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ABSTRACT

We propose a structural model of constant gain learning about future earnings growth
that incorporates preferences for the timing of cash flows. As implied by the model,
a cross-sectional decomposition using survey forecasts shows that high price-earnings
ratios are accounted for by both low expected returns and overly high expected earnings
growth. The model quantitatively matches a number of asset pricing moments, as
learning about growth interacts strongly with the preference for the timing of cash flows,
and provides insights on the roles of risk premia and mispricing in the cross-section of
stocks. The magnitudes and timing of the comovement between prices, earnings growth
surprises, and anomaly returns are all consistent with a gradual learning process rather
than expectations being highly sensitive to the most recent realization. Large earnings
growth surprises do not immediately translate into large one-period returns, but instead
are gradually reflected in future returns over time.
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It’s been known since Basu (1975) and Stattman (1980) that high price ratio stocks (e.g.,

price-earnings ratios, price-book ratios) earn lower returns than their peers (Rosenberg, Reid,

and Lanstein, 1985; Fama and French, 1992; Davis, Fama, and French, 2000). While the one-

month difference between Growth and Value stocks has declined over time (Schwert, 2003;

Fama and French, 2020), return differences at longer horizons have remained substantial

(De la O, Han, and Myers, 2023)1 and play a large role in accounting for the level of prices

(van Binsbergen et al., 2023; Cho and Polk, 2023). Given that a stock’s price is the risk-

adjusted value of expected future cash flows, these realized return differences imply that high

price ratio stocks either have low risk exposure or overly high expected cash flows.

There is a long-standing debate between research advocating either for risk exposure

or incorrect cash flow expectations to explain cross-sectional differences in price ratios and

subsequent returns.2 Our innovation is twofold. First, we provide a quantitative decom-

position using professional forecasts which measures the relative importance of these two

components at varying horizons. Second, we estimate a structural model which relates these

decomposition results to duration-based risk premia and learning about earnings growth.

Both the empirical decomposition and the structural model emphasize the magnitudes and

timing of expected and realized earnings growth and returns, which provides key distinctions

from the predictions of existing full-information rational expectations (FIRE), learning, and

behavioral models.

To frame our empirical analysis, we propose a model of constant gain learning about

firm-level earnings growth with duration-based risk premia. The agent’s SDF depends on an

aggregate shock. The effect of this shock on firm cash flows is persistent but not permanent,

meaning that longer horizon cash flows carry a lower discount rate as they are less exposed

to the aggregate shock. Cross-sectional differences in firm earnings depend on each firm’s

underlying mean earnings growth as well as transitory idiosyncratic shocks. The agent
1Table I also confirms that long-term return differences are large even for 1999-2020.
2See Fama and French (1995) and Daniel and Titman (1997) for early evidence and Lustig and Nieuwer-

burgh (2005) and Hou, Karolyi, and Kho (2011) for more recent explanations
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attempts to infer the mean growth based on past realizations. Objectively, mean earnings

growth is identical across firms. However, the agent’s expectation of mean earnings growth

will differ across firms based on their realized shocks.

The model gives three key predictions for the dynamics of prices, earnings growth, and

returns which distinguish it from other models of expectations. First, a high expected mean

earnings growth for a firm will raise the firm’s price by increasing the expected future cash

flows and lowering the subjective discount rate. In other words, both high subjective expected

cash flows and low subjective expected returns will contribute to a high price. This differs

from return extrapolation,3 in which high prices are associated with high expected returns.

Second, if the constant gain parameter is small (i.e., learning is slow), then the impact of

earnings growth surprises on one-period returns will be small. If the agent largely attributes

the surprise to a transitory shock to earnings, rather than updating her expectation of the

mean growth rate, then the earnings growth surprise will only lead to a small immediate

change in price. Instead, prices will adjust gradually over time as agents update their beliefs.

In comparison, diagnostic models and models in which agents overstate the persistence of

earnings growth imply that earnings growth surprises would translate more than 1-1 into

one-period returns, as current prices are highly sensitive to the most recent realizations.4

Third, if the constant gain parameter is small, then positive earnings growth surprises

will decrease expected next period earnings growth. If the surprise is primarily attributed

to a temporary shock to the level of earnings, then the agent believes the surprise will be

largely reversed by low earnings growth in the next period. This differs from the diagnostic

and exaggerating persistence models mentioned in the second prediction. This also differs

from other constant gain learning models, such as Nagel and Xu (2022).5 These models all

imply that a positive surprise increases expected next period earnings growth.
3See Jin and Sui (2022) and Barberis et al. (2015).
4See the extrapolative expectations model of Hirshleifer, Li, and Yu (2015) or the diagnostic expectations

model of Bordalo et al. (2019).
5This distinction from Nagel and Xu (2022) comes from the fact that our model incorporates temporary

shocks to the level of earnings into the constant gain learning model.
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To measure the relative importance of subjective earnings growth expectations and sub-

jective discount rates and test the model predictions, we use a cross-sectional version of

the Campbell-Shiller decomposition.6 Using professional forecasts, we find that 43.3% of

dispersion in price-earnings ratios is accounted for by high price ratio firms having higher

expected four-year earnings growth and 12.7% of dispersion is accounted for by high price

ratio firms having lower expected four-year returns. This confirms the first prediction of the

model that both higher expected earnings growth and lower expected returns contribute to a

high price. Interestingly, unlike the aggregate time series evidence in Greenwood and Shleifer

(2014) and De la O and Myers (2021) that expected returns are positively correlated with

price ratios, in the cross-section investors correctly expect lower returns for high price-ratio

firms.7 The remaining dispersion is explained by expectations of future price-earnings ratios,

which reflect expectations of earnings growth and returns beyond four years.

For comparison, realized four-year earnings growth and negative returns account for 9.9%

and 32.0% of price-earnings ratio dispersion, respectively. Empirically, high price ratio firms

are mainly associated with lower returns than their peers, rather than higher future earnings

growth. In other words, investors overestimate the earnings growth of high price ratio firms,

which leads to consistent disappointment in earnings growth for these firms. While investors

do expect lower returns for high price ratio firms, they understate the magnitude of this

relationship. Consistent with the fact that investors are disappointed by earnings growth,

the realized returns on high price ratios firms are even lower than expected.

In terms of timing, while investors are significantly disappointed by one-year earnings

growth for high price ratio firms, this does not immediately lead to large negative one-year

returns on these firms. Comparing the decomposition results at the one-year horizon and

the four-year horizon, we find that disappointment in future earnings growth for high price

ratio firms is largely concentrated at the one-year horizon, while the low returns on these
6Because this decomposition is derived from an identity, it holds even if expectations differ from the

objective distribution.
7Dahlquist and Ibert (2023), Bastianello (2023) and Büsing and Mohrschladt (2023) also find evidence

that expected returns are negatively related to price ratios.
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firms gradually accumulate over four years. This confirms the second model prediction that,

when the constant gain parameter is small, overly high earnings growth expectations will be

gradually reflected in future returns.

Why does disappointment in one-year earnings growth not immediately lead to large

negative returns? Because, consistent with the third model prediction, a negative earnings

growth surprise empirically increases expected next year earnings growth. After observing

a bad earnings growth realization, investors appear to largely attribute this to a transitory

shock to the level of earnings which will be reversed going forward. This demonstrates the

importance of modeling expectations of future earnings as relatively “stubborn” and slow-

moving, rather than being highly sensitive to the most recent realizations.

While we mainly focus on decomposing cross-sectional dispersion in price ratios, we can

analogously frame these tests in terms of understanding anomaly returns. Focusing on the

value, profitability, and investment anomalies, as well as a combination of 22 anomalies from

Hou, Xue, and Zhang (2015), we show that each anomaly is associated with large return

forecast errors. In other words, the realized one-year returns on each anomaly are much

higher than investors expected.8 Decomposing the unexpected anomaly returns, we find

that forecast errors for one-year earnings growth have the correct sign and are large enough

to account for these unexpected anomaly returns. In fact, consistent with the second model

prediction, we find that one-year earnings growth forecast errors are larger than the one-year

unexpected returns, again indicating that earnings growth surprises do not immediately

translate into large one-year returns. Instead, we consistently find that positive earnings

growth surprises decrease expected next-year earnings growth, in line with the third model

prediction.

To demonstrate that our model can quantitatively as well as qualitatively explain our

empirical findings, we estimate and test the constant gain learning model. In the words of

Brunnermeier et al. (2021), “we need structural models of belief dynamics that can compete
8A one standard deviation increase in the anomaly variable is associated with a 80 to 330bps increase in

return forecast errors.
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with [FIRE] models in explaining asset prices and empirically observed beliefs.” The six pa-

rameters of the model are inferred from realized earnings, average aggregate returns, and the

volatility of one-year earnings growth expectations. Despite not using any price information

other than average aggregate returns, the model successfully matches a number of untargeted

aggregate and cross-sectional asset pricing moments. Importantly, the model also replicates

our decomposition results for the price-earnings ratio at the one-year and four-year horizon,

both in terms of magnitudes and timing. The model not only matches the dynamics of

price-earnings ratios and expectations, but also outperforms standard FIRE models (Berk,

Green, and Naik, 1999; Zhang, 2005; Lettau and Wachter, 2007) in matching the dynamics

of price-earnings ratios and realized future earnings growth and returns.9

The quantified structural model allows us to extend our empirical results in two ways.

First, we can go beyond the four-year horizon to estimate that expected earnings growth and

expected returns for all horizons account for two-thirds (65.4%) and one-third (34.6%) of

price-earnings ratio dispersion, respectively. This is largely due to errors in earnings growth

expectations, which account for half (49.4%) of all price-earnings ratio dispersion.

Second, we can examine the underlying mechanisms which drive expected earnings growth

and expected returns, namely constant gain learning and duration-based risk sensitivity, to

show that the interaction between these two mechanisms is important for generating realistic

dispersion in price-earnings ratios. Compared to an economy with no learning and no risk

sensitivity, introducing only risk sensitivity has no impact on the dispersion in price-earnings

ratios, introducing only learning increases the dispersion by a factor of 2.1, and introducing

both increases the dispersion by a factor of 4.4. This highlights the benefit of unifying

non-FIRE earnings growth expectations and duration-based risk premia, as the interaction

magnifies the sensitivity of prices to changes in beliefs.

Broadly, this paper contributes to the growing literature using subjective expectations
9We find that these models struggle to generate risk premia large enough to match the empirical rela-

tionship between price-earnings ratios and future returns.
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to understand asset prices.10 In the cross-section, errors in firm-level professional earnings

forecasts have been strongly linked to future returns (La Porta, 1996; Frankel and Lee,

1998; Da and Warachka, 2011; So, 2013; van Binsbergen, Han, and Lopez-Lira, 2022) and

have been used to study a number of anomalies such as post-earnings announcement drift

(Abarbanell and Bernard, 1992), the duration premium (Weber, 2018), and the profitability

anomaly (Bouchaud et al., 2019). Moreover, Kozak, Nagel, and Santosh (2018) and Engel-

berg, Mclean, and Pontiff (2018) find that short legs of multiple long-short anomaly strategies

comprise stocks with more optimistic earnings forecasts, whereas Engelberg, McLean, and

Pontiff (2020) find that anomaly short legs comprise stocks with more optimistic return

forecasts.

We differ from these studies in two important ways. First, to the best of our knowledge,

we are the first paper to quantify the relative importance of subjective cash flow and return

expectations in accounting for cross-sectional dispersion in price ratios and returns. This

decomposition sheds light on the relative importance of risk (discount rates) and mispricing

in stock prices. By utilizing expectations of both earnings growth and returns, we are able

to measure subjective discount rates and quantitatively link unexpected anomaly returns to

errors in earnings growth expectations.11 Second, we use the expectations data to estimate

and test a structural model of expectation formation, preferences, and asset prices which links

our decomposition results to underlying “deep” parameters of learning and risk sensitivity.

