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Abstract

We estimate a structural model of equity and credit options using data on index default swap and

physical equity index volatility. The model predicts reasonable time-series of level, skew, and term-

structure of equity- and credit-index implied volatilities out-of-sample. Furthermore, the model pre-

dictions for option expected returns closely match empirical estimates. Decomposing returns into

asset, variance, and jump risks, we study the sources of risk-return compensation in both derivative

markets. Credit-index option expected returns are higher in absolute terms and depend more on

variance risk than their equity counterparts which are primarily impacted by systematic asset and

jump risks.
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1 Introduction

Option returns have been a matter of debate for the last two decades. There are (at least)

two facets to this discussion. The first relates to the magnitude of returns: are high returns

evidence of mispricing? Another side of the debate relates to the sources of high option returns:

what additional sources of risk drive their magnitude? We seek to broaden this discussion by

asking whether option prices and expected returns across multiple index derivatives and underlying

markets can be jointly reconciled within a structural option pricing model, while also attributing

returns to the relevant sources of risk.

A starting point for the debate can be found in the S&P 500 (SPX) option literature with

Bondarenko (2014), who documents strikingly high returns to writing put options and argues

that these indicate mispricing.1 Subsequent work by Broadie, Chernov, and Johannes (2009) calls

into question the interpretation that options are mispriced on the basis of these high returns and

highlight the importance of jump and volatility risk premia. Building on Broadie, Chernov, and

Johannes (2009), Chambers, Foy, Liebner, and Lu (2014) argue, in the same setting but with a

longer sample, that put returns are too low to be explained by standard option pricing models

after all.2 On top of the seemingly conflicting results on SPX option returns, which has been

the primary focus of the literature to date, our knowledge about the prices and returns in other

derivative markets and their consistency across markets is still very limited.3

Our contribution is to revisit both the question of mispricing and the sources of expected

1An earlier important paper is Coval and Shumway (2001) who study option returns and conclude that additional
risk factors such as variance risk are likely required to explain their levels.

2Other contributions to the broader option returns literature include Israelov and Kelly (2017) who document
that state-of-the-art a�ne pricing models produce counterfactual expected return predictions. Goyal and Saretto
(2022) use a reduced form statistical factor model to conclude that options strategies predicated on mispricing do
not seem eo generate abnormal returns.

3For seminal contributions on derivative prices and returns in other markets, see Cheng (2018) and Eraker and
Wu (2017), who study VIX futures. Another notable exception is Collin-Dufresne, Junge, and Trolle (2021) who
analyze the pricing consistency of S&P 500 equity and CDX credit options in part by considering returns. Carr
and Wu (2011) study the link between credit default swaps and out-of-the money put prices. Culp, Nozawa, and
Veronesi (2018) investigate the relation between index put options, treasuries, and corporate bond credit spreads.
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return in two derivative markets simultaneously - those for SPX index options and CDX credit

index options. Studying these two markets simultaneously is important for two reasons. First, it

allows us to contribute to the extant literature on the SPX options market which, while abundant,

still lacks a consensus on these questions. Second, we provide new findings for the CDX market

where evidence on option prices is scarce and that on returns virtually non-existent.4 Studying the

link between these two markets is particularly important given recent evidence in Collin-Dufresne,

Junge, and Trolle (2021) who find that SPX and CDX option prices are hard to reconcile. This

result is striking given a significant body of work suggesting a close link between various other

credit instruments and equity options.5

Figure 1 summarizes our main finding. It shows that our model does a very good job at

predicting the cross-section of average historical excess return of the two underlying indices and

their derivatives. This is particularly striking given that the model is estimated without using

any option price data, and our sample include two crisis periods. Yet, the model is able to match

observed patterns in excess returns fairly closely out-of-sample in the two option markets and

across contracts.

In order to produce our results, we evaluate a structural credit and equity option pricing model

which jointly and consistently links equity and credit index prices via the unlevered asset return and

variance dynamics of their constituents. It also endogenously relates prices and returns on equity

and credit indices with those on their options. The model allows firms’ unlevered assets to exhibit

priced common jumps and stochastic volatility. Our estimation uses as inputs credit index term

structures and physical equity index volatility. The model fits both of these very well in-sample.6

Given the estimated parameters and filtered state variables, we obtain time series of predicted

implied volatility surfaces for equity and credit options contemporaneously out-of-sample. Our

4One exception is Collin-Dufresne, Junge, and Trolle (2021) who provide evidence on the magnitude of straddle
returns in equity and credit index markets.

5See, among others, Cremers, Driessen, and Maenhout (2008), Culp, Nozawa, and Veronesi (2018), Carr and
Wu (2011), Collin Dufresne, Goldstein, and Yang (2012), and Cao, Goyal, Xiao, and Zhan (2022).

6By construction, SPX return volatility and 5-year CDX spread are taken to be observed without error. For the
other CDX tenors, the errors are about 10-15% of the spread.
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Figure 1: Historical Average and Model Expected Excess Returns: Indices and Options
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Notes: This figure presents the scatter plot of the model-implied returns versus their empirical
counterparts. The empirical market returns are computed as the average return for each index
and option during our sample. The sample period is from June 2004 to December for S&P 500
index and its options. The sample period for CDX index and its options is from March 2012 to
December 2020. For each of the options, we compute the returns of at-the-money contracts. The
CDX index returns are for the five-year maturity CDX index.
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model then allows us to compute expected measures of risk and return for underlyings and options

in both markets. The structural nature of our framework also provides us with a decomposition

of model-predicted returns into components that relate to unlevered market risk, in addition to

systematic variance and jump risks.

We first assess our model’s ability to predict levels and time series of option prices in the two

markets. We do so without resorting to options data in the estimation, and find that implied

volatilities for both credit and equity index options are jointly well explained by our model across

most levels of moneyness and time to maturity.

Consider SPX options first. The model’s performance in predicting average at-the-money im-

plied volatility term structures is good overall, with a slight underestimation for one month out-

of-the-money put options. For one, three and six months to expiration, average market (model)

at-the-money implied volatilities are respectively 17.0% (16%), 17.2% (17.1%) and 18.3% (17.5%).

The model also correctly predicts the average slope of the term structure of implied volatilities

being downward sloping for out-of-the money options and upward sloping for others. In the mon-

eyness spectrum, model implied volatility skews replicate observed smiles accurately, particularly

so for three and six months to maturity options. In the time-series, the correlations between data

and model implied volatilities are higher than 80% across the board.7

When it comes to CDX options, the ability to explain skews and term structures of implied

volatilities out-of-sample is qualitatively and quantitatively similar to the equity index option

case. For one, three and six months to expiration, average market (model) at-the-money implied

volatilities are respectively 45.2% (47.3%), 47.1% (49.3%), and 49.4% (46.7%). Note that for the

CDX options, term structures are on average positively sloped regardless of moneyness, in fact

steeper for out-of-the-money options. The time series correlations for CDX options are slightly

lower than for SPX options (correlations are 77%, 71%, and 56% respectively for one, three and

six month at-the-money implied volatilities). This small di↵erence compared to the SPX option

7This performance is not merely an artefact of having fitted the physical volatility perfectly. The correlation
between data and model volatility premia are in the range of 55 % to 80% depending on option expirations.
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fit is to be expected as credit spread index volatility is not an input to the estimation whereas the

physical equity index volatility is.

To produce expected return predictions, information about physical and risk-neutral dynamics

is required to back out risk premium estimates which, combined with exposures, define return

compensations. In addition to fitting CDX index prices across tenors and time, our model is tasked

with matching the level and time series of the physical volatility of the SPX index. Combined,

these data allow us to identify both model physical and risk-neutral dynamics. To gauge the

reasonableness of estimated parameters over and beyond pricing performance, we also consider

physical quantities such as cumulative default probabilities, leverage ratios, and asset Sharpe

ratios. Overall, we find that the model matches these metrics well.8

Given these encouraging findings, we then proceed to examine average option excess returns,

as well as those for their underlyings. Echoing Broadie, Chernov, and Johannes (2009), we find

that realized SPX option returns, while high, do not appear to suggest any mispricing - average

realized excess returns line up well with model predicted return levels, as illustrated in Figure

1. A key novel contribution we make is to show that this is also true for credit index options,

whose realized and predicted returns are higher in absolute terms than those of SPX options. For

example, SPX puts returned on average -256% per annum while the economically similar CDX

calls returned -438%. The model predicted returns for the two contracts are -223% and -374%,

respectively.

An advantage of a using a structural model is that the indices that underlie both types of

options are themselves contingent claims. For example, CDX index prices are, just like CDX

options, contingent claims on the assets of the constituent firms. Hence using the time series of

credit index spreads in the estimation is informative not just about physical dynamics but also risk-

neutral asset dynamics. This allows us to estimate our model without using any option information

8The model-implied 10-year cumulative physical default probability is 2.57%, which is close to the 10-year
default rate of 2.29% for investment grade entities reported in Moody’s credit report for the 1998-2018 period. The
market leverage of the representative firm implied by the model is 46.11% which is comparable to the 49% average
market leverage of firms that belong to both the SPX and CDX indices as measured by the ratio of total liabilities,
Compustat item LTQ, to market equity plus total liabilities.
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and study the two derivative markets simultaneously out-of-sample. Pricing options out-of-sample

would be much more di�cult, if not impossible, in a standard reduced form model where underlying

index return dynamics are specified exogenously. This is because return realizations are only

informative about the physical probability measure and thus the use of option information is

required to estimate risk-neutral dynamics. In addition, the reduced form nature of these models

makes it more di�cult to consistently link multiple derivative markets jointly. In sum, working

with a structural model permits a more stringent economic validation, (i) by benchmarking with

physical quantities and (ii) by allowing cross-market comparisons.

Another key feature of our model is to allow the decomposition of returns based on the three

sources of systematic risk driving asset dynamics: unlevered asset risk, variance risk and jump risk.

Predicting expected returns for options across two di↵erent markets jointly and out-of-sample, is

clearly more di�cult than for one, unless the two markets are similar in terms of risk exposures

and are e↵ectively substitutes. We show that this is not the case and that the two indices and

their option markets di↵er significantly in their underlying risk exposures, both qualitatively and

quantitatively.

Both indices load positively on asset risk and, as expected, the equity index has a much larger

exposure. The equity index has a positive exposure to variance risk, consistent with the Merton

(1974) intuition that stocks can be viewed as calls on firm’s assets. However, this exposure is

relatively small in magnitude. The credit index on the other hand, loads heavily on this risk,

consistent with bondholders seen as selling puts on firms’ assets. While jump risk impacts both

indices, the equity index is more exposed to tail events.

Moving on to options, SPX at-the-money calls (puts) derive a positive (negative) risk premium

from asset risk and jump risk. A credit index call option is economically similar to an equity put

- both pay o↵ in adverse states of the world. As a result, CDX option returns have qualitatively

similar elasticities to asset and jump risk, but with opposite sign to that of SPX options. For

instance, CDX calls require a lower return premium due to jumps.

In a compound pricing framework such as ours, the fact that the underlying itself is a contingent
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claim implies that put-call parity does not imply that vegas of calls and puts with the same strike

price and expiration must be equal, or even of the same sign. This is because the underlying is

also exposed to variance risk. Regarding SPX options, we find that both at-the-money calls and

puts have comparable positive variance elasticities. This result is explained by the fact that their

underlying index is only marginally exposed to variance. Contrary to the equity index option case,

CDX calls and puts have opposite exposures on variance risk where calls are positively exposed

but puts negatively. As the underlying credit index spread is strongly increasing in variance, it

reinforces the positive exposure of call options but o↵sets that of put options, resulting in negative

CDX put vegas.

The literature on the impact of variance risk on SPX option returns is large but disagrees on its

economic magnitude. For instance, Coval and Shumway (2001) suggest that systematic variance

is key to explain SPX option returns. However, Pan (2002) and Broadie, Chernov, and Johannes

(2009) argue that variance risk cannot be a significant contributor to SPX option prices because

these options are short-term in nature, which does not leave enough time for this source of risk to

materially impact their prices.

Although we find that SPX option returns do load on variance risk, their exposure to variance

is about 3 times smaller than that of credit options. This result calls to mind the finding in

Du, Elkamhi, and Ericsson (2019) who find that accounting for variance risk in a structural

credit model is important to explain corporate bond credit spreads. The fact that variance risk

matters more for CDX options than for SPX options can be rationalized by the fact that the

underlying CDX is itself heavily exposed to variance risk. Because of the compounding e↵ect of

embedded leverage, credit option prices, in particular CDX calls, become significantly influenced

by variance risk. While about 20% of at-the-money SPX put option expected return is attributable

to systematic variance exposure, 56% of CDX call expected returns is derived from exposure to

aggregate volatility. Overall, we find that SPX options o↵er more embedded leverage to asset and

jump risks but that trading CDX options o↵ers more exposure to aggregate variance risk.

Our work is related to several strands of literature. The first consists of recent work that links
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credit and equity derivative markets. Cremers, Driessen, and Maenhout (2008) use equity index

and option prices to imply jump risk premia in order to predict credit spreads. Collin-Dufresne,

Goldstein, and Yang (2012) use a model fitted to long-dated equity index options and CDX index

term structures to value tranches of collateralized debt obligations out-of-sample. Culp, Nozawa,

and Veronesi (2018) use index option prices to imply credit spreads in a model-free setting. All

of these papers have in common that they price corporate credit instruments out-of-sample using

a model estimated on data from other markets. There are at least three key di↵erences between

previous works and ours. First, our estimation works in a di↵erent direction in the sense that we

use data on credit spreads (CDX term structures), together with physical equity index volatility,

to obtain out-of-sample predictions for options. Second, we link four markets consistently, the

SPX and CDX markets together with their corresponding derivatives. Finally, our primary focus

is on expected option returns which have received less attention. Like much of previous work, we

find that the four markets are closely related.

One closely related paper is Collin-Dufresne, Junge, and Trolle (2021) who also study the

markets for credit and equity index options and document di�culty in reconciling the prices in

the two derivatives markets, interpreting their findings as a lack of integration. However, we find

no evidence of a lack integration between the two markets, nor any systematic mispricing.

We investigate whether the di↵erences in results can be explained by di↵erences in model setup

and conclude that this is not the case.9

Another literature studies the magnitude and properties of variance, jump, and tail risk premia

in financial securities.10 Most existing work in this literature focuses on equity index and index

option markets. Our contribution is to broaden the study of variance and jump risk premia to

9In Appendix D, we replicate Collin-Dufresne, Junge, and Trolle (2021)’s main result in our model using their
parameter sets. The di↵erences in parameters could arise from di↵erences in estimation procedure - we estimate
the model fully in sample by maximum likelihood, whereas they recalibrate their model at distinct dates. Their
parameters generate risk-neutral distribution for credit index spreads that much more kurtosis than ours.

