R f in both γ> 1 and 0 < γ< 1 cases. Then the previous inequality implies πH > 0.

Let us now prove qL < qH when γ> 1. Suppose that qL ≥ qH , then (87) implies πL ≥πH . Then

the previous inequality, γ> 1, and πH ,πL > 0 yield

0 >(
πH (H −R f )+R f

)1−γ− (
πH (L−R f )+R f

)1−γ

≥(
πL(H −R f )+R f

)1−γ− (
πL(L−R f )+R f

)1−γ.
(88)

Due to the positive risk premium, π0 > 0, therefore W H
1 >W L

1 . As a result, the second inequality

in (88) and γ> 1 imply

1

γ−1
(W H

1 )1−γ
[(
πH (H −R f )+R f

)1−γ− (
πH (L−R f )+R f

)1−γ]
> 1

γ−1
(W L

1 )1−γ
[(
πL(H −R f )+R f

)1−γ− (
πL(L−R f )+R f

)1−γ].
(89)

The previous inequality, λ0 > 0, and equations (62), (65) combined imply

ln
qH

p
− ln

1−qH

1−p
> ln

qL

p
− ln

1−qL

1−p
. (90)

Recall that both qL and qH are less than p. The previous inequality implies qL < qH and contra-

dicts with the assumption qL ≥ qH .

When 0 < γ< 1, suppose that qL ≤ qH , then (87) implies πL ≤πH . Then the previous inequal-

ity, 0 < γ< 1, and πH ,πL > 0 yield

0 <(
πL(H −R f )+R f

)1−γ− (
πL(L−R f )+R f

)1−γ

≤(
πH (H −R f )+R f

)1−γ− (
πH (L−R f )+R f

)1−γ.
(91)
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Because W H
1 >W L

1 and 0 < γ< 1, the inequalities in (89) and (90) reversed. Because qH , qL < p,

then qH < qL which contradicts with the assumption qL ≤ qH . Therefore, qH < qL < p when

0 < γ< 1.

A.3 Proof of Lemma 2

The Lagrangian associated to problem (3) with the constraints (8) and (9) is

L = 1

1−γ
(
q0qH

{
W0

(
π0(H −R f )+R f

)(
πH (H −R f )+R f

)}1−γ

+q0(1−qH )
{
W0

(
π0(H −R f )+R f

)(
πH (L−R f )+R f

)}1−γ

+ (1−q0)qL
{
W0

(
π0(L−R f )+R f

)(
πL(H −R f )+R f

)}1−γ

+ (1−q0)(1−qL)
{
W0

(
π0(L−R f )+R f

)(
πL(L−R f )+R f

)}1−γ )
+λH

(
qH ln

(
qH

p

)
+ (1−qH ) ln

(
1−qH

1−p

)
+q0 ln

(
q0

p

)
+ (1−q0) ln

(
1−q0

1−p

)
−K

)
+λL

(
qL ln

(
qL

p

)
+ (1−qL) ln

(
1−qL

1−p

)
+q0 ln

(
q0

p

)
+ (1−q0) ln

(
1−q0

1−p

)
−K

)
. (92)

The FOCs with respect to q0, qH , qL are

∂L

∂q0
= 1

1−γ
(
qH

{
W0

(
π0(H −R f )+R f

)(
πH (H −R f )+R f

)}1−γ

+ (1−qH )
{
W0

(
π0(H −R f )+R f

)(
πH (L−R f )+R f

)}1−γ

−qL
{
W0

(
π0(L−R f )+R f

)(
πL(H −R f )+R f

)}1−γ

− (1−qL)
{
W0

(
π0(L−R f )+R f

)(
πL(L−R f )+R f

)}1−γ )
+ (λH +λL)

(
1+ ln

(
q0

p

)
−1− ln

(
1−q0

1−p

))
= 0, (93)

∂L

∂qH
= 1

1−γ
(
q0

{
W0

(
π0(H −R f )+R f

)(
πH (H −R f )+R f

)}1−γ

−q0
{
W0

(
π0(H −R f )+R f

)(
πH (L−R f )+R f

)}1−γ )
+λH

(
1+ ln

(
qH

p

)
−1− ln

(
1−qH

1−p

))
= 0, and (94)