In terms of the structural model, our work is closely related to the literature on learning

about mean consumption or cash flow growth (Bordalo, Gennaioli, Porta, and Shleifer, 2019;

Lewellen and Shanken, 2002; Collin-Dufresne, Johannes, and Lochstoer, 2016; Nagel and Xu,

2022) and incorporates duration-based risk premia similar in spirit to Lettau and Wachter

(2007). We provide new evidence supporting these types of learning models using the cross-
10Amromin and Sharpe (2014); Greenwood and Shleifer (2014); Piazzesi, Salomao, and Schneider (2015);

Cassella and Gulen (2018); De la O and Myers (2021); Nagel and Xu (2022); Bordalo et al. (2022) utilize
survey expectations for aggregate outcomes such as returns, cash flows and yields.

11This differs from the implied cost of capital approach (Chen, Da, and Zhao, 2013; Hommel, Landier,
and Thesmar, 2023) in which discount rates are inferred using earnings expectations for observable horizons
and assumptions about long-term industry growth or GDP growth.
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sectional dynamics of stocks and show that incorporating learning about temporary shocks to

the level of earnings creates distinct qualitative predictions for the timing of earnings growth

surprises and returns.12 We also highlight that learning about growth naturally complements

duration-based risk premia. Even if the objective timing of cash flows is relatively similar

across all firms (Chen et al., 2017), duration-based risk premia can still play an important

role in stock prices so long as investors believe there is a large difference in the timing of

cash flows. In other words, as argued in Jensen (2023), once we depart from FIRE, the

compensation for risk that investors require should be disciplined by data on investors’

believed risks, not the objective risks.

I. Model of cash flow expectations and discount rates

In this section, we introduce a model with slow-moving biases in cash flow growth expec-

tations and duration-dependent discount rates. We show in Section III that this model

quantitatively replicates our empirical findings. Throughout the paper, we use lowercase

letters to denote log values, z ≡ log (Z).

A. Cash flows and the stochastic discount factor

For each firm i, the log cash flow xi,t has an aggregate and a firm-level component,

xi,t = xagg
t + x̃i,t (1)

xagg
t = ϕxagg

t−1 + ut (2)

x̃i,t = git+ vi,t. (3)

The aggregate component is an AR(1) process, which can be thought of as business-cycle

fluctuations. The firm-level component is a firm-specific trend git plus noise to capture

potential cross-sectional differences in growth rates. The shocks ut, vi,t are uncorrelated and
12While Bordalo et al. (2019) incorporate a sluggish form of diagnostic expectations into their calibration,

the model still implies that earnings growth surprises translate more than 1-1 into one-period returns.



8

have variances σ2
u, σ

2
v .

The agent has a log stochastic discount factor

mt+1 = −rf − 1

2
γ2σ2

u − γut+1 (4)

which depends on the aggregate shock ut+1.

B. Subjective cash flow expectations

Objectively, the value of gi is identical across firms, gi = ḡ.13 However, the agent does not

know each firm’s gi and forms her subjective expectation E∗
t [gi] using constant gain learning,

E∗
t [gi] = E∗

t−1 [gi] + β
(
∆x̃i,t − E∗

t−1 [∆x̃i,t]
)

(5)

E∗
t [vi,t] = (1− β)

(
∆x̃i,t − E∗

t−1 [∆x̃i,t]
)

(6)

where β is the constant gain parameter. Specifically, after observing the surprise ∆x̃i,t −

E∗
t−1 [∆x̃i,t], she attributes portion β to firm-specific growth and portion (1− β) to the noisy

shock vi,t. Her expectation for the future growth of the firm-level component is then

E∗
t [∆x̃i,t+1] = E∗

t [gi]− E∗
t [vi,t] . (7)

Her expectation for the future level of the firm-level component is

E∗
t [x̃i,t+n] = x̃i,t + nE∗

t [gi]− E∗
t [vi,t] . (8)

C. Prices and subjective risk premia

Sections I.A and I.B lay out all of the elements and assumptions of the model. In this sub-

section, we simply combine the agents’ beliefs and the stochastic discount factor to calculate

the price for various claims. Appendix A gives the details for all of the equations.

To start, let P (n)
t be the price of an n-period aggregate strip, i.e., a claim that pays Xagg

t+n

13Given that our empirical analysis focuses on price-earnings ratios, we normalize ḡ to 0 without loss of
generality.
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in n periods. The aggregate strip price is

P
(n)
t = E∗

t

[(
n∏

j=1

Mt+j

)
Xagg

t+n

]

= exp

{
−nrf − γσ2

u

1− ϕn

1− ϕ
+

1

2
σ2
u

1− ϕ2n

1− ϕ2
+ ϕnxagg

t

}
. (9)

The realized return on the strip is

R
(n)
t+1 =

P
(n−1)
t+1

P
(n)
t

= exp

{
rf + γσ2

uϕ
n−1 − 1

2
σ2
uϕ

2(n−1) + ϕn−1ut+1

}
(10)

and the subjective expected return on the strip is

E∗
t

[
R

(n)
t+1

]
= exp

{
rf + γσ2

uϕ
n−1
}
. (11)

The first term (rf ) reflects the risk-free rate and the second term (γσ2
uϕ

n−1) reflects the

subjective risk premium, i.e., the compensation agents require for exposure to risk.

Equation (11) shows an important characteristic of this model: longer horizon strips

carry a lower subjective risk premium γσ2
uϕ

n−1. Equation (2) shows that aggregate shocks

are persistent but not permanent. This means that longer horizon cash flows are less sensitive

to the aggregate shock ut+1 and therefore require a lower risk premium. This is similar to

the mechanism in Lettau and Wachter (2007).

Each firm i can be viewed as a collection of strips. Specifically, since shocks to the firm-

level component vi,t are uncorrelated with the aggregate shock, we can express the firm’s

price as

Pi,t =
∞∑
n=1

E∗
t

[(
n∏

j=1

Mt+j

)
Xagg

t+nX̃i,t+n

]

=
∞∑
n=1

P
(n)
t E∗

t

[
X̃i,t+n

]
=

∞∑
n=1

P
(n)
t exp

{
1

2
σ2
v + E∗

t [x̃i,t+n]

}
. (12)

In other words, idiosyncratic firm risk is not priced, so firm prices simply depend on the
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expected firm-level component E∗
t [x̃i,t+n] and the aggregate strip prices P

(n)
t .

The subjective expected return on firm i is then simply a weighted average of the sub-

jective expected return on the individual strips,

E∗
t [Ri,t+1] = E∗

t

[
Xagg

t+1X̃i,t+1 + Pi,t+1

Pi,t

]

=
∞∑
n=1

wi,t,nE
∗
t

[
R

(n)
t+1

]
=

∞∑
n=1

wi,t,n exp
{
rf + γσ2

uϕ
n−1
}

(13)

where the weight wi,t,n =
exp{nE∗

t [gi]}P
(n)
t∑∞

n=1 exp{nE∗
t [gi]}P

(n)
t

captures how much of the firm’s value in equa-

tion (12) comes from its horizon n cash flows.

The realized return for firm i is

Ri,t+1 =
Xagg

t+1X̃i,t+1 + Pi,t+1

Pi,t

=
∞∑
n=1

wi,t,nR
(n)
t+1

E∗
t+1

[
X̃i,t+n

]
E∗

t

[
X̃i,t+n

] . (14)

In addition to depending on a weighted average of realized strip returns R
(n)
t+1, the realized

firm return also depends on the change in the expected future firm-level component. From

equations (5), (6), and (8), this change in expectations can all be expressed entirely in terms

of the surprise about one-period growth ∆x̃i,t+1 − E∗
t [∆x̃i,t+1], as for n ≥ 2 we have that

E∗
t+1

[
X̃i,t+n

]
E∗

t

[
X̃i,t+n

] = exp {nβ (∆x̃i,t+1 − E∗
t [∆x̃i,t+1])} . (15)

D. Model implications

Below, we discuss several implications from the model which will be useful for understanding

the empirical findings.

First, increases in E∗
t [gi] raise the firm’s price in two ways: increasing the expected future

cash flows and decreasing the subjective risk premium. From equation (12), a higher expected
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gi naturally increases the value of the firm by increasing the value of future expected cash

flows. What is more surprising is that raising E∗
t [gi] lowers the subjective risk premium. As

shown in equation (11), longer horizon cash flows carry a lower risk premium in this model, as

they are less sensitive to the aggregate shock ut+1. A higher value for E∗
t [gi] means that more

of the firm’s value comes from its longer horizon cash flows and therefore the weights wi,t,n

in equation (13) are more concentrated on the low longer horizon exp
{
rf + γσ2

uϕ
n−1
}
. The

Campbell-Shiller decomposition in Section II will help to quantify the relative importance

of these two channels.

Second, if the constant gain parameter β is small, then the impact of cash flow surprises

∆x̃i,t − E∗
t−1 [∆x̃i,t] on one-period returns will be small. As shown in equations (14)-(15), a

positive surprise ∆x̃i,t −E∗
t−1 [∆x̃i,t] will cause the realized return to be higher than agent’s

expected return (E∗
t [Ri,t+1]). If β is large, then agents will raise their expectations of gi

substantially after a positive surprise, which will increase the current price and lead to a

large positive current return. However, if β is fairly small, then expectations of gi will only

respond slightly in response to surprises, which means we will not observe a large one-period

return in response to a cash flow surprise ∆x̃i,t−E∗
t−1 [∆x̃i,t]. Instead, when β is small, prices

will move slowly over time as agents gradually adjust their expectations of gi. Rephrased,

the mapping between cash flow surprises ∆x̃i,t−E∗
t−1 [∆x̃i,t] and realized returns Ri,t depends

on how “stubborn” beliefs are (i.e., how quickly agents change their beliefs).

Third, if the constant gain parameter β is small, then a positive surprise ∆x̃i,t−E∗
t−1 [∆x̃i,t]

will decrease expected next period growth E∗
t [∆x̃i,t+1]. Equations (5)-(7) show that this will

be true whenever β < 0.5. This is quite different from models in which an unexpectedly high

value for realized growth increases expected future growth. After observing a positive sur-

prise ∆x̃i,t − E∗
t−1 [∆x̃i,t], the agent slightly raises her beliefs about gi but largely attributes

the surprise to the noisy shock vi,t which she expects will be reversed going forward.
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II. Empirical findings

A. Decomposing the cross-section of price ratios

To understand the contributions of subjective cash flow growth expectations and subjective

discount rates to dispersion in stock price ratios, we focus on a cross-sectional version of the

Campbell-Shiller decomposition. Note that this decomposition is derived from an identity,

meaning that the empirical results do not require any of the assumptions made in the model.

In terms of notation, E∗
t [·] denotes subjective expectations. All other operators use the

objective probability distribution. For example, V ar (·) and Cov (·, ·) denote the observable

variance or covariance of variables.

For any stock or portfolio of stocks i, the one-year ahead log return ri,t+1 can be approx-

imated in terms of the price-earnings ratio pxi,t, future earnings growth ∆xi,t+1, and the

future price-earnings ratio:

ri,t+1 ≈ κ+∆xi,t+1 + ρpxi,t+1 − pxi,t, (16)

where κ and ρ < 1 are constants.14 To understand cross-sectional dispersion in price-

earnings ratios, let p̃xi,t be the cross-sectionally demeaned price-earnings ratio of portfolio

i and let ∆x̃i,t+1 and r̃i,t+1 be the cross-sectionally demeaned earnings growth and returns.

Rearranging equation (16) and applying subjective expectations E∗
t [·], we see that a higher

than average price-earnings ratio must be explained by higher than average expected earnings

growth, lower than average expected returns, or a higher than average expected future price-

earnings ratio,

p̃xi,t ≈
h∑

j=1

ρj−1E∗
t [∆x̃i,t+j]−

h∑
j=1

ρj−1E∗
t [r̃i,t+j] + ρhE∗

t

[
p̃xi,t+h

]
. (17)

Importantly, equation (17) does not require that expectations are rational. Because this

equation is derived from an identity, it holds under any subjective probability distribution.
14Note that this approximation still holds even for non-dividend paying firms. Appendix B discusses the

log-linearization in more detail including the role of the payout ratio.



