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1 Introduction

Left tail risk is a pervasive feature of financial markets. As such, a large body of

work has investigated its role in determining asset prices. Taken together, the empirical

evidence indicates that compensation required by investors for bearing tail risk is fun-

damental to explain aggregate market risk premia and the cross-section of stock returns

at relatively low frequencies (monthly or longer). This evidence is based on a number

of different tail measures. In particular, information can be extracted either from stock

prices (e.g., Bali et al., 2009; Kelly and Jiang, 2014), reflecting risk under the physical or

statistical measure under which prices are observed, or from option prices (e.g., Andersen

et al., 2015; Bollerslev et al., 2015), capturing tail risk under the risk-neutral measure

incorporating investors’ preferences.

In this paper, we propose a new tail measure available at a daily frequency, which

allows us to investigate the short-term effects of tail risk on asset prices. We first estimate

the common tail risk component of a cross-section of intra-day stock returns on day t, λP
t ,

using the Hill (1975) power law estimator. This essentially adapts the tail index by Kelly

and Jiang (2014) to a high-frequency environment. Then, we introduce a novel version of

the Hill estimator, λQ
t , that relies on risk-neutralized returns. More specifically, we apply

a nonparametric adjustment to the pooled cross-section of stock returns on day t where

“bad” states of nature, represented by states of high marginal utility, are overweighted to

reflect investors’ compensation for risk. The dynamics of the physical and risk-neutral

Hill estimators differ substantially as compensation for risk varies over time.

Our approach overcomes two main challenges. First, extreme events are infrequently

observed by definition. This limits the information available from the time series of

a single asset such as the market index. Second, option maturities are relatively long

compared to daily events, which makes it difficult to measure the tail risk specific to

day t using option prices. By using high-frequency data on a large cross-section of stock

returns, we are able to extract information about the level of tail risk at day t from

the individual extreme events experienced by different stocks. Furthermore, our risk-

neutralization allows to obtain a tail measure incorporating the economic valuation of
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tail risks by investors, which otherwise would only be possible using option prices (see,

e.g., Aït-Sahalia and Lo, 2000).

Our empirical analysis is conducted considering each of our tail measures (λP
t and λQ

t )

in order to assess the information content of investors’ economic valuation of tail risk.

In particular, we compute the difference between the two estimators at a given point in

time to capture the additional thickness of the left tail coming from the compensation

demanded by investors for bearing tail risk. We call this difference the tail risk premium

(TRP ) and also investigate its implications for asset prices.

A distinctive feature of the tail measures we estimate is that they tend to decrease in

periods of market distress. This in contrast with the usual increase that volatility-based

risk measures exhibit during crises. In fact, the Hill estimator captures the thickness

of the left tail after taking into account the effect of volatility, such that tail risk and

volatility can move in different directions. This suggests that crisis periods are more often

associated with bursts in volatility rather than more activity in the left tail.1 Even so,

we find that the tail risk premium increases during crisis periods. This indicates that,

even though financial crises are not associated with higher tail risk, they are associated

with a higher compensation demanded to bear tail risk.

We start by examining the short-term relation between the tail measures and the

equity premium with one-day, one-week and one-month ahead daily predictive regressions.

We find that the risk-neutral tail risk positively predicts excess market returns. This is

consistent with the idea that investors are averse to tail risk, such that they require higher

returns to hold the market when tail risk increases. Such positive relation is statistically

significant and holds at the one-month horizon, while there is a negative predictive relation

at the one-day horizon. That is, at first an increase in tail risk signals a moment of distress

followed by an immediate negative realization of the market, which reverses to a positive

relation one month later due to compensation for bearing tail risk. Patterns are similar

for the tail risk premium, whereas λP
t has no predictive power for excess market returns

regardless of the horizon. In other words, only the economic perception of tail risk carries

1This is consistent with the evidence by Christensen et al. (2014), Kelly and Jiang (2014) and
Chapman et al. (2018), and the fact that realized kurtosis also decreases during financial crises.
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a premium in the short-term. This is robust to controlling for many alternative predictors.

We also analyze the predictive power of the tail measures for the market variance risk

premium (Bekaert and Hoerova, 2014; Bollerslev et al., 2009). Our baseline specification

includes as control the left tail volatility of Bollerslev et al. (2015), which they show

captures an important component of this premium related to compensation for downside

risk. Our risk-neutral tail measures strongly predict one-week and one-month ahead

variance risk premium, where investors demand a higher compensation for bearing market

variance risk when tail risk is higher. This indicates that the economic perception of tail

risk in the cross-section of firms offers additional information beyond that contained in

the option-implied left tail volatility in the short-term. In contrast, the physical tail risk

is statistically insignificant in the predictive regressions. These results are again robust

to accounting for several relevant controls, including the lagged variance risk premium.

We then investigate whether short-term tail risk is priced in the cross-section of stocks.

To do so, for each of our tail measures, we build a long-short portfolio by sorting stocks

each month on their recent exposure to the measure, based on contemporaneous daily

regressions. The tail risk factors constructed from λQ
t and TRP generate statistically

significant average returns that cannot be explained by standard factor models, where

stocks with high exposure to tail risk (or tail risk premium) have high hedging capacity

and are thus highly priced, yielding subsequent low returns. In contrast, the tail factor

associated with λP
t leads to insignificant spreads in returns. In other words, only the

short-term exposure to tail risk as perceived by investors (that is, its economic valuation)

explains differences in expected returns across stocks.

The findings discussed above suggest that our tail risk factor may potentially be

useful in explaining anomalies that standard factor models fail to explain. Perhaps the

most prominent example of such an anomaly is momentum (Fama and French, 2016).

Motivated by the evidence from Daniel and Moskowitz (2016) that momentum strategies

are exposed to crash risk, we test if including our tail risk factor improves the explanatory

power for this anomaly. We find that the average return of the momentum strategy can

be explained by its statistically significant loading on the risk-neutral tail risk factor. The
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same is not true considering the physical tail risk factor. This suggests that momentum

is priced because it captures short-term exposure to tail risk as perceived by investors.

The remainder of the paper is organized as follows. After a brief discussion of the

related literature, Section 2 describes the methodology to construct our tail measures.

Section 3 presents the data and the estimated tail measures, while Section 4 contains our

empirical analysis. Section 5 concludes the paper. Lastly, Appendices A, B and C contain

the main figures and tables, robustness results and variables definitions, respectively.

1.1 Related literature

Our paper is mainly related to an evolving literature investigating the effects of left

tail risk and investors’ compensation for such risk on financial markets. Bollerslev and

Todorov (2011), Bollerslev et al. (2015) and Andersen et al. (2015, 2017) provide evidence

that tail risk is an important determinant of the equity and variance risk premia using

option-implied tail measures. Extracting information from observed stock prices, Bali

et al. (2009), Kelly and Jiang (2014), Almeida et al. (2017), Weller (2019) and Almeida

et al. (2022) show that tail risk strongly predicts future market returns and macroeco-

nomic activity. Computing tail risk at the firm-level, Bali et al. (2014), Chabi-Yo et al.

(2018) and Atilgan et al. (2020) document significant cross-sectional relations between

tail risk and future stock returns. International evidence on the effects of tail risk beyond

the U.S. market is provided by Andersen et al. (2020), Andersen et al. (2021) and Freire

(2021). We contribute to this literature by proposing a novel method to estimate the

tail risk specific to each day t. We document new short-term return predictability for

the aggregate market and the cross-section of stocks, with particular focus on the role of

incorporating investors’ preferences towards tail risk.2

The closest work to ours is by Kelly and Jiang (2014), who propose the Hill estimator

to estimate the common tail risk component of a cross-section of stocks at a monthly

frequency. We adapt their estimator to a daily frequency using intra-day stock returns

and put forward a new version of the Hill estimator based on risk-neutralized returns.
2For an early contribution on the role of taking economic valuation into account for computing risk

measures, see Aït-Sahalia and Lo (2000).
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We use both physical and risk-neutral estimators and their difference to study the rela-

tion between tail risk (and its economic valuation) and risk premia at horizons up to a

month. In this context, we find that the economic perception of tail risk, as opposed to

the physical tail risk, is an important determinant of the equity premium, variance risk

premium and the cross-section of returns.

Also on a closely related work, Almeida et al. (2022) introduce a daily tail measure

based on the expected shortfall of risk-neutralized intra-day market returns.3 While

we also use high-frequency data and risk-neutralization to estimate tail risk at a daily

frequency, there are important differences between our approach and theirs. First, we

extract information about the tail from extreme events of a cross-section of stocks, while

they only consider the market index. Second, the tail measures in the two papers are

inherently different, as their measure is closely related to volatility whereas ours is to

higher moments such as kurtosis. Third, while Almeida et al. (2022) focus on predicting

market risk premia, we also investigate how short-term exposure to tail risk is priced in

the cross-section of stocks.

Our paper is also related to the extensive literature identifying factors that are relevant

to explain differences in the cross-section of stock returns, including Carhart (1997), Pás-

tor and Stambaugh (2003), Fama and French (2015, 2016), among many others. Using our

risk-neutral tail measure, we construct a tradable tail risk factor by sorting stocks based

on their recent exposure to tail risk. This factor produces significant spreads in stock

returns that cannot be explained by exposures to standard factors. We also show that

our tail risk factor significantly explains the average returns of the momentum anomaly

(Jegadeesh and Titman, 1993), offering a risk based explanation for momentum that is

in line with previous evidence by Daniel and Moskowitz (2016).4 The risk-neutralization

and daily frequency of our tail measure are fundamental to this finding.

3Almeida et al. (2022) build on the method by Almeida et al. (2017), who were the first to incorporate
risk-neutralization in the estimation of tail risk, albeit at a lower monthly frequency.

4Kelly et al. (2021) find that a sizable fraction of momentum can be explained by conditional exposure
to priced latent factors. Alternatively, we show that controlling for the static exposure of momentum to
our tail risk factor accounts for the momentum premium.
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2 Methodology

In this section, we describe the approach we take to estimate left tail risk at a daily

frequency. Using a cross-section of intra-day stock returns, we first extract information

about the common component of the tail risks of individual firms using the Hill estimator.

Then, we introduce a new version of the Hill estimator that relies on risk-neutralized stock

returns, thus incorporating the investors’ perception of risk in the estimation of extreme

event risk. The difference between the two estimators at a given point in time captures

the additional thickness of the left tail distribution that comes from the compensation

demanded by investors for bearing tail risk. We call this difference the tail risk premium.

2.1 Hill estimator

Extreme events in financial markets are rare by definition. This makes it challenging

to construct an aggregate measure of tail risk relying on a single asset such as the market

index, since informative observations for the tail are infrequent. To overcome this issue,

we follow Kelly and Jiang (2014) by adopting a panel estimation approach capturing

common tail behavior in the cross-section of individual stock returns. The identifying

assumption is that the dynamics of the tail distributions of the firms are similar, so that

extreme events in the cross-section allow us to extract the common component of their

tail risk at each point in time.

More specifically, we assume that the left tail of the return distribution of asset i

follows a power law structure.5 That is, its day t conditional left tail distribution, defined

as the set of extreme returns below some negative threshold ut, obeys the following:

P (Ri
t+1 < r|Ri

t+1 < ut and Ft) =

(
r

ut

)−ai/λt

, (1)

where r < ut < 0 and Ft is the conditioning information set.6 The parameter ai/λt

5See Kelly and Jiang (2014) for a detailed motivation of the use of a power law structure to model
the left tail distribution of returns. In sum, for a large class of heavy-tailed distributions, the left tail
converges to a generalized power law distribution.