10For seminal contributions in this literature, see, among others, Bates (2000), Pan (2002), Eraker, Johannes,
and Polson (2003), Carr and Wu (2009a), Todorov (2010a), Andersen, Fusari, and Todorov (2020), and Andersen,
Todorov, and Ubukata (2020).
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multiple markets simultaneously and to trace back the sources of risk premia in these markets to

those of the underlying asset of the firm.

The outline of the rest of the paper is as follows. The next section describes our model.

In section 3.1 we describe our data and estimation approach. Section 4 reports on our model

validation, in-sample on CDX terms structures and out-of-sample on equity and credit option price

levels. It also contains a discussion of our main results on option returns. Section 6 concludes.

2 Model

In this section, we develop a structural credit risk model which allows us to consistently price

equity, credit, and associated derivative contracts from the ground up. First, we introduce the asset

dynamics for individual firms and the economy’s stochastic discount factor (Section 2.1). Based

on the specified dynamics, we derive firm-specific asset risk-neutral dynamics and unlevered asset

risk premia (Section 2.2). The pricing of a credit default swap (CDS) is discussed in Section 2.3.

We then construct the equity and credit indices and calculate prices for their option contracts in

Section 2.4. Given our pricing results, we derive a decomposition of risk premia and variances

for our indices and index options in Section 2.5. Using this result, we then study the relative

contributions of the various sources of uncertainty to expected returns and volatility risk premia

across four di↵erent markets.

2.1 Asset Value and Variance Dynamics

We consider a cross-section of firms j P r1, . . . , N s whose return dynamics under the physical prob-

ability measure P are driven by the systematic asset factor Am

t
as well as two types of idiosyncratic

shocks:

dA
j

t

A
j

t

“ dA
m

t

Am
t

` �jdW
j

t ` dJ
j

t ´ �
j
⌫̄
j
dt, (1)
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where dW
j

t is a standard Brownian motion and dJ
j

t “ ⌫̃
j

t dN
j

t is a jump process capturing id-

iosyncratic variation in firm j’s unlevered asset value, Aj

t . The jump intensity is Et

“
dN

j

t

‰
“ �

j
dt,

where Et r¨s denotes a time-t conditional physical expectation.11 Conditional on the occurrence of

an idiosyncratic jump at time t, counted by the Poisson process dN
j

t , the change in asset value

caused by an idiosyncratic jump is A
j

t ⌫̃
j

t , where the multiplicative jump size is ⌫̃
j

t ” peZ̃j
t ´ 1q.

The jump size variable Z̃
j

t is assumed to be normally distributed with time-invariant parameters

such that Z̃j

t „ Npzj, �2
j
q. Note that we use tilde superscripts to indicate that both ⌫̃

j

t and Z̃
j

t are

random as of time t.12 The expected idiosyncratic jump size is denoted by ⌫̄
j “ Et

“
⌫̃
j

t

‰
.

While both types of idiosyncratic shocks are i.i.d. with constant volatility (�j) and jump

intensity (�j), we assume that the systematic component features stochastic volatility.13 As in

Du, Elkamhi, and Ericsson (2019), under the physical measure P, the dynamics of the aggregate

asset component, Am

t
, and its stochastic variance, Vt, are characterized by the following stochastic

di↵erential equations under P:

dA
m

t

Am
t

“ pµt ´ qq dt `
a
VtdW

A

t
` dJ

m

t
´ �

m

t
⌫̄
m
dt, (2)

dVt “ p✓ ´ Vtqdt ` �

a
VtdW

V

t
, (3)

where µt is the expected return on the unlevered “market” and q is the payout rate.14 The

systematic variance Vt follows a square-root process where , ✓, and � represent the mean-reversion

11The filtration at any time corresponds to the information set associated with knowing all realizations of uncer-
tainty in our model up to that point in time.

12For ease of exposition, we do not di↵erentiate the time right before or right after a jump which are usually
denoted by t´ and t` in the literature. Instead, we use the simplified notation ⌫̃jt (or Z̃j

t ) to denote the random
multiplicative jump (or the random jump size) in asset caused by an idiosyncratic jump that would have incurred
at time t.

13It is straightforward to allow for stochastic idiosyncratic volatility or stochastic idiosyncratic jump intensity.
However, this would increase the complexity of the estimation strategy by adding more state variables to filter
over time and more structural parameters to estimate. To maintain parsimony, we assume constant volatility and
constant jump intensity for the idiosyncratic component.

14Note that we assume the same payout rate for all firms. As a result, incorporating the payout rate in individual
firm asset dynamics or in the common asset factor is equivalent.
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speed, long-run mean, and volatility of volatility parameters, respectively. To model correlation

between asset value and variance shocks, we assume that dWA

t
“ ⇢dW

V

t
`

a
1 ´ ⇢2dW

AKV

t
where

dW
V

t
and dW

AKV

t
are two mutually independent Brownian motions. When ⇢ † 0, aggregate asset

variance is high when the level of aggregate assets is low. This case implies a negative skewness

in the distribution of unlevered market returns, consistent with empirical evidence.15

In addition to systematic di↵usive risk, we allow for systematic jumps captured by the jump

process dJ
m

t
“ ⌫̃

m

t
dN

m

t
, where dN

m

t
is another Poisson process, counting the occurrence of sys-

tematic jumps with time-varying P-intensity Et rdNm

t
s ” �

m

t
dt “ ⌘mVtdt.16 In our model, the

systematic jump intensity is proportional to systematic asset variance and will be higher in bad

times when systematic variance is higher. Conditional on a jump at time t, the change in aggre-

gate asset value is A
m

t
⌫̃
m

t
, where ⌫̃

m

t
” peZ̃m

t ´ 1q with Z̃
m

t
„ Npzm, �2

m
q under P. The expected

proportional systematic jump size is denoted by ⌫̄
m “ Et r⌫̃m

t
s.17

The economy is endowed with a stochastic discount factor (SDF) used to price firms’ finan-

cial claims. Following the literature on variance and jump risks, we assume that the SDF is

exponentially a�ne in aggregate risks. We have

d�t

�t

“ ´rdt ´ ⇠AKV

a
VtdW

AKV

t
´ ⇠V

a
VtdW

V

t
`

´
e
⇠mZ̃

m
t ´ 1

¯
dN

m

t
, (4)

where ⇠AKV , ⇠V , and ⇠m are the market price of risk parameters for unlevered asset level di↵usive

risk, variance risk, as well as systematic jump risk, respectively. Note that firms’ idiosyncratic

risks are deliberately not priced in the model.

15For discussions on the presence of negative skewness in the distribution of systematic risks, see Berger, Dew-
Becker, and Giglio (2020), among others.

16this is the same specification used in Pan (2002).
17Again, we use the simplified notation ⌫̃mt (or Z̃m

t ) to denote the random multiplicative jump (or the random
jump size) in asset caused by a systematic jump taking place at time t. Thus, ⌫̃mt and Z̃m

t are both random as of
time t.
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2.2 Risk-Neutral Dynamics and Unlevered Asset Risk-Premia

The above SDF, combined with asset return and variance dynamics, have direct implications for

the economy risk-neutral (Q) dynamics and the risk-premia of systematic asset return and variance

risks. More precisely, the risk-neutral dynamics of Am

t
and Vt can be expressed as:

dA
m

t

Am
t

“ pr ´ qq dt `
a
VtdW

A,Q
t ` dJ

m,Q
t ´ �

m

t
⌫̄
m
dt, (5)

dVt “ 
Qp✓Q ´ Vtqdt ` �

a
VtdW

V,Q
t , (6)

where dW
A,Q
t “ ⇢dW

V,Q
t `

a
1 ´ ⇢2dW

AKV,Q
t , Q “  ` �⇠V and ✓

Q “ ✓{Q. A superscript Q

is used to identify risk-neutral parameters, Brownian motions, and jumps implied by the SDF.18

When systematic jump risk is priced, it simultaneously shifts the risk-neutral jump intensity and

the mean of systematic jumps. We have dJ
m,Q
t “ ⌫̃

m,Q
t dN

m,Q
t with EQ

t

”
dN

m,Q
t

ı
“ �

m,Q
t dt “

�
m

t
e
⇠mz

m` 1
2 p⇠mq2�2

mdt and ⌫̃
m,Q
t “ peZ̃m,Q

t ´ 1q with Z̃
m,Q
t „ NpzQ

m
, �

2
m

q for which z
Q
m

“ zm ` ⇠m�
2
m
.

Given that idiosyncratic risk is not priced in our model, the risk-neutral dynamics of Aj

t can be

derived by inserting equations (5) and (6) into equation (1).

In the absence of arbitrage opportunities, the (instantaneous) asset risk premium, which is the

di↵erence between the expected asset return µt and the risk-free rate r, is given by

pµt ´ rq dt “
´

p
a
1 ´ ⇢2⇠AKV ` ⇢⇠V qVt

¯
dt `

´
�
m

t
Et r⌫̃m

t
s dt ´ �

m,Q
t EQ

t

”
⌫̃
m,Q
t

ı¯
dt, (7)

where the first term captures the compensation for di↵usive asset return and variance risks, while

the second corresponds to the asset jump risk premium.19

18Applying Girsanov’s theorem, we have dWAKV
t “ dWAKV,Q

t ´ ⇠AKV
?
Vtdt and dWV

t “ dWV,Q
t ´ ⇠V

?
Vtdt.

19Note that Etr⌫̃mt s “ epzmq2` 1
2 p�mq2 ´ 1 and EQ

t r⌫̃m,Q
t s “ epzQ

mq2` 1
2 p�mq2 ´ 1, respectively.
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2.3 The Pricing of Firms’ Equity and Credit Securities

Following Leland (1994), we assume that each firm issues consol bonds. Firm j declares bankruptcy

when the firm’s asset value falls below a certain threshold AD. In other words, the timing of the

firm’s default, ⌧j, is modeled as the first time at which the asset value A
j

t in equation (1) hits the

default boundary AD:

⌧j “ infts • t|Aj

s
“ ADu.

Prices of a firm’s securities and contingent claims in the model derive from the risk-neutral dis-

tribution of ⌧j and are a function of two key quantities: (i) the present value of a dollar received

at default PDpAj

t , Vtq “ EQ
t

“
e

´rp⌧j´tq‰, and (ii) the cumulative risk-neutral default probability

GpAj

t , Vt, T q “ EQ
t

“
1⌧j§T

‰
over the next T years. Equipped with these measures, we are able to

price any security issued by the firm as well as associated derivative contracts. Appendix C.2 con-

tains the details about the estimation of PDpAj

t , Vtq and GpAj

t , Vt, T q for a given set of structural

parameters in our set-up.20

To begin, we calculate the firm’s debt value DpAj

t , Vtq as the present value of future coupon

payments plus the recovery value of the firm upon default:

DpAj

t , Vtq “ c

r
`

”
p1 ´ ↵qAD ´ c

r

ı
PDpAj

t , Vtq, (8)

where c is the coupon rate and ↵ is the liquidation cost. For simplicity, we assume that firms

have the same coupon, liquidation cost, default barrier, and idiosyncratic di↵usive and jump

parameters. With leverage, the firm value can deviate from its unlevered counterpart Aj

t due to

two reasons. First, the firm can enjoy tax benefits arising from the firm’s debt. If the tax rate is ⇣

(for all firms), the present value of future tax shields is ⇣c

r

“
1 ´ PDpAj

t , Vtq
‰
. However, this benefit

comes with a cost. The debt exposes the firm to the risk of default, at which point it will incur

20More precisely, our estimation strategy builds on Du, Elkamhi, and Ericsson (2019) who develop a simulation
approach to obtain the (smooth) mapping between PDp¨q and Gp¨, T q and a given pair of state variables (Aj

t , Vt)
using two-dimensional Chebyshev polynomials.
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financial distress costs. The present value of future bankruptcy costs is ↵ADPDpAj

t , Vtq. Hence,

the levered firm value is given by

LpAj

t , Vtq “ A
j

t ` ⇣c

r

“
1 ´ PDpAj

t , Vtq
‰

´ ↵ADPDpAj

t , Vtq. (9)

Since the firm’s equity is a residual claim, its value is calculated as the di↵erence between the

levered firm value and the debt value, LpAj

t , Vtq ´ DpAj

t , Vtq. It is given by

EpAj

t , Vtq “ A
j

t ´ p1 ´ ⇣qc
r

`
”
p1 ´ ⇣qc

r
´ AD

ı
PDpAj

t , Vtq. (10)

Lastly, we consider the pricing of a CDS contract, which insures against the firm’s potential

default in the future. A CDS contract involves two parties: the protection buyer and the protection

seller. The protection buyer makes quarterly premium payments to the protection seller until the

maturity of the contract or until the firm’s default. Economically, in the event of a default, the

protection seller has an obligation to buy the defaulted bond at par from the protection buyer,

thus absorbing the default loss. In practice, this settlement is often done instead as a cash payment

based on a post default market value determined by a third party.

When the running spread paid by the protection buyer is one basis point (bp) per annum, the

present value of future premiums (or premium leg) is called the risky PV01, or RPV01pAj

t , Vt, T q.
If the running spread is, for example, 100 bp, the premium leg is simply obtained as 100ˆRPV01.

In exchange for paying insurance premiums, the protection buyer acquires a contingent claim

which makes up the loss on the firm’s bonds in the event of a default. We denote the present value

of a contingent protection payment (or protection leg), ProtLegpAj

t , Vt, T q. We refer the reader

to Appendix A.1 for details about the computation of RPV01p¨q and ProtLegp¨q. By definition, a

CDS spread S refers to the fair market spread that equates the premium leg (S ˆ RPV01) with

the protection leg (ProtLeg). We have:

SpAj

t , Vt, T q “ ProtLegpAj

t , Vt, T q
RPV01pAj

t , Vt, T q
. (11)
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2.4 Indices and their Options

So far, we have defined the dynamics of the underlying unlevered firm asset value and described

the valuation of corporate securities as well as credit default swaps. Ultimately, our goal is to

value equity and credit indices, as well as options on such indices. To this end, we first define the

value of an equally-weighted index. We then consider the resulting index dynamics and how they

can be used to study the S&P 500 index (in short, SPX), the CDX North American Investment

Grade Index (in short, CDX), and their options.

Consider an equally weighted index with N constituents, It ” IpA1
t
, . . . , A

N

t
, Vtq, defined as

It “ 1

N

Nÿ

j“1

fpAj

t , Vtq,

where f can be firm j’s stock price, CDS spread, or any other claim written on its assets. In

our implementation, we consider a cross-section of 500 firms (N “ 500) representing the SPX.21

Without any further assumptions, modeling the dynamics of an index composed of 500 firms would

require keeping track of 501 state variables over time (i.e., Aj

t for j “ 1, ..., 500 and Vt).