∂L

∂qL
= 1

1−γ
(
(1−q0)

{
W0

(
π0(L−R f )+R f

)(
πL(H −R f )+R f

)}1−γ

− (1−q0)
{
W0

(
π0(L−R f )+R f

)(
πL(L−R f )+R f

)}1−γ )
+λL

(
1+ ln

(
qL

p

)
−1− ln

(
1−qL

1−p

))
= 0. (95)
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The FOCs with respect to π0,πH , and πL are

∂L

∂π0
=

(
q0qH

{
W0

(
π0(H −R f )+R f

)(
πH (H −R f )+R f

)}−γW0(H −R f )
(
πH (H −R f )+R f

)
+q0(1−qH )

{
W0

(
π0(H −R f )+R f

)(
πH (L−R f )+R f

)}−γW0(H −R f )
(
πH (L−R f )+R f

)
+ (1−q0)qL

{
W0

(
π0(L−R f )+R f

)(
πL(H −R f )+R f

)}−γW0(L−R f )
(
πL(H −R f )+R f

)
+ (1−q0)(1−qL)

{
W0

(
π0(L−R f )+R f

)(
πL(L−R f )+R f

)}−γW0(L−R f )
(
πL(L−R f )+R f

))= 0,

(96)

∂L

∂πH
=

(
q0qH

{
W0

(
π0(H −R f )+R f

)(
πH (H −R f )+R f

)}−γW0
(
π0(H −R f )+R f

)
(H −R f )

+q0(1−qH )
{
W0

(
π0(H −R f )+R f

)(
πH (L−R f )+R f

)}−γW0
(
π0(H −R f )+R f

)
(L−R f ) = 0,

(97)

∂L

∂πL
=(1−q0)qL

{
W0

(
π0(L−R f )+R f

)(
πL(H −R f )+R f

)}−γW0
(
π0(L−R f )+R f

)
(H −R f )

+ (1−q0)(1−qL)
{
W0

(
π0(L−R f )+R f

)(
πL(L−R f )+R f

)}−γW0
(
π0(L−R f )+R f

)
(L−R f ) = 0.

(98)

The two constraints (8) and (9) imply that qH = qL at optimum. We can conclude from (97) and

(98) that πH =πL .

These insights, together with (94) and (95), lead to the conclusion that λH and λL are propor-

tional to W 1−γ
0 . We introduce the notation q1 for both qH and qL and π1 for πH and πL , then we

can rewrite (96) as(
q0q1

{(
π0(H −R f )+R f

)(
π1(H −R f )+R f

)}−γ (H −R f )
(
π1(H −R f )+R f

)
+q0(1−q1)

{(
π0(H −R f )+R f

)(
π1(L−R f )+R f

)}−γ (H −R f )
(
π1(L−R f )+R f

)
+ (1−q0)q1

{(
π0(L−R f )+R f

)(
π1(H −R f )+R f

)}−γ (L−R f )
(
π1(H −R f )+R f

)
+ (1−q0)(1−q1)

{(
π0(L−R f )+R f

)(
π1(L−R f )+R f

)}−γ (L−R f )
(
π1(L−R f )+R f

))= 0 (99)

If we plug in (97) – coinciding with the first and third term – and (98) – coinciding with the second

and fourth term – then (99) is satisfied if π0 =π1.
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Finally, multiplying q1
q0

on both sides of (94) and 1−q1
1−q0

on both sides of (95), we obtain

1

1−γ
(
q1

{
W0

(
π0(H −R f )+R f

)(
πH (H −R f )+R f

)}1−γ

−q1
{
W0

(
π0(H −R f )+R f

)(
πH (L−R f )+R f

)}1−γ )
+λH

q1

q0

(
ln

(
qH

p

)
− ln

(
1−qH

1−p

))
= 0,

1

1−γ
(
(1−q1)

{
W0

(
π0(L−R f )+R f

)(
πL(H −R f )+R f

)}1−γ

− (1−q1)
{
W0

(
π0(L−R f )+R f

)(
πL(L−R f )+R f

)}1−γ )
+λL

1−q1

1−q0

(
ln

(
qL

p

)
− ln

(
1−qL

1−p

))
= 0.