13

To measure the relative contribution of subjective cash flow growth expectations and

subjective discount rates to the dispersion in price-earnings ratios, we decompose the variance

of p̃xi,t into three components:

1 ≈

Cov

 h∑
j=1

ρj−1E∗
t [∆x̃i,t+j ] , p̃xi,t


V ar

(
p̃xi,t

)︸ ︷︷ ︸
CFh

+

Cov

−
h∑

j=1

ρj−1E∗
t [r̃i,t+j ] , p̃xi,t


V ar

(
p̃xi,t

)︸ ︷︷ ︸
DRh

+ ρh
Cov

(
E∗

t

[
p̃xi,t+h

]
, p̃xi,t

)
V ar

(
p̃xi,t

)︸ ︷︷ ︸
FPEh

.

(18)

Note that V ar
(
p̃xi,t

)
is the average squared cross-sectionally demeaned price-earnings ratio,

which means it measures the average cross-sectional dispersion in price-earnings ratios. The

coefficients CFh and DRh give a quantitative measure of how much dispersion in price-

earnings ratios is accounted for by dispersion in earnings growth expectations and how much

is accounted for by dispersion in discount rates. For example, in the model of Section I, a

higher sensitivity to risk (γ) increases DRh as the duration-dependent risk premia play a

larger role in firms’ prices. In contrast, when γ = 0, we have DRh = 0 and all dispersion

in price-earnings ratios is accounted for by expected earnings growth and the future price-

earnings ratio. Applying the decomposition to multiple horizons h provides information

about the timing of expected earnings growth and discount rates. Additionally, the terms in

equation (18) can be interpreted as the coefficients from univariate regressions with time fixed

effects, e.g., a one unit increase in pxi,t is associated with a CF1 unit increase in expected

one-year earnings growth.

When we estimate equation (18) using professional forecasts, we will use expectations

of price growth E∗
t [∆pi,t+j] as a proxy for expectations of returns E∗

t [rt+j]. Empirically,

realized price growth and returns are closely related with a correlation of 0.997 to 0.999 for

the j = 1, ..., 4 horizons that we study in our analysis. However, to ensure that the use of

this proxy and the approximation error in equation (18) do not impact the results, we also

estimate an exact decomposition based on price growth in Appendix C. As shown in Tables
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I and AI, the results of this exact decomposition closely match the results from equation

(18).

B. Data

The firm-level realized earnings and prices are collected from Compustat and CRSP. The

firm-level expected earnings and prices are collected from I/B/E/S (Institutional Brokers’

Estimate System) and Value Line. To perform the decomposition from Section II.A, we

sort these firms into the classic Value and Growth portfolios. Specifically, for each month

t, we construct five value-weighted portfolios sorted by book-to-market.15 These portfolios

capture over 99% of the firm-level cross-sectional variation in price-book ratios.16 For these

portfolios, we measure the expectations at time t for earnings growth, price growth, and the

future price-earnings ratio over the next four years. We also track the realized buy-and-hold

future earnings growth, returns, and price-earnings ratios over the next four years. The main

sample, which contains expectations of both earnings growth and price growth, ranges from

1999-2020. For robustness tests, we also use a long sample which ranges from 1982-2020 and

contains earnings growth expectations. The subsections below provide more detail on the

firm-level variable measurements.

B.1. Realized data

The sample of stocks consists of all common stocks (share code 10 and 11) listed on NYSE,

AMEX, and NASDAQ. We obtain monthly prices and shares outstanding from the Center

for Research in Security Price (CRSP). The firm-level accounting variables are constructed

from the quarterly Compustat database. Following Davis et al., 2000 and Cohen et al., 2003,

we define book value as stockholders’ book equity, plus deferred taxes and investment tax
15The book-to-market ratio is defined as the market-cap in the portfolio formation month scaled by total

book value from the most recent four quarters. To account for potential data errors, we exclude firms with
book-to-market ratios over 100 or below 0.01.

16For our sample, the standard deviation across firms in the log price-book ratio is 0.763. For our five
portfolios, the standard deviation of log price-book ratios is 0.756, meaning that these portfolios capture the
vast majority of the firm-level variation.
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credit if available, minus the book value of preferred stock. If stockholders’ book equity is not

available at Compustat, we define it as the book value of common equity plus the par value

of preferred stock, or the book value of assets minus total liabilities in that order. Depending

on availability, we use redemption or par value for the book value of preferred stock. To be

consistent with the I/B/E/S’s definition of earnings, we define earnings as Compustat net

income (item NIq) excluding non-I/B/E/S items, which comprise extraordinary items and

discontinued operations (item XIDOq), special items (item SPIq), and non-recurring income

taxes (item NRTXTq). This aligns with the measure of earnings proposed in Hillenbrand

and McCarthy (2022). Monthly dividends are the difference between CRSP monthly returns

and CRSP monthly returns excluding dividends multiplied by total market value. At every

month, annual earnings at the firm level are defined as the sum of quarterly earnings from

the most recent four quarters.17 The main sample includes all firms which have observable

returns ri,t+j, earnings growth ∆xi,t+j,, and price-earnings ratios pxi,t+j in future years j =

1, 2, 3, 4.

B.2. Subjective expectations

The subjective earnings and short-term price expectations are extracted from the I/B/E/S

Database. The Summary Statistics of the I/B/E/S Database contains the median forecasts

for EPS (earnings per share) since 1976 for shorter horizons and 1982 for longer horizons

for U.S. publicly traded companies and the median forecasts for prices at the 12-month

horizon since 1999. I/B/E/S gathers their forecasts from hundreds of brokerage and inde-

pendent analysts who track companies as part of their investment research work. Because

the forecasts are not anonymous, analysts have a strong incentive to accurately report their

expectations.18 Furthermore, research on I/B/E/S suggests that financial firms’ trades are

consistent with their own analysts’ forecasts and recommendations, which adds to the evi-
17To account for possible data errors or extreme outliers, we winsorize annual earnings cross-sectionally

at the 1% level.
18See Mikhail, Walther, and Willis (1999); Cooper, Day, and Lewis (2001)
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dence that reported forecasts genuinely reflect the beliefs of the firms.19 More importantly,

market participants take seriously these analyst forecasts and trade in line with them, with

stock prices increasing (decreasing) shortly after upward (downward) revisions in analyst

earnings forecasts (Kothari, So, and Verdi 2016).

The long-term price expectations are obtained from the three-to-five-year price targets

from the Value Line Investment Survey. Value Line is an independent investment research

and financial publishing firm. The price targets cover approximately 1,700 actively traded

U.S. companies every period, approximately 90% of the US publicly listed firms market

value.20 Value Line does not have any investment banking relation with the analyzed firms,

nor any other obvious reason for providing biased forecasts. To the best of our knowledge,

this is the only widely available survey containing firm-level price forecasts at long horizons.

We construct monthly earnings expectations for every firm in I/B/E/S at different hori-

zons by using the EPS forecasts for up to three Annual Fiscal Periods (FY1-FY3) and the

Long-Term Growth measure (LTG) meant to forecast earnings growth over the next “three-

to-five years.” For each month, we first interpolate across the different horizons in the annual

fiscal periods to estimate an expectation over the next twelve months. We repeat this proce-

dure to calculate two-year expectations. To estimate the three-year expectations, we use the

two-year expectations and compound them with the long-term growth forecasts. We repeat

this procedure to get four-year earnings expectations. We exclude from the main sample

the following firms: a) firms without a LTG forecast, b) firms that do not have sufficient

forecasts to calculate a 12-month interpolated forecast E∗
t [∆xi,t+1], and c) firms that do

not have sufficient forecasts in the next year to calculate a 12-month interpolated forecast,

E∗
t+1 [∆xi,t+2].21

19Bradshaw (2004) shows that individual earnings forecasts are correlated to Buy/Sell recommendations,
while Chan, Chang, and Wang (2009) show that financial firms’ own stock holding changes are significantly
positively related to recommendation changes.

20Value Line is an industry standard to the extent that it’s been documented that a large portion of
investment newsletters herds towards Value Line recommendations (Graham, 1999).

21This last point ensures that for every firm in the main sample we can calculate revisions E∗
t+1 [∆xi,t+2]−

E∗
t [∆xi,t+2] to test the third model prediction.
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To estimate the price expectations, we obtain the one-year price expectations from the

price target in I/B/E/S. We then calculate the four-year price expectation as the three-to-five

year price targets from Value Line. We exclude from the main sample those firms missing

either a one-year or a three-to-five year price forecast. Since analysts update earnings and

price forecasts every month, our expectation data are also in monthly frequency. The main

sample covers on average 79.7% of the total market size of firms listed for at least four years

in CRSP.

C. Results

Table I shows the results of decomposition (18) applied both in a FIRE (Full Information

Rational Expectations) benchmark and using the subjective expectations. The results show

the fraction of price-earnings ratio dispersion that is explained by one-year earnings growth

expectations and discount rates, as well as the fraction that is explained by four-year earnings

growth expectations
4∑

j=1

ρj−1E∗
t [∆x̃i,t+j] and discount rates

4∑
j=1

ρj−1E∗
t [r̃i,t+j]. We first apply

the decomposition under the FIRE benchmark using realized values and compare the results

with existing FIRE models of risk premia. Then, we apply the decomposition using subjective

expectations and test the implications of our constant gain learning model.

C.1. FIRE Benchmark

Let EFIRE
t [·] denote expectations under FIRE. Because forecast errors ∆x̃i,t+j −E∗

t [∆x̃i,t+j]

are uncorrelated with time t variables under FIRE, we know that Cov
(
EFIRE

t [∆x̃i,t+j] , p̃xi,t

)
=

Cov
(
∆x̃i,t+j, p̃xi,t

)
. The same logic also applies to FIRE expectations of future returns and

future price-earnings ratios. Thus, to evaluate the FIRE benchmark, the first and fourth

columns of Table I show the estimates of CF1, DR1, FPE1 and CF4, DR4, FPE4 using the

covariance of p̃xi,t with realized future earnings growth, returns, and price-earnings ratios.

Empirically, high price-earnings ratios are associated with lower future returns and slightly

higher future earnings growth. The first column of Table I shows that 10.3% of dispersion
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Table I

Decomposition of dispersion in price-earnings ratios
This table decomposes the variance of price-earnings ratios using equation (18). The FIRE column report the elements
CFh, DRh and FPEh of the decomposition using future earnings growth, future negative returns and future price-earning
ratios. The Expected column report the elements of the decomposition using expected earnings growth, expected returns and
expected price-earning ratios. The Forecast Errors column reports the contribution of the forecast errors of each element. For
instance, CF1 = Cov

(
∆x̃i,t+1, p̃xi,t

)
/V ar

(
p̃xi,t

)
is shown in the FIRE column. This component can be split into its expected

component Cov
(
E∗

t [∆x̃i,t+1] , p̃xi,t

)
/V ar

(
p̃xi,t

)
and its error component Cov

(
∆x̃i,t+1 − E∗

t [∆x̃i,t+1] , p̃xi,t

)
/V ar

(
p̃xi,t

)
.

The results for the one-year decomposition are shown on the left and the results for the four year decomposition are shown on
the right. Driscoll-Kraay standard errors are calculated and clustered at the year level. Superscripts indicate significance at
the 1% (∗∗∗), 5% (∗∗), and 10% (∗) level. The main sample period is 1999 to 2020. The fourth row shows the element CFh of
the decompositions estimated over the longer sample period of 1982-2020.