To alleviate this computational challenge, we follow the literature and approximate the index

with a pool of homogeneous ex-ante identical firms (see e.g. Vasicek, 2002; Collin-Dufresne, Gold-

stein, and Yang, 2012; Seo and Wachter, 2018; Collin-Dufresne, Junge, and Trolle, 2021). We

hypothesize that a firm represents the average of the firms in the index and denote this firm by

superscript r instead of j, and, like other firms, its asset dynamics are described by equation (1).

At each pricing date t, the homogeneity assumption, Aj

t “ A
r

t
for all j P r1, . . . , N s, implies that

the index satisfies It “ 1
N

∞
N

j“1 fpAr

t
, Vtq “ fpAr

t
, Vtq. This leaves us with only two state variables

to model: the representative asset value, Ar

t
, and the common factor variance, Vt. It is important

21We make an implicit assumption that the equity index and the credit index are both based on the same pool
of underlying firms. This is not exactly the case in practice as the SPX consists of 500 firms while the CDX is
composed of 125 firms. However, Collin-Dufresne, Junge, and Trolle (2021) show, by comparing key characteristics
such as ratings, leverage, and total/idiosyncratic asset volatility, that modeling the two indices assuming the same
number of constituents is relatively innocuous in a setting such as ours.
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to note the distinction between levels and dynamics here. The mapping from representative asset

value to index value is a function of the dynamics in (1) where j “ r, however the dynamics

of the index will see the idiosyncratic risk diversify away. We refer to Appendix B.2 for details

of the dynamics of an index composed of homogeneous firms which assets evolve according to

equation (1).

In our empirical analysis below, we use call and put option contracts on the SPX, as well as

payer and receiver swaption contracts on the CDX. Calls and puts written on one of these indices,

are valued according to

cpIt, K, T q “ e
´rTEQ

t rmaxpIt`T ´ K, 0qs , (12)

ppIt, K, T q “ e
´rTEQ

t rmaxpK ´ It`T , 0qs . (13)

The constituents f of the index I are thus either the stock prices of the SPX index or the up-

front equivalent of the 5 year CDX index.22 A detail which we consider in Appendix A.2 is that

options on the CDX are adjusted for the possiblity that defaults occur in the index prior to the

expiration of the option. Appendix B.2 contains the details about index derivative dynamics in

our framework.

To calculate option prices, we simulate the risk-neutral asset dynamics of 500 ex-ante homo-

geneous firms. While all of the firms are given the same initial value (Aj

0 “ A
r

0 for all j), their

simulated asset values in the future can deviate from one another due to distinct idiosyncratic

shocks (W j

t and J
j

t ). For each simulation path, the index option payo↵s at time t ` T are deter-

mined by the 500 simulated asset values Aj

t`T
together with the systematic variance component

Vt. We repeat this 10,000 times and calculate the conditional expectations in equations (12) and

(13) as the averages across 10,000 simulation paths.

Next, we consider excess returns and volatilities of indices and index derivatives, with a view

22The distinction between a CDS quoted as a basis point spread and up-front is merely a matter of convention.
The CDX tracks an equally-weighted basket of investment-grade single-name CDS contracts. Hence, the quoted
up-front fee for the CDX should be identical to the average of the upfront fees for the underlying contracts.
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to understanding how the various sources of di↵usive and jump risks we model contribute to these

moments across the di↵erent markets.

2.5 The Sources of Expected Return and Variance Across Markets

The valuation framework we develop allows us to jointly identify how asset risk, variance risk, and

jump risk, contribute to (instantaneous) expected returns and volatilities for the securities that

we consider in our empirical exercise.

To be more specific, consider a security gpAr

t
, Vtq, which could be a tradeable unit of the index,

g “ I or an option on this index, g “ c or g “ p. Then the following proposition details the

sources of its risk premium as a function of its exposures to the various sources of uncertainty

impacting the asset dynamics in (1).

Proposition 1. Consider an index or an index derivative g P tI, c, pu. Given the P-dynamics in

(1)-(3) combined with the SDF in (4) and the homogeneity assumption above, the instantaneous

return risk premium on gt ” gpAr

t
, Vtq, Et

”
dgt

gt

ı
´ E

Q
t

”
dgt

gt

ı
, is

“ �A,t pµt ´ rq dtloooooooomoooooooon
Asset risk premium

` �V,t p�⇠V Vtq dtlooooooomooooooon
V ariance risk premium

`
˜
Et

„
dJ

m,g

t

gt

⇢
´ EQ

t

«
dJ

m,g,Q
t

gt

�¸

loooooooooooooooooooomoooooooooooooooooooon
Jump risk premium

, (14)

where �A,t ” Bgt
BAr

t

A
r
t

gt
, �V,t ” Bgt

BVt
,

1
gt
, dJm,g

t ”
´
gpAr

t
e
Z̃

m
t , Vtq ´ gt

¯
dN

m

t
, and

dJ
m,g,Q
t ”

´
gpAr

t
e
Z̃

m,Q
t , Vtq ´ gt

¯
dN

m,Q
t .

Proof. See Appendix B.

Proposition 1 provides important insights about the factors that influence expected excess

returns and return variances of large diversified indices of corporate contingent claims and options

written on such indices. Below, we exploit these relationships to quantify the sources of risk premia

and variance in the SPX and CDX indices and their options.
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From equation (14), we see that the total expected excess return consists of three terms, each

of which corresponds to a given source of systematic risk. The first, �A,t pµt ´ rq, which we

label asset risk premium corresponds to the part of expected return derived from security g’s

exposure to fluctuations in asset value. It is the product of security g’s sensitivity to changes in

the representative firm asset value times g’s embedded leverage (i.e, �A,t “ Bgt
BAr

t

A
r
t

gt
) multiplied by

the unlevered asset risk premium (i.e., µt ´ r). Because µt ´ r ° 0, positive exposure to asset risk

is compensated by a positive asset risk premium.

The second term impacting security g’s excess expected return corresponds to the part resulting

from its exposure to di↵usive variance risk and is accordingly labelled variance risk premium. The

greater the exposure to aggregate variance risk for a given security g, the greater the proportional

impact (in absolute terms) of the variance risk premium on g’s total excess expected return. Given

that aggregate variance risk is counter-cyclical, we tend to have ⇠V † 0 ñ �⇠V Vt † 0. As a result,

a security g positively (negatively) exposed to aggregate variance risk bears a negative (positive)

variance risk premium.

The third and last term contributing to the total excess return is the jump risk premium.

This premium consists of the di↵erence between physical and risk-neutral expected return on g

induced by systematic jumps. For a given probability measure, it is the expected return that g

would experience following a single jump multiplied by the expected jump intensity. Typically, we

expect to see that Et

”
Z̃

m

t

ı
° EQ

t

”
Z̃

m,Q
t

ı
and Et rdNm

t
s “ �

m

t
dt † EQ

t

”
dN

m,Q
t

ı
“ �

m,Q
t dt for jump

intensity. These results imply that the jump risk premium is positive for securities whose value

increases with unlevered asset value.

The following proposition provides the return variance of an index or index derivative.

Proposition 2. Consider an index or an index derivative g P tI, c, pu. Given the P-dynamics in

(1)-(3) combined with the SDF in (4) and the homogeneity assumption above, the instantaneous
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P-variance of the returns on gt “ gpAr

t
, Vtq, �2

g,t
” var

´
dgt

gt

¯
, is given by

“ p�A,tq2 var
ˆ
dA

m

t

Am
t

˙

looooooooooomooooooooooon
Asset risk

` p�V,tq2 var pdVtqlooooooooomooooooooon
V ariance risk

` 2 p�A,t�V,tq cov
ˆ
dgt

gt
; dVt

˙

loooooooooooooooomoooooooooooooooon
Leverage risk

` var

ˆ
dJ

m,g

t

gt

˙

looooooomooooooon
Jump risk

“

¨

˚̊
˚̊
˝

p�A,tq2 Vtloooomoooon
Asset risk

` p�V,tq2 Vtloooomoooon
V ariance risk

` 2⇢� p�A,t�V,tqVtlooooooooomooooooooon
Leverage risk

` �
m

t
Et

«
gpAr

t
e
Z̃

m
t , Vtq

gt
´ 1

�2

loooooooooooooooomoooooooooooooooon
Jump risk

˛

‹‹‹‹‚
dt (15)

where �A,t, �V,t, dJ
m,g

t , and dJ
m,g,Q
t are as defined in Proposition 1.

Proof. See Appendix B.

We now turn to the empirical analysis.

3 Data and Estimation

We first discuss the data used and then present our estimation strategy. Results on model fit are

discussed in the subsequent sections.

3.1 Data

Our empirical analysis relies on four di↵erent data sets. The model estimation is based on the

daily time series of the following five variables: the CDX spreads with 3-, 5-, 7-, and 10-year

maturities and the physical SPX volatility.23 The data on the CDX are obtained from Markit.

The physical (conditional) volatilities of the SPX are estimated by fitting an NGARCH model

with a skewed student t-distribution to daily SPX returns. The daily time series of the SPX are

from the CRSP dataset. For estimation purposes, our sample period begins in June 2004, from

which the CDX data become available, and ends in December 2020.

23The CDX (credit default swap index) is an index composed of 125 individual CDS of investment grade bonds.
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We also collect monthly pricing data on SPX options and CDX swaptions (options on the CDX

spread). These data serve two purposes. They are used to conduct an out-of-sample analysis of

model performance and to study the relative pricing of di↵usive and tail risk in the returns of

di↵erent derivatives. First, we download SPX option prices from OptionMetrics. For a given

trading day, we convert SPX option prices into Black-Scholes-implied volatilities and construct

the volatility surface via polynomial interpolation. Then, we select the implied volatilities at

95%, 100%, and 105% moneyness values for 1-, 3-, and 6-month maturities. The sample period

for SPX options spans the same period covered by our estimation and begins in June 2004 and

ends in December 2020. Second, we obtain CDX swaption quotes from a major investment bank.

CDX swaptions in our data are based on the 5-year CDX and trade with 1-, 3-, and 6-month

maturities. These options are quoted in terms of Black-implied volatilities, and we choose the

implied volatilities whose strike upfront fees correspond to 95%, 100%, and 105% of the current

CDX spread. The sample period for CDX swaptions starts relatively late, from March 2012. These

option contracts trade with meaningful volumes and liquidity since 2012.

3.2 Estimation Strategy

In total, the model features 21 structural parameters and 2 latent variables. The starting point

of our estimation strategy thus consists of reducing the dimensionality of the problem by fixing

the values of some parameters following Du, Elkamhi, and Ericsson (2019) and Feldhütter and

Schaefer (2018), among others. More precisely, we set the bankruptcy cost ↵ to 25%, corporate

tax rate ⇣ to 20%, and CDS/bond-specific recovery rate R to 51% when computing the protection

leg of the CDS (see Appendix A.1). Considering our sample period, we choose the risk-free rate to

be 1% and the asset payout ratio to be 2%. We set the amount of book debt to 25. Consequently,

the coupon payment c is determined as r ˆ 25 = 0.25. The default boundary AD is set to be 78%

of the book debt, which is 19.50.24 After imposing these 7 identification restrictions, 14 structural

parameters remain to be estimated.

24This number is broadly consistent with the estimates in Davydenko (2012).

20



To further reduce the estimation dimensionality, we fix the idiosyncratic jump intensity �j

at 0.5%, as simultaneously identifying the jump intensity and the jump size distribution is often

challenging.25 This idiosyncratic jump intensity implies that, in expectation, about 1 idiosyn-

cratic jump happens every 200 years.26 Idiosyncratic jumps in the model are thus infrequent but

their estimated size will essentially make them jumps to default. We further fix the systematic

jump intensity parameter, ⌘m, to 151. Given that the physical jump intensity is defined by ⌘m

times Vt, the values chosen for ⌘m combined with the average level of Vt subsequently estimated

implies that about one systematic jump occurs on average per year. While idiosyncratic jumps

are assumed to be rare in the model, systematic jumps on the other hand are assumed to be

more frequent although their expected jump size will be estimated to be less consequential for

firms’ default risk. This leaves us with 12 structural parameters to estimate, ⇥ ” t m, ju with

 m ” t, ✓, �, ⇢, zm, �m, ⇠AKV , ⇠V , ⇠mu and  j ” t�j, zj, �ju, and two latent variables, Ar

t
and Vt, to

filter. To do so, we adopt a daily observation frequency and assume that the 5-year CDX spread

(SCDX
5,t ) and the physical conditional SPX volatility (�SPX

t
) are observed without errors (e.g., Du↵ee,

2002; Aı̈t-Sahalia and Kimmel, 2010). To proxy �
SPX
t

, we use the conditional volatility estimated

by fitting a NGARCH-model featuring asymmetric t-distributed innovations on SPX returns. We

then filter Âr

t
and V̂t from S

CDX
5,t and �

SPX
t

, on each day t, by solving the following two equations

S
CDX
5,t “ SpÂr

t
, V̂t, 5,⇥q and �

SPX
t

“
b
�2
E

pÂr
t , V̂t,⇥q, (16)

where we have imposed firm homogeneity Â
j

t “ Â
r

t
. In the previous equations, S is defined by

equation (11) and �
2
E
for the SPX index satisfies equation (15) in Proposition (2) when g is an

index written on E in equation (10). On the one hand, risk-neutral pricing implies that the level

of the CDX term structure embeds relevant information about the economy Q-dynamics. On the

25Fixing the jump intensity while estimating the jump distribution is a common practice in the jump literature
given the rare nature of idiosyncratic jumps and the challenge in precisely identifying both jump intensity and
distribution together.

26Note that our assumed idiosyncratic jump intensity is of the same order of magnitude as the one in Collin-
Dufresne, Junge, and Trolle (2021).
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other hand, taking the conditional volatility of SPX returns to be an “observable” is important

because it is informative about model P-dynamics. Furthermore, inherent di↵erences in the payo↵s

of the claims composing the CDX and SPX indices implies that fitting the CDX level jointly with

the SPX physical volatility is thus not only informative about P- and Q-dynamics but also about

the decomposition of total asset risk into di↵usive and jump risks as both risks impact the pricing

of credit instruments and equities di↵erently. Details about the computation of SpAr

t
, Vt, 5,⇥q and

�
2
E

pÂr

t
, V̂t,⇥q for a given pair of Ar

t
and Vt are provided in Appendix A and Appendix C.2.