Now combining the previous two equations with (93), we obtain

−
(
λH

q1

q0
+λL

1−q1

1−q0

)(
ln

(
q1

p

)
− ln

(
1−q1

1−p

))
+ (λH +λL)

(
ln

(
q0

p

)
− ln

(
1−q0

1−p

))
= 0,

which implies q0 = q1. This, combined with (8) and (9), implies that K1 = K /2.

A.4 Proof of Proposition 2

We present the proof for the γ > 1 case. The proof for the 0 < γ < 1 case is similar. Plugging

the decomposition (17) into (16) and cancelling W 1−γ/(1−γ) on both sides, we obtain the

equation (18). Because 1−γ < 0, supπ,c̃ infu,g in (16) is transformed into infπ,c̃ supu,g in (18)

when W 1−γ/(1−γ) is cancelled on both sides of (16).

For the left boundary condition of V , as we discuss in the main text, both u∗ and g∗ are zero

when E = 0. In this case, the problem (13) is reduced to a standard Merton’s problem without

model ambiguity. The equation (18) is transformed into

δV = inf
π,c̃

{
δc̃1−γ+ (1−γ)[r +π(µ− r )− c̃]V + 1

2
(−γ)(1−γ)π2σ2V

}
,

where the optimal π∗ is π∗ = µ−r
γσ2 and c̃∗ satisfies (22). The previous equation admits an explicit

solution given in (19).

When E = E , u∗ reaches its maximum value u = µ−r
σ and g∗ is chosen to be zero so that E

stays lower than E . In this case, (18) is reduced to

δV = inf
c̃

{
δc̃1−γ+ (1−γ)[r − c̃]V

}
, (100)

51



which has an explicit solution (20).

When ∂EV > 0, the first order condition of u in (18) yields (23). When ∂2
EEV < 0, the first order

condition of g in (18) implies (24). Plugging (23) and (24) into (18), the optimization of π in (18)

is

(1−γ)(µ− r )V π+ (1−γ)2σ2

2δ

V 2

∂EV
π2 − (1−γ)2σ2

2

(∂EV )2

∂2
EEV

π2 − γ(1−γ)

2
σ2V π2.

When the second-order condition

(1−γ)2

δ

V 2

∂EV
− (1−γ)2 (∂EV )2

∂2
EEV

−γ(1−γ)V > 0 (101)

is satisfied, then the optimal investment strategy π∗ is given in (21). Note that the previous

second-order condition holds thanks to γ> 1, V > 0, and the assumption ∂EV > 0 and ∂2
EEV < 0.

A.5 Derivation of equation (29)

For the optimized value E∗ = E∗(W,θ), we have from (28) that

V (W,E∗) =V̂ (W,θ)−E∗θ,

∂E V (W,E∗) =−θ, ∂W V (W,E∗) = ∂W V̂ (W,θ),

∂2
W W V̂ (W,θ) =∂2

W W V (W,E∗)+∂2
W E V (W,E∗)∂W E∗ = ∂2

W W V (W,E∗)−
(
∂2

W E V (W,E∗)
)2

∂2
EE V (W,E∗)

.

(102)

Meanwhile, note that

inf
g

{
1
2W 2π2σ2∂2

W W V + 1
2 g 2∂2

EE V +Wπσg∂2
EW V

}
=1

2W 2π2σ2
{
∂2

W W V − (∂2
W E V )2

∂2
EE V

}
=1

2W 2π2σ2∂2
W W V̂ ,

(103)

where the minimizer is

g =−Wπσ
∂2

W E V

∂2
EE V

. (104)

Plugging (102) and (103) into the HJB equation (16) where E = E∗, we obtain (29).
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A.6 Proof of Proposition 4

It follows from dynamic programming that the value function Ṽ in (37) satisfies the following

HJB equation

δṼ = sup
π,c̃

inf
u

{
δU (W c̃)+W ∂W Ṽ

[
r +π(µ− r −σu)− c̃

]+∂E Ṽ
(
δE − δ

2 |u|2
)+ 1

2W 2π2σ2∂2
W W Ṽ

}
,

(105)

where c̃ = c/W . Similar to (17), Ṽ admits the following homothetic decomposition

Ṽ (E ,W ) = W 1−γ

1−γ Ṽ (E). (106)

Plugging this decomposition into (105), we obtain the following equation for Ṽ :

δṼ = inf
π,c̃

sup
u

{
δc̃1−γ+(1−γ)Ṽ

[
r +π(µ−r −σu)− c̃

]+∂E Ṽ
(
δE − δ

2 |u|2
)− 1

2γ(1−γ)Ṽ π2σ2
}

, (107)

when γ> 1, and infπ,c̃ supu is replaced by supπ,c̃ infu when 0 < γ< 1.