One-year horizon (h = 1) One-to-four year horizon (h = 4)

FIRE Expected Forecast FIRE Expected Forecast
errors errors

1999-2020 CFh 0.103∗∗∗ 0.331∗∗∗ −0.228∗∗∗ 0.099∗∗∗ 0.433∗∗∗ −0.335∗∗∗

[0.028] [0.022] [0.022] [0.037] [0.018] [0.033]

1999-2020 DRh 0.143∗∗∗ 0.033∗∗ 0.110∗∗ 0.320∗∗∗ 0.127∗∗∗ 0.192∗∗∗

[0.054] [0.013] [0.055] [0.058] [0.034] [0.059]

1999-2020 FPEh 0.746∗∗∗ 0.620∗∗∗ 0.126∗∗ 0.550∗∗∗ 0.385∗∗∗ 0.165∗∗∗

[0.051] [0.019] [0.06] [0.043] [0.021] [0.049]

1982-2020 CFh 0.137∗∗∗ 0.312∗∗∗ −0.175∗∗∗ 0.147∗∗∗ 0.462∗∗∗ −0.316∗∗∗

[0.021] [0.018] [0.019] [0.030] [0.022] [0.023]

in price-earnings ratios is accounted for by differences in one-year future earnings growth

and 14.3% is accounted for by differences in one-year future returns. The remaining 74.6%

is accounted for by the future price-earnings ratio.22 At the fourth year horizon, the differ-

ence between CFh and DRh widens. As shown in the fourth column of Table I, differences

in future earnings growth over the next four years only accounts for 9.9% of dispersion in

price-earnings ratios, while differences in future returns account for three times as much of

the dispersion (32.0%).23

22Note that the three coefficients CFh, DRh and FPEh are not mechanically set to equal one. However,
the sum of these coefficients is very close to unity, summing 0.992 for the one-year decomposition and 0.969
for the four-year decomposition.

23These results are consistent with De la O, Han, and Myers (2023), who use a longer sample (1963-2020)
to show that at least 43.6% of dispersion in price-earnings ratio are reflected in differences in returns after
ten years.
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Table II

Decompositions in Different Asset Pricing Models
This table calculates the variance decomposition for the price-earnings ratio in different asset pricing models and reports the
implied cash flow and discount rate components for one year (CF1, DR1) and four years (CF4, DR4), as well as the infinite-
horizon DR∞. The first, second, and third rows show the results for models of risk premia. These three models are the model
of growth options in Berk et al. (1999), the model of costly reversibility of capital in Zhang (2005), and the model of duration
risk in Lettau and Wachter (2007). The last row shows the values measured in the data. All models are solved and estimated
using the original author calibrations and simulated over a 20-year sample.

Models CF1 CF4 DR1 DR4 DR∞

Berk, Green, & Naik 1999 (Growth Options) 0.61 0.85 0.01 0.03 0.04
Zhang 2005 (Costly Reversibility of Capital) −0.31 0.69 −0.01 −0.03 −0.03
Lettau & Wachter 2007 (Duration Premium) 0.03 0.24 0.02 0.06 −0.03

Observed Data (Main Sample) 0.10 0.10 0.14 0.32 n.a.

The large role of returns in explaining price dispersion poses a quantitative challenge for

traditional FIRE asset pricing models. Even models designed to generate a value premium

(i.e., low expected returns for high price ratio stocks) struggle to generate enough dispersion

in expected returns to match our findings. In Table II, we simulate three FIRE models for

the value premium (Berk et al., 1999; Zhang, 2005; Lettau and Wachter, 2007) using their

benchmark specifications and calculate the model CFh and DRh. As shown by the value of

DRh, in these models, differences in expected returns only account for a small fraction of the

dispersion in price-earnings ratios. Specifically, at the four-year horizon, the three models

imply that future returns should account for less than 6% of dispersion in price-earnings

ratio, while empirically, we find that they account for 32%. In the data and (to some extent)

in the models, DRh increases as we include more horizons. Thus, we also calculate DR∞ in

the models and find that it is still an order of magnitude smaller than what we observe in

the data using just the first four years of realized returns.

These observations highlight the importance of a quantitative framework. While there

are certainly FIRE models in which high price ratio stocks have lower exposure to systematic

risk,24 it is difficult to generate a risk premium that is quantitatively large enough to match
24In Berk et al., 1999 and Zhang, 2005, existing projects (or capital) cannot be adjusted easily in response

to aggregate shocks. Thus, firms whose value mainly comes from future potential projects rather than
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the observed relationship between price-earnings ratios and future returns. Appendix D

discusses the three models and the simulations in more detail.

C.2. Subjective Expectations

The second and fifth columns of Table I show the results of the decomposition when we use

subjective expectations of earnings growth, returns, and future price-earnings ratios rather

than assuming FIRE. Comparing the subjective results to the FIRE results, there are three

important findings.

First, investors substantially overestimate the extent to which high price-earnings ratio

stocks will have high future earnings growth. Differences in expected one-year earnings

growth account for nearly a third (33.1%) of all dispersion in price-earnings ratios and

differences in expected four-year earnings growth account for 43.3% of all price-earnings

ratio dispersion. Given that realized one-year and four-year earnings growth only account

for 10.3% and 9.9% of the dispersion, respectively, this means that high price-earnings ratios

are consistently associated with disappointment in future earnings growth. Rephrased, more

than a third of all dispersion in price-earnings ratios is accounted for by the fact that current

price-earnings ratios significantly negatively predict future forecast errors (as shown in the

“Forecast errors” columns). The final row of Table I shows that our earnings growth results

are qualitatively and quantitatively similar over the longer 1982-2020 sample.

Second, investors understand that expensive stocks will have lower returns (i.e., a high

price-earnings ratio is associated with lower future returns), but they underestimate the mag-

nitude of the relationship. As shown in the second row of Table I, differences in expected

one-year returns account for 3.3% of dispersion in price-earnings ratios and differences in

expected four-year returns account for 12.7%. This contrasts sharply with previous findings

for aggregate return expectations, which positively comove with aggregate price ratios (Am-

existing projects carry a lower risk premium. In Lettau and Wachter, 2007, aggregate shocks are partly
reversed over time, which makes longer horizon cash flows less exposed to aggregate risk similar to our
model in Section I. Firms whose value mostly comes from backloaded cash flows rather than current cash
flows therefore carry a lower risk premium.
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romin and Sharpe, 2014; Greenwood and Shleifer, 2014; De la O and Myers, 2021). The

fact that investors expect lower returns on high price-earnings ratio stocks points against

stories in which the cross-section of prices is driven by investors bidding up the price of

certain stocks due to high expected returns (e.g., return extrapolation). Consistent with

the fact that investors overestimate future earnings growth for high p̃xi,t, we find that they

consistently overestimate the returns for high p̃xi,t. In other words, while investors expect

lower returns for high p̃xi,t stocks, the realized returns are even worse than expected.

Combined, these first two findings emphasize that the mistakes in investors’ expectations

are about magnitudes, not directions. Investors understand that high price-earnings ratios

are associated with higher future earnings growth and lower future returns, but they overes-

timate the magnitude of the earnings growth relationship and underestimate the magnitude

of the return relationship. This highlights the benefit of using a quantitative decomposition

which captures magnitudes as well as correlations to study these expectations. These find-

ings are consistent with the first implication of the constant gain model. In the model, a

higher expected gi raises the firm’s price by both raising expected future cash flows and by

lowering the expected return. Given that the objective gi is the same across all firms, a high

expected gi is then followed by disappointing earnings growth and returns that are lower

than expected.

The third finding, shown in the third column of Table I, is that the unexpected returns

are smaller than the disappointment in earnings growth. While almost one quarter (22.8%)

of p̃xi,t dispersion is reflected in one-year earnings growth forecast errors, only 11.0% is

reflected in one-year unexpected returns. In other words, the disappointment in earnings

growth does not lead to an equally large disappointment in returns. This is consistent with

the second implication of the constant gain model. If the gain parameter β is small, then

the impact of earnings growth disappointment on one-period returns will be small.

The muted relationship between earnings growth disappointment and unexpected returns

has an important implication for expectation formation models. Why is disappointing earn-
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ings growth not immediately reflected in unexpected returns? From equation (16), we have

that

r̃i,t+1 − E∗
t [r̃i,t+1] ≈ (∆x̃i,t+1 − E∗

t [∆x̃i,t+1]) + ρ
(
p̃xi,t+1 − E∗

t

[
p̃xi,t+1

])
. (19)

If there is no unexpected change to the price-earnings ratio p̃xi,t+1, then disappointment in

one-year earnings growth should translate 1-1 into disappointment in one-year returns. For

models in which disappointing earnings growth lowers expected future earnings growth (e.g.,

overstating the persistence, diagnostic expectations of growth, or extrapolating from the

most recent realization), then disappointment in earnings growth will also lower p̃xi,t+1 −

E∗
t

[
p̃xi,t+1

]
, as the change in expected future earnings growth lowers the price-earnings

ratio. In these models, we should actually expect to see that the disappointment in returns

is larger in magnitude than the disappointment in earnings growth, as returns capture the

disappointment in t + 1 earnings growth and the downward revision to earnings growth for

t+ 2 and beyond.

Thus, the fact that return disappointment is empirically smaller in magnitude than

earnings growth disappointment is closely tied to the third implication of the constant gain

model: earnings growth disappointment raises expected future growth E∗
t+1 [∆x̃i,t+2]. When

the gain parameter β is small, earnings growth disappointment is largely attributed to a

negative noisy shock, which means that agents expect earnings to revert back to their

previous trend. We directly test this implication by regressing earnings growth revisions

E∗
t [∆xi,t+1] − E∗

t−1 [∆xi,t+1] on earnings growth surprises ∆xi,t − E∗
t−1 [∆xi,t]. In our main

sample, this regression gives a significant coefficient of −0.86∗∗∗ (see Table IV). The fact that

earnings growth surprises are negatively related to earnings growth revisions and the fact

that return disappointment is smaller in magnitude than earnings growth disappointment

both provide evidence in support of models in which investors’ expectations are relatively

“stubborn”, i.e., investors expect earnings to largely revert after a shock, rather than models

in which expectations of future earnings are highly sensitive to the most recent realization.
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D. Extending to anomaly returns

The logic in equation (19) can be extended to other forms of cross-sectional return differences.

Consider an anomaly variable ãi,t, such as profitability or investment, which predicts next-

period returns. To make comparison across anomalies simple, we normalize ãi,t so that it

has variance 1 and positively comoves with future returns. From equation (19), we have the

identity

Cov (r̃i,t+1 − E∗
t [r̃i,t+1] , ãi,t)︸ ︷︷ ︸

σa,r

≈ Cov (∆x̃i,t+1 − E∗
t [∆x̃i,t+1] , ãi,t)︸ ︷︷ ︸

σa,x

+ ρCov
(
p̃xi,t+1 − E∗

t

[
p̃xi,t+1

]
, ãi,t

)︸ ︷︷ ︸
σa,px

. (20)

For robustness, Appendix C shows an exact decomposition based on price growth, which

gives very similar results.

Under full-information rational expectations, we would have σa,r, σa,x, σa,px = 0, i.e., any

predictable anomaly returns would be fully anticipated and ãi,t would not predict forecast

errors. For example, a higher ãi,t might be related to higher risk exposure and investors

would require higher returns on these stocks as compensation. More broadly, positive values

of σa,r indicate that investors understate the relationship between ãi,t and future returns. In

other words, the high returns on high ãi,t stocks are not fully anticipated. Negative values

for σa,r indicate that investors not only understand that high ãi,t stocks have higher returns,

but they exaggerate the magnitude of the relationship.