Our estimation strategy further postulates that 3-, 7-, and 10-year CDX spreads are observed

with Gaussian errors such that

S
CDX
T,t

“ SpAr

t
, Vt, T,⇥q ` eT,t, (17)

for T “ 3, 7, 10, and where eT,t „ Np0, �2
e
q. Based on these assumptions, we estimate ⇥ via

maximum likelihood by solving the following maximization problem

⇥̂ ” argmax logLp⇥q “ argmax
Tÿ

t“2

logP pYt | Yt´1;⇥q , (18)

where Yt “
 
S

CDX
3,t , S

CDX
5,t , S

CDX
7,t , S

CDX
10,t , �

SPX
t

(
is the vector of observables on day t. Note that the

distribution of the filtered state variables and the impact of mapping tÂr

t
, V̂tu to the vector of ob-

servables Yt is taken into account when computing P pYt | Yt´1;⇥q. Details about the construction
and computation of the likelihood function in our framework are provided in Appendix C.

4 Model Fit

Our empirical evaluation of our model’s goodness-of-fit is composed of three parts. First, we discuss

estimated parameters in light of the results documented in the literature. In the second part, we

study the model’s in-sample fit for the term structure of CDX spreads and SPX return volatility.

Finally, we analyze the out-of-sample performance of the model in explaining jointly the pricing
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of two derivatives markets: the CDX swaption and SPX option markets. Model implications for

option expected returns traded in these two markets are discussed in Section 5.

4.1 Estimation Results

Table 1 presents the 21 structural parameters of our model. Recall that nine parameters are

calibrated and are presented in Panel A. The remaining parameters in Panel B are estimated

via maximum likelihood following the strategy outlined in the previous section. The first four

rows of Panel B reports on the parameters governing systemic asset variance dynamics. The

estimated mean reversion speed (̂) is 2.73. This value corresponds to a daily persistence of

1´ 2.73{365 “ 0.9925 which is comparable to the persistence of variance reported for large equity

indices (see, e.g., Bates, 2000; Pan, 2002). The long-run mean of systematic variance, ✓̂, is 0.67%

which translates into a yearly volatility level of
?
0.67% “ 8.19%. The volatility of variance

parameter is 18.79% and the correlation ⇢̂ between the two systematic Brownian motions WAKV

t

and W
V

t
is ´0.62. Apart from the level of asset systematic variance which is lower than for equity

index because of the impact of firm financial leverage, the remaining estimates for systematic asset

variance are comparable to parameters reported in Bates (2000), Pan (2002), and Christo↵ersen,

Fournier, and Jacobs (2018) for the dynamics of the SPX index variance.

The next two parameters reported in rows 5-6 capture di↵usive risk compensation. The esti-

mated market price of asset (specific) di↵usive risk (⇠̂AKV ) is equal to 0.20 while the market price of

variance risk (⇠̂V ) is ´7.74. Combined, ⇢̂, ⇠̂AKV , and ⇠̂V implies that the estimated asset premium

attributed to di↵usive risk satisfies
´a

1 ´ ⇢̂2⇠̂AKV ` ⇢̂⇠̂V

¯
¨ Vt “ 4.95 ¨ Vt in equation (7). Uncon-

ditionally, this translates to 4.95 ¨ ✓̂ “ 3.29% annually. Moreover, the estimated risk-neutral mean

reversion speed and unconditional variance are ̂
Q “ ̂ ` �̂⇠̂V “ 1.28 and ✓̂

Q “ ̂✓̂{̂Q “ 1.42%,

respectively. The negative ⇠̂V estimated thus translates into a more persistent variance process

and a higher unconditional level of variance under Q than under P. This finding is consistent with

a wealth of evidence on the presence of a negative variance risk premium.27

27See, among many others, Todorov (2010b) or Carr and Wu (2009b).
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The parameters reported in rows 7-9 in Panel B govern the systematic jump distribution

and the market price of systematic jump risk. The mean (ẑm) and volatility (�̂m) of systematic

jumps are ´1.66% and 1.84%, respectively. Unconditionally, the systematic P-jump intensity is

⌘m ¨ ✓̂ “ 1.0049. Together, these numbers imply that about one systematic jump happens every

year causing an approximate ´1.63% (i.e., eẑ
2
m` �̂2m

2 ´ 1) return on assets. The systematic jump

market price of risk parameter is negative and equals ´6.24. This estimate implies that the average

systematic jump size is more negative under Q than under P. We have ẑQ
m

“ ẑm ` ⇠̂m�̂
2
m

“ ´1.87%

(v.s. ´1.66%). In terms of contribution to the total asset risk premium (µt ´r), the unconditional

systematic jump component obtained by setting Vt to ✓̂ in �
m

t
Et r⌫̃m

t
s dt´�

m,Q
t EQ

t r⌫̃m,Q
t s is equal to

0.42%. This number amounts to a 11.39% contribution of jumps to the total asset risk premium.

Finally, in rows 10-12 we report estimated idiosyncratic di↵usive volatility and jump distribu-

tion parameters. The estimated di↵usive idiosyncratic volatility is 9%, the mean of idiosyncratic

jumps is ´99%, and idiosyncratic jump volatility is 47%. Combined, the mean and volatility of id-

iosyncratic jumps imply that one idiosyncratic jump on average causes a ´62.85% (i.e., eẑ
2
j ` �̂2j

2 ´1)

return on assets. Although these idiosyncratic events are disastrous for the firm, they are relatively

infrequent given the idiosyncratic jump intensity calibrated which implies that such event happen

every 200 years on average.

A well-known shortcoming of misspecified structural models, when estimated to fit credit

spreads, is to imply excessive asset Sharpe ratios or market leverage to fit the data. To gain

further confidence in our estimated parameters, it is thus useful to study the aforementioned

measures implied by the model. The unconditional asset premium, sum of di↵usive (3.29%) and

jump compensation (0.42%), is 3.71% annually and the representative firm asset Sharpe ratio is

26%. These estimates compare well to similar measures discussed in the literature. For instance,

Chen, Collin-Dufresne, and Goldstein (2009) discuss the importance and economic magnitude of

asset Sharpe ratios in structural models. They calibrate a ratio of 22% to a representative Baa firm

which is close to our fitted value. Moreover, the fitted level of asset volatility in structural models

is only meaningful when discussed in light of firm’s market leverage. For instance, a low leverage
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could be compensated by a high level of asset volatility and, reciprocally, an inflated market

leverage could translate into an abnormally low level of asset volatility. The market leverage of

the representative firm implied by the model is 46.11% which is of the same order of magnitude

as empirical estimates of leverage for our sample of firms.28

Recall that we filter the state variables from the 5-year CDX spread (SCDX
5,t ) and SPX index

conditional volatility (�SPX
t

) by solving S
CDX
5,t “ SpÂr

t
, V̂t, 5, ⇥̂q and �

SPX
t

“
b
�2
E

pÂr
t , V̂t, ⇥̂q for

Â
r

t
and V̂t. Figure 2 presents the filtered time series of the two state variables back out by the

estimation procedure. From the figure we see that the two state variables behave as expected.

Asset value displays pro-cyclical patterns while fluctuations in systematic variance are rather

counter-cyclical. For instance, note the way the representative firm asset value drops on the

onset of the Global Financial Crisis (GFC). Around the same period, systematic asset variance

increases abruptly. At the same time, observed 5-year CDX spread was approaching 250bps while

SPX volatility was close to 75%. At the far right side of the figure we see that the two state

variables behave similarly to the GFC period at the beginning of the Covid crisis, which is to be

expected.

We conclude that the model parameters are reasonable and produce total asset risk premium,

Sharpe ratio, and market leverage that are economically meaningful. The filtered state variables

display pronounced time variations matching well economic conditions and our prior about the

behavior of these variables around crisis periods.

4.2 In-Sample Fit

We now examine the in-sample fit of our model. Panels A and B of Table 2 present the mean

and standard deviation of the CDX spreads and physical SPX volatility in the data and for model

fitted values. Since the model is estimated to exactly match 5-year CDX spread and the physical

28On average, the market leverage, calculated as the ratio of total liabilities (Compustat item LTQ) to market
equity plus total liabilities, is 41% across firms in the SPX and is 49% across firms that belong to both the SPX
and the CDX.
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SPX volatility, the main variables of interest are 3-, 7-, and 10-year CDX spreads. Accordingly,

Panel C reports the time-series correlation of data and model CDX spreads for these maturities

as well as model root mean square errors (RMSE).

From Panel A we see that the empirical term structure of CDX spreads is, on average, upward

sloping. The spread rises from 56.25 basis points for for the three year maturity to 108.45 basis

points when the maturity increases to ten years. Another interesting stylized fact of the CDX

market is that long-term CDX spreads are less volatile than short-term ones. While the standard

deviation is 42.66 basis points for the three year spread, the ten year maturity has a volatility of

25.95 basis points.

Our model captures these stylized facts relatively well as can be seen from Panel B. The model

implied averages and standard deviations are close to their data counterparts. For instance, the

three year CDX spread is 51.16 on average in the model, which is close to the empirical average of

56.25. For the long end of the term structure, the average ten year spread in the model is slightly

higher than in the data (128.46 vs. 108.45). In terms of spread standard deviations, we see that

the model volatility estimates are of the same order of magnitude as the empirical ones but that

the term structure of volatility implied by the model is somewhat flatter in the model than in the

data.

To provide further insight into our model’s ability to explain CDX spreads, we consider 2

diagnostic metrics: the correlation and RMSE between the data and model series which we report

in Panel C. First of all, data and model spreads are highly correlated. The correlation estimates

range from 0.87 to 0.96 which is encouraging and indicates that the model is able to capture time-

series fluctuations in spreads well. In terms of pricing errors, the RMSE estimates range from

15.07 to 27.23. Considering the structural nature of our approach, these estimates are reasonable

and comparable to the pricing errors reported in the literature.29

In Figure 3, we plot the data and model time-series of CDX spreads and SPX volatility over

29Unlike reduced-form frameworks where price dynamics are exogenously specified to fit the data best, our
structural approach is relatively less flexible, as price dynamics are endogenously determined from the firm’s asset
dynamics.
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time. For the 5-year CDX spread in Panel B and physical SPX volatility in Panel E, the data and

model series perfectly coincide, except for model volatility at the peak of the 2008 financial crisis

when the SPX volatility was close to 75%. Panels A, C, and D illustrate the model’s ability to

capture time variations in spreads. From the figure we see that most of model pricing errors for

spreads reported in Table 2 cluster around the financial crisis, which is to be expected. Outside

of this period, the model fit closely the data.

The fact that the model is able to generate reasonable averages and time variation of CDX

spreads is only meaningful if the model simultaneously produces reasonable values for other rel-

evant variables such as default probability, asset Sharpe ratio, or leverage. For example, if the

model were to generate large CDX spreads while predicting excessively high physical default prob-

abilities, then, the model would fall into the trap of the credit spread puzzle. To build further

confidence in the quality of model fit, we compare model implied cumulative physical default

probability with Moody’s estimates. In-sample, the average 10-year cumulative physical default

probability generated by the model is 2.57%, which is close to the historical 10-year default rate

for investment grade entities reported in Moody’s credit report (2.16% for 1983-2018 and 2.29%

for 1998-2018).

Overall, the results presented so far suggest that the model is able to fit in-sample the term

structure of CDX spreads and SPX physical volatility well, both in terms of level and time-series

fluctuations, while predicting reasonable P-metrics (see Section 4.1). We now turn to a much more

stringent test of model performance: the analysis of its goodness of fit for equity and credit index

derivative markets out-of-sample.

4.3 Out-of-Sample Fit

We consider two tests to assess out-of-sample model fit. The starting point of our analysis is to

study the ability of the model to generate reasonable unconditional levels of implied-volatilities for

SPX options across the surface and accurate times-series of ATM implied-volatilities. In a second

step, we study model out-of-sample predictions for CDX swaptions along the same dimensions.
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4.3.1 SPX Options

The option literature highlights the importance of variance and jump risks to explain index options’

implied volatilities. Nevertheless, the ability of standard reduced-form models in explaining SPX

option returns remains the subject of debate. Before providing our contribution to this discussion,

the first logical step is to demonstrate our model’s ability to generating reasonable SPX implied

volatilities.

So far, most approaches in the option literature consist in fitting reduced-form option pricing

models directly to the data on which they are subsequently evaluated. It is worth emphasizing

that our model is estimated using the term structure of CDX spreads and SPX physical volatility,

but without any price information from SPX options. It is thus natural to ask whether the model’s

good performance in fitting equity index physical volatility and CDX spreads spills over to SPX

option implied-volatilities out-of-sample. The out-of-sample nature of this exercise contrasts with

the standard approach and strong performance here can be seen as a contribution in itself.

In Figure 4, we juxtapose the average Black-Scholes-implied volatilities of SPX options calcu-

lated from the data (black bars) and from model option prices (grey bars). A few remarks are in

order. Overall, the model implied volatilities match their empirical counterparts well. The eco-

nomic magnitude of the discrepancy between the data and model implied volatilities is relatively

small on average. We see that the model generates a pronounced negative volatility skew as in

the data.

To quantify model performance, Table 3 reports the average and standard deviation of implied

volatility in the data (Panel A) and for the model (Panel B). We further report the time-series cor-

relation between data and model implied volatilities and model RMSE in Panel C. The magnitude

of the pricing errors varies across moneyness and maturity. The model tends to underprice OTM

puts, particularly at shorter maturities, contracts that are notoriously hard to fit. In contrast, the

model overprices ITM puts on average. Impressively, it provides an almost perfect fit for ATM

options with three months to expiration, but slightly underestimates one and six month ATM

implied-volatilities. Most importantly, the model generates reasonable time-series fluctuations of
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implied-volatilities, and this, through the entire surface. Note that the standard deviations of

model-implied volatilities are close to those found in the data. This observation is reinforced by

the high correlation between data and model implied volatilities reported in Panel C. Finally, the

model RMSE ranges from 4.07% to 5.23%. For comparison, Fournier and Jacobs (2020) report

an average RMSE of 3.29% for the Heston (1993) model fitted directly to SPX options although

their sample does not include the COVID crisis.

In Figure 5, we plot the time-series of one, three and six month expirations ATM implied-

volatilities for the data (in dark) and the model (in grey). The model-implied volatilities closely

track the time-series fluctuations in the data. Note that the spikes in implied volatilities predicted

by the model during the global financial crisis, the sovereign debt crisis, and at the beginning of

the COVID period coincide almost perfectly with the data.

In light of these results, we conclude that the model characterizes the SPX option implied

volatility surface both unconditionally and in the time-series relatively well.

4.3.2 CDX Swaptions

Our second out-of-sample exercise consists in testing whether our model can predict prices for

CDX index options, or swaptions. CDX swaptions are relatively new financial instruments that

began trading with significant volumes in 2012.30 We focus here on CDX swaptions written on

the 5-year CDX. So far, evidence in the literature suggests that jointly pricing CDX swaptions

and SPX options is challenging (e.g., see Collin-Dufresne, Junge, and Trolle, 2021).