The first-order condition of u in (107) yields

ũ∗ =− (1−γ)σṼ

δ∂E Ṽ
π∗. (108)

The first-order condition in π and the previous equation combined yield

π̃∗ = µ− r

σ2
(
γ− (1−γ)Ṽ

δ∂E Ṽ

) . (109)

The first-order condition in c̃ yields

c̃∗ = δ 1
γ Ṽ

− 1
γ . (110)

Plugging these three first-order conditions into (107), we obtain

c̃∗ = 1

γ

[
δ− (1−γ)r − 1−γ

2
(
γ− (1−γ)Ṽ

δ∂E Ṽ

) (µ− r )2

σ2
−E

δ∂E Ṽ

Ṽ

]
. (111)

For a stationary solution, E remains a constant. Therefore Ṽ and ∂E Ṽ only take single value

Ṽ (E) and ∂E Ṽ (E), respectively. Introduce

θ(E) =− (1−γ)Ṽ

δ∂E Ṽ
. (112)
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We obtain (43) and (44) from (108) and (109). Combining (39) and (43), we obtain (46). Finally

(45) follows from (46) and (111).

The proof for the problem (40) is similar. We sketch it below. It follows from dynamic

programming that V̌ in (40) satisfies the following HJB equation

δV̌ = sup
λ,π,č

inf
u

{
δU (W č)+W ∂W V̌

[
r +π(µ−r −σu)− č

]+ 1
2W 2π2σ2∂2

W W V̌ +λδ(1
2 |u|2−κ

)}
. (113)

Define V̌ via V̌ = W 1−γ
1−γ V̌ . The first order conditions of π and u in (113) yield

π̌∗ =µ− r

σ2

1

γ+ W 1−γV̌
λ∗δ

, (114)

ǔ∗ =µ− r

σ

W 1−γV̌
λ∗δ

γ+ W 1−γV̌
λ∗δ

. (115)

Because we consider κ< 1
2

(µ−r
σ

)2, the constraint (41) is binding. Otherwise, λ∗ = 0 and ǔ∗ = µ−r
σ

from (115), which violates the constraint 1
2 |ǔ∗| ≤ κ.

Denote θ = W 1−γV̌
λ∗δ . Combining (115) and 1

2 |ǔ∗|2 = κ, we obtain θ = θ(κ) which satisfies (47).

This implies

λ∗ = W 1−γV̌
δθ(κ)

,

hence λ∗ and also V̌ are homothetic in W . Finally, plugging (114) and (115) back into the HJB

equation (113), we obtain

č∗ = 1

γ

[
δ− (1−γ)r − (1−γ)γ

2(γ+θ(κ))2

(µ− r )2

σ2

]
.

A.7 Non-Stationary solution with model ambiguity

Consider the problem (37) subject to the budget constraint (14) and the dynamics of continuation

entropy E in (38). Here we do not restrict the drift of E to be zero. In this case, the function Ṽ ,

defined via (106), satisfies the HJB equation (107) with the same boundary conditions (19) and

(20). The first order conditions in u,π, and c̃ from (107) are (108), (109), and (110). Plugging

these first order conditions into (107), we obtain

δ= γδ 1
γ Ṽ

− 1
γ + r (1−γ)+E

δ∂E Ṽ

Ṽ
+ 1

2
(1−γ)

(µ− r )2

σ2

1

γ− (1−γ)Ṽ

δ∂E Ṽ

. (116)
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To simplify notation, let us introduce

A =δ∂E Ṽ

Ṽ

c =δ− r (1−γ)−γδ 1
γ Ṽ

− 1
γ

b =(1−γ)E − 1

2
(1−γ)

(µ− r )2

σ2
+γc.