In comparison, the values for σa,x and σa,px indicate how much the predictable return

forecast errors are explained by predictable errors in next-year earnings growth expectations

and expectations of the future price-earnings ratio. When high ãi,t stocks generate unan-

ticipated high next-period returns, these returns can be explained by unexpectedly high

next-period earnings growth. Alternatively, ãi,t could positively predict forecast errors for

the future price-earnings, which would mean that the unanticipated high returns of high ãi,t

stocks are due to errors in return expectations and earnings growth expectations at longer
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Table III

Unexpected Anomaly Returns
This table measures and decomposes unexpected anomaly returns. For each anomaly ãi,t, we sort stocks into five equal-value
portfolios based on the anomaly variable. The table shows the coefficients of regressing each of the dependent variables on a
specific anomaly variable. The three dependent variables are the unexpected return r̃i,t+1 − E∗

t [r̃i,t+1], the earnings growth
forecast errors ∆x̃i,t+1 −E∗

t [∆x̃i,t+1], and the price-earnings ratio forecast errors ρ
(
p̃xi,t+1 − E∗

t

[
p̃xi,t+1

])
. For the anomaly

variables, Value is measured using the price-earnings ratio. Profitability is measured using gross profitability. Investment
is measured using net stock issuance. The Representative Anomaly is the average ranking of each stock across 22 different
anomalies. Each anomaly variable is scaled to have a standard deviation of 1 and signed to positively comove with future
returns. The sample period is 1999 to 2020. Driscoll-Kraay standard errors are clustered at the portfolio and year level.
Superscripts indicate significance at the 1% (∗∗∗), 5% (∗∗), and 10% (∗) level.

Dependent variable

Anomaly ãi,t r̃i,t+1 − E∗
t [r̃i,t+1] ∆x̃i,t+1 − E∗

t [∆x̃i,t+1] ρ
(
p̃xi,t+1 − E∗

t

[
p̃xi,t+1

])
Value 0.0331∗∗ 0.0687∗∗∗ −0.0380∗∗

[0.0166] [0.0066] [0.0181]

Profitability 0.0081 0.0091 0.0016
[0.0078] [0.0113] [0.0108]

Investment 0.0260∗∗∗ 0.0287∗∗ −0.0043
[0.0089] [0.0127] [0.0069]

Representative 0.0325∗∗∗ 0.0655∗∗∗ −0.0353∗∗∗

anomaly [0.0098] [0.0165] [0.0094]

horizons beyond one period, not because of next-period earnings growth.

Table III shows the results for value, profitability, investment, and a representative

anomaly comprised of 22 individual anomalies from Hou, Xue, and Zhang (2015).25 For each

anomaly, we sort stocks into five equal-value portfolios based on the anomaly variable.26

We then measure forecast errors for one-year returns, earnings growth, and price-earnings

ratios and regress each of the three variables on the anomaly variable. For Value, we uti-

lize the same portfolios as the previous section and use the current price-earnings ratio as

the anomaly variable to align with the tests in the previous section. For the profitability
25Because forecasts are provided primarily for large firms, our expectations data is not well suited for

studying the size anomaly.
26To perform these tests, stocks are required to have one-year expected and realized earnings growth,

returns, and price-earnings ratios. We also require that stocks have a future one-year earnings growth
expectation E∗

t+1 [∆x̃i,t+2] for our test of revisions.
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Figure 1. Unexpected anomaly returns. This figure shows the decomposition results (σa,r, σa,x)

for each anomaly ãi,t. The x-axis shows σa,r = Cov (r̃i,t+1 − E∗
t [r̃i,t+1] , ãi,t), which measures how much the

anomaly variable predicts unexpected returns. The y-axis shows σa,r = Cov (∆x̃i,t+1 − E∗
t [∆x̃i,t+1] , ãi,t),

which measures how much the anomaly variable predicts one-year earnings growth forecast errors. The
anomalies are shown in blue. In red, we show the FIRE benchmark, which is that σa,r and σa,x should equal
0 for all anomalies.

anomaly, we use gross profitability as our measure, specifically revenue minus costs of goods

sold relative to total assets. For the investment anomaly, we follow Pontiff and Woodgate

(2008) and Fama and French (2008) and use net stock issuance. Finally, the representative

anomaly sorts stocks based on 22 different variables and uses the average ranking across

these 22 variables in the sorting and in the regressions.

Figure 1 and the first two columns of Table III show the values of σa,r and σa,x for each

anomaly. For each anomaly, we estimate a positive value of σa,r, meaning that investors

do not fully anticipate the high returns on high ãi,t stocks. Instead, we find that each

anomaly is associated with large positive one-year earnings growth forecast errors, as shown

by the estimates of σa,x. Further, Figure 1 shows that anomalies with higher σa,r have higher

σa,x, i.e., larger unanticipated returns are associated with larger one-year earnings growth

forecast errors. This demonstrates the benefit of using a quantitative decomposition, as

we can state that one-year earnings growth forecast errors not only have the correct sign
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Table IV

Revisions in expectations
This table shows the effect of earnings growth surprises on revisions. For each anomaly, we sort stocks into five equal-value
portfolios based on the anomaly variable. Each column shows the cofficient from regressing the revision in earnings growth
E∗

t+1 [∆x̃i,t+2]−E∗
t [∆x̃i,t+2] on the earnings growth surprise ∆xi,t+1−E∗

t [∆xi,t+1] . Value is measured using the price-earnings
ratio. Profitability is measured using gross profitability. Investment is measured using net stock issuance. The Representative
Anomaly is the average ranking of each stock across 22 different anomalies. The first row shows the result of the regressions
using the main sample period of 1999 to 2020. The second row shows the result of the regressions using the long sample period
of 1982 to 2020. Driscoll-Kraay standard errors are clustered at the portfolio and year level. Superscripts indicate significance
at the 1% (∗∗∗), 5% (∗∗), and 10% (∗) level.

Value Profitability Investment Representative Anomaly

Main Sample 1999-2020 −0.863∗∗∗ −0.743∗∗∗ −0.832∗∗∗ −0.825∗∗∗

[0.061] [0.0790] [0.027] [0.059]

Long Sample 1982-2020 −0.786∗∗∗ −0.857∗∗∗ −0.777∗∗∗ −0.852∗∗∗

[0.075] [0.027] [0.058] [0.052]

to explain unexpected returns, but also are large enough in magnitude to account for the

unexpected anomaly returns.

Interestingly, for all four anomalies, the predictable errors in one-year earnings growth

expectations are more than large enough to account for the unexpected one-year returns

(i.e., σa,x is greater than σa,r). This is analogous to the finding in the price-earnings ratio

decomposition that one-year earnings growth surprises are larger in magnitude than the

one-year unexpected returns. Once again, we find that this is explained by the fact that

positive surprises ∆x̃i,t+1−E∗
t [∆x̃i,t+1] decrease expected next period growth E∗

t+1 [∆x̃i,t+2].

For each set of anomaly portfolios, Table IV shows the coefficient from regressing the revision

E∗
t+1 [∆x̃i,t+2]−E∗

t [∆x̃i,t+2] on the earnings growth surprise ∆xi,t−E∗
t−1 [∆xi,t]. In each case,

we find a significant negative coefficient ranging between −0.74 and −0.86. For robustness,

we also repeat the test using earnings growth expectations over the long sample and find

similar results.
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III. Quantitative model and full decomposition

While the results in Section II support the three qualitative implications of the constant

gain learning model, the decomposition in Table I also provides important quantitative

implications. As shown in Table II, there may be many models that qualitatively match the

decomposition results but struggle to quantitatively match the magnitudes. In this section,

we quantify the constant gain learning model using data on realized and expected earnings

growth.

The quantified model fulfills three key purposes. First, quoting Brunnermeier et al.,

2021, “Research focus should be on motivating, building, calibrating, and estimating models

with non-RE beliefs rather than on merely rejecting RE models. To make further progress,

we need structural models of belief dynamics that can compete with RE models in explaining

asset prices and empirically observed beliefs.”27 This model intends to be a step in this

direction. It provides a quantitative model that generates realistic asset pricing moments

and outperforms the FIRE models of Table II in matching the empirical decomposition

results. Notably, the model matches both the magnitudes and timing for the dynamics

of price-earnings ratios, realized and expected earnings growth, and realized and expected

returns. Second, the quantified model allows us to extend the decomposition in equation

(18) beyond the four-year horizon to estimate the full role of expected earnings growth and

subjective discount rates in accounting for the dispersion in price-earnings ratios. Third,

we can analyze the importance of learning, risk sensitivity, and the interaction between the

learning and risk sensitivity using counterfactuals where one or both of these channels are

removed (β and/or γ set to 0).
27Note that in this paper uses RE as a shorthand for full information rational expectations and specifically

highlights learning about parameters as a promising form on non-RE models to explore: “For example, models
of Bayesian learning relax the RE assumption that agents know the model of the world and its parameter
values”.
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Table V

Model estimation
This table shows the value of the six parameters of the constant-gain learning model and the targeted moments. The parameters
for the aggregate cash flow process ϕ, σu are derived directly from the autocorrelation and standard deviation of the S&P 500
annual earnings growth. The firm-level volatility σv is derived directly from the standard deviation over time of the portfolio-
level annual earnings growth (averaged across portfolios). The risk-free rate rf and risk sensitivity γ are set to match the
average one-year Treasury yield and average aggregate equity return during the sample period. The constant-gain parameter
β is set to match the standard deviation over time of one-year earnings growth expectations (averaged across portfolios). All
aggregate moments are estimated over the full sample period of 1982 to 2020.

Parameter Value Moments
Cash flow process

ϕ .828 AC(∆xagg
t+1)

σu .337 σ
(
∆xagg

t+1

)
σv .106 σ (∆xi,t+1)

SDF
rf 4.6% Risk-free rate
γ 1.63 Average aggregate return

Learning
β 1.9% σ (E∗

t [∆xi,t+1])

A. Estimation

The model only has six parameters, which are all shown in Table V. The parameters for

cash flows (ϕ, σu, σv) are all estimated directly from realized earnings growth for our full

sample of 1982-2020. For the aggregate process, the standard deviation and autocorrelation

of S&P 500 earnings growth imply a persistence ϕ = 0.828 and a volatility σu = 0.337.

The volatility of individual shocks σv = 0.106 is obtained from the volatility over time of

the portfolio-level earnings growth. Appendix E shows the exact formulas mapping these

empirical moments to the model parameters. For the agent’s stochastic discount factor, the

risk-free rate rf = 4.6% and the sensitivity to risk γ = 1.63 are set to match the average

one-year Treasury yield and average aggregate stock return of 10.4% for 1982-2020. Finally,

the constant gain parameter β is set to match the volatility over time of one-year earnings

growth expectations, σ (E∗
t [∆xi,t+1]) = 13.2%.28

28The model is simulated yearly over 400 periods for 300 firms. To avoid being impacted by the initial
value of the expectations E∗

0 [gi], we calculate all moments after t = 150.
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Table VI

Model evaluation
This table evaluates the constant-gain learning model by comparing the untargeted aggregate and cross-sectional moments in
the model simulations with those observed in that data. Panel A shows the mean, standard deviation and autocorrelation of the
aggregate price-earnings ratio as well as the standard deviation of aggregate stock returns. Panel B shows the cross-sectional
standard deviations of the price-earnings ratio, future earnings growth and returns, and expected earnings growth and returns.
All aggregate moments are estimated over the full sample period of 1982 to 2020. The cross-sectional moments are estimated
over the main sample of 1999 to 2020 due to data availability.

Model Data
Panel A: Aggregate value

Mean pxt 2.32 2.98
σ (pxt) 41.7% 42.5%
AC (pxt) 0.79 0.74
σ (rt) 11.3% 15.9%

Panel B: Cross-sectional standard deviation
p̃xi,t 22.3% 28.3%

∆x̃i,t+1 12.6% 9.1%
r̃i,t+1 6.2% 7.1%

E∗
t [∆x̃i,t+1] 15.1% 14.6%
E∗

t [r̃i,t+1] 0.8% 3.3%

B. Model performance

B.1. Aggregate and cross-sectional moments

Even under this straightforward estimation, the model is able to match several relevant

moments from the data. Table VI shows a comparison of the untargeted moments in the

model and the data. First, despite not using any price information in the estimation other

than the average aggregate equity return, the model generates realistic dynamics for the

aggregate price-earnings ratio. The unconditional mean, volatility and autocorrelation of

the log price-earnings ratio in the model (2.32, 41.7% and 0.79) are consistent with the

observed values (2.98, 42.5% and 0.74) and the model generates volatile returns.