Similarly to SPX options, we compare, in Figure 6, the average Black-implied volatilities for

CDX swaptions calculated from quoted prices (black bars) and from model predicted prices (grey

bars). There are no clear disparities, and if anything, the fit of the model is better than that

obtained for SPX options. The model generates a positive volatility skew which aligns well with

the data. Intuitively, a left tail event in the equity market (low equity return) is associated

30For details on the pricing and market conventions about CDX swaptions, we refer to Chen, Doshi, and Seo
(2021) and Collin-Dufresne, Junge, and Trolle (2021).
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with a right tail event in the credit market (high credit spread). Therefore, a negative volatility

skew for SPX options is consistent with a positive volatility skew for CDX swaptions. For CDX

swaptions, the model slightly overprices options with shorter expirations of one and six months

but underprices the longest maturity ones. Overall, the model implied volatilities match their

empirical counterparts well unconditionally.

In Table 4, we investigate the pricing performance in more detail. The implied volatility errors

are homogenous across the board and fluctuate around 2% in absolute value. Moreover, the model

generates reasonable time-series fluctuations of implied-volatilities. For instance, the standard

deviations of model-implied volatilities are similar in magnitude to those estimated from quoted

prices. The quality of model fit is also confirmed by the high level of correlation between data and

model implied volatilities reported in Panel C. Interestingly, while the model matches the CDX

volatility surface better unconditionally than SPX options its time-series fit is somewhat lower as

suggested by the lower correlation and higher RMSE estimates obtained. Note that the pricing

errors reported in Collin-Dufresne, Junge, and Trolle (2021) when fitting a model similar to ours

to SPX options to price CDX swaptions out-of-sample is about 28% in absolute value (v.s. 2% in

our case), and their model RMSE around 30% (v.s. 10%).

Our assumptions about the representative firm asset dynamics are essentially the same as

Collin-Dufresne, Junge, and Trolle (2021) and the only di↵erence between our respective models

lies in the way that a firm’s capital structure is set up. In Appendix D, we show that the

discrepancies in pricing performance for SPX and CDX derivative markets between our two studies

cannot be explained by the di↵erence in the way that capital structure is modeled, but rather

by the estimated parameters describing asset dynamics. More precisely, using the parameter

estimates for asset dynamics reported in Collin-Dufresne, Junge, and Trolle (2021) applied to

our set-up, we replicate their main results.31. We find that SPX options are overpriced when

using the parameters reported in their study obtained by fitting CDX swaptions. Moreover, CDX

31For this exercise, the values used for distress costs (↵), corporate tax rate (⇣), recovery rate pRq, risk-free
interest rate prq, asset payout rate pqq, coupon payment pcq, and default boundary (AD) are the same as the ones
reported in Panel A of Table 3.
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swaptions are underpriced when using the set of parameters they estimate when fitting SPX

options. We discuss our results for SPX options and CDX swaptions in light of Collin-Dufresne,

Junge, and Trolle (2021) in more detail in Appendix D, and document that our estimated CDX

spread distribution is much closer to the empirical distribution in terms of skewness and kurtosis.

To visualize the quality of our model’s predictions over time, Figure 7 plots the time-series

of one, three and six month CDX swaption at-the-money implied volatilities for the data (in

black) and the model (in grey). While the model tracks the time-series patterns for ATM implied

volatilities fairly well, we do see a few outliers. These correspond to episodes when the stock market

declined and fitted asset volatility spiked. In turn, these abrupt increases in volatilities translated

into excessive implied volatilities. Nevertheless, apart from these outliers, the time-series fit of the

model for CDX swaptions is generally good - the correlation is about 70%.

Having validated our model’s performance in fitting the CDX index in sample and SPX and

CDX options out of sample, we now turn to using our model to study option returns.

5 Option returns

Equity index option returns have been studied previously but the issue of whether observed return

levels are reasonable or o↵er evidence of mispricing is still under debate. Much less is known for

CDX swaption markets. We revisit this question for equity index options and provide new evidence

for credit index options. We do so with a model that can predict option return levels without

relying on option data in the estimation. Our model also allows us to attribute ex ante return risk

premia to asset risk, variance risk and jump risk. Figure 1 as well as Tables 5 and 6 summarize

our main findings relating to options returns. We first consider the equity index option market.

5.1 Equity index options

The predicted instantaneous return for the index is about 10% while the realized is a bit lower at

7.81%. As expected, option returns are much higher in absolute magnitude. Bondarenko (2014)
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finds in a sample from 1987-2000 that one month at-the-money equity index puts had an annual

return of -468 %. In an overlapping sample from 1987 - 2005, Broadie, Chernov, and Johannes

(2009) find average at-the-money one month put returns to be -360%. During our more recent

sample, these contracts returned -306%. Our model predicted an instantaneous put return of

-229%. The corresponding call contracts earned a 150% return compared to the predicted 161%.

Table 5 reports predicted returns and their data counterparts for varying degrees of moneyness.

We also report confidence bounds for these allowing us to state whether average realized returns

are statistically significantly di↵erent from our model’s predictions.

Turning to the question of mispricing, we note that for SPX options, all average returns lie

within 90% confidence bounds. Hence, similar to our findings for implied volatility levels, we

find no evidence of any systematic bias in terms of returns. This finding echoes BCJ although

in the context of a richer model which accounts for risk premia both on stochastic volatility and

systematic jumps. They test whether the data deviates from simulated option returns in the Black

and Scholes (1973) and Heston (1993) models and find no significant evidence of mispricing. More

recently, Chambers, Foy, Liebner, and Lu (2014) revisit their study with a longer sample and find

more mixed results for the same two models. Hence our results for SPX options align with the

earlier conclusion of no mispricing.

Using Proposition 1, we can decompose the predicted return into components relating to

di↵usive asset risk, variance risk and jump risk. The decomposition is reported in Table 5. Figure

8 shows the elasticities of the di↵erent instruments to the three sources of risk embedded in our

model. We see from this Figure that puts and calls have opposite sign elasticies with respect to

di↵usive asset risk and jump risk, while for variance risk they have the same sign.

For the equity index, the main driver of returns is the di↵usive unlevered asset risk component

(see the last three rows in Table 5 and panel A in Figure 8). Jumps explain about a tenth, while

the contribution of variance risk is negative although negligible (panels B & C). The negativity

derives from the elasticity of equity, as a call on the firm’s assets, being positive. This o↵sets the

e↵ect of variance risk on unlevered asset returns for equity by requiring a lower risk premium. As
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we discuss below, the opposite is true for credit.

Like for the index returns, our model allows us to attribute predicted option returns to di↵erent

sources of risk. Take at-the money equity index puts for example. Consistent with the index itself,

di↵usive unlevered asset risk is the main driver (72% of the total return), followed by variance risk

(17%) and jump risk (11%). However, it is interesting to note that while the index itself draws

virtually no return compensation from variance risk, it does matter significantly for the options,

in particular out-of-the money contracts. In Figure 8 we see that the latter have higher elasticities

in absolute terms. This greater importance for variance risk in the derivative than the underlying

asset is noteworthy given that it has been argued that variance risk is unlikely to matter for an

option given the short time during which stochastic variance and associated risk premium can

influence the underlying dynamics of the underlying.32

5.2 Credit index options

Table 6 reports our findings for credit options. The predicted annualized instantaneous credit

index return is 1.90 %, whereas the realized return is xxxx %. Consider next at-the-money CDX

calls (or payer swaptions) which are economically most similar to puts calls. Their realized returns

were -491% compared to our model predicted -327%. The di↵erence is not statistically significant.

It is also interesting to note that although these contracts are similar to SPX puts (they pay out in

adverse states of the world), their returns are much higher. The predicted (data) returns are 43%

(61%) higher. For out-of-the money calls, realized average returns do fall outside a 90% confidence

interval, although not a 95% interval. Out-of-the money puts o↵er the only significant suggestion

of any mispricing. For at-the-money and in-the money calls and puts all returns lie within 95%

bounds.

Although the predicted and realized returns do di↵er in economic magnitude for one particular

contract, Figure 1 illustrates that broadly speaking, our model’s predictions and data realizations

line up strikingly well. In addition, when the predicted return for a contract di↵ers from the

32See for example Broadie, Chernov, and Johannes (2009).
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realized average return, it is still able to identify the relationship in returns between SPX and

CDX contracts. For example, the ratio between the model predicted at-the-money CDX call and

SPX put returns is 1.43 whereas in the data, the ratio is 1.61.

Turning to the attribution of returns to the three risk sources in our model consider first the

index itself. In contrast to the equity index, which resembles a call option on the underlying assets,

selling credit insurance using the CDX index implies a short put on the firms’ assets (see Merton

(1974)). Selling credit insurance is analogous to holding firms’ bonds is rewarded with positive ex

ante returns.

The largest component for the credit index, explaining about two thirds of the return is di↵usive

asset risk. Variance risk explains about a quarter, and jump risk eight percent. The higher

exposure to variance risk can be explained as follows: holding the unlevered assets requires a

positive risk premium to compensate for variance risk, holding firms’ credit requires additional

compensation for variance risk arising from the “short put”. This can be seen from the large

negative elasticity in panel B of Figure 8, keeping in mind that the variance risk premium is

negative. This is the opposite e↵ect to the case of the equity index, where the long call embedded

in the equity has a positive and much smaller elasticity, o↵setting some of the positive risk premium

inherent in the unlevered assets.

This greater exposure to variance risk is inherited by credit index options. For at-the-money

CDX calls, variance risk is the dominant driver of returns (at 56% to 59% depending on moneyness)

whereas for puts the impact is somewhat smaller (31 to 39%). Jumps matter less at around 6%,

compared to 10% for SPX options.

An interesting result emerges for CDX options. In contrast to the equity index case, calls and

puts have opposite elasticities with respect to variance risk. CDX calls with an inherent short

credit exposure derive a negative ex ante return from their unlevered asset exposure, similar to

SPX puts. Like the equity puts, CDX calls have a positive variance risk elasticity and thus earn

more negative returns as a result. However, while SPX calls have a positive variance risk elasticity,

CDX puts do not. So while these contracts innately benefit from volatility as options, the long
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credit exposure from the underlying index with its large negative elasticity o↵sets this and makes

CDX puts require a larger ex ante return as a result. This explains the asymmetry between the

elasticities in panel H of Figure 8 for CDX options in contrast to the near perfect similarity for

SPX puts and calls in panel E.

Another interesting regularity is that the importance of variance risk is higher the further away

from the money equity index options are, while for CDX options this e↵ect is much weaker.

In summary, our model predicts returns that are consistent with what we observe in the data

for all SPX options and most CDX contracts. When we decompose the model-implied returns we

find that although both types of options share the same underlying state variables, their loadings

on di↵erent risks and degrees of embedded leverage make CDX and SPX options quite di↵erent

contracts. CDX options tend to be larger in absolute terms and behave di↵erently with respect

to variance risk than their SPX counterparts.

6 Conclusion

In this paper, we build an internally consistent model for the valuation of corporate securities,

credit derivatives, and more specifically (compound) options on both credit and equity indices. We

find that such a model, consistent with the pricing of credit spreads and historical equity volatility

levels, is able to predict levels of implied volatility for equity and credit options well out-of-sample.

It does slightly better in the time series for equity options than for credit spread options.

After validating our model by gauging its out-of-sample performance for levels of option prices,

we consider realized and model-predicted option returns. The model does remarkably well at

explaining average returns for the underlyings and options on both equity and credit indices. We

do not find any evidence of mispricing across the two asset classes - although options returns are

strikingly high on average, our model finds these to consistently compensate for the embedded

amount of leverage and risk in the underlying indices.

Our models allows us to attribute components of returns to di↵usive asset returns, a variance
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risk premium and a premium for systematic jumps. We find that equity and credit options are

quite di↵erent than their equity counterparts. Not only do they appear to be more leveraged and

earn larger absolute returns on average, their risk attribution di↵ers as well. Credit option returns

depend more on a variance risk premium than their equity equivalents. This observation holds

true also at the index level, where credit index returns compensate significantly for variance, while

equity index returns barely do. Jumps matter more for equity options.

In terms of direct extensions of our framework, there are two avenues we believe could be

fruitful. One is to consider a multifactor setup for the asset variance (see Christo↵ersen, Heston,

and Jacobs, 2009). Another is extending the asset jump setup – it is quite possible that jumps

with time-varying default intensities (see, e.g., Du↵ee, 1999) would help the model do better in

jointly explaining the time series of SPX and CDX implied volatilities.

Another area where our model could be applied is in the literature on corporate bond returns.

Most work to date on corporate bond returns has been done in model-free regression settings. A

model such as the one proposed in this paper could be useful in predicting and explaining expected

returns by allowing information to be extracted from several markets simultaneously.
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Figure 2: Filtered State Variables
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Notes: This figure presents the time series of the two filtered state variables of our model. Panel
A plots the filtered asset value Ar

t
. Panel B presents the filtered systematic asset variance Vt. The

sample period is from June 2004 to November 2020.
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Figure 3: Fittted Credit Spreads and Equity Volatility
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Notes: This figure plots the time series of the five observables in our estimation procedure: (i)
3-year CDX spread, (ii) 5-year CDX spread, (iii) 7-year CDX spread, (iv) 10-year CDX spread,
and (v) physical SPX volatility implied by the NGARCH model. The solid lines represent the
data, and the dotted lines represent the model. The sample period is from June 2004 to December
2020.
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Figure 4: Average Equity Index Volatility Surface: Data vs Model
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Notes: This figure compares the average Black-Scholes-implied volatilities of SPX options calcu-
lated from the data (black bars) and the model (gray bars). We consider three option maturities
(1, 3, and 6 months) and three moneyness values (95, 100, and 105%). The sample period is from
June 2004 to November 2020.
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Figure 5: Time Series of ATM Equity Index Volatilities

05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20
0

20

40

60
Panel A: 1-Month Maturity

05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20
0

20

40

60
Panel B: 3-Month Maturity

05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20
0

20

40

60
Panel C: 6-Month Maturity

Data

Model

Notes: This figure plots the time series of the SPX ATM implied volatilities from the data and
the model. Panels A, B, and C show the results for the 1-, 3-, and 6-month option maturities.
The solid lines represent the data, and the dotted lines represent the data. The sample period is
from June 2004 to November 2020.
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Figure 6: Average CDX Index Volatility Surface: Data vs Model
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Notes: This figure compares the average Black-implied volatilities of CDX swaptions calculated
from the data (black bars) and the model (gray bars). We consider three option maturities (1,
3, and 6 months) and three moneyness values (95, 100, and 105%). The sample period is from
March 2012 to November 2020.
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Figure 7: Time Series of ATM Credit Index Volatilities
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Notes: This figure plots the time series of the CDX ATM implied volatilities from the data and
the model. Panels A, B, and C show the results for the 1-, 3-, 6-month option maturities. The
solid lines represent the data, and the dotted lines represent the model. The sample period is from
March 2012 to November 2020.
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Figure 8: Elasticities
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Table 1: Model Parameters