Then equation (116) is transformed to

c = AE + 1

2
(1−γ)

(µ− r )2

σ2

A

γA− (1−γ)
. (117)

For given value of Ṽ , the previous equation is quadratic in A

γE A2 −b A+ (1−γ)c = 0. (118)

When γ> 1, we have ∂E Ṽ > 0, hence we look for a positive solution of the previous quadratic

equation.

A = b ±√
b2 −4Eγ(1−γ)c

2γE
. (119)

Using (119) and the boundary conditions (19) and (20), we can iteratively solve Ṽ and ∂E Ṽ

for E ∈ (0,E ). Using the same parameters as in Figure 4, a numeric example of the non-stationary

solution is shown in Figure 11. The lower right panel shows that the drift of entropy is negative for

small values of E and becomes positive when E crosses a threshold E∗ (around 0.017). Therefore,

if E starts from E0 < E∗, the negative drift of E leads the entropy to zero and the investor

eventually becomes a Merton investor; if E starts from E0 > E∗, the positive drift of E leads

the entropy to E and the investor eventually stops holding the risky asset; only when E0 = E∗,

is the drift of E zero, and does E remain constant. In this case, the non-stationary solution

agrees with the stationary solution. The consumption-wealth ratios are similar between the

non-stationary solution and the stationary solution, even though the ratio in the non-stationary

case is marginally smaller.

A.8 Detection-error probabilities

A central idea in Anderson et al. (2003) is that to discipline the amount of entropy to a reasonable

quantity, the agent is only willing to consider alternative models that are statistically difficult

to distinguish from the baseline model. To quantify the difficulty of distinguishing alternative

models from the baseline model, Anderson et al. (2003) introduce the detection-error probability
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Figure 11:

Notes: This figure plots the worst-case belief distortion u∗, the optimal investment strategy π∗, the optimal con-
sumption wealth ratio c/W , and the drift of entropy for both the non-stationary and the stationary solutions of the
ambiguity-averse problem. The parameters are δ= 0.02, γ= 3, µ− r = 0.0739, r = 0.0072, and σ= 0.1598.

for a given time horizon T (see also Maenhout (2006)):

ψ(E) = 1
2P

B(log ZT > 0)+ 1
2P

U(log ZT < 0), (120)

where ZT is defined in (10) with ut = u∗(Et ) therein. The quantityPB(log ZT > 0) is the probability

that the agent mistakenly identifies the alternative modelU rather than the baseline model B and

the quantity PU(log ZT < 0) is the probability of misidentifying B rather than U.12 Both these two

probabilities contribute equal weight in the definition (120). Anderson et al. (2003) propose that

a reasonable initial value of the entropy budget at time zero is the value of E whose associated

detection-error probability ψ(E) is less than 10%.

To identify the detection-error probability ψ(E), we define

ψB(t ,E , Z ) =PB(log ZT > 0 |Et = E , Zt = Z ) and ψU(t ,E , Z ) =PU(log ZT < 0 |Et = E , Zt = Z ).

(121)

Then the detection-error probability in (120) is identified as ψ(E) = 1
2ψB(0,E ,1)+ 1

2ψU(0,E ,1).

We characterize ψB and ψU as solutions to two partial differential equations with two spatial

12When Z ≡ 1, i.e., B andU are the same, we set both probabilities to 0.5 so that distinguishing B andU is a random
guess.
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variables in Proposition 6 later in this section and numerically solve them to obtain the detection-

error probability and the range of reasonable values for the initial entropy budget.

In the case of model ambiguity only, i.e., when g = 0, u = p
2E , and the detection-error

probability has the closed-form expression

ψg=0(0,E ,0) = 1

2
ψ

g=0
B

(0,E ,0)+ 1

2
ψ

g=0
U

(0,E ,0) = 1

2
Φ

(
− 1

2
u
p

T
)
+ 1

2

(
1−Φ

(1

2
u
p

T
))

. (122)

To identify the detection-error probability ψ(E), we introduce xt = log Zt . It follows the

dynamics

d xt =−1
2 |u∗

t |2d t −u∗
t dBB

t = 1

2
|u∗

t |2d t −u∗
t dBU

t , (123)

where u∗ is given in (23). The detection-error probabilities in (121) are

ψB(t ,E , x) =PB(xT > 0 |Et = E , xt = x) and ψU(t ,E , x) =PU(xT < 0 |Et = E , xt = x).