Second, while no information on cross-sectional dispersion was used in the estimation,

the model performs well in matching the dispersion in price-earnings ratios, realized and

expected earnings growth, and realized and expected returns. The empirical values are

based on the standard deviation of the cross-sectionally demeaned values for each variable.
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In line with the data, the model generates large cross-sectional differences in price-earnings

ratios, realized earnings growth, realized returns, and expected earnings growth. For the

sake of parsimony, in the model, subjective discount rates are entirely driven by duration

risk premia, see equation (13). Because of this, the model does understate the cross-sectional

differences in expected returns. Expanding the model to incorporate other risks into discount

rates could help to better match this moment. However, we will show that even without these

extra features, the model still succeeds in matching the covariance of price-earnings ratios

with expected and realized returns. In other words, while the model does not capture all

cross-sectional differences in expected returns, it does capture the portion that is predictable

with price-earnings ratios which is what is most important for our purposes.

B.2. Dynamics of prices, cash flows, and returns

A key message of this paper is to emphasize the joint dynamics of price ratios, earnings

growth, and returns. Importantly, we want to understand both the expected dynamics and

the realized dynamics. The bars in Figure 2 show the one- and four-year price-earnings

ratio decomposition results from Table I, along with their 95% confidence intervals. For

comparison, the black dots show the values implied by the model. In every case, we cannot

reject that the model implied value matches the value measured in the data. Overall, this

represents 8 untargeted moments which the model successfully matches, along with the 9

untargeted moments in Table VI.

The left side of Figure 2 shows that high price-earnings ratios are associated with high

expected earnings growth. In comparison, the relationship between price-earnings ratios

and future realized earnings growth is much smaller, meaning that high price-earnings ratios

predict disappointment in future earnings growth. The right side of the figure shows that

high price-earnings ratios are also associated with moderately lower expected returns.

The fact that the model matches our decomposition results at multiple horizons highlights

that the model is successful both in terms of magnitudes and in terms of timing. While the
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Figure 2. Empirical decomposition and model decomposition. This figure evaluates
the one- and four-year decomposition of p̃xi,t dispersion in the model. The light bars show the contribution
of realized earnings growth and realized returns to the dispersion of price-earnings ratio obtained in the
first and fourth columns of Table I. The dark bars show the contribution of expected earnings growth and
expected returns to the dispersion of price-earnings ratio obtained in the second and fifth columns of Table
I. Each bar shows Driscoll-Kraay 95% confidence intervals. The black dots show the values of both the
realized and expected decomposition implied by the model.

difference in expected and realized one-year earnings growth is large, this does not translate

into a large difference between expected and realized one-year negative returns. Instead,

agents are slow to adjust their beliefs and the disappointment in earnings growth leads to

much lower than expected returns at longer horizons.

C. Full role of objective cash flows, cash flow mistakes, and discount rates

Using the quantified model, we can measure the full role of cash flow growth expectations

and subjective discount rates in accounting for price-earnings ratio dispersion. Table VII

Panel C shows the decomposition in equation (18) when we extend to the infinite hori-

zon. Specifically, it shows the cross-sectional dispersion V ar
(
p̃xi,t

)
and the two components

Cov

(
∞∑
j=1

ρj−1E∗
t [∆x̃i,t+j] , p̃xi,t

)
, Cov

(
−

∞∑
j=1

ρj−1E∗
t [r̃i,t+j] , p̃xi,t

)
.

To start, we focus on the final column, which is our main model parameterization. As

shown in the second row of Panel C, the model estimates that differences in expected cash flow



32

growth account for two-thirds (65.4%) of all dispersion in price-earnings ratios. Combined

with the aggregate time series findings of De la O and Myers (2021), this means that both

time series variation in aggregate price ratios and cross-sectional dispersion in price ratios are

both primarily explained by expected cash flow growth.29 However, unlike the aggregate time

series findings, we also estimate a non-trivial role for subjective discount rates in accounting

for price-earnings ratio dispersion. The fifth row of Panel C shows that low subjective

discount rates for high price-earnings ratio firms accounts for roughly one-third (34.6%) of

all dispersion in price-earnings ratios.

Looking at the breakdown of the 65.4% contribution from expected earnings growth, we

see that this largely comes from forecast errors. The comovement of price-earnings ratios

with realized future earnings growth only accounts for 16.0% of the dispersion, meaning that

the remaining 49.4% comes from price-earnings ratios predicting forecast errors for earnings

growth. As a result, high price-earnings ratios are largely associated with low future returns,

with negative realized returns accounting for 84% of all price-earnings ratio dispersion. Note

that at the infinite horizon, forecast errors for earnings growth and forecast errors for returns

are equal (i.e., the forecast error row for earnings growth and negative returns are exactly

opposite). While gradual learning affects how quickly earnings growth surprises are reflected

in unexpected returns, eventually all unexpected earnings growth will appear as unexpected

returns.

Conveniently, we can summarize the relative importance of realized future earnings

growth, errors in earnings growth expectations, and subjective discount rates. The model

estimates that realized earnings growth accounts for roughly 1/6 (16.0%) of price-earnings

ratio dispersion, errors in earnings growth expectations account for 1/2 (49.4%), and subjec-

tive discount rates account for 1/3 (34.6%). Additionally, besides decomposing differences

in price-earnings ratios, the model also decomposes the low realized returns earned by ex-

pensive stocks. The estimation implies that 41.2%(34.6/84.0) of the difference in returns
29This is consistent with the empirical results of Table I, where we find that expected earnings growth

over just the first four years already accounts for 43.3% of all price-earnings ratio dispersion.
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Table VII

Infinite-horizon decomposition and counterfactual analysis
This table decomposes the cross-sectional dispersion of price-earnings ratios into their infinite-horizon components. Each column
shows the decomposition implied by the constant gain learning model using different key parameter choices. Panel A shows the
parameters which change for each specification. All other parameters are set to the values in the main specification in Table
V. The first column runs a model with no learning or risk sensitivity, γ = 0 and β = 0. The second column runs a model with
no learning, β = 0. The third column runs a model with no risk sensitivity, γ = 0. The main specification is shown in the
last column. Models with γ = 0 are also run with a different risk-free rate rf = 10.4% to ensure the average level of equity
returns is consistent across all specifications. Panel B shows the magnitudes of the mean aggregate price-earnings ratio and
aggregate returns implied by each of the specifications. Panel C shows the decomposition results. The first row shows the
implied cross-sectional variance of the price-earnings ratio for each specification. The second and fifth row of Panel C show the
amount of cross-sectional variance in p̃xi,t explained by expected earnings growth

∑∞
j=1 E

∗
t [∆x̃i,t+j ] and subjective discount

rates −
∑∞

j=1 ρ
j−1E∗

t [r̃i,t+j ], estimated through the infinite-horizon version of equation (18):

V ar
(
p̃xi,t

)
= Cov

 ∞∑
j=1

ρj−1E∗
t [∆x̃i,t+j ] , p̃xi,t

+ Cov

−
∞∑
j=1

ρj−1E∗
t [r̃i,t+j ] , p̃xi,t

 .

The third and sixth row of Panel C show the amount of cross-sectional variance in p̃xi,t explained by realized earnings growth∑∞
j=1 ρ

j−1∆x̃i,t+j and negative realized returns −
∑∞

j=1 ρ
j−1r̃i,t+j . Finally, the fourth and seventh rows show the amount of

cross-sectional variance in p̃xi,t explained by earnings growth forecast errors
∑∞

j=1 ρ
j−1(∆x̃i,t+j − E∗

t [∆x̃i,t+j ]) and return
forecast errors −

∑∞
j=1 ρ

j−1(r̃i,t+j − E∗
t [r̃i,t+j ]). The share of the cross-sectional variance of p̃xi,t is shown in parenthesis.

Panel A: Parameter values

β 0 0 1.9% 1.9%
γ 0 1.63 0 1.63
rf 10.4% 4.6% 10.4% 4.6%

Panel B: Levels

Mean pxt 2.32 2.32 2.32 2.32
Mean rt+1 10.4% 10.4% 10.4% 10.4%

Panel C: Decomposing cross-sectional dispersion
Variance p̃xi,t 1.12 1.12 2.33 4.97

Expected earnings growth 1.12 1.12 2.33 3.25
(100%) (100%) (100%) (65.4%)

Realized earnings growth 1.12 1.12 0.90 0.80
(100%) (100%) (38.4%) (16.0%)

Forecast errors 0 0 1.44 2.45
(0%) (0%) (61.6%) (49.4%)

Subjective discount rates 0 0 0 1.72
(0%) (0%) (0%) (34.6%)

Negative realized returns 0 0 1.44 4.17
(0%) (0%) (61.6%) (84.0%)

Negative forecast errors 0 0 -1.44 -2.45
(0%) (0%) (-61.6%) (-49.4%)
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between high and low price-earnings ratio stocks reflects subjective discount rates while

58.8% (49.4/84.0) reflects disappointment in earnings growth.

More broadly, by having a structural model, we can investigate the economic role of

learning and risk sensitivity in driving the cross-sectional dispersion in price-earnings ratios.

The different columns in Table VII show the dispersion in price-earnings ratios and the

decomposition results when β and/or γ are set to 0, i.e., learning and/or risk sensitivity are

turned off. In all cases, the initial expected gi is set to 0 for all firms. Thus, the two cases

where β = 0 are equivalent to saying that agents know the objective data-generating process

and no longer need to learn the parameters. Given that we are interested in cross-sectional

dispersion rather than levels, in the two cases where γ = 0 we also raise the risk-free rate from

4.6% to 10.4%. As shown in Panel B, this ensures that the aggregate level for price-earnings

ratios and equity returns are identical across all four cases and it is only the dispersion that

changes. Thus, the two cases where γ = 0 are equivalent to saying that all firms have the

same subjective discount rate of 10.4%.

In the first column, both β and γ are set to 0. In this case, the dispersion in price-

earnings ratios is less than 1/4 the value in our main specification (1.12 compared to 4.97).

The dispersion in price-earnings ratios comes entirely from differences in expected earnings

growth, as there are no differences in subjective discount rates. Price-earnings ratios do not

predict earnings growth forecast errors. Instead, all differences in expected earnings growth

are simply due to the noise shocks vi,t.

In the second column, the model includes risk sensitivity (γ > 0) but keeps β = 0. As

shown in Panel C, only including risk sensitivity has no effect on the results relative to the

first column. This highlights that, in our model, dispersion in expected gi causes not only

dispersion in expected earnings growth but also the dispersion in subjective discount rates.

While agents may be sensitive to duration risk, this only matters if firms are expected to

differ in the timing of their cash flows.

In comparison, the third column shows that including learning but keeping γ = 0 does



35

substantially change the results. The dispersion in price-earnings ratios doubles from 1.12

to 2.33. This largely comes from price-earnings ratios now comoving with future earnings

growth forecast errors. However, there is also the interesting result that the comovement

of price-earnings ratios with realized earnings growth decreases (1.12 to 0.90). The FIRE

expectation for future earnings growth is simply −vi,t. With learning, expected earnings

growth depends on E∗
t [gi] ,wich comoves positively with vi,t, as a positive shock will tend

to increase the guess for gi. Thus, introducing learning means that the price-earnings ratio,

which depends on expected earnings growth, will now be less related to future earnings

growth due to the response to shocks vi,t.

Finally, the last column shows the interaction from including both risk sensitivity and

learning. While risk sensitivity by itself has no effect, once we incorporate learning, increas-

ing γ from 0 to 1.63 more than doubles the dispersion in price-earnings ratios (2.33 to 4.97).