6r < ut < 0 and ai/λt > 0 guarantee that the probability (r/ut)
−ai/λt is always between zero and

one.

7



is the tail exponent which determines the shape of the tail distribution of asset i. The

constant ai may be different across assets in the cross-section, implying that they can

have different levels of tail risk. However, their dynamics are driven by a common time-

varying component, λt. The higher the λt, the thicker the stock returns’ left tails and

the higher the probabilities of extreme negative returns in the cross-section. Therefore,

we refer to λt as our measure of aggregate tail risk.7

For each day t in our sample, we estimate the common tail risk component λt by

applying the standard Hill (1975) power law estimator to the pooled cross-section of

intra-day returns:8

λP
t =

1

Kt

Kt∑
k=1

ln
Rk,t

ut

, (2)

where Rk,t is the kth high-frequency return that is below the threshold ut on day t,

Kt is the total number of returns that fall below this threshold within day t and the

superscript P denotes that returns are observed under the physical probability measure.9

The threshold ut represents an extreme quantile determining that the observed returns

below ut belong to the left tail and follow the power law structure. We follow Kelly

and Jiang (2014) by defining ut to be the fifth percentile of the return cross-section for

each time period, which makes the threshold time-varying as the pooled intra-day return

distribution changes from day to day.10

2.2 Risk-neutral Hill estimator

The Hill estimator extracts the common tail risk component from the pooled cross-

section of returns observed under the physical probability measure, where all observations

are deemed equally likely to happen. In that sense, λP
t does not incorporate the true

risks that are perceived by investors in financial markets. In particular, if investors

are risk averse, then “bad” states of the world where marginal utility is high should be
7In extreme value theory, the parameter λt is also often called the shape parameter, and its inverse

1/λt the tail index (see, e.g., Danielsson, 2011).
8While Kelly and Jiang (2014) use daily returns to estimate tail risk at a monthly frequency, we rely

on intra-day returns to obtain the tail risk specific to day t.
9In the Hill formula, returns that fall below threshold ut are treated as the first Kt entries of Rt.

This is without loss of generality since in the pooled cross-section the elements of Rt are exchangeable.
10Our empirical results are qualitatively similar if we define ut to be the first or tenth percentile.
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overweighted to reflect compensation for risk. Since such states are precisely the ones

that matter for the estimation of tail risk, the economic perception of the left tail of

returns may be underestimated by the physical Hill estimator. Moreover, its dynamics

can also differ from that captured by λP
t , as compensation for risk demanded by investors

may vary over time depending on business conditions.

In order to incorporate investors’ compensation for risk in the estimation of left tail

risk, we propose a new version of the Hill estimator coupled with risk-neutralization.

The idea is to tilt the physical measure such that systematic risk in the cross-section of

stock returns is corrected for. This is possible by weighting observations with a pricing

kernel, or stochastic discount factor (SDF), that correctly prices systematic factors of

high-frequency stock returns. Motivated by Kozak et al. (2020), we rely on principal

component analysis (PCA) to identify the systematic factors. They show that the absence

of near-arbitrage opportunities implies that the SDF can be represented as a function of

a few dominant principal components (PCs) of returns.

More specifically, we consider as the factors the top-five PCs driving most of the

intra-day return variation on day t. This is consistent with Pelger (2020), who uses PCA

to document the presence of five systematic factors explaining the intra-day returns of

individual stocks. In following Ait-Sahalia and Xiu (2017) and Pelger (2020), the factor

loadings Λt are obtained as the eigenvectors associated with the 5 largest eigenvalues of the

realized covariance RT
t Rt, where Rt denotes the panel matrix of the high-frequency log-

returns of the stocks. The matrix of intra-day factor returns is then given by Ft = RtΛt.

Let the vector Fn,t denote the return over the n-th intra-daily time interval on day t

of the top-five PCs of stock returns on day t. We work with an SDF that satisfies the

Euler equations for the systematic factors:

1

N

N∑
n=1

mn,tFn,t = 05, (3)

where 05 is a conformable vector of zeros and N denotes the total number of intra-daily

observations. We normalize the mean of the SDF to be one ( 1
N

∑N
n=1 mn,t = 1).11 The

11This implies an implicit gross risk-free rate of one such that we can treat the net stock returns in
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pricing kernel tilts the physical measure 1/N to produce risk-neutral probabilities mn,t/N

that overweight states with high marginal utility to reflect higher compensation for risk

demanded by risk averse investors. That is, the SDF corrects for risk by risk-neutralizing

assets returns with R̃i
n,t = mn,tR

i
n,t. We discuss how to identify the pricing kernel in the

next subsection.

To derive the risk-neutral Hill estimator λQ
t , we posit that the left tail of the risk-

neutral return distribution of each asset i in the cross-section also follows a power law

structure. The estimator is then obtained by using the pooled cross-section of risk-

neutralized returns in equation (2):

λQ
t =

1

K̃t

K̃t∑
k=1

ln
R̃k,t

ut

. (4)

Due to the risk-neutralization, negative stock returns observed during states of high (low)

marginal utility get properly overweighted (downweighted) by values of the pricing kernel

above (below) its mean one, reflecting compensation for risk. The difference between λQ
t

and λP
t captures the additional tail thickness coming from investors’ risk preferences

towards extreme negative events. Throughout the paper, we call this difference the tail

risk premium (TRPt = λP
t − λQ

t ).12

2.3 Risk-neutralization

The exact distortion of the physical measure, or correction for systematic risk in the

cross-section of stocks, depends on the pricing kernel considered.13 Besides correctly

pricing the factor returns, there are two important properties that the SDF must satisfy.

First, it must be nonnegative in order to be consistent with no-arbitrage. This guarantees

that the tilted risk-neutral probabilities mn,t/N constitute a proper probability measure.

Second, it should incorporate information about higher moments of the return distribu-

the cross-section as excess returns.
12The wording “premium” here comes with a slight abuse of notation as it does not refer to the

usual difference between a physical and risk-neutral expectation, but rather to the difference between an
estimator obtained under the physical measure (λP

t ) and another under the risk-neutral measure (λQ
t ).

13We consider the realistic case of an incomplete market, where there exists an infinity of pricing
kernels that correctly price the systematic factors under no-arbitrage.
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tion. This is important for modeling tail risk, since investors’ aversion to downside risk

is related to negative skewness aversion (see, e.g., Schneider and Trojani, 2015).

We follow the nonparametric approach developed by Almeida and Garcia (2017) to

obtain a nonlinear pricing kernel satisfying the properties above. Their method consists

in estimating SDFs minimizing a family of discrepancy loss functions (Cressie and Read,

1984) subject to correctly pricing a set of returns. This approach is a generalization of

Hansen and Jagannathan (1991), who show how to obtain a minimum variance SDF from

data on asset returns. Almeida and Garcia (2017) consider more general loss functions

that take into account higher moments and imply nonnegative SDFs. Adapted to our

context, the minimum discrepancy problem is given by:

min
{m1,t,...,mN,t}

1
N

∑N
n=1

mγ+1
n,t −1

γ(γ+1)
,

s.t. 1
N

∑N
n=1 mn,tFn,t = 05,

1
N

∑N
n=1 mn,t = 1, mn,t ≥ 0 ∀n,

(5)

where the parameter γ ∈ R indexes the convex loss function in the Cressie and Read

(1984) discrepancy family. This family captures as particular cases several loss functions

in the literature, such as the Hansen and Jagannathan (1991) quadratic loss function

when γ = 1 and the Kullback Leibler Information Criterion adopted by Stutzer (1995)

when γ → 0.

Under the assumption of no-arbitrage in the observed sample, Almeida and Garcia

(2017) show that solving (5) is equivalent to solving the simpler dual problem below, for

γ < 0:14

λ∗
γ = argmax

λ∈Λγ

1

N

N∑
n=1

− 1

γ + 1
(1− γλFn,t)

( γ+1
γ

) , (6)

where Λγ = {λ ∈ R5 : for n = 1, ..., N, (1− γλFn,t) > 0}. The minimum discrepancy

SDF can then be recovered from the first-order condition of (6) with respect to the row-

14For γ > 0, the problem is unconstrained with an indicator function in the objective function:
1
N

∑N
n=1 −

1
γ+1 (1− γλFn,t)

( γ+1
γ )

IΛγ(Fn,t)(λ), where Λγ(Fn,t) = {λ ∈ R5 : (1− γλFn,t) > 0} and IA(x) =
1 if x ∈ A, and 0 otherwise. For γ → 0, the problem is unconstrained and the objective function is
exponential: 1

N

∑N
n=1 −e−λFn,t .
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vector λ, evaluated at λ∗
γ:

m∗
γ,n,t =

(
1− γλ∗

γFn,t

) 1
γ , n = 1, ..., N. (7)

The dual problem can be economically interpreted as an optimal portfolio problem for an

investor maximizing hyperbolic absolute risk aversion (HARA) utility, where λ∗
γFn,t is the

endogenous optimal portfolio of the systematic factors. The SDF m∗
γ,n,t is the marginal

utility of the investor and will be higher for “bad” states of nature represented by negative

realizations of the optimal portfolio of the factors.

For each γ, the solution λ∗
γ of the dual problem (6) leads to a different minimum

discrepancy SDF. While by construction they all correctly price the systematic factor

returns, they do so by representing distinct risk preferences. In particular, Almeida and

Freire (2022) show that positive absolute prudence (Kimball, 1990), which is related to

aversion to downside risk and a convex marginal utility, is captured by γ < 1. Moreover,

the smaller the γ, the more aversion to downside risk is embedded in the SDF, where the

pricing kernel gets more convex, putting more weight on extreme negative observations

of the optimal portfolio returns.15 They also show that, for extreme negative γs (usually

below −5), the constrained maximization in the dual problem (6) may not have a solution.

In order to successfully identify a pricing kernel capturing aversion to downside risk, we

choose the one associated with γ = −3 to calculate the risk-neutral Hill estimator.16

3 Data description and implementation details

3.1 Data

Our sample consists of 5-minute returns for a panel of 100 stocks that were in the

S&P 500 for the entire period between 2000 and 2020. This implies that the total number

of intra-daily observations for each stock on a given day is N = 78. The data is obtained

15Since the mean of the pricing kernel continues to be the same, this means that less weight is given
to intermediary return observations.

16Considering pricing kernels minimizing loss functions indexed by alternative γs associated with
aversion to downside risk (such as −2 or −1) leads to similar conclusions.
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from TickData Inc. Although our approach does not require a balanced panel, it does

require liquid assets as otherwise the estimation may be impacted by the presence of zero

returns (see, e.g., Bandi et al., 2020, 2017) and liquidity-related microstructure noise (see,

e.g., Aït-Sahalia and Yu, 2009; Hansen and Lunde, 2006).17 Therefore, we consider 100

highly liquid assets that were traded continuously over the sample period and work with

a balanced panel for transparency and ease of exposition.

Throughout the paper, we use data on market returns, risk factors, and uncertainty

measures. The popular five factors of Fama and French (2015), the momentum factor

and the risk-free rate are obtained from Kenneth French’s website. The liquidity factor of

Pástor and Stambaugh (2003) is available from Lubos Pastor’s website. The V IX index

and the left tail variation (LTV ) proposed by Bollerslev et al. (2015) are respectively

obtained from the Chicago Board Options Exchange (CBOE) and from the tailindex

website, which is made available by Torben Andersen and Viktor Todorov. The LTV

captures the option-implied risk-neutral expectation of return volatility stemming from

large negative price jumps.