The following result characterizes ψB and ψU via two partial differential equations with two

spatial variables.

Proposition 6. ψB is the solution of the PDE

∂tψB+ 1
2 g 2∂2

EEψB+ 1
2 u2∂2

xxψB−ug∂2
xEψB+

(
δE + g u − δ

2 u2)∂EψB− 1
2 u2∂xψB = 0, (124)

with the terminal condition

ψB(T,E , x) = 1{x>0} +0.5×1{x=0}. (125)

and boundary conditions

ψB(t ,E ,−∞) =0, (126)

ψB(t ,E ,∞) =1, (127)

ψB(t ,0, x) =1{x>0} +0.5×1{x=0}, (128)

ψB(t ,E , x) =Φ
(x − (µ−r )2

2σ2 (T − t )
µ−r
σ

p
T − t

)
. (129)

ψU is the solution of the PDE

∂tψU+ 1
2 g 2∂2

EEψU+ 1
2 u2∂2

xxψU−ug∂2
xEψU+

(
δE − δ

2 u2)∂EψU+ 1
2 u2∂xψU = 0, (130)

57



with the terminal condition

ψU(T,E , x) = 1{x<0} +0.5×1{x=0}, (131)

and boundary conditions

ψU(t ,E ,−∞) =1, (132)

ψU(t ,E ,∞) =0, (133)

ψU(t ,0, x) =1{x<0} +0.5×1{x=0}, (134)

ψU(t ,E , x) =PB
(
N > x + 1

2 u2(T − t )

u
p

T − t

)
= 1−Φ

(x + 1
2 u2(T − t )

u
p

T − t

)
. (135)

Proof. Recall that E follows the dynamics

dEt =δEt d t − δ
2 u2

t d t + g t dBU
t

=δEt d t + (
g t ut − δ

2 u2
t

)
d t + g t dBB

t .

The differential equation (124) follows from the standard Feynman-Kac formula. For the bound-

ary conditions, it is natural to set (126) and (127) given the definition of ψB in (121). When E = 0,

u∗ = 0, then x remains the same as its initial value. As a result, we choose (128) as the boundary

condition. When E = E , u∗ = µ−r
σ

. Then xT = xt − 1
2 (u∗)2(T − t )−u∗(BB

T −BB
t ).

ψB(t ,E , x) =PB
(
x − 1

2 (u∗)2(T − t )−u∗(BB
T −BB

t ) > 0
)
=PB

(
N < x−1

2 (u∗)2(T−t )

u
p

T−t

)
, (136)

where N is a standard normal random variable.

The proof of the equation for ψU is similar.

A.9 Proof of Proposition 5

We conjecture µL ,σL, and r as functions of the state variable r . We will prove this conjecture

later. The value function V of the representative agent is

V (Wt ,Et ) = sup
π,c

inf
u,g
EUt

[∫ ∞

t
F

(
cs ,V (Ws ,Es)

)
d s

]
.

The homothetic property of the Epstein-Zin aggregator implies the decomposition (17) for a

function V depending on E only. Following the same argument as in the proof of Proposition 2,
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when γ> 1, V satisfies

δνV = inf
π,c̃

sup
u,g

{
δνc̃1− 1

ψ V 1− 1
ν + (1−γ)[r +π(µL − r −σLu)− c̃]V + (

δE − δ
2 |u|2

)
∂EV

− 1
2γ(1−γ)π2(σL)2V + 1

2 g 2∂2
EEV + (1−γ)πσL g∂EV

}
.

(137)

When 0 < γ< 1, infπ,c̃ supu,g is replaced by supπ,c̃ infu,g The first order condition in c̃ yields

c̃∗ = δψV −ψ
ν . (138)

The optimal π∗, u∗, and g∗ are the same as in (21), (23), and (24) with µ and σ therein replaced

by µL and σL .