Looking at the contribution of subjective discount rates, we clearly see the interaction be-

tween risk sensitivity and learning, as dispersion in subjective discount rates now contributes

1.72 (34.6%) to the total dispersion in price-earnings ratios.

More surprisingly, we also find an important interaction between risk sensitivity and

learning for the contribution of earnings growth expectations. Given that γ has no impact on

equations (5)-(8), changing γ has no effect on expected earnings growth. Thus, the increase

in comovement between price-earnings ratios and expected earnings growth (2.33 to 3.25)

is entirely due to changes in the price-earnings ratios. Intuitively, incorporating duration-

based discount rates increases the sensitivity of price-earnings ratios to expected gi, and

this increased sensitivity is reflected in the larger comovement of price-earnings ratios with

expected earnings growth. This logic extends to any model with duration-based discount

rates and shows that while discount rates may not affect expected earnings growth, they

can be quantitatively important for driving the comovement of price ratios with expected

earnings and earnings growth forecast errors.

Overall, the fact that dispersion in price-earnings ratios for β > 0, γ > 0 is more than
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twice as large as any of the other counterfactuals highlights the natural interaction between

preferences for the timing of cash flows and learning about cash flow growth. We find that

this interaction is quantitatively important for matching the large empirical dispersion in

price-earnings ratios.

IV. Conclusion

We find that subjective expectations have substantial potential to explain the cross-

section of stock price ratios and shed light on the relative importance of expected future

cash flows and discount rates. Using a variance decomposition, we show that cross-sectional

dispersion in price-earnings ratios is primarily explained by predictable errors in subjective

expectations of earnings growth. Subjective discount rates play a secondary, but non-trivial

role. In a similar vein, we show that investors do not fully anticipate the high returns on

anomaly portfolios and that these returns instead largely reflect positive unexpected earnings

growth.

To understand this findings, we provide a quantitative model which not only outperforms

standard FIRE models in matching the dynamics of prices and realized earnings growth

and returns, but also matches the dynamics of prices and expectations. The model features

constant gain learning about earnings growth and duration-based risk premia and emphasizes

the importance of slow-moving beliefs in order to match the empirical timing of earnings

growth expectations and realized returns. In both the model and the data, disappointment

in one-period earnings growth does not immediately lead to large negative returns. Instead,

returns fall gradually over time as agents adjust their beliefs.

These findings for the cross-section of stock prices are consistent with the aggregate time-

series findings of De la O and Myers (2021, 2023), who emphasize that aggregate stock prices

are largely driven by subjective earnings growth expectations and that errors in short-term

earnings growth expectations play a particularly large role in explaining long-term returns.
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This harmony between the aggregate time-series and the cross-section indicates that a single

mechanism could potentially explain both dimensions of the data and provides a strong

motivation for further research understanding how investors form cash flow expectations

and discount rates.
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Appendix

A. Model prices and returns

To derive equation (9), we guess and verify a log-affine form for the strip price, P
(n)
t =

exp {A (n) + ϕnxagg
t }. The strip price is then pinned down by P

(0)
t = exp {xagg

t } (i.e., A (0) =

0) and

P
(n)
t = E∗

t

[
Mt+1P

(n−1)
t+1

]
= E∗

t

[
exp

{
−rf − 1

2
γ2σ2

u − γut+1 + A (n− 1) + ϕnxagg
t + ϕn−1ut+1

}]
= exp

{
−rf − 1

2
γ2σ2

u + A (n− 1) + ϕnxagg
t +

1

2

(
ϕn−1 − γ

)2
σ2
u

}
. (A1)

This gives that

A (n) = A (n− 1)− rf − γϕn−1σ2
u +

1

2
ϕ2(n−1)σ2

u

= −nrf − γσ2
u

1− ϕn

1− ϕ
+

1

2
σ2
u

1− ϕ2n

1− ϕ2
. (A2)

The expected and realized strip returns in equations (10)-(11) then simply utilize the for-

mula for P (n)
t . The firm price in equation (12) uses the independence of aggregate and idiosyn-

cratic shocks to simplify E∗
t

[(∏n
j=1 Mt+j

)
Xagg

t+nX̃i,t+n

]
= E∗

t

[(∏n
j=1 Mt+j

)
Xagg

t+n

]
E∗

t

[
X̃i,t+n

]
=

P
(n)
t E∗

t

[
X̃i,t+n

]
.

Given that the firm price is simply a collection of strip prices, the return for a firm is

Ri,t+1 =
X̃i,t+1X

agg
t+1 + Pi,t+1

Pi,t

=

∑∞
n=1 P

(n−1)
t+1 E∗

t+1

[
X̃i,t+n

]
∑∞

n=1 P
(n)
t E∗

t

[
X̃i,t+n

]
=
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n=1
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(n)
t E∗

t

[
X̃i,t+n
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(n)
t E∗

t
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] P (n−1)
t+1
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(n)
t

E∗
t+1

[
X̃i,t+n

]
E∗

t

[
X̃i,t+n

]
=
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n=1

wi,t,nR
(n)
t+1

E∗
t+1

[
X̃i,t+n

]
E∗

t

[
X̃i,t+n

] (A3)

where the weight is wi,t,n =
P

(n)
t E∗

t [X̃i,t+n]∑∞
n=1 P

(n)
t E∗

t [X̃i,t+n]
=

exp{nE∗
t [gi]}P

(n)
t∑∞

n=1 exp{nE∗
t [gi]}P

(n)
t

from equation (8). Ap-
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plying expectations, we then get equation (13).

B. Connecting returns, earnings growth, and price-earnings ratios

First, we derive the equation for a firm which has zero dividends. For simplicity, we eliminate

the index i in this derivation. In this case, the return is equal to the price growth which

after log-linearization becomes an exact relationship

rt+1 = ∆xt+1 − pxt + pxt+1. (A4)

A high price-earnings ratio pxt must be followed by low future price growth ∆pt+1 (returns

rt+1), high future earnings growth ∆xt+1, or a high future price-earnings ratio pxt+1.

Now, we consider the case where dividends are non-zero. We start with the one-year

return identity of a portfolio

Rt+1 =
Pt+1 +Dt+1

Pt

=

(
Pt+1

Dt+1
+ 1
)

Dt+1

Dt

Pt

Dt

,

where Pt and Dt are the current price and dividends. Log-linearizing around p̄d, we can

represent the price-dividend ratio pdt in terms of future dividend growth, ∆dt+1, future

returns, rt+1, and the future price-dividend ratio, pdt+1, all in logs:

rt+1 ≈ κd +∆dt+1 − pdt + ρpdt+1, (A5)

where κd is a constant, ρ = ep̄d/
(
1 + ep̄d

)
< 1. We can then insert the identity pxt =

pdt + dxt,where dxtis the log payout ratio, into (A5) to obtain

rt+1 ≈ κ+∆et+1 − pxt + ρpxt+1 (A6)

where we approximate (1− ρ) dxt+1 as 0 given that (1− ρ) is very close to 0 .30 Here, p̄d

does not need to be the mean price-dividend ratio of this specific stock or portfolio. In

order to study cross-sectional variation without resorting to portfolio-specific approximation

parameters, we use the average price-dividend ratio of the market for p̄d following Cochrane
30The zero dividend relationship in equation (A4) is a special case of equation (A6) as p̄d goes to infinity.
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(2011).

While the identity relies on the approximation that (1− ρ) dxt+1 → 0, empirically this

approximation (A6) holds tightly. For horizons of 1 to 4 years, Table I shows that a one unit

increase in pxt is associated with almost exactly a one unit increase in
∑h

j=1 ρ
j−1∆xt+j −∑h

j=1 ρ
j−1rt+j+ρhpxt+h.31 In other words, the approximation error from ignoring the payout

ratio and using a single value for ρ accounts for at most 3.1% of variation in price-earnings

ratios in the decomposition of equation (18). For robustness, the next section uses an exact

relationship to ensure the approximation is not driving our results.

C. Exact decomposition results

In this section, we derive all the main results using an exact decomposition of price-earnings

ratios based on price growth, rather than the approximate decomposition based on returns.

For any stock or portfolio of stocks i, the price-earnings ratio pxi,t can be expressed in terms

of the one-year ahead log price growth ∆pi,t+1, the future earnings growth ∆xi,t+j, and the

future price-earnings ratio:

pxi,t = ∆xi,t+1 +∆pi,t+1 + pxi,t+1. (A7)

This equation is exact and does not contain a log-linearization constant ρ. Applying sub-

jective expectations E∗
t [·], we see that a higher than average price-earnings ratio must be

explained by higher than average expected earnings growth, lower than average expected

price growth, or a higher than average expected future price-earnings ratio,

p̃xi,t =
h∑

j=1

E∗
t [∆x̃i,t+j]−

h∑
j=1

E∗
t [∆p̃i,t+j] + E∗

t

[
p̃xi,t+h

]
. (A8)

Just as the main decomposition, this equation holds under any subjective probability
31For example, at the one-year horizon, a one unit increase in pxt is associated with a 0.103 increase in

∆xt+1, a 0.143 increase in −rt+1, and a 0.746 increase in ρpxt+1. At the four-year horizon, a one unit increase
in pxt is associated with a with a 0.099 increase in

∑4
j=1 ρ

j−1∆xt+j , a 0.320 increase in −
∑4

j=1 ρ
j−1rt+j ,

and a 0.550 increase in ρ4pxt+4.
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distribution and we can decompose the variance of p̃xi,t into three components:

1 =

Cov

 h∑
j=1

E∗
t [∆x̃i,t+j ] , p̃xi,t


V ar

(
p̃xi,t

)︸ ︷︷ ︸
CFh

+

Cov

−
h∑

j=1

E∗
t [∆p̃i,t+j ] , p̃xi,t


V ar

(
p̃xi,t

)︸ ︷︷ ︸
PGh

+
Cov

(
E∗

t

[
p̃xi,t+h

]
, p̃xi,t

)
V ar

(
p̃xi,t

)︸ ︷︷ ︸
FPEh

.

(A9)

The coefficients CFh and PGh give a quantitative measure of how much dispersion in price-

earnings ratios is accounted for by dispersion in expected earnings growth and how much is

accounted for by dispersion in expected price growth. We can now estimate this equation

using the exact expectations of price growth without an approximation.

Table AI shows that the results of this exact decomposition are very similar to the main

decomposition results in Table I. We find that 10.3% of dispersion in price-earnings ratios

is accounted for by differences in one-year future earnings growth and 13.2% is accounted

for by differences in one-year price growth. Just as in the main decomposition, differences

in earnings growth are overestimated, with expected earnings growth accounting for nearly

a third (33.1%) of all dispersion in price-earnings ratios. Differences in price growth are

underestimated, with expected price growth accounting for only 3.3% of all dispersion in

price-earnings ratios. A similar pattern can be observed at the four-year horizon. Overall,

all the coefficients closely align with those reported in Table I.

We can also estimate an exact version of the unexpected anomaly return decomposition

(20). Just as in the main identity, we normalize all anomalies ãi,t so that they have variance

1 and positively comove with future price growth. From equation (A7), we have the identity

Cov (∆p̃i,t+1 − E∗
t [∆p̃i,t+1] , ãi,t)︸ ︷︷ ︸

σa,p

= Cov (∆x̃i,t+1 − E∗
t [∆x̃i,t+1] , ãi,t)︸ ︷︷ ︸

σa,x

+ Cov
(
p̃xi,t+1 − E∗

t

[
p̃xi,t+1

]
, ãi,t

)︸ ︷︷ ︸
σa,px

. (A10)

Here, the values for σa,x and σa,px indicate how much the predictable price growth forecast
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Table AI

Decomposition of dispersion in price-earnings ratios using price growth
This table decomposes the variance of price-earnings ratios using equation (AI). The FIRE column report the elements
CFh, PGh and FPEh of the decomposition using future earnings growth, future price growth and future price-earning ratios.
The Expected column report the elements of the decomposition using expected earnings growth, expected price growth and
expected price-earning ratios. The Forecast Errors column reports the contribution of the forecast errors of each element. For
instance, CF1 = Cov

(
∆x̃i,t+1, p̃xi,t

)
/V ar

(
p̃xi,t

)
is shown in the FIRE column. This component can be split into its expected

component Cov
(
E∗

t [∆x̃i,t+1] , p̃xi,t

)
/V ar

(
p̃xi,t

)
and its error component Cov

(
∆x̃i,t+1 − E∗

t [∆x̃i,t+1] , p̃xi,t

)
/V ar

(
p̃xi,t

)
.