We also construct a number of variables that are used as controls in our analysis.

Using high-frequency market returns sampled every 5 minutes obtained from TickData

Inc, we compute measures of the realized variance (RV ), realized skewness (RSK), real-

ized kurtosis (RK) and jump variation (JV ) of the S&P 500 index (Amaya et al., 2015;

Andersen et al., 2001, 2003; Barndorff-Nielsen and Shephard, 2004). Using daily mar-

ket returns, we further calculate the reversal (REV ) of Jegadeesh (1990) and Lehmann

(1990), momentum (MoM) of Jegadeesh and Titman (1993) and maximum (Max) and

minimum (Min) daily return (Bali et al., 2011) for the market.

Finally, we compute the variance risk premium (V RP ) as the difference between the

risk-neutral and physical expectations of the market return variance (e.g. Bekaert and

Hoerova, 2014; Bollerslev et al., 2009). We define the V RP on day t as the squared

V IX index (scaled to the daily level) minus the realized variance of day t. Appendix C

17To formally exclude the impact of microstructure noise, we have performed the Hausman tests
for microstructure noise and first-order serial correlation of Aït-Sahalia and Xiu (2019), for each stock
and each day. The tests reject any significant presence of microstructure noise and first-order serial
autocorrelation in the returns.
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contains the detailed definitions of the variables we use.

3.2 Principal components and risk-neutral estimates

As described in Section 2, for a given day t in our sample, we first extract the top-five

PCs explaining most of the variation in the high-frequency panel of stock returns. The

PCs are themselves returns of portfolios of the original stocks. Figure 1 plots the average

over each day of our sample of the percentage of variance explained by each of the PCs.

The first PC (PC1) explains nearly 30% of the variation in the stock returns. In our

data, PC1 is always a level factor with long positions of similar magnitude across stocks.

In other words, as it is usually the case, PC1 can be interpreted as a market factor. The

remaining PCs are long-short portfolios of the original stocks, which together add 30%

to the overall explained variation. That is, the top-five PCs explain around 60% of the

return variation across the 100 stocks.

Then, we estimate the SDF for each day t using the 78 intra-day returns of the top-

five PCs. Given that PC1 can be seen as the market factor, we impose the economic

restriction of a 5% lower bound on the annualized equity premium, following Almeida

and Freire (2022).18 While results are similar compared to those where this restriction

is not imposed, we keep it because it is economically sound to consider a lower bound

on the equity premium (Campbell and Thompson, 2008; Martin, 2017; Pettenuzzo et al.,

2014). This restriction is only imposed for the estimation of the SDF. For the remaining

PCs, we do not impose restrictions as they do not have straightforward interpretations.

To illustrate how the SDF distorts the physical measure, Figure 2 plots the estimated

risk-neutral probabilities (mγ,n,t/N) for various values of γ and the physical probabilities

(1/N) for a random day in our sample. The observed patterns are representative of other

dates. As can be seen, the risk-neutral measures give more probability weight to negative

returns of the optimal portfolio of PCs and less weight to positive returns compared to the

physical measure. This reflects agents’ risk aversion: investors require more compensation

18More specifically, for each day t, we impose that the average return of PC1 is at least 5% above
the risk-free rate, in annualized terms. That is, we shift the mean of PC1 to the lower bound when the
bound is binding.
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(i.e., the SDF is higher) for “bad” states of the world. In the estimation of tail risk,

this is such that negative stock returns, observed during intra-daily intervals for which

the optimal portfolio of systematic factors experiences negative (positive) returns, get

overweighted (downweighted) to reflect more (less) compensation for risk. The relative

compensation for risk in the left tail of the optimal portfolio returns depends, in turn,

on the aversion to downside risk. The smaller the γ, the more averse to downside risk

(or, equivalently, the more prudent) is the investor and the greater are the weights to

negative returns under the risk-neutral measure. As previously mentioned, we use the

SDF associated with γ = −3 for the estimation of the risk-neutral Hill estimator.

3.3 Tail risk estimates

We estimate the tail risk measures λP
t and λQ

t as detailed in Section 2 using the set of

intra-day return observations for all stocks for each day t. The upper panels of Figure 3

plot their one-month moving averages, for ease of exposition. The measures share some

similarities, with a correlation of 45.8%. In particular, both measures tend to decrease

in periods of market distress. This is in contrast to the usual increase that standard risk

measures based on volatility exhibit during crises. To understand this pattern, the left

lower panel of Figure 3 reports the time-varying threshold ut (in absolute value), that

determines where the left tail begins in the Hill estimator. As can be seen, ut resembles

a volatility measure, peaking during financial crises. The tail risk measures λP
t and λQ

t

can thus be thought of as capturing the thickness of the left tail after taking into account

the effect of volatility. In fact, as Kelly and Jiang (2014) note, a fixed percentile is used

to define ut exactly for this reason: if volatility increases but the shape of the return

left tail is unchanged, an increase of the threshold (in absolute value) absorbs the effect

of volatility changes and leaves estimates of the tail exponent unaffected.19 Therefore,

Figure 3 effectively shows that financial crises are more often associated with bursts in

19In unreported tests, we calculate λP
t and λQ

t with a constant threshold ut = u and find that both
measures behave like volatility-type measures. This indicates that defining ut as a fixed percentile of the
return cross-section is instrumental to isolate the effects of volatility from the shape of the left tail.
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volatility rather than more activity in the left tail.20

Even though the tail risk measures λP
t and λQ

t display similarities, they are still funda-

mentally different. The right lower panel of Figure 3 plots the absolute value of the tail

risk premium, |TRPt|. As would be expected, λQ
t is always above λP

t , indicating that the

left tail of the pooled stock return distribution is thicker under the risk-neutral measure

incorporating investors’ preferences. However, the additional thickness of the tail com-

ing from the risk compensation required by investors varies substantially over time. In

particular, |TRPt| tends to peak during crisis periods. This suggests that, even though

financial crises are not associated with higher tail risk, they are associated with a higher

compensation demanded to bear tail risk.

3.4 Comparison with other risk measures

Table 1 reports the correlation between λP
t , λQ

t , ut, TRPt and several risk mea-

sures. Both tail risk measures are negatively correlated with volatility measures (RVt

and V IX2
t ), whereas (the absolute value of) ut has a strong positive correlation with

these measures. This is consistent with the fact that the time-varying threshold ut con-

trols for the effect of volatility in the calculation of λP
t and λQ

t . In contrast, both tail

risk measures are positively related to realized higher-order moments such as skewness

and kurtosis. As for the TRPt, it is strongly negatively related to λQ
t , indicating that the

additional thickness of the tail coming from investors’ risk compensation increases (i.e.,

TRPt gets more negative) when risk-neutral tail risk increases.

Figure 4 provides further details on the relation between λQ
t and risk variables (the

plots are similar for λP
t ). The upper panels make clear that tail risk, as measured as the

shape parameter of the left tail of stock returns, is lower during periods of high volatility.

On the other hand, the lower panels show that realized skewness and kurtosis co-move

considerably with λQ
t . This is especially true for kurtosis, which is often regarded as a

measure of tail thickness. As can be seen, like λQ
t , realized kurtosis tends to be lower

during periods of market distress. This suggests that measures of tail thickness, such as
20This is in line with previous findings in the literature (see, e.g., Chapman et al., 2018; Christensen

et al., 2014; Kelly and Jiang, 2014).
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the ones we propose here, are more closely related to higher-order return moments like

kurtosis than to second moments such as volatility.

4 Empirical results

This section provides empirical evidence of the information content of our tail risk

measures for asset prices in the short-term. We document the predictive power of the tail

measures in forecasting the equity premium and the variance risk premium. In particular,

we consider one-day (h = 1), one-week (h = 5), and one-month (h = 22) ahead daily

predictive regressions. In addition, we investigate how tail risk is priced in the cross-

section of stocks. To do so, we construct monthly long-short portfolios by sorting stocks

on their recent exposure to the tail risk measures.

4.1 Predicting the equity premium

There is extensive empirical evidence that, at relatively low frequencies (monthly or

longer), measures of tail risk strongly predict future excess market returns, with a positive

relation (see, e.g., Almeida et al., 2017; Bollerslev et al., 2015; Kelly and Jiang, 2014).

This is consistent with the idea that investors are averse to tail risk, such that they

require a higher return to hold the market when tail risk increases. To shed light on this

relation in the short-term, we investigate whether and how our tail risk measures predict

the equity premium at short horizons with daily regressions.

Table 2 contains our main results for predicting excess market returns, i.e., the eq-

uity premium. The reported coefficients of the predictive regressions are scaled to be

interpreted as the effect of a one standard deviation increase in the regressor on future

excess market returns. Focusing first on Panel A, we find a negative but insignificant

relation between the physical tail risk measure λP
t and the equity premium, irrespective

of the forecasting horizon. In contrast, the risk-neutral tail measure λQ
t switches from

negatively predicting one-day ahead market returns to positively predicting one-month

ahead returns, with statistical significance at the 5% and 10% level, respectively. This can
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be interpreted as follows. At first, an increase in risk-neutral tail risk signals a moment

of distress followed by a negative realization of the market. However, since investors are

averse to aggregate tail risk, they require a higher return to hold the market after a tail

risk shock, where this compensation appears over the horizon of one month. Importantly,

the different patterns observed for λP
t and λQ

t suggest that only the economic perception

of tail risk carries a premium in the short-term.

To further assess the role of risk-neutralization in predicting the equity premium, we

consider bivariate regressions based on λP
t and the tail risk premium (TRP ). These results

corroborate those for λQ
t . Over the one-day horizon, an increase in the wedge between the

risk-neutral and physical tail risk (i.e., a decrease of TRPt) is associated with a negative

market return. In contrast, over the one-month horizon, investors require a higher return

to hold the market when the tail risk premium is higher (i.e., TRPt is more negative).

This relation is statistically significant at the 5% level. The incremental information

content afforded by risk-neutralization is also clear from the R2 of the regressions. For

instance, for one-month ahead predictions, the R2 associated with λQ
t and the bivariate

regression is 0.07% and 0.11%, respectively, while for λP
t it is almost negligible (0.004%).

To isolate the effect of the negative relation between tail risk and one-day ahead

market returns, Panel B of Table 2 reports results for one-week and one-month ahead

regressions where the excess market return is accumulated from t+2 to t+h. When doing

so, the switch to a positive sign of the coefficient of λQ
t already appears at the one-week

horizon, albeit it is still insignificant. More importantly, the effect of an increase in risk-

neutral tail risk one month later is much larger, as observed by a positive coefficient that

is significant at the 5% level and an R2 twice as large as in Panel A. The results for TRP

are even stronger, while λP
t continues to be insignificant. This reinforces the idea that

the immediate negative effect of risk-neutral tail risk on excess market returns reverses

to a significant positive relation reflecting compensation for tail risk in the short-term.

In Appendix B, we show that our predictability results for the equity premium are

robust to controlling for several alternative predictors. In fact, the risk-neutral tail risk

and the tail risk premium are the strongest predictors of one-month ahead market returns
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among the controls. The only variable with similar predictive power is the V RP . This

indicates that the variance risk premium helps explain variation in future excess market

returns not only at lower frequencies (Bollerslev et al., 2009) but also in the short-term.

In sum, our results indicate that the economic perception of tail risk is an important

determinant of the equity premium in the short-term. Investors require a significantly

higher market return after one month following an increase in tail risk. The effect is even

larger if we ignore the immediate negative relation between tail risk and market returns.