Panel A: Calibrated Parameters

1-Distress costs (↵) 25.00%

2-Corporate tax rate (⇣) 20.00%

3-Recovery rate pRq 51.00%

4-Risk-free interest rate prq 1.00%

5-Asset payout rate pqq 2.00%

6-Coupon payment pcq 0.25

7-Default boundary (AD) 19.50

8-Systematic jump intensity loading (⌘m: �m

t
“ ⌘mVt) 151

9-Idiosyncratic jump intensity p�jq 0.50%

Panel B: Estimated Parameters

1-Mean reversion speed p̂q 2.7289

2-Long run mean p✓̂q 0.67%

3-Volatility parameter for asset variance p�̂q 18.79%

4-Correlation between asset value and variance shocks (⇢̂) -0.6195

5-Market price of asset specific risk (⇠̂AKV ) 0.2024

6-Market price of variance risk (⇠̂V ) -7.7340

7-Systematic jump size mean pẑmq -1.66%

8-Systematic jump size standard deviation p�̂m ˆ 100q 1.84%

9-Market price of systematic jump (⇠̂m) -6.2389

10-Idiosyncratic volatility (�̂j) 9.20%

11-Idiosyncratic jump size mean pẑjq -99.02%

12-Idiosyncratic jump size standard deviation p�̂jq 0.4692%

Notes: This table reports the values of our model parameters. Panel A presents the parameters
that are calibrated. Panel B presents the parameters that are estimated via maximum likelihood
estimation.
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Table 2: In-Sample Model Fit

Panel A: Data Panel B: Model Panel C: Fit

Mean Std. Mean Std. Corr. RMSE

CDX 3-Year 56.25 42.66 51.16 32.76 0.96 15.07

CDX 5-Year 79.85 35.77 79.84 35.80 – –

CDX 7-Year 94.93 29.62 105.46 38.32 0.96 16.60

CDX 10-Year 108.45 25.95 128.46 35.95 0.87 27.23

S&P 500 Vol 15.46 10.40 15.08 8.74 – –

Notes: This table reports the in-sample fit of our model. There are five observables in our
estimation procedure: (i) 3-year CDX spread, (ii) 5-year CDX spread, (iii) 7-year CDX spread,
(iv) 10-year CDX spread, and (v) physical SPX volatility implied by the NGARCH model. Panel
A reports the mean, standard deviation, and first-order autocorrelation of each variable in the
data. Panel B reports the same summary statistics of each variable estimated from the model.
Panel C reports three diagnostic measures concerning model fit: the correlation between the data
and model series, root mean squared error (RMSE), and mean absolute percentage error (MAPE).
The sample period is from June 2004 to November 2020.
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Table 3: Out-of-Sample Model Fit: Equity Index Options

Panel A: Data Panel B: Model Panel C: Fit

K Mean Std. Mean Std. Corr. RMSE

1-Month Maturity

95% 21.75 8.04 18.13 8.27 0.89 5.23

100% 16.98 8.32 15.93 8.71 0.89 4.08

105% 12.31 8.70 14.22 8.90 0.89 4.49

3-Month Maturity

95% 20.05 7.08 19.02 7.81 0.86 4.07

100% 17.23 7.34 17.10 8.05 0.86 4.08

105% 14.51 7.68 15.44 8.23 0.86 4.37

6-Month Maturity

95% 19.93 6.36 18.91 6.84 0.82 4.10

100% 18.31 6.60 17.48 6.94 0.82 4.14

105% 16.80 6.93 16.20 7.01 0.82 4.26

Notes: This table reports the out-of-sample fit of our model for SPX options. Panel A reports
the mean, standard deviation, and first-order autocorrelation of each option with a fixed maturity
and moneyness. Panel B reports the same summary statistics of each option estimated from the
model. Panel C reports three diagnostic measures concerning model fit: the correlation between
the data and model series, root mean squared error (RMSE), and mean absolute percentage error
(MAPE). The sample period is from June 2004 to November 2020.
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Table 4: Out-of-Sample Model Fit: Credit Index Options

Panel A: Data Panel B: Model Panel C: Fit

K Mean Std. Mean Std. Corr. RMSE

1-Month Maturity

95% 42.71 14.18 44.85 16.09 0.76 10.79

100% 45.18 14.24 47.27 15.44 0.77 10.21

105% 48.65 13.97 49.15 14.84 0.78 9.60

3-Month Maturity

95% 45.23 10.74 47.41 14.11 0.70 10.29

100% 47.10 10.74 49.28 13.88 0.71 10.06

105% 48.96 10.70 50.97 13.71 0.71 9.84

6-Month Maturity

95% 48.18 9.28 45.25 11.44 0.56 10.30

100% 49.35 9.24 46.71 11.40 0.56 10.15

105% 50.54 9.16 48.02 11.37 0.57 10.04

Notes: This table reports the out-of-sample fit of our model for CDX swaptions. Panel A reports
the mean, standard deviation, and first-order autocorrelation of each option with a fixed maturity
and moneyness. Panel B reports the same summary statistics of each option estimated from the
model. Panel C reports three diagnostic measures concerning model fit: the correlation between
the data and model series, root mean squared error (RMSE), and mean absolute percentage error
(MAPE). The sample period is from March 2012 to November 2020.
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Appendix

This Appendix contains various theoretical and empirical details complementing the analysis in

the core of the paper.

A Pricing details of Firm Credit Derivatives

A.1 CDS risky PV01 and protection leg

A CDS contract involves two parties: the protection buyer and the protection seller. The protection

buyer makes quarterly premium payments to the protection seller until the maturity of the contract

or until the firm’s default. When the running spread paid by the buyer is one basis point (bp)

per annum, the present value of future premiums (or premium leg) is called the risky PV01 and

is computed in our model as:

RPV01pAj

t , Vt, T q “ 0.0001 ˆ
4Tÿ

i“1

e
´rpti´tq “

1 ´ GpAj

t , Vt, tiq
‰

{4,

where T is the maturity of the given CDS contract and tt1, t2, ¨ ¨ ¨ t4T u denote quarterly premium

payment dates, and GpAj

t , Vt, tiq “ EQ
t

“
1⌧j§ti

‰
. The present value of a contingent protection

payment (or protection leg) is computed as:

ProtLegpAj

t , Vt, T q “ p1 ´ Rq
4Tÿ

i“1

e
´rpti´tq “

GpAj

t , Vt, tiq ´ GpAj

t , Vt, ti´1q
‰
.

Here, R represents the recovery rate, which is measured as a fraction of the CDS notional value

and is assumed identical across firms for parsimony.
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A.2 CDX options

The CDX index is defined as the average basis points default swap spread across the constituent

firms,

ItpA1
t
, . . . , A

N

t
, Vtq “ 1

N

Nÿ

j“1

S
jpAj

t , Vtq. (A.1)

However, in practice, the index for an investment-grade entity is traded in terms of an upfront

fee and a standardized coupon, currently 100 basis points. This fee is the required side payment

between the buyer and seller of default insurance to compensate for the di↵erence between the fair

market spread and the standardized coupon. The upfront fee is exchanged between the protection

buyer and protection seller at the beginning of the contract. For a generic entity, the upfront fee

U is determined so that the contract is fair to both parties, namely U ` 100ˆRPV01 “ ProtLeg.

Therefore, the upfront fee for firm j is determined as

UpAj

t , Vt, T q “ ProtLegpAj

t , Vt, T q ´ 100 ˆ RPV01pAj

t , Vt, T q. (A.2)

While the upfront fee and the CDS spread are two di↵erent trading/quoting conventions , they are

in fact equivalent. Combining equations (A.2) and (11) results in a simple relation: UpAj

t , Vt, T q “
“
SpAj

t , Vt, T q ´ 100
‰

ˆ RPV01pAj

t , Vt, T q.
In addition, CDX options provide front-end protection, meaning that if there is a credit event

prior to the option expiration, the contract remains active and the holder of a call (payer swaption)

obtains the default payment on the CDS. Chen, Doshi, and Seo (2021) show that with front-end

protection, credit index swaptions can be viewed as call and put options written on, Ũ , an adjusted

up-front fee, so that

ItpA1
t
, . . . , A

N

t
, Vtq “ 1

N

Nÿ

j“1

Ũ
jpAj

t , Vtq, (A.3)
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where Ũ
j is given by

rU j

t “ 1t⌧ j°tuU
j

t ` 1t⌧ j§tup1 ´ Rq, (A.4)

where rU j

t ” UpAj

t , Vt, T q is firm j’s upfront fee and R is the CDS/bond-specific recovery rate which

we assume to be the same across firms. Please refer to Section 3 of Chen, Doshi, and Seo (2021)

for further details and examples.

B Firm and Index Contingent Claim Dynamics

In this section, we derive the dynamics of a contingent claim written on a firm’s asset dynamics

in (2). We will use the results derive here in the next section where we consider the dynamics of

a generic index and derivatives on such index constituted of firm contingent claims (i.e., stocks,

CDS, etc...).

B.1 Dynamics of corporate contingent claims

To begin, consider a corporate claim or derivative f whose value is determined by the dynamics

of the state variables, f j

t ” fpAj

t , Vtq. Using Itô’s lemma, we find its return dynamics under P to

be

df
j

t “ Bf j

t

BAj

t

dA
j

c,t ` 1

2

B2
f
j

t`
BAj

t

˘2
`
dA

j

c,t

˘2 ` Bf j

t

BVt

dVt ` 1

2

B2
f
j

t

pBVtq2
pdVtq2

` B2
f
j

t

BAj

tBVt

dA
j

c,tdVt ` dJ
j,f

t ` dJ
m,f

t ,

where we use dA
j

c,t to denote the continuous dynamics of Aj

t between jumps:

dA
j

c,t “ pµt ´ qqAj

tdt `
a
VtA

j

tdW
A

t
´ �

j

t ⌫̄
j
A

j

tdt ´ �
m

t
⌫̄
m
A

j

tdt ` �jA
j

tdW
j

t ,
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and where we have written the jump dynamics in their shorthand

dJ
j,f

t “
´
fpAj

te
Z̃

j
t , Vtq ´ f

j

t

¯
dN

j

t

dJ
m,f

t “
´
fpAj

te
Z̃

m
t , Vtq ´ f

j

t

¯
dN

m

t
.

Note that the second superscript f in J denotes a jump in the value of f caused by a jump in

asset value A
j

t , while the first superscripts j{m identify idiosyncratic/systematic jumps.

Expanding and rearranging, we can write

df
j

t “ µ
j

f,t
f
j

t dt ` Bf j

t

BAj

t

A
j

t�jdW
j

t ` Bf j

t

BAj

t

A
j

t

a
VtdW

A

t
` Bf j

t

BVt

�

a
VtdW

V

t

` dJ
j,f

t ` dJ
m,f

t ´ Bf j

t

BAj

t

A
j

t�
j

t ⌫̄
j
dt ´ Bf j

t

BAj

t

A
j

t�
m

t
⌫̄
m
dt, (B.1)

where

µ
j

f,t
“ Bf j

t

BAj

t

A
j

t

f
j

t

pµt ´ qq ` Bf j

t

BVt

p✓ ´ Vtq
f
j

t

` 1

2

B2
f
j

t`
BAj

t

˘2
pAj

tq2
f
j

t

`
�
2
j

` Vt

˘
` 1

2

B2
f
j

t

pBVtq2
�
2
Vt

f
j

t

` B2
f
j

t

BAj

tBVt

A
j

t⇢�Vt

f
j

t

. (B.2)

The P-dynamics above, combined with the SDF defined in equation (4), imply that, in the

absence of arbitrage opportunities, the dynamics of the corporate claim or derivative f under Q

are

df
j

t “ µ
j,Q
f,t

f
j

t dt ` Bf j

t

BAj

t

A
j

t�jdW
j

t ` Bf j

t

BAj

t

A
j

t

a
VtdW

A,Q
t ` Bf j

t

BVt

�

a
VtdW

V,Q
t

` dJ
j,f

t ` dJ
m,f,Q
t ´ Bf j

t

BAj

t

A
j

t�
j

t ⌫̄
j
dt ´ Bf j

t

BAj

t

A
j

t�
m

t
⌫̄
m
dt, (B.3)
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where

dJ
m,f,Q
t “

´
fpAj

te
Z̃

m,Q
t , Vtq ´ f

j

t

¯
dN

m,Q
t ,

and where

µ
j,Q
f,t

“ Bf j

t

BAj

t

A
j

t

f
j

t

pr ´ qq ` Bf j

t

BVt


Qp✓Q ´ Vtq

f
j

t

` 1

2

B2
f
j

t`
BAj

t

˘2
pAj

tq2
f
j

t

`
�
2
j

` Vt

˘
` 1

2

B2
f
j

t

pBVtq2
�
2
Vt

f
j

t

` B2
f
j

t

BAj

tBVt

A
j

t⇢�Vt

f
j

t

. (B.4)

Absence of arbitrage implies that under the risk-neutral measure, we must have

EQ
t

«
df

j

t

f
j

t

�
“ pr ´ qqdt

“ µ
j,Q
f,t

dt `
Et

”
dJ

j,f

t

ı

f
j

t

´
EQ

t

”
dJ

m,f

t

ı

f
j

t

´ Bf j

t

BAj

t

A
j

t

f
j

t

�
j

t ⌫̄
j
dt ´ Bf j

t

BAj

t

A
j

t

f
j

t

�
m

t
⌫̄
m
dt.

B.2 Model implications for indices and index derivative dynamics

In this appendix, we first derive the dynamics and moments of a generic index consisting of any

given corporate securities. We then extend the results to express the dynamics and moments of

any derivative written on such index.

Index dynamics

Consider an index I consisting of an equally weighted representation of individual constituents

IpA1
t
, . . . , A

N

t
, Vtq “ 1

N

Nÿ

j“1

fpAj

t , Vtq,
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where f can be a firm’s stock price, CDS spread, CDS up-front fee or any other claim written on

its assets. Given the dynamics of f in (B.1), the P-dynamics of the index is given by

dIt “
˜

1

N

Nÿ

j“1

µ
j

f,t
f
j

t

¸
dt `

˜
1

N

Nÿ

j“1

Bf j

t

BAj

t

A
j

t�jdW
j

t

¸
`

˜
1

N

Nÿ

j“1

Bf j

t

BAj

t

A
j

t

¸
a
VtdW

A

t

`
˜

1

N

Nÿ

j“1

Bf j

t

BVt

¸
�

a
VtdW

V

t
` dJ

m,f

t ´
˜

1

N

Nÿ

j“1

Bf j

t

BAj

t

A
j

t

¸
�
m

t
⌫̄
m
dt

`
˜

1

N

Nÿ

j“1

dJ
j,f

t

¸
´

˜
1

N

Nÿ

j“1

Bf j

t

BAj

t

A
j

t�
j
⌫̄
j

¸
dt. (B.5)

A few things need to be noted. First, taking a very large portfolio (N ›Ñ 8), by the properties

of (idiosyncratic) Brownian motion, the law of large numbers implies that:

lim
NÑ8

1

N

Nÿ

j“1

Bf j

t

BAj

t

A
j

t�jdW
j

t Ñ 0.