The results for the one-year decomposition are shown on the left and the results for the four year decomposition are shown on
the right. The sample period is 1999 to 2020. Driscoll-Kraay standard errors are calculated and clustered at the year level.
Superscripts indicate significance at the 1% (∗∗∗), 5% (∗∗), and 10% (∗) level.

One-year horizon (h = 1) One-to-four year horizon (h = 4)

FIRE Expected Forecast FIRE Expected Forecast
errors errors

1999-2020 CFh 0.103∗∗∗ 0.331∗∗∗ −0.228∗∗∗ 0.100∗∗∗ 0.439∗∗∗ −0.340∗∗∗

[0.028] [0.022] [0.022] [0.039] [0.018] [0.034]

1999-2020 PGh 0.132∗∗ 0.033∗∗ 0.100∗ 0.292∗∗∗ 0.135∗∗∗ 0.157∗∗

[0.054] [0.013] [0.056] [0.062] [0.036] [0.063]

1999-2020 FPEh 0.765∗∗∗ 0.636∗∗∗ 0.129∗∗ 0.608∗∗∗ 0.426∗∗∗ 0.182∗∗∗

[0.052] [0.020] [0.062] [0.048] [0.023] [0.054]
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Table AII

Unexpected Anomaly Price Growth
This table measures and decomposes unexpected anomaly price growth. For each anomaly ãi,t, we sort stocks into five equal-
value portfolios based on the anomaly variable. The table shows the coefficients of regressing each of the dependent variables
on a specific anomaly variable. The three dependent variables are the unexpected price growth ∆p̃i,t+1 − E∗

t [∆p̃i,t+1], the
earnings growth forecast errors ∆x̃i,t+1 − E∗

t [∆x̃i,t+1], and the price-earnings ratio forecast errors
(
p̃xi,t+1 − E∗

t

[
p̃xi,t+1

])
.

For the anomaly variables, Value is measured using the price-earnings ratio. Profitability is measured using gross profitability.
Investment is measured using net stock issuance. The Representative Anomaly is the average ranking of each stock across 22
different anomalies. Each anomaly variable is scaled to have a standard devition of 1 and signed to positively comove with
future price growth. The sample period is 1999 to 2020. Driscoll-Kraay standard errors are clustered at the portfolio and year
level. Superscripts indicate significance at the 1% (∗∗∗), 5% (∗∗), and 10% (∗) level.

Dependent variable

Anomaly ãi,t ∆p̃i,t+1 − E∗
t [∆p̃i,t+1] ∆x̃i,t+1 − E∗

t [∆x̃i,t+1]
(
p̃xi,t+1 − E∗

t

[
p̃xi,t+1

])
Value 0.0301∗ 0.0687∗∗∗ −0.0389∗∗

[0.0169] [0.0066] [0.0187]

Profitability 0.0107 0.0091 0.0016
[0.0080] [0.0113] [0.0111]

Investment 0.0242∗∗∗ 0.0287∗∗ −0.0045
[0.0090] [0.0127] [0.0071]

Representative 0.0293∗∗∗ 0.0655∗∗∗ −0.0362∗∗∗

anomaly [0.0098] [0.0165] [0.0094]

errors are explained by predictable errors in next-year earnings growth expectations and

expectations of the future price-earnings ratio. Table AII shows the results for the four

anomalies studied in Section II.D. For each anomaly, we estimate a positive value of σa,p,

meaning that investors do not fully anticipate the high growth on high ãi,t stocks. For three

of the four anomalies, the predictable errors in one-year earnings growth expectations are

more than large enough to account for the unexpected one-year price growth (i.e., σa,x is

greater than σa,p). For the profitability anomaly, the predictable errors in earnings growth

account for more than 85% of the unexpected price growth.
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D. FIRE model simulations

For each model, we simulate the cross-section of firms. We set the number of firms based

on the original calculations in each paper. Specifically, we use 50, 5,000, and 200 firms for

Berk et al. (1999), Zhang (2005), and Lettau and Wachter (2007), respectively. We set every

sample to a length of 20 years and we run 1,000 simulations for each model. All parameter

values are taken from the original papers.

For Berk et al. (1999) and Zhang (2005), we sort firms into five portfolios based on their

price-book ratios. For Berk et al. (1999), we treat profits as our measure of earnings and

for Zhang (2005), we treat profits after the cost of new capital and adjustment costs as our

measure of earnings.32 For Lettau and Wachter (2007), the only firm variables are price and

dividends, so we treat dividends as our measure of earnings and sort firms into five portfolios

based on their price-dividend ratios. We then estimate the finite-horizon and infinite horizon

decomposition in equation (18) for each model.

D.1. Berk, Green, and Naik 1999

Each firm has some existing projects which generate cash flows. Each period, the firm draws

a new potential project, which it can pay a fixed cost to undertake. The value of the firm

comes from its existing projects as well as the option to undertake future projects (“growth

options”). As the term “growth options” implies, future earnings growth plays a key role in

this model. The ratio of the firm’s price to its current earnings reflects how much of the firm’s

value comes from existing projects versus growth options. Firms with high price-earnings

ratios derive most of their value from their expected future projects rather than existing

projects, and future earnings growth accounts for most dispersion in price-earnings ratios

(CF4 = 0.84).

The model features a time-varying risk-free rate which also generates differences in risk
32We find nearly identical results if we use profits as our measure of earnings for Zhang (2005).
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premia.33 Compared to existing projects, the value of growth options is less sensitive to

changes in the risk-free rate, as the firm can endogenously change its decision to exercise

the option (i.e., it only undertakes the potential project if the risk-free rate is low). Because

of this, the agent requires a higher risk premium for firms with low price-earnings ratios.

Quantitatively, the difference in risk premia is only a small part of the dispersion in price-

earnings ratios (DR4 = 0.03, DR∞ = 0.04).

D.2. Zhang 2005

In this model, firm earnings are

Xi,t = ext+zi,t+ptkα
i,t − f − ii,t − h (ii,t, ki,t)

where xt is aggregate productivity, zi,t is idiosyncratic productivity, pt is the aggregate price

level, ki,t is firm-level capital, f is a fixed cost, ii,t is investment in capital, and h (ii,t, ki,t)

is an adjustment cost. Differences across firms are due to differences in their sequence of

idiosyncratic productivity {zi,τ}tτ=0. Because idiosyncratic productivity is AR(1), future

earnings growth is partly predictable and dispersion in price-earnings ratios largely predicts

differences in future earnings growth (CF4 = 0.69).

The model also features differences in discount rates. Because of adjustment costs, it

is costly for firms to lower their capital to the new optimal level after a negative shock

to aggregate productivity xt. Therefore, the agent requires a higher risk premium for firms

with high capital relative to total firm value, as they are more sensitive to negative aggregate

shocks. Quantitatively, these differences in risk premia are small relative to the dispersion

in price-earnings ratios (DR4 = −0.03).34

In order to calculate CFh and DRh, we have to address the issue that model earnings are
33The risk-free rate is closely tied to the agent’s stochastic discount factor.
34In the model, high price-earnings ratio firms have low price-capital ratios. A 1% increase in ezi,t does

not change the current capital (ki,t), increases the current earnings by 1%, and increases the current price
by less than 1% since the increase in productivity is persistent but not permanent. Thus, an increase in zi,t
raises the price-capital ratio and lowers the price-earnings ratio. This is why discount rate news is slightly
negative, as the model predicts that high price-capital ratio firms will have lower future returns, which means
that high price-earnings ratio firms will have higher future returns.
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often negative, even at the portfolio level, which is not compatible with the Campbell-Shiller

decomposition.35 To use the decomposition, we want to think about an investor that makes

a one-time payment to buy a claim to the company, never pays anything more in the future,

and receives some cash flows in the future. Thus, we will think of an investor that holds

some share θi,t of the company. When the company has positive cash flows, the investor

does not change her share in the company and receives these cash flows. When the company

has negative cash flows, we assume the investor sells a part of her stake in the company

to cover this. Specifically, this investor receives cash flows X̂i,t ≡ θi,t max {Xi,t, 0}, where

θi,t = θi,t−1 (1 + min {Xi,t, 0} /Pi,t). Intuitively, rather than receiving a negative cash flow,

this investor dilutes her claim to the future (on average positive) cash flows. This investor

receives the same return as someone who owned the entire firm and received the negative

cash flows, θi,tPi,t+X̂i,t

θi,t−1Pi,t−1
≡ Pi,t+Xi,t

Pi,t−1
.

D.3. Lettau and Wachter 2007

In this model, each firm receives some share si,t of the aggregate earnings. The value of

si,t goes through a fixed cycle, increasing from s to a peak value of s̄ and then decreasing

back to s. The cross-section of firms is populated with firms at different points in this share

cycle. Because all firms receive a share of the same aggregate earnings, the cross-sectionally

demeaned log earnings growth ∆x̃i,t is simply the log share growth log (si,t)− log (si,t−1).

In the model, the stochastic discount factor is exposed to shocks that are partly reversed

over time, which means that the agent requires a lower risk premium for longer horizon cash

flows. Because of this, firms with high price-earnings ratios (i.e., firms with a low current

share si,t) earn slightly lower returns for the first few years (DR4 = 0.06). However, the

quantitatively larger component is that high price-earnings ratio firms experience higher

earnings growth as their share increases (CF4 = 0.24). Over time, the firms with low current

si,t eventually become the firms with high si,t+h and require a higher risk premium, as their
35After a large aggregate shock, nearly all firms will substantially change their capital which requires

paying large adjustment costs.
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cash flows are now front-loaded. Thus, discount rate news is small and ambiguous in terms

of sign at long horizons, DR∞ = −0.03 (0.09).

E. Model parameter estimation

This section derives the cash flow parameters ϕ, σu, and σv from the standard deviation

and autocorrelation of aggregate earnings growth σ (∆xagg
t ) and AC (∆xagg

t ) and the average

across portfolios of the standard deviation over time of earnings growth σ (∆x̃i,t+1) .

According to equation (2), we can express aggregate earnings growth as:

∆xagg
t = ϕ∆xagg

t−1 − ut−1 + ut. (A11)

Taking covariance of equation (A11) with current earnings growth on both sides results in:

Cov(∆xagg
t ,∆xagg

t−1) = ϕV ar(∆xagg
t−1)− σ2

u

AC(∆xagg
t ) = ϕ− σ2

u

V ar(∆xagg
t )

. (A12)

Taking the variance of equation (A11) on both sides gives:

V ar(∆xagg
t ) = ϕ2V ar(∆xagg

t ) + 2σ2
u − 2ϕσ2

u

V ar(∆xagg
t ) =

2σ2
u

1 + ϕ
. (A13)

From equations (A12) and (A13), we have:

ϕ = 1 + 2AC (∆xagg
t )

σu =

(
1 + ϕ

2

)1/2

σ (∆xagg
t ) .

Finally, to estimate the individual variance, we use equation (3) to obtain the value for

σv in terms of idiosyncratic earnings growth:

σv =
σ (∆xi,t)√

2
.

From the empirical values of σ (∆xagg
t ) = 0.057, AC (∆xagg

t ) = −0.086 and a portfolio-

average of σ (∆xi,t) = 0.149 we infer ϕ = 0.828, σu = 0.337 and σv = 0.104.