In particular, accounting for investors’ aversion to downside risk in computing tail risk

provides fundamental information about the equity premium that is not contained in the

physical tail risk measure.

4.2 Predicting the variance risk premium

The variation of volatility is often associated with time-varying economic uncertainty.

In particular, the variance risk premium (V RP ) captures investors’ compensation for

variance risk and is usually regarded as a proxy for aggregate risk aversion (see, e.g.,

Bekaert et al., 2013; Campbell and Cochrane, 1999). Bollerslev et al. (2015) show that

a large fraction of the variance risk premium comes from compensation demanded by

investors for bearing left tail risk. Motivated by that, we examine the predictive relation

between our tail risk measures and the V RP at short horizons, with particular focus on

the role of incorporating investors’ aversion to downside risk with risk-neutralization.

Table 3 reports the main predictability results for the variance risk premium. Our

baseline specification includes the LTV of Bollerslev et al. (2015) as a control, given that

it captures an important component of the V RP associated with tail risk. Coefficients

are scaled to be interpreted as the effect of a one standard deviation increase in the

regressor on future V RP . At the one-day horizon, only LTV is significant, where a

higher expected volatility stemming for negative price jumps leads to a higher V RP on

the next day. For one-week and one-month horizons, the positive relation between LTV

and future V RP is even stronger. However, now the risk-neutral tail risk and the TRP

are also statistically significant. A higher perception of tail risk in the cross-section of

19



firms leads to a higher variance risk premium. This shows that our risk-neutral tail

measures contain complementary information to LTV about the V RP . In contrast, after

controlling for LTV , the physical tail risk has no predictive power for the V RP .

In Appendix B, we show that the results above are robust to controlling for a number

of alternative predictors beyond the LTV . In particular, in multivariate regressions

including all controls, the only significant predictors of the variance risk premium at the

one-week horizon are the λQ
t (or TRP ), the lagged V RP and JV , and at the one-month

horizon the λQ
t (or TRP ), the lagged V RP and V IX2 (or RV ). In these regressions, we

do not include the LTV as it is not available for the whole sample.

In sum, we document that our risk-neutral tail measures possess strong predictive

power for the variance risk premium in the short-term. Investors require a higher com-

pensation to bear variance risk when their perception of tail risk increases. These effects

are robust to several measures of volatility, jump risk and the LTV of Bollerslev et al.

(2015), indicating that the thickness of the left tail of the pooled cross-section of returns

under the risk-neutral distribution provides complementary information about the V RP .

In particular, physical tail risk is not related to the V RP once we consider those controls.

4.3 Predicting the cross-section of stock returns

So far, we have shown that the economic perception of tail risk by investors is an

important determinant of aggregate market risk premia at short-horizons. This section

investigates whether recent exposure to tail risk is priced in the cross-section of stock

returns through portfolio sorts. To do so, at the end of each month in our sample,

we measure the insurance value of our 100 individual stocks with daily regressions over

the previous 7 months, i.e., we estimate contemporaneous betas with respect to our tail

measures: Ri,t = µi + βiTRi,t, where TRi,t ∈ {λP
t , λ

Q
t , TRPt}.21 Then, we form equally-

weighted portfolios over the next month by sorting the 100 stocks into portfolios using

quintile breakpoints calculated based on the given sorting variable.

The first three panels of Table 4 report the results for λP
t , λ

Q
t and TRPt, respectively.

21Our results are robust to different estimation windows for the betas, such as 3, 5, 9, 12 and 24
months. These results are available upon request.
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In addition to the average returns of the quintile portfolios, we also report the portfolios

alphas (i.e., intercepts) from regressions of portfolio excess returns on the Fama-French

three and five factors as well as extended models controlling for momentum (Carhart,

1997) and liquidity (Pástor and Stambaugh, 2003) factors. The last two columns report

the average returns and alphas of the high minus low zero net investment portfolio and

associated t-statistics, which are estimated using Newey-West robust standard errors.

Panel D presents the p-values from various tests of the monotonicity (Patton and Tim-

mermann, 2010) of average returns across the five quintile portfolios reported in Panels

A–C. All tests have a null hypothesis of a flat pattern (no relation). While the MR Up

and MR Down tests have alternative hypotheses of an increasing and decreasing pattern,

the MR test alternative hypothesis is unrestricted. The tests are estimated using 10,000

bootstrap replications and a block length equal to 10 months.

Several conclusions can be drawn from these results. First, stocks that are more

positively related to tail risk in the short-term earn lower returns. This is economically

sound, as stocks with high βi provide hedging opportunities against tail risk and are thus

highly priced, yielding subsequent low returns. This relation is monotonic across quintile

portfolios for λQ
t , which is formally confirmed by the rejection of the flat pattern using

the MR and MR Down tests. In contrast, a flat pattern cannot be rejected for λP
t . For

the TRPt, there is a monotonic increasing pattern across quintile portfolios, which is due

to the negative sign of tail risk premium as λP
t is always smaller than λQ

t . Stocks with

more negative βi with respect to TRPt pay well when compensation for bearing tail risk

is high, such that they are highly priced and yield subsequent low returns. This relation

is confirmed by the rejection of the MR and MR Up tests.

Second, exposure to physical tail risk generates insignificant average returns for the

high minus low portfolio. On the other hand, the return spreads associated with ex-

posures to λQ
t and TRPt are both statistically and economically significant, where the

corresponding high minus low strategies earn an average monthly return of −0.76% and

0.80%, respectively. This shows that recent exposure to tail risk as perceived by investors

is strongly priced in the cross-section. To further illustrate, Figure 5 plots the cumulative
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returns of the quintile portfolios based on TRPt. As can be seen, while the high portfolio

performs reasonably well on its own, the robust profitability of the high minus low strat-

egy is mainly driven by selling the stocks that pay well when compensation for bearing

tail risk is high.

Third, the average high minus low returns in Table 4 are generally larger (in abso-

lute value) after controlling for standard factor models in the literature. For instance,

controlling for the Fama-French 3 factors results in an average monthly excess return of

−1.25% (t-statistic −3.55) and 1.27% (t-statistic 3.47) for λQ
t and TRPt, respectively.

The reason is that the tail factors are negatively correlated with the market, size and

value factors. This can be seen from Table 5, which provides further details on the re-

gressions of our high minus low portfolio returns on factors models. Again, only the tail

measures incorporating investors’ preferences are able to generate statistically significant

alphas. In particular, the large alphas of the high minus low λQ
t and TRPt portfolios hold

with significant factor exposure and high adjusted R2. This suggests that our risk-neutral

tail factors capture risk premium that is not reflected in firms’ exposures to the market,

size, value, profitability and momentum factors. By contrast, the tail factor based on λP
t

holds no relation with standard factors, as it is only significantly exposed to the market

factor and the adjusted R2 of the regressions are low.

The results above unambiguously show that only the tail measures incorporating

investors’ preferences drive risk premium in the cross-section of stocks. To illustrate the

differences between the physical and risk-neutral tail measures, Figure 6 plots, for each

measure, the time series of the average βi within each quintile portfolio and its difference

between the high and low portfolios. During financial crises (e.g., the dot-com bubble, the

global financial crisis and the Covid-19 pandemic), stocks’ exposures to risk-neutral tail

risk and tail risk premium generally increase, as would be expected.22 In contrast, the βis

with respect to physical tail risk either decrease or fail to increase by the same magnitude.

This suggests that the additional information content of the economic valuation of tail

risk for the cross-section of returns is especially relevant during periods of market distress.

22Note that the TRPt is negative by construction and therefore a more negative βi implies a higher
sensitivity to tail risk premium.
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In sum, we find that the investors’ perception of tail risk and the compensation for

such risk in the short-term is strongly priced in the cross-section of stocks. High minus low

portfolios based on the recent exposure to tail risk generate statistically and economically

significant average returns, which are even larger after controlling for standard factor

models. The information content of risk-neutralization beyond that contained in physical

tail risk is especially relevant during financial crises.

4.4 Explaining the momentum anomaly

Since Jegadeesh and Titman (1993), momentum has been one of the most widely

studied anomalies in the cross-section of returns. Even so, there is still no consensus on

how to explain it. As documented by Fama and French (2016), momentum remains one of

the few anomalies for which predominant factor models such as Fama and French (2015)

hold no explanatory power. More recently, Kelly et al. (2021) show that a sizable fraction

of momentum can be explained by conditional risk exposure, as stocks’ past performance

can be seen as a noisy proxy for their time-varying loadings to priced factors. In this

section, we alternatively investigate whether the momentum strategy remains profitable

after controlling for its static exposure to our tail risk factors. Our motivation comes from

the fact that there is a crash risk component in momentum strategies as they experience

large negative returns during financial crises (Daniel and Moskowitz, 2016), such that the

compensation for such risk can potentially be captured by our factors.

Table 6 conveys the regression results of the momentum high minus low returns on the

Fama-French five factor model plus the liquidity factor of Pástor and Stambaugh (2003),

as well as extended models including the tail risk factors. The first column shows that,

in our sample, momentum generates a positive but insignificant alpha over the Fama-

French and liquidity factors.23 Further controlling for the physical tail risk factor does

not help in explaining momentum, as noted by a larger alpha, an insignificant loading

on the tail factor and the decrease in the adjusted R-squared. In contrast, after adding

the tail risk factor based on λQ
t or TRPt, the alpha of the momentum strategy becomes

23In our sample, the average return of the momentum strategy is positive but statistically insignificant.
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highly negative, and the adjusted R-squared increases substantially. In other words, the

significant exposure of the momentum strategy to risk-neutral tail risk helps explain the

spreads in returns it generates, which is aligned with our initial motivation.

In sum, we find that the risk premium associated with the momentum anomaly is

in large part coming from the significant exposure of this strategy to risk captured by

our tail factors. That is, short-term tail risk helps explain momentum. Importantly, this

holds true only when investors’ preferences are incorporated in the tail measures.

5 Conclusion

In this paper, we introduce a new tail risk measure at a daily frequency by combining

high-frequency returns of a cross-section of stocks with a risk-neutralization algorithm.

We use our measure to shed light on the effects of tail risk on asset prices at short-

horizons and investigate to what extent these effects depend on information coming from

the physical measure, under which asset prices are observed, and the risk-neutral measure,

which incorporates investors’ preferences.