Furthermore, recall that

dJ
j,f

t “
´
fpAj

te
Z̃

j
t , Vtq ´ f

j

t

¯
dN

j

t .

In our framework, one consequence of homogeneity assumption about firms’ dynamics is that all

firms share the same idiosyncratic structural parameters such as di↵usive volatility (�j) and jump

intensity (�j). Because of this, in the limit, when N ›Ñ 8, we have

lim
NÑ8

1

N

Nÿ

j“1

dJ
j,f

t Ñ Et

”
fpAj

te
Z̃

j
t , Vtq ´ f

j

t

ı
�
j
dt ” J̄

j,f

t �
j
dt.
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The previous results implies that the dynamics (B.5) of an infinitely large index simplifies to

dIt “
˜

1

N

Nÿ

j“1

µ
j

f,t
f
j

t

¸
dt ` J̄

j,f

t �
j
dt `

˜
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Nÿ
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A
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BAj
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A
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¸
�
m

t
⌫̄
m
dt

´
˜

1

N

Nÿ

j“1

Bf j

t

BAj

t

A
j

t�
j
⌫̄
j
dt

¸
. (B.6)

The second implication of homogeneity assumption about firms’ dynamics is that firms are

ex-ante homogeneous, that is, Aj

t “ A
r

t
for all j at time t but may di↵er ex-post due to dif-

ferent idiosyncratic shocks.33 Imposing the homogeneity assumption in (B.6) implies that It “
1
N

∞
N

j“1 fpAr

t
, Vtq “ fpAr

t
, Vtq. We also have

1

N

Nÿ

j“1

µ
j

f,t
f
j

t “ µ
r

f,t
f
r

t
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r

I,t
It
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BAj
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A
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A
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A
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A
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BAr
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A
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where J̄
r,I

t “ Et

”
IpAr

t
e
Z̃

j
t , Vtq ´ It

ı
. Moreover, dJm,I

t “
´
IpAr

t
e
Z̃

m
t , Vtq ´ It

¯
dN

m

t
and from (B.2)

33Another way to look at our homogeneity assumption is from the index point of view. More precisely, assuming
that firms are ex-ante homogeneous is equivalent to assume that the index is continuously re-balanced to be
composed solely of firms for which Aj

t “ Ar
t .
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we get

µ
r

I,t
“ BIt

BAr
t

A
r

t

It
pµt ´ qq ` BIt

BVt

p✓ ´ Vtq
It
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2
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tBVt

A
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.

Plugging these results back into (B.6) implies the following P-dynamics for the index:

dIt

It
“ µ̄I,tdt ` BIt

BAr
t

A
r

t

It

a
VtdW

A

t
` BIt

BVt

�

It
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VtdW
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It
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t , (B.7)

where µ̄I,t ” µ
r

I,t
` J̄

r,I
t
It

�
j ´ BIt

BAr
t

A
r
t

It
p�j

⌫̄
j ` �

m

t
⌫̄
mq. It is worth noting that although the initial level

of the index is equal to that of the representative firm security fpAr

t
, Vtq, their dynamics di↵er in

the sense that those of the index are free of idiosyncratic shocks while the dynamics of the latter

are not.34

The P-dynamics (B.7) combined with the risk-neutralization of systematic risks implies the

following Q-dynamics for the index:

dIt
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Q
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dt ` BIt

BAr
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A
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where µ̄Q
I,t

” µ
r,Q
I,t

` J̄
r,I
t
It

�
j ´ BIt

BAr
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t , Vtq ´ It

¯
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t , and

34Similarly, while in level, we have Am
t “ Ar

t for a large portfolio A
m
t constituted of individual firm unlevered assets

Ar
t , the dynamics of Ar

t is function of idiosyncratic risks while dAm
t is not because of the e↵ect of diversification.
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where
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From equations (B.7)-(B.10), we can now derive the index expected returns under P and Q

as well as its conditional variance. The expected returns under the physical and risk-neutral

probability measures are
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respectively. So, we can write the index return risk premium as
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(B.10)

The instantaneous physical and risk-neutral index return variance �2
I,t

and �
2,Q
I,t

can be expressed
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as
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(B.11)

Index derivative dynamics

The results presented in equations (B.7), (B.10), and (B.11) can be easily extended to any deriva-

tives O written on the index whether it corresponds to a call, cpIt, K, T q, or a put, ppIt, K, T q,
with respective payo↵s e´rTEQ

t rmaxpIt`T ´ K, 0qs or e´rTEQ
t rmaxpK ´ It`T , 0qs.

To see why, simply note that the state variables impacting the index valuations (i.e., Ar

t
and Vt

in our case after imposing firm homogeneity) are the same that would impact the pricing of any

derivative. In other words, if It “ fpAr

t
, Vtq then we must have OpAr

t
, Vtq. Denoting Ot ” OpAr

t
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we thus get
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(B.12)

where
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which completes the proof.

C Model Estimation

This Appendix provides details about the estimation of the model. We first present the conditional

log-likelihood used for estimating structural parameters. We then describe the estimation of model-

implied measures such as 5-year CDX spread or conditional equity index volatility that are used

as inputs to the estimation.

C.1 Maximizing model log-likelihood

We estimate ⇥ by maximum likelihood. The log-likelihood function is given by

logLp⇥q “
Tÿ

t“2

logP pYt | Yt´1;⇥q . (C.1)

For ease of exposition, we split Yt into two vectors: Y a

t
“
 
S

CDX
5,t , �

SPX
t

(
which denotes the variables

that are assumed to be accurately observed and Y
b

t
“

 
S

CDX
3,t , S

CDX
7,t , S

CDX
10,t

(
, the vector of the

remaining CDX spreads. By Bayes’ rule, the transition probability of Yt can be expressed as

P pYt | Yt´1;⇥q “ P
`
Y

b

t
| Y a

t
;⇥

˘
ˆ P

`
Y

a

t
| Y a

t´1;⇥
˘
. (C.2)

We compute the two conditional probabilities in equation (C.2) individually. First, the proba-

bility of observing Y
b

t
conditional on Y

a

t
is equivalent to observing the measurement errors eT,t in

equation (17). This implies that the first conditional probability P
`
Y

b

t
| Y a

t
;⇥

˘
is Gaussian and

is given by

P
`
Y

b

t
| Y a

t
;⇥

˘
“

π

T“3,7,10

1

�e

?
2⇡

e
´ e2T,t

2�2
e . (C.3)

Second, it is worth noting that observing Y
a

t
is equivalent to observing pAr

t
, Vtq or even par

t
, Vtq

64



where a
r

t
” log pAr

t
q. This result follows from the equality in equation (16) and the existence of

the one-to-one mapping between the two state variables (or par
t
, Vtq) and S

CDX
5,t and �

SPX
t

. Hence,

the second conditional probability P
`
Y

a

t
| Y a

t´1;⇥
˘
is equal to the transition probability of par

t
, Vtq

divided by the absolute value of the Jacobian determinant of the mapping par
t
, Vtq fiÑ Y

a

t
. We have

P
`
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t
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|detpJtq|P
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a
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t
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, (C.4)

where35

Jt “

»

–
BSCDX
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Bart
BSCDX

5,t

BVt

B�SPX
t

Bart
B�SPX

t
BVt

fi

fl . (C.5)

In equation (C.4), the conditional probability can further be decomposed into

P
`
a
r

t
, Vt | ar

t´1, Vt´1;⇥
˘

“ P
`
a
r

t
| Vt, a

r

t´1, Vt´1;⇥
˘

ˆ P pVt | Vt´1;⇥q . (C.6)

In the previous equation, P pVt | Vt´1;⇥q corresponds to the Bessel density function of observing

Vt conditional on Vt´1 which is available in closed-form. We are thus left with the estimation of

P
`
a
r

t
| Vt, a

r

t´1, Vt´1;⇥
˘
.

To estimate P
`
a
r

t
| Vt, a

r

t´1, Vt´1;⇥
˘
, we adopt the following strategy. We first need to express

the (discretized) dynamics of ar
t

“ log pAr

t
q. To this end, we apply an Euler-discretization scheme

to the continuous-time dynamics of ar
t
. We get:

a
r

t
“ a

r

t´1 ` pµt´1 ´ qq�t `
a
Vt´1�W

A

t
`�J

m

t
´ �

m

t
⌫̄
m�t

`�j�W
j

t `�J
j

t ´ �
j
⌫̄
j�t, (C.7)

where �WA

t
“ ⇢�W

V

t
`

a
1 ´ ⇢2�W

AKV

t
is normally distributed Np0,�tq and �J

k

t
” ∞N

k
t

Nk
t´1

Z̃
k

t

with Z̃
k

t
„ Npzk, �2

k
q for k “ j,m. Thus, �J

k

t
denotes the discretized jump process and N

k

t
counts

35We refer to Appendix C.2 for details about the computation of Jt.
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the total number of jumps that have occurred up to time t. In the above equation, recall that

µt´1 “ r `
´a

1 ´ ⇢2⇠A ` ⇢⇠V

¯
Vt´1 ` �

m

t´1Et´1

“
⌫̃
m

t´1

‰
´ �

m

t´1E
Q
t´1

”
⌫̃
m,Q
t´1

ı
.

Consequently, µt´1 is only function of Vt´1 and the structural parameters. Conditionally on

observing Vt, Vt´1, and a
r

t´1, the distribution of ar
t
can be defined by

a
r

t
“ Ft `

a
Vt´1

a
1 ´ ⇢2�W

AKV

t
`�J

m

t
` �j�W

j

t `�J
j

t , (C.8)

where �W
AKV

t
, �J

m

t
, �W

j

t , and �J j

t capture the remaining uncertainty in a
r

t
after conditioning,

and

Ft “ a
r

t´1 ` pµt´1 ´ qq�t `
a
Vt´1⇢�W

V

t
´ �

m

t
⌫̄
m�t ´ �

j
⌫̄
j�t,

is the conditional expectation of ar
t
given Vt, art´1, Vt´1 with

�W
V

t
“ Vt ´ Vt´1 ´ p✓ ´ Vt´1q�t

�
?
Vt´1

,

which is known after conditioning.

We have now all the required ingredients to derive an estimate of P
`
a
r

t
| Vt, a

r

t´1, Vt´1;⇥
˘
. To

achieve this objective, first note that

P
`
a
r

t
| Vt, a

r

t´1, Vt´1;⇥
˘

(C.9)

“
Ujÿ

uj“0

Umÿ

um“0

P
`
a
r

t
| Nm

t
“ um, N

j

t “ uj, Vt, a
r

t´1, Vt´1;⇥
˘
P pNm

t
“ um | Vt´1;⇥qP

`
N

j

t “ uj | Vt´1;⇥
˘
,

where

P
`
a
r

t
| Nm

t
“ um, N

j

t “ uj, Vt, a
r

t´1, Vt´1;⇥
˘

” 1

�tparq
?
2⇡

e
´ part ´µtparqq2

2�2
t parq , (C.10)
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with

µtparq ” E
“
a
r

t
| Nm

t
“ um, N

j

t “ uj, Vt, a
r

t´1, Vt´1;⇥
‰

“ Ft ` pumzmq�t ` pujzjq�t,

and with

�
2
t
parq ” V ar

“
a
r

t
| Nm

t
“ um, N

j

t “ uj, Vt, a
r

t´1, Vt´1;⇥
‰

“ Vt´1p1 ´ ⇢
2q�t ` �

2
j
�t ` umpz2

m
` �

2
m

q�t ` ujpz2j ` �
2
j
q�t.

Moreover, we have

P pNm

t
“ um | Vt´1;⇥q “ pVt´1⌘m�tqum

um!
e

´Vt´1⌘m�t
, (C.11)

and

P
`
N

j

t “ uj | Vt´1;⇥
˘

“ p�j�tquj

uj!
e

´�j�t
. (C.12)

To estimate P
`
a
r

t
| Vt, a

r

t´1, Vt´1;⇥
˘
in equation (C.9), we set Um “ 10 and Uj “ 1 and multiply

equations (C.11), (C.11), and (C.12) together.36

Then, finally, we obtain our maximum likelihood estimates by searching for the set of model

parameters ⇥ that maximizes the log-likelihood function logLp⇥q in equation (C.1).

C.2 Estimation details on PDpAj

t , Vtq, GpAj

t , Vt, T q, SCDX
T,t

, �
SPX
t

, and Jt

Recall that in our estimation methodology, we need to compute the T -year CDX spread (SCDX
T,t

)

and the conditional SPX return volatility (�SPX
t

) as well as the Jacobian matrix Jt to estimate

36Note that the truncations chosen are not restrictive given our daily estimation strategy combined with the
relatively low intensity of jumps (1 per year on average for systematic jumps and 1 every 10 years for idiosyncratic
jumps).
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model parameters and filter pAr

t
, Vtq. Given model dynamics and our homogeneity assumption, we

have the following variable definitions. First, SCDX
T,t

corresponds to SpAr

t
, Vt, T q where SpAr

t
, Vt, T q

satisfies equation (11) setting A
j

t “ A
r

t
. Moreover, �

SPX
t

is equal to
b
�2
E,t

with �
2
E,t

satisfies

equation (15) in Proposition (1) setting A
j

t “ A
r

t
and IpAr

t
, Vtq to EpAr

t
, Vtq where EpAr

t
, Vtq is

given by equation (10).37

The first step toward estimating S
CDX
T,t

and �
SPX
t

for a given pair of Ar

t
and Vt and a given set of

structural parameters is to estimate the present value of a dollar received at default PDpAr

t
, Vtq “

EQ
t

“
e

´rp⌧´tq‰ and the cumulative risk-neutral default probability GpAr

t
, Vt, T q “ EQ

t r1⌧§T s over the
next T years where ⌧ is the first time at which the representative firm asset value hits the default

boundary. On the one hand, equity prices and thus the instantaneous equity index volatility

depends on the sensitivity of PD with respect to the state variables. To estimate these sensitivities

and calculate �
SPX
t

, we must first estimate PD. On the other hand, the term-structure of risk-

neutral default probability is the required input to estimate the CDX spread at any horizon T .