The portfolio choice (21) with µ = µL and σ = σL therein combined with capital market

clearing π∗ = 1 produces the CCAPM result (54)

From the consumption market clearing and (138),

ct = c̃∗t Wt = δψV −ψ
ν Wt

Applying Itô’s formula on the right-hand side, yields

dc∗t
c∗t

=−ψ
ν

∂EV

V
dE + ψ

2ν

[(
1+ ψ

ν

) (∂EV )2

V 2
− ∂2

EEV

V

]
(dE)2 + dW

W
− ψ

ν

∂EV

V

dW

W
dE . (139)

Using the dynamics of wealth and entropy under B, combined with capital market clearing

π∗ = 1 and the CCAPM result (54), we can determine all endogenous equilibrium outcomes.

First, matching the volatility terms from the previous equation with the volatility of the Lucas

tree dividend, we find

σL =σc + ψ

ν

∂EV

V
g∗. (140)

Using this in (24) with σ=σL therein, again invoking financial market clearing π∗ = 1 results in

g∗ =−(1−γ)
[∂2

EEV

∂EV
+ (ψ−1)

∂EV

V

]−1
σc . (141)

Combining the previous two equations, we confirm (55).

Collecting the drift terms in (139), using again π∗ = 1 and the CCAPM result (54), we find

µc =− ψ

ν

∂EV

V

(
δE − δ

2 (u∗)2 + g∗u∗)+ ψ

2ν

[(
1+ ψ

ν

) (∂EV )2

V 2
− ∂2

EEV

V

]
(g∗)2

+ r +γeff(σL)2 − c̃∗− ψ

ν

∂EV

V
g∗σL .

(142)
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Financial market clearing π∗ = 1 and the CCAPM relation (54) also allow us to rewrite the

HJB equation (137) to find the optimal consumption-wealth ratio c̃∗ as

c̃∗ =ψ
[
δ−

(
1− 1

ψ

)
r − 1

2

(
1− 1

ψ

)
γeff(σL)2 − δ

ν
E
∂EV

V

]
. (143)

The last two equations can now be combined to get the expression for the equilibrium risk-free

interest rate in (56).

Plugging (56) into (143) and using (138) on the left-hand side, we obtain that V satisfies the

equation

δψV −ψ
ν

ψ−1
= 1

ψ−1
δ− µc

ψ
+ 1

2ψ
γeff(σL)2

+ 1

ν

∂EV

V

[δ
2

(u∗)2 − g∗(u∗+σL)− δψ

ψ−1
E

]
+ 1

2ν

[(
1+ ψ

ν

) (∂EV )2

V 2
− ∂2

EEV

V

]
(g∗)2.

(144)

To specify the boundary conditions for (144), we specify the value of V when E = 0 or E = E

for some large value of E . When E = 0, u∗ = g∗ = 0. When E = E , we specify the value of V by

setting g∗ = 0 there. It then follows from (43) and (46) that u∗(E) = µL−r
σL

θ(E)
γ+θ(E)

=
√

2E , for some

θ(E). Combining the previous equation with the CCAPM relation µL − r = (σL)2(γ+θ(E)), we

obtain θ(E) =
p

2E
σL . In both cases, V satisfies the following equation at the boundary

δνV = inf
π,c̃

{
δνc̃1− 1

ψ V 1− 1
ν + (1−γ)

[
r +π(µL − r −σLu∗)− c̃

]
V − 1

2
γ(1−γ)π2(σL)2V

}
. (145)

The first order condition in c̃ yields c̃∗ = δψV −ψ
ν . Following the same argument as in (140), we

obtain σL =σc . The same argument leading to (54) and (56) yields

µL − r =γeff(σL)2

r =δ+ µc

ψ
− 1+ψ

2ψ
γeff(σL)2,

where γeff = γ when E = 0 and γeff = γ+θ(E) when E = E . Plugging the previous two equations

and the expressions of c̃∗ and σL into (145), we obtain the boundary conditions

0 = 1

ψ−1
δψV −ψ

ν + δ

1−ψ + µc

ψ
+ ψ−1

2ψ
γeff(σc )2 −σc u∗− γ

2
(σc )2, (146)
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where u∗ = 0 and γeff = γ for E = 0 and u∗ =
√

2E and γeff = γ+θ(E) for E = E .

The claim about σL >σc is proved in the discussion after (58).
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