We find that the compensation required by investors for bearing tail risk is an im-

portant determinant of the equity premium and the variance risk premium at horizons

up to a month. In addition, tail risk is priced in the cross-section of stocks. A tradable

tail factor built by sorting stocks on their recent exposure to tail risk produces significant

spreads in stock returns that cannot be explained by standard factor models. Using our

tail factor, we show that exposure of momentum strategies to tail risk helps explain the

momentum anomaly. Incorporating investors’ preferences in the estimation of tail risk is

fundamental to our findings.
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A Figures and tables

Figure 1: Explained variation of Principal Components
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Note: The figure depicts the average over each day of our sample of the percentage of explained
variance in the panel of intra-day stock returns by the top-five PCs (in blue bars) and the ac-
cumulated percentage of explained variance (in red). The sample ranges from January, 2000 to
December, 2020.
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Figure 2: Minimum dispersion risk-neutral probabilities
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Note: The figure depicts the minimum dispersion risk-neutral probabilities for various values of γ
and the physical measure (π = 1/N) for the 78 intra-daily endogenous portfolio returns (λ∗

γFn,t)
for a random day in our sample.
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Figure 3: Tail risk index measures

Note: The figure plots, in the upper panels, the 1-month moving average of the physical and risk-neutral
tail risk indices. In the bottom panels, the corresponding moving averages for the threshold and the tail
risk premium are depicted. For illustration purposes, the bottom panels plot the absolute value of both
the threshold and the tail risk premium. Shaded areas depict NBER recession dates. The sample ranges
from January, 2000 to December, 2020.
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Figure 4: Tail risk index and risk measures

Note: The figure plots, in the upper panels, the 1-month standardized moving average of the squared
VIX and realized variance of the S&P 500 index. Similarly, the bottom panels depict the corresponding
stardandized moving averages for the realized kurtosis and realized skewness. For comparison, we also plot
the 1-month standardized moving average of the risk-neutral tail risk index (blue dotted line). Shaded
areas depict NBER recession dates. The sample ranges from January, 2000 to December, 2020.
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Figure 5: Cumulative monthly quintile portfolio returns formed by sorting on TRP

Note: The figure depicts the cumulative monthly returns for each quintile portfolio and the high minus low
zero net investment portfolio formed by sorting on the tail risk premium (TRP ). Shaded areas depict NBER
recession dates. The sample ranges from January, 2000 to December, 2020.
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Figure 6: Portfolio quintile βs

Note: The figure depicts the time series average sensitivity to tail risk for all stocks within each quintile portfolio
and the high minus low zero net investment portfolio. Shaded areas depict NBER recession dates. The sample
ranges from January, 2000 to December, 2020.
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Table 1: Correlation and AR(1) coefficients

λP
t λQ

t TRPt |ut| RVt V IX2
t V RPt RSKt RKt

λP
t 0.393 0.458 0.116 −0.196 −0.148 −0.198 0.029 0.020 0.206

λQ
t 0.183 −0.830 −0.145 −0.070 −0.078 0.030 0.285 0.169

TRPt 0.112 0.039 −0.014 −0.037 −0.015 −0.243 −0.059
|ut| 0.914 0.802 0.831 −0.399 −0.071 −0.100
RVt 0.682 0.761 −0.768 0.051 0.051
V IX2

t 0.964 −0.169 −0.008 −0.085
V RPt 0.325 −0.085 −0.162
RSKt −0.041 0.131
RKt 0.059

Note: The table reports in the off-diagonal the correlation of each pair of variables and in the main diagonal
the AR(1) coefficient. The sample ranges from January, 2000 to December, 2020.

Table 2: Predicting excess market returns

One-day (h = 1) One-week (h = 5) One-month (h = 22)

Panel A: t+ 1 : t+ h
λP
t −0.021 −0.023 −0.021 −0.024 −0.026 −0.011

t-tstat (−1.554) (−1.748) (−0.539) (−0.636) (−0.233) (−0.095)

λQ
t −0.030 −0.038 0.107

t-tstat (−2.352) (−1.303) (1.685)
TRPt 0.023 0.032 −0.135
t-tstat (1.811) (1.167) (−2.075)

R2 0.05 0.106 0.113 0.011 0.037 0.037 0.004 0.071 0.115

Panel B: t+ 2 : t+ h

λP
t −0.009 −0.007 −0.001 0.020

t-tstat (−0.227) (−0.179) (−0.011) (0.179)

λQ
t 0.011 0.162

t-tstat (0.358) (2.232)
TRPt −0.017 −0.184
t-tstat (−0.590) (−2.810)

R2 0.002 0.003 0.009 0.000 0.162 0.206

Note: The table reports in two panels the regression coefficients and robust t-statistics (in parentheses) of
daily predictive regressions for excess market returns over one-day (h = 1), one-week (h = 5), and one-month
(h = 22) horizons. For forecasting horizons larger than 1 day, Panel A considers the excess market returns
from t + 1 to t + h, while Panel B considers the excess market returns from t + 2 to t + h. We compute
the t-statistics using Newey-West robust standard errors with a lag length equal to h. The R2 is the OLS
R-squared. The sample ranges from January, 2000 to December, 2020.
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Table 3: Predicting variance risk premium (V RP )

One-day (h = 1) One-week (h = 5) One-month (h = 22)

λP
t −0.010 −0.009 −0.022 −0.014 −0.036 −0.031

t-tstat (−0.422) (−0.377) (−0.926) (−0.597) (−1.530) (−1.333)

λQ
t 0.003 0.053 0.027

t-tstat (0.128) (2.651) (2.145)
TRPt −0.009 −0.071 −0.049
t-tstat (−0.368) (−3.559) (−3.724)
LTV 0.396 0.398 0.396 0.582 0.590 0.581 0.556 0.564 0.555
t-stat (4.432) (4.473) (4.430) (5.418) (5.491) (5.420) (6.582) (6.661) (6.587)

R2 7.047 7.043 7.051 20.441 20.581 20.736 38.783 38.821 39.076

Note: The table reports the regression coefficients and robust t-statistics (in parentheses) of daily predictive
regressions for the variance risk premium (V RP ) over one-day (h = 1), one-week (h = 5), and one-month
(h = 22). For forecasting horizons larger than 1 day, we aggregate the variance risk premium from t + 1 to
t + h. We compute the t-statistics using Newey-West robust standard errors with a lag length equal to h.
The R2 is the OLS R-squared. The LTV is the left tail variation of Bollerslev et al. (2015). The sample
ranges from January, 2000 to December, 2019.
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Table 4: Monthly sorted portfolios

Low 2 3 4 High High−Low t-stat

Panel A: λP
t

Average Return −0.089 0.061 −0.105 0.118 −0.392 −0.304 −1.002
CAPM alpha −0.400 −0.200 −0.414 −0.220 −0.846 −0.446 −1.361
FF3 alpha −0.429 −0.201 −0.411 −0.228 −0.874 −0.445 −1.492
FF5 alpha −0.498 −0.369 −0.465 −0.284 −0.846 −0.348 −1.237
FF5 + Mom alpha −0.494 −0.369 −0.461 −0.282 −0.842 −0.349 −1.239
FF5 + Mom + Liq alpha −0.472 −0.340 −0.434 −0.264 −0.839 −0.367 −1.336

Panel B: λQ
t

Average Return 0.184 0.058 0.043 −0.114 −0.579 −0.763 −1.957
CAPM alpha 0.020 −0.191 −0.247 −0.520 −1.141 −1.162 −3.070
FF3 alpha 0.042 −0.181 −0.254 −0.541 −1.208 −1.250 −3.557
FF5 alpha −0.152 −0.392 −0.406 −0.510 −1.003 −0.851 −2.734
FF5 + Mom alpha −0.153 −0.394 −0.403 −0.505 −0.994 −0.841 −2.737
FF5 + Mom + Liq alpha −0.121 −0.366 −0.378 −0.500 −0.985 −0.864 −2.861

Panel C: TRPt

Average Return −0.649 −0.017 0.052 0.054 0.152 0.801 2.101
CAPM alpha −1.211 −0.407 −0.245 -0.182 -0.034 1.177 3.036
FF3 alpha −1.283 −0.430 −0.249 -0.173 -0.007 1.276 3.475
FF5 alpha −1.029 −0.471 −0.360 -0.375 -0.228 0.801 2.414
FF5 + Mom alpha −1.020 −0.465 −0.357 -0.375 -0.231 0.790 2.443
FF5 + Mom + Liq alpha −1.013 −0.458 −0.332 -0.344 -0.203 0.809 2.493

Panel D: Monotonocity Test
MR MR Up MR Down

Avg. return λP
t 0.779 0.226 0.054

Avg. return λQ
t 0.025 0.962 0.035

Avg. return TRP 0.019 0.013 0.947

Note: The table reports the results of univariate portfolio analyses of the relation between the tail risk measures
and the cross-section of returns. Monthly portfolios are formed by sorting the 100 stocks into portfolios using
quintile breakpoints calculated based on the given sort variable using the 100 stocks. The table also reports
portfolios alphas from regressions of portfolio excess returns using the Fama-French three and five factors as
well as extended models controlling for momentum (Carhart, 1997) and liquidity (Pástor and Stambaugh, 2003)
factors. Returns and alphas are in percentage terms. The last two columns report the high minus low zero net
investment portfolio and associated t-statistics, which are estimated using Newey-West robust standard errors
with a lag length equal to 5. Panel D presents the p-values from various tests of the monotonicity (Patton and
Timmermann, 2010) of average returns across the 5 quintile portfolios reported in Panels A–C. All tests have a
null hypothesis of a flat pattern (no relation). While the MR Up and MR Down tests have alternative hypotheses
of an increasing and decreasing pattern, the MR test is unrestricted. Bold p-values indicate significance at the
5% or better. The tests are estimated using 10,000 bootstrap replications and a block length equal to 10 months.
The sample ranges from August, 2000 to December, 2020.
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Table 5: High minus low tail risk factor regressions

λP λQ TRPt

α −0.445 −0.348 −0.367 −1.250 −0.851 −0.864 1.276 0.801 0.809
t-stat −1.492 −1.237 −1.336 −3.557⋆ −2.734⋆ −2.861⋆ 3.475⋆ 2.414⋆ 2.493⋆

MKT 0.245 0.207 0.192 0.568 0.415 0.295 −0.515 −0.334 −0.207
t-stat 2.950 2.412 2.077 8.030 4.934 3.522 −5.880 −4.377 −2.684
SMB −0.042 −0.066 −0.111 0.534 0.443 0.392 −0.607 −0.492 −0.450
t-stat −0.423 −0.629 −1.068 4.074 3.476 3.422 −5.183 −4.265 −4.410
HML 0.234 0.307 0.321 0.205 0.537 0.412 −0.168 −0.539 −0.397
t-stat 1.656 1.799 1.735 1.212 2.486 1.952 −0.816 −2.249 −1.662
RMW −0.122 −0.154 −0.454 −0.318 0.577 0.418
t-stat −0.695 −0.826 −2.129 −1.720 2.616 2.534
CMA −0.109 −0.097 −0.552 −0.426 0.570 0.434
t-stat −0.423 −0.355 −1.655 −1.485 1.539 1.383
Mom 0.014 −0.300 0.334
t-stat 0.153 −3.638 4.490
Liq 10.207 12.741 −10.950
t-stat 1.213 1.310 −1.217

Adj R2 8.592 8.329 8.306 36.081 40.220 45.389 35.267 41.330 47.893

Note: The table reports the regression results of the high minus low tail factor on the Fama-French three
and five factor models, as well as extended models controlling for momentum (Carhart, 1997) and liquidity
(Pástor and Stambaugh, 2003) factors. The t-statistics are estimated using Newey-West robust standard
errors with a lag length equal to 5, and a star (⋆) besides the α’s t-statistic denotes statistical significance at
the 5% or better. The sample ranges from August, 2000 to December, 2020.
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Table 6: Momentum anomaly and the tail risk factor

FF5 + Liq FF5 + Liq+λP FF5 + Liq+λQ FF5 + Liq+TRP

α 0.022 0.028 −0.233 −0.259
t-stat 0.078 0.099 −0.719 −0.814
MKT −0.328 −0.331 −0.213 −0.219
t-stat −3.533⋆ −3.394⋆ −2.309⋆ −2.490⋆

SMB −0.012 −0.010 0.104 0.144
t-stat −0.081 −0.069 0.802 1.106
HML −0.443 −0.449 −0.284 −0.256
t-stat −3.088⋆ −2.901⋆ −2.056⋆ −1.958
RMW 0.540 0.543 0.400 0.334
t-stat 2.441 2.476 1.997 1.678
CMA 0.365 0.367 0.209 0.174
t-stat 1.124 1.120 0.806 0.720
Liq 6.530 6.356 9.686 9.548
t-stat 0.685 0.689 0.999 1.034
Tail Factor 0.017 −0.293 0.344
t-stat 0.154 −2.623⋆ 3.054⋆