We now describe the methodology to estimate P̂Dp¨, ¨q, Ĝp¨, ¨, T q, and their partial derivatives

for a given set of structural parameters. First, we discretize the state space of the two state

variables, Ar

t
and Vt.38 A given combination of the discretized state variables is then used as

initial values for our simulation exercise. Specifically, we adopt a daily discretization of the risk-

neutral dynamics of assets and systematic variance using an Euler approximation scheme. More

precisely, we simulate

log pAr

t
q “ log

`
A

r

t´1

˘
` pr ´ qq�t `

a
Vt´1�W

A,Q
t `�J

m,Q
t ´ �

m

t
⌫̄
m�t

`�j�W
j

t `�J
j

t ´ �
j
⌫̄
j�t,

Vt “ Vt´1 ` 
Qp✓Q ´ Vt´1q�t ` �

a
Vt´1�W

V,Q
t ,

37Note that we omit the dependence of SCDX
T,t and �SPX

t on the vector of structural parameters ⇥ for ease of
exposition.

38More precisely, we adopt a grid composed of 17 nodes for asset value and 11 nodes for spot variances. The
lower and upper bounds for asset values are AD ` 5 and 100, respectively. The lower and upper bounds for spot
systematic variances correspond to ✓{100 and ✓ ¨ 10, respectively. These bounds combined with our Chebyshev
polynomial approach define the nodes.
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where �WA,Q
t “ ⇢�W

V,Q
t `

a
1 ´ ⇢2�W

AKV,Q
t , and �W

V,Q
t and �W

AKV,Q
t are two independent

normally distributed Np0,�tq shocks. For systematic jumps, we have �J
m,Q
t ” ∞N

m,Q
t

N
m,Q
t´1

Z̃
m,Q
t with

Z̃
m,Q
t „ NpzQ

m
, �

2
m

q. Thus, �J
m,Q
t denotes the discretized systematic jump process under Q and

N
m,Q
t counts the total number of jumps that have occurred up to time t. Because systematic jump

risk is priced, recall that the risk-neutral intensity of systematic jumps is �m,Q
t . For idiosyncratic

jumps, we have �J
j

t ” ∞N
j
t

N
j
t´1

Z̃
j

t with Z̃
j

t „ Npzj, �2
j
q.

Using these discretized dynamics, the vector of structural parameters, and a given combination

of the initial state variables tAr

0, V0u, we simulate firm assets under the risk-neutral measure over

10 years. Using the simulated paths of firm assets, we then estimate P̂DpAr

0, V0q as Ê
Q
0 re´r⌧ s “

1
MC

∞
MC

n“1 e
´r⌧

n
, where ⌧

n “ inf ts • 0 : Ar,n

s
§ ADu and A

r,n

s
denotes the representative firm’s

asset value at time s for the simulated path n, AD represents the default boundary, and MC

is the number of Monte-Carlo simulations.39 In a similar manner, we can compute the term-

structure of risk-neutral cumulative default probability and estimate credit default swaps of any

given maturity. Based on the simulations, the cumulative risk-neutral default probability over

any horizon T is ĜpAr

0, V0, T q “ Ê
Q
0 r1⌧§T s “ 1

MC

∞
MC

n“1 1⌧n§T . Once the cumulative risk-neutral

default probability is obtained, it becomes straightforward to estimate the corresponding CDX

spread, ŜpAr

0, V0, T q.
We repeat this simulation exercise for each combination of the initial values of the state vari-

ables. This gives us an entire cross-section of PD as a function of the initial states (i.e., the

initial combination of state variables used to simulate the representative firm forward). Using the

cross-section of PD and the combination of states, we then estimate the loadings of Chebyshev

polynomials for a given vector of parameters by projecting the PD on the state variables. The

estimated Chebyshev loadings provide us with the required (smooth) mapping between PD and

the state variables, that is, P̂Dp¨, ¨q. Because Chebyshev polynomials guarantee a smooth mapping

between P̂Dp¨, ¨q and tAr

t
, Vtu, the estimates of the partial derivatives of P̂Dp¨, ¨q with respect to

A
r

t
, and Vt are then relatively straightforward to compute. We can in the same manner estimate

39We use MC “ 1500 for computational e�ciency.
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the Chebyshev loadings providing us with the smooth mapping between Ŝp¨, ¨, T q and the state

variables. At this point, we can estimate the present value of a dollar received at default, CDX

spreads, and their respective derivatives with respect to the state variables for any A
r

t
and Vt.

From the expression derived for the conditional equity index physical volatility, we see that

one needs to compute the required partial derivatives of PD with respect to the state variables to

estimate �
2
E,t

for any given A
r

t
and Vt (i.e., �A,t “ BIt

BAr
t

A
r
t

It
and �V,t “ BIt

BVt
,
1
It

with It “ EpAr

t
, Vtq).

Because of the smooth properties of Chebyshev polynomials, computing these partial derivatives

is straightforward once the mapping between PD and the state variables is estimated.

Finally, recall that our estimation strategy requires computing the Jacobian matrix in equa-

tion (C.5) which is function of the partial derivatives of SCDX
5,t and �

SPX
t

with respect to log-asset

value and spot variance. Again, each element of the Jacobian matrix can be backed-out from the

estimated Chebyshev coe�cients defining the mapping between S and PD and the two states.

00

D Comparison with Collin-Dufresne, Junge, and Trolle (2021)

We now discuss our results for SPX options and CDX swaptions in light of the contrasting results

in Collin-Dufresne, Junge, and Trolle (2021) (CJT). It is worth noting that our assumptions about

the representative firm asset dynamics are identical to CJT and the only di↵erence between our

respective frameworks lies in the way that the firm’s capital structure is modeled. Hence our main

goal in this appendix is to understand whether this can drive the di↵erences in findings.

To see if this is the case, we proceed as follows. Using the parameters reported in CJT applied

in our model, we seek to replicate their main results. CJT report two sets of parameters. They

do not fit P-dynamics and focus on fitting each derivative markets’ risk-neutral distribution. We

refer to SPX- (resp. CDX-) parameters as the set of structural parameters in CJT obtained when

fitting SPX options (resp. CDX swaptions). The main empirical result in CJT is that SPX

options are overpriced when using CDX-parameters while CDX swaptions are underpriced when

using SPX-parameters.
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For this exercise, the values used for distress costs (↵), corporate tax rate (⇣), recovery rate

pRq, risk-free interest rate prq, asset payout rate pqq, coupon payment pcq, and default boundary

(AD) are the ones reported in Panel A of Table 1.

Next, we need to define the set of structural parameters and the value of the two state variables.

We first discuss the structural parameters used. We then discuss the calibration of the two states

which is required for generating CDX and SPX implied volatilities. Since all firm contingent claims

are priced under the risk-neutral measure, we can directly use the parameter estimates reported in

CJT. However, one additional assumption about the price of systematic jump risk must be made.

Recall that the Q-dynamics of the aggregate asset risk factor is given by

dA
m

t

Am
t

“ pr ´ qq dt `
a
VtdW

A,Q
t ` dJ

m,Q
t ´ �

m

t
⌫̄
m
dt,

where ⌫̄
m “ Et r⌫̃m

t
s and Et rdNm

t
s “ �

m

t
dt “ ⌘mVtdt. Despite the change of measure, the last

term in the previous equation is a function of physical jump intensity and physical expected jump

size ⌫̃
m

t
. When changing numeraire and going from the measure P to Q, the jump compensator

�
m

t
⌫̄
m is not a↵ected by the change. This implies that one needs an estimate of the price of

systematic jump risk ⇠m to fully define the representative asset Q-dynamics. Because CJT do not

estimate P-dynamics and prices of risk, they simply use the risk-neutral compensator in the above

Q-dynamics. This is equivalent to assume that ⇠m “ 0 in which case P and Q jump dynamics

are perfectly equivalent. For comparison purposes, we follow their approach and set ⇠m “ 0 when

using either sets of parameter (SPX- or CDX-parameters) in our framework. This choice avoids

making any ad-hoc assumption about the prices of jump risk in order to be consistent with their

two sets of structural parameters.40

Armed with the two sets of parameters (one for SPX and one for CDX), we are now left with

calibrating the two state variables, Ar

t
and Vt. To this end, we simply find the pair of values that

40Note that the price of systematic jump is function of jump risk and thus implicitly depends on the jump
risk distribution estimated. Note that allowing for economically reasonable price of jump risk parameter does not
impact the results of our analysis.
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Table A.1: Risk-neutral parameters used for the comparison analysis with CJT

This Paper CJT SPX CJT CDX

Mean reversion speed pQq 1.2753 1.074 1.751

Long run mean p✓Qq 1.42% 3.10% 2.47%

Volatility parameter for asset variance p�q 0.1879 0.2000 0.2000

Correlation between asset value and variance shocks (⇢) -0.6195 -0.7000 -0.7000

Systematic jump intensity loading (⌘Q
m
: �m,Q

t “ ⌘
Q
m
Vt) 168.5643 8.33 63.96

Systematic jump size mean pzQ
m

q -0.0187 -0.171 -0.045

Systematic jump size standard deviation p�mq 1.84% 16.00% 16.70%

Idiosyncratic volatility (�✏) 9.20% 28.00% 21.00%

Idiosyncratic jump intensity p�jq 0.5% 0.1% 0.1%

Idiosyncratic jump size mean pzjq -0.9902 -5.0000 -5.0000

Idiosyncratic jump size standard deviation p�jq 0.0047 0.0000 0.0000

Notes: The table presents the structural parameters characterizing the representative firm unlev-
ered asset risk-neutral dynamics for our study in the column labelled This Paper and for CJT’s
SPX- and CDX-parameters in the two remaining columns. In the table, ⌘Q

m
defines the loading

of systematic jump intensity on Vt under the probability measure Q. In our set-up, it is equal
to ⌘

Q
m

“ ⌘me
⇠mz

m` 1
2 p⇠mq2�2

m . For the two sets of CJT parameters, it is directly equal to the value
reported in their study. Note the parameters reported for CJT are the ones used to produce the
results presented in Table A.2.
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Table A.2: Comparison of Model Estimates with Collin-Dufresne et al. (2022)

This Paper CJT SPX CJT CDX

Panel A: State Variables and Other Metrics

A
r

t
46.86 112.94 101.54

Vt 0.0093 0.0148 0.0150

Lt 46.11% 19.36% 21.48%

�
Q
A

2.93% 15.08% 14.19%

Panel B: CDX Index Spreads

5-Year 79.84 79.84 79.84

K Panel C: S&P 500 Index Implied Volatility

95% 18.13 18.40 23.12

100% 15.93 15.93 19.52

105% 14.22 14.26 19.09

K Panel D: CDX Index Implied Volatility

95% 44.85 33.84 42.54

100% 47.27 36.26 47.38

105% 49.15 38.67 51.79

Notes:
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allows to match, for a given set of parameters, the average 5-year CDX spread of 79.84 bps and

the 1 month-ATM average implied-volatility by our fitted model. For the set of SPX-parameters

(resp. CDX-parameters), we match the average 1 month-ATM SPX (resp. CDX) implied volatility

reported in Table 3 (resp. Table 4).

Based on the structural parameters and the state variables, we then generate the 1-month

implied-volatilities for CDX swaptions and SPX options. We present the results in Table A.2 and

report the parameter estimates for our study, and the SPX- and CDX-parameters in Table A.1.

We now discuss the results reported in Table A.2 in more details.

In Panel A, we report the fitted asset value, systematic variance, market leverage as well as the

total unlevered asset Q-volatility implied by each parameter set. For our study, the asset value

and systematic variance correspond to the time series average of the filtered states. For CJT, they

correspond to the one calibrated to match the average 5-year CDX spread of 79.84 basis points and

the 1 month-ATM average implied-volatility fitted by our model, either 1 month-ATM average

SPX implied-volatility for SPX-parameters or 1 month-ATM average CDX implied-volatility for

CDX-parameters. In Panel B, we report the fitted 5-year CDX spreads for each set of parameters.

In Panels C and D, we report the fitted implied volatilities.

A few comments are in order. We see that the asset value and systematic variance calibrated for

CJT parameters to match 5-year CDS spread and implied-volatilities are quantitatively di↵erent

from the ones we filter based on our structural parameters (46.86 v.s. 112.94/101.54). The higher

asset value calibrated for CJT parameters when applied to our framework is partly explained by

the fact that idiosyncratic jumps are larger in CJT than in our study (see Table A.1). Larger

negative jumps tend to push away asset value from the default boundary which explains the results

obtained for Ar

t
in columns 2 and 3. Note that the asset value calibrated for CJT parameters and

reported in the table cannot be directly compared to the one presented in their study. In CJT,

two debts co-exist and their face values is economically much larger than the default boundary we

assume.41 This explains why we calibrate asset values of 112.94 and 101.54, respectively, but they

41The face value of the short-term debt (D1) is 98.79 and the face value of the long-term debt (D2) is 659.62.
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report an average asset value of 2905.8. However, we can compare the calibrated market leverage

and systematic asset variance for their set of parameters in Table A.2 with the one they report.

From columns 2 and 3 in Panel A, the market leverages obtained by fitting the 5-year CDS

spread and our model SPX- and CDX-1mth ATM implied volatility using CJT parameters are

15.08% and 14.19%, respectively. These numbers are of the same order of magnitude as the ones

we obtained for their 2 parameter sets.42 By comparing the results in columns 2 and 3 with the

ones in column 1, we see that the market leverage di↵er greatly between the 3 sets of parameters

(ours and theirs). This is explained by the di↵erences in fitted asset value as a higher level of asset

value calibrated A
r

t
for their parameter sets in turn translates into a lower market leverage.

As a result of lower leverage, a higher unlevered asset unconditional total Q-volatility �
Q
A
is

calibrated by CJT relative to our study (2.93% v.s. 15.08%/14.19%). This is because the level of

financial claims volatility, whether they are credit or equity instruments, is positively impacted by

the interaction of asset total volatility and leverage. Given the �
Q
A
implied by CJT’s parameter

sets, we see that the level of systematic variance calibrated to fit 5-year CDS spread and our

model SPX- and CDX-1mth ATM implied volatility is comparable in magnitude to the average

systematic variance reported in CJT (0.0148/0.0150 v.s. 0.0101/0.0185).

We now discuss the main take away from this comparison analysis. From the second column in

Panels C and D, we see that SPX parameters combined with calibrated asset value and systematic

variance match precisely the level and skew of SPX implied volatilities but fail short on predicting

the right level of CDX implied volatilities. From the third column in Panels C and D, we see that

CDX parameters combined with calibrated asset value and systematic variance match precisely

the level and skew of CDX implied volatilities but overprice SPX implied volatilities.

Altogether, these results suggest that the di↵erence in the firm capital structure modeling

between our two studies does not explain the discrepancy between the pricing performances of

SPX and CDX option markets.

The total face value of the two debts is thus 758.41 which is an order of magnitude larger than our calibrated
default boundary of 19.50.

42CJT calibrate a face value-weighted market leverage ( D1
D1`D2 ¨ l1 ` D2

D1`D2 ¨ l2) of 20.19%.
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Hence the remaining di↵erence between our two studies boils down to di↵erences in the esti-

mated parameters.
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