R2
Adj 25.339 25.042 31.602 33.644

Note: The table reports the regression results of the momentum factor on the
Fama-French five factor models plus the liquidity factor (Pástor and Stambaugh,
2003), as well as extended models controlling for the tail risk factor. A star (⋆)
denotes statistical significance at the 5% or better. The t-statistics are estimated
using Newey-West robust standard errors with a lag length equal to 5. The sample
ranges from August, 2000 to December, 2020.
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B Robustness results

Table 7: One-day ahead predictive excess market return regressions

λP
t λQ

t TRPt Rev RK JV MoM Max Min RV RSK VRP R2

I.I −0.021 0.050
(−1.554)

I.II −0.013 −0.031 0.155
(−0.985) (−1.767)

I.III −0.025 0.019 0.093
(−1.837) (1.563)

I.IV −0.020 0.002 0.050
(−1.549) (0.090)

I.V −0.020 0.015 0.078
(−1.485) (1.008)

I.VI −0.022 −0.024 0.117
(−1.670) (−1.340)

I.VII −0.020 −0.001 0.050
(−1.469) (−0.048)

I.VIII −0.022 −0.009 0.061
(−1.650) (−0.459)

I.IX −0.020 −0.010 0.063
(−1.538) (−0.871)

I.X −0.020 0.015 0.076
(−1.484) (0.710)

I.XI −0.016 −0.049 0.022 0.011 0.021 −0.003 0.029 0.010 −0.004 0.044 0.382
(−1.125) (−1.480) (1.554) (0.408) (1.196) (−0.072) (0.790) (0.262) (−0.365) (1.623)

II.I −0.030 0.106
(−2.352)

II.II −0.023 −0.028 0.195
(−1.774) (−1.626)

II.III −0.033 0.020 0.152
(−2.588) (1.615)

II.IV −0.030 0.002 0.107
(−2.351) (0.110)

II.V −0.029 0.015 0.134
(−2.303) (1.008)

II.VI −0.029 −0.021 0.157
(−2.255) (−1.169)

II.VII −0.030 −0.024 0.175
(−2.388) (−1.367)

II.VIII −0.030 −0.008 0.114
(−2.400) (−0.412)

II.IX −0.029 −0.004 0.108
(−2.185) (−0.329)

II.X −0.030 0.016 0.135
(−2.345) (0.762)

II.XI −0.025 −0.046 0.023 0.010 0.022 −0.003 0.027 0.012 0.001 0.045 0.420
(−1.810) (−1.392) (1.601) (0.378) (1.275) (−0.079) (0.734) (0.301) (0.047) (1.677)

III.I −0.023 0.023 0.113
(−1.748) (1.811)

III.II −0.016 0.019 −0.028 0.196
(−1.188) (1.766) (−1.578)

III.III −0.028 0.025 0.022 0.166
(−2.074) (1.944) (1.740)

III.IV −0.023 0.023 0.002 0.113
(−1.743) (1.812) (0.098)

III.V −0.022 0.023 0.015 0.140
(−1.677) (1.797) (0.986)

III.VI −0.024 0.021 −0.022 0.168
(−1.836) (1.693) (−1.219)

III.VII −0.023 0.023 0.000 0.113
(−1.666) (1.811) (−0.012)

III.VIII −0.025 0.023 −0.010 0.124
(−1.843) (1.814) (−0.463)

III.IX −0.023 0.022 −0.005 0.116
(−1.725) (1.688) (−0.395)

III.X −0.022 0.024 0.015 0.140
(−1.678) (1.843) (0.740)

III.XI −0.019 0.020 −0.046 0.024 0.010 0.021 −0.003 0.028 0.011 0.000 0.044 0.424
(−1.319) (1.761) (−1.381) (1.654) (0.370) (1.207) (−0.081) (0.754) (0.287) (−0.008) (1.643)

Note: The table reports in three panels the one-day ahead daily predictive regression coefficients and robust t-statistics (in parentheses) for the excess
market returns. We compute the t-statistics using Newey-West robust standard errors with a lag length equal to h. The R2 is the OLS R-squared. The
first regression, in the first and second panel, presents the univariate results for the tail risk measures. In the last panel, the first regression presents the
bivariate regression (λP

t + TRPt). The subsequent regressions control for relevant equity return predictors, which are defined in Appendix C. The Sample
ranges from January, 2000 to December, 2020.
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Table 8: One-week ahead predictive excess market return regressions

λP
t λQ

t TRPt Rev RK JV MoM Max Min RV RSK VRP R2

I.I −0.021 0.011
(−0.539)

I.II 0.001 −0.093 0.222
(0.030) (−1.519)

I.III −0.020 −0.003 0.011
(−0.516) (−0.127)

I.IV −0.022 −0.046 0.067
(−0.578) (−1.433)

I.V −0.017 0.072 0.146
(−0.429) (1.144)

I.VI −0.026 −0.086 0.204
(−0.696) (−1.634)

I.VII −0.031 0.041 0.051
(−0.829) (0.540)

I.VIII −0.032 −0.074 0.152
(−0.854) (−1.254)

I.IX −0.020 −0.038 0.049
(−0.520) (−1.633)

I.X −0.017 0.060 0.105
(−0.450) (1.222)

I.XI 0.000 −0.254 0.011 0.020 0.077 0.086 0.202 −0.008 −0.008 0.128 0.937
(0.001) (−2.600) (0.347) (0.374) (1.151) (0.929) (1.679) (−0.070) (−0.301) (1.392)

II.I −0.038 0.037
(−1.303)

II.II −0.016 −0.089 0.229
(−0.582) (−1.448)

II.III −0.037 −0.001 0.037
(−1.295) (−0.048)

II.IV −0.038 −0.046 0.092
(−1.316) (−1.416)

II.V −0.035 0.072 0.170
(−1.206) (1.139)

II.VI −0.033 −0.083 0.214
(−1.134) (−1.557)

II.VII −0.039 −0.079 0.201
(−1.358) (−1.202)

II.VIII −0.043 −0.073 0.173
(−1.503) (−1.222)

II.IX −0.030 −0.032 0.062
(−1.009) (−1.292)

II.X −0.037 0.061 0.133
(−1.292) (1.234)

II.XI −0.009 −0.252 0.012 0.019 0.076 0.086 0.202 −0.008 −0.006 0.128 0.939
(−0.313) (−2.580) (0.386) (0.359) (1.146) (0.926) (1.682) (−0.070) (−0.226) (1.391)

III.I −0.024 0.032 0.037
(−0.636) (1.167)

III.II −0.002 0.019 −0.090 0.231
(−0.043) (0.682) (−1.461)

III.III −0.024 0.032 −0.001 0.037
(−0.627) (1.162) (−0.027)

III.IV −0.026 0.032 −0.046 0.092
(−0.674) (1.155) (−1.426)

III.V −0.020 0.031 0.072 0.170
(−0.522) (1.135) (1.136)

III.VI −0.029 0.024 −0.084 0.218
(−0.763) (0.867) (−1.584)

III.VII −0.035 0.033 0.042 0.079
(−0.937) (1.207) (0.551)

III.VIII −0.035 0.032 −0.074 0.178
(−0.955) (1.176) (−1.255)

III.IX −0.023 0.024 −0.033 0.063
(−0.595) (0.829) (−1.316)

III.X −0.021 0.033 0.061 0.133
(−0.550) (1.219) (1.237)

III.XI −0.001 0.010 −0.252 0.012 0.020 0.077 0.086 0.201 −0.008 −0.005 0.129 0.940
(−0.037) (0.356) (−2.579) (0.368) (0.363) (1.153) (0.926) (1.673) (−0.066) (−0.203) (1.395)

Note: The table reports in three panels the one-week ahead daily predictive regression coefficients and robust t-statistics (in parentheses) for the excess
market returns. The market return is the cumulative return from t + 1 to t + h. We compute the t-statistics using Newey-West robust standard errors
with a lag length equal to h. The R2 is the OLS R-squared. The first regression, in the first and second panel, presents the univariate results for the tail
risk measures. In the last panel, the first regression presents the bivariate regression (λP

t + TRPt). The subsequent regressions control for relevant equity
return predictors, which are defined in Appendix C. The Sample ranges from January, 2000 to December, 2020.
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Table 9: One-month ahead predictive excess market return regressions

λP
t λQ

t TRPt Rev RK JV MoM Max Min RV RSK VRP R2

I.I −0.026 0.004
(−0.233)

I.II −0.042 0.068 0.031
(−0.354) (0.493)

I.III −0.038 0.056 0.023
(−0.329) (0.820)

I.IV −0.033 −0.229 0.328
(−0.295) (−1.707)

I.V −0.009 0.302 0.565
(−0.078) (1.131)

I.VI −0.038 −0.182 0.207
(−0.340) (−0.972)

I.VII −0.106 0.301 0.523
(−0.810) (1.207)

I.VIII −0.072 −0.308 0.579
(−0.624) (−1.656)

I.IX −0.024 −0.118 0.090
(−0.213) (−2.309)

I.X −0.009 0.294 0.537
(−0.082) (1.858)

I.XI −0.033 −0.245 0.126 −0.051 0.387 0.033 0.557 0.337 −0.071 0.619 2.209
(−0.254) (−1.185) (1.606) (−0.467) (1.349) (0.141) (1.752) (1.114) (−1.391) (2.216)

II.I 0.107 0.071
(1.685)

II.II 0.099 0.034 0.077
(1.393) (0.258)

II.III 0.102 0.031 0.077
(1.400) (0.479)

II.IV 0.105 −0.227 0.390
(1.736) (−1.692)

II.V 0.118 0.307 0.650
(1.582) (1.154)

II.VI 0.118 −0.186 0.283
(1.573) (−1.001)

II.VII 0.069 0.263 0.487
(0.921) (1.111)

II.VIII 0.087 −0.292 0.595
(1.196) (−1.594)

II.IX 0.142 −0.151 0.203
(1.810) (−2.679)

II.X 0.109 0.295 0.609
(1.484) (1.866)

II.XI 0.138 −0.278 0.099 −0.039 0.403 0.037 0.552 0.338 −0.096 0.628 2.307
(1.802) (−1.337) (1.330) (−0.347) (1.419) (0.157) (1.765) (1.123) (−1.694) (2.246)

III.I −0.011 −0.135 0.115
(−0.095) (−2.075)

III.II −0.023 −0.128 0.048 0.128
(−0.192) (−2.114) (0.350)

III.III −0.020 −0.131 0.045 0.127
(−0.178) (−2.042) (0.664)

III.IV −0.017 −0.137 −0.230 0.441
(−0.155) (−2.099) (−1.716)

III.V 0.007 −0.139 0.303 0.681
(0.065) (−2.105) (1.140)

III.VI −0.021 −0.154 −0.196 0.350
(−0.192) (−2.276) (−1.048)

III.VII −0.090 −0.127 0.297 0.621
(−0.697) (−2.009) (1.196)

III.VIII −0.056 −0.134 −0.308 0.689
(−0.493) (−2.087) (−1.662)

III.IX −0.003 −0.175 −0.161 0.265
(−0.027) (−2.524) (−2.893)

III.X 0.006 −0.128 0.291 0.636
(0.050) (−1.990) (1.849)

III.XI −0.008 −0.165 −0.272 0.114 −0.043 0.386 0.036 0.567 0.328 −0.108 0.614 2.361
(−0.064) (−2.496) (−1.313) (1.465) (−0.385) (1.346) (0.153) (1.786) (1.087) (−1.944) (2.206)

Note: The table reports in three panels the one-month ahead daily predictive regression coefficients and robust t-statistics (in parentheses) for the excess
market returns. The market return is the cumulative return from t + 1 to t + h. We compute the t-statistics using Newey-West robust standard errors
with a lag length equal to h. The R2 is the OLS R-squared. The first regression, in the first and second panel, presents the univariate results for the tail
risk measures. In the last panel, the first regression presents the bivariate regression (λP

t + TRPt). The subsequent regressions control for relevant equity
return predictors, which are defined in Appendix C. The Sample ranges from January, 2000 to December, 2020.
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Table 10: One-day ahead predictive variance risk premium regressions

λP
t λQ

t TRPt VRP RV VIX2 JV Max Min R2

I.I −0.053 0.112
(−1.885)

I.II −0.020 0.568 12.868
(−0.790) (5.145)

I.III −0.051 0.013 0.118
(−1.984) (0.145)

I.IV 0.033 0.435 7.347
(1.329) (3.970)

I.V −0.049 0.132 0.808
(−1.744) (2.279)

I.VI 0.009 0.471 8.789
(0.360) (6.701)

I.VII 0.034 −0.433 7.261
(1.386) (−5.806)

I.VIII 0.023 0.558 −0.080 0.295 0.212 −0.092 19.576
(0.975) (4.797) (−0.459) (3.249) (2.109) (−1.515)

I.IX 0.023 0.612 −0.076 0.295 0.212 −0.092 19.576
(0.975) (6.785) (−0.459) (3.249) (2.109) (−1.515)

II.I −0.020 0.016
(−0.797)

II.II −0.017 0.569 12.864
(−0.707) (5.156)

II.III −0.019 0.019 0.031
(−0.748) (0.213)

II.IV 0.013 0.430 7.312
(0.539) (3.972)

II.V −0.019 0.134 0.727
(−0.750) (2.290)

II.VI −0.012 0.470 8.792
(−0.480) (6.676)

II.VII 0.010 −0.427 7.221
(0.404) (−5.750)

II.VIII −0.011 0.554 −0.087 0.297 0.216 −0.088 19.561
(−0.437) (4.771) (−0.496) (3.270) (2.150) (−1.439)

II.IX −0.011 0.612 −0.081 0.297 0.216 −0.088 19.561
(−0.437) (6.778) (−0.496) (3.270) (2.150) (−1.439)

III.I −0.053 −0.004 0.113
(−1.870) (−0.173)

III.II −0.021 0.009 0.568 12.872
(−0.827) (0.370) (5.145)

III.III −0.051 −0.005 0.013 0.119
(−1.959) (−0.174) (0.145)

III.IV 0.033 0.002 0.435 7.347
(1.309) (0.077) (3.971)

III.V −0.049 −0.004 0.132 0.809
(−1.727) (−0.139) (2.280)

III.VI 0.007 0.018 0.472 8.802
(0.278) (0.745) (6.714)

III.VII 0.033 0.006 −0.433 7.262
(1.345) (0.247) (−5.809)

III.VIII 0.020 0.024 0.557 −0.082 0.296 0.214 −0.092 19.597
(0.841) (0.953) (4.789) (−0.470) (3.253) (2.127) (−1.516)

III.IX 0.020 0.024 0.612 −0.077 0.296 0.214 −0.092 19.597
(0.841) (0.953) (6.782) (−0.470) (3.253) (2.127) (−1.516)

Note: The table reports in three panels the one-day ahead daily predictive regression coefficients and robust t-statistics
(in parentheses) for the market variance risk premium. We compute the t-statistics using Newey-West robust standard
errors with a lag length equal to h. The R2 is the OLS R-squared. The first regression, in the first and second panel,
presents the univariate results for the tail risk measures. In the last panel, the first regression presents the bivariate
regression (λP

t + TRPt). The subsequent regressions control for relevant predictors, which are defined in Appendix C.
The Sample ranges from January, 2000 to December, 2020.
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Table 11: One-week ahead predictive variance risk premium regressions

λP
t λQ

t TRPt VRP RV VIX2 JV Max Min R2

I.I −0.092 0.441
(−2.703)

I.II −0.053 0.674 23.993
(−1.937) (5.933)

I.III −0.070 0.148 1.555
(−2.250) (1.057)

I.IV 0.039 0.660 22.222
(1.323) (4.416)

I.V −0.088 0.145 1.530
(−2.621) (2.285)

I.VI −0.008 0.640 21.399
(−0.300) (7.040)

I.VII 0.029 −0.601 18.463
(1.033) (−5.506)

I.VIII 0.029 0.791 0.225 0.238 0.200 −0.042 39.377
(1.139) (6.746) (1.255) (2.543) (1.740) (−0.454)

I.IX 0.029 0.639 0.212 0.238 0.200 −0.042 39.377
(1.139) (6.417) (1.255) (2.543) (1.740) (−0.454)

II.I 0.026 0.035
(1.106)

II.II 0.030 0.677 23.892
(1.438) (5.946)

II.III 0.037 0.161 1.374
(1.593) (1.141)

II.IV 0.077 0.658 22.455
(3.573) (4.484)

II.V 0.027 0.147 1.166
(1.161) (2.283)

II.VI 0.037 0.642 21.468
(1.790) (7.054)

II.VII 0.068 −0.600 18.664
(3.168) (−5.577)

II.VIII 0.054 0.792 0.228 0.238 0.196 −0.041 39.487
(2.430) (6.785) (1.276) (2.556) (1.704) (−0.451)

II.IX 0.054 0.638 0.215 0.238 0.196 −0.041 39.487
(2.430) (6.429) (1.276) (2.556) (1.704) (−0.451)

III.I −0.083 −0.077 0.746
(−2.497) (−3.148)

III.II −0.046 −0.061 0.672 24.183
(−1.724) (−2.743) (5.934)

III.III −0.062 −0.078 0.148 1.862
(−1.997) (−3.222) (1.061)

III.IV 0.046 −0.068 0.659 22.455
(1.583) (−3.389) (4.415)

III.V −0.079 −0.076 0.144 1.827
(−2.410) (−3.146) (2.279)

III.VI −0.003 −0.047 0.638 21.509
(−0.107) (−2.301) (7.023)

III.VII 0.036 −0.063 −0.599 18.664
(1.284) (−3.030) (−5.504)

III.VIII 0.034 −0.047 0.792 0.229 0.237 0.195 −0.042 39.488
(1.333) (−2.283) (6.767) (1.270) (2.544) (1.696) (−0.453)

III.IX 0.034 −0.047 0.638 0.215 0.237 0.195 −0.042 39.488
(1.333) (−2.283) (6.425) (1.270) (2.544) (1.696) (−0.453)

Note: The table reports in three panels the one-week ahead predictive regression coefficients and robust t-statistics (in
parentheses) for the market variance risk premium. The variance risk premium is the cumulative V RP from t+1 to t+h.
We compute the t-statistics using Newey-West robust standard errors with a lag length equal to h. The R2 is the OLS
R-squared. The first regression, in the first and second panel, presents the univariate results for the tail risk measures.
In the last panel, the first regression presents the bivariate regression (λP

t + TRPt). The subsequent regressions control
for relevant predictors, which are defined in Appendix C. The Sample ranges from January, 2000 to December, 2020.
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Table 12: One-month ahead predictive variance risk premium regressions

λP
t λQ

t TRPt VRP RV VIX2 JV Max Min R2

I.I −0.119 1.544
(−2.870)

I.II −0.093 0.448 23.357
(−2.648) (3.605)

I.III −0.068 0.344 14.149
(−2.038) (3.389)

I.IV 0.021 0.704 53.516
(0.883) (7.779)

I.V −0.115 0.153 4.090
(−2.830) (2.535)

I.VI −0.041 0.595 39.497
(−1.731) (7.995)

I.VII 0.000 −0.595 38.523
(0.015) (−7.477)

I.VIII 0.018 0.712 0.590 0.066 0.055 0.003 62.294
(0.872) (7.999) (7.122) (1.595) (0.792) (0.035)

I.IX 0.018 0.315 0.555 0.066 0.055 0.003 62.294
(0.872) (5.979) (7.122) (1.595) (0.792) (0.035)

II.I 0.001 0.000
(0.038)

II.II 0.003 0.454 22.417
(0.236) (3.627)

II.III 0.025 0.356 13.721
(1.656) (3.457)

II.IV 0.056 0.705 53.806
(5.025) (7.958)

II.V 0.002 0.156 2.662
(0.113) (2.505)

II.VI 0.011 0.601 39.334
(0.908) (8.048)

II.VII 0.043 −0.598 38.723
(3.162) (−7.659)

II.VIII 0.047 0.714 0.594 0.066 0.051 0.002 62.501
(4.134) (8.052) (7.166) (1.587) (0.734) (0.029)

II.IX 0.047 0.314 0.559 0.066 0.051 0.002 62.501
(4.134) (5.996) (7.166) (1.587) (0.734) (0.029)

III.I −0.112 −0.063 1.965
(−2.791) (−3.562)

III.II −0.087 −0.052 0.447 23.646
(−2.575) (−3.321) (3.598)

III.III −0.061 −0.063 0.344 14.580
(−1.876) (−3.991) (3.407)

III.IV 0.026 −0.052 0.704 53.810
(1.172) (−4.264) (7.782)

III.V −0.108 −0.062 0.152 4.497
(−2.747) (−3.558) (2.529)

III.VI −0.037 −0.034 0.594 39.621
(−1.614) (−2.565) (7.984)

III.VII 0.006 −0.048 −0.594 38.773
(0.205) (−3.593) (−7.498)

III.VIII 0.023 −0.044 0.714 0.594 0.066 0.051 0.003 62.502
(1.149) (−3.675) (8.019) (7.111) (1.592) (0.732) (0.036)

III.IX 0.023 −0.044 0.314 0.559 0.066 0.051 0.003 62.502
(1.149) (−3.675) (5.995) (7.111) (1.592) (0.732) (0.036)

Note: The table reports in three panels the one-month ahead daily predictive regression coefficients and robust t-statistics
(in parentheses) for the market variance risk premium. The variance risk premium is the cumulative V RP from t + 1
to t+ h. We compute the t-statistics using Newey-West robust standard errors with a lag length equal to h. The R2 is
the OLS R-squared. The first regression, in the first and second panel, presents the univariate results for the tail risk
measures. In the last panel, the first regression presents the bivariate regression (λP

t +TRPt). The subsequent regressions
control for relevant predictors, which are defined in Appendix C. The Sample ranges from January, 2000 to December,
2020.
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Table 13: One-week ahead predictive excess market return regressions from t+2 to t+h

λP
t λQ

t TRPt Rev RK JV MoM Max Min RV RSK VRP R2

I.I −0.009 0.002
(−0.227)

I.II 0.007 −0.067 0.113
(0.173) (−1.132)

I.III −0.005 −0.019 0.011
(−0.127) (−0.717)

I.IV −0.011 −0.058 0.090
(−0.273) (−1.219)

I.V −0.005 0.072 0.135
(−0.122) (1.139)

I.VI −0.015 −0.094 0.230
(−0.389) (−1.728)

I.VII −0.025 0.062 0.094
(−0.643) (0.835)

I.VIII 0.005 −0.087 0.197
(0.157) (−1.462)

I.IX −0.008 −0.061 0.100
(−0.198) (−2.584)

I.X −0.005 0.070 0.128
(−0.125) (1.303)

I.XI 0.006 −0.203 −0.003 0.020 0.075 0.051 0.191 0.007 −0.032 0.136 0.886
(0.157) (−2.136) (−0.096) (0.386) (1.131) (0.553) (1.578) (0.062) (−1.272) (1.374)

II.I 0.011 0.003
(0.358)

II.II 0.028 −0.072 0.131
(0.954) (−1.214)

II.III 0.014 −0.022 0.015
(0.483) (−0.849)

II.IV 0.010 −0.058 0.090
(0.344) (−1.207)

II.V 0.013 0.072 0.139
(0.445) (1.154)

II.VI 0.016 −0.094 0.231
(0.529) (−1.715)

II.VII 0.003 0.055 0.079
(0.094) (0.754)

II.VIII 0.005 −0.087 0.197
(0.157) (−1.462)

II.IX 0.026 −0.068 0.115
(0.845) (−2.715)

II.X 0.011 0.070 0.130
(0.371) (1.309)

II.XI 0.045 −0.211 −0.008 0.023 0.077 0.052 0.192 0.006 −0.041 0.137 0.931
(1.495) (−2.224) (−0.275) (0.443) (1.163) (0.563) (1.591) (0.054) (−1.566) (1.384)

III.I −0.007 −0.017 0.009
(−0.179) (−0.590)

III.II 0.011 −0.027 −0.071 0.131
(0.278) (−0.972) (−1.193)

III.III −0.003 −0.018 −0.020 0.019
(−0.066) (−0.648) (−0.776)

III.IV −0.009 −0.017 −0.058 0.098
(−0.223) (−0.604) (−1.222)

III.V −0.003 −0.018 0.072 0.143
(−0.071) (−0.619) (1.143)

III.VI −0.012 −0.026 −0.096 0.248
(−0.317) (−0.916) (−1.766)

III.VII −0.023 −0.015 0.061 0.100
(−0.600) (−0.536) (0.830)

III.VIII −0.020 −0.016 −0.090 0.216
(−0.536) (−0.583) (−1.527)

III.IX −0.004 −0.034 −0.070 0.128
(−0.095) (−1.155) (−2.809)

III.X −0.003 −0.015 0.069 0.133
(−0.082) (−0.529) (1.297)

III.XI 0.013 −0.046 −0.210 −0.006 0.023 0.074 0.052 0.194 0.005 −0.043 0.134 0.936
(0.333) (−1.671) (−2.213) (−0.206) (0.432) (1.124) (0.562) (1.602) (0.042) (−1.616) (1.358)

Note: The table reports in three panels the one=week ahead daily predictive regression coefficients and robust t-statistics (in parentheses) for the excess
market returns. The market return is the cumulative return from t + 2 to t + h. We compute the t-statistics using Newey-West robust standard errors
with a lag length equal to h. The R2 is the OLS R-squared. The first regression, in the first and second panel, presents the univariate results for the tail
risk measures. In the last panel, the first regression presents the bivariate regression (λP

t + TRPt). The subsequent regressions control for relevant equity
return predictors, which are defined in Appendix C. The Sample ranges from January, 2000 to December, 2020.
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Table 14: One-month ahead predictive excess market return regressions from t + 2 to
t+ h

λP
t λQ

t TRPt Rev Size Illiq MoM Max Min RV RSK VRP R2

I.I −0.001 0.000
(−0.011)

I.II −0.029 0.118 0.081
(−0.246) (0.875)

I.III −0.011 0.047 0.013
(−0.095) (0.672)

I.IV −0.008 −0.235 0.341
(−0.073) (−1.666)

I.V 0.016 0.299 0.549
(0.142) (1.118)

I.VI −0.011 −0.146 0.132
(−0.097) (−0.782)

I.VII −0.085 0.315 0.568
(−0.652) (1.287)

I.VIII 0.140 −0.310 0.753
(1.971) (−1.674)

I.IX 0.001 −0.103 0.065
(0.006) (−1.965)

I.X 0.017 0.318 0.622
(0.157) (1.921)

I.XI −0.013 −0.216 0.115 −0.043 0.392 0.070 0.554 0.306 −0.061 0.621 2.251
(−0.103) (−1.046) (1.405) (−0.373) (1.362) (0.298) (1.799) (1.016) (−1.183) (2.180)

II.I 0.162 0.162
(2.232)

II.II 0.144 0.077 0.196
(2.089) (0.592)

II.III 0.159 0.018 0.163
(2.217) (0.272)

II.IV 0.160 −0.234 0.499
(2.215) (−1.657)

II.V 0.173 0.304 0.731
(2.349) (1.143)

II.VI 0.171 −0.155 0.310
(2.312) (−0.836)

II.VII 0.122 0.274 0.616
(1.680) (1.187)

II.VIII 0.140 −0.310 0.753
(1.971) (−1.674)

II.IX 0.196 −0.147 0.288
(2.548) (−2.593)

II.X 0.164 0.318 0.785
(2.271) (1.926)

II.XI 0.186 −0.256 0.085 −0.027 0.408 0.074 0.552 0.306 −0.096 0.629 2.438
(2.519) (−1.230) (1.094) (−0.238) (1.431) (0.318) (1.819) (1.017) (−1.699) (2.206)

III.I 0.020 −0.184 0.206
(0.179) (−2.810)

III.II −0.003 −0.171 0.092 0.254
(−0.028) (−2.822) (0.684)

III.III 0.013 −0.182 0.032 0.212
(0.115) (−2.806) (0.456)

III.IV 0.013 −0.186 −0.236 0.551
(0.118) (−2.832) (−1.680)

III.V 0.038 −0.188 0.301 0.763
(0.336) (−2.841) (1.130)

III.VI 0.011 −0.200 −0.166 0.373
(0.097) (−2.916) (−0.883)

III.VII −0.063 −0.176 0.310 0.756
(−0.492) (−2.774) (1.272)

III.VIII −0.028 −0.183 −0.327 0.852
(−0.250) (−2.836) (−1.741)

III.IX 0.027 −0.224 −0.158 0.350
(0.246) (−3.208) (−2.796)

III.X 0.037 −0.177 0.314 0.812
(0.341) (−2.735) (1.909)

III.XI 0.018 −0.209 −0.250 0.100 −0.031 0.390 0.073 0.567 0.296 −0.108 0.615 2.493
(0.141) (−3.170) (−1.206) (1.232) (−0.273) (1.358) (0.314) (1.840) (0.982) (−1.946) (2.168)

Note: The table reports in three panels the one-month ahead daily predictive regression coefficients and robust t-statistics (in parentheses) for the excess
market returns. The market return is the cumulative return from t + 2 to t + h. We compute the t-statistics using Newey-West robust standard errors
with a lag length equal to h. The R2 is the OLS R-squared. The first regression, in the first and second panel, presents the univariate results for the tail
risk measures. In the last panel, the first regression presents the bivariate regression (λP

t + TRPt). The subsequent regressions control for relevant equity
return predictors, which are defined in Appendix C. The Sample ranges from January, 2000 to December, 2020.
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Table 15: Predicting excess market returns with tail risk measures and LTV

One-day (h = 1) One-week (h = 5) One-month (h = 22)

Panel A: t+ 1 : t+ h
λP
t −0.025 −0.028 −0.056 −0.058 −0.121 −0.107

t-tstat (−1.908) (−2.064) (−1.491) (−1.543) (−1.055) (−0.937)

λQ
t −0.029 −0.041 0.060

t-tstat (−2.287) (−1.403) (0.798)
TRPt 0.020 0.018 −0.129
t-tstat (1.562) (0.635) (−1.937)
LTV −0.015 −0.013 −0.015 −0.060 −0.053 −0.060 −0.246 −0.221 −0.248
t-stat (−0.878) (−0.741) (−0.864) (−0.926) (−0.818) (−0.922) (−1.359) (−1.230) (−1.374)

R2 0.090 0.117 0.138 0.149 0.112 0.149 0.428 0.360 0.536

Panel B: t+ 2 : t+ h

λP
t −0.043 −0.040 −0.098 −0.079

t-tstat (−1.105) (−1.029) (−0.853) (−0.692)

λQ
t 0.006 0.109

t-tstat (0.197) (1.476)
TRPt −0.028 −0.173
t-tstat (−0.980) (−2.551)
LTV −0.068 −0.060 −0.069 −0.245 −0.220 −0.247
t-stat (−0.990) (−0.880) (−0.996) (−1.387) (−1.260) (−1.408)

R2 0.147 0.101 0.168 0.404 0.421 0.597

Note: The table reports in two panels the regression coefficients and robust t-statistics (in parentheses) for
daily predictive regressions of excess market returns over one-day (h = 1), one-week (h = 5), and one-month
(h = 22). For forecasting horizons larger than 1 day, Panel A considers the excess market returns from t+1
to t+ h, while Panel B considers the excess market returns from t+ 2 to t+ h. We compute the t-statistics
using Newey-West robust standard errors with a lag length equal to h. The R2 is the OLS R-squared. The
LTV is the left tail variation of Bollerslev et al. (2015). The sample ranges from January, 2000 to December,
2019.
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C Variables Definitions

• Reversal (REV): following Jegadeesh (1990) and Lehmann (1990), the short-term

reversal variable is defined as the weekly market return over the previous week from

Tuesday to Monday.

• Momentum (MoM): following Jegadeesh and Titman (1993), the momentum vari-

able at the end of day t is defined as the compound gross market return from day

t− 252 through day t− 21, skipping the short-term reversal month.

• Variance Risk Premium (VRP): we compute the variance risk premium as a short

position in a variance swap, namely, as the difference between risk-neutral and

physical expectations of the variance of market returns (e.g. Bekaert and Hoerova,

2014; Bollerslev et al., 2009):

V RPt =

(
V IXt√
365

)2

−RVt,

where V IXt is the CBOE volatility index, and RVt is the realized variance estimated

using 5-minute market returns.

• Maximum daily return (Max): the Max variable is defined as the largest total daily

market return observed over the previous week (see Bali et al., 2011).

• Minimum daily return (Min): the Min variable is defined as the smallest total daily

market return observed over the previous week (see Bali et al., 2011).

• Realized Variance (RV): the realized variance is defined as the sum of the intraday

squared returns (e.g., Andersen et al., 2001, 2003):

RVt =
N∑

n=1

R2
n,t,

where Rn,t denotes the log-return on the S&P 500 index over the n-th intra-daily

time interval on day t.

51



• Realized Skewness (RSK): the RSK is the ex-post daily realized skewness based on

intra-day market returns standardized by the realized variance (e.g., Amaya et al.,

2015):

RSKt =

√
N

∑N
n=1R

3
n,t

RV
3/2
t

.

• Realized Kurtosis (RK): the RK is the ex-post daily realized kurtosis based on

intra-day market returns standardized by the variance (e.g., Amaya et al., 2015):

RSKt =
N

∑N
n=1 R

4
n,t

RV 2
t

.

• Jump Variation (JV ): the jump variation is defined as the difference between the

RV and a consistent measure of the integrated variance, such as the bipower vari-

ation (BV ) of Barndorff-Nielsen and Shephard (2004):

JVt = max (RVt −BVt, 0) ,

where BVt = π/2(N/(N − 1))
∑N

n=2 |Rn,t||Rn−1,t|.

• Volatility Index (V IX): the V IX is the CBOE volatility index expressed in variance

form (V IX2) and scaled to the daily level.

• Left Tail Variation (LTV): the left tail variation proposed by Bollerslev et al.

(2015) is an option implied measure of short-horizon downside tail risk obtained

from short-dated out-of-the-money put options. The measure is obtained from

www.tailindex.com.
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